JP2019063385A - X線画像診断装置 - Google Patents

X線画像診断装置 Download PDF

Info

Publication number
JP2019063385A
JP2019063385A JP2017194079A JP2017194079A JP2019063385A JP 2019063385 A JP2019063385 A JP 2019063385A JP 2017194079 A JP2017194079 A JP 2017194079A JP 2017194079 A JP2017194079 A JP 2017194079A JP 2019063385 A JP2019063385 A JP 2019063385A
Authority
JP
Japan
Prior art keywords
ray
focal
ray tube
dimension
profile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017194079A
Other languages
English (en)
Other versions
JP7043210B2 (ja
Inventor
信 高仲
Makoto Takanaka
信 高仲
早苗 原田
Sanae Harada
早苗 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Medical Systems Corp
Original Assignee
Canon Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Medical Systems Corp filed Critical Canon Medical Systems Corp
Priority to JP2017194079A priority Critical patent/JP7043210B2/ja
Publication of JP2019063385A publication Critical patent/JP2019063385A/ja
Application granted granted Critical
Publication of JP7043210B2 publication Critical patent/JP7043210B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Abstract

【課題】X線管の焦点寸法を自動的に特定することができるX線画像診断装置を提供する。【解決手段】実施形態に係るX線画像診断装置は、X線を発生するX線管と、前記X線管の焦点寸法の最大値よりも大きい開口を有するX線遮蔽部と、前記開口を通過したX線を検出し、この検出したX線に基づいた信号を出力するX線検出部と、前記検出したX線に基づいた半影のプロファイルを取得する取得部と、前記取得部により取得された前記半影のプロファイルに基づいて前記X線管の焦点寸法を特定する特定部と、を備える。【選択図】 図2

Description

本発明の実施形態は、X線画像診断装置に関する。
被検体を通過したX線から画像を取得するX線画像診断装置として、例えば、X線CT(Computed Tomography)装置や、X線TV寝台装置、X線循環器診断システム、X線アンギオ装置などのX線診断装置などが知られている。X線画像診断装置に使用されるX線管は一般に、陰極と陽極との間に直流高電圧を印加し、陰極をフィラメント電流で加熱して熱電子を放出させ、フィラメントから放出された熱電子を陽極のターゲット上に集束させることでX線を放射する。
ターゲット上の焦点の大きさ(以下、焦点寸法という)は、X線撮影により得られる画像の解像度に影響する。このため、所望の解像度を得るためには、X線管の焦点寸法を所望の解像度に対応する所望の寸法に維持することが重要となる。
X線画像診断装置には、たとえば電場または磁場によって熱電子の軌道を制御することにより、X線管の焦点寸法を調整できるものがある。この種のX線画像診断装置は、焦点寸法を所望の寸法に維持する場合には、熱電子に印加する電場または磁場が一定に保たれる。
しかし、X線管の使用に伴い、電場または磁場の印加に係る回路やターゲットなどのX線管の構成要素は劣化する。このため、熱電子に印加する電場または磁場を一定に保っていても、構成要素の経時的な劣化に伴い、焦点寸法は経時的に変化してしまう。したがって、構成要素の経時的な劣化を考慮しつつ所望の寸法を維持するためには、メンテナンス時などの所定のタイミングで焦点寸法を特定し、特定した焦点寸法にもとづいて必要に応じて熱電子に印加する電場または磁場を調整することが好ましい。
焦点寸法を特定する方法として、たとえばスリットカメラ法、ピンホールカメラ法、スターパターンカメラ法などが知られている(医用X線管装置 JIS Z 4704)。しかし、これらの方法で焦点寸法を特定する場合、ユーザは、スリット、ピンホール、テストチャートなどの部材をX線管とX線検出器の間に手動で別途設置する必要があり、大変面倒である。また、これらの方法で特定した焦点寸法が所望の寸法から大きくずれている場合、ユーザは、焦点寸法が所望の寸法となるように電場または磁場を手動で修正するという非常に煩雑な作業を強いられてしまう。
特開2011−67555号公報
本発明が解決しようとする課題は、X線管の焦点寸法を自動的に特定することである。
実施形態に係るX線画像診断装置は、X線を発生するX線管と、前記X線管の焦点寸法の最大値よりも大きい開口を有するX線遮蔽部と、前記開口を通過したX線を検出し、この検出したX線に基づいた信号を出力するX線検出部と、前記検出したX線に基づいた半影のプロファイルを取得する取得部と、前記取得部により取得された前記半影のプロファイルに基づいて前記X線管の焦点寸法を特定する特定部と、を備えたものである。
本発明の一実施形態に係るX線CT装置の一構成例を示すブロック図。 X線管およびX線高電圧装置の内部構成例を示すブロック図。 焦点寸法とX線のプロファイルとの関係の一例を示す説明図。 図3に示す焦点寸法よりも大きい焦点寸法とプロファイルとの関係の一例を示す説明図。 図3に示す焦点寸法よりも小さい焦点寸法とプロファイルとの関係の一例を示す説明図。 半影のプロファイルと焦点寸法とを関連付けた関連付け情報の一例を示す説明図。 処理回路のプロセッサにより、X線管11の焦点寸法を自動的に特定する際の手順の一例を示すフローチャート。 X線管に異常が発生している場合におけるプロファイルの形状の一例を示す説明図。
本発明に係るX線画像診断装置の実施の形態について、添付図面を参照して説明する。
本発明の一実施形態に係るX線画像診断装置は、陰極から放出される電子の軌道を制御する調整器により焦点寸法を調整可能なX線管を備えたX線アンギオ装置などのX線診断装置やX線CT装置などの各種のX線画像診断装置に適用することが可能である。以下の説明では、本発明に係るX線画像診断装置の一例としてX線CT装置を用いる場合の例について示す。
図1は、本発明の一実施形態に係るX線CT装置1の一構成例を示すブロック図である。また、図2は、X線管11およびX線高電圧装置14の内部構成例を示すブロック図である。
なお、本実施形態では、非チルト状態での回転フレーム13の回転軸または寝台装置30の天板33の長手方向をz軸方向、z軸方向に直交し、床面に対し水平である軸方向をx軸方向、z軸方向に直交し、床面に対し垂直である軸方向をy軸方向とそれぞれ定義するものとする(図1参照)。
X線CT装置1は、架台装置10と、寝台装置30と、コンソール装置40とを有する。
X線CT装置1には、X線管と検出器とが一体として被検体の周囲を回転するRotate/Rotate−Type(第3世代CT)、リング状にアレイされた多数のX線検出素子が固定され、X線管のみが被検体の周囲を回転するStationary/Rotate−Type(第4世代CT)等様々なタイプがあり、いずれのタイプでも本実施形態へ適用可能である。以下の説明では、本実施形態に係るX線CT装置1として第3世代のRotate/Rotate−Typeを採用する場合の例を示す。
架台装置10は、X線管11、X線検出器12、撮像領域が内在する開口部19を有する回転フレーム13、X線高電圧装置14、制御装置15、ウェッジ16、X線遮蔽部材17、およびデータ収集回路(DAS:Data Acquisition System)18を備える。
X線管11は、図2に示すように、陰極(フィラメント)111、陽極(ターゲット)112、および調整器113を有する。なお、本実施形態においては、一管球型のX線CT装置にも、X線管と検出器との複数のペアを回転リングに搭載した、いわゆる多管球型のX線CT装置にも適用可能である。
調整器113は、陰極111を囲むフィラメントカップ等の集束電極やグリッド電極などにより構成され、陰極111から放出されてターゲット112に向かう熱電子に作用して熱電子の軌跡を制御する電界または磁界を形成する。X線管11は、X線高電圧装置14からの高電圧の印加により、陰極111からターゲット112に向けて熱電子を照射する真空管である。この熱電子が調整器113の形成する電界または磁界によって軌道を制御されることにより、ターゲット112の焦点寸法が制御される。
X線検出器12は、X線管11から照射され、被検体Pを通過したX線を検出し、当該X線量に対応した電気信号をDAS18へと出力する。X線検出器12は、たとえば、X線管の焦点を中心として1つの円弧に沿ってチャネル方向に複数のX線検出素子が配列された複数のX線検出素子列を有する。X線検出器12は、たとえば、チャネル方向に複数のX線検出素子が配列されたX線検出素子列がスライス方向(列方向、row方向)に複数配列された構造を有する。
また、X線検出器12は、たとえば、グリッドと、シンチレータアレイと、光センサアレイとを有する間接変換型の検出器である。シンチレータアレイは、複数のシンチレータを有し、シンチレータは入射X線量に応じた光子量の光を出力するシンチレータ結晶を有する。グリッドは、シンチレータアレイのX線入射側の面に配置され、散乱X線を吸収する機能を有するX線遮蔽板を有する。光センサアレイは、シンチレータからの光量に応じた電気信号に変換する機能を有し、たとえば、光電子増倍管(フォトマルチプライヤー:PMT)等の光センサを有する。
なお、X線検出器12は、入射したX線を電気信号に変換する半導体素子を有する直接変換型の検出器であっても構わない。
回転フレーム13は、X線管11とX線検出器12とを対向支持し、後述する制御装置15によってX線管11とX線検出器12とを回転させる円環状のフレームである。なお、回転フレーム13は、X線管11とX線検出器12に加えて、X線高電圧装置14やDAS18を更に備えて支持する。なお、DAS18が生成した検出データは、回転フレーム13に設けられた発光ダイオード(LED)を有する送信機から光通信によって架台装置10の非回転部分、たとえば図示しない固定フレーム、に設けられた、フォトダイオードを有する受信機に送信され、コンソール装置40へと転送される。なお、回転フレーム13から架台装置10の非回転部分への検出データの送信方法は、前述の光通信に限らず、非接触型のデータ伝送であれば如何なる方式を採用しても構わない。また、図示しない固定フレームは回転フレーム13を回転可能に支持するフレームである。
X線高電圧装置14は、図2に示すように、高電圧発生器21と、記憶回路22と、処理回路23とを有する。なお、X線高電圧装置14は、回転フレーム13に設けられてもよいし、架台装置10の固定フレーム側に設けられてもよい。X線高電圧装置14の構成の詳細については後述する。
制御装置15は、プロセッサおよび記憶回路と、モータおよびアクチュエータ等の駆動機構とを有する。制御装置15は、コンソール装置40若しくは架台装置10に取り付けられた入力インターフェース43からの入力信号を受けて、架台装置10および寝台装置30の動作制御を行う機能を有する。たとえば、制御装置15は、入力信号を受けて回転フレーム13を回転させる制御や、架台装置10をチルトさせる制御、ならびに寝台装置30および天板33を動作させる制御を行う。なお、架台装置10をチルトさせる制御は、架台装置10に取り付けられた入力インターフェース43によって入力される傾斜角度(チルト角度)情報により、制御装置15がX軸方向に平行な軸を中心に回転フレーム13を回転させることによって実現される。なお、制御装置15は架台装置10に設けられてもよいし、コンソール装置40に設けられても構わない。
ウェッジ16は、X線管11から照射されたX線量を調節するためのフィルタである。具体的には、ウェッジ16は、X線管11から被検体Pへ照射されるX線があらかじめ定められた分布になるように、X線管11から照射されたX線を透過して減衰するフィルタである。たとえば、ウェッジ16(ウェッジフィルタ(wedge filter)、ボウタイフィルタ(bow−tie filter))は、所定のターゲット角度や所定の厚みとなるようにアルミニウムを加工したフィルタである。
X線遮蔽部材17は、ウェッジ16を透過したX線の照射範囲を絞り込むための鉛板等であり、複数の鉛板等の組み合わせによってX線の通過開口を形成するコリメータまたはスリットである。X線遮蔽部材17は、X線管11の焦点寸法の最大値よりも大きい開口を提供可能に構成される。ここで、X線管11の焦点寸法の最大値とは、処理回路23により設定された焦点寸法にもとづいて決定されてもよく、たとえばこの設定寸法に所定のマージンを加えた値としてもよいし、X線管11のターゲット112の大きさから決定されるX線検出器12から見込んだ実効焦点の大きさにもとづいて決定されてもよい。
なお、X線遮蔽部材17は、X線管11の焦点寸法の最大値よりも大きい開口を提供可能であればよく、ウェッジ16の近傍に設けられて通常の撮影時に用いられるコリメータまたはスリットをそのまま利用してもよいし、通常の撮影時に用いられるコリメータまたはスリットとは別体のコリメータまたはスリットとして設けられてもよい。
DAS18(Data Acquisition System)は、X線検出器12の各X線検出素子から出力される電気信号に対して増幅処理を行う増幅器と、電気信号をデジタル信号に変換するA/D変換器とを有し、検出データを生成する。DAS18が生成した検出データは、コンソール装置40へと転送される。
寝台装置30は、スキャン対象の被検体Pを載置、移動させる装置であり、基台31と、寝台駆動装置32と、天板33と、支持フレーム34とを備えている。
基台31は、支持フレーム34を鉛直方向(y方向)に移動可能に支持する筐体である。寝台駆動装置32は、被検体Pが載置された天板33を天板33の長軸方向(z方向)に移動するモータあるいはアクチュエータである。支持フレーム34の上面に設けられた天板33は、被検体Pが載置される板である。
なお、寝台駆動装置32は、天板33に加え、支持フレーム34を天板33の長軸方向(z方向)に移動してもよい。また、寝台駆動装置32は、寝台装置30の基台31ごと移動させてもよい。本発明を立位CTに応用可能な場合は、天板33に相当する患者移動機構を移動する方式であってもよい。また、ヘリカルスキャン撮影や位置決め等のためのスキャノ撮影等、架台装置10の撮像系と天板33の位置関係の相対的な変更をともなう撮影を実行する場合は、当該位置関係の相対的な変更は天板33の駆動によって行われてもよいし、架台装置10の固定フレームの走行によって行われてもよく、またそれらの複合によって行われてもよい。
コンソール装置40は、メモリ41と、ディスプレイ42と、入力インターフェース43と、ネットワーク接続回路44と、処理回路45とを有する。なお、コンソール装置40が単一のコンソールにて全ての機能を実行するものとして以下説明するが、これらの機能は複数のコンソールが実行してもよい。
メモリ41は、たとえば、RAM(Random Access Memory)、フラッシュメモリ等の半導体メモリ素子、ハードディスク、光ディスク等の、プロセッサにより読み取り可能な記録媒体を含んだ構成を有する。メモリ41は、たとえば、投影データや再構成画像データを記憶する。なお、メモリ41の記録媒体内のプログラムおよびデータの一部または全部は、ネットワークを介した通信によりダウンロードされてもよいし、光ディスクなどの可搬型記憶媒体を介してメモリ41に与えられてもよい。
ディスプレイ42は、各種の情報を表示する。たとえば、ディスプレイ42は、処理回路45によって生成された医用画像(CT画像)や、ユーザからの各種操作を受け付けるためのGUI(Graphical User Interface)等を出力する。たとえば、ディスプレイ42は、液晶ディスプレイやCRT(Cathode Ray Tube)ディスプレイイ、OLED(Organic Light Emitting Diode)ディスプレイ等である。
入力インターフェース43は、ユーザからの各種の入力操作を受け付け、受け付けた入力操作を電気信号に変換して処理回路45に出力する。たとえば、入力インターフェース43は、投影データを収集する際の収集条件や、CT画像を再構成する際の再構成条件、CT画像から後処理画像を生成する際の画像処理条件等をユーザから受け付ける。たとえば、入力インターフェース43は、マウスやキーボード、トラックボール、スイッチ、ボタン、ジョイスティック等により実現される。
ネットワーク接続回路44は、ネットワークの形態に応じた種々の情報通信用プロトコルを実装する。ネットワーク接続回路44は、この各種プロトコルに従ってX線CT装置1と画像サーバ等の他の機器とを接続する。この接続には、電子ネットワークを介した電気的な接続などを適用することができる。ここで電子ネットワークとは、電気通信技術を利用した情報通信網全般を意味し、無線/有線の病院基幹LAN(Local Area Network)やインターネット網のほか、電話通信回線網、光ファイバ通信ネットワーク、ケーブル通信ネットワークおよび衛星通信ネットワークなどを含む。
処理回路45は、メモリ41に記憶されたプログラムを読み出して実行することによりX線CT装置1の全体の動作を制御するプロセッサである。
続いて、X線高電圧装置14の構成例について説明する。
X線高電圧装置14の高電圧発生器21は、変圧器(トランス)および整流器等の電気回路を有しX線管11に印加する高電圧を発生する機能を有する。高電圧発生器21は、変圧器方式であってもよいし、インバータ方式であってもよい。
記憶回路22は、磁気的もしくは光学的記録媒体または半導体メモリなどの、プロセッサにより読み取り可能な記録媒体を含んだ構成を有する。記憶回路22は、焦点寸法と半影のプロファイルとをあらかじめ関連付けた関連付け情報を記憶しておくとよい。
処理回路23は、記憶回路22に記憶されたプログラムを読み出して実行することにより、X線管11の焦点寸法を自動的に特定するための処理を実行するプロセッサである。
図2に示すように、処理回路23のプロセッサは、プロファイル取得機能231、焦点寸法特定機能232、およびX線制御機能233を実現する。これらの各機能はそれぞれプログラムの形態で記憶回路22に記憶されている。
プロファイル取得機能231は、X線検出器12が検出したX線に基づいた半影のプロファイルを取得する。具体的には、プロファイル取得機能231は、X線検出器12が出力した信号を受け、この信号からX線検出器12に照射されたX線のプロファイル(強度分布)を取得する。X線遮蔽部材17の開口がX線管11の実効焦点の寸法(焦点寸法)よりも大きいときは、プロファイルには半影のプロファイルが含まれる。
焦点寸法特定機能232は、プロファイル取得機能231により取得された半影のプロファイルにもとづいて、X線管11の焦点寸法50を特定する。
半影のプロファイルにもとづいてX線管11の焦点寸法50を特定する方法としては、大きく次の2つの方法が挙げられる。
第1の方法は、特別な治具を用いることなく自動的に、半影の角度情報にもとづいて焦点寸法50を実測する方法である。第1の方法を用いる場合、焦点寸法特定機能232は、半影のプロファイルにもとづいて半影の角度情報を求め、この角度情報にもとづいて半影の寸法を求める。以下、より具体的に説明する。
図3は、焦点寸法50とX線のプロファイル60との関係の一例を示す説明図である。図3に示すように、焦点寸法50よりもX線遮蔽部材17の開口の大きさ2Daのほうが大きいときは、本影に対応するX線束(以下、本影X線束という)51に加え、半影に対応するX線束(以下、半影X線束という)52がX線検出器12に照射される。X線のプロファイル60の半影のプロファイルは、X線の主軸から半影X線束52の外縁を検出するX線検出素子の位置までの距離(以下、半影距離という)Dhsの情報を含む。
図4は、図3に示す焦点寸法50よりも大きい焦点寸法50Lとプロファイル60Lとの関係の一例を示す説明図である。また、図5は、図3に示す焦点寸法50よりも小さい焦点寸法50Sとプロファイル60Sとの関係の一例を示す説明図である。
X線管11の使用に伴い、調整器113の駆動回路やターゲット112などのX線管11の構成要素は劣化していく。このため、陰極111から発生する熱電子に印加する電場または磁場を一定に保つように調整器113を制御していても、これらの構成要素の経時的な劣化に伴い、焦点寸法50は経時的に変化してしまう。
たとえば、焦点寸法50が所望のサイズとした場合、この焦点寸法50よりも大きい焦点寸法50Lに変化した場合には、本影X線束51Lの外縁は所望の本影X線束51よりも内側に位置するとともに、半影X線束52Lの外縁は所望の半影X線束52よりも外側に位置するよう変化する。この変化は、半影のプロファイルの変化にあらわれる。したがって、この変化は、半影距離のDhsからDhsLへの変化にあらわれるとともに、半影角度θからθLの変化にあらわれる(図4参照)。
同様に、焦点寸法50よりも小さい焦点寸法50Sに変化した場合には、本影X線束51Sの外縁は所望の本影X線束51よりも外側に位置するとともに、半影X線束52Sの外縁は所望の半影X線束52よりも内側に位置するよう変化する。この変化は、半影距離のDhsからDhsSへの変化にあらわれるとともに、半影角度θからθSの変化にあらわれる(図5参照)。
ターゲット112とX線遮蔽部材17とX線検出器12との位置関係が一定であれば、焦点寸法50は、半影X線束52の外縁がX線検出器12に入射する角度(以下、半影角度という)θから求めることができる。そこで、本実施形態に係る処理回路23の焦点寸法特定機能232は、半影のプロファイルにもとづいて半影角度θを求め、半影角度θから焦点寸法50を求める。
具体的には、半影角度θは、X線遮蔽部材17からX線検出器12までの距離Haと、半影距離Dhsと、X線遮蔽部材17の開口の大きさ2Daとから求めることができる。焦点寸法50は、この半影角度θと、開口の大きさ2Daと、X線遮蔽部材17からX線管11までの距離とから正確に実測することができる(図3参照)。
第1の方法を用いる場合、特別な治具を用いることなく、焦点寸法50を自動的に正確に実測することができる。
第2の方法は、特別な治具を用いることなく自動的に、半影のプロファイル形状から焦点寸法50を推定する方法である。第2の方法を用いる場合、焦点寸法特定機能232は、プロファイル取得機能231により取得された半影のプロファイルと、焦点寸法50と半影のプロファイルとをあらかじめ関連付けた関連付け情報と、にもとづいてX線管11の焦点寸法50を特定する。この場合、関連付け情報は、あらかじめ記憶回路22やメモリ41に記憶しておくとよい。
図6は、半影のプロファイルと焦点寸法50とを関連付けた関連付け情報の一例を示す説明図である。なお、図6に示すプロファイルを取得する際のターゲット112とX線遮蔽部材17とX線検出器12との位置関係は、現在の位置関係と同一に設定しておく。
関連付け情報に複数のプロファイルのそれぞれに対して焦点寸法50があらかじめ関連付けられている場合(図6参照)、焦点寸法特定機能232は、プロファイル取得機能231により取得された半影のプロファイルと関連付け情報に記憶されたプロファイルとのマッチングにもとづいて現在の焦点寸法50を特定する。この場合、最も尤度の高いプロファイルに関連付けられた焦点寸法を現在の焦点寸法50として特定してもよいし、尤度の高い複数のプロファイルを抽出し、これらのプロファイルに関連付けられた複数の焦点寸法に対して尤度に応じた重み付け平均をとることによって現在の焦点寸法50を特定してもよい。
また、焦点寸法50として想定される唯一の所望の目標サイズが決まっている場合は、関連付け情報には、この1つのプロファイルと当該所望サイズとのみが関連付けられていてもよい。この場合、焦点寸法特定機能232は、プロファイル取得機能231により取得された半影のプロファイルと関連付け情報に記憶されたプロファイルとのマッチングの結果、所定の尤度以上となれば関連付け情報に記憶された焦点寸法を現在の焦点寸法50として特定する一方、所定の尤度未満の場合は、現在の焦点寸法50が所望の焦点寸法ではない旨の出力をしてもよい。所望の目標サイズの情報は、たとえばユーザにより入力インターフェース43を介して与えられてもよい。
なお、プロファイルのマッチング方法としては、画像処理の分野において機械学習を伴う方法を含め従来各種のものが知られており、これらのうち任意の方法を使用することが可能である。
第2の方法を用いる場合、特別な治具を用いることなく、焦点寸法50を自動的に推定することができる。また、第2の方法を用いる場合、焦点寸法50を実測する第1の方法よりも正確性には劣る場合があるものの、第1の方法よりも簡便に焦点寸法50を特定することができる。
図2に戻って、X線制御機能233は、高電圧発生器21を制御することにより、X線管11に供給すべき管電流および管電圧を制御する。
また、X線制御機能233は、X線制御機能233は、第1の方法または第2の方法により焦点寸法特定機能232が特定した焦点寸法50が所定の範囲外であると、焦点寸法が所定の範囲以内となるように、X線管11が発生するX線を制御する。具体的には、X線制御機能233は、焦点寸法50が所定の範囲内となるように、調整器113を介して焦点寸法を調整する。
所定の範囲とは、たとえばIEC(International Electrotechnical Commission)などの規格によって、目標とする焦点寸法に対して定義された許容範囲を用いることができる。
次に、本実施形態に係るX線画像診断装置の動作の一例について説明する。
図7は、処理回路23のプロセッサにより、X線管11の焦点寸法50を自動的に特定する際の手順の一例を示すフローチャートである。図7において、Sに数字を付した符号はフローチャートの各ステップを示す。
この手順は、たとえばX線CT装置1のウォームアップ時に毎回もしくは所定回数ごとに、または定期点検時などの所定のタイミングで実行される。
まず、ステップS1において、ユーザは、X線遮蔽部材17の開口の大きさ2Daを焦点寸法測定用の大きさに設定する。この大きさは、X線管11の焦点寸法の最大値よりも大きく設定される。上述のとおり、X線管11の焦点寸法の最大値とは、設定される所望の焦点寸法に対して経時変化を考慮した所定のマージンを加えた値としてもよいし、ターゲット112の大きさから決定される実効焦点の大きさの最大値そのものまたはそれよりも少し小さい値などに決定されてもよい。
次に、ステップS2において、X線制御機能233は、X線管11からX線を発生させ、X線遮蔽部材17の開口を介してX線検出器12に照射させる。
次に、ステップS3において、プロファイル取得機能231は、X線検出器12が出力した信号にもとづいて、半影のプロファイルを含むX線のプロファイル60を生成する。
次に、ステップS4において、焦点寸法特定機能232は、プロファイル取得機能231により取得された半影のプロファイルにもとづいて、特別な治具を用いることなく自動的に、X線管11の焦点寸法50を特定する。このとき、焦点寸法特定機能232は、半影の角度情報にもとづいて焦点寸法50を実測する第1の方法を用いてもよいし、半影のプロファイル形状から焦点寸法50を推定する第2の方法を用いてもよい。
次に、ステップS5において、X線制御機能233は、X線制御機能233は、第1の方法または第2の方法により焦点寸法特定機能232が特定した焦点寸法50が所定の許容範囲内にあるか否かを判定する。許容範囲内にある場合は、一連の手順は終了となる。一方、許容範囲外の場合は、ステップS6に進む。
なお、半影のプロファイル形状から焦点寸法50を推定する第2の方法を用いる場合であって、関連付け情報に1つのプロファイルと当該所望サイズとのみが関連付けられている場合は、焦点寸法特定機能232が関連付け情報に記憶された焦点寸法を現在の焦点寸法50として特定した場合は一連の手順を終了とし、焦点寸法特定機能232が所望の焦点寸法ではない旨の出力をしている場合にステップS6に進むとよい。
そして、ステップS6において、X線制御機能233は、焦点寸法が所定の許容範囲以内となるように、調整器113を介して焦点寸法を調整し、ステップS2に戻る。
以上の手順により、特別な治具を用いることなく自動的に、半影のプロファイルにもとづいてX線管11の焦点寸法50を特定することができる。
なお、焦点寸法特定機能232は、特定した焦点寸法50の履歴にもとづいて、焦点寸法50の経時的な変化の未来予測を行い、X線管11の交換時期を予測してユーザに通知してもよい。通知の方法としては、交換時期を示す画像を生成してディスプレイ42に表示させる方法や、図示しないスピーカから交換時期を示す音声を出力させる方法などを用いることができる。
また、焦点寸法特定機能232は、半影のプロファイルの形状からX線管11の異常を検知し、その旨のユーザに通知してもよい。
図8は、X線管11に異常が発生している場合におけるプロファイル60の形状の一例を示す説明図である。
図8に示すように、調整器113をはじめX線管11の構成要素に異常が発生している場合には、プロファイル60の形状に異常があらわれるときがある。このため、焦点寸法特定機能232は、プロファイル60の形状にもとづいてX線管11の異常を検知してユーザに通知してもよい。また、たとえばあらかじめ、異常の原因や内容とプロファイル60の形状とを関連付けた異常テーブルを生成しておき、現在のプロファイル60を異常テーブルに照らし合わせることで、異常の発生を検知するとともに異常の原因や内容を特定することができる。
本実施形態に係るX線CT装置1は、特別な治具を用いることなく自動的に、X線管11の焦点寸法50を特定することができる。このため、経時変化によりX線管11が徐々に劣化してしまい、調整器113を初期設定値に固定しているにも関わらず焦点寸法50が初期値から変化してしまっている場合であっても、たとえば日常の使用の中で自動的に、極めて容易に焦点寸法を特定することができ、また自動的に焦点寸法を許容範囲内に調整することができる。
また、第1の方法を用いる場合は、正確な焦点寸法50を実測することができるため、その寸法を所望の焦点寸法50に自動的に的確に調整することができ、常に解像度の良い画質を提供することができる。
また、第2の方法を用いる場合は、あらかじめ用意した関連付け情報を用いて非常に簡便に焦点寸法を特定することができるとともに、その寸法を容易に許容範囲内に調整することができる。
以上説明した少なくとも1つの実施形態によれば、X線管11の焦点寸法を自動的に特定することができる。
なお、本実施形態における処理回路23のプロファイル取得機能231、焦点寸法特定機能232およびX線制御機能233は、それぞれ特許請求の範囲における取得部、特定部およびX線制御部の一例である。また、本実施形態における記憶回路22およびメモリ41は、特許請求の範囲における記憶部の一例である。
また、上記実施形態において、「プロセッサ」という文言は、たとえば、専用または汎用のCPU(Central Processing Unit)、GPU(Graphics Processing Unit)、または、特定用途向け集積回路(Application Specific Integrated Circuit:ASIC)、プログラマブル論理デバイス(たとえば、単純プログラマブル論理デバイス(Simple Programmable Logic Device:SPLD)、複合プログラマブル論理デバイス(Complex Programmable Logic Device:CPLD)、およびFPGA)等の回路を意味するものとする。プロセッサは、記憶媒体に保存されたプログラムを読み出して実行することにより、各種機能を実現する。
また、上記実施形態では処理回路の単一のプロセッサが各機能を実現する場合の例について示したが、複数の独立したプロセッサを組み合わせて処理回路を構成し、各プロセッサが各機能を実現してもよい。また、プロセッサが複数設けられる場合、プログラムを記憶する記憶媒体は、プロセッサごとに個別に設けられてもよいし、1つの記憶媒体が全てのプロセッサの機能に対応するプログラムを一括して記憶してもよい。
なお、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
11…X線管
12…X線検出器
14…X線高電圧装置
17…X線遮蔽部材
22…記憶回路
23…処理回路
50…焦点寸法
60…プロファイル
111…陰極
112…ターゲット
113…調整器
231…プロファイル取得機能
232…焦点寸法特定機能
233…X線制御機能

Claims (7)

  1. X線を発生するX線管と、
    前記X線管の焦点寸法の最大値よりも大きい開口を有するX線遮蔽部と、
    前記開口を通過したX線を検出し、この検出したX線に基づいた信号を出力するX線検出部と、
    前記検出したX線に基づいた半影のプロファイルを取得する取得部と、
    前記取得部により取得された前記半影のプロファイルに基づいて前記X線管の焦点寸法を特定する特定部と、
    を備えたX線画像診断装置。
  2. 前記特定部は、
    前記半影のプロファイルに基づいて前記半影の角度情報を求め、当該角度情報に基づいて前記X線管の焦点寸法を求める、
    請求項1記載のX線画像診断装置。
  3. 焦点寸法と半影のプロファイルとをあらかじめ関連付けた関連付け情報を記憶する記憶部、
    をさらに備え、
    前記特定部は、
    前記取得部により取得された前記半影のプロファイルと前記関連付け情報とに基づいて前記X線管の焦点寸法を特定する、
    請求項1記載のX線画像診断装置。
  4. 前記特定部が特定した前記X線管の焦点寸法が所定の範囲外であると、焦点寸法が前記所定の範囲以内となるように前記X線管が発生するX線を制御するX線制御部、
    をさらに備えた請求項1ないし3のいずれか1項に記載のX線画像診断装置。
  5. 前記X線管は、
    陰極と、陽極と、前記陰極から放出されて前記陽極に向かう電子に作用して前記電子の軌跡を制御する電界または磁界を形成する調整器と、を有し、
    前記X線制御部は、
    前記特定部が特定した前記X線管の焦点寸法が前記所定の範囲外であると、前記調整器を制御して前記調整器が形成する電界または磁界を制御することにより、焦点寸法が前記所定の範囲以内となるように前記電子の軌道を制御する、
    請求項4記載のX線画像診断装置。
  6. 前記特定部は、
    異なる複数の時点のそれぞれで前記取得部により取得された前記半影のプロファイルの形状の経時的な変化に基づいて、前記X線管の交換時期を予測してユーザに通知する、
    請求項1ないし5のいずれか1項に記載のX線画像診断装置。
  7. 前記特定部は、
    前記半影のプロファイルの形状に基づいて、前記X線管の異常を検知してユーザに通知する、
    請求項1ないし6のいずれか1項に記載のX線画像診断装置。
JP2017194079A 2017-10-04 2017-10-04 X線画像診断装置 Active JP7043210B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017194079A JP7043210B2 (ja) 2017-10-04 2017-10-04 X線画像診断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017194079A JP7043210B2 (ja) 2017-10-04 2017-10-04 X線画像診断装置

Publications (2)

Publication Number Publication Date
JP2019063385A true JP2019063385A (ja) 2019-04-25
JP7043210B2 JP7043210B2 (ja) 2022-03-29

Family

ID=66338593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017194079A Active JP7043210B2 (ja) 2017-10-04 2017-10-04 X線画像診断装置

Country Status (1)

Country Link
JP (1) JP7043210B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020146453A (ja) * 2019-03-05 2020-09-17 キヤノンメディカルシステムズ株式会社 医用処理装置
JP2021013729A (ja) * 2019-07-12 2021-02-12 キヤノンメディカルシステムズ株式会社 X線システム、画像処理装置及びプログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100174A (ja) * 2004-09-30 2006-04-13 Toshiba Corp X線装置
JP2009005922A (ja) * 2007-06-28 2009-01-15 Hitachi Medical Corp X線ct装置
JP2009153830A (ja) * 2007-12-27 2009-07-16 Ge Medical Systems Global Technology Co Llc X線ct装置
JP2016034373A (ja) * 2014-08-01 2016-03-17 株式会社東芝 X線ct装置
JP2016034374A (ja) * 2014-08-01 2016-03-17 株式会社東芝 X線ct装置
WO2017060814A1 (en) * 2015-10-06 2017-04-13 Koninklijke Philips N.V. Device for determining spatially dependent x-ray flux degradation and photon spectral change

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100174A (ja) * 2004-09-30 2006-04-13 Toshiba Corp X線装置
JP2009005922A (ja) * 2007-06-28 2009-01-15 Hitachi Medical Corp X線ct装置
JP2009153830A (ja) * 2007-12-27 2009-07-16 Ge Medical Systems Global Technology Co Llc X線ct装置
JP2016034373A (ja) * 2014-08-01 2016-03-17 株式会社東芝 X線ct装置
JP2016034374A (ja) * 2014-08-01 2016-03-17 株式会社東芝 X線ct装置
WO2017060814A1 (en) * 2015-10-06 2017-04-13 Koninklijke Philips N.V. Device for determining spatially dependent x-ray flux degradation and photon spectral change

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020146453A (ja) * 2019-03-05 2020-09-17 キヤノンメディカルシステムズ株式会社 医用処理装置
JP2021013729A (ja) * 2019-07-12 2021-02-12 キヤノンメディカルシステムズ株式会社 X線システム、画像処理装置及びプログラム
JP7451256B2 (ja) 2019-07-12 2024-03-18 キヤノンメディカルシステムズ株式会社 X線システム、画像処理装置及びプログラム

Also Published As

Publication number Publication date
JP7043210B2 (ja) 2022-03-29

Similar Documents

Publication Publication Date Title
WO2014034909A1 (ja) X線コンピュータ断層撮影装置
JP7043210B2 (ja) X線画像診断装置
JP7250532B2 (ja) X線ct装置及び撮影計画装置
JP7175639B2 (ja) X線撮影装置及び医用画像処理装置
US10806418B2 (en) X-ray CT apparatus and imaging condition calculating method
JP2016034373A (ja) X線ct装置
JP7118744B2 (ja) X線ct装置および撮影条件算出方法
JP7258473B2 (ja) X線ct装置及び撮影条件管理装置
JP7140566B2 (ja) X線ct装置及び撮影計画装置
JP7175602B2 (ja) X線ct装置及びx線発生システム
JP7223572B2 (ja) X線ct装置
JP7055614B2 (ja) X線ct装置
US11388807B2 (en) X-ray CT apparatus, X-ray high voltage apparatus, and X-ray control method
JP7370802B2 (ja) 医用画像処理装置及びx線ct装置
JP7399780B2 (ja) 医用画像診断装置
JP7249831B2 (ja) 医用画像診断装置および点検用画像生成方法
JP7114381B2 (ja) X線ct装置及びx線管装置
JP7269823B2 (ja) X線ct装置
JP5823178B2 (ja) X線ct装置
JP7062514B2 (ja) X線ct装置、およびx線管制御装置
JP2019122537A (ja) X線撮影装置、据付支援装置、および据付用治具
JP2021126442A (ja) X線ct装置、x線高電圧装置、および管電圧制御方法
JP2019092584A (ja) X線ct装置及びx線発生システム
JP2018206582A (ja) X線画像撮影装置およびx線管
JP2023035485A (ja) X線ct装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220316

R150 Certificate of patent or registration of utility model

Ref document number: 7043210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150