WO2018010490A1 - 3d喷墨打印用光固化透明墨水及其制备方法 - Google Patents
3d喷墨打印用光固化透明墨水及其制备方法 Download PDFInfo
- Publication number
- WO2018010490A1 WO2018010490A1 PCT/CN2017/085455 CN2017085455W WO2018010490A1 WO 2018010490 A1 WO2018010490 A1 WO 2018010490A1 CN 2017085455 W CN2017085455 W CN 2017085455W WO 2018010490 A1 WO2018010490 A1 WO 2018010490A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- clear ink
- acrylate monomer
- ink
- ink according
- photocurable clear
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/30—Inkjet printing inks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/16—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
- C08F220/18—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
- C08F220/1811—C10or C11-(Meth)acrylate, e.g. isodecyl (meth)acrylate, isobornyl (meth)acrylate or 2-naphthyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/26—Esters containing oxygen in addition to the carboxy oxygen
- C08F220/28—Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
- C08F220/282—Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing two or more oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/38—Esters containing sulfur
- C08F220/387—Esters containing sulfur and containing nitrogen and oxygen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/02—Printing inks
- C09D11/03—Printing inks characterised by features other than the chemical nature of the binder
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/02—Printing inks
- C09D11/10—Printing inks based on artificial resins
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/02—Printing inks
- C09D11/10—Printing inks based on artificial resins
- C09D11/101—Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/02—Printing inks
- C09D11/10—Printing inks based on artificial resins
- C09D11/106—Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C09D11/107—Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from unsaturated acids or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/30—Inkjet printing inks
- C09D11/38—Inkjet printing inks characterised by non-macromolecular additives other than solvents, pigments or dyes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2800/00—Copolymer characterised by the proportions of the comonomers expressed
- C08F2800/20—Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages
Definitions
- the invention relates to printing technology, in particular to a light curing transparent ink for 3D inkjet printing and a preparation method thereof, and belongs to the technical field of 3D inkjet printing.
- 3D inkjet printing technology is based on the working principle of the inkjet printer. Under the excitation of the digital signal, the ink in the nozzle chamber is instantaneously formed into droplets, and is ejected from the nozzle at a certain speed and frequency, according to the specified path. The layer is solidified and finally, and a 3D object is finally obtained.
- 3D inkjet printing inks can be classified into photocurable inks and temperature-curable inks depending on the curing source.
- Photocurable inks usually contain photoinitiators, oligomers (also called oligomers) and monomers, and photoinitiators are exposed. Irradiation of light is induced to generate free radicals to cause polymerization of the oligomer and monomer to cure the ink; temperature-curing inks typically contain a wax component which is cured by lowering the ambient temperature below the melting point of the wax.
- temperature-curable inks requires strict control of the temperature during the entire ink-jet printing process, and the printed article is at risk of melting or deforming at high temperatures, and thus the temperature-curable ink is limited in application range.
- the ink for 3D inkjet printing can be classified into cyan ink, magenta ink, yellow ink, black ink, white ink, and clear ink depending on the colorant, and transparent ink has been a difficult point of research.
- the existing light-curing transparent ink is different from general light-curing color inks such as cyan ink, magenta ink, yellow ink, black ink, white ink, etc.
- the biggest disadvantage of light-curing transparent ink is that the printed product is easily yellowed and looks opaque. .
- the main cause of yellowing of a printed article during photocuring reaction may include the following: 1.
- the photoinitiator in the ink decomposes to produce a quinone structure, and the quinone structure causes yellowing of the printed article; 2.
- the photoinitiator itself is yellow. After the photocuring reaction, the photoinitiator in the ink is not completely reacted, and the remaining photoinitiator causes the printed article to appear yellowish. 3.
- the photoinitiator is generated after being irradiated with light. Higher active radicals may also cause the molecular chain that has been polymerized in the ink to break, resulting in a conjugated structure, which causes the printed article to appear yellowish. 4.
- the yellowing caused by the aging of the host resin in the ink is mainly due to
- the conjugated double bond produced by the polymer chain scission causes yellowing when the number of conjugates reaches a certain value, or the carbonyl group generated by oxidation after aging, or the decomposition of the nitrogen-containing group material produces a leucoamine substance;
- the surfactant used in the ink is incompatible with the entire system to make the printed article look cloudy and sullen.
- the invention provides a photocurable transparent ink for 3D inkjet printing and a preparation method thereof, which are used for overcoming the phenomenon that yellowing and turbidity of the photocurable transparent ink printing article are prone to occur in the prior art.
- the present invention provides a photocurable clear ink for 3D inkjet printing comprising the following components: an acrylate monomer, a mercapto compound, a surfactant, a photoinitiator, and an auxiliary.
- an acrylate monomer when the light source is irradiated on the formed printed product, the light source induces photoinitiator generation in the ink.
- Free radicals which cause polymerization of the acrylate monomer and the sulfhydryl compound, cause the ink to gradually solidify and eventually form a solid printed article.
- the mercapto compound in the ink composition of the invention has excellent yellowing resistance, and the above composition does not produce a quinone structure under illumination, so that yellowing is less likely to occur, and the transparency is significantly improved compared with the transparent printing article in the prior art.
- the surfactant can also participate in the polymerization process to improve the transparency of the printed product.
- the light source used in the present invention is not particularly limited, and may be ultraviolet light or visible light or the like, and is specifically determined according to a photoinitiator selected for use in the ink. For example, when the photoinitiator used in the ink is irradiated under ultraviolet light, a large amount can be generated.
- the ink containing the photoinitiator When the radical is present, the ink containing the photoinitiator is irradiated with ultraviolet light during the photocuring reaction; when the photoinitiator used in the ink generates a large amount of free radicals under visible light irradiation, then the photoinitiator is contained
- the ink of the agent is irradiated with visible light when subjected to a photocuring reaction.
- the ink composition of the present invention may further comprise a non-fluorenyl-modified acrylate oligomer which is excellent in yellowing resistance, and when the light source is irradiated onto the formed printed article, the light source induces light in the ink.
- the initiator generates free radicals, thereby causing the acrylate monomer and the mercapto compound and the non-fluorenyl modified acrylate oligomer to polymerize to gradually solidify the ink to finally form a solid printed article.
- the photocurable clear ink of the present invention comprises the following components by weight: 0 to 60 parts of the non-fluorenyl-modified acrylate oligomer, 25 to 50 parts of the acrylate monomer, 10 to 50 parts of the mercapto compound, and a surfactant. 0.01 to 2 parts, 0.5 to 5 parts of a photoinitiator, and 0.5 to 5 parts of an auxiliary agent.
- the photocurable ink of the present invention has a better application performance and printing effect by selecting a raw material of the composition, for example, a low viscosity of 9 to 15 cps and a surface tension of 19 to 30 dyn at an operating temperature.
- the working temperature is ⁇ 40 °C. Therefore, the ink of the present invention is not only susceptible to yellowing of the printed product, but also has a high temperature-resistant print head during printing because of its low viscosity, which not only saves energy but also effectively extends the life of the print head.
- the low surface tension helps the rapid setting of the light-curing transparent ink, and the generated 3D object has good stability.
- the mercapto compound includes one or more of a mercapto-modified acrylate oligomer and a mercaptan.
- the fluorenyl-modified acrylate oligomer has excellent yellowing resistance
- the thiol-modified acrylate oligomer of the present invention may specifically include a fluorenyl-modified aliphatic urethane acrylate oligomer and a fluorenyl-modified silicone photosensitive resin.
- One or more of the oligomers are specifically include a fluorenyl-modified aliphatic urethane acrylate oligomer and a fluorenyl-modified silicone photosensitive resin.
- the fluorenyl-modified aliphatic urethane acrylate oligomer belongs to an aliphatic urethane acrylate oligomer, and mainly refers to an oligomer having a urethane bond (-NHCOO-) in addition to a thiol group in a molecular structure, and the urethane bond It can form a variety of hydrogen bonds between polymer chains, enhance the wear resistance and flexibility of printed products, and has high elongation at break, thus giving printed products a better overall performance.
- sulfhydryl-modified aliphatic urethane acrylate oligomers are mainly from Goodech GT8010 of Gudi Company, Genomer 7302 of Sharp Company, UT85602, Unicryl R-9119, UT87799 of Runo Company, and the like.
- the fluorenyl-modified silicone photosensitive resin oligomer belongs to a silicone photosensitive resin oligomer, and mainly refers to an acrylate oligomer having a silicon-oxygen bond (-Si-O-) in addition to a sulfhydryl group in a molecular structure, which has a low yellow color. Denatured, low viscosity and low odor.
- sulfhydryl silicone photosensitive resin oligomers There are currently no sulfhydryl silicone photosensitive resin oligomers on the market, but self-synthesis products such as polyalkyl propyl propyl siloxane resins and thiol-olefin functionalized polysiloxane systems can be used (Ref. The literature "Research progress in photocurable silicone materials" was published in the Materials Guide, April 2006, Volume 20, Issue 4).
- the thiol of the present invention may include alkyl mercaptan, mercapto acetate, mercaptopropionate, etc., but the mercaptan contains at least 8 carbon atoms, for example, the mercaptan may specifically be dodecyl mercaptan, hexadecane.
- Thiol ethylene glycol bis(3-mercaptopropionate) GDMP, 1,4-butanediol bis(3-mercaptopropionate) BDMP, trimethylolpropane tris(3-mercaptopropionate) TMPMP, pentaerythritol tetrakis(3-mercaptopropionate) PETMP, ⁇ -mercaptopropyltrimethoxysilane KH590, and the like.
- Table 1 is a performance parameter of a partial thiol-modified aliphatic urethane acrylate oligomer and a mercaptan in the mercapto compound of the present invention.
- the acrylate monomer in the photocurable clear ink component of the present invention specifically refers to an acrylate monomer not containing a benzene ring structure, specifically, the acrylate of the present invention.
- the monomer can be an aliphatic acrylate monomer.
- the aliphatic acrylate monomer may be one or more of a monofunctional aliphatic acrylate monomer, a bifunctional aliphatic acrylate monomer, a polyfunctional aliphatic acrylate monomer, and a cycloalkane acrylate monomer. .
- the monofunctional aliphatic acrylate monomer may be isodecyl acrylate, commercially available products such as EM219, EM2191, EM309 of Taiwan Changxing Co., Ltd.; lauryl acrylate, commercially available products such as EM215 of Changxing, Taiwan; Ethyl ethoxyethyl ester, commercially available products such as EOEOEA of DSM Company, EM211 of Changxing, etc.; specifically, the bifunctional aliphatic acrylate monomer may be a difunctional propylene glycol diacrylate such as dipropylene glycol diacrylate (DPGDA) ), tripropylene glycol diacrylate (TPGDA) or other glycol diacrylates, such as 1,6-hexanediol diacrylate (HDDA), wherein dipropylene glycol diacrylate (DPGDA) is commercially available.
- DPGDA dipropylene glycol diacrylate
- TPGDA tripropylene glycol
- the trifunctional aliphatic acrylate monomer may be ethoxylated trimethylolpropane triacrylate (TMPTA), propoxylated glycerol Acrylate and the like, among which, oxyethylene trimethylolpropane triacrylate (TMPTA) is commercially available as Changxing EM2382, etc., and propoxyglycerol triacrylate is commercially available as Changxing EM2387; specific, polyfunctional aliphatic The acrylate monomer may be dipentaerythritol pen
- the cycloalkane acrylate monomer may be 3,3,5-trimethylcyclohexane acrylate, isobornyl acrylate IBOA, tricyclodecane dimethanol diacrylate, etc., wherein 3, 3, 5 - Trimethylcyclohexane acrylate commercially available products such as SR420 from Sartomer, EM2104 from Changxing, etc.; commercially available products of isobornyl acrylate such as SR506NS from Sartomer, EM70 from Changxing, IBXA from Osaka Chemical, etc.; Commercial products such as cyclodane dimethanol diacrylate such as SR833S of Sartomer, EM2204 of Changxing, etc.
- the acrylate monomer component in the present invention is a compound selected from a plurality of acrylate monomers, that is, a mixture of a plurality of acrylate monomer compounds, the most abundant one
- the viscosity of the acrylate monomer compound is less than 15 cps at 25 °C.
- Table 2 shows the performance parameters of a part of the acrylate monomer in the present invention.
- non-fluorenyl-modified acrylate oligomer comprises one of a pure acrylate oligomer, a non-fluorenyl-modified aliphatic urethane acrylate oligomer, and a non-fluorenyl-modified silicone photosensitive resin oligomer. Or a variety.
- the pure acrylate oligomer has good flexibility and solvent resistance, and has good adhesion to various substrates.
- the specific products of pure acrylate oligomers currently on the market such as 6530B-40 of Taiwan Changxing Company, DR-A815, DR-A830, DR-A845, DR-A870, etc.
- the non-fluorenyl modified aliphatic urethane acrylate oligomer belongs to an aliphatic urethane acrylate oligomer, and mainly refers to an oligomer having a urethane bond (-NHCOO-) in a molecular structure, and the urethane bond can be in a polymer chain.
- Forming a plurality of hydrogen bonds enhancing the abrasion resistance and flexibility of the printed article, and having high elongation at break, thereby giving the printed article a better overall performance.
- the urethane acrylate oligomer may be an aliphatic urethane acrylate oligomer which is not modified by any group, or the aliphatic urethane acrylate oligomer is modified but the modifying group is not a thiol group, and the present invention Specific groups that modify the aliphatic urethane acrylate oligomer are not limited.
- Non-mercapto-modified aliphatic urethane acrylate oligomers currently on the market such as CN8007 NS, CN8011 NS, CN9006 NS, CN9007, CN9010NS, CN9178 NS, CN963B80, CN985B88, etc.
- the non-fluorenyl modified silicone photosensitive resin oligomer belongs to the silicone photosensitive resin oligomer, and mainly refers to an acrylate oligomer containing a silicon-oxygen bond (-Si-O-) in a molecular structure, which has low yellowing and low
- the non-fluorenyl-modified silicone photosensitive resin oligomer may be a silicone photosensitive resin oligomer which is not modified by any group or a silicone photosensitive resin is low.
- the polymer is modified but the modifying group is not a mercapto group, and the present invention does not limit the specific group for modifying the silicone photosensitive resin oligomer.
- Currently commercially available non-fluorenyl-modified silicone photosensitive resin oligomers include Cypress's EB350, EB1360, Changxing's 6225, Boxing's B-816, B-818, and the like.
- the component of the photocurable clear ink of the present invention does not contain a non-fluorenyl-modified acrylate oligomer
- the mercapto compound in the component must include a sulfhydryl-modified aliphatic urethane acrylate.
- Table 3 shows the performance parameters of some non-fluorenyl modified acrylate oligomers in the present invention.
- the surfactant comprises one or more of a radiation crosslinkable silicone acrylate and a modified polysiloxane polymer.
- the radiation-crosslinkable silicone acrylate may be TEGO RAD 2010, 2011, 2100, 2200N, 2250, etc. of Digo, and the radiation-crosslinkable silicone acrylate can participate in the crosslinking reaction in the photocuring reaction. Thereby, the phenomenon of hairpin of the printed product is suppressed; the modified polysiloxane polymer may be BYK-333, BYK-371, BYK-377 of BYK, Tego wet 270, Tego Glide 450 of Digo Company, and the like.
- the photoinitiator in the present invention is a radical photoinitiator.
- the free radical photoinitiator may be an acylphosphine oxide, such as the trade name TEPO (2,4,6-trimethylbenzoyl-ethoxy-phenylphosphine oxide), TPO (2, 4, Products such as 6-trimethylbenzoyl-diphenylphosphine oxide) and 819 (bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide); may be ⁇ -hydroxyketones, for example
- the trade name is 1173 (2-hydroxy-2-methyl-1-phenylacetone), 184 (1-hydroxy-cyclohexyl benzophenone), 2959 (2-hydroxy-2-methyl-1-p-hydroxyl) Products such as ketophenyl phenylacetone; may be oxime esters such as BASF's Irgacure OXE 01 and Irgacure OXE 02, the structural formulas are:
- the above-mentioned radical photoinitiator does not cause yellowing of the reaction system.
- auxiliary agent is selected from one or more of a toughening agent, an antifoaming agent, and a stabilizer.
- the toughening agent may be a polycaprolactone triol and a polyol product, such as 305T, 205N of the company, Goodech GT8003 of Gudi, etc.; the defoaming agent is selected from the polymer containing no silicone.
- the stabilizers used in the present invention may be GENORAD 16, GenoRAD 18, GENORAD 20, GENORAD 22 of Jingan Company, alkyl acrylate phosphate PM2010 of Jingde Chemical, and polymerization inhibitor of TCI Company. ZJ-701 and so on.
- the present invention also provides a method for preparing a photocurable clear ink according to any of the above, comprising the steps of:
- the ink component in the present invention comprises a non-fluorenyl-modified acrylate oligomer
- the non-fluorenyl-modified acrylate oligomer, the acrylate monomer, the mercapto compound, the surfactant, and the auxiliary agent are mixed in the step 1).
- the first mixture is obtained, otherwise the acrylate monomer, mercapto compound, surfactant, and auxiliary agent are mixed to obtain a first mixture.
- the order of addition is not limited in the process of obtaining the first mixture.
- the preparation method of the invention can be completed only by mixing and filtering, is simple and easy to operate, is not only beneficial to form stable ink, but also facilitates liquefaction and ejection of ink, thereby being more convenient to use, and is particularly suitable for printing of 3D objects.
- the preparation of the photocurable clear ink of the present invention needs to be carried out in an environment outside the range of the initiation wavelength of the selected photoinitiator to avoid polymerization of the components of the light-induced ink in the environment.
- the filtering is to perform secondary filtration on the second mixture by using a microporous membrane; wherein the first stage filtration uses a glass fiber membrane having a pore diameter of 0.45 ⁇ m, and the second stage filtration uses a polymerization having a pore diameter of 0.22 ⁇ m.
- Acrylic film (referred to as PP film).
- the invention adopts a stepwise filtration method to filter the second mixture at least twice, wherein the pore diameter of the previously filtered microporous membrane is larger than the pore diameter of the microfiltration membrane of the latter filtration, and the microfiltration membrane of the last filtration.
- the aperture is smaller than the aperture of the print nozzle orifice during inkjet printing.
- the time to control the degassing treatment is not higher than 5h.
- the operation mode of the degassing treatment is selected from the group consisting of vacuum degassing, atmospheric degassing, and heated degassing.
- the degassing time is controlled to be 1 to 3 hours.
- the non-fluorenyl-modified acrylate oligomer and the thiol-modified acrylate oligomer used in the ink have small shrinkage of the printed product when the ink is photocured, and the volume shrinkage rate is usually less than 5%;
- the mercapto compound used in the ink wherein the mercapto group has high reactivity, and the photocuring reaction is completed when the ink is photocured, so that the printed product does not discolor for a long time, and the high reactivity can effectively reduce the photoinitiator.
- the dosage is to avoid yellowing of the printed product caused by excessive photoinitiator.
- the ruthenium has a certain degree of reducing property, which has a certain inhibitory effect on the yellowing of the printed product caused by the aging oxidation of the resin in the ink, thereby providing a very white color for the printed product. Extremely transparent appearance;
- the surfactant used in the ink can not only effectively reduce the surface tension of the ink, improve the leveling property of the ink, but also participate in the entire photocuring reaction, so that the printed product has a transparent appearance;
- the ink of the invention has wide application conditions, can perform inkjet printing at low temperature, has good printing fluency, and prolongs the service life of the print head;
- the ink does not contain volatile solvents, all components are involved in the photo-curing reaction, no VOC emissions, will not cause environmental pollution.
- the 3D inkjet printing photocurable clear ink of the embodiment is applied to a 3D photocurable inkjet printer of an industrial nozzle, and the wavelength of the ultraviolet light source is set to 395 nm, and the ink fluency test is performed at a suitable ejection temperature respectively.
- the accuracy test of the molded part, which is mainly reflected by the volume shrinkage rate, and the test method is:
- the 3D inkjet printing photocurable clear ink of the present embodiment is applied to a 3D photocurable inkjet printer of an industrial nozzle, and the wavelength of the ultraviolet light source is set to 395 nm, and a square of 50 mm*50 mm is printed at the ejection temperature, and the thickness is 2mm, the transmittance is measured by an ultraviolet visible spectrophotometer, that is, the ratio of the luminous flux transmitted through the sample to the luminous flux incident on the sample, expressed as a percentage.
- Specific test methods refer to GB/T 2410-2008 transparent plastic transmittance and haze determination. Among them, the higher the light transmittance, the lower the yellowing degree of the printed product.
- the preparation method of the 3D inkjet printing photocurable transparent ink in this embodiment is basically the same as that in the first embodiment.
- the preparation method of the 3D inkjet printing photocurable transparent ink in this embodiment is basically the same as that in the first embodiment, except that the temperature of the 3D inkjet printing photocurable transparent ink is heated to 40-60 ° C for degassing treatment by heating degassing for 1 hour. .
- the preparation method of the 3D inkjet printing photocurable clear ink in this embodiment is basically the same as that in the first embodiment except that the time for deaeration under reduced pressure is adjusted to 3 hours.
- the preparation method of the 3D inkjet printing photocurable transparent ink in this embodiment is basically the same as that in the first embodiment, except that the degassing treatment is performed by using the atmospheric pressure to degas for 3 hours.
- the 3D inkjet printing light-curing transparent ink of the invention has a light transmittance of more than 90%, so the 3D inkjet printing light-curing transparent ink of the invention can suppress the yellowing phenomenon of the printed product. Has good transparency.
- the 3D inkjet printing photocurable clear ink of the present invention can have a suitable viscosity at a lower working temperature (not lower than 40 ° C), so that it is possible to effectively extend the life of the print head without using a high temperature resistant print head.
- the 3D inkjet printing photocurable transparent ink of the present invention has a moderate surface tension, so that the deformation of the 3D object formed during printing may be low.
- the 3D inkjet printing photocurable transparent ink of the present invention has a low shrinkage rate, and thus the formed molded article of the 3D object has a low shrinkage rate and does not undergo warpage deformation.
- the 3D inkjet printing light-curing transparent ink of the invention has good fluidity, and is substantially free of particulate matter, thereby ensuring the stability of the 3D inkjet printing light-curing transparent ink, and avoiding the problem of nozzle nozzle clogging during printing. occur.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
- Ink Jet Recording Methods And Recording Media Thereof (AREA)
Abstract
提供一种3D喷墨打印用光固化透明墨水及其制备方法,该3D喷墨打印用光固化透明墨水包括如下成分:丙烯酸酯单体、巯基化合物、表面活性剂、光引发剂和助剂。所述的3D喷墨打印用光固化透明墨水能够抑制打印制品容易发生黄变和浑浊发朦的现象。
Description
本发明涉及打印技术,尤其涉及一种3D喷墨打印用光固化透明墨水及其制备方法,属于3D喷墨打印技术领域。
3D喷墨打印技术是根据喷墨打印机的工作原理,在数字信号的激励下使喷嘴腔室中的墨水在瞬间形成液滴,并以一定的速度和频率从喷嘴中喷出,按指定路径逐层固化成型,最终得到3D物体。
3D喷墨打印用墨水根据固化源的不同可以分为光固化墨水和温度固化墨水,光固化墨水中通常含有光引发剂、低聚物(也称齐聚物)和单体,光引发剂受到光的照射被激发产生自由基促使低聚物和单体发生聚合反应从而使墨水固化;温度固化墨水中通常含有蜡组分,通过将环境温度降到蜡的熔点温度以下,墨水被固化。然而,使用温度固化墨水对整个喷墨打印过程中的温度需严格控制,且打印制品在高温下存在熔融或变形的风险,因此温度固化墨水在应用范围上受到限制。
另一方面,3D喷墨打印用墨水根据着色剂的不同可以分为青色墨水、品红色墨水、黄色墨水、黑色墨水、白色墨水以及透明墨水等,其中透明墨水一直以来是研究的难点。
现有的光固化透明墨水不同于一般的光固化彩色墨水如青色墨水、品红色墨水、黄色墨水、黑色墨水、白色墨水等,光固化透明墨水最大的缺点就是打印制品容易黄变和看上去不透明。
通常,光固化透明墨水在进行光固化反应时打印制品产生黄变主要原因可能包括以下几种:1、墨水中的光引发剂分解后产生醌类结构,醌类结构使得打印制品产生黄变;2、光引发剂本身为黄色,在进行光固化反应后墨水中的光引发剂没有完全反应,剩余的光引发剂致使打印制品看上去产生黄变;3、光引发剂被光照射后产生的较高活性的自由基也可能会导致墨水中已经聚合的分子链断裂,从而产生共轭结构,致使打印制品看上去产生黄变;4、墨水中主体树脂老化引起的黄变,其主要原因为高分子断链产生的共轭双键,当共轭数量达到一定值时就会产生黄变,或者老化断链后氧化产生的羰基,或者含氮基团物质的分解产生有色胺类物质;5、墨水中使用的表面活性剂与整个体系不相容而使打印制品看上去浑浊发朦。
发明内容
本发明提供一种3D喷墨打印用光固化透明墨水及其制备方法,用来克服现有技术中光固化透明墨水打印制品容易发生黄变和浑浊发朦的现象。
本发明提供一种3D喷墨打印用光固化透明墨水,包括如下成分:丙烯酸酯单体、巯基化合物、表面活性剂、光引发剂和助剂。本发明的墨水在进行喷墨打印的过程中,当光源照射在已形成的打印制品上时,光源会诱发墨水中的光引发剂产生
自由基,从而促使丙烯酸酯单体和巯基化合物发生聚合反应使墨水逐渐固化而最终生成固态的打印制品。本发明墨水成分中的巯基化合物具有极好的耐黄变性,并且上述组成在光照下不会产生醌类结构,因此不易发生黄变现象,透明度较现有技术中的透明打印制品得到显著的提升。同时,在打印过程中,表面活性剂还可以参与到聚合反应的过程中,改善打印制品的透明度。本发明中对使用的光源没有特别限制,可以为紫外光或可见光等,具体根据墨水中所选用的光引发剂来确定,例如,当墨水中所用的光引发剂在紫外光照射下能产生大量的自由基时,那么含有该光引发剂的墨水在进行光固化反应时使用紫外光进行照射;当墨水中所用的光引发剂在可见光照射下能产生大量的自由基时,那么含有该光引发剂的墨水在进行光固化反应时使用可见光进行照射。
另外,除了上述成分外,本发明的墨水成分中还可以包括耐黄变性佳的非巯基改性丙烯酸酯低聚物,当光源照射在已形成的打印制品上时,光源会诱发墨水中的光引发剂产生自由基,从而促使丙烯酸酯单体和巯基化合物以及非巯基改性丙烯酸酯低聚物发生聚合反应使墨水逐渐固化而最终生成固态的打印制品。
具体地,本发明的光固化透明墨水包括如下重量份的成分:非巯基改性丙烯酸酯低聚物0~60份,丙烯酸酯单体25~50份,巯基化合物10~50份,表面活性剂0.01~2份,光引发剂0.5~5份,助剂0.5~5份。
本发明的光固化墨水,通过对组合物原料进行选择使生成的墨水具有更优的应用性能和打印效果,例如,能够在工作温度下达到9~15cps的低粘度以及19~30dyn的表面张力,其中工作温度≥40℃。因此本发明的墨水不仅打印得到的制品不易发生黄变,而且由于粘度较低因此在打印过程中也无需耐温性强的打印头,不仅能够节约能耗还能够有效延长打印头的使用寿命。并且低的表面张力有助于光固化透明墨水的快速定型,生成的3D物体稳定性佳。
进一步地,所述巯基化合物包括巯基改性丙烯酸酯低聚物和硫醇中的一种或多种。巯基改性丙烯酸酯低聚物具有极好的耐黄变性,并且本发明的巯基改性丙烯酸酯低聚物具体可以包括巯基改性脂肪族聚氨酯丙烯酸酯低聚物和巯基改性有机硅光敏树脂低聚物中的一种或多种。
其中,巯基改性脂肪族聚氨酯丙烯酸酯低聚物属于脂肪族聚氨酯丙烯酸酯低聚物,主要指分子结构中除了巯基外还含有氨酯键(-NHCOO-)的低聚物,该氨酯键能够在高分子链间形成多种氢键,增强打印制品的耐磨性与柔韧性,并且断裂伸长率高,因此使打印制品具有较佳的综合性能。目前市售的巯基改性脂肪族聚氨酯丙烯酸酯低聚物主要由古迪公司的Greatech GT8010,锐昂公司的Genomer 7302,润奥公司的UT85602、Unicryl R-9119、UT87799等。
巯基改性有机硅光敏树脂低聚物属于有机硅光敏树脂低聚物,主要指分子结构中除了巯基外还含有硅氧键(-Si-O-)的丙烯酸酯低聚物,其具有低黄变性、低粘度以及低气味的特点。目前市面上还未有在售的巯基有机硅光敏树脂低聚物,但是可以采用自合成的产品如聚烷基巯丙基硅氧烷树脂、硫醇-烯烃官能化聚硅氧烷体系(参考文献“光固化有机硅材料研究进展”刊登在材料导报2006年4月第20卷第4期上)等。
本发明的硫醇可以包括烷基硫醇、巯基乙酸酯以及巯基丙酸酯等,但是硫醇中至少含有8个碳原子,例如硫醇可以具体是十二烷基硫醇,十六烷基硫醇,乙二醇二(3-巯基丙酸酯)GDMP,1,4-丁二醇二(3-巯基丙酸酯)BDMP,三羟甲基丙烷三(3-巯基丙酸酯)TMPMP,季戊四醇四(3-巯基丙酸酯)PETMP,γ-巯丙基三甲氧基硅烷KH590等。
表1为本发明巯基化合物中部分的巯基改性脂肪族聚氨酯丙烯酸酯低聚物以及硫醇的性能参数。
表1
为了进一步减少打印制品发生黄变现象的可能性,本发明中光固化透明墨水组分中的丙烯酸酯单体具体是指不含有苯环结构的丙烯酸酯单体,具体地,本发明的丙烯酸酯单体可以是脂肪族丙烯酸酯单体。并且丙烯酸单体中所含有的共轭键数目不能超过5个,例如不含有5个以上的-C=C-、-N=N-、-N=O-或-C=S-等。
其中,脂肪族丙烯酸酯单体可以为单官能团脂肪族丙烯酸酯单体、双官能团脂肪族丙烯酸酯单体、多官能团脂肪族丙烯酸酯单体和环烷烃丙烯酸酯单体中的一种或者多种。
具体的,单官能团脂肪族丙烯酸酯单体可以是丙烯酸异癸酯,市售产品如台湾长兴公司的EM219、EM2191、EM309等;丙烯酸月桂酯,市售产品如台湾长兴的EM215等;丙烯酸乙氧基乙氧基乙酯,市售产品如DSM公司的EOEOEA、长兴的EM211等;具体的,双官能团脂肪族丙烯酸酯单体可以是双官能丙二醇类二丙烯酸酯,如二丙二醇二丙烯酸酯(DPGDA)、二缩三丙二醇二丙烯酸酯(TPGDA)或其它二醇类二丙烯酸酯,如1,6-己二醇二丙烯酸酯(HDDA),其中,二丙二醇二丙烯酸酯(DPGDA)市售产品如沙多
玛公司的SR508NS,长兴的EM222等;二缩三丙二醇二丙烯酸酯(TPGDA)市售产品如沙多玛公司的SR306NS,长兴的EM223等;1,6-己二醇二丙烯酸酯(HDDA)市售产品如沙多玛的SR238NS,长兴的EM221,DSM公司的HDDA等;具体的,三官能团脂肪族丙烯酸酯单体可以是乙氧化三羟甲基丙烷三丙烯酸酯(TMPTA)、丙氧化甘油三丙烯酸酯等,其中,乙氧化三羟甲基丙烷三丙烯酸酯(TMPTA)市售产品如长兴的EM2382等,丙氧化甘油三丙烯酸酯市售产品如长兴的EM2387等;具体的,多官能团脂肪族丙烯酸酯单体可以是二季戊四醇五丙烯酸酯,市售产品如沙多玛的SR399LV NS等,其中多官能团脂肪族丙烯酸酯单体优选不超过五官能团的脂肪族丙烯酸酯单体,否则影响打印的3D物体的体积收缩。
具体地,环烷烃丙烯酸酯单体可以是3,3,5-三甲基环己烷丙烯酸酯、丙烯酸异冰片酯IBOA、三环癸烷二甲醇二丙烯酸酯等,其中,3,3,5-三甲基环己烷丙烯酸酯市售产品如沙多玛的SR420、长兴的EM2104等;丙烯酸异冰片酯IBOA市售产品如沙多玛的SR506NS,长兴的EM70,大阪化学的IBXA等;三环癸烷二甲醇二丙烯酸酯市售产品如沙多玛的SR833S,长兴的EM2204等。
值得注意的是,当本发明中的丙烯酸酯单体组分是选自多种丙烯酸酯单体的化合物时,即是多种丙烯酸酯单体的化合物的混合物时,其中含量最多的那一种丙烯酸酯单体化合物的粘度在25℃时要小于15cps。
表2为本发明中部分丙烯酸酯单体的性能参数。
表2
进一步地,所述非巯基改性丙烯酸酯低聚物包括纯丙烯酸酯低聚物、非巯基改性脂肪族聚氨酯丙烯酸酯低聚物、非巯基改性有机硅光敏树脂低聚物中的一种或多种。
其中,纯丙烯酸酯低聚物具有良好的柔韧性和耐溶剂性,对各种基材都具有良好的附着力。目前市售的纯丙烯酸酯低聚物具体产品如台湾长兴公司的6530B-40、
DR-A815、DR-A830、DR-A845、DR-A870等。
非巯基改性脂肪族聚氨酯丙烯酸酯低聚物属于脂肪族聚氨酯丙烯酸酯低聚物,主要指分子结构中含有氨酯键(-NHCOO-)的低聚物,该氨酯键能够在高分子链间形成多种氢键,增强打印制品的耐磨性与柔韧性,并且断裂伸长率高,因此使打印制品具有较佳的综合性能,具体地,在本发明中,非巯基改性脂肪族聚氨酯丙烯酸酯低聚物可以是没有被任何基团改性的脂肪族聚氨酯丙烯酸酯低聚物,或是脂肪族聚氨酯丙烯酸酯低聚物被改性但改性基团不为巯基,本发明并不限制对脂肪族聚氨酯丙烯酸酯低聚物进行改性的具体基团。目前市场上的非巯基改性脂肪族聚氨酯丙烯酸酯低聚物如沙多玛的CN8007 NS、CN8011 NS、CN9006 NS、CN9007、CN9010NS、CN9178 NS、CN963B80、CN985B88等,台湾长兴公司的6106、6113、6115J-80、6131-1、6150-100、6170、6217、DR-U021、DR-E850等,润奥公司的Unicryl R-7162,锐昂公司的4256、G1122、Genomer 4297,古迪公司的Greatech GT8440、Greatech GT-8220、Greatech GT-8239、Miramer PU340、Miramer PU2100、Miramer PU5000。
非巯基改性有机硅光敏树脂低聚物属于有机硅光敏树脂低聚物,主要指分子结构中含有硅氧键(-Si-O-)的丙烯酸酯低聚物,其具有低黄变性、低粘度以及低气味的特点,具体地,在本发明中,非巯基改性有机硅光敏树脂低聚物可以是没有被任何基团改性的有机硅光敏树脂低聚物或是有机硅光敏树脂低聚物被改性但改性基团不为巯基,本发明并不限制对有机硅光敏树脂低聚物进行改性的具体基团。目前市售的非巯基改性有机硅光敏树脂低聚物有氰特公司的EB350、EB1360,长兴公司的6225,博兴科技的B-816、B-818等。
在本发明中值得注意的是,当本发明的光固化透明墨水的成分中不含有非巯基改性丙烯酸酯低聚物时,那么成分中的巯基化合物一定包括巯基改性脂肪族聚氨酯丙烯酸酯低聚物或者巯基改性有机硅光敏树脂低聚物中的至少一种。
表3为本发明中部分非巯基改性丙烯酸酯低聚物的性能参数。
表3
进一步地,所述表面活性剂包括可辐射交联的有机硅丙烯酸酯和改性聚硅氧烷聚合物中的一种或多种。其中可辐射交联的有机硅丙烯酸酯可以是迪高公司的TEGO RAD 2010、2011、2100、2200N、2250等,可辐射交联的有机硅丙烯酸酯能够参与至光固化反应中发生交联反应,从而抑制打印制品的发朦的现象;改性聚硅氧烷聚合物可以是毕克公司的BYK-333、BYK-371、BYK-377,迪高公司的Tego wet 270、Tego Glide 450等。
进一步地,本发明中的光引发剂为自由基光引发剂。具体地,自由基光引发剂可以是酰基膦氧化物,例如商品名为TEPO(2,4,6-三甲基苯甲酰基-乙氧基-苯基氧化膦),TPO(2,4,6-三甲基苯甲酰基-二苯基氧化膦)、819(双(2,4,6-三甲基苯甲酰基)苯基氧化膦)等产品;可以是α-羟基酮类,例如商品名为1173(2-羟基-2-甲基-1-苯基丙酮)、184(1-羟基-环己基苯甲酮)、2959(2-羟基-2-甲基-1-对羟乙基醚基苯基丙酮)等产品;可以是肟酯类,例如巴斯夫的Irgacure OXE 01及Irgacure OXE 02,其结构式分别为:
上述的自由基光引发剂不会引起反应体系的黄变。
进一步地,所述助剂选自增韧剂、消泡剂和稳定剂中的一种或多种。
其中,增韧剂可以为聚己内酯三元醇及多元醇类产品,如易生公司的305T、205N,古迪公司的Greatech GT8003等;消泡剂选自不含有机硅类的聚合物,主要作用为消除过滤
及打印过程中所产生的气泡,避免产生的气泡影响打印流畅性,例如迪高的不含有机硅消泡剂TEGO Airex 920、TEGO Airex 921等;稳定剂即阻聚剂可防止墨水发生沉积,保证墨水储存过程中的稳定性,本发明所用的稳定剂可以是锐昂公司的GENORAD 16、GENORAD 18、GENORAD 20、GENORAD 22,精德化学的烷基丙烯酸磷酸酯PM2010,TCI公司的阻聚剂ZJ-701等。
本发明还提供一种上述任一所述的光固化透明墨水的制备方法,包括如下步骤:
1)将除光引发剂以外的成分混合均匀,得到第一混合物;随后向所述第一混合物中加入光引发剂直至所述光引发剂溶解完全,得到第二混合物;
2)过滤所述第二混合物,收集滤液,得到所述光固化透明墨水。
当本发明中的墨水成分包括非巯基改性丙烯酸酯低聚物时,步骤1)中将非巯基改性丙烯酸酯低聚物、丙烯酸酯单体、巯基化合物、表面活性剂、助剂进行混合,得到第一混合物,否则就将丙烯酸酯单体、巯基化合物、表面活性剂、助剂进行混合,得到第一混合物。其中,本发明中在得到第一混合物的过程中对添加顺序不进行限制。
本发明的制备方法只通过混合、过滤便可完成,简单易操作,不仅有利于形成稳定的墨水,还有利于墨水的液化以及喷射,从而使用更加方便,特别适合用于3D物体的打印。
可以理解的是,本发明的光固化透明墨水的制备需要在所选用光引发剂的引发波长范围之外的环境下进行,从而避免环境中的光诱发墨水中的成分发生聚合反应。
进一步地,所述过滤为采用微孔滤膜对所述第二混合物进行二级过滤;其中,第一级过滤采用孔径为0.45μm的玻璃纤维膜,第二级过滤采用孔径为0.22μm的聚丙烯膜(简称PP膜)。本发明采用逐级过滤的方式,将上述第二混合物过滤至少两次,其中前一次过滤的微孔滤膜的孔径大于后一次过滤的微孔滤膜的孔径,最后一次过滤的微孔滤膜的孔径小于喷墨打印过程中打印喷头喷孔的孔径。
进一步地,还包括对所收集的滤液进行脱气处理。控制脱气处理的时间不高于5h。脱气处理的操作方式选自减压脱气、常压脱气和加热脱气中的一种,优选的,将脱气时间控制在1~3h。通过对墨水进行脱气处理,使墨水在使用过程中流畅性好,不会因为墨水中气泡的干扰而引起打印断线,最终影响3D物体的成型精度。
本发明的实施,至少具有以下优势:
1、墨水中所使用的非巯基改性丙烯酸酯低聚物和巯基改性丙烯酸酯低聚物在墨水进行光固化反应时打印制品收缩小,通常体积收缩率低于5%;
2、墨水中所使用的巯基化合物,其中巯基反应活性高,在墨水进行光固化反应时能使光固化反应完全,以致打印制品长期放置不会变色,且反应活性高可以有效减少光引发剂的用量,避免光引发剂过量导致打印制品黄变,同时,巯基本身具有一定的还原性,对于墨水中树脂老化氧化引起的打印制品的黄变具有一定的抑制作用,从而为打印制品提供了极白极透明的外观;
3、墨水中使用的表面活性剂不仅可以有效降低墨水的表面张力,改善墨水的流平性,还可以参与到整个光固化反应中,使打印制品呈现透明的外观;
4、本发明墨水适用条件宽,可以在低温下进行喷墨打印,打印流畅性好,同时延长了打印头的使用寿命;
5、墨水中不含挥发性溶剂,所有组分均参与光固化反应,无VOC排放,不会造成环境污染。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明的实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
制备方法:
(1)将30g丙烯酸异冰片酯IBOA、18.68g三环癸烷二甲醇二丙烯酸酯EM2204、48g巯基改性脂肪族聚氨酯丙烯酸酯低聚物Genomer 7302,0.02g BYK-377以及0.5g GENORAD16置于玻璃容器中,采用搅拌器进行搅拌,得到混合均匀的第一混合物;随后向第一混合物中加入0.8gTPO自由基光引发剂和2g184自由基光引发剂继续搅拌至自由基光引发剂完全溶解得到第二混合物;
(2)用0.45μm的玻璃纤维膜进行一级过滤,再用0.22μm的PP膜进行二级过滤,得到滤液;
(3)在0.1MPa真空度下,减压抽滤1小时,除去滤液中的气泡,最后得到应用于3D喷墨打印光固化透明墨水。
对本实施例1中的3D喷墨打印光固化透明墨水进行性能测试:
1、采用DV-I数显粘度计和BZY-1全自动表面张力仪对本实施例中的3D喷墨打印光固化透明墨水在室温和工作温度下的粘度和表面张力进行测试。
2、将本实施例的3D喷墨打印光固化透明墨水应用于工业喷头的3D光固化喷墨打印机上,并将紫外光光源波长设为395nm,分别在合适的喷射温度下进行墨水流畅性测试以及成型件的精度测试,该精度测试主要通过体积收缩率来反映,测试方法为:
采用比重瓶法,以水为参比,在25℃下测定光敏树脂固化前的密度ρ1及其完全固化后的密度ρ2,以下式计算体积收缩率:
3、透光率的测试
将本实施例的3D喷墨打印光固化透明墨水应用于工业喷头的3D光固化喷墨打印机上,并将紫外光光源波长设为395nm,在喷射温度下打印50mm*50mm的方块,并且厚度为2mm,采用紫外光可见光分光光度计测量透光率,即透过试样的光通量与射到试样上的光通量之比,用百分率表示。具体测试方法参考GB/T 2410-2008透明塑料透光率和雾度的测定。其中,透光率越高,说明打印制品的黄变度越低。
上述的各测试结果见表4。
实施例2
制备方法:
本实施例中3D喷墨打印光固化透明墨水的制备方法与实施例一基本相
同,只是减压脱气的时间调整为2小时。
按照与实施例1相同的测试方法,对本实施例中的3D喷墨打印光固化透明墨水进行性能测试,测试结果见表4。
实施例3
制备方法:
本实施例中3D喷墨打印光固化透明墨水的制备方法与实施例一基本相同,只是采用加热脱气的方式将3D喷墨打印光固化透明墨水温度加热到40-60℃进行脱气处理1h。
按照与实施例1相同的测试方法,对本实施例中的3D喷墨打印光固化透明墨水进行性能测试,测试结果见表4。
实施例4
制备方法:
本实施例中3D喷墨打印光固化透明墨水的制备方法与实施例一基本相同,只是减压脱气的时间调整为3小时。
按照与实施例1相同的测试方法,对本实施例中的3D喷墨打印光固化透明墨水进行性能测试,测试结果见表4。
实施例5
制备方法:
本实施例中3D喷墨打印光固化透明墨水的制备方法与实施例一基本相同,只是采用常压静置脱气3h进行脱气处理。
按照与实施例1相同的测试方法,对本实施例中的3D喷墨打印光固化透明墨水进行性能测试,测试结果见表4。
表4各实施例中3D喷墨打印光固化透明墨水的性能参数
由表4结果可知:
1、本发明的3D喷墨打印光固化透明墨水得到的打印制品透光率高于90%,因此本发明的3D喷墨打印光固化透明墨水能够很好的抑制打印制品黄变现象的发生,具有良好的透明度。
2、本发明的3D喷墨打印光固化透明墨水能够在较低的工作温度下(不低于40℃)就具有适宜粘度,因此无需使用耐高温打印头,能够有效延长打印头的使用寿命。
3、本发明的3D喷墨打印光固化透明墨水表面张力适中,因此在打印过程中形成的3D物体形变可能较低。
4、本发明的3D喷墨打印光固化透明墨水收缩率低,因此制成的3D物体整体成型件收缩率低,不会发生翘曲变形。
5、本发明的3D喷墨打印光固化透明墨水流畅性好,其中基本不含颗粒物,因此能够保证3D喷墨打印光固化透明墨水的稳定性,并且避免了打印过程中打印头喷嘴堵塞问题的发生。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
Claims (19)
- 一种3D喷墨打印用光固化透明墨水,其特征在于,包括如下成分:丙烯酸酯单体、巯基化合物、表面活性剂、光引发剂和助剂。
- 根据权利要求1所述的光固化透明墨水,其特征在于,包括如下重量份的成分:非巯基改性丙烯酸酯低聚物0~60份,丙烯酸酯单体25~50份,巯基化合物10~50份,表面活性剂0.01~2份,光引发剂0.5~5份,助剂0.5~5份。
- 根据权利要求1或2所述的光固化透明墨水,其特征在于,所述光固化透明墨水在工作温度下的粘度为9~15cps,表面张力为19~30dyn;其中,所述工作温度≥40℃。
- 根据权利要求3所述的光固化透明墨水,其特征在于,所述巯基化合物包括巯基改性丙烯酸酯低聚物和硫醇中的一种或多种。
- 根据权利要求4所述的光固化透明墨水,其特征在于,所述巯基改性丙烯酸酯低聚物包括巯基改性脂肪族聚氨酯丙烯酸酯低聚物和巯基改性有机硅光敏树脂低聚物中的一种或多种。
- 根据权利要求5所述的光固化透明墨水,其特征在于,所述硫醇的碳原子个数≥8。
- 根据权利要求1-2和4-6中任一所述的光固化透明墨水,其特征在于,所述丙烯酸酯单体为不含有苯环结构的丙烯酸酯单体。
- 根据权利要求7所述的光固化透明墨水,其特征在于,所述丙烯酸酯单体中所含有的共轭键≤5。
- 根据权利要求8所述的光固化透明墨水,其特征在于,所述丙烯酸酯单体包括脂肪族丙烯酸酯单体。
- 根据权利要求9所述的光固化透明墨水,其特征在于,所述脂肪族丙烯酸酯单体包括单官能团脂肪族丙烯酸酯单体、双官能团脂肪族丙烯酸酯单体、多官能团脂肪族丙烯酸酯单体和环烷烃丙烯酸酯单体中的一种或多种。
- 根据权利要求10所述的光固化透明墨水,其特征在于,所述多官能团脂肪族丙烯酸酯单体中,官能团度≤5。
- 根据权利要求1-2和4-6和8-11中任一所述的光固化透明墨水,其特征在于,当所述丙烯酸酯单体是多种化合物组成的混合物时,所述混合物中含量最多的化合物的粘度在25℃时小于15cps。
- 根据权利要求12所述的光固化透明墨水,其特征在于,所述非巯基改性丙烯酸酯低聚物包括纯丙烯酸酯低聚物、非巯基改性脂肪族聚氨酯丙烯酸酯低聚物、非巯基改性有机硅光敏树脂低聚物中的一种或多种。
- 根据权利要求1-2和4-6和8-11和13中任一所述的光固化透明墨水,其特征在于,所述表面活性剂包括可辐射交联的有机硅丙烯酸酯和改性聚硅氧烷聚合物中的一种或多种。
- 根据权利要求14所述的光固化透明墨水,其特征在于,所述光引发剂为自由基光引发剂。
- 根据权利要求15所述的光固化透明墨水,其特征在于,所述助剂选自增韧剂、消泡剂和稳定剂中的一种或多种。
- 权利要求1-16中任一所述的光固化透明墨水的制备方法,其特征在于,包括如下步骤:1)将除光引发剂以外的成分混合均匀,得到第一混合物;随后向所述第一混合物中加入光引发剂直至所述光引发剂溶解完全,得到第二混合物;2)过滤所述第二混合物,收集滤液,得到所述光固化透明墨水。
- 根据权利要求17所述的制备方法,其特征在于,所述过滤为采用微孔滤膜对所述第二混合物进行二级过滤;其中,第一级过滤采用孔径为0.45μm的玻璃纤维膜,第二级过滤采用孔径为0.22μm的聚丙烯膜。
- 根据权利要求17-18中任一所述的制备方法,其特征在于,还包括对所收集的滤液进行脱气处理。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/025,957 US10669442B2 (en) | 2016-07-11 | 2018-07-02 | Light-curable transparent ink for 3D ink-jet printing and preparation method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610547409.4A CN107459871B (zh) | 2016-07-11 | 2016-07-11 | 3d喷墨打印用光固化透明墨水及其制备方法 |
CN201610547409.4 | 2016-07-11 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/025,957 Continuation US10669442B2 (en) | 2016-07-11 | 2018-07-02 | Light-curable transparent ink for 3D ink-jet printing and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018010490A1 true WO2018010490A1 (zh) | 2018-01-18 |
Family
ID=60545953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/085455 WO2018010490A1 (zh) | 2016-07-11 | 2017-05-23 | 3d喷墨打印用光固化透明墨水及其制备方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10669442B2 (zh) |
CN (1) | CN107459871B (zh) |
WO (1) | WO2018010490A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200034032A (ko) * | 2018-09-14 | 2020-03-31 | 주식회사 엘지화학 | 잉크젯 3d 프린팅을 위한 광경화성 조성물 |
US20210088898A1 (en) * | 2018-03-28 | 2021-03-25 | Board Of Regents, The University Of Texas System | Thiol-acrylate polymers, methods of synthesis thereof and use in additive manufacturing technologies |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7302177B2 (ja) * | 2019-01-22 | 2023-07-04 | 株式会社リコー | 硬化型クリアインク組成物、インクセット、収容容器、印刷方法、及び硬化物 |
WO2020170114A1 (en) * | 2019-02-18 | 2020-08-27 | 3M Innovative Properties Company | Radiation-curable composition containing mercapto-functional polyorganosiloxanes for additive-manufacturing technology |
CN111004355A (zh) * | 2019-11-08 | 2020-04-14 | 华南农业大学 | 一种dlp型光固化3d打印树脂及其制备方法 |
CN110790954A (zh) * | 2019-11-11 | 2020-02-14 | 上海黑焰医疗科技有限公司 | 一种光固化生物墨水制备方法 |
JP7446871B2 (ja) * | 2020-03-11 | 2024-03-11 | マクセル株式会社 | 紫外線硬化型インクジェットクリアインク組成物 |
JP7543782B2 (ja) | 2020-08-28 | 2024-09-03 | セイコーエプソン株式会社 | インクセット及びインクジェット方法 |
CN112759979A (zh) * | 2021-02-24 | 2021-05-07 | 赵宝元 | 一种喷墨印刷的光固化光油墨水及其制备方法 |
CN113087851A (zh) * | 2021-03-11 | 2021-07-09 | 深圳光华伟业股份有限公司 | 一种耐摩擦的3d打印光固化树脂及其使用方法 |
JP2023027950A (ja) * | 2021-08-18 | 2023-03-03 | セイコーエプソン株式会社 | インクセット及び記録方法 |
CN114392208B (zh) * | 2021-12-21 | 2024-05-03 | 上海魅奈儿科技有限公司 | 一种用于高精度喷墨美甲打印的可剥甲油胶及其制备方法 |
CN114292105A (zh) * | 2021-12-29 | 2022-04-08 | 武汉理工大学 | 一种用于dlp光固化3d打印的高附着性能陶瓷浆料的制备方法 |
CN116426162B (zh) * | 2023-04-24 | 2023-12-29 | 广东希贵光固化材料有限公司 | 一种耐低温uv喷墨打印油墨 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103160168A (zh) * | 2011-12-12 | 2013-06-19 | 中国科学院化学研究所 | 喷墨打印直接制版用水性紫外光固化墨水及其制备方法和应用 |
CN104059353A (zh) * | 2013-03-21 | 2014-09-24 | 青岛尤尼科技有限公司 | 一种3d打印材料 |
CN105199058A (zh) * | 2015-09-30 | 2015-12-30 | 惠州市安品新材料有限公司 | 一种3d打印光固化树脂组合物及由其制备的造型物 |
US20160145452A1 (en) * | 2014-11-24 | 2016-05-26 | 3D Systems, Incorporated | Inks comprising liquid rubber for 3d printing |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1477511A1 (en) * | 2003-05-15 | 2004-11-17 | DSM IP Assets B.V. | Radiation curable thiol-ene composition |
TWI406086B (zh) * | 2004-03-22 | 2013-08-21 | 3D Systems Inc | 可光硬化組合物 |
EP2053104B1 (en) * | 2007-10-26 | 2017-02-22 | Agfa Graphics N.V. | Radiation curable inkjet printing methods |
CN103980594B (zh) * | 2014-04-30 | 2016-02-24 | 中国科学院化学研究所 | 一种用于3d打印的紫外辐射交联聚合物材料及其制备方法和制品 |
US9458335B1 (en) * | 2015-07-02 | 2016-10-04 | Donald D. Sloan | Ink system for cure under low-energy conditions |
CN105131581B (zh) * | 2015-09-30 | 2017-12-26 | 深圳市安品有机硅材料有限公司 | 用于三维立体成型的光固化液态树脂组合物及其光固化所得的造型物 |
-
2016
- 2016-07-11 CN CN201610547409.4A patent/CN107459871B/zh active Active
-
2017
- 2017-05-23 WO PCT/CN2017/085455 patent/WO2018010490A1/zh active Application Filing
-
2018
- 2018-07-02 US US16/025,957 patent/US10669442B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103160168A (zh) * | 2011-12-12 | 2013-06-19 | 中国科学院化学研究所 | 喷墨打印直接制版用水性紫外光固化墨水及其制备方法和应用 |
CN104059353A (zh) * | 2013-03-21 | 2014-09-24 | 青岛尤尼科技有限公司 | 一种3d打印材料 |
US20160145452A1 (en) * | 2014-11-24 | 2016-05-26 | 3D Systems, Incorporated | Inks comprising liquid rubber for 3d printing |
CN105199058A (zh) * | 2015-09-30 | 2015-12-30 | 惠州市安品新材料有限公司 | 一种3d打印光固化树脂组合物及由其制备的造型物 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210088898A1 (en) * | 2018-03-28 | 2021-03-25 | Board Of Regents, The University Of Texas System | Thiol-acrylate polymers, methods of synthesis thereof and use in additive manufacturing technologies |
JP2021519714A (ja) * | 2018-03-28 | 2021-08-12 | ルンド、ベンジャミン | チオール−アクリレートポリマー、その合成方法、および積層造形技術での使用 |
EP3896519A1 (en) * | 2018-03-28 | 2021-10-20 | Benjamin Lund | Thiol-acrylate polymers, methods of synthesis thereof and use in additive manufacturing technologies |
EP3776081A4 (en) * | 2018-03-28 | 2022-03-09 | Benjamin Lund | THIOL ACRYLATE POLYMERS, METHOD OF SYNTHESIS THEREOF AND USE IN ADDITIONAL MANUFACTURING TECHNOLOGIES |
JP7492947B2 (ja) | 2018-03-28 | 2024-05-30 | ルンド、ベンジャミン | チオール-アクリレートポリマー、その合成方法、および積層造形技術での使用 |
KR20200034032A (ko) * | 2018-09-14 | 2020-03-31 | 주식회사 엘지화학 | 잉크젯 3d 프린팅을 위한 광경화성 조성물 |
KR102469524B1 (ko) | 2018-09-14 | 2022-11-21 | 주식회사 엘지화학 | 잉크젯 3d 프린팅을 위한 광경화성 조성물 |
Also Published As
Publication number | Publication date |
---|---|
US20180312707A1 (en) | 2018-11-01 |
US10669442B2 (en) | 2020-06-02 |
CN107459871A (zh) | 2017-12-12 |
CN107459871B (zh) | 2018-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018010490A1 (zh) | 3d喷墨打印用光固化透明墨水及其制备方法 | |
JP7079336B2 (ja) | 3d印刷用の光硬化不透明な材料及びその調製方法、3d印刷製品及び3dプリンター | |
EP2467405B1 (en) | Radiation curable ink compositions | |
WO2017185508A1 (zh) | 3d喷墨打印用墨水组合物、墨水组及其制备方法 | |
JP5597627B2 (ja) | 照射硬化性印刷インキまたは照射硬化性印刷ワニス | |
KR102564083B1 (ko) | 개시제 블렌드 및 그러한 개시제 블렌드를 함유하는 3차원 인쇄에 유용한 광경화성 조성물 | |
JP6916375B2 (ja) | 三次元成形用光硬化性透明インク組成物ならびにその調製方法およびその用途 | |
EP3414295B1 (en) | High molecular weight polystyrene in inks and coatings | |
JP7165650B2 (ja) | 3次元印刷用光硬化性エラストマーインク組成物及びその調製方法 | |
CN109593168B (zh) | 3d喷墨打印用耐高温光固化材料及其制备方法、3d打印制品及3d打印机 | |
EP3876034A1 (en) | Curable composition comprising a photoinitiator | |
JP2014141621A (ja) | 紫外線硬化性組成物 | |
JP2019189855A (ja) | 加飾フィルム用活性エネルギー線硬化性インクジェットインクおよび当該インクジェットインクを用いた印刷物の製造方法 | |
CN109401259A (zh) | 实体材料组合物及其制备方法和应用 | |
JP6926395B2 (ja) | 重合性組成物 | |
CN112143286A (zh) | 一种适用于理光打印头的uv硬光油的制备方法 | |
JP2017179005A (ja) | 硬化性組成物、およびそれを用いる硬化物 | |
JP2017179006A (ja) | 活性エネルギー線硬化型インクジェットインキ組成物 | |
JP2016175964A (ja) | 重合促進剤、及びそれを用いた重合性組成物 | |
JP2018158984A (ja) | 活性エネルギー線硬化型組成物 | |
Madhusoodhanan et al. | Dual cure digital inks for industrial printing | |
JP2016113568A (ja) | 重合性組成物、及びそれを用いた活性エネルギー線硬化型インクジェットインキ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17826829 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17826829 Country of ref document: EP Kind code of ref document: A1 |