WO2018012303A1 - 液晶プロジェクタ - Google Patents

液晶プロジェクタ Download PDF

Info

Publication number
WO2018012303A1
WO2018012303A1 PCT/JP2017/024034 JP2017024034W WO2018012303A1 WO 2018012303 A1 WO2018012303 A1 WO 2018012303A1 JP 2017024034 W JP2017024034 W JP 2017024034W WO 2018012303 A1 WO2018012303 A1 WO 2018012303A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
light
scattered light
crystal panel
substrate
Prior art date
Application number
PCT/JP2017/024034
Other languages
English (en)
French (fr)
Inventor
加藤 喜久
Original Assignee
株式会社オルタステクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オルタステクノロジー filed Critical 株式会社オルタステクノロジー
Publication of WO2018012303A1 publication Critical patent/WO2018012303A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details

Definitions

  • the present invention relates to a liquid crystal projector using a liquid crystal panel.
  • a conventional liquid crystal projector having a color filter has the following configuration, for example.
  • the liquid crystal projector has a liquid crystal panel as an image display unit.
  • the liquid crystal panel is, for example, a transmission type that transmits light, and has a structure in which a liquid crystal layer is sandwiched between two glass substrates.
  • a color filter is formed on one of the glass substrates, and a TFT (thin film transistor) element is formed on the other glass substrate.
  • polarizing plates are respectively disposed outside the two glass substrates (for example, Patent Document 1).
  • a polarizing plate when a polarizing plate is arranged on a glass substrate, light from the light source is absorbed along the absorption axis of the polarizing plate, and the intensity of the light is 50% or less (actually 40% or less). Further, the polarizing plate generates heat due to absorption of light along the absorption axis of the polarizing plate. For this reason, the liquid crystal in the liquid crystal panel may stand up, and the image display characteristics may deteriorate due to a decrease in contrast of the display image.
  • a liquid crystal projector includes a light source that generates light, a condensing lens disposed on an optical path of the light, and either a polymer-dispersed liquid crystal layer or a polymer network-type liquid crystal layer.
  • a liquid crystal panel that reflects light emitted from the condenser lens in accordance with a display pattern and emits reflected light, a scattered light erasing unit that erases scattered light emitted from the liquid crystal panel, and the scattered light erasing unit And a projection lens that projects the reflected light that has passed through.
  • liquid crystal projector that has high light utilization efficiency and can improve image display characteristics.
  • FIG. 1 is a diagram showing a configuration of a liquid crystal projector according to the first embodiment of the present invention.
  • the liquid crystal projector 10 includes a light source 11, a condenser lens 12, a liquid crystal panel 13, a scattered light erasing unit 14, a projection lens 15, a drive circuit 16, and a control circuit 17.
  • the light generated from the light source 11 is applied to the liquid crystal panel 13 through the condenser lens 12.
  • a condenser lens 12 is disposed on the optical path between the light source 11 and the liquid crystal panel 13.
  • the liquid crystal panel 13 has a plurality of pixels, and is turned on or off for each pixel.
  • the pixels in the ON state of the liquid crystal panel 13 regularly reflect light (hereinafter referred to as incident light) emitted from the condenser lens 12 and emit reflected light. Pixels in the off state scatter incident light and emit scattered light.
  • the reflected light emitted from the liquid crystal panel 13 passes through the scattered light erasing unit 14 and enters the projection lens 15.
  • scattered light emitted from the liquid crystal panel 13 is blocked by the scattered light erasing unit 14 and does not enter the projection lens 15.
  • a scattered light erasing unit 14 is disposed on the optical path between the liquid crystal panel 13 and the projection lens 15. Then, the light incident on the projection lens 15 is projected onto the external screen 100 or the like by the projection lens 15.
  • the light source 11 generates light to the liquid crystal panel 13.
  • the light source 11 is composed of, for example, a metal halide lamp.
  • a metal halide lamp is a lamp that utilizes light emission by arc discharge in a mixed vapor of mercury and a metal halide.
  • the condensing lens 12 condenses light from the light source 11 and emits parallel light to the liquid crystal panel 13.
  • the condensing lens 12 may be comprised from one lens, for example, and may be comprised from the some lens.
  • the liquid crystal panel 13 is a reflective liquid crystal panel using a polymer dispersed liquid crystal (PDLC: Polymer Dispersed Liquid Crystal) or a polymer network liquid crystal (PNLC: Polymer Network Liquid Crystal).
  • the display panel 13 includes a pixel array in which a plurality of pixels are arranged in a matrix.
  • the display panel 13 is provided with a plurality of scanning lines each extending in the row direction (X direction) and a plurality of signal lines each extending in the column direction (Y direction). Pixels are arranged in intersection regions between the scanning lines and the signal lines. Details of the liquid crystal panel 13 will be described later.
  • the scattered light erasing unit 14 erases or blocks scattered light emitted from the liquid crystal panel 13 and transmits reflected light emitted from the liquid crystal panel 13. Details of the scattered light erasing unit 14 will be described later.
  • the projection lens 15 projects the light that has passed through the scattered light erasing unit 14 onto an external screen 100, for example.
  • the projection lens 15 may be composed of, for example, a single lens or a plurality of lenses.
  • the drive circuit 16 is connected to a plurality of scanning lines and a plurality of signal lines.
  • the drive circuit 16 turns on or off the switching element included in the pixel based on the control signal sent from the control circuit 17.
  • the drive circuit 16 sends a drive voltage to the display panel 13 based on the control signal. That is, the control circuit 17 sends a control signal to the drive circuit 16 based on the image data.
  • the control circuit 17 controls display on the display panel 13 by a control signal.
  • FIG. 2 and 3 are cross-sectional views of the display panel 13.
  • FIG. 2 shows a case where the display of the liquid crystal panel 13 is in an off state
  • FIG. 3 shows a case where the display of the liquid crystal panel 13 is in an on state.
  • the display panel 13 includes a substrate (hereinafter referred to as a TFT substrate) 21 on which a switching element, for example, a TFT (Thin Film Transistor) is formed, and a substrate (hereinafter referred to as a common substrate) on which the common electrode and the like are formed and disposed opposite the TFT substrate 21 Substrate) 22 and a liquid crystal layer 23 sandwiched between the TFT substrate 21 and the common substrate 22.
  • a TFT substrate on which a switching element, for example, a TFT (Thin Film Transistor) is formed
  • a substrate hereinafter referred to as a common substrate 22 on which the common electrode and the like are formed and disposed opposite the TFT substrate 21
  • Substrate 22 and a liquid crystal layer 23 sandwiched between the TFT substrate 21 and the common substrate 22.
  • Each of the TFT substrate 21 and the common substrate 22 is composed of a transparent substrate (for example, a glass substrate).
  • the TFT substrate 21 and the common substrate 22 are bonded together with a sealing material (not shown) while maintaining a space.
  • a liquid crystal material is sealed to form a liquid crystal layer 23.
  • a specific configuration of the liquid crystal layer 23 will be described later.
  • the TFT 24 includes, for example, a gate electrode electrically connected to the scanning line, a gate insulating film provided on the gate electrode, a semiconductor layer (for example, an amorphous silicon layer) provided on the gate insulating film, and a semiconductor layer A source electrode and a drain electrode provided apart from each other; The source electrode is electrically connected to the signal line.
  • An insulating layer 25 is provided on the TFT substrate 21 and the TFT 24.
  • a reflective film 26 is provided on the insulating layer 25.
  • a color filter 27 is provided on the reflective film 26.
  • the color filter 27 includes a plurality of coloring filters (coloring members). Specifically, a plurality of red filters 27-R, a plurality of green filters 27-G, and a plurality of blue filters 27-B are provided. Pixel electrodes 28 are provided on the plurality of red filters 27-R, green filters 27-G, and blue filters 27-B, respectively.
  • a general color filter is composed of three primary colors of light, red (R), green (G), and blue (B).
  • a set of three colors R, G, and B adjacent to each other is a display unit (pixel), and any single color portion of R, G, B in one pixel is a minimum called a subpixel (subpixel). It is a drive unit.
  • the TFT 24 and the pixel electrode 28 are provided for each subpixel.
  • a subpixel is referred to as a pixel unless it is particularly necessary to distinguish between a pixel and a subpixel.
  • the common electrode 29 described above is provided on the liquid crystal layer 23 side of the common substrate 22.
  • the common electrode 29 is formed in a planar shape over the entire display area of the display panel 13.
  • the pixel electrode 28 and the common electrode 29 are composed of transparent electrodes.
  • the transparent electrode for example, ITO (indium tin oxide) is used.
  • the liquid crystal layer 23 includes a polymer layer 23A and a liquid crystal 23B.
  • the liquid crystal 23B includes liquid crystal molecules 23C. More specifically, the liquid crystal layer 23 is composed of polymer dispersed liquid crystal (PDLC: PolymerpersDispersed Liquid Crystal) or polymer network type liquid crystal (PNLC: Polymer Network Liquid Crystal).
  • PDLC polymer dispersed liquid crystal
  • PNLC polymer network type liquid crystal
  • the PDLC has a structure in which the liquid crystal 23B is dispersed in the polymer layer (polymer network) 23A. That is, the PDLC has a structure in which the liquid crystal 23B is phase-separated in the polymer layer 23A.
  • the liquid crystal 23B in the polymer layer 23A may have a continuous phase.
  • Photopolymer resin can be used as the polymer layer 23A.
  • a solution in which liquid crystal is mixed with a photopolymerizable polymer precursor (monomer) is irradiated with ultraviolet rays to polymerize the monomer to form a polymer, and the liquid crystal is dispersed in the polymer network. Is done.
  • a nematic liquid crystal having positive (positive) dielectric anisotropy is used as the liquid crystal 23B. That is, when no voltage is applied to the liquid crystal layer 23, the liquid crystal molecules 23C are randomly arranged in the polymer layer 23A.
  • the liquid crystal molecules 23C are in the electric field direction (the long axis of the liquid crystal molecules 23C is in the electric field direction).
  • the thickness (cell gap) of the liquid crystal layer 23 is, for example, about 7 ⁇ m.
  • the liquid crystal molecules 23C are randomly arranged.
  • the refractive index of the polymer layer 23A is different from the refractive index of the liquid crystal 23B, the incident light from the common substrate 22 side is scattered in the liquid crystal layer 23 (scattering state). The incident light in the scattered state is reflected by the reflective film 26, and the scattered light is emitted from the common substrate 22.
  • the liquid crystal layer 23 when an electric field is applied to the liquid crystal layer 23 (ON state), that is, a voltage difference is applied between the pixel electrode 28 and the common electrode 29 (for example, a positive voltage is applied to the pixel electrode 28 and 0 V is applied to the common electrode 29).
  • the major axis of the liquid crystal molecules 23C is aligned in the electric field direction (that is, the vertical direction).
  • the refractive index of the polymer layer 23A and the refractive index of the liquid crystal 23B are substantially the same, incident light from the common substrate 22 side passes through the liquid crystal layer 23. Incident light that has passed through the liquid crystal layer 23 is reflected by the reflective film 26 and emitted from the common substrate 22 as specularly reflected light (specular light).
  • the scattered light erasing unit 14 blocks scattered light emitted from the liquid crystal panel 13 or blocks scattered light before entering the projection lens 15 and transmits reflected light emitted from the liquid crystal panel 13.
  • FIG. 4 is a diagram showing a configuration of the scattered light erasing unit 14 in the first embodiment.
  • the scattered light erasing unit 14 includes a plurality of cylindrical members 14A.
  • a plurality of cylindrical members 14 ⁇ / b> A are arranged in a direction perpendicular to the optical path direction of the reflected light reflected by the liquid crystal panel 13.
  • the cylindrical members 14A are preferably arranged so that there is no gap between them as much as possible.
  • the cylindrical members 14A are arranged in a matrix.
  • the cylindrical direction of the cylindrical member 14 ⁇ / b> A is parallel to the optical path direction of the reflected light from the liquid crystal panel 13.
  • the cylindrical member 14A has, for example, a cylindrical shape.
  • the cylindrical member 14A is made of, for example, metal, and a matte black paint is painted on the inner surface and the outer surface thereof. In other words, the inner surface and the outer surface of the cylindrical member 14A have a black color.
  • FIG. 5 shows the scattered light 14B and the reflected light 14C incident on the cylindrical member 14A of the scattered light erasing unit 14. Here, four cylindrical members 14A are extracted and shown.
  • the inner surface and the outer surface of the cylindrical member 14A have a black color. For this reason, light that is not parallel to the cylindrical direction of the cylindrical member 14A is absorbed by the inner surface. On the other hand, the light parallel to the cylindrical direction of the cylindrical member 14A passes through the cylindrical member 14A. That is, the scattered light 14B incident on the cylindrical member 14A enters the inner surface of the cylindrical member 14A and is absorbed by the inner surface. On the other hand, the reflected light 14C incident on the cylindrical member 14A proceeds in parallel to the cylindrical direction without being absorbed by the inner surface of the cylindrical member 14A, and passes through the cylindrical member 14A.
  • cylindrical member 14A has a cylindrical shape
  • it is not necessarily limited to a circle.
  • it may be a triangle, a quadrangle, or another polygon.
  • FIG. 6 to 10 are diagrams showing the optical system operation in the display of the liquid crystal panel 13 and the scattered light erasing unit 14, and
  • FIG. 11 is a diagram showing the relationship between the on / off state of the pixel and the color display.
  • the pixel of the red filter 27-R red pixel
  • the pixel of the green filter 27-G green pixel
  • the pixel of the blue filter 27-B blue pixel
  • a voltage difference for example, a positive voltage is applied to the pixel electrode 28 and 0 V is applied to the common electrode 29
  • the major axis of the liquid crystal molecules 23C between the two pixel electrodes 28 and the common electrode 29 is aligned in the electric field direction (that is, the direction perpendicular to the electrode surface).
  • the incident light from the common substrate 22 side is transmitted through the liquid crystal layer 23.
  • Incident light that has passed through the liquid crystal layer 23 is reflected by the reflective film 26 and emitted from the common substrate 22 as specularly reflected light (specular light).
  • specularly reflected light emitted from the common substrate 22 passes through the scattered light erasing unit 14 and enters the projection lens 15.
  • specularly reflected light that has passed through the red filter 27-R, the green filter 27-G, and the blue filter 27-B is incident on the projection lens 15.
  • the display projected on the screen 100 by the projection lens 15 is a white display in which red, green, and blue light are combined.
  • FIG. 11A shows the pixel on / off conditions for performing white display.
  • the red pixel, the green pixel, and the blue pixel are in the off state, that is, the three pixel electrodes 28 of the red pixel, the green pixel, and the blue pixel and the common electrode 29 are set to the same voltage (for example, 0 V).
  • the liquid crystal molecules 23C between the three pixel electrodes 28 and the common electrode 29 are randomly arranged.
  • the incident light from the common substrate 22 side is scattered in the liquid crystal layer 23 (scattering state).
  • the incident light in the scattered state is reflected by the reflective film 26, and the scattered light is emitted from the common substrate 22.
  • the scattered light emitted from the common substrate 22 is erased by the scattered light erasing unit 14, it does not enter the projection lens 15.
  • the display projected on the screen 100 by the projection lens 15 is a black display.
  • FIG. 11B shows the on / off conditions of the pixel when this black display is performed.
  • the red pixel when the red pixel is in the on state and the green pixel and the blue pixel are in the off state, that is, a voltage difference is applied between the pixel electrode 28 and the common electrode 29 of the red pixel, and the green pixel and the blue pixel 2
  • the major axis of the liquid crystal molecules 23C between the pixel electrode 28 and the common electrode 29 of the red pixel is aligned in the electric field direction, as shown in FIG.
  • the liquid crystal molecules 23C between the two pixel electrodes 28 of the green pixel and the blue pixel and the common electrode 29 are randomly arranged.
  • incident light from the common substrate 22 side facing the red filter 27-R is transmitted through the liquid crystal layer 23.
  • Incident light that has passed through the liquid crystal layer 23 is reflected by the reflective film 26 under the red filter 27-R, and is emitted from the common substrate 22 as regular reflected light.
  • the specularly reflected light emitted from the common substrate 22 passes through the scattered light erasing unit 14 and enters the projection lens 15.
  • incident light from the common substrate 22 facing the green filter 27-G and the blue filter 27-B is scattered in the liquid crystal layer 23 (scattering state).
  • the incident light in the scattered state is reflected by the reflective film 26, and the scattered light is emitted from the common substrate 22.
  • FIG. 11C shows the on / off conditions of the pixel when this red display is performed.
  • the green pixel when the green pixel is in the on state and the red pixel and the blue pixel are in the off state, that is, a voltage difference is applied between the pixel electrode 28 and the common electrode 29 of the green pixel, and the red pixel and the blue pixel 2
  • the major axis of the liquid crystal molecules 23C between the pixel electrode 28 and the common electrode 29 of the green pixel is aligned in the electric field direction, as shown in FIG.
  • the liquid crystal molecules 23C between the two pixel electrodes 28 of the red pixel and the blue pixel and the common electrode 29 are randomly arranged.
  • incident light from the common substrate 22 facing the green filter 27-G is transmitted through the liquid crystal layer 23.
  • Incident light that has passed through the liquid crystal layer 23 is reflected by the reflective film 26 under the green filter 27-G, and is emitted from the common substrate 22 as regular reflected light.
  • the specularly reflected light emitted from the common substrate 22 passes through the scattered light erasing unit 14 and enters the projection lens 15.
  • incident light from the common substrate 22 facing the red filter 27-R and the blue filter 27-B is scattered in the liquid crystal layer 23 (scattering state).
  • the incident light in the scattered state is reflected by the reflective film 26, and the scattered light is emitted from the common substrate 22.
  • FIG. 11D shows the pixel on / off conditions when this green display is performed.
  • the blue pixel when the blue pixel is in the on state and the red pixel and the green pixel are in the off state, that is, a voltage difference is applied between the pixel electrode 28 and the common electrode 29 of the blue pixel, and the red pixel and the green pixel 2
  • the major axis of the liquid crystal molecules 23C between the pixel electrode 28 and the common electrode 29 of the blue pixel is aligned in the electric field direction, as shown in FIG.
  • the liquid crystal molecules 23C between the two pixel electrodes 28 of the red pixel and the green pixel and the common electrode 29 are randomly arranged.
  • incident light from the common substrate 22 facing the blue filter 27-B is transmitted through the liquid crystal layer 23.
  • Incident light that has passed through the liquid crystal layer 23 is reflected by the reflective film 26 under the blue filter 27-B, and is emitted from the common substrate 22 as regular reflected light.
  • the specularly reflected light emitted from the common substrate 22 passes through the scattered light erasing unit 14 and enters the projection lens 15.
  • incident light from the common substrate 22 facing the red filter 27-R and the green filter 27-G is scattered in the liquid crystal layer 23 (scattering state).
  • the incident light in the scattered state is reflected by the reflective film 26, and the scattered light is emitted from the common substrate 22.
  • FIG. 11E shows the pixel on / off conditions when this blue display is performed.
  • FIG. 12 is a diagram showing a configuration of a liquid crystal projector according to the second embodiment of the present invention.
  • the scattered light erasing unit 31 is disposed directly above the liquid crystal panel 13 on the optical path between the liquid crystal panel 13 and the projection lens 15.
  • the scattered light erasing unit 31 allows light emitted from the condenser lens 12 to pass therethrough, blocks scattered light emitted from the liquid crystal panel 13, and exits from the liquid crystal panel 13. Transmits reflected light.
  • FIG. 13 is a diagram showing a configuration of the scattered light erasing unit 31 in the second embodiment.
  • the configuration of the scattered light erasing unit 31 is substantially the same as that of the scattered light erasing unit 14 in the first embodiment described above.
  • the scattered light erasing unit 31 includes a plurality of cylindrical members 31A.
  • a plurality of cylindrical members 31 ⁇ / b> A are arranged in a direction orthogonal to the optical path direction of the reflected light reflected by the liquid crystal panel 13.
  • the cylindrical direction of the cylindrical member 31 ⁇ / b> A is parallel to the optical path direction of the reflected light from the liquid crystal panel 13.
  • the inner surface and the outer surface of the cylindrical member 31A have a black color.
  • the diameter of the cylinder and the length of the cylinder in the cylindrical member 31A of the scattered light erasing unit 31 are appropriately changed according to the erasure state of the scattered light.
  • Other configurations are the same as those of the scattered light erasing unit 14 in the first embodiment.
  • the scattered light erasing unit 31 of the modified example in the second embodiment has the following configuration. This modified example is referred to as a scattered light erasing unit 31B.
  • FIG. 14 and 15 are diagrams showing the configuration of the scattered light erasing unit 31B.
  • FIG. 14 is a plan view of the scattered light erasing unit 31B
  • FIG. 15 is a perspective view of the scattered light erasing unit 31B.
  • the scattered light erasing unit 31B has a configuration in which flat plate members (or thin plate members) 31C are arranged in a lattice pattern.
  • a plurality of flat members 31C are arranged in a direction orthogonal to the optical path direction of the reflected light from the liquid crystal panel 13.
  • the flat plate member 31C is arranged so that its plate surface is parallel to the optical path direction of the reflected light.
  • the plate surface of the flat plate member 31C is black. For this reason, light that is not parallel to the plate surface of the flat plate member 31C is absorbed by the plate surface. On the other hand, light parallel to the plate surface of the flat plate member 31C passes through the flat plate member 31C. That is, the scattered light incident on the scattered light erasing portion 31B is incident on the plate surface of the flat plate member 31C and is absorbed by the plate surface. On the other hand, the reflected light that has entered the scattered light erasing portion 31B does not reach the plate surface of the flat plate member 31C, travels parallel to the plate surface, and passes between the flat plate members 31C.
  • a louver film in which a plurality of flat members are arranged so as to be orthogonal can be used.
  • the present invention is not limited to the above embodiment, and can be embodied by modifying the components without departing from the scope of the invention. Further, the above embodiments include inventions at various stages, and are obtained by appropriately combining a plurality of constituent elements disclosed in one embodiment or by appropriately combining constituent elements disclosed in different embodiments. Various inventions can be configured. For example, even if some constituent elements are deleted from all the constituent elements disclosed in the embodiments, the problems to be solved by the invention can be solved and the effects of the invention can be obtained. Embodiments made can be extracted as inventions.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Projection Apparatus (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)

Abstract

液晶プロジェクタ10は、光を発生する光源11と、光の光路上に配置された集光レンズ12と、高分子分散型液晶層又は高分子ネットワーク型液晶層のいずれかの層を有し、集光レンズ12から出た光を表示パターンに応じて反射し反射光を出す液晶パネル13と、液晶パネル13から出た散乱光を消去する散乱光消去部14と、散乱光消去部14を通過した反射光を投影する投影レンズ15とを備える。

Description

液晶プロジェクタ
 本発明は、液晶パネルを用いた液晶プロジェクタに関するものである。
 従来のカラーフィルタを持つ液晶プロジェクタは、例えば以下のような構成を備えている。液晶プロジェクタは画像表示部としての液晶パネルを有する。液晶パネルは、例えば光を透過する透過型であり、液晶層を2枚のガラス基板で挟んだ構造を持つ。そのうちの一方のガラス基板にはカラーフィルタが形成され、他方のガラス基板にはTFT(Thin Film Transistor)素子が形成されている。さらに、2枚のガラス基板の外側には、偏光板がそれぞれ配置されている(例えば、特許文献1)。
 しかし、ガラス基板に偏光板を配置した場合、光源からの光は偏光板の吸収軸に沿って吸収され、その光の強度は50%以下(現実は40%以下)になる。さらに、偏光板の吸収軸に沿った光の吸収により偏光板が発熱する。このため、液晶パネル内の液晶が立ち気味になり、表示画像のコントラストが低下するなどにより画像表示特性が劣化する場合がある。
特開平6-160854号公報 国際公開第2014/069484号
 本発明は、光利用効率が高く、画像表示特性を向上させることができる液晶プロジェクタを提供することを目的とする。
 本発明の一態様に係る液晶プロジェクタは、光を発生する光源と、前記光の光路上に配置された集光レンズと、高分子分散型液晶層又は高分子ネットワーク型液晶層のいずれかの層を有し、前記集光レンズから出た光を表示パターンに応じて反射し反射光を出す液晶パネルと、前記液晶パネルから出た散乱光を消去する散乱光消去部と、前記散乱光消去部を通過した前記反射光を投影する投影レンズとを具備することを特徴とする。
 本発明によれば、光利用効率が高く、画像表示特性を向上させることができる液晶プロジェクタを提供できる。
第1実施形態の液晶プロジェクタの構成を示す図である。 第1実施形態における液晶パネルが表示オフ状態の場合の断面図である。 第1実施形態における液晶パネルが表示オン状態の場合の断面図である。 第1実施形態における散乱光消去部の構成を示す図である。 前記散乱光消去部に入射した散乱光及び反射光を示す図である。 第1実施形態における液晶パネルの表示と散乱光消去部の光学系動作を示す図である。 第1実施形態における液晶パネルの表示と散乱光消去部の光学系動作を示す図である。 第1実施形態における液晶パネルの表示と散乱光消去部の光学系動作を示す図である。 第1実施形態における液晶パネルの表示と散乱光消去部の光学系動作を示す図である。 第1実施形態における液晶パネルの表示と散乱光消去部の光学系動作を示す図である。 第1実施形態における画素のオン/オフ状態と色表示との関係を示す図である。 第2実施形態の液晶プロジェクタの構成を示す図である。 第2実施形態における散乱光消去部の構成を示す図である。 第2実施形態における散乱光消去部の変形例の平面図である。 第2実施形態における散乱光消去部の変形例の斜視図である。
実施形態
 以下、実施形態について図面を参照して説明する。ただし、図面は模式的または概念的なものであり、各図面の寸法および比率などは必ずしも現実のものと同一とは限らないことに留意すべきである。また、図面の相互間で同じ部分を表す場合においても、互いの寸法の関係や比率が異なって表される場合もある。特に、以下に示す幾つかの実施形態は、本発明の技術思想を具体化するための装置および方法を例示したものであって、構成部品の形状、構造、配置などによって、本発明の技術思想が特定されるものではない。なお、以下の説明において、同一の機能及び構成を有する要素については同一符号を付し、重複説明は必要な場合にのみ行う。
 [1]第1実施形態
 以下に、第1実施形態の液晶プロジェクタについて説明する。
 [1-1]液晶プロジェクタの構成
 図1は、本発明の第1実施形態の液晶プロジェクタの構成を示す図である。液晶プロジェクタ10は、光源11、集光レンズ12、液晶パネル13、散乱光消去部14、投影レンズ15、駆動回路16、及び制御回路17を備える。
 光源11から発生した光が集光レンズ12を介して液晶パネル13に照射される。光源11と液晶パネル13間の光路上に集光レンズ12が配置されている。液晶パネル13は複数の画素を有し、画素ごとにオン状態あるいはオフ状態をとる。液晶パネル13のオン状態にある画素は、集光レンズ12から出た光(以下、入射光)を正反射し、反射光を出す。オフ状態にある画素は入射光を散乱し、散乱光を出す。液晶パネル13から出た反射光は散乱光消去部14を通過し、投影レンズ15に入射する。一方、液晶パネル13から出た散乱光は散乱光消去部14にて遮断され、投影レンズ15に入射しない。液晶パネル13と投影レンズ15間の光路上に散乱光消去部14が配置されている。そして、投影レンズ15に入射した光が投影レンズ15により外部のスクリーン100等に投影される。
 光源11は、液晶パネル13に対して光を発生する。光源11は、例えばメタルハライドランプから構成される。メタルハライドランプは、水銀とハロゲン化金属の混合蒸気中でのアーク放電による発光を利用したランプである。集光レンズ12は、光源11からの光を集光し、平行光を液晶パネル13に出射する。集光レンズ12は、例えば1つのレンズから構成されていてもよいし、複数のレンズから構成されていてもよい。
 液晶パネル13は、高分子分散型液晶(PDLC:Polymer Dispersed Liquid Crystal)あるいは高分子ネットワーク型液晶(PNLC:Polymer Network Liquid Crystal)を用いた反射型の液晶パネルである。表示パネル13は、複数の画素がマトリクス状に配列された画素アレイを備える。表示パネル13には、それぞれがロウ方向(X方向)に延びる複数の走査線と、それぞれがカラム方向(Y方向)に延びる複数の信号線とが配設される。走査線と信号線との交差領域に画素が配置されている。液晶パネル13の詳細については後述する。
 散乱光消去部14は、液晶パネル13から出る散乱光を消去あるいは遮断し、液晶パネル13から出る反射光を透過する。この散乱光消去部14の詳細については後述する。投影レンズ15は、散乱光消去部14を通過した光を、例えば外部のスクリーン100に投影する。投影レンズ15は、例えば1つのレンズから構成されていてもよいし、複数のレンズから構成されていてもよい。
 駆動回路16は、複数の走査線及び複数の信号線に接続される。駆動回路16は、制御回路17から送られる制御信号に基づいて、画素に含まれるスイッチング素子をオンまたはオフする。駆動回路16は、制御信号に基づいて、駆動電圧を表示パネル13に送る。すなわち、制御回路17は、画像データに基づいて制御信号を駆動回路16に送る。そして、制御回路17は、制御信号によって表示パネル13における表示を制御する。
 [1-1-1]表示パネル13の構成
 次に、第1実施形態における表示パネル13の構成について説明する。
 図2及び図3は表示パネル13の断面図であり、図2は液晶パネル13の表示がオフ状態の場合を示し、図3は液晶パネル13の表示がオン状態の場合を示す。
 表示パネル13は、スイッチング素子、例えばTFT(Thin Film Transistor)が形成された基板(以下、TFT基板)21と、共通電極等が形成され、かつTFT基板21に対向配置される基板(以下、共通基板)22と、TFT基板21と共通基板22との間に挟持された液晶層23とを備える。
 TFT基板21及び共通基板22の各々は、透明基板(例えば、ガラス基板)から構成される。TFT基板21と共通基板22は、空間を保ってシール材(図示せず)により貼り合わせられている。TFT基板21、共通基板22、及びシール材によって囲まれた空間には、液晶材料が封入され、液晶層23を形成している。液晶層23の具体的な構成については後述する。
 TFT基板21上の液晶層23側には、前述した複数のスイッチング素子、例えばTFT24が設けられる。TFT24は、例えば、走査線に電気的に接続されたゲート電極と、ゲート電極上に設けられたゲート絶縁膜と、ゲート絶縁膜上に設けられた半導体層(例えばアモルファスシリコン層)と、半導体層上に離間して設けられたソース電極及びドレイン電極とを備える。ソース電極は、信号線に電気的に接続される。
 TFT基板21上及びTFT24上には、絶縁層25が設けられる。絶縁層25上には反射膜26が設けられる。反射膜26上には、カラーフィルタ27が設けられる。カラーフィルタ27は、複数の着色フィルタ(着色部材)を備える。具体的には、複数の赤フィルタ27-R、複数の緑フィルタ27-G、及び複数の青フィルタ27-Bを備える。複数の赤フィルタ27-R、緑フィルタ27-G、及び青フィルタ27-B上には、画素電極28がそれぞれ設けられる。
 一般的なカラーフィルタは、光の三原色である赤(R)、緑(G)、青(B)で構成される。隣接したR、G、Bの三色のセットが表示の単位(画素)となっており、1つの画素中のR、G、Bのいずれか単色の部分はサブピクセル(サブ画素)と呼ばれる最小駆動単位である。TFT24及び画素電極28は、サブピクセルごとに設けられる。以下の説明では、画素とサブ画素との区別が特に必要な場合を除き、サブ画素を画素と呼ぶものとする。
 共通基板22の液晶層23側には、前述した共通電極29が設けられる。共通電極29は、表示パネル13の表示領域全体に平面状に形成される。画素電極28及び共通電極29は透明電極から構成される。透明電極には、例えばITO(インジウム錫酸化物)が用いられる。
 液晶層23は、高分子層23A及び液晶23Bを備える。液晶23Bは、液晶分子23Cを含む。詳述すると、液晶層23は、高分子分散型液晶(PDLC:Polymer Dispersed Liquid Crystal)、又は高分子ネットワーク型液晶(PNLC:Polymer Network Liquid Crystal)により構成される。PDLCは、高分子層(高分子ネットワーク)23A内に液晶23Bが分散された構造を有しており、すなわち高分子層23A内において液晶23Bが相分離した構造を有する。或いは、高分子層23A内の液晶23Bが連続相を有していてもよい。
 高分子層23Aとしては光硬化樹脂を用いることができる。例えば、PDLCでは、光重合型の高分子前駆体(モノマー)に液晶を混合させた溶液に紫外線を照射することにより、モノマーを重合させてポリマーを形成し、そのポリマーのネットワーク中に液晶が分散される。液晶23Bとしては、例えば、誘電率異方性が正(ポジ型)のネマティック液晶が用いられる。すなわち、液晶層23に電圧が印加されない場合は、液晶分子23Cが高分子層23A内にランダムに配置した状態となる。液晶層23に電圧が印加された場合は、液晶分子23Cが電界方向に立っている状態(液晶分子23Cの長軸が電界方向に向いている状態)となる。液晶層23の厚さ(セルギャップ)は、例えば7μm程度である。
 次に、図2及び図3を用いて、液晶パネル13に光が入射した場合の動作を説明する。
 液晶パネル13の表示がオフ状態の場合、集光レンズ12から光が入射すると、入射光は液晶層23にて散乱し、あるいはその散乱した光が反射膜26にて反射され、散乱光の一部が共通電極22から上方へ出て行く。
 詳述すると、液晶層23に電界を印加していない場合(オフ状態)、すなわち、画素電極28と共通電極29とを同電圧(例えば0V)にした場合、液晶分子23Cがランダムに配置される。この場合、高分子層23Aの屈折率と、液晶23Bの屈折率とが異なるため、共通基板22側からの入射光は、液晶層23内で散乱する(散乱状態)。散乱状態の入射光は、反射膜26で反射され、共通基板22から散乱光が放射される。
 一方、液晶パネル13の表示がオン状態の場合、集光レンズ12から光が入射すると、入射光は液晶層23にて散乱することなく通過し、通過した光は反射膜26にて正反射され、正反射光が共通電極22から上方へ出て行く。
 詳述すると、液晶層23に電界を印加した場合(オン状態)、すなわち、画素電極28と共通電極29とに電圧差(例えば、画素電極28に正電圧、共通電極29に0V)を与えた場合、液晶分子23Cの長軸が電界方向(すなわち垂直方向)に配向する。この場合、高分子層23Aの屈折率と、液晶23Bの屈折率とが概略同じであるため、共通基板22側からの入射光は液晶層23を透過する。液晶層23を透過した入射光は、反射膜26で反射され、共通基板22から正反射光(鏡面光)として出射される。
 [1-1-2]散乱光消去部14の構成
 次に、散乱光消去部14の構成について説明する。散乱光消去部14は、液晶パネル13から出た散乱光を遮断する、あるいは投影レンズ15に入射する前の散乱光を遮断し、液晶パネル13から出た反射光を透過する。
 図4は、第1実施形態における散乱光消去部14の構成を示す図である。散乱光消去部14は、複数の筒状部材14Aを有する。筒状部材14Aは、液晶パネル13にて反射された反射光の光路方向に対して直交する方向に複数配列されている。筒状部材14Aは、できるだけ各々の間に隙間がないように配置されるのがよく、例えば、マトリクス状に配置される。筒状部材14Aの筒方向は、液晶パネル13からの反射光の光路方向に対して平行になっている。筒状部材14Aは、例えば円筒形状を有する。筒状部材14Aは、例えば金属から構成され、その内面及び外面にはつや消しの黒塗料が塗装されている。言い換えると、筒状部材14Aの内面及び外面は黒色を有している。
 図5に、散乱光消去部14の筒状部材14Aに入射した散乱光14B及び反射光14Cを示す。ここでは、4つの筒状部材14Aを抜き出して示している。
 前述したように、筒状部材14Aの内面及び外面は黒色を有している。このため、筒状部材14Aの筒方向と平行でない光は内面に吸収される。一方、筒状部材14Aの筒方向と平行な光は筒状部材14Aを通過する。すなわち、筒状部材14Aに入射した散乱光14Bは、筒状部材14Aの内面に入射し、その内面に吸収される。一方、筒状部材14Aに入射した反射光14Cは、筒状部材14Aの内面に吸収されることなく、筒方向に平行に進み、円筒部材14Aを通過する。
 なお、筒状部材14Aが円筒形状を持つ例を示したが、必ずしも円に限らない。筒状であれば、三角形、四角形、その他の多角形であってもよい。
 [1-2]液晶パネル13の表示と散乱光消去部14における光学系動作
 次に、第1実施形態の液晶パネル13の表示と散乱光消去部14における光学系動作について説明する。液晶パネル13の表示は、制御回路17によって制御される。制御回路17は、駆動回路16を介して赤フィルタ27-R、緑フィルタ27-G、及び青フィルタ27-B上の画素電極28と共通電極29間の電圧を制御する。
 図6~図10は、液晶パネル13の表示と散乱光消去部14における光学系動作を示す図であり、図11は画素のオン/オフ状態と色表示との関係を示す図である。
 例えば、赤フィルタ27-Rの画素(赤画素)、緑フィルタ27-Gの画素(緑画素)、及び青フィルタ27-Bの画素(青画素)がオン状態にある場合、すなわち赤画素、緑画素、及び青画素の3つの画素電極28と共通電極29との間に電圧差(例えば、画素電極28に正電圧、共通電極29に0V)を与えた場合、図6に示すように、3つの画素電極28と共通電極29間の液晶分子23Cの長軸が電界方向(すなわち電極面に垂直方向)に配向する。
 この場合、高分子層23Aの屈折率と、液晶層23Bの屈折率とが概略同じであるため、共通基板22側からの入射光は液晶層23を透過する。液晶層23を透過した入射光は、反射膜26で反射され、共通基板22から正反射光(鏡面光)として出射される。共通基板22から出射された正反射光は、散乱光消去部14を通過して投影レンズ15に入射する。ここでは、赤フィルタ27-R、緑フィルタ27-G、及び青フィルタ27-Bをそれぞれ通過した正反射光が投影レンズ15に入射する。これにより、投影レンズ15によってスクリーン100に投影される表示は、赤色、緑色、及び青色の光が合わさった白表示となる。この白表示を行う場合の画素のオン/オフ条件を、図11の(a)に示す。
 また、例えば、赤画素、緑画素、及び青画素がオフ状態にある場合、すなわち赤画素、緑画素、及び青画素の3つの画素電極28と共通電極29とを同電圧(例えば0V)にした場合、図7に示すように、3つの画素電極28と共通電極29間の液晶分子23Cがランダムに配置される。
 この場合、高分子層23Aの屈折率と、液晶層23Bの屈折率とが異なるため、共通基板22側からの入射光は、液晶層23内で散乱する(散乱状態)。散乱状態の入射光は、反射膜26で反射され、共通基板22から散乱光が放射される。共通基板22から放射された散乱光は、散乱光消去部14で消去されるため、投影レンズ15に入射しない。ここでは、正反射光はなく、上述したように散乱光は投影レンズ15に入射しないため、投影レンズ15によってスクリーン100に投影される表示は黒表示となる。この黒表示を行う場合の画素のオン/オフ条件を、図11の(b)に示す。
 また、例えば、赤画素がオン状態にあり、緑画素及び青画素がオフ状態にある場合、すなわち、赤画素の画素電極28と共通電極29間に電圧差を与え、緑画素及び青画素の2つの画素電極28と共通電極29とを同電位にした場合、図8に示すように、赤画素の画素電極28と共通電極29間の液晶分子23Cの長軸が電界方向に配向する。一方、緑画素及び青画素の2つの画素電極28と共通電極29間の液晶分子23Cはランダムに配置される。
 この場合、赤フィルタ27-Rに対向する共通基板22側からの入射光は液晶層23を透過する。液晶層23を透過した入射光は、赤フィルタ27-Rの下の反射膜26で反射され、共通基板22から正反射光として出射される。共通基板22から出射された正反射光は、散乱光消去部14を通過して投影レンズ15に入射する。一方、緑フィルタ27-G及び青フィルタ27-Bに対向する共通基板22側からの入射光は、液晶層23内で散乱する(散乱状態)。散乱状態の入射光は、反射膜26で反射され、共通基板22から散乱光が放射される。共通基板22から放射された散乱光は、散乱光消去部14で消去されるため、投影レンズ15に入射しない。ここでは、赤フィルタ27-Rを通過した正反射光が投影レンズ15に入射し、散乱光は投影レンズ15に入射しないため、投影レンズ15によってスクリーン100に投影される表示は赤表示となる。この赤表示を行う場合の画素のオン/オフ条件を、図11の(c)に示す。
 また、例えば、緑画素がオン状態にあり、赤画素及び青画素がオフ状態にある場合、すなわち、緑画素の画素電極28と共通電極29間に電圧差を与え、赤画素及び青画素の2つの画素電極28と共通電極29とを同電位にした場合、図9に示すように、緑画素の画素電極28と共通電極29間の液晶分子23Cの長軸が電界方向に配向する。一方、赤画素及び青画素の2つの画素電極28と共通電極29間の液晶分子23Cはランダムに配置される。
 この場合、緑フィルタ27-Gに対向する共通基板22側からの入射光は液晶層23を透過する。液晶層23を透過した入射光は、緑フィルタ27-Gの下の反射膜26で反射され、共通基板22から正反射光として出射される。共通基板22から出射された正反射光は、散乱光消去部14を通過して投影レンズ15に入射する。一方、赤フィルタ27-R及び青フィルタ27-Bに対向する共通基板22側からの入射光は、液晶層23内で散乱する(散乱状態)。散乱状態の入射光は、反射膜26で反射され、共通基板22から散乱光が放射される。共通基板22から放射された散乱光は、散乱光消去部14で消去されるため、投影レンズ15に入射しない。ここでは、緑フィルタ27-Gを通過した正反射光が投影レンズ15に入射し、散乱光は投影レンズ15に入射しないため、投影レンズ15によってスクリーン100に投影される表示は緑表示となる。この緑表示を行う場合の画素のオン/オフ条件を、図11の(d)に示す。
 また、例えば、青画素がオン状態にあり、赤画素及び緑画素がオフ状態にある場合、すなわち、青画素の画素電極28と共通電極29間に電圧差を与え、赤画素及び緑画素の2つの画素電極28と共通電極29とを同電位にした場合、図10に示すように、青画素の画素電極28と共通電極29間の液晶分子23Cの長軸が電界方向に配向する。一方、赤画素及び緑画素の2つの画素電極28と共通電極29間の液晶分子23Cはランダムに配置される。
 この場合、青フィルタ27-Bに対向する共通基板22側からの入射光は液晶層23を透過する。液晶層23を透過した入射光は、青フィルタ27-Bの下の反射膜26で反射され、共通基板22から正反射光として出射される。共通基板22から出射された正反射光は、散乱光消去部14を通過して投影レンズ15に入射する。一方、赤フィルタ27-R及び緑フィルタ27-Gに対向する共通基板22側からの入射光は、液晶層23内で散乱する(散乱状態)。散乱状態の入射光は、反射膜26で反射され、共通基板22から散乱光が放射される。共通基板22から放射された散乱光は、散乱光消去部14で消去されるため、投影レンズ15に入射しない。ここでは、青フィルタ27-Bを通過した正反射光が投影レンズ15に入射し、散乱光は投影レンズ15に入射しないため、投影レンズ15によってスクリーン100に投影される表示は青表示となる。この青表示を行う場合の画素のオン/オフ条件を、図11の(e)に示す。
 [1-3]実施形態の効果
 第1実施形態によれば、光利用効率が高く、画像表示特性を向上させることができる液晶プロジェクタを提供できる。
 以下、第1実施形態の効果について詳述する。
 本実施形態では、偏光板を用いる必要のない高分子分散型液層あるいは高分子ネットワーク型液晶を用いているため、偏光板に発生する発熱をなくすことができ、液晶パネルの温度上昇を防ぐことができる。これにより、液晶層の温度上昇によって生じる画像特性の低下を低減できる。また、偏光板を用いていないため、偏光板の吸収軸による光の吸収がない。このため、光源から照射される光の利用効率を向上させることができる。
 また、液晶パネルに高分子分散型液晶あるいは高分子ネットワーク型液晶を用いると、オフ状態の画素に対応する液晶層によって散乱光が生じる。しかし、散乱光は散乱光消去部により消去されるため、散乱光が画像表示特性を劣化させることはない。
 [2]第2実施形態
 次に、第2実施形態の液晶プロジェクタについて説明する。第1実施形態では、散乱光消去部14を投影レンズ15の近傍に配置したが、第2実施形態では液晶パネル13の近傍に散乱光消去部31を配置する例を説明する。液晶パネルを含むその他の構成は前述した第1実施形態と同様である。以下に、第1実施形態と異なる点について述べる。
 [2-1]液晶プロジェクタの構成
 図12は、本発明の第2実施形態の液晶プロジェクタの構成を示す図である。液晶プロジェクタ30では、液晶パネル13と投影レンズ15間の光路上で、液晶パネル13の直上に散乱光消去部31が配置される。
 [2-1-1]散乱光消去部31の構成
 散乱光消去部31は、集光レンズ12から出た光を通過させ、液晶パネル13から出た散乱光を遮断し、液晶パネル13から出た反射光を透過する。
 図13は、第2実施形態における散乱光消去部31の構成を示す図である。散乱光消去部31の構成は、前述した第1実施形態における散乱光消去部14とほぼ同様である。散乱光消去部31は、複数の筒状部材31Aを有する。筒状部材31Aは、液晶パネル13にて反射された反射光の光路方向に対して直交する方向に複数配列されている。筒状部材31Aの筒方向は、液晶パネル13からの反射光の光路方向に対して平行になっている。筒状部材31Aの内面及び外面は黒色を有している。散乱光消去部31の筒状部材31Aにおける円筒の直径及び筒の長さは、散乱光の消去状況に応じて適宜変更される。その他の構成は、第1実施形態における散乱光消去部14と同様である。
 [2-1-2]散乱光消去部31の変形例の構成
 第2実施形態における変形例の散乱光消去部31は以下のような構成を有する。この変形例を散乱光消去部31Bと記す。
 図14及び図15は、散乱光消去部31Bの構成を示す図である。図14は散乱光消去部31Bの平面図であり、図15は散乱光消去部31Bの斜視図である。
 図14及び図15に示すように、散乱光消去部31Bは平板状部材(あるいは薄板状部材)31Cが格子状に配列された構成を有する。平板状部材31Cは、液晶パネル13からの反射光の光路方向に対して直交する方向に複数配列されている。平板状部材31Cは、その板面が反射光の光路方向に平行になるように配置される。
 平板状部材31Cの板面は黒色を有している。このため、平板状部材31Cの板面と平行でない光は板面に吸収される。一方、平板状部材31Cの板面と平行な光は平板状部材31Cを通過する。すなわち、散乱光消去部31Bに入射した散乱光は、平板状部材31Cの板面に入射し、その板面に吸収される。一方、散乱光消去部31Bに入射した反射光は、平板状部材31Cの板面に到達することなく、板面に対して平行に進み、平板状部材31C間を通過する。
 散乱光消去部31Bには、例えば、複数の平板状部材が直交するように配列されたルーバーフィルムを用いることができる。
 [2-2]第2実施形態の効果
 第2実施形態によれば、光利用効率が高く、画像表示特性を向上させることができる液晶プロジェクタを提供できる。その他の効果及び作用等は、前述した第1実施形態と同様である。
 [3]その他
 本発明は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲内で、構成要素を変形して具体化することが可能である。さらに、上記実施形態には種々の段階の発明が含まれており、1つの実施形態に開示される複数の構成要素の適宜な組み合わせ、若しくは異なる実施形態に開示される構成要素の適宜な組み合わせにより種々の発明を構成することができる。例えば、実施形態に開示される全構成要素から幾つかの構成要素が削除されても、発明が解決しようとする課題が解決でき、発明の効果が得られる場合には、これらの構成要素が削除された実施形態が発明として抽出されうる。

Claims (11)

  1.  光を発生する光源と、
     前記光の光路上に配置された集光レンズと、
     高分子分散型液晶層又は高分子ネットワーク型液晶層のいずれかの層を有し、前記集光レンズから出た光を表示パターンに応じて反射し反射光を出す液晶パネルと、
     前記液晶パネルから出た散乱光を消去する散乱光消去部と、
     前記散乱光消去部を通過した前記反射光を投影する投影レンズと、
     を具備する液晶プロジェクタ。
  2.  前記散乱光消去部は、前記液晶パネルと前記投影レンズ間の前記反射光の光路上に配置され、前記投影レンズに入射する前記散乱光を消去する請求項1に記載の液晶プロジェクタ。
  3.  前記散乱光消去部は、前記液晶パネル上に配置され、前記集光レンズから出た光を通過させ、前記液晶パネルからの前記散乱光を消去する請求項1に記載の液晶プロジェクタ。
  4.  前記散乱光消去部は筒状部材を有し、前記筒状部材の筒方向は前記液晶パネルにて反射された前記反射光の光路方向に対して平行である請求項1に記載の液晶プロジェクタ。
  5.  前記筒状部材は黒色の筒面を持つ請求項4に記載の液晶プロジェクタ。
  6.  前記散乱光消去部は格子状に配列された平板状部材を有し、前記平板状部材の板面方向は前記液晶パネルにて反射された前記反射光の光路方向に対して平行である請求項1に記載の液晶プロジェクタ。
  7.  前記散乱光消去部はルーバーフィルムである請求項6に記載の液晶プロジェクタ。
  8.  前記平板状部材は黒色の面を持つ請求項6に記載の液晶プロジェクタ。
  9.  前記平板状部材は黒色の面を持つ請求項7に記載の液晶プロジェクタ。
  10.  前記液晶パネルは、
     第1基板と、
     前記第1基板上に配置された第2基板と、
     前記第1基板と前記第2基板との間に設けられた前記高分子分散型液晶層又は前記高分子ネットワーク型液晶層のいずれかの層と、
     前記第1基板上に設けられたスイッチング素子と、
     前記スイッチング素子に電気的に接続された画素電極と、
     前記第1基板上に前記画素電極に対応して設けられたカラーフィルタと、
     前記第1基板と前記カラーフィルタとの間に設けられた反射膜と、
     前記第2基板上に設けられた共通電極と、
     を備える請求項1に記載の液晶プロジェクタ。
  11.  前記画素電極は、第1画素電極と第2画素電極を含み、
     前記第1画素電極と前記共通電極との間に電圧が印加されている場合、前記第1画素電極に対応する領域に入射した光は反射され前記反射光となり、
     前記第2画素電極と前記共通電極との間に電圧が印加されていない場合、前記第2画素電極に対応する領域に入射した光は散乱され前記散乱光となる請求項10に記載の液晶プロジェクタ。
PCT/JP2017/024034 2016-07-12 2017-06-29 液晶プロジェクタ WO2018012303A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-137625 2016-07-12
JP2016137625A JP2018010085A (ja) 2016-07-12 2016-07-12 液晶プロジェクタ

Publications (1)

Publication Number Publication Date
WO2018012303A1 true WO2018012303A1 (ja) 2018-01-18

Family

ID=60951748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024034 WO2018012303A1 (ja) 2016-07-12 2017-06-29 液晶プロジェクタ

Country Status (3)

Country Link
JP (1) JP2018010085A (ja)
TW (1) TWI701498B (ja)
WO (1) WO2018012303A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117897651A (zh) * 2022-06-29 2024-04-16 京东方科技集团股份有限公司 投影装置及显示系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH086023A (ja) * 1994-04-22 1996-01-12 Matsushita Electric Ind Co Ltd 液晶表示装置および液晶投写型装置
JPH0836185A (ja) * 1994-07-25 1996-02-06 A G Technol Kk 液晶表示素子及び液晶表示装置
JPH08304606A (ja) * 1994-07-20 1996-11-22 Matsushita Electric Ind Co Ltd 反射光吸収板および表示パネルとそれを用いた表示装置
JPH08313860A (ja) * 1995-05-19 1996-11-29 Nippondenso Co Ltd 投射型表示装置
JPH116999A (ja) * 1997-06-17 1999-01-12 Asahi Glass Co Ltd 液晶基板の製造方法、液晶表示素子および投射型液晶表示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5875013A (en) * 1994-07-20 1999-02-23 Matsushita Electric Industrial Co.,Ltd. Reflection light absorbing plate and display panel for use in a display apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH086023A (ja) * 1994-04-22 1996-01-12 Matsushita Electric Ind Co Ltd 液晶表示装置および液晶投写型装置
JPH08304606A (ja) * 1994-07-20 1996-11-22 Matsushita Electric Ind Co Ltd 反射光吸収板および表示パネルとそれを用いた表示装置
JPH0836185A (ja) * 1994-07-25 1996-02-06 A G Technol Kk 液晶表示素子及び液晶表示装置
JPH08313860A (ja) * 1995-05-19 1996-11-29 Nippondenso Co Ltd 投射型表示装置
JPH116999A (ja) * 1997-06-17 1999-01-12 Asahi Glass Co Ltd 液晶基板の製造方法、液晶表示素子および投射型液晶表示装置

Also Published As

Publication number Publication date
JP2018010085A (ja) 2018-01-18
TWI701498B (zh) 2020-08-11
TW201809853A (zh) 2018-03-16

Similar Documents

Publication Publication Date Title
US10564488B2 (en) Display panel, display device and control method thereof
JP5857599B2 (ja) スクリーンおよび画像表示システム
US6323926B2 (en) Vertical alignment mode LCD having two different alignment regions
JP5512173B2 (ja) 液晶ディスプレイ装置
JP4011591B2 (ja) マイクロレンズ付き液晶表示パネルの製造方法
WO2019240137A1 (ja) 空中表示装置
JP2005275142A (ja) 表示パネルおよびその製造方法
US20080111964A1 (en) Liquid crystal display device
JP2010156811A (ja) 照明装置、表示装置および光変調素子の製造方法
JP2002236290A (ja) 液晶表示装置及び照明装置
CN108957830B (zh) 显示装置和显示装置的控制方法、显示设备
WO2021068661A1 (zh) 液晶显示面板及其驱动方法、显示装置
US10082702B2 (en) Liquid-crystal display apparatus and method of giving a pretilt to liquid-crystal molecules
JP2010039332A (ja) 液晶装置、電子機器
US10558083B2 (en) Liquid crystal display module and liquid crystal display device
US20210165255A1 (en) Reflective cholesteric liquid crystal display
JP2018018710A (ja) 光源装置及びそれを備えた表示装置
JP2009128401A (ja) 液晶表示素子および投射型液晶表示装置
WO2018012303A1 (ja) 液晶プロジェクタ
JP2005156752A (ja) 液晶表示素子および投射型表示装置
JP2009069422A (ja) 液晶表示素子および投射型液晶表示装置
JP2000193969A (ja) 反射型液晶表示装置
JP2022055778A (ja) 電気光学装置および電子機器
JP2010032914A (ja) 表示装置
JP2007264640A (ja) 表示パネルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17827433

Country of ref document: EP

Kind code of ref document: A1