WO2018011868A1 - 光回路、光走査器、光合分波器、波長モニタ、光合分波器モジュール、および波長モニタモジュール - Google Patents

光回路、光走査器、光合分波器、波長モニタ、光合分波器モジュール、および波長モニタモジュール Download PDF

Info

Publication number
WO2018011868A1
WO2018011868A1 PCT/JP2016/070464 JP2016070464W WO2018011868A1 WO 2018011868 A1 WO2018011868 A1 WO 2018011868A1 JP 2016070464 W JP2016070464 W JP 2016070464W WO 2018011868 A1 WO2018011868 A1 WO 2018011868A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
waveguide
light
optical circuit
demultiplexer
Prior art date
Application number
PCT/JP2016/070464
Other languages
English (en)
French (fr)
Inventor
義也 佐藤
敬太 望月
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US16/095,768 priority Critical patent/US10802269B2/en
Priority to PCT/JP2016/070464 priority patent/WO2018011868A1/ja
Priority to JP2018527272A priority patent/JP6410997B2/ja
Priority to CN201680087174.3A priority patent/CN109416466B/zh
Publication of WO2018011868A1 publication Critical patent/WO2018011868A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/06Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the phase of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12014Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the wavefront splitting or combining section, e.g. grooves or optical elements in a slab waveguide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12033Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by means for configuring the device, e.g. moveable element for wavelength tuning
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device

Definitions

  • the present invention relates to an optical circuit having a plurality of waveguides, an optical scanner, an optical multiplexer / demultiplexer, a wavelength monitor, an optical multiplexer / demultiplexer module, and a wavelength monitor module.
  • An optical multiplexer / demultiplexer such as an optical waveguide formed on a PLC (Planar Lightwave Circuit) or a silicon substrate and an arrayed waveguide diffraction grating using the optical waveguide (hereinafter referred to as AWG (Arrayed Waveguide Grating)) is an optical communication. It is used in optical modules for equipment.
  • AWG Arrayed Waveguide Grating
  • Patent Document 2 discloses an ultra-compact wavelength tunable light source called micro ITLA (Integrable Tunable Laser Assembly).
  • the micro ITLA includes a laser array, multimode interference (hereinafter referred to as MMI (Multi Mode Interference)), an etalon that is a parallel plate for wavelength monitoring, and a photodiode (hereinafter referred to as PD (Photo Diode)). It is integrated on one package. Since the transmittance of an etalon varies depending on the wavelength, the wavelength can be monitored by observing the transmission intensity of the etalon with a PD.
  • MMI Multi Mode Interference
  • PD Photo Diode
  • Patent Document 1 discloses an optical axis adjustment mechanism using a MEMS mirror or a nematic liquid crystal.
  • MEMS mirrors or nematic liquid crystals have been used for optical scanning.
  • the amount of change in the optical axis angle is constant regardless of the optical wavelength.
  • the wavelength monitor used in micro ITLA has a wavelength dependency of the refractive index. Therefore, the incident angle to the etalon is slightly changed for each wavelength, that is, the wavelength dispersion of the optical axis angle is controlled more strictly. Wavelength calibration can be expected. If the chromatic dispersion can be controlled dynamically, a variable optical multiplexer / demultiplexer can be configured.
  • the control of the wavelength dispersion of the optical axis angle requires an optical component such as a diffraction grating in addition to the optical scanning unit, which causes a problem that the size is increased.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain an optical circuit that can control the wavelength dispersion of the optical axis angle and can perform optical scanning while avoiding an increase in size. .
  • an optical circuit of the present invention includes an input waveguide that is a light transmission path, and an array waveguide that includes a plurality of output waveguides that are light transmission paths, A branching section for branching light input from the input waveguide and outputting it to a plurality of output waveguides of the arrayed waveguide, an electrode capable of applying a voltage to each output waveguide of the arrayed waveguide, an input waveguide, And a chip part to which a part of the arrayed waveguide is fixed.
  • the arrayed waveguide includes a phase shifter unit capable of generating a phase difference defined between adjacent output waveguides, and an output surface from which a plurality of output waveguides emit light, and is not fixed by a chip unit.
  • the beam portion is divided into a holding structure and a waveguide portion between the phase shifter portion and the beam portion.
  • the electrodes are characterized in that positive and negative voltages can be applied alternately between adjacent output waveguides with respect to the beam portion of the arrayed waveguide.
  • the optical circuit according to the present invention has an effect that optical scanning can be performed with a configuration capable of controlling the chromatic dispersion of the optical axis angle while avoiding an increase in size.
  • FIG. 1 is a diagram illustrating a configuration example of an optical scanner including an optical circuit according to a first embodiment.
  • the optical circuit concerning Embodiment 1 WHEREIN The figure which shows the image of the positional relationship of an output waveguide and an electrode in case the chip part is the shape which sealed each structure. The figure which shows the phase difference which arises in an output waveguide, and the emission direction of light in the optical circuit concerning Embodiment 1. The figure which shows the example of a mode that the output interval of the output waveguide changed in the beam part of the optical circuit concerning Embodiment 1.
  • FIG. 6 is a diagram illustrating a configuration example of an optical scanner including an optical circuit according to a fourth embodiment. FIG.
  • FIG. 6 is a diagram illustrating a configuration example of an optical scanner including an optical circuit according to a fifth embodiment. The figure which shows the image of the positional relationship of the shape of a beam part and a cylindrical lens in the optical circuit concerning Embodiment 6.
  • FIG. FIG. 10 is a diagram illustrating a configuration example of an optical multiplexer / demultiplexer according to a seventh embodiment. The figure which shows the structural example of the wavelength monitor concerning Embodiment 8.
  • FIG. FIG. 10 is a diagram illustrating a configuration example of an optical scanner including an optical circuit according to a ninth embodiment.
  • FIG. 10 is a diagram illustrating a configuration example of an optical multiplexer / demultiplexer module according to a tenth embodiment; The figure which shows the structural example of the wavelength monitor module concerning Embodiment 10.
  • FIG. 10 is a diagram illustrating a configuration example of an optical scanner including an optical circuit according to a fifth embodiment. The figure which shows the image of the positional relationship of the shape of a beam part and a
  • FIG. 1 is a diagram illustrating a configuration example of an optical scanner 100 including an optical circuit 10 according to a first embodiment of the present invention.
  • the optical scanner 100 includes an optical circuit 10 that emits light, and a cylindrical lens 20 that is a lens that corrects the light.
  • the optical circuit 10 includes a chip portion 11, an input waveguide 12, a coupler 13, an arrayed waveguide 15 including output waveguides 14-1 to 14-5, and an electrode 16.
  • the chip portion 11 is made of Si, SiO 2 , a compound semiconductor, a polymer, or the like, and is a member to which a part of the input waveguide 12, the coupler 13, and the arrayed waveguide 15 is fixed.
  • a part of the input waveguide 12, the coupler 13, and the arrayed waveguide 15 is fixed on the chip portion 11.
  • the input waveguide 12, the coupler 13, and a part of the arrayed waveguide 15 are used. May be sealed and fixed inside the chip portion 11.
  • the input waveguide 12 is a light transmission path that receives light emitted from a light emitting unit such as an external laser diode (hereinafter referred to as LD (Laser Diode)) not shown and guides the light into the optical circuit 10. .
  • a light emitting unit such as an external laser diode (hereinafter referred to as LD (Laser Diode)) not shown and guides the light into the optical circuit 10. .
  • LD Laser Diode
  • the coupler 13 is a branching unit that branches the light input from the input waveguide 12 and outputs the branched light to the output waveguides 14-1 to 14-5 of the arrayed waveguide 15.
  • the coupler 13 is, for example, a multi-stage connection of a slab waveguide, an MMI waveguide, or a Y-shaped waveguide splitter.
  • the output waveguides 14-1 to 14-5 are light transmission paths for emitting the light input from the coupler 13 to the cylindrical lens 20. When the output waveguides 14-1 to 14-5 are not distinguished, they may be referred to as output waveguides 14.
  • the arrayed waveguide 15 is composed of output waveguides 14-1 to 14-5.
  • Each of the output waveguides 14 of the output waveguides 14-1 to 14-5 is composed of one waveguide, but the arrayed waveguide 15 is divided into three parts depending on the position in the optical circuit 10.
  • the arrayed waveguide 15 is divided into three parts: a phase shifter part 151, a waveguide part 152, and a beam part 153, depending on the position or shape in the optical circuit 10.
  • the phase shifter 151 can generate a phase difference defined between adjacent output waveguides 14. As shown in FIG. 1, in the phase shifter portion 151 of the arrayed waveguide 15, each output waveguide 14 constituting the arrayed waveguide 15 has a partially bent shape, and propagates between adjacent output waveguides 14. A distance difference L is generated.
  • the beam portion 153 is a portion having a cantilever structure in which the output waveguides 14-1 to 14-5 include an emission surface from which light is emitted and are not fixed by the chip portion 11 in the arrayed waveguide 15. In the arrayed waveguide 15, the portion of the beam portion 153 that is not fixed by the chip portion 11 is wet etched.
  • the waveguide portion 152 is a portion between the phase shifter portion 151 and the beam portion 153 in the arrayed waveguide 15.
  • the electrode 16 can apply a voltage to each of the output waveguides 14-1 to 14-5 of the arrayed waveguide 15.
  • the electrodes 16 are wired in the chip portion 11 so that positive and negative voltages can be alternately applied to the beam portions 153 of the arrayed waveguide 15 between the adjacent output waveguides 14.
  • the length of the electrode 16 covers the entire beam portion 153 and a part of the waveguide portion 152, but it is sufficient that the length can be applied to the beam portion 153.
  • the optical circuit 10 does not include a power source that applies a voltage to the electrode 16, and is configured to apply a voltage to the electrode 16 from the outside of the optical circuit 10.
  • FIG. 2 is a diagram illustrating an image of the positional relationship between the output waveguide 14 and the electrode 16 in the optical circuit 10 according to the first embodiment when the chip portion 11 has a shape in which the respective components are sealed.
  • FIG. 2 is a diagram illustrating a portion corresponding to a cross-sectional view of a portion including an output waveguide 14 with respect to the optical circuit 10 of FIG. 1.
  • the output waveguide 14 and the electrode 16 have a shape sandwiched by the chip portion 11.
  • the electrode 16 does not directly contact the output waveguide 14 but directly applies a voltage to the output waveguide 14 via the chip portion 11. Thereby, in the optical circuit 10, since light is confined in the output waveguide 14, absorption of light at the electrode 16 can be suppressed.
  • the light emitted from the beam portion 153 of the optical circuit 10 spreads in the direction within the chip surface. Therefore, in the optical scanner 100, the cylindrical lens 20 corrects the aspect ratio of light.
  • the optical characteristics of the optical circuit 10 will be described.
  • the light incident from the input waveguide 12 is branched by the coupler 13 and guided to the output waveguides 14-1 to 14-5 of the arrayed waveguide 15.
  • the arrayed waveguide 15 when light propagates through the phase shifter portion 151, a phase difference kL occurs between the adjacent output waveguides 14.
  • k is the wave number of light propagating in the optical circuit 10, and depends on the refractive index, the width of the output waveguide 14, the optical angular frequency ⁇ , and the like. Strictly speaking, it should be noted that the effective refractive index and the group velocity are different in the output waveguides 14 having different radii of curvature.
  • FIG. 3 is a diagram illustrating the phase difference generated in the output waveguides 14-1 to 14-3 and the light emission direction in the optical circuit 10 according to the first embodiment.
  • the electrode 16 is omitted.
  • the optical circuit 10 As shown in FIG. 3, when the light reaches the beam portion 153 of the arrayed waveguide 15, a phase difference of ka ⁇ occurs between the adjacent output waveguides 14. Further, an optical path difference of Dsin ( ⁇ ) occurs between adjacent output waveguides 14.
  • the optical circuit 10 emits light from the beam portion 153 of the arrayed waveguide 15 in the emission direction of the emission angle ⁇ that satisfies the interference condition in which the phase difference is intensifying.
  • the constructive interference condition can be expressed by equation (1).
  • k 0 is the wave number in the air and is generally different from the wave number k in the optical circuit 10.
  • D is the distance between the output waveguides 14.
  • k and k 0 are functions of the optical angular frequency ⁇ , and can be expressed as in Expression (2) and Expression (3) using the light group velocity v g in the waveguide and the light velocity c in the air.
  • the light group velocity v g can be expressed as in Equation (4).
  • Equation (2) and Equation (3) The relationship between the optical angular frequency ⁇ and the wave number as in Equation (2) and Equation (3) is called a dispersion relationship.
  • corresponds to the intercept of the approximate expression of the dispersion relation of the waveguide, and is generally determined by the width, height, and refractive index of the output waveguide 14.
  • the emission angle ⁇ that satisfies the formula (5), which is a constructive interference condition, changes. That is, the outgoing optical axis angle changes for each optical angular frequency ⁇ of the input light. This is part of the basic principle of AWG.
  • FIG. 4 is a diagram illustrating an example of a state in which the emission interval D of the output waveguide 14 is changed in the beam portion 153 of the optical circuit 10 according to the first embodiment.
  • the electrode 16 is omitted.
  • positive and negative voltages are alternately applied to the beam portion 153 by the electrodes 16 between the adjacent output waveguides 14.
  • the output interval D on the exit surface side of the beam portion 153 can be changed by changing the voltage applied to the electrode 16.
  • each output waveguide 14 in the beam portion 153 differs as shown in FIG.
  • the light emitted from the beam portion 153 of the optical circuit 10 originally spreads in the direction in the chip surface. Therefore, even if the direction in which light is emitted from each output waveguide 14 is different, there is no problem in performing optical scanning as long as the emission interval D of the emission surface can be controlled.
  • the optical circuit 10 includes the electrodes 16 that can apply a voltage to each output waveguide 14 of the arrayed waveguide 15, and the electrode 16 is a beam of the arrayed waveguide 15.
  • the positive and negative voltages can be alternately applied to the portion 153 between the adjacent output waveguides 14. Accordingly, the optical circuit 10 can change the emission interval D on the emission surface side of the beam portion 153 by changing the voltage applied from the electrode 16 to the beam portion 153.
  • Embodiment 2 FIG. In the second embodiment, an example of the emission interval D will be described.
  • the configuration of the optical circuit 10 is the same as that of the first embodiment.
  • the emission interval D is set to satisfy the following expression (8).
  • ⁇ D / c ⁇ that is, a case where the emission interval D is smaller than half the wave number ⁇ in air (D ⁇ 0.5 ⁇ ) is given as a representative example.
  • the exit angle ⁇ that satisfies Expression (5) is uniquely determined. That is, the emission direction is determined in one direction without being dispersed in a plurality. Thereby, the optical circuit 10 can reduce an optical loss.
  • Embodiment 3 FIG. In the third embodiment, an example of the propagation distance difference L between adjacent output waveguides 14 generated in the phase shifter unit 151 will be described.
  • the configuration of the optical circuit 10 is the same as that of the first embodiment.
  • the optical circuit 10 is designed so that the propagation distance difference L satisfies the following expressions (9) and (10). Note that n is an integer.
  • v g and ⁇ correspond to the slope and intercept of the dispersion relationship of the output waveguide 14.
  • Expressions (9) and (10) are satisfied, the exit angle ⁇ that satisfies the constructive interference condition Expression (5) is limited to the case where the following Expression (11) is satisfied.
  • the emission angle ⁇ is constant regardless of the optical angular frequency ⁇ . Further, the emission angle ⁇ at this time depends on the emission interval D from the equation (11). Therefore, in the optical circuit 10, if a voltage is applied to the electrode 16 to change the emission interval D, it is possible to scan light in the same direction for light of any optical angular frequency ⁇ .
  • Embodiment 4 FIG. In the fourth embodiment, a case where a heating electrode heater is arranged in the phase shifter unit 151 will be described.
  • FIG. 5 is a diagram illustrating a configuration example of an optical scanner 100a including the optical circuit 10a according to the fourth embodiment.
  • the optical circuit 10 is replaced with an optical circuit 10a.
  • the optical circuit 10 a is obtained by adding a heating electrode heater 17 to the optical circuit 10.
  • the optical circuit 10a does not include a power source for applying a voltage to the heating electrode heater 17, but is configured to apply a voltage to the heating electrode heater 17 from the outside of the optical circuit 10a.
  • the heating electrode heater 17 heats each output waveguide 14 in the phase shifter section 151 to give a temperature change.
  • the refractive index of the output waveguide 14 changes due to the temperature optical effect, and the dispersion relation of the output waveguide 14 shifts, and the intercept ⁇ of the dispersion relation can be adjusted.
  • the optical circuit 10a can adjust the emission angle ⁇ that satisfies the constructive interference condition formula (5).
  • Embodiment 5 FIG.
  • the arrangement or shape of the heating electrode heater used in the fourth embodiment is asymmetric with respect to the width direction of the output waveguide.
  • FIG. 6 is a diagram illustrating a configuration example of an optical scanner 100b including the optical circuit 10b according to the fifth embodiment.
  • the optical circuit 10 is replaced with an optical circuit 10b.
  • the optical circuit 10b includes an arrayed waveguide 15 composed of a chip part 11, an input waveguide 12, and output waveguides 14-1 to 14-5, a chip part 11b, an input waveguide 12b, and output waveguides 14b-1 to 14b-. 5 is replaced with an arrayed waveguide 15b, and a heating electrode heater 18 is added.
  • the output waveguides 14b-1 to 14b-5 are not distinguished, they may be referred to as output waveguides 14b.
  • the optical circuit 10b is not provided with a power source for applying a voltage to the heating electrode heater 18, but is configured to apply a voltage to the heating electrode heater 18 from the outside of the optical circuit 10b.
  • the chip part 11 b is a member similar to the chip part 11, but has a smaller area than the chip part 11.
  • the input waveguide 12 b has the same configuration as the input waveguide 12, but is shorter than the input waveguide 12.
  • the output waveguides 14b-1 to 14b-5 have the same configuration as the output waveguides 14-1 to 14-5, but are shorter than the output waveguides 14-1 to 14-5, and the phase shifter 151 It does not have a bending waveguide corresponding to this part.
  • the phase shifter portion 151 becomes a phase shifter portion 151 b using the heating electrode heater 18.
  • the heating electrode heater 18 heats each output waveguide 14b in the phase shifter portion 151b to give a temperature change. In the heating electrode heater 18, the length of the portion for heating each output waveguide 14 b is different for each output waveguide 14.
  • the heating electrode heater 18 can give a temperature difference to the adjacent output waveguide 14b to give a refractive index difference.
  • the optical circuit 10b can configure the phase shifter 151b in the output waveguide 14b without using a bending waveguide. Since the optical circuit 10b does not use a bent waveguide, it can be expected to be downsized. In addition, multi-channel integration of optical communication can be expected by an optical communication module using the downsized optical circuit 10b.
  • size of the optical circuit 10b is made smaller than the optical circuits 10 and 10a, it is not limited to this.
  • a heating electrode heater 18 may be used instead of the heating electrode heater 17.
  • Embodiment 6 FIG. In the sixth embodiment, the case where the shape of the beam portion is the shape of a vertical bending waveguide whose emission surface faces the direction perpendicular to the tip portion will be described.
  • FIG. 7 is a diagram showing an image of the shape of the beam portion 153c of the optical circuit 10c and the positional relationship of the cylindrical lens 20 in the optical scanner 100c according to the sixth embodiment.
  • the shape of the beam portion 153c of the output waveguide 14c is a shape of a vertical bending waveguide in which the emission surface faces the vertical direction with respect to the tip portion 11c.
  • the shape of the beam portion 153c of the output waveguide 14c is a shape of a vertical bending waveguide whose emission surface faces the vertical direction with respect to the phase shifter portion 151 and the waveguide portion 152 that are fixed to the chip portion 11c. .
  • the optical circuit 10c is the same as the optical circuit 10 except for the shape of the beam portion 153c, in FIG. 7, the description of the parts common to the optical circuit 10 is omitted.
  • the output waveguide 14c and the electrode 16c are sandwiched between the chip portions 11c.
  • the output waveguide 14c, the electrode 16c, and the tip portion 11c are respectively the same as the output waveguide 14, the electrode 16, and the tip portion 11 except that the beam portion 153c has a shape corresponding to the vertical bending waveguide. It is the same composition. Also, the optical circuit 10c including the output waveguide 14c, the electrode 16c, and the chip portion 11c has the same configuration as that of the optical circuit 10 except that the beam portion 153c has a shape corresponding to the vertical bending waveguide. is there.
  • the optical circuit 10c by using a vertical bending waveguide for the beam portion 153c, light can be emitted not only from the end face of the chip portion 11c of the optical circuit 10c but also from the center of the chip portion 11c. Thereby, in the optical circuit 10c, it can be expected that the exit ports have a high density.
  • Embodiment 7 FIG. In the seventh embodiment, a configuration of an optical multiplexer / demultiplexer including the optical scanner 100 will be described.
  • FIG. 8 is a diagram illustrating a configuration example of the optical multiplexer / demultiplexer 101 according to the seventh embodiment.
  • the optical multiplexer / demultiplexer 101 includes an optical scanner 100, a condenser lens 30, and an arrayed waveguide 40 having waveguides 41-1 to 41-5. When the waveguides 41-1 to 41-5 are not distinguished, they may be referred to as waveguides 41.
  • the condensing lens 30 condenses the collimated light converted through the cylindrical lens 20 onto the waveguides of the arrayed waveguide 40.
  • the arrayed waveguide 40 has a plurality of waveguides that are transmission paths for light that has passed through the condenser lens 30.
  • the condensing lens 30 and the arrayed waveguide 40 are arranged in the direction in which the light emitted from the optical circuit 10 travels and ahead of the cylindrical lens 20.
  • the array waveguide 15 is a first array waveguide
  • the array waveguide 40 is a second array waveguide.
  • the emission angle of the collimated light coupled to each of the waveguides 41-1 to 41-5 of the arrayed waveguide 40 is fixed.
  • the optical axis angle coupled to the m-th waveguide 41 is ⁇ m and the optical angular frequency of the light coupled to the same m-th waveguide 41 is ⁇ m
  • the angular frequency interval of the light coupled to each waveguide 41 Is expressed by the following equation (14) from equation (6).
  • the optical circuit 10 can change the emission interval D by applying a voltage to the electrode 16, the interval of the optical angular frequency can be changed. That is, the optical multiplexer / demultiplexer 101 shown in FIG. 8 can function as an optical multiplexer / demultiplexer that can control the channel spacing coupled to the waveguide 41.
  • Embodiment 8 FIG. In the eighth embodiment, a configuration of a wavelength monitor provided with the optical scanner 100 will be described.
  • FIG. 9 is a diagram illustrating a configuration example of the wavelength monitor 102 according to the eighth embodiment.
  • the wavelength monitor 102 includes an optical scanner 100, an etalon 50, and a light receiving element 60.
  • the etalon 50 is a parallel plate that transmits light that has passed through the cylindrical lens 20, and the transmittance varies depending on the wavelength of the input light.
  • the light receiving element 60 receives light transmitted through the etalon 50 and observes the intensity of the light transmitted through the etalon 50.
  • the transmittance of the etalon 50 varies depending on the wavelength of the input light, the light receiving element 60 can observe the wavelength by observing the transmission intensity of the etalon 50.
  • a method of shifting the transmission spectrum of the etalon 50 by changing the temperature of the etalon 50 is used for strict calibration of the wavelength.
  • This temperature control determines the response speed and accuracy of the wavelength monitor 102.
  • the fact that the transmission spectrum characteristic of the etalon 50 changes depending on the incident optical axis angle is used.
  • the optical circuit 10 adjusts the incident angle to the etalon 50 by applying a voltage to the electrode 16.
  • the wavelength monitor 102 can perform high-speed calibration without using the temperature change of the etalon 50.
  • Embodiment 9 FIG. In the ninth embodiment, a method for fixing the beam portion 153 will be described.
  • FIG. 10 is a diagram illustrating a configuration example of an optical scanner 100d including the optical circuit 10d according to the ninth embodiment.
  • the optical circuit 10 is replaced with an optical circuit 10d.
  • the optical circuit 10 d is obtained by adding a fixing unit 19 to the optical circuit 10.
  • the fixing portion 19 has a structure in which a portion of the beam portion 153 is embedded with resin, and fixes the beam portion 153.
  • the fixing part 19 applies UV (Ultra Violet) curing adhesive to the beam part 153, applies a voltage to the electrode 16 to align the optical axis, and aligns the optical axis with the electrode 16 in a desired optical axis alignment state. It is assumed that the UV curing adhesive, that is, the resin is cured by UV irradiation while the voltage is applied.
  • the resin is cured in this manner and the beam portion 153 is fixed, so that the optical axis can be kept aligned even when the voltage applied to the electrode 16 is removed.
  • Embodiment 10 FIG. In the tenth embodiment, a case where the optical multiplexer / demultiplexer 101 of the seventh embodiment and the wavelength monitor 102 of the eighth embodiment are modularized will be described.
  • FIG. 11 is a diagram illustrating a configuration example of the optical multiplexer / demultiplexer module 201 according to the tenth embodiment.
  • the optical multiplexer / demultiplexer module 201 includes an optical multiplexer / demultiplexer 101 and a light emitting unit 103.
  • the light emitting unit 103 generates light and emits the light to the input waveguide 12 of the optical circuit 10 included in the optical multiplexer / demultiplexer 101.
  • the optical multiplexer / demultiplexer module 201 is a module obtained by sealing the optical multiplexer / demultiplexer 101 and the light emitting unit 103 with a ceramic, metal, or resin package.
  • FIG. 12 is a diagram illustrating a configuration example of the wavelength monitor module 202 according to the tenth embodiment.
  • the wavelength monitor module 202 includes a wavelength monitor 102 and a light emitting unit 103.
  • the wavelength monitor module 202 is a module obtained by sealing the wavelength monitor 102 and the light emitting unit 103 with a ceramic, metal, or resin package.
  • the light emitting unit 103 may be configured to include a plurality of lenses together with a light emitting element such as a light receptacle.
  • the optical multiplexer / demultiplexer 101 or the wavelength monitor 102 is sealed and modularized, thereby ensuring airtightness, absorbing shock, facilitating carrying, and facilitating connection to the transceiver. Is obtained.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Integrated Circuits (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

入力導波路(12)と、複数の出力導波路(14-1~14-5)からなるアレイ導波路(15)と、カプラ(13)と、アレイ導波路(15)の各々の出力導波路(14-1~14-5)に電圧を印加可能な電極(16)と、入力導波路(12)、カプラ(13)、およびアレイ導波路(15)の一部が固定されるチップ部(11)と、を備え、アレイ導波路(15)は、隣接する出力導波路(14-1~14-5)の間で規定された位相差を生成可能な位相シフタ部(151)と、チップ部(11)によって固定されていない片持ち構造となっている梁部(153)と、位相シフタ部(151)と梁部(153)との間の導波部(152)と、に区分けされ、電極(16)は、アレイ導波路(15)の梁部(153)に対して、隣接する出力導波路(14-1~14-5)同士で互い違いに正負の電圧を印加可能である。

Description

光回路、光走査器、光合分波器、波長モニタ、光合分波器モジュール、および波長モニタモジュール
 本発明は、複数の導波路を有する光回路、光走査器、光合分波器、波長モニタ、光合分波器モジュール、および波長モニタモジュールに関する。
 PLC(Planar Lightwave Circuit)またはシリコン基板に形成された光導波路、および光導波路を用いたアレイ導波路回折格子(以下、AWG(Arrayed Waveguide Grating)とする。)などの光合分波器は、光通信機器用の光モジュールなどで用いられている。近年では、光導波路と、MEMS(Micro Electro Mechanical System)ミラーまたはネマティック液晶とを組み合わせた光波長スイッチが開発されている(特許文献1)。
 また、光集積回路に限らず、光送受信モジュールの小型集積化が進んでおり、気密封止された1つのパッケージ内に、受発光素子、光合分波器、レンズなどの各種光学部品を収めた集積光モジュールが開発されている。特許文献2には、マイクロITLA(Integrable Tunable Laser Assembly)と呼ばれる超小型波長可変光源が開示されている。マイクロITLAは、レーザアレイ、マルチモード干渉(以下、MMI(Multi Mode Interference)とする。)、波長モニタ用の平行平板であるエタロン、およびフォトダイオード(以下、PD(Photo Diode)とする。)が1つのパッケージ上に集積されている。エタロンは波長によって透過率が異なるため、エタロンの透過強度をPDで観測することで、波長をモニタリングできる。
 光集積回路および集積光モジュールでは、光軸の調整が重要となる。例えば、シングルモードの光導波路に対して高い結合効率で光を入出射させる場合、1μm程度の高い精度で光学部品を配置する必要がある。また、マイクロITLAでは、波長モニタとして使用されるエタロンの光学特性が光の入射角度によって変化してしまうため、高精度に入射光軸角を調整する必要がある。さらに、経年変化および温度変化による光軸ずれの補正、また、プロジェクションディスプレーへの応用を見据えて、光軸を動的に調整する機構も求められている。特許文献1には、MEMSミラーまたはネマティック液晶を用いた光軸調整機構が開示されている。
特開2014-35377号公報 特開2012-129259号公報
 従来、光走査にはMEMSミラーまたはネマティック液晶が用いられてきた。MEMSミラーまたはネマティック液晶を用いた光軸調整では、光軸角の変化量は光波長によらず一定である。一方で、マイクロITLAで用いる波長モニタでは、屈折率の波長依存性があるため、波長ごとにわずかにエタロンへの入射角を変化させる、すなわち光軸角の波長分散を制御することで、より厳密な波長校正が期待できる。また、波長分散を動的に制御できれば、可変光合分波器を構成できる。しかしながら、光軸角の波長分散の制御には、光走査部とは別に回折格子などの光学部品が必要なため、大型化してしまう、という問題があった。
 本発明は、上記に鑑みてなされたものであって、大型化を回避しつつ、光軸角の波長分散を制御可能な構成であって光走査が可能な光回路を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の光回路は、光の伝送路である入力導波路と、光の伝送路である複数の出力導波路からなるアレイ導波路と、入力導波路から入力された光を分岐してアレイ導波路の複数の出力導波路に出力する分岐部と、アレイ導波路の各々の出力導波路に電圧を印加可能な電極と、入力導波路、分岐部、およびアレイ導波路の一部が固定されるチップ部と、を備える。アレイ導波路は、隣接する出力導波路の間で規定された位相差を生成可能な位相シフタ部と、複数の出力導波路が光を出射する出射面を含み、チップ部によって固定されていない片持ち構造となっている梁部と、位相シフタ部と梁部との間の導波部と、に区分けされる。電極は、アレイ導波路の梁部に対して、隣接する出力導波路同士で互い違いに正負の電圧を印加可能であることを特徴とする。
 本発明にかかる光回路は、大型化を回避しつつ、光軸角の波長分散を制御可能な構成であって光走査ができる、という効果を奏する。
実施の形態1にかかる光回路を備えた光走査器の構成例を示す図 実施の形態1にかかる光回路において、チップ部が各構成を封止した形状の場合の出力導波路および電極の位置関係のイメージを示す図 実施の形態1にかかる光回路において、出力導波路で生じる位相差および光の出射方向を示す図 実施の形態1にかかる光回路の梁部において出力導波路の出射間隔が変化した様子の例を示す図 実施の形態4にかかる光回路を備えた光走査器の構成例を示す図 実施の形態5にかかる光回路を備えた光走査器の構成例を示す図 実施の形態6にかかる光回路において梁部の形状およびシリンドリカルレンズの位置関係のイメージを示す図 実施の形態7にかかる光合分波器の構成例を示す図 実施の形態8にかかる波長モニタの構成例を示す図 実施の形態9にかかる光回路を備えた光走査器の構成例を示す図 実施の形態10にかかる光合分波器モジュールの構成例を示す図 実施の形態10にかかる波長モニタモジュールの構成例を示す図
 以下に、本発明の実施の形態にかかる光回路、光走査器、光合分波器、波長モニタ、光合分波器モジュール、および波長モニタモジュールを図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1にかかる光回路10を備えた光走査器100の構成例を示す図である。光走査器100は、光を出射する光回路10と、光を補正するレンズであるシリンドリカルレンズ20と、を備える。光回路10は、チップ部11と、入力導波路12と、カプラ13と、出力導波路14-1~14-5からなるアレイ導波路15と、電極16と、を備える。
 チップ部11は、Si、SiO2、化合物半導体、または、ポリマーなどからなり、入力導波路12、カプラ13、およびアレイ導波路15の一部が固定される部材である。図1では、入力導波路12、カプラ13、およびアレイ導波路15の一部がチップ部11上に固定された形状であるが、入力導波路12、カプラ13、およびアレイ導波路15の一部をチップ部11の内部に封止して固定した構成にしてもよい。
 入力導波路12は、図示しない外部のレーザーダイオード(以下、LD(Laser Diode)とする。)などの発光部から出射された光を受け、光回路10内に光を導く光の伝送路である。
 カプラ13は、入力導波路12から入力された光を分岐してアレイ導波路15の各出力導波路14-1~14-5に出力する分岐部である。カプラ13は、1×Nカプラであり、図1の例ではN=5の1×5カプラである。カプラ13は、例えば、スラブ導波路、MMI導波路、またはY字導波路スプリッタを多段接続したものなどである。
 出力導波路14-1~14-5は、カプラ13から入力された光をシリンドリカルレンズ20へ出射する光の伝送路である。出力導波路14-1~14-5を区別しない場合、出力導波路14と称することがある。
 アレイ導波路15は、出力導波路14-1~14-5からなる。なお、出力導波路14-1~14-5の各出力導波路14は1本の導波路からなるが、光回路10内の位置によって、アレイ導波路15は、3つの部分に区分けされる。アレイ導波路15は、光回路10内での位置または形状によって、位相シフタ部151、導波部152、および梁部153の3つに区分けされる。
 位相シフタ部151は、隣接する出力導波路14間で規定された位相差を生成可能である。図1に示すように、アレイ導波路15の位相シフタ部151において、アレイ導波路15を構成する各出力導波路14は一部が曲げられた形状であり、隣接する出力導波路14間で伝搬距離差Lが生じる。出力導波路14間の形状は、チップ部11のある地点を中心にした円弧状の形状である。例えば、アレイ導波路15において、間隔aの出力導波路14が同心円弧状に角度φradだけ曲げられた場合、隣接する出力導波路14間の伝搬距離差はL=aφとなる。アレイ導波路15では、出力導波路14における伝搬距離差Lによって隣り合う出力導波路14間に位相差が生じるため、図1に示すような曲げ形状の位相シフタ部151が、位相シフタとして機能する。
 梁部153は、出力導波路14-1~14-5が光を出射する出射面を含み、アレイ導波路15のうちチップ部11によって固定されていない片持ち構造となっている部分である。アレイ導波路15では、チップ部11によって固定されていない梁部153の部分は、ウェットエッチングされている。
 導波部152は、アレイ導波路15において、位相シフタ部151と梁部153との間の部分である。
 電極16は、アレイ導波路15の各々の出力導波路14-1~14-5に電圧を印加可能である。電極16は、アレイ導波路15の梁部153に対して、隣接する出力導波路14同士で互い違いに正負の電圧を印加可能なようにチップ部11において配線されている。電極16の長さについて、図1では梁部153の全部および導波部152の一部にかかっているが、梁部153の部分に印加できる長さがあればよい。光回路10では、電極16に電圧を印加する電源は備えておらず、光回路10の外部から電極16に電圧を印加する構成である。
 電極16は、図1の例では、アレイ導波路15の各出力導波路14-1~14-5上に配線されているが、前述のように、チップ部11が各構成を封止する形状の場合、チップ部11を経由してアレイ導波路15の各出力導波路14-1~14-5に電圧を印加してもよい。図2は、実施の形態1にかかる光回路10において、チップ部11が各構成を封止した形状の場合の出力導波路14および電極16の位置関係のイメージを示す図である。図1の光回路10に対して、出力導波路14を含む部分の断面図に相当する部分を示す図である。出力導波路14および電極16が、チップ部11によって上下に挟まれた形状である。電極16は、出力導波路14には直接接触せず、チップ部11を介して、直接出力導波路14に電圧を印加する。これにより、光回路10おいて、光は出力導波路14内に閉じ込められるため、電極16での光の吸収を抑制することができる。
 光回路10の梁部153から出射された光は、チップ面内の方向に広がっている。そのため、光走査器100では、シリンドリカルレンズ20が光の縦横比を補正する。
 つづいて、実施の形態1の光回路10の光学特性について説明する。光回路10では、入力導波路12から入射された光は、カプラ13で分岐され、アレイ導波路15の各出力導波路14-1~14-5へと導かれる。アレイ導波路15では、光が位相シフタ部151を伝搬すると、隣り合う出力導波路14間で位相差kLが光に生じる。ここで、kは光回路10内を伝搬する光の波数であり、屈折率、出力導波路14の幅、および光角周波数ωなどに依存する。なお、厳密には、曲率半径の異なる各出力導波路14では、実効的な屈折率および群速度が異なることに注意する必要がある。図3は、実施の形態1にかかる光回路10において、出力導波路14-1~14-3で生じる位相差および光の出射方向を示す図である。記載を簡単にするため、電極16は省略している。光回路10では、図3に示すように、アレイ導波路15の梁部153に光が到達する時点で、隣接出力導波路14間でkaφの位相差が生じる。また、隣接出力導波路14間でDsin(θ)の光路差が生じる。光回路10は、この位相差が強め合う干渉条件を満たす出射角θの出射方向に対して、アレイ導波路15の梁部153から光を出射する。強め合う干渉条件は、式(1)で表すことができる。
Figure JPOXMLDOC01-appb-M000001
 k0は空気中での波数であり、一般に光回路10内での波数kとは異なる。また、Dは出射導波路14の間隔である。k,k0は光角周波数ωの関数であり、導波路中の光群速度vg、空気中の光速cを用いて式(2)および式(3)のように表すことができる。光群速度vgは式(4)のように表すことができる。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 式(2)および式(3)のような光角周波数ωと波数との関係を分散関係と呼ぶ。Ωは導波路の分散関係の近似式の切片に対応し、一般に、出力導波路14の幅、高さ、および屈折率によって定まる。式(1)に式(2)および式(3)を代入すると、式(5)のように整理できる。なお、mは整数とする。
Figure JPOXMLDOC01-appb-M000005
 光角周波数ωが変われば、強め合う干渉条件である式(5)を満たす出射角θが変わる。すなわち、入力光の光角周波数ωごとに出射光軸角が変化する。これがAWGの基本原理の一部となる。
 ここで、本実施の形態では、光回路10において、電極16に電圧を印加すると、アレイ導波路15の梁部153にある出力導波路14には電荷が蓄積され、静電圧によって出射間隔Dが変化する。上記の式(5)より、出射間隔Dの変化に従って出射角θを変化させることができる。これにより、光回路10は、光走査を実現することができる。定量的には、式(5)を全微分すると、式(6)のように表される。
Figure JPOXMLDOC01-appb-M000006
 光角周波数ω一定下で出射間隔Dが変化すると、出射角θの変化は式(7)のように表される。
Figure JPOXMLDOC01-appb-M000007
 図4は、実施の形態1にかかる光回路10の梁部153において出力導波路14の出射間隔Dが変化した様子の例を示す図である。記載を簡単にするため、電極16は省略している。前述のように、梁部153には、電極16によって、隣接する出力導波路14同士で互い違いに正負の電圧が印加される。その結果、梁部153において、チップ部11側の間隔は変化しないが、片持ち構造で固定されていない出射面側の出射間隔Dが狭まる。光回路10では、電極16に印加される電圧が変化されることによって、梁部153の出射面側の出射間隔Dを変化させることができる。なお、出射間隔Dが変化した場合、図4に示すように、梁部153における各出力導波路14の向きが異なる。しかしながら、前述のように、光回路10の梁部153から出射された光は、元々チップ面内の方向に広がっている。そのため、各出力導波路14から光が出射される向きが異なっていても、出射面の出射間隔Dを制御できれば、光走査を行う上で問題にはならない。
 以上説明したように、本実施の形態によれば、光回路10は、アレイ導波路15の各出力導波路14に電圧を印加可能な電極16を備え、電極16は、アレイ導波路15の梁部153に対して、隣接する出力導波路14同士で互い違いに正負の電圧を印加可能であることとした。これにより、光回路10は、電極16から梁部153に印加される電圧の変化によって、梁部153の出射面側の出射間隔Dを変化させることができる。この結果、回路の大型化を回避しつつ、光軸角の波長分散を制御可能な構成によって、光走査が可能となる。
実施の形態2.
 実施の形態2では、出射間隔Dの例について説明する。
 光回路10の構成は実施の形態1と同様である。実施の形態2では、次の式(8)を満たすような出射間隔Dとする。
Figure JPOXMLDOC01-appb-M000008
 特に、ωD/c<π、すなわち出射間隔Dが空気中の波数λの半分より小さい(D<0.5λ)場合が代表例として挙げられる。式(8)を満たす場合、式(5)を満たす出射角θは一意に決まる。すなわち、出射方向が複数に分散することなく一方向に定まる。これにより、光回路10は、光学ロスを低減することができる。
実施の形態3.
 実施の形態3では、位相シフタ部151で生じる隣接出力導波路14間の伝搬距離差Lの例について説明する。
 光回路10の構成は実施の形態1と同様である。実施の形態3では、伝搬距離差Lが次の式(9)および式(10)を満たすように光回路10を設計したものとする。なお、nは整数とする。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
 vgおよびΩは、出力導波路14の分散関係の傾きおよび切片に対応する。式(9)および式(10)を満たす場合、強め合う干渉条件式(5)を満たす出射角θは、次の式(11)を満たす場合に限られる。
Figure JPOXMLDOC01-appb-M000011
 したがって、出射角θは、光角周波数ωによらず一定である。また、このときの出射角θは式(11)より出射間隔Dに依存している。そのため、光回路10では、電極16に電圧を印加して出射間隔Dを変化させれば、どの光角周波数ωの光に対しても同じ方向に光を走査することができる。
 例えば、ある波長λ1、光角周波数ω1(=2πc/λ1)に対してD=0.5λ1、L=0.13λ1×vg/cと設計すると、λ1近傍の波長帯域で式(8)を満たす。また、Ω=ω1/0.13の場合、式(7)を満たす。このとき、式(5)は次の式(12)のようになる。
Figure JPOXMLDOC01-appb-M000012
 このため、任意の光角周波数ωの光に対して、θ=15.07度で強め合う干渉条件式(5)を満たす。ここで、電極16に電圧を印加して出射間隔Dを5%小さくすると、式(5)は次の式(13)のようになる。
Figure JPOXMLDOC01-appb-M000013
 このとき、任意の光角周波数ωの光に対して、θ=15.88度で式(5)を満たす。従って、出射間隔Dを5%縮小させることで、任意の波長の光に対して、0.8度の光走査が実現できる。
実施の形態4.
 実施の形態4では、位相シフタ部151に加熱電極ヒータを配置する場合について説明する。
 図5は、実施の形態4にかかる光回路10aを備えた光走査器100aの構成例を示す図である。実施の形態1の光走査器100に対して、光回路10を光回路10aに置き換えたものである。光回路10aは、光回路10に加熱電極ヒータ17を追加したものである。光回路10aでは、加熱電極ヒータ17に電圧を印加する電源は備えておらず、光回路10aの外部から加熱電極ヒータ17に電圧を印加する構成である。
 加熱電極ヒータ17は、位相シフタ部151にある各出力導波路14を加熱し、温度変化を与える。加熱電極ヒータ17によって出力導波路14に温度変化を与えると、温度光学効果によって出力導波路14の屈折率が変化し、出力導波路14の分散関係がシフトして分散関係の切片Ωを調整できる。これにより、光回路10aは、強め合う干渉条件式(5)を満たす出射角θを調整することができる。
実施の形態5.
 実施の形態5では、実施の形態4で用いた加熱電極ヒータの配置または形状を出力導波路の幅方向に対して非対称とする。
 図6は、実施の形態5にかかる光回路10bを備えた光走査器100bの構成例を示す図である。実施の形態1の光走査器100に対して、光回路10を光回路10bに置き換えたものである。光回路10bは、チップ部11、入力導波路12、出力導波路14-1~14-5からなるアレイ導波路15を、チップ部11b、入力導波路12b、出力導波路14b-1~14b-5からなるアレイ導波路15bに置き換え、加熱電極ヒータ18を追加したものである。出力導波路14b-1~14b-5を区別しない場合、出力導波路14bと称することがある。光回路10bでは、加熱電極ヒータ18に電圧を印加する電源は備えておらず、光回路10bの外部から加熱電極ヒータ18に電圧を印加する構成である。
 チップ部11bは、チップ部11と同様の部材であるが、チップ部11よりも面積が小さい。入力導波路12bは、入力導波路12と同様の構成であるが、入力導波路12よりも短い。出力導波路14b-1~14b-5は、出力導波路14-1~14-5と同様の構成であるが、出力導波路14-1~14-5よりも短く、また、位相シフタ部151の部分に相当する曲げ導波路を有していない。アレイ導波路15bでは、位相シフタ部151の部分が、加熱電極ヒータ18を利用した位相シフタ部151bとなる。加熱電極ヒータ18は、位相シフタ部151bにある各出力導波路14bを加熱し、温度変化を与える。加熱電極ヒータ18は、各出力導波路14bを加熱する部分の長さが出力導波路14毎に異なる。
 光回路10bでは、位相シフタ部151bにおいて、加熱電極ヒータ18によって、隣接出力導波路14bに温度差を与えて屈折率差をつけることができる。これにより、光回路10bは、出力導波路14bにおいて、曲げ導波路を用いることなく位相シフタ151bを構成できる。光回路10bは、曲げ導波路を用いないため、小型化が期待できる。また、小型化された光回路10bを用いた光通信モジュールなどによって、光通信の多チャンネル集積化が期待できる。
 なお、図6の例では、光回路10bの大きさを光回路10,10aよりも小さくしているが、これに限定されるものではない。光回路10aにおいて、加熱電極ヒータ17に替えて、加熱電極ヒータ18を使用してもよい。
実施の形態6.
 実施の形態6では、梁部の形状が、出射面がチップ部に対して垂直方向を向いた垂直曲げ導波路の形状の場合について説明する。
 図7は、実施の形態6にかかる光走査器100cにおいて光回路10cの梁部153cの形状およびシリンドリカルレンズ20の位置関係のイメージを示す図である。図7に示すように、出力導波路14cの梁部153cの形状は、出射面がチップ部11cに対して垂直方向を向いた垂直曲げ導波路の形状である。すなわち、出力導波路14cの梁部153cの形状は、出射面がチップ部11cに固定されている位相シフタ部151および導波部152に対して垂直方向を向いた垂直曲げ導波路の形状である。光回路10cにおいて、梁部153cの形状以外は光回路10と同様のため、図7では、光回路10と共通する部分については記載を省略している。また、図2との比較を容易にするため、出力導波路14cおよび電極16cが、チップ部11cによって上下に挟まれた形状としている。
 出力導波路14c、電極16c、およびチップ部11cについては、梁部153cが垂直曲げ導波路に対応した形状にしていることを除けば、各々、出力導波路14、電極16、およびチップ部11と同様の構成である。また、出力導波路14c、電極16c、およびチップ部11cを含む光回路10cについても、梁部153cが垂直曲げ導波路に対応した形状にしていることを除けば、光回路10と同様の構成である。
 光回路10cでは、梁部153cに垂直曲げ導波路を用いることで、光回路10cのチップ部11cの端面からではなく、チップ部11cの中央からも光を出射することができる。これにより、光回路10cにおいて、出射ポートの高密度化が期待できる。
実施の形態7.
 実施の形態7では、光走査器100を備えた光合分波器の構成について説明する。
 図8は、実施の形態7にかかる光合分波器101の構成例を示す図である。光合分波器101は、光走査器100と、集光レンズ30と、導波路41-1~41-5を有するアレイ導波路40と、を備える。導波路41-1~41-5を区別しない場合、導波路41と称することがある。集光レンズ30は、シリンドリカルレンズ20を通過して変換されたコリメート光を、アレイ導波路40の導波路に集光する。アレイ導波路40は、集光レンズ30を通過した光の伝送路である複数の導波路を有する。光回路10から出射される光が向かう方向であって、シリンドリカルレンズ20の先に、集光レンズ30およびアレイ導波路40が配置されている。アレイ導波路15を第1のアレイ導波路とし、アレイ導波路40を第2のアレイ導波路とする。
 ここで、アレイ導波路40の各導波路41-1~41-5に結合するコリメート光の出射角は固定である。m番目の導波路41に結合する光軸角をθm、同じm番目の導波路41に結合する光の光角周波数をωmとするとき、各導波路41に結合する光の角周波数間隔は式(6)より次の式(14)のように表される。
Figure JPOXMLDOC01-appb-M000014
 前述のように、光回路10は、電極16に電圧を印加することで出射間隔Dを変化できるため、上記の光角周波数の間隔を変化できる。すなわち、図8に示す光合分波器101は、導波路41へ結合するチャネル間隔を制御できる光合分波器として機能できる。
実施の形態8.
 実施の形態8では、光走査器100を備えた波長モニタの構成について説明する。
 図9は、実施の形態8にかかる波長モニタ102の構成例を示す図である。波長モニタ102は、光走査器100と、エタロン50と、受光素子60と、を備える。エタロン50は、シリンドリカルレンズ20を通過した光を透過させる平行平板であって、入力光の波長によって透過率が異なる。受光素子60は、エタロン50を透過した光を受光し、エタロン50を透過後の光の強度を観測する。一般に、エタロン50は入力光の波長によって透過率が異なるため、受光素子60が、エタロン50の透過強度を観測することで、波長を観測することができる。エタロン50を用いた波長モニタ102では、厳密な波長の校正のために、エタロン50の温度を変えてエタロン50の透過スペクトルをシフトさせる方法が用いられる。
 この温度制御が、波長モニタ102の応答速度および精度を律速している。実施の形態8では、エタロン50の透過スペクトル特性が入射光軸角に依存して変化することを利用する。光回路10が、電極16への電圧印加によって、エタロン50への入射角度を調整する。これにより、波長モニタ102では、エタロン50の温度変化を用いることなく、高速な校正が可能となる。
実施の形態9.
 実施の形態9では、梁部153を固定する方法について説明する。
 図10は、実施の形態9にかかる光回路10dを備えた光走査器100dの構成例を示す図である。実施の形態1の光走査器100に対して、光回路10を光回路10dに置き換えたものである。光回路10dは、光回路10に、固定部19を追加したものである。固定部19は、梁部153の部分を樹脂で埋め込んだ構造であり、梁部153を固定する。固定部19は、梁部153にUV(Ultra Violet)硬化接着剤を塗布し、電極16へ電圧を印加して光軸の調芯を行い、所望の光軸の調芯の状態で電極16に電圧を印加した状態のまま、UV照射してUV硬化接着剤、すなわち樹脂を硬化させることを想定している。
 光回路10dでは、このように樹脂を硬化させて梁部153を固定させることで、電極16に対する印加電圧を取り除いても、光軸が調芯された状態を保つことができる。
実施の形態10.
 実施の形態10では、実施の形態7の光合分波器101、および実施の形態8の波長モニタ102をモジュール化した場合について説明する。
 図11は、実施の形態10にかかる光合分波器モジュール201の構成例を示す図である。光合分波器モジュール201は、光合分波器101と、発光部103と、を備える。発光部103は、光を生成して、光合分波器101が備える光回路10の入力導波路12に光を出射する。光合分波器モジュール201は、光合分波器101および発光部103を、セラミックス、金属、または樹脂パッケージで封止してモジュール化したものである。
 図12は、実施の形態10にかかる波長モニタモジュール202の構成例を示す図である。波長モニタモジュール202は、波長モニタ102と、発光部103と、を備える。波長モニタモジュール202は、波長モニタ102および発光部103を、セラミックス、金属、または樹脂パッケージで封止してモジュール化したものである。
 発光部103は、ヒカリレセプタクルなどの発光素子とともに、複数のレンズを備える構成であってもよい。
 このように、光合分波器101、または波長モニタ102を封止してモジュール化することで、気密性を確保し、衝撃を吸収でき、持ち運びを容易にし、トランシーバへの接続が容易などの効果が得られる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 10,10a,10b,10c,10d 光回路、11,11b,11c チップ部、12,12b 入力導波路、13 カプラ、14,14c,14-1~14-5,14b-1~14b-5 出力導波路、15,15b アレイ導波路、16,16c 電極、17,18 加熱電極ヒータ、19 固定部、20 シリンドリカルレンズ、30 集光レンズ、40 アレイ導波路、41-1~41-5 導波路、50 エタロン、60 受光素子、100,100a,100b,100c,100d 光走査器、101 光合分波器、102 波長モニタ、103 発光部、151,151b 位相シフタ部、152 導波部、153,153c 梁部、201 光合分波器モジュール、202 波長モニタモジュール。

Claims (11)

  1.  光の伝送路である入力導波路と、
     光の伝送路である複数の出力導波路からなるアレイ導波路と、
     前記入力導波路から入力された光を分岐して前記アレイ導波路の前記複数の出力導波路に出力する分岐部と、
     前記アレイ導波路の各々の出力導波路に電圧を印加可能な電極と、
     前記入力導波路、前記分岐部、および前記アレイ導波路の一部が固定されるチップ部と、
     を備え、
     前記アレイ導波路は、
     隣接する出力導波路の間で規定された位相差を生成可能な位相シフタ部と、
     前記複数の出力導波路が光を出射する出射面を含み、前記チップ部によって固定されていない片持ち構造となっている梁部と、
     前記位相シフタ部と前記梁部との間の導波部と、
     に区分けされ、
     前記電極は、前記アレイ導波路の梁部に対して、隣接する出力導波路同士で互い違いに正負の電圧を印加可能である、
     ことを特徴とする光回路。
  2.  前記位相シフタ部において、前記複数の出力導波路の形状は、前記チップ部のある地点を中心にした円弧状の形状である、
     ことを特徴とする請求項1に記載の光回路。
  3.  前記位相シフタ部にある前記複数の出力導波路を加熱するための加熱電極ヒータ、
     を備えることを特徴とする請求項1または2に記載の光回路。
  4.  前記加熱電極の形状は、前記複数の出力導波路を加熱する部分の長さが出力導波路毎に異なる、
     ことを特徴とする請求項3に記載の光回路。
  5.  前記梁部の形状は、前記出射面が、前記チップ部に固定されている前記位相シフタ部および前記導波部対して垂直方向を向いた垂直曲げ導波路の形状である、
     ことを特徴とする請求項1から4のいずれか1つに記載の光回路。
  6.  前記梁部を固定する固定部、
     を備えることを特徴とする請求項1から5のいずれか1つに記載の光回路。
  7.  請求項1から6のいずれか1つに記載の光回路と、
     前記梁部の出射面から出射される光の出射方向に配置されたレンズと、
     を備えることを特徴とする光走査器。
  8.  請求項1から6のいずれか1つに記載の光回路が備えるアレイ導波路を第1のアレイ導波路とする場合に、
     請求項7に記載の光走査器と、
     請求項7に記載のレンズを通過した光を集光する集光レンズと、
     前記集光レンズを通過した光の伝送路である複数の導波路を有する第2のアレイ導波路と、
     を備えることを特徴とする光合分波器。
  9.  請求項7に記載の光走査器と、
     請求項7に記載のレンズを通過した光を透過させるエタロンと、
     前記エタロンを透過した光を受光する受光素子と、
     を備えることを特徴とする波長モニタ。
  10.  請求項8に記載の光合分波器と、
     光を生成して、前記光合分波器または前記波長モニタが備える光回路の入力導波路に光を出射する発光部と、
     を備え、
     前記光合分波器と前記発光部とを封止したことを特徴とする光合分波器モジュール。
  11.  請求項9に記載の波長モニタと、
     光を生成して、前記光合分波器または前記波長モニタが備える光回路の入力導波路に光を出射する発光部と、
     を備え、
     前記波長モニタと前記発光部とを封止したことを特徴とする波長モニタモジュール。
PCT/JP2016/070464 2016-07-11 2016-07-11 光回路、光走査器、光合分波器、波長モニタ、光合分波器モジュール、および波長モニタモジュール WO2018011868A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/095,768 US10802269B2 (en) 2016-07-11 2016-07-11 Optical circuit, optical scanning device, optical multiplexer-demultiplexer, wavelength monitor, optical multiplexer-demultiplexer module, and wavelength monitor module
PCT/JP2016/070464 WO2018011868A1 (ja) 2016-07-11 2016-07-11 光回路、光走査器、光合分波器、波長モニタ、光合分波器モジュール、および波長モニタモジュール
JP2018527272A JP6410997B2 (ja) 2016-07-11 2016-07-11 光回路、光走査器、光合分波器、波長モニタ、光合分波器モジュール、および波長モニタモジュール
CN201680087174.3A CN109416466B (zh) 2016-07-11 2016-07-11 光线路、光扫描器、光合波分波器、波长监视器、光合波分波器模块和波长监视器模块

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/070464 WO2018011868A1 (ja) 2016-07-11 2016-07-11 光回路、光走査器、光合分波器、波長モニタ、光合分波器モジュール、および波長モニタモジュール

Publications (1)

Publication Number Publication Date
WO2018011868A1 true WO2018011868A1 (ja) 2018-01-18

Family

ID=60952436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070464 WO2018011868A1 (ja) 2016-07-11 2016-07-11 光回路、光走査器、光合分波器、波長モニタ、光合分波器モジュール、および波長モニタモジュール

Country Status (4)

Country Link
US (1) US10802269B2 (ja)
JP (1) JP6410997B2 (ja)
CN (1) CN109416466B (ja)
WO (1) WO2018011868A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187777A1 (ja) * 2018-03-27 2019-10-03 パナソニックIpマネジメント株式会社 光デバイスおよび光検出システム
CN111630443A (zh) * 2018-01-31 2020-09-04 罗伯特·博世有限公司 用于Lidar和其他应用的应力光学移相器阵列

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3112216B1 (fr) * 2020-07-01 2022-07-08 Commissariat Energie Atomique Scanner optique
US11604352B2 (en) 2020-07-29 2023-03-14 Meta Platforms Technologies LLC Waveguide-based projector
CN115857097B (zh) * 2023-02-21 2023-06-20 苏州旭创科技有限公司 阵列波导光栅

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5979826U (ja) * 1982-11-19 1984-05-30 オムロン株式会社 光偏向器
JP2000009951A (ja) * 1998-06-19 2000-01-14 Oki Electric Ind Co Ltd 光波長ルータ
JP2010060717A (ja) * 2008-09-02 2010-03-18 Nippon Telegr & Teleph Corp <Ntt> 可変分散補償器
JP2010175645A (ja) * 2009-01-27 2010-08-12 Nippon Telegr & Teleph Corp <Ntt> 光波長多重信号監視装置および方法

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6684007B2 (en) * 1998-10-09 2004-01-27 Fujitsu Limited Optical coupling structures and the fabrication processes
US6421478B1 (en) * 1999-05-11 2002-07-16 Jds Fitel Inc. Tapered MMI coupler
US6587615B1 (en) * 1999-05-11 2003-07-01 Jds Fitel Inc. Wavelength multiplexer-demultiplexer having a wide flat response within the spectral passband
US6266460B1 (en) * 1999-06-08 2001-07-24 Lucent Technologies Inc. Large-channel-count programmable wavelength add-drop
US6807372B1 (en) * 2000-07-14 2004-10-19 University Of Maryland Integrated spectral encoder/decoder for optical CDMA communication system
US6690855B2 (en) * 2000-12-15 2004-02-10 Nortel Networks Limited Planar waveguide dispersion compensator
JP2003131051A (ja) * 2001-08-16 2003-05-08 Nec Corp 光デバイス
WO2003025644A1 (en) * 2001-09-14 2003-03-27 Photon-X, Inc. Athermal polymer optical waveguide on polymer substrate
US6801679B2 (en) * 2001-11-23 2004-10-05 Seungug Koh Multifunctional intelligent optical modules based on planar lightwave circuits
US6990281B2 (en) * 2002-08-22 2006-01-24 Prima Luci, Inc. All optical logic gates
US6870979B2 (en) * 2002-10-09 2005-03-22 The Furukawa Electric Co., Ltd Optical circuit, method for manufacturing optical circuit, optical circuit device and method for controlling optical circuit device
US7061610B2 (en) * 2003-02-14 2006-06-13 Technology Asset Trust Photonic integrated circuit based planar wavelength meter
US7212326B2 (en) * 2003-05-30 2007-05-01 Jds Uniphase Corporation Optical external modulator
US7447393B2 (en) * 2004-01-16 2008-11-04 Neophotonics Corporation Thermal control of optical components
US7189362B2 (en) * 2004-03-05 2007-03-13 University Of Alabama In Huntsville Optical waveguide microcantilever with differential output and associated methods of cantilever sensing
WO2005106546A2 (en) * 2004-04-15 2005-11-10 Infinera Corporation COOLERLESS AND FLOATING WAVELENGTH GRID PHOTONIC INTEGRATED CIRCUITS (PICs) FOR WDM TRANSMISSION NETWORKS
WO2007006142A1 (en) * 2005-07-08 2007-01-18 Jds Uniphase Corporation Wavelength cross connect with per port performance characteristics
JP2007047534A (ja) * 2005-08-11 2007-02-22 Ricoh Co Ltd マルチビーム光源ユニット、光走査装置及び画像形成装置
US20070160321A1 (en) * 2005-12-01 2007-07-12 The Regents Of The University Of California Monolithic mems-based wavelength-selective switches and cross connects
EP1857846B1 (en) * 2006-05-19 2017-02-22 Lumentum Operations LLC Asymmetric mach-zehnder interferometer having a reduced drive voltage coupled to a compact low-loss arrayed waveguide grating
JP4748524B2 (ja) * 2006-08-31 2011-08-17 古河電気工業株式会社 アレイ導波路格子型合分波器
US8346087B2 (en) * 2007-09-28 2013-01-01 Oracle America, Inc. Wavelength-division multiplexing for use in multi-chip systems
US8320761B2 (en) * 2007-12-21 2012-11-27 Oracle America, Inc. Broadband and wavelength-selective bidirectional 3-way optical splitter
US7889996B2 (en) * 2007-12-21 2011-02-15 Oracle America, Inc. Optical-signal-path routing in a multi-chip system
WO2009137263A2 (en) * 2008-04-18 2009-11-12 New Jersey Institute Of Technology Ultra-miniaturized thz communication device and system
US10105081B2 (en) * 2009-09-09 2018-10-23 Indigo Diabetes Nv Implantable sensor
US8270792B1 (en) * 2009-09-15 2012-09-18 Hrl Laboratories, Llc High-resolution multi-level frequency channelizers
EP2341378A1 (en) * 2009-12-18 2011-07-06 Alcatel Lucent A photonic integrated circuit with optical isolator
CN102207459B (zh) * 2010-03-31 2013-09-04 中国科学院电子学研究所 基于集成光技术的傅里叶变换芯片光谱仪
WO2012049273A1 (en) * 2010-10-14 2012-04-19 Rwth Aachen Laser to chip coupler
JP5645631B2 (ja) * 2010-12-13 2014-12-24 三菱電機株式会社 波長モニタ、光モジュールおよび波長モニタ方法
US9188741B2 (en) * 2011-03-10 2015-11-17 Alcatel Lucent Adjustable multiple-channel optical switch
KR20130023016A (ko) * 2011-08-24 2013-03-07 에이에스엠엘 네델란즈 비.브이. 리소그래피 장치, 기판 테이블 및 디바이스 제조 방법
JP5839585B2 (ja) * 2012-08-07 2016-01-06 日本電信電話株式会社 マッハツェンダ型マルチチップモジュールの実装方法
JP5759430B2 (ja) 2012-08-07 2015-08-05 日本電信電話株式会社 波長選択スイッチ
CN103091776B (zh) * 2013-02-06 2015-04-15 中国电子科技集团公司第三十八研究所 单移相器控制的集成光波导波束形成芯片及制作方法
CN103311807B (zh) * 2013-06-09 2015-04-08 中国科学院半导体研究所 多波长激光器阵列芯片的制作方法
JP6124731B2 (ja) * 2013-08-09 2017-05-10 三菱電機株式会社 波長モニタおよび光モジュール
US9575341B2 (en) * 2014-06-28 2017-02-21 Intel Corporation Solid state LIDAR circuit with waveguides tunable to separate phase offsets

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5979826U (ja) * 1982-11-19 1984-05-30 オムロン株式会社 光偏向器
JP2000009951A (ja) * 1998-06-19 2000-01-14 Oki Electric Ind Co Ltd 光波長ルータ
JP2010060717A (ja) * 2008-09-02 2010-03-18 Nippon Telegr & Teleph Corp <Ntt> 可変分散補償器
JP2010175645A (ja) * 2009-01-27 2010-08-12 Nippon Telegr & Teleph Corp <Ntt> 光波長多重信号監視装置および方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111630443A (zh) * 2018-01-31 2020-09-04 罗伯特·博世有限公司 用于Lidar和其他应用的应力光学移相器阵列
US11947044B2 (en) 2018-01-31 2024-04-02 Robert Bosch Gmbh Stress-optic phase shifter array for Lidar and other applications
CN111630443B (zh) * 2018-01-31 2024-04-12 罗伯特·博世有限公司 用于Lidar和其他应用的应力光学移相器阵列
WO2019187777A1 (ja) * 2018-03-27 2019-10-03 パナソニックIpマネジメント株式会社 光デバイスおよび光検出システム

Also Published As

Publication number Publication date
CN109416466A (zh) 2019-03-01
US10802269B2 (en) 2020-10-13
JP6410997B2 (ja) 2018-10-24
JPWO2018011868A1 (ja) 2018-10-18
US20200142184A1 (en) 2020-05-07
CN109416466B (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
JP6410997B2 (ja) 光回路、光走査器、光合分波器、波長モニタ、光合分波器モジュール、および波長モニタモジュール
EP1445631B1 (en) Optical device with slab waveguide and channel waveguides on substrate
US20230024334A1 (en) Adjustable grid tracking transmitters and receivers
JP5357895B2 (ja) アイピースおよびそれを用いたチューナブル波長分散補償器
JP4802282B2 (ja) 光信号処理装置
JP5730526B2 (ja) 光スイッチ
JP4659791B2 (ja) 光波長フィルタ
US20170110850A1 (en) Method and system for widely tunable laser
US20150078748A1 (en) Wavelength selective switch
JP4967847B2 (ja) 光スイッチおよびmemsパッケージ
JP4939341B2 (ja) 光信号処理装置
JP4945475B2 (ja) 可変分散補償器
JP4714175B2 (ja) ミラー装置および光装置
Gu et al. Compact wavelength selective switch using a Bragg reflector waveguide array with ultra-large number (> 100) of output ports
WO2020213067A1 (ja) 光合波回路および光源
JP2009198593A (ja) 可変分散補償器
JP5016009B2 (ja) 光信号処理装置およびその組み立て方法
JP4659846B2 (ja) 光信号処理装置
WO2010041475A1 (ja) 光半導体モジュール及びその組立方法
JP2014240805A (ja) 分光デバイス及び波長選択スイッチ
JP4814147B2 (ja) 光信号処理装置
JP2009036901A (ja) 光信号処理装置
JP3145164U (ja) Awg型半導体リングレーザ
JP4653783B2 (ja) 光信号処理装置
JP2008292924A (ja) 光信号処理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018527272

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16908772

Country of ref document: EP

Kind code of ref document: A1