WO2018012498A1 - リアソータントインフルエンザウイルス作出方法 - Google Patents

リアソータントインフルエンザウイルス作出方法 Download PDF

Info

Publication number
WO2018012498A1
WO2018012498A1 PCT/JP2017/025274 JP2017025274W WO2018012498A1 WO 2018012498 A1 WO2018012498 A1 WO 2018012498A1 JP 2017025274 W JP2017025274 W JP 2017025274W WO 2018012498 A1 WO2018012498 A1 WO 2018012498A1
Authority
WO
WIPO (PCT)
Prior art keywords
influenza virus
strain
reassortant
virus
host
Prior art date
Application number
PCT/JP2017/025274
Other languages
English (en)
French (fr)
Inventor
貴男 藤本
順二 藤田
Original Assignee
一般財団法人阪大微生物病研究会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 一般財団法人阪大微生物病研究会 filed Critical 一般財団法人阪大微生物病研究会
Priority to JP2017555411A priority Critical patent/JP6335399B1/ja
Priority to KR1020187035740A priority patent/KR102477492B1/ko
Priority to EP17827625.9A priority patent/EP3486316A4/en
Priority to US16/316,186 priority patent/US11633469B2/en
Priority to AU2017296857A priority patent/AU2017296857B2/en
Priority to CN201780036556.8A priority patent/CN109312310B/zh
Publication of WO2018012498A1 publication Critical patent/WO2018012498A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N13/00Treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/145Orthomyxoviridae, e.g. influenza virus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16021Viruses as such, e.g. new isolates, mutants or their genomic sequences
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16051Methods of production or purification of viral material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16121Viruses as such, e.g. new isolates, mutants or their genomic sequences
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16151Methods of production or purification of viral material

Definitions

  • the present invention relates to a method for producing a reassortant influenza virus.
  • Influenza is an infectious disease that is prevalent all over the world every year and is caused by influenza virus.
  • Influenza viruses belong to the Orthomyxoviridae family and have an envelope with a lipid bilayer structure. They are classified into three genera, A type, B type and C type, and are referred to as influenza A virus, influenza B virus and influenza C virus, respectively. In general, influenza viruses often refer to type A or type B in particular.
  • the difference between the A type, the B type, and the C type is based on the antigenicity difference between the M1 protein and the NP protein among the proteins constituting the virus particles.
  • HA hemagglutinin
  • NA neuraminidase
  • Influenza virus receives a high probability of antigenic change and creates a new strain of influenza virus.
  • Influenza A viruses are classified into 16 HA (H1-H16) subtypes and 9 NA (N1-N9) subtypes based on their HA and NA antigenicity.
  • the three HA (H1, H2 and H3) subtypes of influenza A virus are particularly important pathogens.
  • Influenza A virus H1N1 and H3N2 subtypes spread seasonally and cause human infections.
  • a highly lethal avian-derived influenza virus H5 subtype was generated as a human pathogen.
  • an H1N1 subtype virus emerged as a new type of influenza virus, which is rapidly spreading in the human population. Since influenza can be a pandemic, the influenza vaccine is required to be quantitatively secured.
  • influenza vaccines In the manufacture of influenza vaccines, a method of propagating influenza virus using growing chicken eggs is used. Also, a method for producing influenza virus by growing it in cultured cells is being put into practical use. When growing eggs or cultured cells are used for the growth of influenza virus, there is a problem that the growth of the virus in the host decreases depending on the subtype or strain of influenza virus. Therefore, attempts have been made to produce a gene recombinant of influenza virus having improved proliferation in the host by gene recombination technology. Examples of the gene recombination technique include a rear sort method and a reverse genetics method (hereinafter referred to as “RG method”).
  • RG method reverse genetics method
  • RG methods eight types of plasmids (PolI plasmid) for supplying viral RNA (vRNA) and four types of expression plasmids (PolII plasmid) encoding structural proteins necessary for forming virus particles
  • vRNA viral RNA
  • plasmid expression plasmids
  • Non-patent Document 1 A method of introducing a total of 12 types of plasmids into a cell simultaneously to produce a gene recombinant of influenza virus.
  • the RG method introduces a plurality of plasmids into a cell at the same time, the burden on the host cell is great.
  • it takes time to prepare various plasmids there is a problem that it is difficult to produce a gene recombinant quickly.
  • Non-Patent Documents 2 to 4 The production of recombinant influenza virus by the rearsort method was carried out using chicken eggs as a host. Specifically, a recombinant virus having both a highly proliferative backbone gene and an antigen gene of the epidemic strain is produced by mixing and infecting a developing chicken egg with a backbone virus strain such as PR8 strain and the epidemic strain.
  • the rear sorting method using a grown chicken egg as a host has a problem that a desired gene recombinant cannot always be produced.
  • a cell culture influenza vaccine it is desirable to use a seed virus that exhibits high growth in cultured cells, and for the stable supply of the vaccine, it is required to produce the seed virus efficiently.
  • a gene recombinant of influenza virus it has been studied to perform a rearsort method using cultured cells. Even in the rear sorting method using cultured cells, there is a concern that the desired gene recombinant cannot always be produced.
  • Patent Document 1 as a rearsort method using cultured cells, a host infected with two influenza virus strains is contacted with an inhibitor that can inhibit transcription and translation of backbone HA and / or NA. It has been disclosed to produce a reassortant influenza virus.
  • the inventors of the present invention have caused the first influenza virus strain to be irradiated with ultraviolet rays to lose its virus replication ability, and the second influenza virus strain antigen protein.
  • the target reassortant influenza virus can be produced early and efficiently, and the present invention was completed.
  • the present invention comprises the following. 1.
  • a method for producing a reassortant influenza virus comprising an antigenic protein of a first influenza virus strain comprising the following steps: 1) A step of irradiating the first influenza virus strain with ultraviolet rays at an irradiation dose that has initial infectivity and loses or decreases virus growth; 2) infecting a host with a first influenza virus strain and a second influenza virus strain; 3) culturing a host infected with the first influenza virus strain and the second influenza virus strain to obtain a culture; 4) A step of inactivating an influenza virus having the antigen protein of the second influenza virus strain from the culture obtained in step 3); 5) A step of recovering the reassortant influenza virus after step 4). 2.
  • the method for producing a reassortant influenza virus according to item 1, wherein step 4) comprises contacting the culture obtained in step 3) with an antibody against the antigen protein of the second influenza virus strain. 3.
  • the method for producing a reassortant influenza virus according to item 1, wherein step 4) comprises adding and incubating an antiserum against the second influenza virus strain to the culture obtained in step 3). 4).
  • a reassortant influenza virus of the present invention it is possible to produce a reassortant influenza virus that is a gene recombinant at an early stage and efficiently. According to the method of the present invention, an influenza virus exhibiting a high proliferation ability can be produced early and efficiently.
  • the present invention is a method for producing a reassortant influenza virus having genome segments of two or more influenza virus strains.
  • Influenza virus has a lipid bilayer envelope.
  • the inner layer of the envelope consists mainly of matrix protein and RNP which is a complex of RNA and protein.
  • influenza NA protein and influenza HA protein which are so-called surface proteins are present as protrusions.
  • Influenza virus consists of 8 genomic segments: PB2, PB1, PA, HA, NP, NA, M and NS segments.
  • the HA and NA genomic segments encode HA and NA antigenic proteins, respectively, and the other six genomic segments of PB2, PB1, PA, NP, M and NS encode the backbone proteins. ing.
  • influenza virus genetic recombination techniques include the RG method and the rear sort method.
  • the RG method since a plurality of plasmids are simultaneously introduced into a cell, there are many problems to efficiently produce a desired genetically modified virus, such as selection of cells that can withstand introduction, plasmid preparation, and compatibility between plasmid and cells.
  • the rearsort method does not use a plasmid because a host virus is co-infected with an influenza virus strain, the genome segments are exchanged during the growth process, and reassembled to create a genetic recombinant. Therefore, the cost and time required for the production of a genetically modified virus can be significantly reduced as compared with the RG method.
  • Patent Document 1 describes that it takes about 35 days to obtain a highly proliferative reassortant influenza virus.
  • the rearsort method can reduce the time and cost required for virus production compared to the RG method, which requires the preparation of multiple plasmids, but due to low genetic recombination efficiency, There is a concern that it takes a long time to obtain influenza virus.
  • the present inventors have insufficient control of genome segment exchange of influenza virus growing in co-infected cells and / or sufficient loss of unnecessary viruses other than the target influenza virus. It was considered that the lack of activity was the reason why a suitable gene recombination efficiency was not achieved.
  • the first influenza virus strain was irradiated with ultraviolet rays to lose its virus replication ability, and by using a neutralizing antibody against the antigen protein of the second influenza virus strain, early and efficiently We found that it is possible to produce reassortant influenza virus.
  • the first influenza virus strain by irradiating the first influenza virus strain with ultraviolet radiation at an irradiation dose that has initial infectivity and loss or decrease in virus growth, it controls genome segment exchange occurring in the host during virus co-infection. Found to get.
  • the present inventors have found that the production method of the present invention improves gene recombination efficiency and can produce a highly proliferative reassortant influenza virus at an early stage.
  • the target reassortant influenza virus obtained in the present invention has at least one of the genomic segments encoding HA and NA (preferably, the genomic segment encoding at least HA) derived from the first influenza virus strain. And at least one of the other genomic segments (preferably a genomic segment encoding at least PB1) is derived from the second influenza virus strain.
  • the first influenza virus strain of the present invention is also referred to as an antigen strain
  • the second influenza virus strain is also referred to as a donor strain or backbone strain.
  • Step 1) A step of irradiating the first influenza virus strain with ultraviolet rays at an irradiation dose that has initial infectivity and loses or decreases virus growth.
  • the first influenza virus strain is irradiated with ultraviolet rays to be inactivated.
  • the amount of UV irradiation is preferably such that the first influenza virus strain after UV irradiation has the ability to infect the host initially, but the virus growth after infection is lost or reduced. Loss or decrease in virus growth after infection means that when the host is infected with the first influenza virus alone, virus growth in the host is not confirmed, or ultraviolet irradiation is not performed. This means that the virus growth is reduced as compared with the influenza virus strains.
  • Virus proliferative ability can be evaluated using known indices such as virus infectivity titer and PFU (Plaque Forming Unit).
  • virus infectivity titer and PFU Pigment Forming Unit
  • the state having an initial infectivity means that when the host is a cultured cell, CPE (cytopathic effect) due to an ultraviolet-irradiated virus is observed.
  • UV irradiation is performed for 1 to 60 seconds, preferably 5 to 50 seconds, more preferably 10 to 40 seconds, more preferably 10 to 30 seconds in the Time Mode of Spectrolinker XL-1000 (Spectronics Corporation).
  • the irradiation conditions such as the apparatus used for ultraviolet irradiation (ultraviolet intensity, distance from the light source and the like are described in the examples below) and irradiation time are examples, and if the ultraviolet irradiation amount is about the same as the irradiation conditions. These conditions can be adjusted and changed as appropriate.
  • An ultraviolet irradiation amount under the above conditions is preferable because it has an ability to infect the host initially, but can efficiently obtain an influenza virus having lost or reduced virus growth.
  • the efficiency of genetic recombination in the host can be improved by losing or reducing the virus growth of the first influenza virus strain while maintaining the ability to infect the host.
  • Step 2) Infecting a host with a first influenza virus strain and a second influenza virus strain. Infection of the first influenza virus strain and the second influenza virus strain into the host may or may not be simultaneous. Preferably, after infecting the host with the first influenza virus strain, the second influenza virus strain is infected. Infection of the host with the influenza virus strain is carried out by contacting the host with the influenza virus strain.
  • the first influenza virus strain is preferably contacted with the host at 1 ⁇ 10 ⁇ 6 to 10 moi, more preferably 0.001 to 1 moi, more preferably 0.1 to 1 moi.
  • the second influenza virus strain is preferably contacted with the host at a moi of 0.001 to 10, more preferably a moi of 0.01 to 1, more preferably a moi of 0.1 to 1.
  • the moi of the first influenza virus strain is a value before irradiation with ultraviolet rays.
  • Infectious titer of influenza virus (TCID 50 / mL) is “Part IV” (hereinafter referred to as “Reference 1”) of “Influenza Diagnosis Manual (3rd edition, September 2014)” by National Institute of Infectious Diseases.
  • the moi can be calculated by dividing the infectivity titer by the number of cells.
  • Step 3) A step of culturing a host infected with the first influenza virus strain and the second influenza virus strain to obtain a culture.
  • Influenza viruses are rearranged in the host by culturing in this step.
  • the host culture conditions such as the culture temperature, may be any conditions as long as influenza virus can grow in the host.
  • the medium used for the culture is preferably a liquid medium.
  • Animal-derived serum is often added to liquid media, but it is undeniable that animal-derived serum contains a factor that inhibits the growth of the target influenza virus, so use a serum-free medium that does not contain the factor. Is more preferable.
  • the culture time is preferably about 1 to 5 days, more preferably about 2 to 3 days.
  • a culture is obtained after culturing.
  • the culture includes reassortant influenza virus resorted in the host and influenza virus having the antigen protein of the second influenza virus strain.
  • the virus is mainly contained in the allantoic fluid when the host is a growing chicken egg, and is mainly contained in the culture supernatant when the host is a cultured cell.
  • Step 4) A step of selectively inactivating the influenza virus having the antigen protein of the second influenza virus strain in the culture obtained in the step 3).
  • the inactivation of the virus may be achieved using a physical method, a chemical method, or any other method.
  • an influenza virus having the antigen protein of the second influenza virus strain in the culture is used. This is achieved by contacting and treating a neutralizing antibody that binds to the antigen protein.
  • the amount of virus in the culture subjected to this step can be represented by the product of the virus infectivity titer (TCID 50 / mL) and the dose (mL).
  • the amount of virus may be any value, but is preferably 10 2 TCID 50 or more, more preferably 10 3 TCID 50 or more, more preferably It is preferably 10 4 TCID 50 or more.
  • the desired reassortant virus can be isolated in step 5).
  • the amount of virus can be appropriately adjusted by dilution or concentration by a known method.
  • the neutralizing antibody may be any antibody that binds to the antigen protein of the second influenza virus strain and does not bind to the antigen protein of the first influenza virus strain, and may be a polyclonal antibody or a monoclonal antibody.
  • a neutralizing antibody that specifically binds to the antigen protein of the second influenza virus strain is preferable.
  • an antiserum comprising neutralizing antibodies that specifically bind to an antigen protein of a second influenza virus strain can be used. By adding the antiserum to the culture obtained in step 3), the influenza virus having the antigen protein of the second influenza virus strain is brought into contact with the neutralizing antibody that specifically binds to the antigen protein. Can be made.
  • the antiserum against the second influenza virus strain may be immune serum or infection serum, but preferably infection serum is selected.
  • the immune serum can be obtained from blood collected from a mammal administered with the second influenza virus strain-derived antigen.
  • the antiserum is prepared, for example, by immunizing a mammal such as a rabbit, goat, sheep, mouse, or rat by administering the second influenza virus strain-derived antigen as an immunogen.
  • administration means intraperitoneal injection, intravenous injection, subcutaneous injection and the like are adopted, and in some cases, intradermal injection is also adopted.
  • the booster immunization is repeated several times, and immune serum can be obtained from blood collected from the mammal 3 to 10 days after the final immunization.
  • Infected serum can be obtained from blood collected from a mammal infected with the second influenza virus strain.
  • a second influenza virus strain is infected to an influenza virus sensitive mammal such as a ferret or mouse.
  • the infection method methods such as spray inoculation and nasal inoculation are adopted. From the 10th to 14th day after infection, the mammal can be bled to obtain the infected serum.
  • the obtained antiserum inactivates neutralization activity nonspecific to the antigen derived from the second influenza virus strain by known techniques such as RDE (Receptor Destroying Enzyme) treatment, trypsin treatment, and potassium periodate treatment. It is preferable to keep it.
  • the antiserum is preferably added to the culture at a concentration such that the final dilution ratio is preferably 2 to 1000 times, more preferably 4 to 10 times.
  • the antibody titer of the neutralizing antibody is preferably measured in advance.
  • Antibody titers include, for example, particle agglutination (PA), indirect fluorescent antibody (IFA), immunoadherent hemagglutination (IAHA), neutralization (NT), hemagglutination inhibition (HI), complement binding (CF) ), Enzyme immunoassay (EIA), radioimmunoassay (RIA), chemiluminescence immunoassay (CLIA), latex agglutination nephelometry (LA) and the like.
  • PA particle agglutination
  • IFA indirect fluorescent antibody
  • IAHA immunoadherent hemagglutination
  • NT neutralization
  • HI hemagglutination inhibition
  • CF complement binding
  • EIA Enzyme immunoassay
  • RIA radioimmunoassay
  • CLIA chemiluminescence immunoassay
  • LA latex agg
  • viral infectivity of the culture is 10 7 ⁇ 10 8 TCID 50 / 100 ⁇ L, antibody titers of 10 or more as measured by HI method, preferably 12.8 or more, more preferably 80 or more, more preferably 128 Antisera showing the above can be used.
  • the antigen protein of the second influenza virus strain present in the culture and the neutralizing antibody are suitably bound, and the influenza virus having the antigen protein can be efficiently inactivated.
  • the mixture of the culture and neutralizing antibody is brought into contact with the host, and the infected host is cultured under the suitable conditions shown in step 3) to selectively propagate the target reassortant virus.
  • CPE cytopathic effect
  • Step 5) A step of recovering the desired reassortant influenza virus.
  • the reassortant influenza virus produced in step 4) is collected.
  • the target reassortant influenza virus may be further selected from the recovered reassortant influenza virus.
  • the desired reassortant influenza virus can be selected by plaque isolation and analysis of genomic segments. Known methods can be used for the plaque method and genome segment analysis method.
  • the target reassortant influenza virus can be obtained in a period of less than half that of the prior art.
  • the target reassorted influenza virus is preferably obtained in 17 days or less, more preferably 15 days or less, even more preferably 13 days or less, and most preferably 10 days or less. be able to.
  • the target reassorted influenza virus is obtained preferably in 24 days or less, more preferably 20 days or less, even more preferably 16 days or less, and most preferably 12 days or less. be able to.
  • the method of the present invention is very useful when a vaccine needs to be obtained early, such as during a pandemic.
  • the gene recombination efficiency indicates the ratio of the number of plaque clones of the target reassortant influenza virus to the total number of clones from which plaque was isolated in a reassortant production experiment.
  • the reassortant production experiment means an experiment in which a host is infected with a first influenza virus strain and a second influenza virus strain to produce a reassortant influenza virus.
  • the gene recombination efficiency is preferably 60% or more, more preferably 80% or more, still more preferably 95% or more, and most preferably 100%.
  • the first influenza virus strain or the second influenza virus strain of the present invention is not particularly limited, and can be appropriately selected according to the target reassortant influenza virus. For example, all currently known subtypes and future isolated and identified subtypes may be selected. In the case of influenza A virus, influenza viruses including combinations of various HA subtypes and NA subtypes are conceivable. In the case of influenza B virus, an influenza virus including a combination of Victoria strain and Yamagata strain is considered.
  • influenza that is said to have spread worldwide is called new influenza, swine influenza, pandemic influenza A (H1N1), sine flu, A / H1N1 pdm, etc. ing.
  • a new type of influenza, which is said to have spread from pigs to humans directly on pigs at farms, etc., and then spread among humans, is a seasonal A-Soviet influenza that has existed in the past.
  • influenza A virus H1N1 subtype hereinafter referred to as “H1N1 subtype”
  • influenza A virus H3N2 subtype influenza A virus H3N2 subtype
  • virus strains are distinguished by the time and place of isolation among the same subtypes of influenza A virus.
  • Influenza virus strains used in the present invention may be attenuated, adapted for egg growth, adapted for cell culture growth, temperature sensitive phenotype so that it can be applied to influenza vaccines in addition to influenza viruses isolated from living organisms as described above. It may be a recombinant virus produced by modification such as adaptation to mucosal administration.
  • a method of introducing mutations into 8 RNA segments such as influenza virus antigenic sites and polymerase sites a method of producing attenuated viruses by low-temperature passage, and mutagenesis into virus culture systems And a method by adding an agent.
  • the second influenza virus strain in the present invention it is preferable to select a strain having excellent growth ability in a desired host.
  • the host is a chicken egg, it is preferably H1N1 subtype.
  • the H1N1 subtype include A / Puerto Rico / 8/34 (H1N1).
  • the H3N2 subtype is preferred.
  • the H3N2 subtype include A / Ibaraki / N12232 / 2012 (H3N2), A / Hiroshima / 52/2005 (H3N2), A / Panama / 2007/99 (H3N2), and the like.
  • a strain having the target antigen protein may be used as the first influenza virus strain, and is not particularly limited. It may be a strain that is currently isolated and identified, a strain that will be isolated and identified in the future, and may be an influenza A virus or an influenza B virus.
  • Specific examples of the first influenza virus strain include A / California / 7/2009 (H1N1) pdm09, A / California / 4/2009 (H1N1) pdm09, A / New Caledonia / 20/99 (H1N1), A / Solomon Islands / 3/2006 (H1N1), A / Brisbane / 59/2007 (H1N1), A / Panama / 2007/99 (H3N2), A / Wyoming / 3/2003 (H3N2), A / New York / 55/2004 (H3N2), A / Hiroshima / 52/2005 (H3N2), A / ought / 716/2007 (H3N2), A / Victoria / 210/2009
  • the target reassortant influenza virus produced by the present invention can be used as a seed virus for influenza vaccine production.
  • a known method or any method developed in the future can be used.
  • the host used in the production method of the present invention may be a growing chicken egg or a cultured cell.
  • a specific pathogen-free (SPF) hatched chicken egg can be used.
  • the cultured cell when a cultured cell is used as a host, the cultured cell may be any cell as long as it can replicate by infection with influenza virus.
  • Mammalian cells are preferred as cultured cells, and examples include, but are not limited to, hamsters, cattle, primates (including humans and monkeys) and dogs. More specifically, MDCK cells derived from Madin-Derby canine kidney, Vero cells derived from African green monkey kidney, and the like are exemplified. More specifically, the MDCK cell in the present invention is an MDCK cell specified by the international deposit number NITE BP-0214.
  • Virus strain used, antiserum used First influenza virus strain (antigen strain): A / California / 7/2009 (H1N1) pdm09 (hereinafter referred to as “CA / 7”)
  • Anti-donor strain serum Ferret-infected serum of donor strain (HI antibody titer: 1280) treated with RDE and doubled to the final dilution factor
  • the medium was replaced with 10 mL of virus culture medium, and 100 ⁇ L of donor strain solution and 100 ⁇ L of antigen strain solution of each concentration were inoculated simultaneously.
  • the cells were cultured at 34 ° C. and 5% CO 2 for 2 days.
  • 100 ⁇ L of the obtained culture and 100 ⁇ L of anti-donor strain serum were mixed and allowed to stand at 34 ° C. for 1 hour.
  • MDCK cells were cultured in a new 25 cm 2 flask, the medium was replaced with 10 mL of the virus culture medium, and 200 ⁇ L of the whole culture solution treated with the anti-donor strain serum was inoculated in 4) above.
  • a 0.8% agarose-containing MEM medium (containing glutamine (4 mM) and 0.1 ⁇ TrypLE Select) was layered at 3 mL / well in the same manner as the plaque assay. After drying in a safety cabinet, cultivation in an incubator was started. 12) The cells were cultured at 34 ° C. and 5% CO 2 for 3 days. 13) A MEM medium containing 1.0% agarose (containing neutral red) was layered at 2 mL / well and dried in a safety cabinet. 14) MDCK cells were cultured in a new 6-well plate, the medium was replaced with a 2 mL / well virus culture medium, and plaques were isolated in each well. The pickup was performed using a tip with a filter. 15) The cells were cultured at 34 ° C. and 5% CO 2 for 3 days. 16) The culture solution of the isolated plaque was centrifuged (9000 rpm, 5 minutes), and the supernatant was stored at ⁇ 80 ° C.
  • Table 1 shows the results of gene analysis of plaques obtained under the condition of infecting 10 2 TCID 50 / mL or 10 4 TCID 50 / mL antigenic strains.
  • the antigen strain of 10 1 TCID 50 / mL was infected, no CPE was observed in the cells after the above 2.6), and thus the subsequent operation was not performed.
  • “I” is derived from IB / 232 (donor strain)
  • C is derived from CA / 7 (antigen strain).
  • Reference Example 2 Confirmation of the effect of the virus amount of the antigen strain on the production of the reassortant influenza virus
  • the virus used and the antiserum used are the same as in Reference Example 1.
  • Example 1 Examination of UV irradiation conditions for virus strains From the results of Reference Example 2, in order to use an inactivated virus in the first influenza virus strain (antigen strain), the UV inactivation conditions of the antigen strain were examined. CA / 7 was used as the influenza virus strain.
  • UV irradiation experiment 1 10 7 TCID 50 / mL of CA / 7 was prepared, and 2 mL each was dispensed into a 3.5 cm dish. 2) The Spectrolinker XL-1000 (Spectronics Corporation, 254 nm, 8W ⁇ 5 UV tubes) was placed in the dish 1), the dish lid was removed, and UV irradiation was performed for 0 to 120 seconds. 3) The infectious value of each dish was measured according to a standard method.
  • UV irradiation treatment By UV irradiation treatment, the infectious titer of the antigenic strain virus is suppressed to below the detection limit. In order to maintain the ability of the antigenic strain to infect the host cells initially, it is considered preferable that the UV irradiation time is short.
  • the irradiation amount when UV irradiation is performed for 10 seconds is about 500 to 1000 J / m 2 .
  • Example 2 Production of reassortant influenza virus UV inactivation treatment was performed on the antigen strain, and the gene recombination efficiency was confirmed when the growth of the antigen strain during mixed infection was suppressed.
  • Virus used, antiserum used First influenza virus strain (antigen strain): CA / 7, A / New Caledonia / 20/99 (H1N1) (hereinafter referred to as “NC / 20”)
  • the anti-donor strain serum is the same as in Reference Example 1.
  • plaques were reassortant influenza virus.
  • Most reassortant influenza viruses were reassortant influenza viruses with a ratio of 6: 2 or 5: 3 segments from donor strain and antigen strain.
  • reassortant influenza viruses were reassortant influenza viruses with a ratio of 6: 2 or 5: 3 segments from donor strain and antigen strain.
  • a plurality of plaques having an M segment derived from CA / 7 were present.
  • the eighth plaque when the antigen strain is NC / 20, since a single plaque could not be isolated, IB / 232 and NC / 20-derived plaques were mixed in the NP and M segments. It was.
  • the plaque analysis results show that multiple plaques isolated at the same time These were suggested to be reassortant influenza viruses.
  • the gene recombination efficiency was improved to 100% by performing UV inactivation treatment on the antigen strain under the optimum conditions. The period until plaques were acquired was about 9-10 days.
  • Example 3 Confirmation of reproductive ability of reassortant influenza virus
  • the produced reassortant influenza virus was infected with MDCK cells (MDCK cells specified by international deposit number NITE BP-0214) and cultured. The proliferation was confirmed.
  • the donor strain used to generate the reassortant influenza virus is IB / 232 and the antigen strain is CA / 7.
  • the cells were cultured at 34 ° C. and 5% CO 2 for 2 days. According to the method disclosed in Reference 1, the virus infectivity of the virus culture supernatant was confirmed.
  • the results of gene analysis of the three types of reassortant influenza viruses R # 1 to R # 3 used are shown in Table 5 below. In the table, “I” is derived from IB / 232 (donor strain), and “C” is derived from CA / 7 (antigen strain).
  • Example 4 Variation in gene recombination efficiency due to antibody titer
  • the antibody titer capable of selectively inactivating the influenza virus strain having the antigen protein of the second influenza virus strain (donor strain) was examined.
  • Virus used, antiserum used First influenza virus strain (antigen strain): CA / 7 Second influenza virus strain (donor strain): IB / 232
  • Anti-donor strain serum Ferret-infected serum of donor strain (HI antibody titer: 1280) treated with RDE and the initial dilution factor doubled
  • Infectivity of the culture was 10 7.57 TCID 50 / 100 ⁇ L.
  • this culture was treated with anti-donor strain sera having an HI antibody titer of 128 or higher, all analyzed plaques were reassortant influenza virus.
  • an anti-donor strain serum having an HI antibody titer of 12.8 or less most HA and NA segments are derived from the donor strain, and the influenza virus strain having the antigen protein of the donor strain is selectively used. It was confirmed that it cannot be deactivated.
  • Example 5 Tolerable lower limit of viral load of culture The viral load of the culture necessary for producing the target reassortant influenza virus was examined.
  • Virus used, antiserum used First influenza virus strain (antigen strain): CA / 7 Second influenza virus strain (donor strain): IB / 232
  • Anti-donor sera Donor ferret-infected sera (HI antibody titer: 1280) treated with RDE and the final dilution factor doubled
  • reassortant influenza virus 1 A culture was obtained in the same manner as in Example 2, 2.1) to 4). 2) An infectious titer was measured using a part of the culture. 3) 10-fold with medium for viral culture, 10 twice, 10 three times, 10 4 times, 10 5 times, 10 6 times, 10 7 times, cultures 100 ⁇ L was diluted to 10 8 times, respectively Anti-donor strain serum was mixed with 100 ⁇ L and allowed to stand at 34 ° C. for 1 hour. 4) Production of the reassortant influenza virus was continued in the same manner as in 2.6) to 9) of Example 2, and plaques were isolated. However, the plaque is not formed in the conditions of the diluted culture more than 10 4 times, it was not performed subsequent operations.
  • Infectivity cultures undiluted was 10 7.57 TCID 50 / 100 ⁇ L. Plaque formation was confirmed when the viral load in the culture was greater than 10 4.57 TCID 50 . On the other hand, when the amount of virus in the culture was 10 3.57 TCID 50 or less, plaque formation was not confirmed. Regarding the conditions under which plaques were formed, all analyzed plaques were reassortant influenza viruses.
  • a reassortant influenza virus of the present invention it is possible to produce a reassortant influenza virus that is a genetic recombinant at an early stage and efficiently. According to the method of the present invention, a highly proliferative influenza virus can be produced early and efficiently, so that a seed virus for producing an influenza vaccine can be produced quickly.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Virology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Mycology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pulmonology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

2種以上のインフルエンザウイルス株のゲノム分節を持つリアソータントインフルエンザウイルスを作出する方法を提供する。以下の工程を含む、第1のインフルエンザウイルス株の抗原タンパク質を含むリアソータントインフルエンザウイルスを作出する方法による。 1)第1のインフルエンザウイルス株に、初期感染能を有し、かつウイルス増殖性が喪失又は低下する照射量で紫外線を照射する工程; 2)宿主に、第1のインフルエンザウイルス株と第2のインフルエンザウイルス株を感染させる工程; 3)第1のインフルエンザウイルス株と第2のインフルエンザウイルス株が感染した宿主を培養して、培養物を得る工程; 4)工程3)において得られた培養物から、第2のインフルエンザウイルス株の抗原タンパク質を有するインフルエンザウイルス株を失活させる工程; 5)工程4)の後に、リアソータントインフルエンザウイルスを回収する工程。

Description

リアソータントインフルエンザウイルス作出方法
 本発明は、リアソータントインフルエンザウイルス作出方法に関する。
 本出願は、参照によりここに援用されるところの日本出願特願2016-140366号優先権を請求する。
 インフルエンザは毎年世界中で流行する感染症であり、インフルエンザウイルスにより引き起こされる。インフルエンザウイルスは、オルトミクソウイルス科に属し、脂質二重膜構造をもつエンベロープを有する。A型、B型及びC型の3属に分類され、各々インフルエンザA型ウイルス、インフルエンザB型ウイルス、インフルエンザC型ウイルスという。一般にインフルエンザウイルスは、特にA型又はB型をいう場合が多い。A型、B型及びC型の違いは、ウイルス粒子を構成するタンパク質のうち、M1タンパク質とNPタンパク質の抗原性の違いに基づく。また、同じA型やB型であっても、エンベロープの表面上の分子である赤血球凝集素(ヘマグルチニン、以下「HA」と称する)やノイラミニダーゼ(以下「NA」と称する)の抗原性の違いから、複数の亜型と株に分類される。
 インフルエンザウイルスは抗原変化を高い確率で受け、新型のインフルエンザウイルス株を生み出す。A型インフルエンザウイルスは、それらのHA及びNAの抗原性に基づいて16種のHA(H1~H16)亜型及び9種のNA(N1~N9)亜型に分類される。A型インフルエンザウイルスの3種のHA(H1、H2及びH3)亜型は特に重要な病原体である。A型インフルエンザウイルスのH1N1亜型及びH3N2亜型は季節的に広まり、ヒト感染を引き起こしている。2003年には、致死性が高いトリ由来のインフルエンザウイルスH5亜型がヒト病原体として発生した。2009年4月には、新型のインフルエンザウイルスとしてH1N1亜型ウイルスが発生し、ヒト集団において急速に蔓延している。インフルエンザはパンデミックの恐れもあることから、インフルエンザワクチンには量的な確保が求められている。
 インフルエンザワクチンの製造には、発育鶏卵を利用してインフルエンザウイルスを増殖させる方法が用いられている。また、培養細胞でインフルエンザウイルスを増殖させて製造する方法も実用化されつつある。インフルエンザウイルスの増殖に発育鶏卵や培養細胞を利用する場合、インフルエンザウイルスの亜型や株によっては宿主におけるウイルスの増殖性が低下することが問題となっている。そこで、遺伝子組換え技術によって、宿主における増殖性が向上したインフルエンザウイルスの遺伝子組換え体を作出する試みがなされている。遺伝子組換え技術としては、リアソート法やリバースジェネティクス法(以下「RG法」と称する)が例示される。RG法の一つとして、ウイルスRNA(vRNA)を供給するための8種類のプラスミド(PolIプラスミド)と、ウイルス粒子を形成するために必要な構造タンパク質をコードする4種類の発現プラスミド(PolIIプラスミド)の合計12種類のプラスミドを同時に細胞に導入して、インフルエンザウイルスの遺伝子組換え体を作出する方法が挙げられる(非特許文献1)。しかしながら、RG法は、複数のプラスミドを同時に細胞に導入するため、宿主細胞にとって負担が大きい。また、各種プラスミド調製に時間を要するため、迅速な遺伝子組換え体作出が困難であるという問題がある。
 リアソート法では、宿主に2種以上のインフルエンザウイルス株が共感染し、増殖の過程でゲノム分節が交換され、再集合をすることにより、遺伝子組換え体が作出される(非特許文献2~4)。リアソート法によるインフルエンザウイルス遺伝子組換え体の作出は、鶏卵を宿主として行われていた。具体的には、PR8株等のバックボーンウイルス株と流行株を発育鶏卵に混合感染させることにより、高増殖性のバックボーン遺伝子と流行株の抗原遺伝子を併せ持つ遺伝子組換え体を作出する。しかしながら、発育鶏卵を宿主として利用したリアソート法では、必ずしも目的の遺伝子組換え体が作出できないという課題がある。
 細胞培養インフルエンザワクチンにおいては、培養細胞で高増殖性を示すシードウイルスを用いることが望ましく、ワクチンの安定供給のためには当該シードウイルスを効率良く作出することが求められている。インフルエンザウイルスの遺伝子組換え体を得る目的で、培養細胞を用いてリアソート法を行うことが検討されつつある。培養細胞を用いたリアソート法においても、必ずしも目的の遺伝子組換え体が作出できないことが懸念されている。特許文献1には、培養細胞を用いたリアソート法として、2種のインフルエンザウイルス株を感染させた宿主に、バックボーン株のHA及び/又はNAの転写や翻訳を阻害しうる阻害因子を接触させて、リアソータントインフルエンザウイルスを作出することが開示されている。
国際公開WO2011/145081
Neumann et al.,PNAS Vol.102,p.16825-16829(1999) PLoS Pathog. 2015 Oct; 11(10): e1005204. J Virol. 1976 Oct;20(1):248-54. 「ウイルス実験学 各論」 第2版 昭和57年2月28日発行,発行所 丸善株式会社 p.321-325
 本発明は、2種以上のインフルエンザウイルス株のゲノム分節を持つリアソータントインフルエンザウイルスを作出する方法を提供することを課題とする。また、当該方法を用いて増殖性の高いインフルエンザウイルスを提供することを課題とする。
 本発明者らは上記課題を解決するために鋭意検討を重ねた結果、第1のインフルエンザウイルス株に紫外線を照射してウイルス複製能を喪失させること、及び、第2のインフルエンザウイルス株の抗原タンパク質を有するインフルエンザウイルスを選択的に失活させる抗体を用いることで、早期にかつ効率良く目的のリアソータントインフルエンザウイルスを作出可能であることを見出し、本発明を完成した。
 本発明は、すなわち以下よりなる。
1.以下の工程を含む、第1のインフルエンザウイルス株の抗原タンパク質を含むリアソータントインフルエンザウイルスを作出する方法:
1)第1のインフルエンザウイルス株に、初期感染能を有し、かつウイルス増殖性が喪失又は低下する照射量で紫外線を照射する工程;
2)宿主に、第1のインフルエンザウイルス株と第2のインフルエンザウイルス株を感染させる工程;
3)第1のインフルエンザウイルス株と第2のインフルエンザウイルス株が感染した宿主を培養して、培養物を得る工程;
4)工程3)において得られた培養物から、第2のインフルエンザウイルス株の抗原タンパク質を有するインフルエンザウイルスを失活させる工程;
5)工程4)の後に、リアソータントインフルエンザウイルスを回収する工程。
2.工程4)が、工程3)において得られた培養物に、第2のインフルエンザウイルス株の抗原タンパク質に対する抗体を接触させることを含む、前項1に記載のリアソータントインフルエンザウイルスを作出する方法。
3.工程4)が、工程3)において得られた培養物に、第2のインフルエンザウイルス株に対する抗血清を添加してインキュベートすることを含む、前項1に記載のリアソータントインフルエンザウイルスを作出する方法。
4.抗血清の最終希釈倍率2~1000倍である、前項3に記載のリアソータントインフルエンザウイルスを作出する方法。
5.抗血清が感染血清である、前項3に記載のリアソータントインフルエンザウイルスを作出する方法。
6.工程2)において、第1のインフルエンザウイルス株を1×10-6~10のmoiで宿主に接触させて感染させる、前項1~5のいずれかに記載のリアソータントインフルエンザウイルスを作出する方法。
7.工程2)において、第1のインフルエンザウイルス株を宿主に感染させた後に、第2のインフルエンザウイルス株を宿主に感染させる、前項1~6のいずれかに記載のリアソータントインフルエンザウイルスを作出する方法。
8.工程5)において、リアソータントインフルエンザウイルスから、目的のリアソータントインフルエンザウイルスを選択することを含む、前項1~7のいずれかに記載のリアソータントインフルエンザウイルスを作出する方法。
9.第2のインフルエンザウイルス株が、インフルエンザA型ウイルスH1N1亜型又はH3N2亜型である、前項1~8のいずれかに記載のリアソータントインフルエンザウイルスを作出する方法。
10.前項1~9のいずれかに記載のリアソータントインフルエンザウイルスを作出する方法により作出された、リアソータントインフルエンザウイルス。
11.第1のインフルエンザウイルス株由来の抗原性タンパク質を含み、第2のインフルエンザウイルス株のバックボーンタンパク質を含む、前項10に記載のリアソータントインフルエンザウイルス。
12.宿主が培養細胞である、前項1~9のいずれかに記載のリアソータントインフルエンザウイルスを作出する方法。
13.宿主が発育鶏卵である、前項1~9のいずれかに記載のリアソータントインフルエンザウイルスを作出する方法。
 本発明のリアソータントインフルエンザウイルスの作出方法によれば、早期にかつ効率良く遺伝子組換え体であるリアソータントインフルエンザウイルスを作出可能となる。本発明の方法によれば、高増殖性を示すインフルエンザウイルスを早期にかつ効率良く作出することができる。
抗原株及び目的のリアソータントインフルエンザウイルスの培養細胞における増殖性を確認した結果を示す図である。(実施例3)
 本発明は、2種以上のインフルエンザウイルス株のゲノム分節を持つリアソータントインフルエンザウイルスを作出する方法である。
 インフルエンザウイルスは、脂質二重膜構造のエンベロープを有する。エンベロープの内層は主としてマトリックスタンパク質及びRNAとタンパク質の複合体であるRNPから成る。外層にはいわゆる表面タンパク質であるインフルエンザNAタンパク質及びインフルエンザHAタンパク質が突起物として存在する。インフルエンザウイルスは、PB2、PB1、PA、HA、NP、NA、M及びNS分節の8つのゲノム分節からなる。HA及びNAのゲノム分節は、それぞれHA及びNAの抗原タンパク質をコードしており、それ以外のPB2、PB1、PA、NP、M及びNS分節の6本のゲノム分節は、バックボーンのタンパク質をコードしている。
 インフルエンザウイルスの遺伝子組換え技術として、RG法やリアソート法が挙げられる。RG法においては、複数のプラスミドを同時に細胞に導入するため、導入に耐えうる細胞の選択やプラスミド調製、プラスミドと細胞の相性など、目的の遺伝子組換えウイルスを効率良く作出するための課題が多い。一方、リアソート法では、宿主にインフルエンザウイルス株が共感染し、増殖の過程でゲノム分節が交換され、再集合することで遺伝子組換え体を作出するため、プラスミドを利用しない。そのため、遺伝子組換えウイルス作出に要するコストや時間をRG法よりも大幅に削減することができる。
 しかしながら従来のリアソート法には、遺伝子組換え効率が低いという大きな課題が存在する。そのため、必ずしも目的のリアソータントインフルエンザウイルスが得られるとは限らない。一方、特許文献1では高増殖性のリアソータントインフルエンザウイルスを得るために約35日を要することが記載されている。つまりリアソート法は、複数のプラスミドの調製を必要とするRG法と比較して、ウイルス作出に要する時間やコストを削減できるものの、遺伝子組換え効率の低さに起因して、目的のリアソータントインフルエンザウイルスを得るためには長期間を要することが懸念される。
 本発明者らは、従来のリアソート法においては、共感染細胞中で増殖するインフルエンザウイルスのゲノム分節交換の制御が不十分であること及び/又は目的のインフルエンザウイルス以外の不要なウイルスが十分に失活されていないことが、好適な遺伝子組換え効率が達成されない原因であると考えた。鋭意検討した結果、第1のインフルエンザウイルス株に紫外線を照射してウイルス複製能を喪失させること、及び、第2のインフルエンザウイルス株の抗原タンパク質に対する中和抗体を用いることで、早期にかつ効率良くリアソータントインフルエンザウイルスを作出可能であることを見出した。更に、初期感染能を有し、かつウイルス増殖性が喪失又は低下する照射量で紫外線を第1のインフルエンザウイルス株に照射することで、ウイルス共感染時の宿主内で起こるゲノム分節交換を制御し得ることを見出した。更に驚くべきことに、リアソート法で通常使用される免疫血清ではなく感染血清を使用することで、培養物中の第2のインフルエンザウイルス株の抗原タンパク質を有するインフルエンザウイルスを完全に失活させ得ることを見出した。また、本発明の作出方法により、遺伝子組換え効率が向上し、高増殖性のリアソータントインフルエンザウイルスを早期に作出できることを見出した。
 本発明において得られる、目的のリアソータントインフルエンザウイルスは、HA及びNAをコードするゲノム分節の少なくとも1つ(好ましくは、少なくともHAをコードするゲノム分節)が、第1のインフルエンザウイルス株に由来しており、それ以外のゲノム分節の少なくとも1つ(好ましくは、少なくともPB1をコードするゲノム分節)が、第2のインフルエンザウイルス株に由来しているものである。本発明の第1のインフルエンザウイルス株は抗原株とも称され、第2のインフルエンザウイルス株はドナー株又はバックボーン株とも称される。以下、本発明の作出方法に含まれる各工程について説明する。
工程1)第1のインフルエンザウイルス株に、初期感染能を有し、かつウイルス増殖性が喪失又は低下する照射量で紫外線を照射する工程。
 本工程では、第1のインフルエンザウイルス株に紫外線を照射し、不活化する。紫外線の照射量は、紫外線照射後の第1のインフルエンザウイルス株が宿主への初期感染能は有しているが、感染後のウイルス増殖性が喪失又は低下している程度であることが好ましい。感染後のウイルス増殖性の喪失又は低下とは、第1のインフルエンザウイルスを単独で宿主に感染させた際に、宿主内でのウイルスの増殖性が確認されない、又は紫外線照射を行っていない第1のインフルエンザウイルス株と比較してウイルス増殖性が低下していることを意味する。ウイルス増殖性は、ウイルス感染価、PFU(Plaque Forming Unit)等の公知の指標を用いて評価することができる。また、紫外線照射を行った後、第1のインフルエンザウイルス株を宿主に感染させる場合は、宿主への感染能、すなわち初期感染能を有している必要がある。初期感染能がある状態とは、宿主が培養細胞である場合、紫外線照射したウイルスによるCPE(cytopathic effect)が観察されることを意味する。本工程では、Spectrolinker XL-1000(Spectronics Corporation)のTime Modeにおいて1~60秒間、好ましくは5~50秒間、更に好ましくは10~40秒間、更に好ましくは10~30秒間紫外線照射を行った場合と同等の紫外線照射量を第1のインフルエンザウイルス株に照射することが好ましい。かかる紫外線照射のために用いる装置(紫外線強度、光源からの距離等は以下実施例記載)及び照射時間等の照射条件は一例であり、当該照射条件と同程度の紫外線照射量となるのであれば、これらの条件は適宜調整・変更が可能である。上記条件の紫外線照射量であれば、宿主への初期感染能を有しているが、ウイルス増殖性が喪失又は低下しているインフルエンザウイルスを効率良く得ることができるため好ましい。本発明においては、宿主への初期感染能を有したまま、第1のインフルエンザウイルス株のウイルス増殖性を喪失又は低下させることにより、宿主内での遺伝子組換え効率を向上させ得る。
工程2)宿主に、第1のインフルエンザウイルス株と第2のインフルエンザウイルス株を感染させる工程。
 第1のインフルエンザウイルス株と、第2のインフルエンザウイルス株の宿主への感染は、同時であっても良いし、同時でなくてもよい。好ましくは、第1のインフルエンザウイルス株を宿主に感染させた後、第2のインフルエンザウイルス株を感染させる。宿主へのインフルエンザウイルス株の感染は、宿主とインフルエンザウイルス株を接触させることにより行う。第1のインフルエンザウイルス株は、好ましくは1×10-6~10のmoi、更に好ましくは0.001~1のmoi、更に好ましくは0.1~1のmoiで宿主に接触させることが好ましい。第2のインフルエンザウイルス株は、好ましくは0.001~10のmoi、更に好ましくは0.01~1のmoi、更に好ましくは0.1~1のmoiで、宿主に接触させることが好ましい。従来は、宿主にインフルエンザウイルスを共感染させるには、高い濃度でウイルスを宿主に接触させて感染させる必要があった。しかしながら、本発明においては、低い濃度であってもインフルエンザウイルスが宿主に共感染し、遺伝子組換え体を効率良く作出可能である。なお、第1のインフルエンザウイルス株のmoiは、紫外線を照射する前の値である。インフルエンザウイルスの感染価(TCID50/mL)は、国立感染症研究所著「インフルエンザ診断マニュアル(第3版、平成26年9月)」の「Part IV」(以下「参考文献1」と称する)に開示される方法に従って確認でき、moiは感染価を細胞数で割ることにより算出できる。
工程3)第1のインフルエンザウイルス株と第2のインフルエンザウイルス株が感染した宿主を培養して培養物を得る工程。
 本工程の培養により宿主内でインフルエンザウイルスがリアソートされる。宿主の培養条件、例えば培養温度等は、宿主内でインフルエンザウイルスが増殖可能な条件であればいかなる条件であってもよい。宿主が培養細胞である場合は、培養に用いる培地は液体培地が好ましい。液体培地にはしばしば動物由来の血清が添加されるが、動物由来の血清は目的のインフルエンザウイルスの増殖を阻害する因子を含む可能性が否定できないため、当該因子を含まない無血清培地を用いることがより好ましい。 無血清培地としては、イーグルMEM培地(日水製薬株式会社)、Opti PRO SFM(Thermo Fisher Scientific)、VP-SFM(Thermo Fisher Scientific)、EX-CELL MDCK(SAFC Biosciences)、UltraMDCK(Lonza)、ProVero 1(Lonza)、BalanCD MDCK(Irvine Scientific)等が例示される。培養時間は、好ましくは1~5日間、更に好ましくは2~3日間程度である。本工程においては、培養後に培養物が得られる。当該培養物中には、宿主内でリアソートされたリアソータントインフルエンザウイルス及び第2のインフルエンザウイルス株の抗原タンパク質を有するインフルエンザウイルスが含まれる。前記ウイルスは、宿主が発育鶏卵の場合は主に尿膜腔液中に含まれており、宿主が培養細胞の場合は主に培養上清に含まれる。
工程4)前記工程3)にて得られた培養物中の第2のインフルエンザウイルス株の抗原タンパク質を有するインフルエンザウイルスを選択的に失活させる工程。
 当該ウイルスの失活は、物理的手法、化学的手法、その他のいかなる手法を用いて達成してもよいが、好ましくは培養物中の第2のインフルエンザウイルス株の抗原タンパク質を有するインフルエンザウイルスに、当該抗原タンパク質に結合する中和抗体を接触させて処理することにより達成される。
 本工程に供する培養物中のウイルス量は、ウイルス感染価(TCID50/mL)と用量(mL)の積で表すことができる。培養物中に目的のリアソータントインフルエンザウイルスが含まれていれば、ウイルス量はいかなる値であってもよいが、好ましくは10TCID50以上、より好ましくは10TCID50以上、更に好ましくは10TCID50以上であることが好ましい。かかる範囲内であれば、工程5)にて目的のリアソータントウイルスを単離することができる。また、ウイルス量は、公知の手法による希釈又は濃縮によって適宜調整することができる。 
 中和抗体は、第2のインフルエンザウイルス株の抗原タンパク質に結合し、第1のインフルエンザウイルス株の抗原タンパク質に結合しないものであればよく、ポリクローナル抗体であってもモノクローナル抗体であってもよい。好ましくは第2のインフルエンザウイルス株の抗原タンパク質に特異的に結合する中和抗体であることが好ましい。ある実施形態では、第2のインフルエンザウイルス株の抗原タンパク質に特異的に結合する中和抗体を含む抗血清を用いることができる。工程3)にて得られた培養物に、当該抗血清を添加することにより、第2のインフルエンザウイルス株の抗原タンパク質を有するインフルエンザウイルスと当該抗原タンパク質に特異的に結合する中和抗体とを接触させることができる。
 第2のインフルエンザウイルス株に対する抗血清は、免疫血清であっても感染血清であってもよいが、好ましくは感染血清が選択される。これらの抗血清は公知の手法により作製することができる。免疫血清は、第2のインフルエンザウイルス株由来抗原を投与した哺乳動物より回収した血液から得ることができる。抗血清は、例えば、ウサギ、ヤギ、ヒツジ、マウス、ラットなどの哺乳動物に、第2のインフルエンザウイルス株由来抗原を免疫原として投与して免疫することで作製される。投与手段としては、腹腔内注射、静脈注射、皮下注射などが採用され、場合により皮内注射も採用される。追加免疫を数回繰り返し、最終免疫後3~10日目に哺乳動物より回収した血液から免疫血清を得ることができる。また、感染血清は、第2のインフルエンザウイルス株に感染した哺乳動物より回収した血液から得ることができる。例えば、フェレットやマウスなどのインフルエンザウイルス感受性の哺乳動物に第2のインフルエンザウイルス株を感染させる。感染方法としては、噴霧接種や経鼻接種などの方法が採用される。感染10~14日目以降に哺乳動物の採血を行い、感染血清を得ることができる。
 得られた抗血清は、例えばRDE(Receptor Destroying Enzyme)処理、トリプシン処理、過ヨード酸カリ処理などの公知の手法によって、第2のインフルエンザウイルス株由来抗原に非特異的な中和活性を失活させておくことが好ましい。抗血清は最終希釈倍率として、好ましくは2~1000倍、更に好ましくは4~10倍となる濃度で、培養物に添加することが好ましい。
 中和抗体の抗体価は事前に測定されていることが好ましい。抗体価は、例えば粒子凝集法(PA)、間接蛍光抗体法(IFA)、免疫付着赤血球凝集法(IAHA)、中和法(NT)、赤血球凝集抑制法(HI)、補体結合法(CF)、酵素免疫法(EIA)、放射性免疫測定法(RIA)、化学発光免疫測定法(CLIA)、ラテックス凝集比濁法(LA)等の公知の手法によって測定することができる。培養物のウイルス感染価が10~10TCID50/100μLである実施形態では、HI法で測定した抗体価が10以上、好ましくは12.8以上、より好ましくは80以上、更に好ましくは128以上を示す抗血清を使用することができる。かかる範囲内であれば、培養物中に存在する第2のインフルエンザウイルス株の抗原タンパク質と中和抗体が好適に結合し、当該抗原タンパク質を有するインフルエンザウイルスを効率的に失活できる。
 続いて、前記培養物と中和抗体の混合物を宿主に接触させ、感染した宿主を工程3)に示した好適な条件で培養し、目的のリアソータントウイルスを選択的に増殖させる。宿主が培養細胞である場合には、目的のリアソータントウイルスに起因するCPE(cytopathic effect)が確認される。 
工程5)目的のリアソータントインフルエンザウイルスを回収する工程。
 本工程では、前記工程4)作出されたリアソータントインフルエンザウイルスを回収する。本工程において、回収されたリアソータントインフルエンザウイルスから、さらに目的のリアソータントインフルエンザウイルスを選択してもよい。目的のリアソータントインフルエンザウイルスはプラーク法により単離して、ゲノム分節を解析することにより選択できる。プラーク法及びゲノム分節の解析方法は、公知の手法を用いることができる。
 本発明の作出方法によれば、目的のリアソータントインフルエンザウイルスを従来技術の半分以下の期間で取得することができる。既存の中和抗体又は抗血清を使用できる場合は、好ましくは17日以下、より好ましくは15日以下、更に好ましくは13日以下、最も好ましくは10日以下で目的のリアソータントインフルエンザウイルス取得することができる。新たな抗血清の作製が必要となる場合は、好ましくは24日以下、より好ましくは20日以下、更に好ましくは16日以下、最も好ましくは12日以下で目的のリアソータントインフルエンザウイルスを取得することができる。パンデミック時など、早期にワクチンを入手する必要がある場合、本発明の方法は非常に有用である。
 本明細書において、インフルエンザウイルスの遺伝子組換え体の作出のしやすさを、遺伝子組換え効率で示す。遺伝子組換え効率とは、リアソータント作出実験でプラークを単離した全クローン数に対する、目的のリアソータントインフルエンザウイルスであるプラークのクローン数の割合を示す。リアソータント作出実験は、宿主に対して第1のインフルエンザウイルス株と第2のインフルエンザウイルス株を感染させ、リアソータントインフルエンザウイルスを作出する実験を意味する。本発明の作出方法によれば遺伝子組換え効率が好ましくは60%以上、より好ましくは80%以上、更に好ましくは95%以上、最も好ましくは100%を達成することができる。
 本発明の第1のインフルエンザウイルス株又は第2のインフルエンザウイルス株は、特に限定されるものではなく、目的のリアソータントインフルエンザウイルスに応じて適宜選択することができる。例えば、現在知られているすべての亜型、及び将来単離、同定される亜型から選択してもよい。A型インフルエンザウイルスの場合、様々なHAの亜型とNAの亜型との組み合わせを含むインフルエンザウイルスが考えられる。B型インフルエンザウイルスの場合、ビクトリア系統と山形系統との組み合わせを含むインフルエンザウイルスが考えられる。
 A型インフルエンザウイルスの各亜型は、RNAゲノムの変異性が高いため、新しい株が頻繁に生じている。2009年4月にメキシコでの流行が認知された後、世界的に流行したとされるインフルエンザは、新型インフルエンザ、ブタインフルエンザ、パンデミックインフルエンザA(H1N1)、swine flu、A/H1N1 pdmなどと呼ばれている。ブタの間で流行していたウイルスが、農場などでブタからヒトに直接感染し、その後ヒトの間で広まったとされる新型インフルエンザは、従前より存在していた季節性のAソ連型インフルエンザであるインフルエンザA型ウイルスH1N1亜型(以下「H1N1亜型」と称する)や、A香港型インフルエンザであるインフルエンザA型ウイルスH3N2亜型(以下「H3N2亜型」と称する)とは、区別される。またRNAゲノムの変異性が高いことから、インフルエンザA型ウイルスの同じ亜型の中でも、単離された時期や場所によって、ウイルス株が区別されている。
 本発明に用いるインフルエンザウイルス株は、上述のような生体から分離されたインフルエンザウイルスの他、インフルエンザワクチンに適用可能なように、弱毒化、鶏卵増殖適合化、細胞培養増殖適合化、温度感受性表現形質化、粘膜投与適合化等の改変を加えて作出した組換えウイルスであっても良い。また、改変を加えるための手段として、インフルエンザウイルスの抗原部位やポリメラーゼ部位等の8本のRNA分節に変異を導入する方法や低温継代によって弱毒ウイルスを作出する方法、ウイルス培養系への変異誘発剤を添加することによる方法等が挙げられる。
 本発明における第2のインフルエンザウイルス株は、所望の宿主において増殖性が優れた株を選択することが好ましい。宿主が鶏卵である場合はH1N1亜型であることが好ましい。H1N1亜型としては、A/プエルトリコ/8/34(H1N1)等が例示される。一方、宿主が培養細胞である場合、特にMDCK細胞である場合は、H3N2亜型であることが好ましい。H3N2亜型としては、A/茨城/N12232/2012(H3N2)、A/広島/52/2005(H3N2)、A/パナマ/2007/99(H3N2)等が例示される。第1のインフルエンザウイルス株としては、目的の抗原タンパク質を有する株を用いれば良く、特に限定はされない。現在単離、同定されている株であっても、将来単離、同定される株であっても良く、A型インフルエンザウイルスであっても、B型インフルエンザウイルスであっても良い。第1のインフルエンザウイルス株の具体例としては、A/カリフォルニア/7/2009(H1N1)pdm09、A/カリフォルニア/4/2009(H1N1)pdm09、A/ニューカレドニア/20/99(H1N1)、A/ソロモン諸島/3/2006(H1N1)、A/ブリスベン/59/2007(H1N1)、A/パナマ/2007/99(H3N2)、A/ワイオミング/3/2003(H3N2)、A/ニューヨーク/55/2004(H3N2)、A/広島/52/2005(H3N2)、A/ウルグアイ/716/2007(H3N2)、A/ビクトリア/210/2009(H3N2)、A/ビクトリア/361/2011(H3N2)、A/テキサス/50/2012(H3N2)、A/ニューヨーク/39/2012(H3N2)、A/スイス/9715293/2013(H3N2)、A/ベトナム/1194/2004(H5N1)、A/インドネシア/5/2005(H5N1)、A/安徽/1/2005(H5N1)、A/上海/2/2013(H7N9)、A/安徽/1/2013(H7N9)、B/山東/7/97、B/上海/361/2002、B/マレーシア/2506/2004、B/フロリダ/4/2006、B/ブリスベン/60/2008、B/ウィスコンシン/1/2010、B/マサチュセッツ/2/2012、B/プーケット/3073/2013、B/テキサス/2/2013等が例示されるが、これらに限定されない。
 また、本発明により作出された目的のリアソータントインフルエンザウイルスは、インフルエンザワクチン製造のシードウイルスとして用いることができる。目的のリアソータントインフルエンザウイルスを精製する工程については、公知の手法又は今後開発されるいずれの手法を用いることができる。
 本発明の作出方法に用いられる宿主は、発育鶏卵であっても、培養細胞であってもよい。発育鶏卵を宿主として使用する場合、特定病原体除去(specific pathogen-free)(SPF)孵化鶏卵を使用することができる。
 本発明の作出方法において、培養細胞を宿主として使用する場合、培養細胞はインフルエンザウイルスが感染して複製可能なものであればいかなるものであってもよい。培養細胞としては哺乳動物細胞が好ましく、ハムスター、ウシ、霊長類(ヒト及びサルを含む)及びイヌの細胞が例示されるが、これらに限定されない。より具体的には、マディン-ダービーイヌ腎臓に由来するMDCK細胞、アフリカミドリザル腎臓に由来するVero細胞等が例示される。本発明におけるMDCK細胞は、さらに具体的には、国際寄託の受託番号NITE BP-02014で特定されるMDCK細胞である。かかる細胞は、独立行政法人製品評価技術基盤機構 バイオテクノロジーセンター 特許微生物寄託センター(郵便番号292-0818 日本国千葉県木更津市かずさ鎌足2-5-8)に平成27年3月4日に受託番号NITE P-02014として国内寄託された後、独立行政法人製品評価技術基盤機構 バイオテクノロジーセンター 特許微生物寄託センターにて、ブダペスト条約に基づく国際寄託に移管請求された。
 本発明の理解を助けるために、以下に実施例及び参考例を示して具体的に本発明を説明するが、本発明は本実施例及び参考例に限定されない。
(参考例1)生ウイルスを用いたリアソータントインフルエンザウイルスの作出
 抗原株に紫外線照射(以下、UV照射)を行わずに、生ウイルスを用いて、リアソータントインフルエンザウイルスの作出を行った。
1.使用ウイルス株、使用抗血清
 第1のインフルエンザウイルス株(抗原株):A/カリフォルニア/7/2009(H1N1)pdm09(以下「CA/7」と称する)
 第2のインフルエンザウイルス株(ドナー株):A/茨城/N12232/2012(H3N2)(以下「IB/232」と称する)
 抗ドナー株血清:ドナー株のフェレット感染血清(HI抗体価:1280)をRDE処理し、最終希釈倍率2倍にしたもの
2.リアソータントインフルエンザウイルスの作出
1)グルタミン(4mM)、グルコース(4.6g/L)、炭酸水素ナトリウム(20mM)、0.1×TrypLE Selectを含有するイーグルMEM培地(以下「ウイルス培養用培地」と称する)を用いて、ドナー株及び抗原株の各インフルエンザウイルス溶液を調製した。ドナー株のインフルエンザウイルス溶液を、以下「ドナー株溶液」といい、抗原株の各インフルエンザウイルス溶液を「抗原株溶液」ということとする。上記ウイルス培養用培地を用いて10TCID50/mLのドナー株溶液と、10TCID50/mL、10TCID50/mL、10TCID50/mL、10TCID50/mLの抗原株溶液をそれぞれ調製した。なお、インフルエンザウイルス感染価(TCID50/mL)は、参考文献1に開示される方法に従って確認した。
2)25cmフラスコで、MDCK細胞(国際寄託の受託番号NITE BP-02014で特定されるMDCK細胞)をコンフルエント(約5×10細胞/フラスコ)になるまで培養した。その後、培地を10mLのウイルス培養用培地に交換し、ドナー株溶液100μLと各濃度の抗原株溶液100μLを各々同時に接種した。
3)34℃、5%COにて2日間培養した。
4)得られた培養物100μLと、抗ドナー株血清100μLを混合し、34℃にて1時間静置した。
5)新たな25cmフラスコでMDCK細胞を培養し、培地を10mLのウイルス培養用培地で交換し、上記4)にて抗ドナー株血清にて処理した培養液200μL全量を接種した。
6)34℃、5%COにて2日間培養した。
7)得られた培養物100μLに対し、上記4)~6)の操作を再度繰り返した。
8)得られた培養物を遠心分離(9000rpm、5分間)し、上清を回収した。
9)遠心上清をウイルス培養用培地で10倍、10倍、10倍、10倍、10倍、10倍に希釈し、MDCK細胞をコンフルエントまで培養した6-wellプレートに100μL/wellで接種した。接種は2枚のプレートに対して行った。
10)34℃、5%COにて30分間培養した。
11)プラークアッセイと同様の方法で0.8%アガロース含有MEM培地(グルタミン(4mM)、0.1×TrypLE Select含有)を3mL/well重層した。安全キャビネット内で乾燥させた後、インキュベーター内での培養を開始した。
12)34℃、5%COにて3日間培養した。
13)1.0%アガロース含有MEM培地(ニュートラルレッド含有)を2mL/well重層し、安全キャビネット内で乾燥した。
14)新たな6-wellプレートでMDCK細胞を培養し、2mL/wellのウイルス培養用培地で培地を交換し、各wellにプラークを単離した。ピックアップはフィルター付の先切りチップを用いて行った。
15)34℃、5%COにて3日間培養した。
16)単離したプラークの培養液を遠心分離(9000rpm、5分間)し、上清を-80℃にて保存した。
3.遺伝子解析
 上記2.において単離したプラークの培養上清からRNAを抽出し、逆転写をしてcDNAを合成し、定法に従ってPCRによりウイルスの全ゲノム分節を増幅して簡易精製した。これを検体として遺伝子配列解析を行い、各ゲノム分節がドナー株と抗原株のどちらに由来するかを判定した。
 10TCID50/mL又は10TCID50/mLの抗原株を感染させる条件にて得られたプラークの遺伝子解析結果を、以下の表1に示した。なお、10TCID50/mLの抗原株を感染させた条件では、上記2.6)以降で、細胞にCPEが観察されなかったため、その後の操作を行わなかった。
Figure JPOXMLDOC01-appb-T000001
 表中「I」はIB/232(ドナー株)由来であり、「C」はCA/7(抗原株)由来であることを意味する。
 解析したほとんどのプラークでは、ゲノム分節の全てがCA/7由来であった。10TCID50/mLの抗原株を感染させる条件の7番目のプラーク及び、10TCID50/mLの抗原株を感染させる条件の12番目のプラークは、PB1分節のみ、IB/232由来とするリアソータントインフルエンザウイルスであった。両条件において、遺伝子組換え効率は10%未満であった。また、上記2.の手法で単離したプラークを取得するまでの期間は約12日であった。これらの結果から、ドナー株と抗原株の宿主細胞への混合感染には、ウイルス量が重要であると考えられた。また、10TCID50/mLの抗原株を感染させたものでは、上記2.6)にて培養5日目になってもCPEが観察されず、ウイルス増殖が起こらなかった。このため、ドナー株は抗血清による1回の中和で十分に抑制されたと考えられた。
(参考例2)抗原株のウイルス量によるリアソータントインフルエンザウイルス作出への影響の確認
 本参考例では抗原株のウイルス量が遺伝子組換え効率へ与える影響を検討した。なお、使用ウイルス及び使用抗血清は、参考例1と同様である。
1.リアソータントインフルエンザウイルスの作出
1)ウイルス培養用培地を用いて、10TCID50/mLのドナー株溶液を調製するとともに、10TCID50/mL、10TCID50/mLの抗原株溶液をそれぞれ調製した。
2)25cmフラスコでMDCK細胞(国際寄託の受託番号NITE BP-02014で特定されるMDCK細胞)をコンフルエント(約5×10細胞/フラスコ)になるまで培養し、培地を取り除き、抗原株溶液200μLを接種して、34℃、5%COにて1時間培養した。その後、ドナー株溶液200μLを接種して、ウイルス培養用培地を添加して全量を10mLとした。
3)34℃、5%COにて2日間培養した。
4)得られた培養物100μLと抗ドナー株血清100μLを混合し、34℃にて1時間静置した。
5)新たな25cmフラスコでMDCK細胞を培養し、10mLのウイルス培養用培地で培地交換し、上記4)にて抗ドナー株血清で処理した培養物200μL全量を接種した。
6)34℃、5%COにて2日間培養した。
7)以後、参考例1の2.8)~16)と同様にしてプラークを単離した。
 また、参考例1と同様にして、上記1.にて単離したプラークの遺伝子解析を行った。
 得られたプラークの遺伝子解析結果を、以下の表2に示した。
Figure JPOXMLDOC01-appb-T000002
 表中「I」はIB/232(ドナー株)由来であり、「C」はCA/7(抗原株)由来であることを意味する。
 10TCID50/mLの抗原株を感染させた場合は、解析したプラークでゲノム分節の全てがCA/7由来であった。一方、10TCID50/mLの抗原株を感染させた場合の5番目、10番目のプラークについては、PB1分節がIB/232由来であり、リアソータントインフルエンザウイルスの作出を確認した。4番目、6番目及び8番目のプラークについては、単一のプラークを単離できていなかったためにPB1分節がIB/232由来のものと、CA/7由来のものが混在していたが、プラークの一部においてリアソータントインフルエンザウイルスの作出を確認した。抗原株を高濃度とすることで、遺伝子組換え効率は40%程度まで向上し、リアソータントインフルエンザウイルスが作出されやすいことが確認された。プラークを取得するまでの期間は約10日であった。また、生ウイルス同士の混合感染では、抗原株の増殖を抑えることが困難であることが示唆された。
(実施例1)ウイルス株へのUV照射条件の検討
 参考例2の結果から、第1のインフルエンザウイルス株(抗原株)に不活化ウイルスを用いるために抗原株のUV不活化条件を検討した。インフルエンザウイルス株はCA/7を用いた。
1.UV照射実験
1)10TCID50/mLのCA/7を調製し、3.5cmディッシュに2mLずつ分注した。
2)Spectrolinker XL-1000(Spectronics Corporation、UV管は254nm、8W×5本)の中に、1)のディッシュを入れ、ディッシュの蓋を外して、0~120秒間のUV照射を行った。
3)定法に従って、各ディッシュの感染価測定を行った。
 感染価測定の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 UV照射処理により、抗原株のウイルスの感染価が検出限界以下まで抑えられる。抗原株による宿主細胞への初期感染能力を維持するためには、UV照射時間は短い方が好ましいと考えられる。なお、10秒間UV照射した際の照射量は500~1000J/m程度である。
(実施例2)リアソータントインフルエンザウイルス作出
 抗原株についてUV不活化処理を行い、混合感染時の抗原株の増殖を抑えた場合の、遺伝子組換え効率を確認した。
1.使用ウイルス、使用抗血清
 第1のインフルエンザウイルス株(抗原株):CA/7、A/ニューカレドニア/20/99(H1N1)(以下「NC/20」と称する)
 第2のインフルエンザウイルス株(ドナー株):IB/232
 抗ドナー株血清は、参考例1と同様である。
2.リアソータントインフルエンザウイルスの作出
1)ウイルス培養用培地を用いて、参考例1と同様に10TCID50/mLのドナー株溶液及び10TCID50/mLの抗原株溶液を調製した。
2)抗原株に対して、実施例1と同様の手法により、Spectrolinker XL-1000を用いて、10秒間UVを照射した。
3)25cmフラスコにて、MDCK細胞(国際寄託の受託番号NITE BP-02014で特定されるMDCK細胞)をコンフルエント(約5×10細胞/フラスコ)になるまで培養し、培地を取り除き、抗原株溶液200μLを接種して、34℃、5%COにて1時間培養した。その後、ドナー株溶液200μLを接種してウイルス培養用培地を添加して、全量を10mLとした。
4)34℃、5%COにて2日間培養した。
5)上記4)にて得られた培養物100μLと抗ドナー株血清100μLを混合し、34℃にて1時間静置した。
6)新たな25cmフラスコにてMDCK細胞(国際寄託の受託番号NITE BP-02014で特定されるMDCK細胞)を培養し、10mLのウイルス培養用培地で培地交換し、上記5)にて抗ドナー株血清で処理した培養物200μL全量を接種した。
7)34℃、5%COにて2日間培養した。
8)得られた培養物の一部を遠心分離(9000rpm、5分間)し、上清を回収した。
9)遠心上清を、ウイルス培養用培地を用いて10倍、10倍、10倍、10倍、10倍、10倍に希釈し、MDCK細胞をコンフルエントまで培養した6-wellプレートに、100μL/well接種した。接種は2枚のプレートに対して行った。
10)以後、参考例1の2.10)~16)と同様にしてプラークを単離した。
 また、参考例1と同様にして、上記2.にて単離したプラークの遺伝子解析を行った。
 得られたプラークの遺伝子解析結果を、以下の表4に示した。
Figure JPOXMLDOC01-appb-T000004
 表中「I」はIB/232(ドナー株)由来であり、「C」はCA/7(抗原株)由来であり、「N」はNC/20(抗原株)由来であることを意味する。
 解析した全てのプラークがリアソータントインフルエンザウイルスであることを確認した。ほとんどのリアソータントインフルエンザウイルスは、ドナー株由来の分節と抗原株由来の分節の割合が6:2又は5:3のリアソータントインフルエンザウイルスであった。IB/232とCA/7の混合感染の場合は、5:3のリアソータントインフルエンザウイルスにおいて、M分節をCA/7由来とするプラークが複数存在した。また抗原株がNC/20の場合の8番目のプラークでは、単一のプラークを単離できていなかったためにNP分節及びM分節にてIB/232由来とNC/20由来のものが混在していた。しかしながら、プラークの解析結果ではPB2分節、PB1分節及びPA分節がIB/232由来のみであり、HA分節、NA分節及びNS分節がNC/20由来のみであることから、同時に単離した複数のプラークは、いずれもリアソータントインフルエンザウイルスであることが示唆された。抗原株へのUV不活化処理を最適条件で行うことにより、遺伝子組換え効率が100%まで向上した。またプラークを取得するまでの期間は約9~10日であった。
(実施例3)リアソータントインフルエンザウイルスの増殖性の確認
 作出されたリアソータントインフルエンザウイルスを、MDCK細胞(国際寄託の受託番号NITE BP-02014で特定されるMDCK細胞)に感染させて培養し、増殖性を確認した。リアソータントインフルエンザウイルスを作出するために用いたドナー株はIB/232であり、抗原株はCA/7である。参考例1のウイルス培養用培地を用いて、34℃、5%COにて2日間培養した。ウイルス培養上清の感染価を参考文献1に開示される方法に従って、ウイルス増殖性を確認した。用いた3種のリアソータントインフルエンザウイルスR#1~R#3の遺伝子解析結果を、以下の表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表中「I」はIB/232(ドナー株)由来であり、「C」はCA/7(抗原株)由来であることを意味する。
 結果を図1に示す。元の抗原株CA/7と比較して、リアソータントインフルエンザウイルスR#1~R#3は高い感染価を示した。従ってR#1~R#3は、CA/7と比較して、MDCK細胞における増殖性が高いことが示唆された。
(実施例4)抗体価による遺伝子組換え効率の変動
 第2のインフルエンザウイルス株(ドナー株)の抗原タンパク質を有するインフルエンザウイルス株を選択的に失活させうる抗体価を検討した。
1.使用ウイルス、使用抗血清
 第1のインフルエンザウイルス株(抗原株):CA/7
 第2のインフルエンザウイルス株(ドナー株):IB/232
 抗ドナー株血清:ドナー株のフェレット感染血清(HI抗体価:1280)をRDE処理し、初期希釈倍率を2倍にしたもの
2.リアソータントインフルエンザウイルスの作出
1)実施例2の2.1)~4)と同様の方法により、培養物を得た。
2)培養物の一部を使用して、感染価測定を行った。
3)最終希釈倍率が10倍、10倍、10倍、10倍になるよう生理食塩水で希釈した抗ドナー株血清100μLを、それぞれ培養物100μLと混合して34℃にて1時間静置した。
4)実施例2の2.6)~9)と同様の方法にてリアソータントインフルエンザウイルスの作出を続け、プラークを単離した。
 また、参考例1と同様にして、上記2.にて単離したプラークの遺伝子解析を行った。
得られたプラークの遺伝子解析結果を、以下の表6に示した。
Figure JPOXMLDOC01-appb-T000006


 表中「I」はIB/232(ドナー株)由来であり、「C」はCA/7(抗原株)由来であることを意味する。
 培養物の感染価は、107.57TCID50/100μLであった。この培養物を、128以上のHI抗体価を有する抗ドナー株血清で処理した場合において、解析した全てのプラークがリアソータントインフルエンザウイルスであった。一方、12.8以下のHI抗体価を有する抗ドナー株血清で処理した場合は、ほとんどのHA分節及びNA分節がドナー株由来のものとなり、ドナー株の抗原タンパク質を有するインフルエンザウイルス株を選択的に失活させることはできないことを確認した。
(実施例5)培養物のウイルス量の許容下限値
 目的のリアソータントインフルエンザウイルスを作出するために必要な培養物のウイルス量を検討した。
1.使用ウイルス、使用抗血清
 第1のインフルエンザウイルス株(抗原株):CA/7
 第2のインフルエンザウイルス株(ドナー株):IB/232
 抗ドナー株血清:ドナー株のフェレット感染血清(HI抗体価:1280)をRDE処理し、最終希釈倍率を2倍にしたもの
2.リアソータントインフルエンザウイルスの作出
1)実施例2の2.1)~4)と同様の方法により、培養物を得た。
2)培養物の一部を使用して、感染価測定を行った。
3)ウイルス培養用培地を用いて10倍、10倍、10倍、10倍、10倍、10倍、10倍、10倍になるよう希釈した培養物100μLを、それぞれ抗ドナー株血清100μLと混合して34℃にて1時間静置した。
4)実施例2の2.6)~9)と同様の方法にてリアソータントインフルエンザウイルスの作出を続け、プラークを単離した。ただし、10倍以上に培養物を希釈した条件についてはプラークが形成されず、その後の操作を行わなかった。
 また、参考例1と同様にして、上記2.にて単離したプラークの遺伝子解析を行った。
 得られたプラークの遺伝子解析結果を、以下の表7に示した。
Figure JPOXMLDOC01-appb-T000007
 表中「I」はIB/232(ドナー株)由来であり、「C」はCA/7(抗原株)由来であることを意味する。
 未希釈の培養物の感染価は、107.57TCID50/100μLであった。培養物中のウイルス量が104.57TCID50以上である場合、プラーク形成を確認した。一方、培養物中のウイルス量が103.57TCID50以下である場合、プラーク形成は確認されなかった。プラークが形成された条件については、解析した全てのプラークがリアソータントインフルエンザウイルスであった。
 以上詳述したように、本発明のリアソータントインフルエンザウイルスの作出方法によれば、早期にかつ効率良く遺伝子組換え体であるリアソータントインフルエンザウイルスを作出可能となる。本発明の方法によれば、高増殖性を示すインフルエンザウイルスを早期にかつ効率良く作出することができるため、インフルエンザワクチン製造用のシードウイルスが迅速に作出可能となる。

Claims (11)

  1. 以下の工程を含む、第1のインフルエンザウイルス株の抗原タンパク質を含むリアソータントインフルエンザウイルスを作出する方法:
    1)第1のインフルエンザウイルス株に、初期感染能を有し、かつウイルス増殖性が喪失又は低下する照射量で紫外線を照射する工程;
    2)宿主に、第1のインフルエンザウイルス株と第2のインフルエンザウイルス株を感染させる工程;
    3)第1のインフルエンザウイルス株と第2のインフルエンザウイルス株が感染した宿主を培養して、培養物を得る工程;
    4)工程3)において得られた培養物から、第2のインフルエンザウイルス株の抗原タンパク質を有するインフルエンザウイルスを失活させる工程;
    5)工程4)の後に、リアソータントインフルエンザウイルスを回収する工程。
  2. 工程4)が、工程3)において得られた培養物に、第2のインフルエンザウイルス株の抗原タンパク質に対する抗体を接触させることを含む、請求項1に記載のリアソータントインフルエンザウイルスを作出する方法。
  3. 工程4)が、工程3)において得られた培養物に、第2のインフルエンザウイルス株に対する抗血清を添加してインキュベートすることを含む、請求項1に記載のリアソータントインフルエンザウイルスを作出する方法。
  4. 抗血清の最終希釈倍率2~1000倍である、請求項3に記載のリアソータントインフルエンザウイルスを作出する方法。
  5. 抗血清が感染血清である、請求項3に記載のリアソータントインフルエンザウイルスを作出する方法。
  6. 工程2)において、第1のインフルエンザウイルス株を1×10-6~10のmoiで宿主に接触させて感染させる、請求項1~5のいずれかに記載のリアソータントインフルエンザウイルスを作出する方法。
  7. 工程2)において、第1のインフルエンザウイルス株を宿主に感染させた後に、第2のインフルエンザウイルス株を宿主に感染させる、請求項1~6のいずれかに記載のリアソータントインフルエンザウイルスを作出する方法。
  8. 工程5)において、リアソータントインフルエンザウイルスから、目的のリアソータントインフルエンザウイルスを選択することを含む、請求項1~7のいずれかに記載のリアソータントインフルエンザウイルスを作出する方法。
  9. 第2のインフルエンザウイルス株が、インフルエンザA型ウイルスH1N1亜型又はH3N2亜型である、請求項1~8のいずれかに記載のリアソータントインフルエンザウイルスを作出する方法。
  10. 請求項1~9のいずれかに記載のリアソータントインフルエンザウイルスを作出する方法により作出された、リアソータントインフルエンザウイルス。
  11. 第1のインフルエンザウイルス株由来の抗原性タンパク質を含み、第2のインフルエンザウイルス株のバックボーンタンパク質を含む、請求項10に記載のリアソータントインフルエンザウイルス。
PCT/JP2017/025274 2016-07-15 2017-07-11 リアソータントインフルエンザウイルス作出方法 WO2018012498A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2017555411A JP6335399B1 (ja) 2016-07-15 2017-07-11 リアソータントインフルエンザウイルス作出方法
KR1020187035740A KR102477492B1 (ko) 2016-07-15 2017-07-11 리소턴트 인플루엔자 바이러스 작출 방법
EP17827625.9A EP3486316A4 (en) 2016-07-15 2017-07-11 PROCESS FOR PRODUCING REASSURED INFLUENZA VIRUSES
US16/316,186 US11633469B2 (en) 2016-07-15 2017-07-11 Reassortant influenza virus production method
AU2017296857A AU2017296857B2 (en) 2016-07-15 2017-07-11 Reassortant influenza virus production method
CN201780036556.8A CN109312310B (zh) 2016-07-15 2017-07-11 重配流感病毒的制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-140366 2016-07-15
JP2016140366 2016-07-15

Publications (1)

Publication Number Publication Date
WO2018012498A1 true WO2018012498A1 (ja) 2018-01-18

Family

ID=60952060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025274 WO2018012498A1 (ja) 2016-07-15 2017-07-11 リアソータントインフルエンザウイルス作出方法

Country Status (7)

Country Link
US (1) US11633469B2 (ja)
EP (1) EP3486316A4 (ja)
JP (1) JP6335399B1 (ja)
KR (1) KR102477492B1 (ja)
CN (1) CN109312310B (ja)
AU (1) AU2017296857B2 (ja)
WO (1) WO2018012498A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044636A1 (ja) * 2017-08-28 2019-03-07 一般財団法人阪大微生物病研究会 リアソータントインフルエンザウイルスの段階的作出方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10503093A (ja) * 1994-11-10 1998-03-24 イムノ・アクチエンゲゼルシャフト 無蛋白培養における生物製剤の製造法
WO2011145081A1 (en) 2010-05-21 2011-11-24 Novartis Ag Influenza virus reassortment method
JP2016140366A (ja) 2015-01-29 2016-08-08 株式会社大都技研 遊技台

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2006140262A (ru) * 2004-04-15 2008-05-20 Эллайд Байотек, Инк. (Us) Способы и устройство для выявления вирусных инфекций
KR20090088944A (ko) * 2006-12-15 2009-08-20 쉐링-프라우 리미티드 배양물 속에서 인플루엔자 바이러스를 복제하는 방법
JP5654468B2 (ja) * 2008-09-24 2015-01-14 メディミューン,エルエルシー 細胞培養、ウイルスの増殖および精製のための方法
RU2457245C1 (ru) 2011-07-14 2012-07-27 Федеральное государственное бюджетное учреждение "Научно-исследовательский институт вирусологии им. Д.И. Ивановского" Министерства здравоохранения и социального развития Российской Федерации РЕАССОРТАНТ ReM8 - ВАКЦИННЫЙ ШТАММ ВИРУСА ГРИППА А ПОДТИПА Н1N1
JP6054883B2 (ja) 2012-03-02 2016-12-27 ノバルティス アーゲー インフルエンザウイルスの再集合
BR112015017420A2 (pt) * 2013-01-23 2017-07-11 Novartis Ag recombinação de vírus influenza
US20140274806A1 (en) * 2013-03-15 2014-09-18 Synthetic Genomics Vaccines Influenza virus reassortment
CN105722976A (zh) * 2013-06-06 2016-06-29 诺华股份有限公司 流感病毒重配

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10503093A (ja) * 1994-11-10 1998-03-24 イムノ・アクチエンゲゼルシャフト 無蛋白培養における生物製剤の製造法
WO2011145081A1 (en) 2010-05-21 2011-11-24 Novartis Ag Influenza virus reassortment method
JP2016140366A (ja) 2015-01-29 2016-08-08 株式会社大都技研 遊技台

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"Influenza Diagnosis Manual", September 2014
"Special Experimental Virology", 28 February 1982, MARUZEN PUBLISHING CO., LTD., pages: 321 - 325
FONVILLE, JM ET AL.: "Influenza Virus Reassortment Is Enhanced By Semi-infectious Particles but Can Be Suppressed by Defective Interfering Particles", PLOS PATHOG, vol. 11, no. 10, 6 October 2015 (2015-10-06), pages e1005204, XP055561973 *
J VIROL., vol. 20, no. 1, October 1976 (1976-10-01), pages 248 - 54
NEUMANN ET AL., PNAS, vol. 102, 1999, pages 16825 - 16829
PLOS PATHOG, vol. 11, no. 10, October 2015 (2015-10-01), pages e1005204
RACANIELLO, VR ET AL.: "Isolation of Influenza C Virus Recombinants", JOURNAL OF VIROLOGY, vol. 32, no. 3, December 1979 (1979-12-01), pages 1006 - 1014, XP055561982 *
See also references of EP3486316A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044636A1 (ja) * 2017-08-28 2019-03-07 一般財団法人阪大微生物病研究会 リアソータントインフルエンザウイルスの段階的作出方法

Also Published As

Publication number Publication date
JP6335399B1 (ja) 2018-05-30
AU2017296857A1 (en) 2019-01-24
CN109312310B (zh) 2022-08-02
KR20190026663A (ko) 2019-03-13
AU2017296857B2 (en) 2019-03-14
US11633469B2 (en) 2023-04-25
EP3486316A1 (en) 2019-05-22
EP3486316A4 (en) 2019-12-04
CN109312310A (zh) 2019-02-05
JPWO2018012498A1 (ja) 2018-07-12
KR102477492B1 (ko) 2022-12-13
US20210338798A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
JP3158157B2 (ja) 無蛋白培養における生物製剤の製造法
JP2014500008A (ja) インフルエンザウイルス及びワクチンシードの製造を改善する方法
US11065326B2 (en) Live-attenuated vaccine having mutations in viral polymerase for the treatment and prevention of canine influenza virus
EP2233152A1 (en) High growth reassortant influenza A virus
Shin et al. Comparison of immunogenicity of cell-and egg-passaged viruses for manufacturing MDCK cell culture-based influenza vaccines
Abdoli et al. Comparison between MDCK and MDCK-SIAT1 cell lines as preferred host for cell culture-based influenza vaccine production
Crevar et al. Elicitation of protective immune responses using a bivalent H5N1 VLP vaccine
EP2650362A2 (en) Novel vaccines against the a/h1n1 pandemic flu virus
Tzeng et al. Development of high-growth influenza H7N9 prepandemic candidate vaccine viruses in suspension MDCK cells
Asaoka et al. Low growth ability of recent influenza clinical isolates in MDCK cells is due to their low receptor binding affinities
JP6335399B1 (ja) リアソータントインフルエンザウイルス作出方法
Cai et al. Protective effect of bivalent H1N1 and H3N2 VLP vaccines against Eurasian avian-like H1N1 and recent human-like H3N2 influenza viruses in a mouse model
JP5762969B2 (ja) pH安定性のエンベロープ付きウィルスの生産方法
JP6826203B2 (ja) リアソータントインフルエンザウイルスの段階的作出方法
TWI620819B (zh) 抗大流行性感冒病毒a/h1n1之新穎疫苗
Silva et al. Manufacturing of seasonal and pandemic influenza vaccines–A case study
CN114561364A (zh) 高效扩增人流感病毒的方法和试剂

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017555411

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827625

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187035740

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017296857

Country of ref document: AU

Date of ref document: 20170711

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017827625

Country of ref document: EP

Effective date: 20190215