WO2018014510A1 - 一种纤维素纤维的制备方法 - Google Patents

一种纤维素纤维的制备方法 Download PDF

Info

Publication number
WO2018014510A1
WO2018014510A1 PCT/CN2016/112375 CN2016112375W WO2018014510A1 WO 2018014510 A1 WO2018014510 A1 WO 2018014510A1 CN 2016112375 W CN2016112375 W CN 2016112375W WO 2018014510 A1 WO2018014510 A1 WO 2018014510A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
nmmo
aqueous solution
cellulose
water
Prior art date
Application number
PCT/CN2016/112375
Other languages
English (en)
French (fr)
Inventor
孙玉山
李婷
程春祖
丁丽兵
蔡剑
骆强
周运安
张东
徐纪刚
Original Assignee
中国纺织科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国纺织科学研究院 filed Critical 中国纺织科学研究院
Priority to ATA9514/2016A priority Critical patent/AT521561B1/de
Priority to US16/317,049 priority patent/US11124899B2/en
Publication of WO2018014510A1 publication Critical patent/WO2018014510A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/06Washing or drying
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F13/00Recovery of starting material, waste material or solvents during the manufacture of artificial filaments or the like
    • D01F13/02Recovery of starting material, waste material or solvents during the manufacture of artificial filaments or the like of cellulose, cellulose derivatives or proteins
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • D01F2/06Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from viscose
    • D01F2/08Composition of the spinning solution or the bath
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/62Manufacturing or production processes characterised by the final manufactured product related technologies for production or treatment of textile or flexible materials or products thereof, including footwear

Definitions

  • the invention belongs to the technical field of cellulose, and in particular to a method for preparing cellulose fibers.
  • NMMO N-methylmorpholine-N-oxide
  • the concentration of the NMMO aqueous solution to be recovered is low, as described in CN101089262A and CN1318115A, generally 10%-30%, and the concentration of the raw material NMMO solution required for preparing the raw liquid is high, as described in CN1468889A and CN1635203A. Generally, it is 80%-88%.
  • the amount of evaporated water required for recovery is huge.
  • energy-saving multi-effect evaporation equipment is used.
  • high concentration difference concentration still requires multi-stage evaporation, which consumes a large amount of water, electricity, steam, and multi-effect evaporation.
  • the large investment in equipment makes the production cost too high, and it is difficult to achieve high-efficiency and low-consumption industrial production.
  • a single low concentration solidification method tends to cause severe solidification, resulting in the formation of a sheath-core structure, which is not conducive to fiber homogeneity and mechanical properties.
  • the high-concentration NMMO aqueous solution required for preparation of the stock solution exists in evaporation, storage and transportation. Safety risks, there is a problem of repeated energy consumption in the preparation of the stock solution, and the equipment and process flow for preparing the stock solution is too cumbersome.
  • the invention solves the problems existing in the prior art, and provides a cellulose fiber preparation technology, which utilizes a relatively low concentration NMMO aqueous solution to directly swell cellulose, a higher concentration coagulation bath solidified tow, a more water-saving washing method, and is more energy-saving.
  • the evaporative concentration technology can greatly reduce equipment investment, simplify the process, reduce energy consumption and industrialization cost, facilitate safe production, improve fiber homogeneity and mechanical properties, and thus is more suitable for high-efficiency and low-consumption industrial production.
  • the obtained nascent fiber is washed with water to obtain a fiber tow, which is then treated by a subsequent stage to obtain the cellulose fiber.
  • the invention provides a preparation method of cellulose fibers, which is directly mixed uniformly with a lower concentration of NMMO aqueous solution and cellulose pulp in the preparation section of the spinning dope, thereby eliminating the evaporation, storage and transportation of the high-concentration NMMO aqueous solution.
  • the safety risk exists, which saves the energy required for preparing high-concentration NMMO; wherein, considering the uniformity of the mixture prepared by mixing with pulp and facilitating subsequent continuous homogeneous transportation, the concentration of the aqueous solution of NMMO is preferably 70% to 76%.
  • the pulp does not require any additional treatment, avoids repeated energy consumption during the preparation process, greatly reduces equipment investment, and simplifies the entire stock preparation process.
  • the cellulose pulp is mixed with one or more of a pulp grade of cellulose pulp, bamboo pulp, noodle pulp or hemp pulp, and can be mixed for different degrees of polymerization or/and different varieties.
  • the mass concentration of cellulose is 8%-22% without any additional treatment; the mass concentration of NMMO in the aqueous solution of NMMO used for the feed is 60%-85%, preferably 70%-76%.
  • the solidification system is solidified by a high-concentration NMMO aqueous solution, so that the fiber solidification process is slowed down, and the fiber is prevented from forming a sheath-core structure; in addition, the solvent that has not diffused out acts as a plasticizer during the fiber drawing process.
  • the function is beneficial to the formation of condensed structure inside the fiber; the solidification system is more conducive to fiber homogenization and mechanical properties.
  • the low-concentration NMMO aqueous solution obtained after washing with water is continuously added to the solidification system in the step 3), and the aqueous solution containing the high concentration of NMMO is discharged at the same time.
  • the mass concentration of the NMMO aqueous solution coagulation bath loaded in the solidification system is kept stable under the effective circulation of the NMMO aqueous solution coagulation bath, and the high-concentration NMMO aqueous solution entering the recovery section is recovered and used in the step 1) and the fiber.
  • the pulp is mixed.
  • the low-concentration NMMO aqueous solution described in the present invention means an NMMO aqueous solution of 0% ⁇ mass concentration ⁇ 50%; and the high-concentration NMMO aqueous solution means an NMMO aqueous solution of 50% ⁇ mass concentration ⁇ 72%.
  • the difference between the concentration of NMMO to be recovered and the concentration required for feeding is too large, generally greater than 50%, and 50% is equivalent to evaporating water of a pure solvent amount, the amount of evaporated water is large, equipment investment and energy consumption are large;
  • the difference in concentration to be evaporated is reduced, the preferred solution is reduced to less than 26%, and the amount of evaporated water is reduced by at least half, and energy consumption and equipment investment will also be greatly reduced.
  • the present invention minimizes the concentration of the NMMO aqueous solution required for the feeding, and at the same time, the mixing effect and Subsequent transport uniform stability, swelling effect, final determination of the appropriate concentration of feed, and the best preparation of the original liquid preparation - continuous step-by-step dehydration, according to the working conditions to determine the dehydration scheme to ensure uniform preparation of the stock solution under any working conditions.
  • the present invention maximizes the concentration of the coagulation bath, taking into account the coagulation effect and the influence on the fiber formation and properties, and finally determines the optimum coagulation bath concentration range, together with the multi-stage coagulation system assisted by it,
  • the water washing method and the more energy-saving evaporation process make the whole preparation method not only greatly energy-saving compared with the prior art, but also can prepare uniform and high-capacity cellulose fibers.
  • the NMMO aqueous solution to be recovered entering the recovery section is subjected to coarse filtration, activated carbon adsorption, large-pore resin filtration, and then enters the evaporation section, and is concentrated to a desired feed concentration for mixing with the cellulose pulp in the step 1). .
  • the process flow chart is shown in Figure 1.
  • the NMMO aqueous solution to be recovered entering the recovery section is a high-concentration NMMO aqueous solution discharged from the solidification system.
  • the evaporation section determines the evaporation grade according to the difference of the concentration of the NMMO aqueous solution to be recovered and the concentration of the NMMO aqueous solution after the concentration; preferably, the difference between the concentration of the NMMO aqueous solution to be recovered and the concentration of the NMMO aqueous solution after the concentration is less than ⁇ 26%, and the number of evaporation stages is ⁇ two .
  • the dehydration described in step 2) is one-step dehydration or continuous step-wise dehydration, preferably continuous stepwise dehydration.
  • the invention preferably has continuous stepwise dehydration, and the residence time of each step is adjustable.
  • the design of continuous step dehydration not only makes the mixture swell and the filming effect is better, but also facilitates subsequent dissolution, thereby facilitating uniform high quality preparation of the original liquid; Conducive to uniform swelling and dissolution, the preparation of high-concentration uniform spinning dope can be realized, and the mass concentration of cellulose can be improved; for industrial production, the increase of cellulose concentration, that is, the increase of productivity means economy.
  • the solidification system described in the step 3) is a primary solidification system or a multi-stage solidification system, preferably a multi-stage solidification system; the temperature of the coagulation bath at each stage is independently adjustable within a range of 10 to 80 °C.
  • the NMMO concentration of each stage coagulation bath is gradually reduced, wherein 50% ⁇ the first stage coagulation bath NMMO concentration ⁇ 72%, preferably 51% ⁇ first stage coagulation bath NMMO concentration ⁇ 65%.
  • the multi-zone spray water washing, the water washing zone design, the concentration gradient are lowered, the water washing water temperature in each zone is different, the water washing water amount is saved to the utmost, the amount of the recovered water is indirectly reduced, and the energy consumption is greatly reduced. small.
  • the present invention has the following beneficial effects compared with the prior art:
  • the invention provides a preparation technology of low-energy cellulose fiber.
  • a relatively low concentration of NMMO aqueous solution and cellulose pulp are directly and uniformly mixed, thereby eliminating the existence of high-concentration NMMO aqueous solution in evaporation, storage and transportation.
  • the safety risk, the pulp does not need any additional treatment, avoids the repeated energy consumption in the preparation process, greatly reduces the equipment investment, and the whole raw liquid preparation process is simplified.
  • the continuous step-by-step dewatering design makes the mixture swell and the filming effect is better, which is beneficial to the subsequent dissolution, thereby facilitating the uniform high-quality preparation of the raw liquid; this technology can also realize the preparation of the high-concentration uniform spinning dope, cellulose
  • the mass concentration is improved, and for industrial production, the increase in production capacity means economy.
  • the spray water washing zone design, the concentration gradient is lowered, the water washing water temperature of each zone is different, the water washing water amount is saved to the utmost, the amount of the recovered water is reduced indirectly, and the energy consumption is greatly reduced.
  • the invention selects a more energy-saving evaporation technology, compresses the evaporated water vapor and reuses it as a heat source to return to the evaporator, and no longer consumes raw steam after the system is stabilized, mainly for relatively inexpensive electricity consumption.
  • FIG. 1 is a schematic view showing the process flow of a preferred preparation scheme provided by the present invention
  • FIG. 2 is a schematic flow chart of an apparatus for preparing a method provided by the present invention
  • FIG. 4 is a schematic view of a multistage solidification system of the preparation method provided by the present invention.
  • Figure 5 is a schematic view showing the multi-zone spray water washing of the preparation method provided by the present invention.
  • 1 - mixer 1 - mixer; 2 - dehydration device; 3 - filter; 4 - heat exchanger; 5 - spinning machine (including spinneret); 6 - solidification system; Equipment; 8 - aftertreatment device.
  • the preparation technique of the low-energy cellulose fiber is specifically: uniformly mixing the NMMO aqueous solution and the cellulose pulp without any treatment, and the temperature in the mixer 1 is a certain temperature, A homogeneous mixture was obtained under mechanical stirring. The obtained homogeneous mixture is sufficiently swollen in a dehydration device 2 by one-step or continuous stepwise evaporation and defoaming to obtain a cellulose spinning dope.
  • the prepared spinning dope is filtered through the filter 3, and after the heat exchanger 4 exchanges heat, it enters the spinning machine 5, is extruded through a spinning assembly, and after air cooling, enters the solidification system 6 to obtain nascent fibers.
  • the obtained nascent fibers are washed with water by a water washing device 7, and a fiber tow is obtained, and then, the post-treatment device 8 is placed, cut, dried, crimped, or the like, or directly dried by a hot roll, and wound up to obtain the cellulose fibers.
  • the NMMO aqueous solution entering the recovery section is filtered by coarse filtration, activated carbon adsorption, and macroporous resin, and then enters the solvent evaporation section. After evaporation, it enters the evaporator, and then enters the separator to separate the water vapor generated by the evaporator. And concentrated product concentrated by evaporation to the desired NMMO concentration.
  • the water vapor is compressed and returned to the evaporator as a heat source, and the concentrated product which is concentrated by evaporation to the desired NMMO concentration is returned for dissolution of the cellulose.
  • the evaporation concentration technique used in the present invention compresses and reuses the water vapor evaporated from the evaporator as a heat source to return to the evaporator. Except that the raw steam is initially introduced, the raw steam is no longer consumed after stabilization, and the concentration is concentrated to the desired NMMO concentration. Dissolve in cellulose to achieve recycling. The high-concentration NMMO aqueous solution displaced by the overflow during the fiber preparation process is returned for recovery to achieve system balance.
  • the energy consumption of the NMMO aqueous solution to be recovered and the concentration of the NMMO aqueous solution required for concentration and the number of evaporation stages are used to determine the energy consumption.
  • the NMMO aqueous solution having a mass concentration of 72% and the cellulose pulp without any treatment were directly and uniformly mixed, and mechanically stirred in the mixer 1 to obtain a homogeneous mixture.
  • the pulp is mixed with cellulose wood pulp and high degree of polymerization, and the pulp of DP:800 and DP:450 is mixed at a mass ratio of 8:92, and the cellulose concentration is 12%.
  • the obtained homogeneous mixture is sufficiently swollen and defoamed in the dehydration device 2 by two successive steps of evaporation and defoaming to obtain a cellulose spinning dope, as shown in FIG.
  • the first step of evaporation and dehydration is mainly the process of fully swelling and mixing, and the residence time is 20 min.
  • the second step of evaporation and dehydration mainly removes excess water, so that the cellulose is dissolved into a homogeneous solution, which is a spinning dope.
  • the refractive index of the spinning dope is 1.48365 and the viscosity is 2026 Pa ⁇ s.
  • the prepared spinning dope is subjected to two-stage filtration through the filter 3 (the coarse filtration adopts a 30 ⁇ filter mesh; the fine filtration adopts a 15 ⁇ filter mesh), the heat exchange device 4 exchanges heat to 90 ° C, enters the spinning machine 5, and is extruded through a spinning assembly. After the air is cooled, it enters the solidification system 6, which is a two-stage solidification system, as shown in FIG.
  • the first-stage coagulation bath has a NMMO concentration of 55% NMMO and a temperature of room temperature; the secondary coagulation bath has a NMMO concentration of 30% NMMO and a temperature of 40 ° C, thereby obtaining a nascent fiber; wherein the coagulation bath concentration is stabilized by continuously returning to the coagulation bath.
  • the latter contains NMMO water bath and self-circulation.
  • the resulting nascent fibers were washed with water by a water washing device 7, as shown in FIG.
  • the water washing device is a four-zone spray water washing device, the first zone spray water concentration is 15%, the temperature is 60 ° C; the second zone spray water concentration is 8%, the temperature is 50 ° C; the third zone spray water The concentration is 3%, the temperature is 40 °C; the concentration of spray water in the fourth zone is 0%, the temperature is 40 °C, which is derived from the recovery of evaporated water; the spray water and the fibers are reversely flowing, and the washing water is returned to the upper stage in turn.
  • the fiber tow is obtained, and the post-treatment device 8 is processed in a subsequent stage to obtain the cellulose fiber.
  • the NMMO aqueous solution entering the recovery section is filtered by coarse filtration, activated carbon adsorption, and large pore resin to enter the solvent evaporation section, and undergoes two-stage evaporation.
  • the evaporated water vapor is compressed and reused as a heat source to return to the evaporator.
  • the raw steam is no longer consumed, mainly for electricity consumption, and concentrated to 72% NMMO for cellulose dissolution.
  • the evaporated water produced after evaporation enters the washing section as the source of the last zone of spray water, thereby achieving the purpose of recycling.
  • the strength of the produced fiber was 4.43 cN/dtex, and the CV value was 5.13%.
  • Cellulose fibers were prepared under the same conditions as in Example 1, except that:
  • NMMO methyl methacrylate
  • DP:400 cellulose wood pulp DP:400 and bamboo pulp.
  • DP: 300 was mixed at a mixing ratio of 52:48 and a cellulose concentration of 16%.
  • the obtained homogeneous mixture is dehydrated in three steps in a dehydration device 2 to obtain a cellulose spinning dope. As shown in Fig. 3, the first two steps are all 9 min, the refractive index of the spinning dope is 1.48623, and the viscosity is 2849 Pa ⁇ s. .
  • the resulting nascent fibers are washed with water by a water washing apparatus 7, which is a nine-zone spray water washing apparatus, as shown in FIG.
  • the first zone spray water concentration is 31%, the temperature is 80 °C; the second zone spray water concentration is 23%, the temperature is 80 °C; the third zone spray water concentration is 17%, the temperature is 60 °C;
  • the spray water concentration in the area is 12%, the temperature is 60 °C;
  • the spray water concentration in the fifth zone is 8%, the temperature is 50 °C;
  • the spray water concentration in the sixth zone is 5%, the temperature is 50 °C;
  • the concentration of leaching water is 3%, the temperature is 40 °C; the concentration of spray water in the eighth zone is 1%, the temperature is 40 °C; the concentration of spray water in the ninth zone is 0%, and the temperature is room temperature.
  • aqueous NMMO solution entering the recovery section was subjected to primary evaporation and concentrated to 76% NMMO for dissolution of cellulose.
  • the strength of the produced fiber was 4.31 cN/dtex, and the CV value was 4.58%.
  • Cellulose fibers were prepared under the same conditions as in Example 1, except that:
  • the spinning dope is heat exchanged to 90 ° C through the heat exchanger 4, and after being extruded through the spin pack, it enters the solidification system 6, which is a three-stage solidification system, as shown in FIG.
  • the primary solidification bath has a NMMO concentration of 65% and a temperature of 30 ° C;
  • the secondary coagulation bath has a NMMO concentration of 35% and a temperature of 40 ° C;
  • the tertiary coagulation bath has a NMMO concentration of 15% and a temperature of 70 ° C.
  • the NMMO aqueous solution entering the recovery section was subjected to primary evaporation and concentrated to 74% NMMO for dissolution of cellulose.
  • the slurry was fed with a 7% by mass aqueous solution of NMMO; the pulp was mixed with cellulose cotton pulp DP:300 and hemp pulp DP:300 at a mixing ratio of 80:20 and a cellulose concentration of 20%.
  • the obtained homogeneous mixture was dehydrated and dehydrated in two steps in a dehydration device 2 to obtain a cellulose spinning dope.
  • the first residence time was 35 min
  • the refractive index of the spinning dope was 1.48910
  • the viscosity was 3920 Pa ⁇ s.
  • the resulting nascent fibers are washed with water by a water washing apparatus 7, which is a four-zone spray water washing apparatus, as shown in FIG.
  • the first zone spray water concentration is 25%, the temperature is 70 °C; the second zone spray water concentration is 9%, the temperature is 50 °C; the third zone spray water concentration is 3%, the temperature is room temperature; the fourth zone The spray water concentration is 0% and the temperature is room temperature.
  • aqueous NMMO solution entering the recovery section undergoes two stages of evaporation and is concentrated to 75% NMMO for dissolution of the cellulose.
  • the strength of the produced fiber was 4.22 cN/dtex, and the CV value was 7.51%.
  • Cellulose fibers were prepared under the same conditions as in Example 1, except that:
  • the NMMO aqueous solution is fed with a mass concentration of 70%, and the obtained homogeneous mixture is dehydrated and dehydrated in two steps in a dehydration device 2 to obtain a cellulose spinning dope.
  • the first residence time is 22 min, and the spinning dope is used.
  • the refractive index is 1.48315.
  • the strength of the produced fiber was 4.42 cN/dtex, and the CV value was 5.21%.
  • the NMMO aqueous solution having a mass concentration of 60% is charged, and the obtained homogeneous mixture is successively three steps in the dehydration device 2
  • the cellulose spinning dope was obtained by evaporation and dehydration. As shown in Fig. 3, the residence time of the first two steps was 20 min, and the refractive index of the spinning dope was 1.4832.
  • aqueous NMMO solution entering the recovery section was subjected to primary evaporation and concentrated to 60% NMMO for dissolution of cellulose.
  • the strength of the produced fiber was 4.40 cN/dtex, and the CV value was 5.37%.
  • Cellulose fibers were prepared under the same conditions as in Example 1, except that:
  • the NMMO aqueous solution having a mass concentration of 85% was charged, and the obtained homogeneous mixture was dehydrated in one step in the dehydration device 2 until the cellulose was dissolved to obtain a cellulose spinning dope.
  • the refractive index of the spinning dope was 1.48613.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

本发明公开了一种纤维素纤维的制备方法,包括如下步骤:1)将纤维素浆粕与质量浓度为60%~85%、优选70%~76%的NMMO水溶液混合得到均匀混合体;2)所得均匀混合体经脱水溶胀、溶解脱泡得到纤维素纺丝原液;3)所得纤维素纺丝原液经过滤、换热后进入纺丝机,经喷丝组件挤出、空气冷却后,进入凝固系统,在50%<质量浓度<72%的NMMO凝固浴中凝固,得到初生纤维;4)所得初生纤维通过水洗,得到纤维丝束,然后经后续工段处理得到所述的纤维素纤维。本发明能够大幅度减少设备投资、简化工艺、降低能耗和工业化成本、利于安全生产、提高纤维的均质性和力学性能,从而更加适于高效低耗工业化生产。

Description

一种纤维素纤维的制备方法 技术领域
本发明属于纤维素技术领域,具体地说,涉及一种纤维素纤维的制备方法。
背景技术
以N-甲基吗啉-N-氧化物(NMMO)水溶液溶解纤维素制备纤维素纤维过程中,NMMO对于纤维素的溶胀、溶解过程及效果直接关系到纺丝的稳定性以及最终产品的性能;而纺丝原液的浓度高低,以及工艺过程是否节能,直接关系到该工艺技术的经济效益和工业化推广。鉴于此,在工业化生产中,一种节能高效制备纤维素纤维的方法尤为重要。
现有技术在纤维素纤维制备过程中,待回收的NMMO水溶液浓度低,如CN101089262A、CN1318115A所述,一般为10%-30%,原液制备所需原料NMMO水溶液浓度高,如CN1468889A、CN1635203A所述,一般为80%-88%,回收所需蒸发水量巨大,通常采用节能的多效蒸发设备;但高浓度差浓缩仍需多级蒸发,耗用大量的水、电、汽,且多效蒸发设备投入大,使得生产成本过高,难以实现高效低耗工业化生产。
此外,单一低浓度的凝固方式易导致凝固剧烈,致使纤维形成皮芯结构,不利于纤维的均质性和力学性能;而且,原液制备所需的高浓NMMO水溶液在蒸发、储存、输送中存在安全风险,原液制备中存在反复能耗的问题,且原液制备的设备和工艺流程过于繁琐。
有鉴于此,特提出本发明。
发明内容
本发明为解决现有技术存在的问题,提供一种纤维素纤维制备技术,综合运用较低浓度NMMO水溶液直接溶胀纤维素、较高浓凝固浴凝固丝束、更节水的水洗方式、更节能的蒸发浓缩技术,能够大幅度减少设备投资、简化工艺、降低能耗和工业化成本、利于安全生产、提高纤维的均质性和力学性能,从而更加适于高效低耗工业化生产。
为解决上述技术问题,本发明采用如下技术方案:
一种纤维素纤维的制备方法,其中:所述的制备方法包括如下步骤:
1)将纤维素浆粕与质量浓度为60%~85%、优选70%~76%的NMMO水溶液混合得到均匀混合体;
2)所得均匀混合体经脱水溶胀、溶解脱泡得到纤维素纺丝原液;
3)所得纤维素纺丝原液经过滤、换热后进入纺丝机,经喷丝组件挤出、空气冷却后,进入凝固系统,在50%<质量浓度<72%的NMMO凝固浴中凝固,得到初生纤维;
4)所得初生纤维通过水洗,得到纤维丝束,然后经后续工段处理得到所述的纤维素纤维。
本发明提供了一种纤维素纤维的制备方法,在纺丝原液的制备工段,采用较低浓度的NMMO水溶液和纤维素浆粕直接均匀混合,消除了高浓NMMO水溶液在蒸发、储存、输送中存在的安全风险,节省了制备高浓NMMO所需能耗;其中,兼顾到与浆粕混合所制混合体的均匀性和便于后续连续均相输送,投料NMMO水溶液浓度优选为70%~76%;浆粕无需任何额外处理,避免了制备过程中反复耗能问题,大幅度减少设备投资,整个原液制备流程简单化。
本发明中,纤维素浆粕采用溶解浆等级的纤维素浆粕、竹浆粕、面浆粕或者麻浆粕中的一种或者几种混合,可为不同聚合度或/和不同品种混用,无需任何额外处理,纤维素质量浓度为8%-22%;投料所用NMMO水溶液中NMMO质量浓度为60%~85%、优选70%~76%。
在纤维素纤维成型工段,凝固系统采用较高浓NMMO水溶液凝固,使得纤维凝固过程放缓,避免纤维形成皮芯结构;此外,未扩散出去的溶剂在纤维牵伸过程中起到增塑剂的作用,利于纤维内部凝聚态结构的形成;此凝固系统更利于纤维均质化和力学性能的提高。
作为一种优选方案,本发明所述的制备方法中,随着上述制备方法的进行,不断向步骤3)中的凝固系统加入水洗后得到的低浓度NMMO水溶液,同时使含有高浓度NMMO水溶液排出进入回收工段,在NMMO水溶液凝固浴有效循环下,使装载在凝固系统中的NMMO水溶液凝固浴的质量浓度保持稳定,进入回收工段的高浓度NMMO水溶液经回收处理后用于步骤1)中与纤维素浆粕混合。
本发明中所述的低浓度NMMO水溶液是指0%<质量浓度≤50%的NMMO水溶液;高浓度NMMO水溶液是指50%<质量浓度≤72%的NMMO水溶液。
现有工艺待回收NMMO浓度与投料所需浓度差过大,一般大于50%,提浓50%相当于蒸发出等纯溶剂量的水,蒸发水量大,设备投资和能耗大;本发明基于此,缩小了待蒸发浓度差,优选方案缩小至小于26%,蒸发水量缩小至少一半,能耗和设备投资也将大幅缩小。 针对此浓度差,需寻找与之匹配的适宜的制备方法,本发明人在进行了大量的试验后得到了本发明,即本发明在尽量降低投料所需NMMO水溶液浓度的同时,兼顾混合效果和后续输送均匀稳定性、溶胀效果,最终确定投料适宜浓度,并配之最佳原液制备方案-连续分步脱水,可根据工况确定脱水方案,保障任何工况下原液的均匀制备。此外,本发明在尽量提高凝固浴浓度的同时,考虑到凝固效果和对纤维成型、性能的影响,最终确定最适宜的凝固浴浓度范围,再加上与之辅佐的多级凝固系统,更节水的水洗方式,更节能的蒸发工艺,使得整个制备方法不仅较现有工艺大幅节能,而且可制备均一、高产能的纤维素纤维。
进一步的,所述进入回收工段的待回收NMMO水溶液依次经粗过滤、活性炭吸附、大孔径树脂过滤后进入到蒸发工段,浓缩至所需投料浓度,用于步骤1)中与纤维素浆粕混合。工艺流程图见图1所示。
本发明中,进入回收工段的待回收NMMO水溶液即为从凝固系统中排出的高浓度NMMO水溶液。
所述蒸发工段根据待回收NMMO水溶液与浓缩后投料所需NMMO水溶液浓度差确定蒸发级数;优选,待回收NMMO水溶液与浓缩后投料所需NMMO水溶液浓度差<26%,蒸发级数≤两级。
本发明选用更节能的蒸发技术,将蒸发出的水蒸汽压缩再利用作为热源返回蒸发器,体系稳定后不再消耗生蒸汽,主要为相对便宜的电的消耗。而蒸发后产生的蒸发水进入水洗工段,达到循环利用的目的。
步骤2)中所述的脱水为一步脱水或连续分步脱水,优选连续分步脱水。
本发明优选连续分步脱水,各步停留时间可调,采用连续分步脱水的设计不仅使得混合体溶胀和铺膜效果更好,益于后续溶解,从而利于原液的均匀高质量制备;而且更利于均匀溶胀、溶解,可实现高浓均一纺丝原液的制备,纤维素的质量浓度得以提高;对工业化生产而言,纤维素浓度提高,即产能的提高便意味着经济性。
步骤3)中所述的凝固系统为一级凝固系统或多级凝固系统,优选为多级凝固系统;各级凝固浴温度在10~80℃范围内独立可调。
所述多级凝固系统中,各级凝固浴的NMMO浓度逐级降低,其中50%<第一级凝固浴NMMO浓度<72%,优选51%≤第一级凝固浴NMMO浓度≤65%。
步骤4)中,所述的水洗为采用一区水洗或多区水洗,优选为多区喷淋水洗,水洗水与纤维成逆向流动;水洗水温度为10~80℃,优选为各区温度呈逐区梯度降低趋势。
本发明优选的水洗方式中,采用多区喷淋水洗,水洗分区设计,浓度梯度降低,各区水洗水温度不同,最大限度地节省了水洗水用量,间接地减少了回收蒸发水量,能耗大幅减小。
所述多区喷淋水洗中,各区喷淋水量严格控制,水洗水依次向上一区返,用于上一区的水洗;各区喷淋水中NMMO浓度逐渐降低,最后一区喷淋水来源于回收蒸发水。
采用上述技术后,本发明与现有技术相比具有以下有益效果:
本发明提出了一种低能耗的纤维素纤维制备技术,在原液制备工段,采用较低浓度的NMMO水溶液和纤维素浆粕直接均匀混合,消除了高浓NMMO水溶液在蒸发、储存、输送中存在的安全风险,浆粕无需任何额外处理,避免了制备过程中反复耗能问题,大幅度减少设备投资,整个原液制备流程简单化。而且,连续分步脱水的设计使得混合体溶胀和铺膜效果更好,益于后续溶解,从而利于原液的均匀高质量制备;此技术也可实现高浓均一纺丝原液的制备,纤维素的质量浓度得以提高,对工业化生产而言,产能的提高便意味着经济性。
本发明中,在纤维素纤维成型工段,凝固系统采用较高浓NMMO水溶液凝固,使得纤维凝固过程放缓,避免纤维形成皮芯结构;此外,未扩散出去的溶剂在纤维牵伸过程中起到增塑剂的作用,利于纤维内部凝聚态结构的形成;此凝固系统更利于纤维均质化和力学性能的提高。
本发明优选的节水水洗方式中,喷淋水洗分区设计,浓度梯度降低,各区水洗水温度不同,最大限度地节省了水洗水用量,间接地减少了回收蒸发水量,能耗大幅减小。
本发明选用更节能的蒸发技术,将蒸发出的水蒸汽压缩再利用作为热源返回蒸发器,体系稳定后不再消耗生蒸汽,主要为相对便宜的电的消耗。
此外,本发明提出的纤维素纤维制备技术选用较高浓度(与常规相比)NMMO水溶液回收,较低浓度(与常规相比)NMMO水溶液投料,待蒸发的NMMO水溶液浓缩浓度差大幅缩小,蒸发级数减少,蒸发水量大幅减小,工艺流程简单化,致使蒸发设备投入大幅降低,蒸发能耗大幅减小;且整个回收体系NMMO溶剂浓度和工艺温度均不高,利于安全生产和储存输送。
至此,本发明提出的低能耗的纤维素纤维制备技术显著降低了工业化成本。
下面结合附图对本发明的具体实施方式作进一步详细的描述。
附图说明
图1为本发明提供的优选制备方案的工艺流程示意图;
图2为本发明提供的制备方法的设备流程示意图;
图3为本发明提供的制备方法的连续分步脱水的示意图;
图4为本发明提供的制备方法的多级凝固体系的示意图;
图5为本发明提供的制备方法的多区喷淋水洗的示意图;
其中,1——混合器;2——脱水装置;3——过滤器;4——换热器;5——纺丝机(含喷丝板);6——凝固系统;7——水洗设备;8——后处理装置。
需要说明的是,这些附图和文字描述并不旨在以任何方式限制本发明的构思范围,而是通过参考特定实施例为本领域技术人员说明本发明的概念。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对实施例中的技术方案进行清楚、完整地描述,以下实施例用于说明本发明,但不用来限制本发明的范围。
参见附图1-5,本发明实施例提供的低能耗的纤维素纤维制备技术具体为:将NMMO水溶液和未经任何处理的纤维素浆粕直接均匀混合,在混合器1中经一定温度、机械搅拌下得到均匀混合体。所得均匀混合体在脱水装置2中经一步或连续分步蒸发脱水充分溶胀、溶解脱泡得到纤维素纺丝原液。所制纺丝原液经过滤器3过滤、换热器4换热后,进入纺丝机5,经喷丝组件挤出,空气冷却后,进入凝固系统6,得到初生纤维。所得初生纤维通过水洗设备7进行水洗,得到纤维丝束,随后,进入后处理装置8,进行切断、干燥、卷曲等或者直接经热辊干燥、收卷,得到所述的纤维素纤维。
如图1所示,进入回收工段的NMMO水溶液经粗滤、活性炭吸附、大孔径树脂过滤后进入到溶剂蒸发工段,经蒸发后,进入蒸发器,再进入分离器分离蒸发器所产生的水蒸气以及蒸发浓缩至所需NMMO浓度的浓缩产物,水蒸气经压缩后再利用作为热源返回蒸发器,而蒸发浓缩至所需NMMO浓度的浓缩产物则返回用于纤维素的溶解。本发明中所用蒸发浓缩技术为将蒸发器蒸发出的水蒸气压缩再利用作为热源返回蒸发器,除了起初需要引入生蒸汽外,稳定后不再消耗生蒸汽,蒸发浓缩至所需NMMO浓度,用于纤维素的溶解,实现循环利用。纤维制备过程中被置换溢流的高浓NMMO水溶液返回回收,以实现系统平衡。
实施例中以待回收NMMO水溶液与浓缩后投料所需NMMO水溶液的浓度差和蒸发级数来反应耗能情况。
实施例1
以质量浓度为72%的NMMO水溶液和未经任何处理的纤维素浆粕直接均匀混合,在混合器1中经机械搅拌得到均匀混合体。其中,浆粕采用纤维素木浆粕高低聚合度混合,DP:800与DP:450的木浆按照质量比8:92混合,纤维素浓度为12%。
所得均匀混合体在脱水装置2中经连续两步蒸发脱水充分溶胀、溶解脱泡得到纤维素纺丝原液,如图3所示。第一步蒸发脱水过程主要为充分溶胀混合的过程,停留时间为20min;第二步蒸发脱水过程主要将多余水分去除,使纤维素溶解成均相溶液,即为纺丝原液。纺丝原液的折光为1.48365,黏度为2026Pa·S。
所制纺丝原液经过滤器3进行两级过滤(粗过滤采用30μ滤网;精过滤采用15μ滤网)、换热设备4换热到90℃,进入纺丝机5,经喷丝组件挤出,空气冷却后,进入凝固系统6,所述凝固系统为两级凝固系统,如图4所示。一级凝固浴NMMO浓度为55%NMMO,温度为室温;二级凝固浴NMMO浓度为30%NMMO,温度为40℃,从而得到初生纤维;其中,凝固浴浓度稳定是通过持续返入凝固浴的后道含NMMO水浴和自循环得以实现。
所得初生纤维通过水洗设备7进行水洗,如图5所示。所述水洗设备为四区喷淋水洗设备,第一区喷淋水浓度为15%,温度为60℃;第二区喷淋水浓度为8%,温度为50℃;第三区喷淋水浓度为3%,温度为40℃;第四区喷淋水浓度为0%,温度为40℃,来自于回收蒸发水;喷淋水与纤维成逆向流动,水洗水依次向上一级返,用于上一级的喷淋,得到纤维丝束,进入后处理装置8经后续工段处理得到所述的纤维素纤维。
进入回收工段的NMMO水溶液经粗过滤、活性炭吸附、大孔径树脂过滤进入到溶剂蒸发工段,经历两级蒸发。采用新的蒸发技术,将蒸发出的水蒸气压缩再利用作为热源返回蒸发器,稳定后不再消耗生蒸汽,主要为电的消耗,浓缩至72%NMMO,用于纤维素的溶解。而蒸发后产生的蒸发水进入水洗工段中作为最后一区喷淋水的来源,从而达到循环利用的目的
所制纤维的强度为4.43cN/dtex,CV值为5.13%。
实施例2
按照与实施例1相同条件制备纤维素纤维,不同之处在于:
以质量浓度为76%的NMMO水溶液投料;浆粕采用纤维素木浆粕DP:400和竹浆粕 DP:300混合,混合比例为52:48,纤维素浓度为16%。所得均匀混合体在脱水装置2中经连续三步蒸发脱水得到纤维素纺丝原液,如图3所示,前两步停留时间均为9min,纺丝原液的折光为1.48623,黏度为2849Pa·S。
所制纺丝原液换热设备4换热到95℃,经喷丝组件挤出后,进入凝固系统6,所述凝固系统为三级凝固系统,如图4所示。一级凝固浴NMMO浓度为70%,温度为35℃;二级凝固浴NMMO浓度为55%,温度为室温;三级凝固浴NMMO浓度为40%,温度为50℃。
所得初生纤维通过水洗设备7进行水洗,所述水洗设备7为九区喷淋水洗设备,如图5所示。第一区喷淋水浓度为31%,温度为80℃;第二区喷淋水浓度为23%,温度为80℃;第三区喷淋水浓度为17%,温度为60℃;第四区喷淋水浓度为12%,温度为60℃;第五区喷淋水浓度为8%,温度为50℃;第六区喷淋水浓度为5%,温度为50℃;第七区喷淋水浓度为3%,温度为40℃;第八区喷淋水浓度为1%,温度为40℃;第九区喷淋水浓度为0%,温度为室温。
进入回收工段的NMMO水溶液经历一级蒸发,浓缩至76%NMMO,用于纤维素的溶解。
所制纤维的强度为4.31cN/dtex,CV值为4.58%。
实施例3
按照与实施例1相同条件制备纤维素纤维,不同之处在于:
以质量浓度为74%的NMMO水溶液投料;浆粕采用纤维素木浆粕,DP:300,纤维素浓度为18%。所得均匀混合体在脱水装置2中经连续两步蒸发脱水得到纤维素纺丝原液,如图3所示,第一步停留时间为25min,纺丝原液的折光为1.48714,黏度为2415Pa·S。
所制纺丝原液经换热器4换热到90℃,经喷丝组件挤出后,进入凝固系统6,所述凝固系统6为三级凝固系统,如图4所示。一级凝固浴NMMO浓度为65%,温度为30℃;二级凝固浴NMMO浓度为35%,温度为40℃;三级凝固浴NMMO浓度为15%,温度为70℃。
所得初生纤维通过水洗设备7进行水洗,所述水洗设备为三区喷淋水洗设备,如图-5所示。第一区喷淋水浓度为7%,温度为60℃;第二区喷淋水浓度为3%,温度为50℃;第三区喷淋水浓度为0%,温度为室温。
进入回收工段的NMMO水溶液经历一级蒸发,浓缩至74%NMMO,用于纤维素的溶解。
所制纤维的强度为4.13cN/dtex,CV值为4.79%。
实施例4
按照与实施例1相同条件制备纤维素纤维,不同之处在于:
以质量浓度为75%的NMMO水溶液投料;浆粕采用纤维素棉浆粕DP:300和麻浆粕DP:300混合,混合比例为80:20,纤维素浓度为20%。所得均匀混合体在脱水装置2中经连续两步蒸发脱水得到纤维素纺丝原液,如图3所示,第一步停留时间为35min,纺丝原液的折光为1.48910,黏度为3920Pa·S。
所制纺丝原液经换热器4换热到100℃,经喷丝组件挤出后,进入凝固系统6,所述凝固系统6为一级凝固系统,如图4所示,凝固浴NMMO浓度为51%NMMO,温度为室温。
所得初生纤维通过水洗设备7进行水洗,所述水洗设备为四区喷淋水洗设备,如图5所示。第一区喷淋水浓度为25%,温度为70℃;第二区喷淋水浓度为9%,温度为50℃;第三区喷淋水浓度为3%,温度为室温;第四区喷淋水浓度为0%,温度为室温。
进入回收工段的NMMO水溶液经历两级蒸发,浓缩至75%NMMO,用于纤维素的溶解。
所制纤维的强度为4.22cN/dtex,CV值为7.51%。
实施例5
按照与实施例1相同条件制备纤维素纤维,不同之处在于:
以质量浓度为70%的NMMO水溶液投料,所得均匀混合体在脱水装置2中经连续两步蒸发脱水得到纤维素纺丝原液,如图3所示,第一步停留时间为22min,纺丝原液的折光为1.48315。
进入回收工段的NMMO水溶液经历一级蒸发,浓缩至70%NMMO,用于纤维素的溶解。
所制纤维的强度为4.42cN/dtex,CV值为5.21%。
实施例6
按照与实施例1相同条件制备纤维素纤维,不同之处在于:
以质量浓度为60%的NMMO水溶液投料,所得均匀混合体在脱水装置2中经连续三步 蒸发脱水得到纤维素纺丝原液,如图3所示,前两步停留时间为20min,纺丝原液的折光为1.48432。
进入回收工段的NMMO水溶液经历一级蒸发,浓缩至60%NMMO,用于纤维素的溶解。
所制纤维的强度为4.40cN/dtex,CV值为5.37%。
实施例7
按照与实施例1相同条件制备纤维素纤维,不同之处在于:
以质量浓度为85%的NMMO水溶液投料,所得均匀混合体在脱水装置2中经一步蒸发脱水直至纤维素溶解,得到纤维素纺丝原液,如图3所示,纺丝原液的折光为1.48613。
进入回收工段的NMMO水溶液经历两级蒸发,浓缩至85%NMMO,用于纤维素的溶解。
所制纤维的强度为4.38cN/dtex,CV值为5.53%。
经由本发明实施例提供的低能耗的纤维素纤维制备方法,综合运用较低浓度NMMO水溶液直接溶胀纤维素、较高浓凝固浴凝固丝束、更节水的水洗方式、更节能的蒸发浓缩技术,能够大幅度减少设备投资、简化工艺、降低能耗和工业化成本、利于安全生产、提高纤维的均质性和力学性能,从而更加适于高效低耗工业化生产。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (10)

  1. 一种纤维素纤维的制备方法,其特征在于:所述的制备方法包括如下步骤:
    1)将纤维素浆粕与质量浓度为60%~85%、优选70%~76%的NMMO水溶液混合得到均匀混合体;
    2)所得均匀混合体经脱水溶胀、溶解脱泡得到纤维素纺丝原液;
    3)所得纤维素纺丝原液经过滤、换热后进入纺丝机,经喷丝组件挤出、空气冷却后,进入凝固系统,在50%<质量浓度<72%的NMMO凝固浴中凝固,得到初生纤维;
    4)所得初生纤维通过水洗,得到纤维丝束,然后经后续工段处理得到所述的纤维素纤维。
  2. 根据权利要求1所述的制备方法,其特征在于:随着上述制备方法的进行,不断向步骤3)中的凝固系统加入水洗后得到的低浓度NMMO水溶液,同时使高浓度NMMO水溶液排出进入回收工段,在NMMO水溶液凝固浴有效循环下,使装载在凝固系统中的NMMO水溶液凝固浴的质量浓度保持稳定,进入回收工段的高浓度NMMO水溶液经回收处理后用于步骤1)中与纤维素浆粕混合。
  3. 根据权利要求2所述的制备方法,其特征在于:所述进入回收工段的待回收NMMO水溶液依次经粗过滤、活性炭吸附、大孔径树脂过滤后进入到蒸发工段,浓缩至所需投料浓度,用于步骤1)中与纤维素浆粕混合。
  4. 根据权利要求3所述的制备方法,其特征在于:所述蒸发工段根据待回收NMMO水溶液与浓缩后投料所需NMMO水溶液浓度差确定蒸发级数;优选,待回收NMMO水溶液与浓缩后投料所需NMMO水溶液浓度差<26%,蒸发级数≤两级。
  5. 根据权利要求4所述的制备方法,其特征在于:所述蒸发工段将蒸发出的水蒸汽压缩再利用作为热源返回蒸发器。
  6. 根据权利要求1-5任意一项所述的制备方法,其特征在于:步骤2)中所述的脱水为一步脱水或连续分步脱水,优选连续分步脱水;各步停留时间可调。
  7. 根据权利要求1-6所述的制备方法,其特征在于:步骤3)中所述的凝固系统为一级凝固系统或多级凝固系统,优选多级凝固系统;各级凝固浴温度在10~80℃范围内独立可调。
  8. 根据权利要求7所述的制备方法,其特征在于:所述多级凝固系统中,各级凝固浴的NMMO浓度逐级降低,其中50%<第一级凝固浴NMMO浓度<72%,优选51%≤第一级凝固浴NMMO浓度≤65%。
  9. 根据权利要求1-8任意一项所述的制备方法,其特征在于:步骤4)中,所述的水洗 为采用一区水洗或多区水洗,优选为多区喷淋水洗,水洗水与纤维成逆向流动;水洗水温度为10~80℃,优选为各区温度呈逐区梯度降低趋势。
  10. 根据权利要求9所述的制备方法,其特征在于:所述多区喷淋水洗中,各区喷淋水量严格控制,水洗水依次向上一区返,用于上一区的水洗;各区喷淋水中NMMO浓度逐渐降低,最后一区喷淋水来源于回收蒸发水。
PCT/CN2016/112375 2016-07-22 2016-12-27 一种纤维素纤维的制备方法 WO2018014510A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ATA9514/2016A AT521561B1 (de) 2016-07-22 2016-12-27 Verfahren zur Herstellung von Zellulosefasern
US16/317,049 US11124899B2 (en) 2016-07-22 2016-12-27 Method for preparing cellulose fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610587548.X 2016-07-22
CN201610587548.XA CN106222771B (zh) 2016-07-22 2016-07-22 一种纤维素纤维的制备方法

Publications (1)

Publication Number Publication Date
WO2018014510A1 true WO2018014510A1 (zh) 2018-01-25

Family

ID=57532338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112375 WO2018014510A1 (zh) 2016-07-22 2016-12-27 一种纤维素纤维的制备方法

Country Status (4)

Country Link
US (1) US11124899B2 (zh)
CN (1) CN106222771B (zh)
AT (1) AT521561B1 (zh)
WO (1) WO2018014510A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10011931B2 (en) 2014-10-06 2018-07-03 Natural Fiber Welding, Inc. Methods, processes, and apparatuses for producing dyed and welded substrates
KR102381090B1 (ko) 2016-03-25 2022-03-31 네추럴 파이버 웰딩 인코포레이티드 용접된 기재를 제조하기 위한 방법, 공정, 및 장치
EP3452643A4 (en) 2016-05-03 2020-05-06 Natural Fiber Welding, Inc. METHODS, PROCESSES AND DEVICES FOR THE PRODUCTION OF COLORED AND WELDED SUBSTRATES
CN106222771B (zh) 2016-07-22 2019-02-22 中国纺织科学研究院有限公司 一种纤维素纤维的制备方法
TW202031950A (zh) * 2018-12-05 2020-09-01 奧地利商蘭仁股份有限公司 在纖維素紡黏非織物的製造中回收再利用溶劑及纖維素的方法
CN110592695A (zh) * 2019-10-12 2019-12-20 淮安天然丝纺织科技有限公司 一种纤维素长丝纤维的制备方法
CN111101215B (zh) * 2019-12-24 2022-04-22 中国纺织科学研究院有限公司 一种纤维素纤维丝束的制备方法
CN112725915B (zh) * 2020-12-25 2022-08-02 内蒙古双欣环保材料股份有限公司 一种丝束洗涤装置及丝束洗涤方法
CN115559005B (zh) * 2022-09-27 2024-05-07 温州佳远生物科技有限公司 一种壳聚糖纤维一步法纺丝装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101280476A (zh) * 2008-05-23 2008-10-08 宜宾丝丽雅集团有限公司 一种溶剂法纤维生产中nmmo溶剂的回收方法
CN101942712A (zh) * 2009-07-07 2011-01-12 中国科学院化学研究所 溶剂法生产再生纤维素纤维中n-甲基吗啉氧化物溶剂的回收方法
CN101988216A (zh) * 2009-08-04 2011-03-23 上海太平洋纺织机械成套设备有限公司 Lyocell纤维制备工艺中溶剂循环制备方法
CN102234852A (zh) * 2010-04-21 2011-11-09 聚隆纤维股份有限公司 Lyocell纤维的溶剂回收方法
US20130228949A1 (en) * 2012-03-05 2013-09-05 Acelon Chemical And Fiber Corporation Fabrication of natural cellulose fiber with flame-retarding capability
CN106222771A (zh) * 2016-07-22 2016-12-14 中国纺织科学研究院 一种纤维素纤维的制备方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2541335C3 (de) * 1975-09-17 1986-06-19 Bayer Ag, 5090 Leverkusen Verfahren zur kontinuierlichen Entfernung von Restlösungsmittel aus trockengesponnenen Acrylnitrilfäden
US4246221A (en) * 1979-03-02 1981-01-20 Akzona Incorporated Process for shaped cellulose article prepared from a solution containing cellulose dissolved in a tertiary amine N-oxide solvent
WO1998022642A1 (fr) * 1996-11-21 1998-05-28 Toyo Boseki Kabushiki Kaisha Fibres de cellulose de regeneration et procede de production
CA2438445C (en) * 2002-12-26 2006-11-28 Hyosung Corporation Lyocell multi-filament for tire cord and method of producing the same
CN1282773C (zh) * 2005-05-30 2006-11-01 武汉大学 二步凝固浴法制备再生纤维素纤维的方法
CN101088993B (zh) * 2006-06-13 2012-02-22 上海里奥纤维企业发展有限公司 Nmmo的蒸发方法
KR100824980B1 (ko) * 2006-12-28 2008-04-28 주식회사 효성 단면 변동 계수가 낮은 셀룰로오스 멀티 필라멘트
AT505787B1 (de) * 2007-09-18 2009-06-15 Chemiefaser Lenzing Ag Lyocellfaser
KR101232440B1 (ko) * 2007-12-10 2013-02-12 코오롱인더스트리 주식회사 셀룰로오스계 필름의 제조방법 및 셀룰로오스계 필름
CN101736426B (zh) * 2008-11-07 2012-01-25 中国科学院化学研究所 以芦苇、秸秆植物纤维浆粕制备再生纤维素纤维的方法
KR101703404B1 (ko) * 2012-05-21 2017-02-06 가부시키가이샤 브리지스톤 정제 다당류 섬유의 제조 방법, 정제 다당류 섬유, 섬유-고무 복합체 및 타이어
EP2719801A1 (de) * 2012-10-10 2014-04-16 Aurotec GmbH Spinnbad und Verfahren zur Verfestigung eines Formkörpers
JP2014227619A (ja) * 2013-05-21 2014-12-08 株式会社ブリヂストン 精製多糖類繊維の製造方法、精製多糖類繊維、及びタイヤ
KR101466692B1 (ko) * 2013-12-02 2014-12-01 동양제강 주식회사 용제 추출 장치
CN105037753B (zh) * 2015-06-01 2017-12-05 中国纺织科学研究院 一种纤维素溶液的制备工艺及其设备
KR20170079531A (ko) * 2015-12-30 2017-07-10 코오롱인더스트리 주식회사 라이오셀 섬유 및 이의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101280476A (zh) * 2008-05-23 2008-10-08 宜宾丝丽雅集团有限公司 一种溶剂法纤维生产中nmmo溶剂的回收方法
CN101942712A (zh) * 2009-07-07 2011-01-12 中国科学院化学研究所 溶剂法生产再生纤维素纤维中n-甲基吗啉氧化物溶剂的回收方法
CN101988216A (zh) * 2009-08-04 2011-03-23 上海太平洋纺织机械成套设备有限公司 Lyocell纤维制备工艺中溶剂循环制备方法
CN102234852A (zh) * 2010-04-21 2011-11-09 聚隆纤维股份有限公司 Lyocell纤维的溶剂回收方法
US20130228949A1 (en) * 2012-03-05 2013-09-05 Acelon Chemical And Fiber Corporation Fabrication of natural cellulose fiber with flame-retarding capability
CN106222771A (zh) * 2016-07-22 2016-12-14 中国纺织科学研究院 一种纤维素纤维的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DUAN, JULAN ET AL.: "The Influence of the Coagulation Bath Concentration on the Mechanical Properties and the Maximum Spinning Speed of Lyocell Fiber", SYNTHETIC FIBER IN CHINA, vol. 28, no. 06, 15 December 1999 (1999-12-15), pages 5 - 8, ISSN: 1001-7054 *
WU, GUOMING ET AL.: "New Solvent Method Cellulose Fiber-Lyocell", POLYMER PROCESSING TECHNOLOGY, 31 July 2000 (2000-07-31), pages 233 *

Also Published As

Publication number Publication date
AT521561A2 (de) 2020-02-15
US20190292683A1 (en) 2019-09-26
CN106222771B (zh) 2019-02-22
AT521561A5 (de) 2022-09-15
US11124899B2 (en) 2021-09-21
AT521561B1 (de) 2023-02-15
CN106222771A (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
WO2018014510A1 (zh) 一种纤维素纤维的制备方法
EP2817448B1 (en) Regeneration of cellulose
CN103046146B (zh) 通过干喷湿法制备抗原纤化纤维素纤维的方法
CN103031611B (zh) 一种聚乙烯醇纤维及其制备方法和应用
US10676576B2 (en) Process for preparing cellulose solution and equipment therefor
CN102505158A (zh) 一种超高分子量聚乙烯纤维的高浓度制备方法
CN112779612B (zh) 一种莱赛尔纤维的高效生产制造方法及设备
CN102154720A (zh) 一种纤维素纤维的制备方法
CN103184582B (zh) 一种pva复合高强度高模量纤维素纤维的制备方法
WO2016188274A1 (zh) 消光型高强低伸粘胶纤维及其制备方法
CN108277548B (zh) 一种石墨烯涤纶阻燃纤维及其制备方法
WO2022252955A1 (zh) 一种羟基化海藻酸纤维及其制备方法
CN102677213A (zh) 一种简便的氨纶废丝回收再纺丝的方法
CN110894621A (zh) 降低莱赛尔纤维原纤化的制备工艺及其设备
CN111533207A (zh) 一种用于印染废水处理的吸附剂及其制备方法
CN104003566B (zh) 高性能芳纶沉析纤维生产过程中多组份废液的回收方法
CN102605462B (zh) 高强粘胶纤维
CN214400819U (zh) 一种莱赛尔纤维的高效生产制造设备
CN102154723B (zh) 无皮芯结构聚丙烯腈基碳纤维原丝的制备方法
CN105525388A (zh) 采用硫氰酸钠干湿法纺丝工艺制备碳纤维原丝的方法
CN109666982B (zh) 一种吸湿排汗聚酯纤维及其制备方法
CN110670163A (zh) 适用于纤维素长丝纤维的nmmo溶液及使用该nmmo溶液的纤维素长丝纤维的制备方法
CN104119214A (zh) 海藻纤维丝生产废丙酮脱水剂的回收工艺与装置
CN115074868B (zh) 一种预氧丝的制备方法及预氧丝
CN211284639U (zh) 降低莱赛尔纤维原纤化的生产设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16909437

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16909437

Country of ref document: EP

Kind code of ref document: A1