WO2018008900A1 - 베타-글루칸으로부터 젠티오바이오스 또는 글루코스를 생산하는 신규한 베타-1,6-엔도글루카네이즈 - Google Patents

베타-글루칸으로부터 젠티오바이오스 또는 글루코스를 생산하는 신규한 베타-1,6-엔도글루카네이즈 Download PDF

Info

Publication number
WO2018008900A1
WO2018008900A1 PCT/KR2017/006950 KR2017006950W WO2018008900A1 WO 2018008900 A1 WO2018008900 A1 WO 2018008900A1 KR 2017006950 W KR2017006950 W KR 2017006950W WO 2018008900 A1 WO2018008900 A1 WO 2018008900A1
Authority
WO
WIPO (PCT)
Prior art keywords
beta
endoglucanase
glucose
protein
gly30b
Prior art date
Application number
PCT/KR2017/006950
Other languages
English (en)
French (fr)
Inventor
김경헌
왕대모
김도형
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to CN201780042236.3A priority Critical patent/CN109415745B/zh
Priority to US16/315,039 priority patent/US10883128B2/en
Publication of WO2018008900A1 publication Critical patent/WO2018008900A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H3/00Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
    • C07H3/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/12Disaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01075Glucan endo-1,6-beta-glucosidase (3.2.1.75)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01006Endo-1,3(4)-beta-glucanase (3.2.1.6)

Definitions

  • the present invention relates to novel beta-1,6-endoglucanases which produce genthiobioses or glucose from beta-glucans.
  • Beta-glucan is a polysaccharide (glucosidic bond) forms a glycoside (glycosidic bond) is a very essential component of the cell wall, such as yeast, mushrooms. Beta-glucan has been widely used for a long time as an antioxidant effect, anticancer function, and skin protectant.
  • Beta-glucan is divided into beta-1,3-glucan, beta-1,4-glucan and beta-1,6-glucan, depending on the type of bonds that make up the polymer. It is known to be present in nature in small amounts relative to -1,3- or beta-1,4- bonds. Fusthula, derived from Lasallia pustulata , is a well-known representative beta-1,6-glucan and laminarin is also a beta-1,3-1,6-glucan that constitutes brown algae. Known.
  • Beta-1,6-glucanase is known to randomly cleave 1,6-glycosidic linkages of beta-glucans, and the Carbohydrate Active enZYmes database (CAZy; http: // www According to .cazy.org /) the enzyme is known to belong to glycoside hydrolase (GH) families 5 and 30.
  • GH glycoside hydrolase
  • the present invention comprises beta-1,6-endoglucanase ( ⁇ -1,6-endoglucanase) comprising the amino acid sequence of SEQ ID NO: 1, wherein the beta-1, 6-endoglucanase provides a composition for producing genthiobioses or glucose using at least one selected from the group consisting of laminarin and pustulan as a substrate.
  • the present invention also relates to a beta-1,6-endoglucanase comprising the amino acid sequence set forth in SEQ ID NO: 1, and to a substrate, laminarin and pustulan. It provides a method for producing genthiobiose or glucose comprising the reaction of one or more selected from the group consisting of.
  • the present invention has the effect of providing beta-1,6-endoglucanase that exhibits beta-1,6-endoglucanase activity against beta-glucan.
  • the beta-1,6-endoglucanase may use laminarin or fusthulan as a substrate to provide a high yield of genthiobioses or glucose.
  • 1 is a gel photograph confirming the expression of beta-1,6-endoglucanase of the present invention.
  • Figure 2 is a result of confirming the optimum active pH of beta-1,6-endoglucanase of the present invention.
  • Figure 3 is a result of confirming the optimum active temperature of beta-1,6-endoglucanase of the present invention.
  • Figure 4 is a thermal stability check results of beta-1,6-endoglucanase of the present invention.
  • Fig. 6 shows the results of TLC (a) and HPLC (b) analysis of the hydrolysis products of fusthlan of beta-1,6-endoglucanase of the present invention.
  • FIG. 7 shows the results of TLC (a) and HPLC (b) analysis of the hydrolysis product for laminarin of beta-1,6-endoglucanase of the present invention.
  • the Gly30B protein belongs to the GH30 family, which is believed to have beta-glycosidase activity.
  • the Gly30B protein was a ⁇ -1,6-glycoside of laminarine using laminarine, a polysaccharide in which glucose is linked to the main backbone of beta-1,3-bond and a side chain by beta-1,6-bond as a substrate.
  • Genthiobios and glucose were produced by cleaving the bonds, and genthiobios and glucose were produced by cleaving the ⁇ -1,6-glycosidic bonds of fusthula, a polysaccharide linked to glucose by beta-1,6-bonds.
  • the present invention comprises beta-1,6-endoglucanase comprising the amino acid sequence set forth in SEQ ID NO: 1, wherein the beta-1,6-endoglucanase comprises Naize provides compositions for the production of genthiobioses or glucose using at least one selected from the group consisting of laminarin and pustulan as a substrate.
  • the present invention also provides at least one beta-1,6-endoglucanase comprising the amino acid sequence set forth in SEQ ID NO: 1, and at least one selected from the group consisting of laminarin and pustulan as a substrate. It provides a method for producing genthiobiose or glucose comprising the reaction.
  • the beta-1,6-endoglucanase is characterized by exhibiting beta-1,6-endoglucanase activity against beta-glucan.
  • the beta-1,6-endoglucanase is characterized by maintaining thermal stability up to about 20 to about 45 ° C. and exhibiting optimum degradation activity for laminarin or fusthulane. More specifically, it may exhibit optimal activity at about 20 to 40 °C.
  • the optimal pH of the beta-1,6-endoglucanase in the buffer solution may vary depending on the type of buffer solution, but may be about 4 to 10, more specifically about 6 to 8, most specifically about May be seven.
  • the beta-1,6-endoglucanase may be used as a substrate, such as laminarin or fusthulan.
  • the reaction product of the enzyme may be genthiobio or glucose of degree of polymerization 2.
  • the beta-1,6-endoglucanase may be derived from Saccharophagus degradans 2-40 T , but is not particularly limited thereto.
  • beta-1,6-endoglucanase is transcribed and translated through DNA segments, i.e., coding genes, involved in producing polypeptides that include intervening sequences between individual coding segments as well as regions before and after coding regions of enzymes.
  • DNA segments i.e., coding genes
  • it may be transcribed and translated from, but not limited to, the sequence set forth in SEQ ID NO: 2.
  • a protein having a hydrolytic activity of the oligosaccharide or glucose as a variant protein of one or more substitutions, deletions, translocations, additions, etc.
  • amino acid sequences having at least 80%, at least 85%, at least 90%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, and at least 99% of the amino acid sequences disclosed in Include.
  • the beta-1,6-endoglucanase can be isolated and purified from the supernatant of Saccharophagus degradans 2-40 T culture, using Saccharophagus deg . Saccharophagus degradans ) can be produced and separated by strains other than 2-40 T or by artificial chemical synthesis.
  • recombinant technology When using recombinant technology, it is possible to use factors used for ease of expression of conventional recombinant proteins, such as antibiotic resistance genes, reporter proteins or peptides that can be used for affinity column chromatography, which techniques belong to the present invention. Those skilled in the art fall within a easily implemented range. For example, it can be obtained from a host cell or a culture thereof transformed with a nucleic acid encoding the beta-1,6-endoglucanase, ie, a recombinant vector comprising the nucleotide sequence set forth in SEQ ID NO: 2. E. coli is used as the host cell, but is not limited thereto.
  • the reaction of the beta-1,6-endoglucanase and the substrate may be performed at a temperature range of 20 to 45 ° C., at a pH of 5 to 10 for 5 minutes to 1 day. More specifically, when using laminarin or fusthulan as the substrate, it may be carried out at a temperature range of 30 to 40 °C, pH 6 to 8, for 5 minutes to 5 hours.
  • the degradation product of the enzyme may be subjected to sequential silica gel chromatography, which is an adsorption chromatography, and biogel P2 chromatography, which is a gel permeation chromatography, to separate and purify oligosaccharides or glucose having approximately 95% of high purity.
  • protein and “polypeptide” are used interchangeably herein.
  • the polypeptide has a certain proportion (eg, 80%, 85%, 90%, 95%, or 99%) of sequence identity with respect to another sequence, when the two sequences are aligned. Comparison of these means that the amino acid residues in this ratio are identical.
  • the alignment and percent homology or identity may be determined by any suitable software program known in the art, such as those described in CURRENT PROTOCOLS IN MOLECULAR BIOLOGY (FM Ausubel et al. (Eds) 1987 Supplement 30 section 7.7.18). Can be determined using Preferred programs include the GCG Pileup program, FASTA (Pearson et al . 1988 Proc . Natl Acad .
  • BLAST BLAST Manual, Altschul et al., Natl. Cent. Biotechnol. Inf., Natl Lib. Med. (NCIB NLM NIH), Bethesda, MD, and Altschul et al. 1997 NAR25: 3389- 3402).
  • Another preferred alignment program is ALIGN Plus (Scientific and Educational Software, PA), preferably using basic parameters.
  • TFASTA Data Searching Program available from Sequence Software Package Version 6.0 (Genetics Computer Group, University of Wisconsin, Madison, Wis.).
  • the term “recombinant” means that the cell, nucleic acid, protein or vector has been modified by introduction of a heterologous nucleic acid or protein or alteration of the original nucleic acid or protein, or The cell refers to a cell derived from such a modified cell. That is, for example, a recombinant cell expresses a gene that is not found within the original (non-recombinant) form of the cell, or alternatively expresses a native gene that is abnormally expressed or not expressed at all upon expression. Expression.
  • nucleic acid encompasses single- or double-stranded DNA, RNA, and chemical variants thereof.
  • Nucleic acid and polynucleotide can be used interchangeably herein. Because the genetic code is degenerate, one or more codons can be used to encode a particular amino acid, and the invention encompasses polynucleotides encoding a particular amino acid sequence.
  • introduction of inserting a nucleic acid sequence into a cell means “transfection” or “transfection” or “transduction” and refers to the integration of the nucleic acid sequence into eukaryotic or prokaryotic cells. Mention is included, wherein the nucleic acid sequence is integrated into the cell's genome (eg, chromosome, plasmid, pigment, or mitochondrial DNA), converted to autonomic replicon, or transiently expressed.
  • the cell's genome eg, chromosome, plasmid, pigment, or mitochondrial DNA
  • Saccharophagus degradans ) 2-40 T contains 23 g / L instant sea salt, 50 mM Tris-HCl, 2 g / L glucose, 2 g / L yeast extract and 0.5 g / L ammonium chloride Incubated for 12 hours at 30 °C in a minimal medium.
  • Target gene gly30b (GeneBank ID. ABD82251.1) was amplified using Solg 2 ⁇ Taq PCR smart mix 2 (SolGent, Daejeon, Korea). The primers used are as follows.
  • Reverse primer 5'-GCGCTCGAGGTGGTGGTGGTGGTGGTGATCTATAACTAGCGTTACAACGCTCTGTGC-3 '(SEQ ID NO: 4)
  • the PCR product and the pET28a vector were double cut with Bam HI and Xho I and the final DNA fragment was ligated. Plasmids loaded with Gly30b were transformed into Escherichia coli DH5 ⁇ .
  • Escherichia coli a host for protein expression, for overexpression of genes obtained through Example 1 coli ) was transformed into Bl21 (DE3).
  • the cells were pulverized ultrasonically and centrifuged and the supernatant was purified using HisTrap column (GE Healthcare, Piscataway, USA). The purified protein was concentrated with an Amicon Ultra Centrifugal filter (millipore, Billerica, Mass., USA). The molecular weight of the expressed Gly30B was determined to be approximately 52 kDa by SDS-PAGE (FIG. 1). Protein concentration was measured by bicinchoninic acid (BCA) protein assay kit (Pierce, Rockford, IL, USA).
  • BCA bicinchoninic acid
  • the Gly30B protein showed the highest activity in fusthulan, and its relative activity was about 22% when laminarin was used as the substrate, compared to the case where fusthulan was used as the sole substrate.
  • the Gly30B protein was found to not hydrolyze the curdlan, thereby confirming that the Gly30B enzyme selectively cleaves beta-1,6-glucan bonds.
  • Gly3B protein did not respond to ⁇ -1,4-glycosidic bonds such as Avicel, CM-cellulose, xylan.
  • Gly30B protein shows the relative activity of Gly30B at pH in the range of 2.0-10.0.
  • Gly30B protein showed the maximum activity at pH 7.0 and it was confirmed that the enzyme activity sharply decreased at the pH before and after.
  • Gly30B protein showed a relative activity of about 40% in pH 2.0 (20 mM glycine-HCl buffer) and a relative activity of about 50% in pH 10.0 (20 mM glycine-NaOH buffer).
  • Figure 3 shows the relative activity of Gly30B protein in the temperature range of 20-70 °C. Enzyme activity gradually increased with increasing temperature in the range of 20 ° C to 40 ° C, reaching a maximum value at 40 ° C. The activity at the reaction temperatures of 20 ° C. and 60 ° C. decreased the enzyme activity compared to that observed at 40 ° C. As a result of confirming the thermal stability of the Gly30B protein, it was confirmed that the reaction was stable at a reaction temperature of 40 ° C. or lower, but the relative activity was rapidly decreased at a higher reaction temperature (FIG. 4). Therefore 40 ° C. was determined as the optimal reaction temperature of the Gly30B protein and this temperature was used for all subsequent experiments.
  • Km, Vmax, and Kcat values were 100.8 g / L, 32.8 U / mg, and 28.9 s ⁇ 1 , respectively, when the fusthula substrate was used from the Lineweaver-Burk plot (FIG. 5).
  • Km, Vmax, Kcat value of 24.2 g / L, 153.8 U / mg, 135.6 s , respectively - was found to be 1.
  • TLC thin layer chromatography
  • HPLC high performance liquid chromatography
  • reaction product for TLC analysis was run on silica gel 60 plate (Merck) using n-butanol: acetic acid: water (3: 2: 2 volume ratio) mixed solvent system and treated with 10% (v / v) sulfuric acid for visualization. After the heat treatment for 5 minutes at 130 °C.
  • HPLC analysis was performed using an Agilent 1100 HPLC (Agilent) equipped with a gel permeation and ligand exchange column (KS-802; Shodex) and detected using a refractive index detector (Agilent).
  • Sterile water was used as a solvent for HPLC analysis, and the flow rate was set to 0.5 mL / min and the column temperature was set to 80 ° C.
  • Standards for the analysis include laminaribiose (degree of polymerization (DP2), laminaritriose (DP3), laminaritetraose (DP4), laminaripentose (DP5), laminarihexose (DP6) Used.
  • the Gly30B protein When the Gly30B protein was reacted with laminarin, the oligosaccharides derived from the initial laminarin and laminarin remained undegraded even after the reaction proceeded differently from the case of using fusthulan substrate (FIG. 7A), and glucose and genthio It was confirmed that bios was generated (FIG. 7B). Through this, the Gly30B protein selectively cleaves beta-1,6-binding except for beta-1,3-binding.
  • the present invention is applicable to the field of glucose production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

본 발명은 베타-글루칸으로부터 젠티오바이오스 또는 글루코스를 생산하는 신규한 베타-1,6-엔도글루카네이즈에 관한 것으로, 보다 구체적으로, 본 발명은 베타-글루칸에 대해 베타-1,6-엔도글루카네이즈 활성을 보이는 베타-1,6-엔도글루카네이즈를 통해 젠티오바이오스 또는 글루코스를 고수율로 생산하는 효과를 제공한다.

Description

베타-글루칸으로부터 젠티오바이오스 또는 글루코스를 생산하는 신규한 베타-1,6-엔도글루카네이즈
본 발명은 베타-글루칸으로부터 젠티오바이오스 또는 글루코스를 생산하는 신규한 베타-1,6-엔도글루카네이즈에 관한 것이다.
베타-글루칸(β-glucan)은 글루코스 잔기가 글리코시드 결합(glycosidic bond)을 이룬 다당류(polysaccharides)로서, 효모, 버섯 등의 세포벽을 이루는 매우 필수적인 성분이다. 베타-글루칸은 이미 오래전부터 항산화 효과, 항암기능성, 피부보호제 등의 용도로 널리 사용되어 왔다.
베타-글루칸은 중합체를 구성하고 있는 결합의 종류에 따라 베타-1,3-글루칸, 베타-1,4-글루칸, 베타-1,6-글루칸으로 나누어지는데 베타-1,6-글루칸은 다른 베타-1,3- 또는 베타-1,4- 결합에 비해 자연계에 소량 존재하는 것으로 알려져 있다. 라살리아 푸스툴라타(Lasallia pustulata)로 부터 유래한 푸스툴란은 기존에 이미 잘 알려진 대표적인 베타-1,6-글루칸이며 라미나린 역시 갈조류를 구성하는 베타-1,3-1,6-글루칸으로 잘 알려져 있다.
베타-1,6-글루카네이즈는 베타-글루칸의 1,6-글리코시드 결합(1,6-glycosidic linkages)을 무작위적으로 절단하는 것으로 알려져 있으며 Carbohydrate Active enZYmes database(CAZy; http://www.cazy.org/)에 따르면 위 효소는 glycoside hydrolase(GH) family 5와 30에 속하는 것으로 알려져 있다. 베타-1,6-글루카네이즈는 주로 균계로부터 유래한 베타-1,6-글루카네이즈가 보고되어 왔으며 박테리아 유래 베타-1,6-글루카네이즈에 대한 보고는 현재까지 없는 실정이다.
본 발명의 목적은 베타-글루칸으로부터 젠티오바이오스 또는 글루코스를 생산할 수 있는 신규한 베타-1,6-엔도글루카네이즈의 용도를 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은 SEQ ID NO: 1에 기재된 아미노산 서열을 포함하는 베타-1,6-엔도글루카네이즈(β-1,6-endoglucanase)를 포함하고, 상기 베타-1,6-엔도글루카네이즈는 기질로, 라미나린(laminarin) 및 푸스툴란(pustulan)으로 이루어진 군에서 선택된 하나 이상을 사용하는, 젠티오바이오스 또는 글루코스 생산용 조성물을 제공한다.
본 발명은 또한 SEQ ID NO: 1에 기재된 아미노산 서열을 포함하는 베타-1,6-엔도글루카네이즈(β-1,6-endoglucanase)와, 기질로, 라미나린(laminarin) 및 푸스툴란(pustulan)으로 이루어진 군에서 선택된 하나 이상을 반응시키는 것을 포함하는 젠티오바이오스 또는 글루코스의 생산방법을 제공한다.
본 발명은 베타-글루칸에 대해 베타-1,6-엔도글루카네이즈 활성을 보이는 베타-1,6-엔도글루카네이즈를 제공하는 효과가 있다.
상기 베타-1,6-엔도글루카네이즈는 라미나린 또는 푸스툴란을 기질로 사용할 수 있어 젠티오바이오스 또는 글루코스를 고수율로 생산하는 효과를 제공한다.
도 1은 본 발명의 베타-1,6-엔도글루카네이즈의 발현을 확인한 젤 사진도이다.
도 2는 본 발명의 베타-1,6-엔도글루카네이즈의 최적 활성 pH 확인 결과이다.
도 3은 본 발명의 베타-1,6-엔도글루카네이즈의 최적 활성 온도 확인 결과이다.
도 4는 본 발명의 베타-1,6-엔도글루카네이즈의 열 안정성 확인 결과이다.
도 5는 푸스툴란의 가수분해에 대한 본 발명의 베타-1,6-엔도글루카네이즈의 Lineweaver-Burk plot을 나타낸 것이다.
도 6은 본 발명의 베타-1,6-엔도글루카네이즈의 푸스툴란에 대한 가수분해 산물의 TLC(a) 및 HPLC(b) 분석 결과이다.
도 7은 본 발명의 베타-1,6-엔도글루카네이즈의 라미나린에 대한 가수분해 산물의 TLC(a) 및 HPLC(b) 분석 결과이다.
도 8은 본 발명의 베타-1,6-엔도글루카네이즈의 계통수를 도시한 것이다.
본 발명자들은 베타-글리코시데이즈 활성을 가질 것으로 추정되는 GH30 패밀리에 속한 Gly30B 단백질의 베타-글루칸 분해 활성을 확인하였다. 그 결과, Gly30B 단백질은 글루코스가 베타-1,3-결합의 주 골격과 베타-1,6-결합으로 곁가지가 연결된 다당류인 라미나린을 기질로 사용하여 라미나린의 β-1,6-글리코시드 결합을 절단함으로써 젠티오바이오스와 글루코스를 생산하고, 글루코스가 베타-1,6-결합으로 연결된 다당류인 푸스툴란의 β-1,6-글리코시드 결합을 절단함으로써 젠티오바이오스와 글루코스를 생산하였다.
따라서, 본 발명은 SEQ ID NO: 1에 기재된 아미노산 서열을 포함하는 베타-1,6-엔도글루카네이즈(β-1,6-endoglucanase)를 포함하고, 상기 베타-1,6-엔도글루카네이즈는 기질로, 라미나린(laminarin) 및 푸스툴란(pustulan)으로 이루어진 군에서 선택된 하나 이상을 사용하는, 젠티오바이오스 또는 글루코스 생산용 조성물을 제공한다.
또한, 본 발명은 SEQ ID NO: 1에 기재된 아미노산 서열을 포함하는 베타-1,6-엔도글루카네이즈와, 기질로, 라미나린(laminarin) 및 푸스툴란(pustulan)으로 이루어진 군에서 선택된 하나 이상을 반응시키는 것을 포함하는 젠티오바이오스 또는 글루코스의 생산방법을 제공한다.
상기 베타-1,6-엔도글루카네이즈는 베타-글루칸에 대해 베타-1,6-엔도글루카네이즈 활성을 나타내는 것을 특징으로 한다.
상기 베타-1,6-엔도글루카네이즈는 약 20 내지 약 45℃까지 열 안정성을 유지하고, 라미나린 또는 푸스툴란에 대해 최적 분해 활성을 나타내는 것을 특징으로 한다. 더 구체적으로, 약 20 내지 40℃에서 최적 활성을 나타낼 수 있다.
또한, 완충 용액 내 상기 베타-1,6-엔도글루카네이즈의 최적 pH는 완충용액의 종류에 따라 달라질 수는 있으나 약 4 내지 10일 수 있고, 더 구체적으로 약 6 내지 8, 가장 구체적으로 약 7일 수 있다.
상기 베타-1,6-엔도글루카네이즈는 라미나린 또는 푸스툴란 등을 기질로 사용할 수 있다.
상기 효소의 반응 산물은 중합도 2의 젠티오바이오스 또는 글루코스일 수 있다.
상기 베타-1,6-엔도글루카네이즈는 사카로파거스 데그라단스 (Saccharophagus degradans) 2-40T에서 유래한 것일 수 있으나, 이에 특별히 제한하는 것은 아니다.
또한, 베타-1,6-엔도글루카네이즈는 효소의 코딩 영역 전 및 후의 영역뿐만 아니라 개별 코딩 분절 사이의 개재 서열이 포함된 폴리펩타이드를 생산하는데 연관된 DNA 분절, 즉 코딩 유전자를 통해 전사 및 번역될 수 있다. 예컨대, SEQ ID NO: 2에 기재된 서열로부터 전사 및 번역될 수 있으나, 이에 특별히 제한되는 것은 아니다. 또한, 상기 효소의 하나 이상의 치환, 결손, 전위, 첨가 등의 변이 단백질로서 상기 올리고당 또는 글루코스의 가수분해 활성을 가지는 단백질도 본 발명의 효소의 권리범위에 포함되며, 바람직하게는 SEQ ID NO: 1에 개시된 아미노산 서열과 서열 동일성이 80% 이상, 85% 이상, 90% 이상, 93% 이상, 94% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상 및 99% 이상인 아미노산 서열을 포함한다.
상기 베타-1,6-엔도글루카네이즈는 사카로파거스 데그라단스(Saccharophagus degradans) 2-40T 배양물의 상등액으로부터 분리 및 정제할 수 있으며, 유전공학적 재조합 기술을 이용하여 사카로파거스 데그라단스(Saccharophagus degradans) 2-40T 이외 균주 또는 인공적인 화학적 합성법 등에 의하여 생산 및 분리할 수 있다.
재조합 기술을 이용하는 경우, 통상적인 재조합 단백질 발현의 용이함을 위하여 사용되는 인자들, 예컨대 항생제 저항성 유전자, 친화성 컬럼 크로마토그래피에 사용될 수 있는 리포터 단백질 또는 펩타이드를 사용할 수 있으며, 이러한 기술은 본원발명이 속하는 기술분야의 당업자라면 용이하게 실시 가능한 범주에 해당된다. 예컨대, 상기 베타-1,6-엔도글루카네이즈를 코딩하는 핵산, 즉, SEQ ID NO: 2에 기재된 염기서열을 포함하는 재조합 벡터로 형질전환된 숙주세포 또는 이의 배양물로부터 수득될 수 있다. 상기 숙주세포로 대장균을 사용하나, 이에 제한하는 것은 아니다.
상기 베타-1,6-엔도글루카네이즈와 기질의 반응은 20 내지 45℃의 온도 범위에서, pH 5 내지 10에서, 5분 내지 1일 동안 수행될 수 있다. 보다 구체적으로, 기질로 라미나린 또는 푸스툴란을 사용하는 경우, 30 내지 40℃의 온도 범위에서, pH 6 내지 8에서, 5분 내지 5시간 동안 수행될 수 있다.
상기 효소의 분해산물은 흡착 크로마토그래피인 실리카 젤 크로마토그래피 및 젤 투과 크로마토그래피인 바이오 젤 P2 크로마토그래피를 순차적으로 실시하여 대략 95%의 고순도의 올리고당 또는 글루코스를 분리 정제할 수 있다.
본 명세서에서 "단백질" 및 "폴리펩타이드"는 본원에서 상호 교환 가능하게 사용된다.
본 발명에서 폴리펩타이드가 또 다른 서열에 대하여 특정 비율(예컨대, 80%, 85%, 90%, 95%, 또는 99%)의 서열 동일성을 가진다는 것은, 상기 두 서열을 정렬시킬 때, 상기 서열들의 비교시 상기 비율의 아미노산 잔기가 동일함을 의미한다. 상기 정렬 및 백분율 상동성 또는 동일성은, 당업계에 공지된 임의의 적당한 소프트웨어 프로그램, 예를 들어 문헌[CURRENT PROTOCOLS IN MOLECULAR BIOLOGY (F. M. Ausubel 등 (eds) 1987 Supplement 30 section 7.7.18)]에 기재된 것들을 사용하여 결정할 수 있다. 바람직한 프로그램으로는, GCG Pileup 프로그램, FASTA(Pearson 등 1988 Proc . Natl Acad . Sci USA 85:2444-2448), 및 BLAST(BLAST Manual, Altschul 등, Natl. Cent. Biotechnol. Inf., Natl Lib. Med.(NCIB NLM NIH), Bethesda, MD, 및 Altschul 등 1997 NAR25:3389-3402)이 있다. 또 다른 바람직한 정렬 프로그램은 ALIGN Plus(Scientific and Educational Software, PA)로서, 바람직하게는 기본 매개변수를 사용하는 것이다. 사용 가능한 또 다른 서열 소프트웨어 프로그램은 Sequence Software Package Version 6.0(Genetics Computer Group, University of Wisconsin, Madison, WI)에서 이용 가능한 TFASTA Data Searching Program 이다.
본 발명에서 세포, 핵산, 단백질 또는 벡터와 관련하여 사용될 때 용어 "재조합"은, 상기 세포, 핵산, 단백질 또는 벡터가 이종 핵산 또는 단백질의 도입 또는 본래적 핵산 또는 단백질의 변경에 의해 변형되었거나, 또는 상기 세포가 이렇게 변형된 세포로부터 유래한 것을 가리킨다. 즉, 예를 들어, 재조합 세포는 상기 세포의 본래적(비(非)재조합) 형태 내에서는 발견되지 않는 유전자를 발현하거나 또는, 다르게는 발현 시 비정상적으로 발현되거나 또는 전혀 발현되지 않는 본래적 유전자를 발현한다.
본 명세서에서 "핵산"은 단일가닥 또는 이중가닥의 DNA, RNA, 및 이들의 화학적 변형체를 포괄한다. "핵산" 및 "폴리뉴클레오타이드"는 본원에서 상호교환 가능하게 사용될 수 있다. 유전 암호가 축퇴되어 있기 때문에, 특정 아미노산을 인코딩하기 위해서 하나 이상의 코돈을 사용할 수 있으며, 본 발명은 특정 아미노산 서열을 인코딩하는 폴리뉴클레오타이드를 포괄한다.
핵산 서열을 세포 내로 삽입하는 용어 "도입"은 "트랜스펙션(transfection)", 또는 "형질전환" 또는 "형질도입(transduction)"을 의미하며, 핵산 서열의 진핵 또는 원핵 세포 내로의 통합에 대한 언급이 포함되고, 이때 상기 핵산 서열은 세포의 게놈(예컨대, 염색체, 플라스미드, 색소체, 또는 미토콘드리아 DNA) 내로 통합되어, 자율 레플리콘으로 전환되거나, 또는 일시적으로 발현된다.
이하, 본 발명에 따르는 실시예 통하여 본 발명을 보다 상세히 설명하나, 본 발명의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.
< 실시예 1> 클로닝 기법을 통한 gly30b 유전자의 확보
사카로파거스 데그라단스(Saccharophagus degradans) 2-40T (ATCC 43961)로부터 유래한 추정적인 베타-1,6-엔도글루카네이즈(β-1,6-endoglucanase)(sde_2994)를 에스케리치아 콜라이(Escherichia coli) DH5α에 클로닝 하였다. 보다 구체적인 설명은 다음과 같다.
사카로파거스 데그라단스(Saccharophagus degradans) 2-40T(ATCC 43961)는 23 g/L의 인스턴트 해수염, 50 mM Tris-HCl, 2 g/L의 글루코스, 2 g/L의 효모 추출물 및 0.5 g/L의 암모늄 클로라이드를 함유하는 최소배지에서 30℃에서 12시간 동안 배양하였다.
시판중인 DNA 분리 키트(Qiagen, Valencia, CA, USA)를 사용하여 사카로파거스 데그라단스(Saccharophagus degradans) 2-40T(ATCC 43961)의 게놈 DNA를 얻었다.
표적 유전자 gly30b(GeneBank ID. ABD82251.1)는 Solg 2×Taq PCR smart mix 2(SolGent, Daejeon, Korea)를 사용하여 증폭하였다. 사용된 프라이머는 다음과 같다.
정방향 프라이머: 5'-GCGGGATCCCACCACCACCACCACCACCAATACTGGTTAACCAGCGGTGATCTAAGT-3' (SEQ ID NO: 3);
역방향 프라이머: 5'-GCGCTCGAGGTGGTGGTGGTGGTGGTGATCTATAACTAGCGTTACAACGCTCTGTGC-3′(SEQ ID NO: 4)
이들은 5' 부위에 BamHI 및 XhoI 제한효소 사이트를 가지고 있다. 또한, HisTrap 컬럼의 친화도를 높이기 위해 히스티딘을 코딩하고 있는 유전자의 염기서열을 추가하였다.
PCR 산물과 pET28a 벡터는 BamHI 및 XhoI 으로 이중 절단하고, 최종 DNA 단편을 라이게이션 하였다. Gly30b가 탑재된 플라스미드는 에스케리치아 콜라이(Escherichia coli) DH5α에 형질전환 하였다.
< 실시예 2> Gly30B 단백질의 과발현 및 정제
실시예 1을 통해 확보한 유전자의 과발현을 위해 단백질 발현용 숙주인 에스케리치아 콜라이(Escherichia coli) Bl21(DE3)에 형질전환 하였다.
세포는 50 mg/L의 카나마이신(kanamycin)이 첨가된 Luria-Bertani (LB) 브로스(BD, Sparks, MD, USA)를 사용하여 600 nm에서의 흡광도가 0.6에 도달할 때까지 37℃의 온도 조건에서 배양하였다. 0.1 mM IPTG를 사용하여 단백질의 발현을 유도하였으며 유도온도는 16℃로 설정하여 수용성 형태로 재조합 단백질을 발현하였다.
발현시킨 Gly30B 단백질을 분리하기 위하여, 세포를 초음파로 분쇄하고 원심분리 후 그 상등액을 HisTrap column(GE Healthcare, Piscataway, USA)을 이용해 정제하였다. 그 정제된 단백질을 Amicon Ultra Centrifugal filter(millipore, Billerica, MA, USA)로 농축하였다. 그 발현된 Gly30B의 분자량은 SDS-PAGE에 의해 대략 52kDa으로 측정되었다(도 1). 단백질의 농도는 bicinchoninic acid(BCA) protein assay kit(Pierce, Rockford, IL, USA)로 측정하였다.
< 실시예 3> Gly30B 단백질의 기질특이성 및 양이온효과 확인
Gly30B 단백질의 효소활성을 확인하기 위해 2%의 푸스툴란 또는 라미나린(Wako, Osaka, Japan) 등과 같은 기질을 포함하는 100 ㎕의 20 mM Tris-HCl(pH6.0)에서 1.89 nM의 단백질과 함께 40℃에서 30분간 반응하였다. 또한 Gly30B 단백질의 기질 특이성을 확인하기 위해 푸스툴란, 라미나린, 커들란(Wako, Osaka, Japan), 카보시메틸셀룰로즈(Sigma-Aldrich, St Louis,MO, USA), 자일란(Sigma-Aldrich, St Louis, MO, USA) 등과 같은 다양한 글루칸을 포함하는 100 ㎕의 20 mM Tris-HCl(pH6.0)에서 10.5 μM의 Gly30B 단백질과 함께 40℃에서 30분간 반응시켰다. 생산된 환원당은 DNS 방법을 이용해 측정하였다.
표 1에 나타난 바와 같이, Gly30B 단백질은 푸스툴란에서 가장 높은 활성을 보였으며 라미나린을 기질로 사용하였을 경우 푸스툴란을 단독 기질로 사용하였을 경우와 비교하여 약 22%의 상대활성을 보였다. Gly30B 단백질은 커들란을 가수분해하지 않는 것으로 확인되었으며, 이를 통해 Gly30B 효소는 베타-1,6-글루칸 결합을 선택적으로 절단하는 것으로 확인되었다. 또한, Gly3B 단백질은 아비셀, CM-cellulose, 자일란과 같은 β-1,4-글리코시드 결합에는 반응하지 않는 것으로 확인되었다.
Gly3B 단백질의 양이온 효과를 확인한 결과, Ni2 +, Cu2 +, Fe2 +, Mg2 +과 같은 양이온에 의해 반응성이 저해되는 것을 확인하였으며 그 중 Cu2 +에서 가장 큰 저해효과를 확인하였다(표 2).
Gly30B 단백질의 기질 특이성
기질 주 골격 글루코시드 결합 타입 단당류 상대 효소 활성(%)
푸스툴란 β-1,6 글루코스 100
라미나린 β-1,3: β-1,6 글루코스 22.37
커들란β-글루칸(보리) β-1,3β-1,3: β-1,4 글루코스글루코스 NDND
자일란 β-1,4 자일로스 ND
카보시메틸셀룰로즈(CMC) β-1,4 글루코스 ND
ND: 검출 안됨
Gly30B 단백질의 양이온 효과 확인
양이온 상대 효소 활성(%)
대조군 100±0.8
K+ 93.3±1.1
Na+ 94.5±1.1
Mg2 + 57.0±2.5
Ca2 + 99.0±0.7
Mn2 + 85.0±1.2
Ni2 + 54.7±1.7
Cu2 + 29.4±0.2
Fe2 + 61.5±1.9
Co2 + 70.9±3.1
양이온과 반응하지 않은 효소 활성을 100%로 정함실험데이터는 3반복 실험에 대한 평균±표준편차로 나타냄
< 실시예 4> Gly30B 단백질의 최적 활성 온도 및 pH 확인
Gly30B 단백질의 활성에 대한 최적 온도 및 pH를 조사하기 위해 10.5 μM의 Gly30B 단백질과 2%(W/V)의 라미나린 혼합물을 다양한 온도범위(20-70℃)와 pH 조건(2.0-10.0)에서 반응시켰다.
도 2는 2.0-10.0 범위의 pH에서 Gly30B의 상대적 활성을 나타낸다. Gly30B 단백질은 pH 7.0일 때 최대 활성을 나타내었고 그 전후의 pH에서 급격하게 효소활성이 떨어지는 것을 확인하였다. Gly30B 단백질은 pH 2.0(20 mM glycine-HCl buffer)에서 약 40%의 상대활성을 보였으며, pH 10.0(20 mM glycine-NaOH buffer)에서 약 50%의 상대활성을 보였다.
도 3은 20-70℃의 온도 범위에서 Gly30B 단백질의 상대적 활성을 나타내었다. 효소 활성은 20℃에서 40℃의 범위에서는 온도가 증가함에 따라 점차적으로 증가하여 40℃에서 최대 값에 도달하였다. 20℃ 및 60℃의 반응온도에서의 활성은 40℃에서 관찰한 것과 비교하여 효소 활성이 감소하였다. Gly30B 단백질의 열 안정성을 확인한 결과 40℃ 이하의 반응온도에서는 안정하나 그보다 높은 반응 온도에서는 상대활성이 급격히 줄어듦을 확인하였다(도 4). 따라서 40℃를 Gly30B 단백질의 최적 반응 온도로 결정하였고 이 온도를 모든 후속 실험에 사용하였다.
< 실시예 5> Gly30B 단백질의 효소 반응속도 확인
Gly30B 단백질의 푸스툴란과 라미나린에 대한 효소 반응속도를 확인하기 위하여 이를 0.45%에서 9.1%에 이르는 다양한 농도의 기질을 포함하는 20mM Tris-HCl 완충용액과 단백질을 pH 7.0, 40℃에서 반응시켰다.
그 결과, Lineweaver-Burk plot(도 5)으로부터 푸스툴란 기질을 사용한 경우 Km, Vmax, Kcat 값은 각각 100.8 g/L, 32.8 U/mg, 28.9 s-1로 확인되었으며, 라미나린 기질을 사용한 경우 Km, Vmax, Kcat 값은 각각 24.2 g/L, 153.8 U/mg, 135.6 s- 1 로 확인되었다.
< 실시예 6> TLC, HPLC를 사용한 Gly30B 단백질의 효소 반응 특성 확인
반응 시간에 따른 Gly30B 단백질의 효소 반응 특성을 분석하기 위해 Thin Layer Chromatography(TLC), High Performance Liquid Chromatography(HPLC)를 사용하여 분석하였다.
TLC 분석을 위한 반응산물은 n-부탄올:아세트산:물(3:2:2 부피비) 혼합용매 시스템을 사용하여 silica gel 60 plate(Merck)에 전개하였으며 시각화를 위해 10% (v/v) 황산 처리 후 130℃에서 5분간 열처리하였다.
HPLC 분석은 gel permeation and ligand exchange column(KS-802; Shodex)을 장착한 Agilent 1100 HPLC(Agilent)를 사용해 분석하였으며 refractive index detector(Agilent)를 통해 탐지하였다. HPLC 분석을 위한 용매로는 멸균수를 사용하였으며 flow rate은 0.5 mL/min, 컬럼온도는 80℃로 설정하였다. 분석을 위한 표준물질로는 라미나리바이오스(degree of polymerization, DP2), 라미나리트리오스(DP3), 라미나리테트라오스(DP4), 라미나리펜토스(DP5), 라미나리헥소스(DP6)를 사용하였다.
Gly30B 단백질과 푸스툴란을 반응한 반응산물의 TLC 분석결과(도 6a), 반응시작 5분 이후부터 젠티오바이오스와 글루코스가 생산되는 것을 확인할 수 있으며 시간이 지남에 따라 젠티오바이오스 또한 글루코스로 전환됨을 확인하였다. 120분간 반응을 진행시킨 결과 글루코스가 주 생산물로 확인되었으며 소량의 젠티오바이오스가 생산됨을 확인하였다. 동일한 반응 산물을 HPLC를 통해 분석한 결과(도 6b), 반응시간이 지남에 따라 젠티오바이오스에 해당하는 피크는 줄어들고 글루코스에 해당하는 피크가 생성되었음을 확인하였다.
Gly30B 단백질과 라미나린을 반응시킨 경우, 푸스툴란 기질을 사용한 경우와는 다르게 반응이 진행된 이후에도 초기의 라미나린과 라미나린으로부터 유래한 올리고당은 완전히 분해되지 않고 남아있으며(도 7a), 글루코스와 젠티오바이오스가 생성됨을 확인하였다(도 7b). 이를 통해 Gly30B 단백질은 베타-1,3-결합을 제외한 베타-1,6-결합을 선택적으로 절단함을 확인하였다.
< 실시예 7> Gly30B 단백질의 계통분류학적 분석
Gly30B 단백질의 신규성을 확인하기 위해 이전까지 알려진 미생물 유래 베타-1,6-엔도글루카네이즈의 유전자 정보를 CAZy database (http://www.cazy.org)로부터 획득하여 계통수를 그려보았다.
그 결과 이전에 알려진 다른 베타-1,6-엔도글루카네이즈와 계통학적으로 분리됨을 확인할 수 있었으며 이전에 보고된 바 없는 최초의 박테리아 유래 효소임을 확인하였다(도 8).
본 발명은 포도당 생산 분야에 적용할 수 있다.

Claims (9)

  1. SEQ ID NO: 1에 기재된 아미노산 서열을 포함하는 베타-1,6-엔도글루카네이즈(β-1,6-endoglucanase)를 포함하고,
    상기 베타-1,6-엔도글루카네이즈는 기질로, 라미나린(laminarin) 및 푸스툴란(pustulan)으로 이루어진 군에서 선택된 하나 이상을 사용하는, 젠티오바이오스 또는 글루코스 생산용 조성물.
  2. 제1항에 있어서,
    베타-1,6-엔도글루카네이즈는 사카로파거스 데그라단스 (Saccharophagus degradans) 2-40T에서 유래한 것인, 젠티오바이오스 또는 글루코스 생산용 조성물.
  3. 제1항에 있어서,
    베타-1,6-엔도글루카네이즈는 상기 베타-1,6-엔도글루카네이즈를 코딩하는 핵산을 포함하는 재조합 벡터로 형질전환된 숙주세포 또는 이의 배양물로부터 얻은 것인, 젠티오바이오스 또는 글루코스 생산용 조성물.
  4. 제3항에 있어서,
    베타-1,6-엔도글루카네이즈를 코딩하는 핵산은 SEQ ID NO: 2에 기재된 염기서열을 포함하는, 젠티오바이오스 또는 글루코스 생산용 조성물.
  5. SEQ ID NO: 1에 기재된 아미노산 서열을 포함하는 베타-1,6-엔도글루카네이즈(β-1,3-1,6-endoglucanase)와, 기질로, 라미나린(laminarin) 및 푸스툴란(pustulan)으로 이루어진 군에서 선택된 하나 이상을 반응시키는 것을 포함하는 젠티오바이오스 또는 글루코스의 생산방법.
  6. 제5항에 있어서,
    베타-1,6-엔도글루카네이즈는 사카로파거스 데그라단스 (Saccharophagus degradans) 2-40T에서 유래한 것인, 젠티오바이오스 또는 글루코스의 생산방법.
  7. 제5항에 있어서,
    베타-1,6-엔도글루카네이즈는 상기 베타-1,6-엔도글루카네이즈를 코딩하는 핵산을 포함하는 재조합 벡터로 형질전환된 숙주세포 또는 이의 배양물로부터 얻은 것인, 젠티오바이오스 또는 글루코스의 생산방법.
  8. 제7항에 있어서,
    베타-1,6-엔도글루카네이즈를 코딩하는 핵산은 SEQ ID NO: 2에 기재된 염기서열을 포함하는, 젠티오바이오스 또는 글루코스의 생산방법.
  9. 제5항에 있어서,
    기질과 베타-1,6-엔도글루카네이즈의 반응은 20 내지 45℃의 온도 범위에서, pH 5 내지 10에서, 5분 내지 1일 동안 수행되는, 젠티오바이오스 또는 글루코스의 생산방법.
PCT/KR2017/006950 2016-07-07 2017-06-30 베타-글루칸으로부터 젠티오바이오스 또는 글루코스를 생산하는 신규한 베타-1,6-엔도글루카네이즈 WO2018008900A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780042236.3A CN109415745B (zh) 2016-07-07 2017-06-30 用于产生龙胆二糖或葡萄糖的组合物和方法
US16/315,039 US10883128B2 (en) 2016-07-07 2017-06-30 Method of producing gentiobiose or glucose from β-glucan using β-1,6-endoglucanase

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0085868 2016-07-07
KR1020160085868A KR101784665B1 (ko) 2016-07-07 2016-07-07 베타―글루칸으로부터 젠티오바이오스 또는 글루코스를 생산하는 신규한 베타―1,6―엔도글루카네이즈

Publications (1)

Publication Number Publication Date
WO2018008900A1 true WO2018008900A1 (ko) 2018-01-11

Family

ID=60384898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/006950 WO2018008900A1 (ko) 2016-07-07 2017-06-30 베타-글루칸으로부터 젠티오바이오스 또는 글루코스를 생산하는 신규한 베타-1,6-엔도글루카네이즈

Country Status (4)

Country Link
US (1) US10883128B2 (ko)
KR (1) KR101784665B1 (ko)
CN (1) CN109415745B (ko)
WO (1) WO2018008900A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116083402A (zh) * 2023-02-02 2023-05-09 江苏大学 一种β-1,3-葡聚糖酶PeBgl1及其应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102011718B1 (ko) * 2018-03-12 2019-08-19 고려대학교 산학협력단 해조류로부터 포도당 및 라미나리올리고당을 생산하는 신규한 베타―글루코시데이즈
CN111593034B (zh) * 2020-06-24 2022-07-05 江南大学 利用β-1,6-葡聚糖酶制备低聚龙胆糖的方法及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6022723A (en) * 1994-05-11 2000-02-08 Novo Nordisk A/S Enzyme with β-(1-6)- endoglucanase activity

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA03011194A (es) * 2001-06-06 2004-02-26 Novozymes As Endo-beta-1,4-glucanasa.
US8309324B2 (en) * 2004-11-10 2012-11-13 University Of Rochester Promoters and proteins from Clostridium thermocellum and uses thereof
CN102321646B (zh) * 2011-09-08 2013-06-05 深圳大学 β-葡聚糖内切酶PEGase-2基因及其表达产物和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6022723A (en) * 1994-05-11 2000-02-08 Novo Nordisk A/S Enzyme with β-(1-6)- endoglucanase activity

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE NCBI [O] 10 February 2014 (2014-02-10), XP055451439, Database accession no. ABD82251.1 *
TAKAHASHI, MACHIKO ET AL.: "Biochemical Characterization of Magnaporthe Oryzae beta-glucosidases for Efficient beta-glucan Hydrolysis", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 91, no. 4, 29 May 2011 (2011-05-29), pages 1073 - 1082, XP019931845 *
WANG, DAMAO ET AL.: "A Novel Glycoside Hydrolase Family 5 beta,3-1,6-Endoglucanase from Saccharophagus Degradans 2-40T and Its Transglycosylase Activity", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 82, no. 14, 13 May 2016 (2016-05-13), pages 4340 - 4349, XP055451445 *
WU, HONG ET AL.: "Purification and Characterization of Beta-1,6-glucanase of Streptomyces Rochei Application in the Study of Yeast Cell Wall Proteins", BIOSCIENCE, BIOTECHNOLOGY, AND BIOCHEMISTRY, vol. 66, no. 11, 2002, pages 2515 - 2519, XP055451432 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116083402A (zh) * 2023-02-02 2023-05-09 江苏大学 一种β-1,3-葡聚糖酶PeBgl1及其应用
CN116083402B (zh) * 2023-02-02 2024-05-10 江苏大学 一种β-1,3-葡聚糖酶PeBgl1及其应用

Also Published As

Publication number Publication date
US10883128B2 (en) 2021-01-05
CN109415745A (zh) 2019-03-01
KR101784665B1 (ko) 2017-11-07
CN109415745B (zh) 2022-03-08
US20190309334A1 (en) 2019-10-10

Similar Documents

Publication Publication Date Title
WO2019177311A1 (ko) 해조류로부터 포도당 및 라미나리올리고당을 생산하는 신규한 베타-글루코시데이즈
WO2017188788A1 (ko) 베타-글루칸으로부터 올리고당 또는 글루코스를 생산하는 신규한 베타-1,3-1,6-엔도글루카네이즈
Zitouni et al. Biochemical and molecular characterization of a thermostable chitosanase produced by the strain Paenibacillus sp. 1794 newly isolated from compost
Zeng et al. Cloning, expression, and characterization of a new pH‐and heat‐stable alginate lyase from Pseudoalteromonas carrageenovora ASY5
US9902983B2 (en) Agarooligosaccharide hydrolase and method for producing 3,6-anhydro-L-galactose and galactose from agarose by using same
WO2018008900A1 (ko) 베타-글루칸으로부터 젠티오바이오스 또는 글루코스를 생산하는 신규한 베타-1,6-엔도글루카네이즈
KR101787331B1 (ko) 내열성 한천분해효소 및 이를 이용한 단당류의 생산방법
Nakatani et al. Discovery and characterization of a distinctive Exo-1, 3/1, 4-β-glucanase from the marine bacterium Pseudoalteromonas sp. strain BB1
CN116024198A (zh) λ-卡拉胶酶CglA-FFWV33在制备λ-卡拉胶寡糖中的应用
CN102719417A (zh) 一种耐高温阿拉伯呋喃糖苷酶Abf51B8及其基因和应用
CN114277043B (zh) 一种耐热甘露糖苷酶基因及其表达蛋白和应用
WO2016053025A2 (ko) 완충용액 전처리를 이용하여 한천에서 단당류의 생산 수율을 개선하는 방법
KR102300386B1 (ko) 알파- 및 베타-1,4-글리코시드 결합을 모두 절단하는 효소의 용도
CN109762798A (zh) 一种巴伦葛兹类芽孢杆菌壳聚糖酶的制备方法与应用
KR101483182B1 (ko) 신규한 엔도 베타-1,3-글루카네이즈 및 그 제조 방법
CN116640744B (zh) 壳聚糖酶OUC-CsnA4-S49I及其应用和制备壳寡糖的方法
CN114736889B (zh) 一种n端突变酶稳定性提升的壳聚糖酶突变体及其应用
CN116410960B (zh) 嗜盐适冷及pH适应性改良的β-木糖苷酶突变体D41G及其应用
Takahashi et al. Purification and some characteristics of β-N-acetylglucosaminidase Produced by Vibrio sp.
CN116179577A (zh) 一种菊粉酶及其编码基因的制备与应用
CN115873831A (zh) 一种高催化活性及温度稳定性的壳聚糖酶突变体及其应用
CN118126994A (zh) 一种偏好降解杂合褐藻寡糖的褐藻胶裂解酶及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17824456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17824456

Country of ref document: EP

Kind code of ref document: A1