WO2018008879A1 - 웨이퍼 수납용기 - Google Patents

웨이퍼 수납용기 Download PDF

Info

Publication number
WO2018008879A1
WO2018008879A1 PCT/KR2017/006703 KR2017006703W WO2018008879A1 WO 2018008879 A1 WO2018008879 A1 WO 2018008879A1 KR 2017006703 W KR2017006703 W KR 2017006703W WO 2018008879 A1 WO2018008879 A1 WO 2018008879A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
injection
supply
purge gas
wafer
Prior art date
Application number
PCT/KR2017/006703
Other languages
English (en)
French (fr)
Inventor
우범제
윤석문
허장
김영철
Original Assignee
피코앤테라(주)
우범제
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 피코앤테라(주), 우범제 filed Critical 피코앤테라(주)
Priority to US16/314,837 priority Critical patent/US11075100B2/en
Publication of WO2018008879A1 publication Critical patent/WO2018008879A1/ko
Priority to US17/246,325 priority patent/US11710651B2/en
Priority to US18/327,708 priority patent/US20230307276A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/6735Closed carriers
    • H01L21/67386Closed carriers characterised by the construction of the closed carrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02046Dry cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/67034Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for drying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/6732Vertical carrier comprising wall type elements whereby the substrates are horizontally supported, e.g. comprising sidewalls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/6735Closed carriers
    • H01L21/67379Closed carriers characterised by coupling elements, kinematic members, handles or elements to be externally gripped
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/6735Closed carriers
    • H01L21/67383Closed carriers characterised by substrate supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/6735Closed carriers
    • H01L21/67389Closed carriers characterised by atmosphere control
    • H01L21/67393Closed carriers characterised by atmosphere control characterised by the presence of atmosphere modifying elements inside or attached to the closed carrierl
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • H01L2021/60007Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation involving a soldering or an alloying process
    • H01L2021/60022Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation involving a soldering or an alloying process using bump connectors, e.g. for flip chip mounting
    • H01L2021/60097Applying energy, e.g. for the soldering or alloying process
    • H01L2021/60172Applying energy, e.g. for the soldering or alloying process using static pressure
    • H01L2021/60187Isostatic pressure, e.g. degassing using vacuum or pressurised liquid

Definitions

  • the present invention relates to a wafer storage container, and more particularly, to a wafer storage container for supplying purge gas to a wafer accommodated in a storage chamber to remove fume from the wafer.
  • a semiconductor device is manufactured by selectively and repeatedly performing a deposition process, a polishing process, a photolithography process, an etching process, an ion implantation process, a cleaning process, an inspection process, a heat treatment process, and the like on a wafer. To this end, the wafer is transported to a specific location required for each process.
  • the wafer is a high-precision article that is stored or transported in a wafer container such as a front opening uni-pod (FOUP) or the like so as not to be contaminated or damaged from external contaminants and impacts.
  • a wafer container such as a front opening uni-pod (FOUP) or the like so as not to be contaminated or damaged from external contaminants and impacts.
  • FOUP front opening uni-pod
  • process gas used in the process and fume, a by-product of the process remain on the surface of the wafer without being removed, thereby causing contamination of semiconductor manufacturing equipment during the process or etching patterns of the wafer. pattern) defects may occur and the reliability of the wafer is deteriorated.
  • purging techniques have been developed to supply a purge gas to a wafer accommodated in a wafer storage container to remove fumes remaining on the surface of the wafer or to prevent oxidation of the wafer.
  • the wafer storage container is combined with a supply device capable of supplying purge gas, such as a load port, and supplies the purge gas to the wafer housed in the wafer storage container. Done. Therefore, the wafer storage container includes a flow path through which the purge gas supplied from the supply device flows, and an injection hole through which the purge gas is injected.
  • the wafer storage container capable of supplying the purge gas is known from Korean Patent Application Publication No. 2015-0087015 (hereinafter referred to as 'prior art').
  • the wafer cassette of the prior art comprises a plurality of mounting tables for supporting a wafer and injecting purge gas into a storage chamber, and an intake hole communicating with an exhaust part to exhaust purge gas and fume of the wafer cassette.
  • the plurality of mounting tables are provided with a purge gas flow path through which purge gas flows, and a purge gas discharge port communicating with the purge gas flow path. Therefore, the purge gas is supplied from the purge gas supply source and introduced into the loading table through the side gas pipe communicating with the purge gas flow path, and then injected into the storage chamber through the purge gas discharge port.
  • the present invention has been made in view of the above-described problem, and an object of the present invention is to provide a wafer storage container capable of ensuring uniform purging of wafers and minimizing waste of purge gas.
  • another object of the present invention is to provide a wafer storage container which can achieve independent purging of the wafer by individually controlling and spraying the purge gas injected to a plurality of purging areas partitioned in the vertical direction of the storage chamber.
  • another object of the present invention is to provide a recess in a plurality of supports in the vertical direction in the storage chamber to provide a wafer that can prevent the robot arm transferring the wafer when the wafer enters and exits the storage chamber through the front opening. It is an object to provide a storage container.
  • Another object of the present invention is to minimize the space formed between the support and the wafer when the wafer is supported on the support, to minimize the vertical flow of the purge gas injected into the storage chamber, a plurality of purging region partitioned in the storage chamber It is an object of the present invention to provide a wafer storage container capable of more efficiently injecting individual purge gases into the furnace.
  • another object of the present invention is to include a front exhaust on both sides of the front of the storage compartment, to prevent the external gas from entering the interior of the storage chamber, the wafer can be more efficiently achieved purging the wafer made in the storage chamber
  • An object is to provide a container.
  • a wafer storage container includes: a storage chamber in which a wafer accommodated through a front opening is received; A plurality of injection units for injecting purge gas into the storage chamber; And an exhaust unit configured to exhaust the purge gas and the fume of the storage chamber, wherein the storage chamber is partitioned into a plurality of purging regions in a vertical direction, and an injection unit injecting purge gas into the respective purging regions is purged individually. The gas is supplied and sprayed into each of the purging areas.
  • each of the plurality of injection units has an injection unit inner wall surface in contact with the storage chamber, the injection unit inner wall surface is characterized in that the injection hole for injecting purge gas into the storage chamber is formed.
  • the plurality of injection units may be arranged to be stacked in the vertical direction to correspond to each of the plurality of purging regions partitioned in the vertical direction.
  • the apparatus may further include a supply unit supplying a purge gas to the plurality of injection units, wherein the supply unit includes a plurality of vertical supply passages extending in a vertical direction, and the plurality of vertical supply passages may include: It is characterized in that each communication.
  • the exhaust part may include an exhaust part inner wall surface in contact with the storage chamber, and an exhaust hole in which the purge gas and the fume of the storage chamber are exhausted to the exhaust part is formed in the exhaust part inner wall surface.
  • the exhaust unit may include a plurality of exhaust spaces communicating with the exhaust holes, and a plurality of vertical exhaust passages communicating with each of the plurality of exhaust spaces, wherein the plurality of exhaust spaces may include a plurality of purging sections in the vertical direction. It is arranged to be stacked in the vertical direction in the exhaust portion so as to correspond to each of the regions.
  • the purging of the plurality of wafers stored in the storage chamber can be made uniform, thereby ensuring the reliability of the wafer manufacturing process. .
  • purging of the wafer can be achieved by selectively spraying only the region in which the wafer is located among the plurality of purging regions, unnecessary waste of purge gas can be prevented.
  • FIG. 1 is a perspective view of a wafer storage container according to a preferred embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of FIG.
  • FIG. 3 is a front view of FIG. 1;
  • FIG. 4 is a front view illustrating a flow of purge gas injected into first to third purging regions of FIG. 3.
  • FIG. 5 is a partial perspective view illustrating the inner wall surface of the first injection part of FIG. 1.
  • FIG. 6 is a partial perspective view illustrating first-first through third-second injection parts of FIG. 1.
  • FIG. 7 is a partial perspective view illustrating a purge gas flow in the first to third injection parts of FIG. 6.
  • FIG. 8 is a left side cross-sectional view showing a cross section of the left side of FIG.
  • FIG. 9 is a right cross-sectional view illustrating a flow of external gas exhausted to the first front exhaust part of FIG. 8 and a flow of purge gas and fume exhausted to the exhaust part;
  • FIG. 10 is a partial perspective view illustrating the inner wall surface of the second injection part of FIG. 1.
  • FIG. 11 is a partial perspective view illustrating first to third injection parts of FIG. 1.
  • FIG. 11 is a partial perspective view illustrating first to third injection parts of FIG. 1.
  • FIG. 12 is a partial perspective view illustrating purge gas flow in the first to third injection parts of FIGS.
  • FIG. 13 is a right sectional view showing a cross section of the right side of FIG. 1;
  • FIG. 14 is a right side cross-sectional view showing the flow of external gas exhausted to the second front exhaust section of FIG. 13 and the flow of purge gas and fume exhausted to the exhaust section;
  • FIG. 15 is a plan sectional view of FIG. 1; FIG.
  • FIG. 16 is a cross-sectional plan view illustrating a flow of purge gas injected to a wafer supported by the support of FIG. 15 and a flow of purge gas and fume exhausted to an exhaust part;
  • FIG. 17 is a front view illustrating the front of the exhaust unit of FIG. 1;
  • FIG. 18 is a rear cross-sectional view illustrating a cross section of the rear surface of the exhaust unit of FIG. 17;
  • 19 is a right side view showing the right side of the first supply part of FIG.
  • FIG. 20 is a left side view showing the left side of the second supply part of FIG. 1;
  • FIG. 21 is a plan view of the support of FIG.
  • FIG. 22 illustrates that a wafer is supported on the support of FIG. 21.
  • FIG. 23 is a perspective view illustrating a right side surface of the first front exhaust part of FIG. 1;
  • FIG. 24 is a sectional perspective view showing a cross section of the left side of the first front exhaust portion of FIG. 23;
  • FIG. 25 is a perspective view illustrating a left side surface of the second front exhaust part of FIG. 1;
  • FIG. 26 is a sectional perspective view showing a cross section of the right side of the second front exhaust portion of FIG. 25; FIG.
  • FIG. 27 is an exploded perspective view of the lower plate of FIG. 1;
  • FIG. 28 is a plan view of the first lower plate of FIG. 27; FIG.
  • 29 is a top view of the second lower plate of FIG. 27.
  • FIG. 30 is a plan view of the third lower plate of FIG. 27;
  • FIG. 31 is a plan view of the connector of FIG. 27;
  • FIG. 32 is a plan view illustrating purge gas flow inside the lower plate of FIG. 27.
  • FIG. 32 is a plan view illustrating purge gas flow inside the lower plate of FIG. 27.
  • FIG 33 is a schematic diagram showing a purge gas supply / injection flow of the wafer storage container according to the preferred embodiment of the present invention.
  • 34 is a schematic diagram showing the exhaust flow of purge gas, fume and external gas of the wafer storage container according to the preferred embodiment of the present invention.
  • the purge gas referred to below refers to an inert gas for removing fume from a wafer, and may be nitrogen (N 2 ) gas, which is one of inert gases.
  • purging is a general term for spraying purge gas on a wafer to remove fumes remaining on the wafer surface or to prevent oxidation of the wafer.
  • a wafer storage container includes a storage chamber in which a wafer accommodated through a front opening is accommodated, a plurality of injection parts for injecting purge gas into the storage chamber, and exhaust gas for purging gas and fume in the storage chamber. It comprises a base and a supply part which supplies a purge gas to a some injection part.
  • a front opening is formed in front of the storage chamber, and the wafer enters and exits the storage chamber through the front opening.
  • a support for supporting a wafer is provided inside the storage chamber, and the wafer is supported and accommodated in the support, so that the wafer accommodated through the front opening can be easily accommodated.
  • the plurality of injection units inject the purge gas into the storage chamber in which the wafer is stored, and the exhaust unit exhausts the purge gas injected into the storage chamber by the plurality of injection units and the fume of the wafer, and the supply unit flows in from the outside of the wafer storage container.
  • the purge gas is supplied to the plurality of injection units.
  • the storage compartment described above may be partitioned into a plurality of purging regions in the vertical direction.
  • the purging region refers to a region in which each of the plurality of injection portions is individually supplied with the purge gas and injects the purge gas into the storage chamber to purge the wafer.
  • the number of purging areas as described above may be variously divided according to the use and size of the wafer storage container within the scope that can achieve the object of the present invention.
  • wafers are often transferred to each process in units of 10 wafers. Therefore, purging of 10 wafers in one purging area is desirable, and the number of wafers to be accommodated in a wafer storage container. Is typically 30.
  • the purging area partitioned in the storage chamber may be partitioned into, for example, three purging areas.
  • the wafer storage container is provided with three injection parts, that is, the first to third injection parts to partition the first to third purging areas, which will be described below.
  • the storage chamber may be divided into the first to third purging regions.
  • the first injector injects purge gas into the first purging region
  • the second injector injects purge gas into the second purging region
  • the third injector injects purge gas into the third purging region.
  • the first to third purging regions are partitioned in the vertical direction in the storage chamber.
  • each of the third spraying units may have a spray hole having a vertical position corresponding to each of the first to third purging regions.
  • the first to third purging areas are partitioned in the storage compartment from the bottom to the top of the first purging region, the second purging region, and the third purging region (that is, the first purging region is a lower region of the storage chamber,
  • the second purging region is an intermediate region of the storage chamber, and the third purging region is an upper region of the storage chamber.
  • the injection hole formed in the first spray unit is formed at a position (lower region) corresponding to the height of the first purging region. Can be. Therefore, the first injector may separately receive the purge gas and inject the purge gas only into the first purging region, which is a lower region of the storage chamber.
  • the injection hole formed in the second injection portion may be formed at a position (intermediate region) corresponding to the height of the second purging region.
  • the second injection portion is individually supplied with the purge gas to receive the intermediate portion of the storage chamber.
  • the purge gas may be injected only into the second purging region, which is the region.
  • the injection hole formed in the third injection portion may be formed at a position (upper region) corresponding to the height of the third purging region.
  • the third injection portion is individually supplied with the purge gas to the middle of the storage chamber.
  • the purge gas may be injected only into the third purging region, which is the region.
  • the first to third injection parts are separately supplied with the purge gas and sprayed into the storage chamber to form the first to third purging regions partitioned in the vertical direction inside the storage chamber. Will be.
  • the flow of the purge gas flowing to each of the first to the third purging region is made separately, so that the purge gas flowing to the third purging region, which is the upper region of the storage chamber, unlike the prior art, the first purging region It is not necessary to flow to the second purging region, so that the loss of flow amount of the purge gas does not occur.
  • a sufficient amount of purge gas may be injected into the third purging region, which is the upper region of the storage chamber, unlike the prior art.
  • the purge gas injected to the first to third purging regions of the storage chamber is controlled by controlling the supply of the purge gas to the first to third spray units.
  • the purge gas may be injected only to a region in which the wafer is accommodated in the first to third purging regions. Therefore, in the prior art, it is possible to prevent the waste of the purge gas generated by injecting the purge gas into the area where the wafer is not stored, and to purge the wafer by injecting the purge gas in accordance with the waiting time of the wafer stored in the storage chamber. By removing the fume, it is possible to minimize the occurrence of wafer defects caused by the removal of the fume of some wafers.
  • the first to third injection parts may be disposed to be stacked in the vertical direction to correspond to the first to third purging areas partitioned in the vertical direction.
  • each of the first to third injection parts may include an injection part inner wall surface in contact with the storage chamber, and an injection hole may be formed in the injection part inner wall surface to allow the purge gas to be injected into the storage chamber.
  • the first injection unit may separately receive the purge gas and inject the purge gas only into the first purging region through the injection hole formed in the inner wall surface of the injection unit provided in the first injection unit.
  • the second injector may separately receive the purge gas and inject the purge gas only into the second purging region through the injection hole formed in the inner wall of the injection unit provided in the second injector
  • the third injector may also be individually
  • the purge gas may be supplied to spray the purge gas only to the third purging region through the injection hole formed in the inner wall of the injection unit provided in the third injection unit.
  • each of the first to third injection parts may be the first to third purge areas, respectively. It may be divided into a plurality of injection units for injecting purge gas in multiple directions.
  • the first injection unit for injecting purge gas into the first purging region may include a first-first injection unit for injecting purge gas to the front left side of the first purging region and a purge gas to the rear left side of the first purging region.
  • a 1-2 injection unit, a 1-3 injection unit for injecting purge gas to the front right side of the first purging region, and a 1-4 injection unit for injecting purge gas to the rear right side of the first purging region; Can be.
  • 2nd injection part which injects purge gas to a 2nd purging area Moreover, 2-1th injection part which injects purge gas to the front left side of a 2nd purging area similarly to a 1st injection part, and a rear left side of a 2nd purging area
  • a second to second injection unit for injecting purge gas into the air, a second to third injection unit for injecting purge gas into the front right side of the second purging region, and a second to inject purge gas to the rear right side of the second purging region It may include -4 injection parts.
  • the third injection unit for injecting purge gas into the third purging region also has a 3-1 injection unit for injecting purge gas to the front left side of the third purging region similar to the first injection unit, and the rear left side of the third purging region.
  • a third injection part for injecting purge gas into the air, a third injection part for injecting purge gas in the front right side of the third purging area, and a third injection of purge gas in the rear right side of the third purging area It may include -4 injection parts.
  • each of the first to third spray units includes first to first to fourth spray units, second to second to fourth spray units, and third to third to fourth spray units.
  • the purge gas can be injected into each of the first to third purging regions of the storage chamber without the dead region, and thus, the fume of the wafer accommodated in the storage chamber can be efficiently removed.
  • the plurality of injection portions are made of the first to third injection portion, each of the first to third injection portion is the first It demonstrates based on what is comprised including the -1 thru
  • the first to third purging regions are partitioned in the storage chamber in the vertical direction by the first to third injection parts. Therefore, ten wafers are positioned in each of the first to third purging regions, and purging of each of the ten wafers may be achieved by the first to third injection units.
  • FIG. 1 is a perspective view of a wafer storage container according to a preferred embodiment of the present invention
  • FIG. 2 is an exploded perspective view of FIG. 1
  • FIG. 3 is a front view of FIG. 1
  • FIG. 4 is a first to third purging region of FIG. 3.
  • 5 is a front perspective view showing the flow of the purge gas injected into the gas pipe
  • FIG. 5 is a partial perspective view showing the inner wall surface of the first injection part of FIG. 1
  • FIG. 6 shows the first to third injection parts of FIG. 1.
  • FIG. 7 is a partial perspective view illustrating a purge gas flow in the first-first to third-second injection parts of FIG. 6,
  • FIG. 8 is a left sectional view showing a cross section of the left side of FIG. 1, and FIG. FIG.
  • FIG. 8 is a right cross-sectional view illustrating a flow of external gas exhausted to the first front exhaust unit and a flow of purge gas and fume exhausted to the exhaust unit
  • FIG. 10 is a partial perspective view illustrating an inner wall surface of the second spray unit of FIG. 1.
  • FIG. 11 is a partial perspective view illustrating the first to third injection parts of the first to third injection parts of FIG. 1
  • FIG. 13 is a partial perspective view illustrating the purge gas flow of the third to third injection parts
  • FIG. 13 is a right cross-sectional view showing a cross section of the right side of FIG. 1
  • FIG. 14 is an exterior exhausted to the second front exhaust part of FIG. 13.
  • FIG. 15 is a right sectional view showing the flow of gas and the flow of purge gas and fume exhausted to the exhaust part
  • FIG. 15 is a plan sectional view of FIG. 1
  • FIG. 17 is a front sectional view showing the flow of the purge gas and the fume discharged to the exhaust unit
  • FIG. 17 is a front view showing the front of the exhaust unit of FIG. 1
  • FIG. 19 is a right side view of the right side of the first supply unit of FIG. 1
  • FIG. 20 is a left side view of the left side of the second supply unit of FIG. 1
  • FIG. 21 is a plan view of the support of FIG. 1
  • 22 is a wafer supported on the support of FIG.
  • FIG. 23 is a perspective view illustrating a right side of the first front exhaust part of FIG. 1, FIG.
  • FIG. 24 is a cross-sectional perspective view showing a cross section of the left side of the first front exhaust part of FIG. 23, and FIG. 25 is a view of FIG. 1 is a perspective view showing a left side of the second front exhaust part of FIG. 1, and FIG. 26 is a cross sectional perspective view showing a cross section of the right side of the second front exhaust part of FIG. 25,
  • FIG. 28 is a plan view of the first lower plate of FIG. 27,
  • FIG. 29 is a plan view of the second lower plate of FIG. 27,
  • FIG. 30 is a plan view of the third lower plate of FIG. 27, and
  • FIG. 33 is a schematic diagram showing the purge gas supply / injection flow of the wafer storage container according to the preferred embodiment of the present invention
  • FIG. 34 Is in a preferred embodiment of the present invention It is a schematic diagram which shows the exhaust flow of the purge gas, the fume, and the external gas of the wafer storage container.
  • the wafer storage container 10 includes a storage chamber 200 in which the wafer W accommodated through the front opening 251 is accommodated, and the storage chamber 200.
  • First to eighth horizontal frames forming the frames of the first to third injection units 310, 320 and 330 for injecting purge gas into the chamber 200 and the first to third injection units 310, 320 and 330.
  • the upper surface of the container 10 Base is configured to include a top plate (900).
  • the storage chamber 200 functions to accommodate the wafer W therein, and the first to third injection units 310, 320, 330 and the exhaust unit 400 are provided. It is defined as the inner space surrounded by.
  • a front opening 251 is formed in front of the storage chamber 200, and the wafer W enters and exits through the front opening 251.
  • the upper surface of the storage compartment 200 is composed of an upper plate 900
  • the lower surface of the storage compartment 200 is composed of a lower plate 800
  • the circumferential surface of the storage compartment 200 is the first
  • two minutes The inner wall surfaces 340 and 350 and the exhaust inner wall surfaces 440 are provided.
  • the storage chamber 200 has an upper surface, a lower surface, and a circumferential surface except for the front opening portion 251, the lower plate 800, the first and second injection portion inner wall surfaces 340 and 350, and the exhaust portion. It is closed by the wall surface 440.
  • injection holes 390 and exhaust holes 490 are formed in the first and second injection part inner wall surfaces 340 and 350 and the exhaust part inner wall surfaces 440 forming the circumferential surface of the storage chamber 200, respectively.
  • the purge gas may be injected into the storage chamber 200 through the injection hole 490 or the fume of the purge gas and the wafer W injected into the storage chamber 200 through the exhaust hole 490 may be exhausted.
  • a support 600 for supporting the wafer W is provided inside the storage chamber 200, and thus, the wafer W may be supported by the support 600 to be easily accommodated in the storage chamber 200. .
  • the support stand 600 is formed by the first and second support coupler parts 345 and 355 provided at the rear left and rear right sides of the storage chamber 200, respectively. It can be easily installed on the inner wall surfaces 340 and 350 of the first and second injection parts.
  • a plurality of support units 600 may be provided in the vertical direction according to the number of wafers W accommodated in the storage chamber 200. Therefore, the storage chamber 200 is provided with thirty supports 600 supporting each of the thirty wafers W, which will be described in detail later.
  • the interior of the storage chamber 200 is divided into first to third purging regions 210, 220, and 230 in the vertical direction, in which case, the first to third purging regions are arranged in order from the bottom to the top.
  • the purging region 210, the second purging region 220, and the third purging region 230 are sequentially divided.
  • the first to third purging regions 210, 220, and 230 are virtual regions partitioned inside the storage chamber 200, and are respectively disposed in the purge gas injected from the first to third injection units 310, 320, and 330. Means the region where the wafer W is purged.
  • the wafer W accommodated in the storage chamber 200 and positioned in the first purging region 210 is purged by the purge gas injected from the first spraying unit 310, and the second purging region 220 is disposed in the second purging region 220.
  • the wafer W positioned is purged by the purge gas injected from the second injection unit 320, and the wafer W located in the third purge region 230 is purged injected from the third injection unit 330. Purged by gas.
  • the purge gas supplied to the first injection unit 310, the purge gas supplied to the second injection unit 320 and the purge gas supplied to the third injection unit 330 are respectively supplied separately, Detailed description will be described later.
  • the first to third spray units 310, 320, and 330 are arranged to surround the circumference of the storage chamber 200, and the first spray unit 310 is disposed from the bottom to the top.
  • the second injection unit 320 and the third injection unit 330 are disposed to be stacked in the vertical direction, so that the first to third purging regions 210, 220, and 230 partitioned in the vertical direction in the storage chamber 200. ) Are arranged to correspond to each other.
  • the first injection unit 310 is disposed above the lower plate 800
  • the second injection unit 320 is disposed above the first injection unit 310
  • the third injection unit 330 is The second injection unit 320 is disposed above and below the upper plate 900. That is, the first to third injection parts 310, 320, and 330 are disposed in three layers in the vertical direction between the lower plate 800 and the upper plate 900. Accordingly, the first to third purging regions 210, 220, and 230 may be easily partitioned by the purge gas injected from the first to third spray units 310, 320, and 330.
  • the first to third injection units 310, 320, and 330 are the first to first to fourth injection units 310a to 310d and the second to first to third injection units, respectively.
  • 2-4 injection parts 320a to 320d and 3-1 to 3-4 injection parts 330a to 330d and in this case, 1-1 to 1-4 injection parts ( 310a to 310d inject the purge gas into the first purging region 210, and the 2-1 to 2-4 injectors 320a to 320d inject the purge gas into the second purging region 220,
  • the 3-1 to 3-4 injection parts 330a to 330d spray the purge gas to the third purging region 230.
  • the 1-3, 1-4 injection parts 310c and 310d, the 2-3, 2-4 injection parts 320c and 320d, and the 3-3 and 3-4 injection parts 330c and 330d will be described later.
  • the purge gas is separately supplied by the first to third to second external supply lines (not shown), which will be described later.
  • the first injection unit 310, the second injection unit 320, and the third injection unit 330 are arranged to be stacked in the vertical direction, and thus are distinguished from each other in the vertical direction.
  • the 1-1, 1-2 injection parts 310a, 310b and the 2-1, 2-2 injection parts 320a, 320b, and the 3rd parts disposed on the left and rear left sides of the storage chamber 200 are provided.
  • the -1 and 3-2 injection parts 330a and 330b are distinguished from each other in the vertical direction, and the vertical direction is as follows.
  • the second horizontal member 112 is provided between the 1-1, 1-2 injection parts 310a, 310b and the 2-1, 2-2 injection parts 320a, 320b, and thus, the first The -1, 1-2 injection parts 310a, 310b and the 2-1, 2-2 injection parts 320a, 320b are distinguished in the vertical direction.
  • a third horizontal member 113 is provided between the 2-1, 2-2 injection parts 320a and 320b and the 3-1 and 3-2 injection parts 330a and 330b, and thus, the second The -1 and 2-2 injection parts 320a and 320b and the 3-1 and 3-2 injection parts 330a and 330b are distinguished in the vertical direction.
  • first, third, and fourth injection parts 310c and 310d and the second, third and second injection parts 320c and 320d and the third and the third and first and fourth injection parts 310c and 310d are disposed on the right and rear right sides of the storage chamber 200.
  • the 3, 3-4 injection parts 330c and 330d are distinguished from each other in the vertical direction, and the vertical direction is as follows.
  • the sixth horizontal member 116 is provided between the first and third injection parts 310c and 310d and the second and second injection parts 320c and 320d, and thus, the first and second injection parts 310c and 310d are provided.
  • the -3, 1-4 injection parts 310c, 310d and the 2-3, 2-4 injection parts 320c, 320d are distinguished in the vertical direction.
  • a seventh horizontal member 117 is provided between the second and third injection parts 320c and 320d and the third and third injection parts 330c and 330d.
  • the second and third injection parts 320c and 320d and the third and third injection parts 330c and 330d are distinguished in the vertical direction.
  • first-first injection unit 310a, the first-second injection unit 310b, the second-first injection unit 320a, and the second-2 minutes disposed at the left and rear left sides of the storage chamber 200.
  • a second vertical member 122 is provided between the yarn part 320b and each of the third-1st injection part 330a and the third-2nd injection part 330b. Accordingly, the first-first injection unit 310a and the first-second injection unit 310b are distinguished in the horizontal direction, and the second-first injection unit 320a and the second-2 injection unit 320b are in the horizontal direction. 3-1 injection part 330a and 3-2 injection part 330b are distinguished in the horizontal direction.
  • a fifth vertical member 125 is provided between the yarn part 320d and each of the third to third injection parts 330c and the third to fourth injection parts 330d.
  • the first to third injection parts 310c are provided.
  • the first-4 injection part 310d are distinguished in the horizontal direction
  • the second-3 injection part 320c and the second-4 injection part 320d are distinguished in the horizontal direction
  • the third-3 injection part ( 330c and the third to fourth injection parts 330d are distinguished in the horizontal direction.
  • the outer surface of the 3-2 injection parts 330a and 330b includes the first injection part outer wall surface 361.
  • the inner wall surface 340 of the first spray unit 340 includes the storage chamber 200, the first-first and 1-2 spray units 310a and 310b, and the second-1 and 2-2 spray units 320a and 320b. And 3-1 and 3-2 injection units 330a and 330b.
  • the inner wall surface 340 of the first injection unit may include the first-first and second injection units 310a and 310b, the second and second injection units 320a and 320b, and the third and third injection units.
  • the inner surfaces of the ⁇ 2 injection units 330a and 330b are formed, and at the same time, an outer surface (or a peripheral surface) of the storage chamber 200 is formed.
  • the first injection part is in contact with the left and rear left of the storage chamber 200 by the inner wall surface 340.
  • the first injection unit outer wall surface 361 is provided to be spaced apart from the first injection unit inner wall surface 340 in the opposite direction to the storage chamber 200, and the first injection unit inner wall surface 340 and the first injection unit A space is formed between the outer wall surfaces 361.
  • the 1-1, 1-2 injection parts 310a, 310b, the 2-1, 2-2 injection parts 320a, 320b, and the 3-1, 3-2 injection parts 330a, 330b, respectively. May be defined as a space between the first injection part inner wall surface 340 and the first injection part outer wall surface 361.
  • the outer surface of the 3-4 injection parts 330c and 330d includes a second injection part outer wall surface 362.
  • the inner wall surface 350 of the second spray unit 350 includes the storage chamber 200, the first and third spray units 310c and 310d, and the second and second spray units 320c and 320d. And between 3-3 and 3-4 injection parts 330c and 330d.
  • the inner wall surface 350 of the second injection unit 350 includes the first, third, and fourth injection units 310c and 310d, the second and second injection units 320c and 320d, and the third and third units 3 and 3.
  • the inner surface of the -4 injection parts 330c and 330d is formed, and at the same time, the outer surface (or circumferential surface) of the storage chamber 200 is formed.
  • the first to third injection parts 310c and 310d, the second and second injection parts 320c and 320d, and the third and third injection parts 330c and 330d are displayed. Is in contact with the right side and the rear right side of the storage chamber 200 by the second injection unit inner wall surface (350).
  • the second injection part outer wall surface 362 is provided to be spaced apart from the second injection part inner wall surface 350 in a direction opposite to the storage chamber 200, and the second injection part inner wall surface 350 and the second injection part A space is formed between the outer wall surfaces 362.
  • the 1-3, 1-4 injection parts 310c and 310d, the 2-3 and 2-4 injection parts 320c and 320d, and the 3-3 and 3-4 injection parts 330c and 330d, respectively. May be defined as a space between the second injection part inner wall surface 350 and the second injection part outer wall surface 362.
  • the above-described first to third injection parts 310a to 330d may be provided with a heater (not shown) for controlling temperature and humidity inside the storage chamber 200.
  • the heater may be formed of first to third to fourth heaters so as to correspond to the first to third to fourth injection parts 310a to 330d.
  • the first to second to fourth heaters are disposed on the outer surfaces of the first and second injection part outer wall surfaces 361 and 362 so as to be positioned outside the first to third to fourth injection parts 310a to 330d, respectively. Can be installed.
  • the outermost circumferential surface of the wafer storage container 10 is made of a cover, and the first to third to fourth heaters are located between the first and second injection part outer wall surfaces 361 and 362 and the cover. do.
  • the first to third to fourth heaters are individually controlled, and thus, the first to third purging regions 210 and 220 of the first to third to fourth injection parts 310a to 330d are controlled. , 230 may be operated so that only the heater corresponding to the injection unit for injecting the purge gas.
  • the second-second injection unit 320b injects the purge gas into the second purging region 220
  • the second-two heater is operated, thereby purging the gas injected from the second-second injection unit 320b.
  • the second purging region 220 of the storage chamber 200 may be heated. Therefore, purging of the wafer W accommodated in the second purging region 220 can be easily performed, and humidity in the second purging region 220 is lowered, thereby preventing oxidation of the wafer W. have.
  • the individual control of the first to third to fourth heaters may be organically performed with the individual control of the first to third to fourth injection parts 310a to 330d. Therefore, the temperature and humidity control due to the heater can be achieved only in the desired purging area among the first to third purging areas 210, 220, and 230, and thus, the wafer W can be controlled with minimal energy (electricity, etc.). Antioxidation can be achieved.
  • the injection hole 390 formed in the 1st injection part inner wall surface 340 and the 2nd injection part inner wall surface 350 is demonstrated.
  • a plurality of injection holes 390 are formed in the inner wall surface 340 of the first spray unit and the inner wall surface 350 of the second spray unit. .
  • the plurality of injection holes 390 may be formed in a matrix form having rows and columns, and as described above, the wafer storage container 10 according to the preferred embodiment of the present invention may have 30 wafers (W). It is preferable that the plurality of injection holes 390 have thirty rows because it stores and purges.
  • the plurality of injection holes 390 are formed to be positioned on the upper portions of the thirty supports 600, respectively.
  • the upper and lower portions of the support 600 are respectively formed on the first and second injection part inner wall surfaces 340 and 350 such that the plurality of injection holes 390 are positioned to support the 30 supports 600, respectively.
  • the purge gas may be easily injected onto the 30 wafers W.
  • the injection holes 390 located at a height corresponding to the first purging area 210 may include the first-first, 1-2 injection parts 310a, 310b) and the left side and the rear left side of the first purging region 210 communicate with each other. Therefore, the purge gas supplied into the first-first and second-injection parts 310a and 310b may be injected to the left and rear left sides of the first purging region 210 through the injection hole.
  • the injection holes 390 located at a height corresponding to the second purging area 220 may be formed by the second injection parts 320a, 2-1 and 2-2. 320b) and the left side and the rear left side of the second purging region 220 communicate with each other. Therefore, the purge gas supplied into the 2-1 and 2-2 injection parts 320a and 320b may be injected to the left and rear left sides of the first purging region 210 through the injection holes.
  • the spray holes 390 formed on the inner wall surface 340 of the first spray unit 340 are formed by the 3-1, 3-2 spray units 330a, 330b) and the left and rear left sides of the third purging region 230 communicate with each other. Therefore, the purge gas supplied into the 3-1 and 3-2 injection parts 330a and 330b may be injected to the left and rear left sides of the first purging region 210 through the injection holes.
  • the injection holes 390 located at a height corresponding to the first purging region 210 may include the first, third, and fourth injection parts 310c, 310d) and the right side and the rear right side of the first purging region 210 communicate with each other. Therefore, the purge gas supplied into the 1-3 and 1-4 injection parts 310c and 310d may be injected to the right side and the rear right side of the first purging region 210 through the injection hole.
  • the injection holes 390 located at a height corresponding to the second purging region 220 may include the second, second and second injection units 320c, 320d) and the right side and the rear right side of the second purging region 220 communicate with each other. Therefore, the purge gas supplied into the second and second injection parts 320c and 320d may be injected to the right side and the rear right side of the first purging region 210 through the injection hole.
  • the injection holes 390 formed on the inner wall surface 350 of the second injection unit 350 are formed by the third injection unit 330c, 330d) and the right side and the rear right side of the third purging region 230 communicate with each other. Therefore, the purge gas supplied into the third, third and third injection parts 330c and 330d may be injected to the right side and the rear right side of the first purging region 210 through the injection hole.
  • the first to third injection parts 310a to 330d are formed through injection holes formed in the first injection part inner wall surface 340 and the second injection part inner wall surface 350.
  • the purge gas is injected into the purging areas 210, 220, and 230, that is, the storage chamber 200.
  • a predetermined purge gas is supplied to and stored in each of the first to third injection parts 310a to 330b, whereby the internal pressure of the purge gas stored in the respective injection parts is increased.
  • the purge gas is injected into the first to third purging regions 210, 220, and 230 through the injection hole 390.
  • the purge gas is injected from the injection hole 390 of the first injection unit inner wall surface 340 and the second injection unit inner wall surface 350 forming the circumferential surface of the storage chamber 200, thereby providing a dead zone than the prior art. There is an effect that can be minimized.
  • injection holes 390 is directly formed on the inner wall surfaces 340 and 350 of the two injection parts to inject the purge gas. Therefore, by simply forming the injection holes 390 in the inner wall surfaces 340 and 350 of the first and second injection parts, the injection direction of the purge gas injected into the first to third purging regions 210, 220, and 230 is easily facilitated. It is possible to adjust, so that it is possible to easily form the arrangement of the optimum injection hole 390 to minimize the dead zone generation.
  • the number of injection holes 390 can be easily added, and the number of injection holes 390 increases.
  • the plurality of injection holes 390 are densely arranged, a kind of surface injection effect is achieved such that purge gas is injected from the entire first and second injection part inner wall surfaces 340 and 350, which are peripheral surfaces of the storage chamber 200. can do. Therefore, unlike the prior art, a uniform spraying pressure can be ensured, whereby it is possible to prevent the injection of the purge gas concentrated only on a portion of the wafer (W).
  • the injection hole 390 becomes clogged with fume due to long-term use of the wafer storage container 10
  • the injection hole 390 is replaced by replacing the first and second injection part inner wall surfaces 340 and 350. Problems due to blockage of c) can be solved, so that easy maintenance of the wafer storage container 10 can be achieved.
  • the injection hole 390 may have more than 30 rows in the vertical direction on the inner wall surfaces 340 and 350 of the first and second injection parts.
  • one injection hole 390 may not be positioned between the plurality of supporting members 600, and two or more injection holes 390 may be formed in the vertical direction. Therefore, more than ten injection holes 390 can be formed in one purging region in the vertical direction, whereby purging of the wafer W can be more easily achieved.
  • the shape of the injection hole 390 may be formed to have various shapes such as a rectangular slit shape, a slit shape having an end portion arc, a circular hole shape, a polygonal hole shape, and the like.
  • first to third supply holes 371a to 373b are formed on the outer wall surface 361 of the first injection unit.
  • the first-first supply hole 371a communicates with the interior of the first-first injection unit 310a and the first-first supply space 531a of the first supply unit 510.
  • the purge gas 531a may flow into the first-first injection unit 310a.
  • the first-second supply hole 371b communicates with the inside of the first-second injection unit 310b and the first-second supply space 531b of the first supply unit 510, thereby providing the first-second supply space.
  • the purge gas of 531b may flow into the first-second injection part 310b.
  • the second-first supply hole 372a communicates with the inside of the second-first injection unit 320a and the second-first supply space 532a of the first supply unit 510. As a result, the second-first supply space The purge gas of 532a may flow into the second-first injection unit 320a.
  • the second-second supply hole 372b communicates the inside of the second-first injection unit 320a with the second-first supply space 532a of the first supply unit 510, thereby allowing the second-1 supply space.
  • the purge gas of 532a may flow into the second-first injection unit 320a.
  • the third-first supply hole 373a communicates with the interior of the third-first injection unit 330a and the third-first supply space 533a of the first supply unit 510, thereby allowing the third-1 supply space.
  • the purge gas 533a may flow into the third-first injection unit 330a.
  • the third-second supply hole 373b communicates with the inside of the third-second injection unit 330b and the third-second supply space 533b of the first supply unit 510, and thus, the third-second supply space
  • the purge gas of the 533b may flow into the third-2 injection part 330b.
  • the first through third through third through fourth supply holes 371c through 373d are formed in the outer wall surface 362 of the second injection part.
  • the first-third supply hole 371c communicates with the inside of the first-third injection unit 310c and the first-third supply space 531c of the second supply unit 520, and thus, the first-three supply space.
  • the purge gas of 531c may flow into the 1-3 injection portion 310c.
  • the first-fourth supply hole 371d communicates with the inside of the first-fourth injection unit 310d and the first-fourth supply space 531d of the second supply unit 520, and thus, the first-fourth supply space
  • the purge gas 531d may flow into the first-4 injection parts 310d.
  • the 2-3 supply hole 372c communicates the inside of the 2-3 injection part 320c with the 2-3 supply space 532c of the second supply part 520, whereby the 2-3 supply space is provided.
  • the purge gas of 532c may flow into the second-3 injection part 320c.
  • the 2-4 supply hole 372d communicates with the inside of the 2-4 injection part 320d and the 2-4 supply space 532d of the second supply part 520, and thus, the 2-4 supply space.
  • the purge gas of 532d may flow into the second to fourth injection parts 320d.
  • the third supply hole 373c communicates with the inside of the third injection part 330c and the third supply space 533c of the second supply part 520, whereby the third supply space is provided.
  • the purge gas of the 533c may flow into the third injection portion 330c.
  • the third and fourth supply holes 373d communicate with the interior of the third and fourth injection units 330d and the third and fourth supply spaces 533d of the second supply unit 520, and thus, the third and fourth supply spaces.
  • the purge gas 533d may flow into the third and fourth injection parts 330d.
  • first through third through third supply holes 371a through 373d have a slit shape in which the vertical length is longer than the horizontal length.
  • the horizontal lengths of the first to third through fourth supply holes 371a to 373d may be formed in the first and second supply portions communicating with the first through third through fourth supply holes 371a to 373d, respectively. It is preferable to be formed shorter than the horizontal length of the 1-1 to 3-4 supply spaces (531a to 533d).
  • the purge gas flows from the first-first to third-fourth supply spaces 531a to 533d to the first-first to third-fourth supply holes 371a to 373d.
  • the injection pressure of the purge gas is momentarily increased. Because it can rise to.
  • the purge gas when the injection pressure of the purge gas is instantaneously increased, the purge gas may be easily flowed into the entire interior of the first to third injection parts 310a to 330d, and thus, the first to The purge gas injected from the first to third fourth injection units 310a to 330d may be more smoothly injected to the entire first to third purging regions 210, 220, and 230.
  • first to eighth horizontal members 111 to 118 and the first to sixth vertical members 121 to 126 will be described.
  • the first to fourth horizontal members 111 to 114 and the first to third vertical members 121 to 123 are disposed on the left side of the storage chamber 200.
  • the first to fourth horizontal members 111 to 114 are connected by the first to third vertical members 121 to 123. Due to this connection structure, the first to fourth horizontal members 111 to 114 and the first to fourth horizontal members 111 to 114 are formed.
  • the first to third vertical members 121 to 123 form a skeleton, that is, a frame of the first to third injection parts 310a to 330b.
  • each of the first to fourth horizontal members 111 to 114 and the first to third vertical members 121 to 123 may have a predetermined width, and the width may be the first injection part inner wall surface 340. And a width equal to a space between the first injection part outer wall surfaces 361. Accordingly, the width of the inner space of the first to third injection parts 310a to 330b may be defined by the width.
  • the fifth to eighth horizontal members 115 to 118 and the fourth to sixth vertical members 124 to 126 are disposed on the right side of the storage chamber 200.
  • the fifth to eighth horizontal members 115 to 118 are connected by the fourth to sixth vertical members 124 to 126. Due to this connection structure, the fifth to eighth horizontal members 115 to 118 and the fifth and eighth horizontal members 115 to 118 are connected.
  • the fourth to sixth vertical members 124 to 126 form a skeleton, that is, a frame, of the first to third injection parts 310c to 330d.
  • each of the fifth to eighth horizontal members 115 to 118 and the fourth to sixth vertical members 124 to 126 may have a predetermined width, and the width may be the inner wall surface 350 of the second injection unit. And a width equal to a space between the second injection part outer wall surfaces 362. Therefore, the width of the inner space of the first to third to fourth injection parts 310c to 330d is defined by the width.
  • the exhaust unit 400 includes the first to third to third injectors 310b, 320b and 330b and the first to third to fourth injectors 310d, 320d, 330d). Therefore, the purge gas injected into the storage chamber 200 by the first to third spray units 310, 320, and 330 and the fume of the wafer W are exhausted to the rear of the storage chamber 200. .
  • the inner side surface of the exhaust unit 400 includes an exhaust inner wall surface 440.
  • the exhaust part inner wall surface 440 is provided between the storage chamber 200 and the exhaust part 400.
  • the exhaust part inner wall surface 440 forms the inner surface of the exhaust part 400 and forms the outer surface (or circumferential surface) of the storage chamber 200.
  • the exhaust part 400 is in contact with the rear of the storage chamber 200 by the exhaust inner wall surface 440.
  • a plurality of exhaust holes 490 are formed in the exhaust wall inner surface 440.
  • the wafer storage container 10 stores and purges 30 wafers W. Therefore, it is preferable that thirty exhaust holes 490 are formed in the exhaust inner wall surface 440.
  • each exhaust hole 490 is preferably positioned to have the same height as the row of the injection holes 390 described above.
  • the exhaust hole 490 is preferably formed so as to be located on top of the thirty supports 600, respectively.
  • the exhaust unit 400 includes first to third exhaust spaces 410, 420, and 430 communicating with the exhaust hole 490 and first to third exhaust spaces 410.
  • 420, 430 may be provided with first to third vertical exhaust passages 411, 421, and 431, respectively.
  • the first to third exhaust spaces 410, 420, and 430 are the first exhaust space 410, the second exhaust space 420, and the third exhaust space 430 from the bottom to the top in the exhaust part 400.
  • the first and third purging regions 210, 220, and 230 divided in the vertical direction in the storage chamber 200 correspond to each of the first to third purging regions 210, 220, and 230.
  • the fume of the purge gas and the wafer W injected into the first purging region 210 through the exhaust hole 490 communicating with the first exhaust space 410 is exhausted, and the second exhaust space 420
  • the purge gas injected into the second purging region 220 and the fume of the wafer W are exhausted through the communicating exhaust hole 490, and the exhaust gas 490 communicates with the third exhaust space 430.
  • the purge gas injected into the three purging region 230 and the fume of the wafer W are exhausted.
  • the number of the exhaust holes 490 communicating with the first exhaust space 410 is ten
  • the number of the exhaust holes 490 communicating with the second exhaust space 420 is ten
  • the third exhaust space is ten.
  • the fumes of ten wafers W to be accommodated in the first purging region 210 may be exhausted together with the purge gas into the first exhaust space 410 and may be stored in the second purging region 220.
  • the fumes of ten wafers W may be exhausted together with the purge gas into the second exhaust space 420, and the fumes of ten wafers W to be accommodated in the third purging region 230 are together with the purge gas. It may be exhausted to the third exhaust space (430).
  • the first vertical exhaust passage 411 is provided to extend vertically in the exhaust unit 400, one end communicates with the first exhaust space 410, and the other end of the first lower plate 810 is described below. It communicates with the exhaust communication hole 815a. Accordingly, the first vertical exhaust passage 411 serves as a passage for flowing the purge gas exhausted into the first exhaust space 410 to the first exhaust communication hole 815a.
  • the second vertical exhaust passage 421 is provided to extend vertically in the exhaust unit 400, one end communicates with the second exhaust space 420, and the other end of the second lower plate 810 is described later. It communicates with the exhaust communication hole 815b. Therefore, the second vertical exhaust passage 421 serves as a passage for flowing the purge gas exhausted into the second exhaust space 420 to the second exhaust communication hole 815b.
  • the third vertical exhaust flow path 431 is provided to extend vertically in the exhaust part 400, one end communicates with the third exhaust space 430, and the other end of the third lower exhaust plate 810 is described later. It communicates with the exhaust communication hole 815c. Therefore, the third vertical exhaust passage 431 serves as a passage for flowing the purge gas exhausted into the third exhaust space 430 to the third exhaust communication hole 815c.
  • an exhaust hole 490 is formed in the inner wall surface 440 of the exhaust part 400 that forms the circumferential surface of the storage chamber 200, and the purge gas and the wafer W are formed through the exhaust hole 490.
  • the fume is exhausted, there is an effect that the maintenance of the wafer storage container 10 is easy. That is, when the exhaust hole 490 is contaminated with fume and is clogged, it is possible to easily solve the problems due to the clogging of the exhaust hole 490 by replacing only the exhaust wall inner surface 440.
  • 30 or more exhaust holes 490 may be formed in the vertical direction on the inner wall surface 440 of the exhaust part.
  • one exhaust hole 490 may not be disposed between the plurality of supporting members 600, and two or more injection holes 490 may be formed in the vertical direction. Therefore, more than ten exhaust holes 490 can be formed in one purging region in the vertical direction, whereby the fume generated after purging the wafer W can be more easily achieved. .
  • the shape of the exhaust hole 490 may be formed to have various shapes such as a rectangular slit shape, a slit shape having an arced end portion, a circular hole shape, a polygonal hole shape, and the like.
  • the supply unit is disposed outside the first-first to third-second injection units 310a to 330b to accommodate the storage chamber 200.
  • the first supply part 510 disposed on the left side and the first to third injection parts 310c to 330d disposed outside the first supply part 510 and disposed on the right side of the storage chamber 200. It may be composed of two supply unit (520).
  • the first supply unit 510 functions to supply the purge gas introduced through the lower plate 800 to the first to third injection units 310a to 330b, and the second supply unit 520 to the lower portion. It serves to supply the purge gas introduced through the plate 800 to the first to third injection parts 310c to 330d.
  • the first supply part 510 has first-first to third-second supply spaces 531a to 533b communicating with the first-first to third-second supply holes 371a to 373b, respectively. ) And first-first to third-second vertical supply passages 541a to 543b communicating with each of the first-first to third-second supply spaces 531a to 533b.
  • purge gas is stored in the first-first to third-second supply spaces through first-first to third-second supply holes 371a to 373b. It refers to a space supplied to the two injection parts (310a ⁇ 330b), it is formed while opening the right side of the first supply (510).
  • the first-first to third-first supply spaces 531a, 532a, and 533a are formed at the front side with respect to the center line (C1 of FIG. 19) of the first supply unit 510, and the first-second to third-first.
  • the two supply spaces 531b, 532b, and 533b are formed at the rear side with respect to the center line (C1 of FIG. 19) of the first supply unit 510. That is, the first to third supply spaces 531a, 532a and 533a and the first to third supply spaces 531b, 532b and 533b are center lines of the first supply unit 510 (FIG. 19 are arranged symmetrically with respect to C1).
  • Each of the first to third supply spaces 531a to 533b corresponds to the first to first supply space 531a and 373b to correspond to each of the first to third to second supply holes 371a to 373b.
  • the 1-2 supply space 531b, the 2-1 supply space 532a and the 2-2 supply space 532b, the 3-1 supply space 533a and the 3-2 supply space 533b are The lower side of the first supply unit 510 is arranged in order from the top.
  • the flow amount of the purge gas flowing into the 3-1 supply space 533a and the 3-2 supply space 533b As described above, as the size of the supply space increases toward the upper portion of the first supply unit 510, the flow amount of the purge gas flowing into the 3-1 supply space 533a and the 3-2 supply space 533b. In this case, a sufficient amount of purge gas can be supplied to the 3-1 th injection section 330a and the 3-2 th injection section 330b.
  • the 3-1 injection unit 330a and the 3-2 injection unit 330b can inject a sufficient amount of purge gas into the third purging region 230, and partition the upper portion of the storage chamber 200. Purging of the wafer W in the third purging region 230 may be easily achieved.
  • the first to third vertical supply passages 541a to 543b extend in the vertical direction from the inside of the first supply unit 510, and one end of each of the first to third to second supply spaces may be provided. 531a to 533b, respectively, and the other end thereof communicates with the first-first to third-second supply communication holes 811a to 813b formed in the first lower plate 810. Accordingly, the first-first to third-second vertical supply passages 541a to 543b receive the purge gas introduced from the first-first to third-second supply communication holes 811a to 813b. -2 serves as a passage to flow to the supply space (531a ⁇ 533b).
  • each of the first-first to third-second vertical supply passages 541a to 543b may be formed in the shape of a hole opened in the lower surface of the first supply part. It can be easily communicated with the 3-2 supply communication holes 811a to 813b.
  • the second supply part 520 has first to third to third fourth supply spaces 531c to 533d that communicate with the first to third to third-4 supply holes 371c to 373d, respectively. ) And first to third to third fourth vertical supply passages 541c to 543d communicating with each of the first to third to third-4 supply spaces 531c to 533d.
  • the purge gas is stored in the first to third through third supply spaces 531c to 533d so that the first through third through third supply holes 371d to 373d are stored therein. It refers to a space supplied to the four injection parts (310c ⁇ 330d), it is formed while opening the left side of the second supply (520).
  • the first to third supply spaces 531c, 532c, and 533c are formed at the front side based on the center line (C2 of FIG. 20) of the second supply unit 520, and the first to third to third supply spaces 531c, 532c, and 533c.
  • Four supply spaces 531d, 532d, and 533d are formed at the rear side with respect to the center line (C2 of FIG. 20) of the second supply unit 520. That is, the first to third to third supply spaces 531c, 532c and 533c and the first to third to fourth-4 supply spaces 531d, 532d and 533d are center lines of the second supply unit 520 (Fig. 20 are arranged symmetrically with respect to C2).
  • Each of the first to third supply spaces 531c to 533d may correspond to the first to third supply spaces 531c and 373d to correspond to each of the first to third to third-4 supply holes 371c to 373d.
  • the first to fourth supply spaces 531d, the second to third supply spaces 532c, and the second to fourth supply spaces 532d, the third to third supply spaces 533c, and the third to fourth supply spaces 533d are provided.
  • the lower side of the second supply unit 520 is arranged in order from the top.
  • the size of the supply space is increased toward the upper portion of the second supply unit 520, so that the flow amount of the purge gas flowing into the third-3 supply space 533c and the third-4 supply space 533d.
  • a sufficient amount of purge gas can be supplied to the third and third injection parts 330c and 330d.
  • the third-3 spraying unit 330c and the third-4 spraying unit 330d can inject a sufficient amount of purge gas into the third purging region 230, and partition the upper portion of the storage chamber 200. Purging of the wafer W in the third purging region 230 may be easily achieved.
  • the first to third vertical supply passages 541c to 543d are formed to extend in the vertical direction in the second supply unit 520, and one end of each of the first to third and third fourth supply spaces 541 to 543d is provided. 531c to 533d, respectively, and the other end thereof is communicated with the first to third through third supply communication holes 811c to 813d formed in the first lower plate 810. Accordingly, the first through third through third through fourth supply passages 541c through 543d receive the purge gas introduced through the first through third through fourth supply communication holes 811c through 813d. -4 serves as a passage to flow to the supply space (531c ⁇ 533d).
  • each of the other ends of the first to third through fourth vertical supply passages 541c to 543d may be formed in the shape of a hole opened in the lower surface of the second supply part 520. It can be easily communicated with the 3rd to 3rd-4th supply communication holes 811c to 813d.
  • the purge gas flowing through the lower plate 800 to the 1-1 to 3-4 injection unit (310a ⁇ 330d) It can be supplied easily.
  • the first supply part 510 is disposed outside the first-first to third-second injection parts 310a to 330b, and thus, the first supply part 510 is disposed.
  • the purge gas is supplied into the -1 to 3-2 injection parts 310a to 330b, and the second supply part 520 is disposed outside the first to 3-4 injection parts 310c to 330d.
  • the purge gas is supplied into the first to third injection parts 310c to 330d.
  • the supply of the purge gas to the twelve injection portions can be achieved by using only two supply portions, and thus, the compact structure of the wafer storage container 10 can be achieved.
  • the support 600 supports a wafer W accommodated in the storage chamber 200, and a plurality of supports 600 may be provided in the vertical direction in the storage chamber 200. Can be.
  • the wafer storage container 10 since the wafer storage container 10 according to the preferred embodiment of the present invention is purging 30 wafers (W), 30 of the support bases 600 are provided.
  • the support 600 includes a rear support part 610, a left support part 620 extending from the left side of the rear support part 610 in a forward direction, and a rear support part 610. It is configured to include a right support portion 630 is formed to extend in the front direction from the right side of the.
  • the rear support 610 serves to support the back of the wafer W, and the rear support 610 is formed with a rear arc 611.
  • the rear arc portion 611 is formed stepped downward from the upper surface of the rear support portion 610, and has an arc shape.
  • the rear arc portion 611 has an arc shape having the same curvature as the curvature of the wafer W, thereby virtualizing the rear arc portion 611, the left arc portion 621, and the right arc portion 631.
  • a circular shape such as a wafer W is made.
  • the rear arc portion 611 is formed with a rear protrusion 612, and the rear protrusion 612 functions to support the rear lower surface of the wafer (W).
  • the left support part 620 is formed to extend in a forward direction from the left side of the rear support part 610 and functions to support the left side of the wafer (W).
  • a left arc portion 621 is formed on the left support portion 620.
  • the left circular arc part 621 is stepped downward from the upper surface of the left support part 620, and has an arc shape.
  • the left circular arc portion 621 has an arc shape having the same curvature as the curvature of the wafer W, thereby virtualizing the rear circular arc portion 611, the left circular arc portion 621, and the right circular arc portion 631.
  • a circular shape such as a wafer W is made.
  • a left protrusion 622 is formed on the left circular arc 621, and the rear protrusion 612 functions to support the right bottom surface of the wafer W.
  • the right support part 630 is formed to extend in a forward direction from the left side of the right support part 630, and serves to support the right side of the wafer (W).
  • a right arc portion 631 is formed on the right support portion 630.
  • the right circular arc part 631 is stepped in a downward direction from an upper surface of the right support part 630 and has an arc shape.
  • the right circular arc portion 631 has an arc shape having the same curvature as the curvature of the wafer W, thereby virtualizing the rear circular arc portion 611, the left circular arc portion 621, and the right circular arc portion 631.
  • a circular shape such as a wafer W is made.
  • a right protrusion 632 is formed in the right arc portion 631, and the rear protrusion 612 functions to support the lower left side of the wafer W. As shown in FIG.
  • the rear protrusion 612, the left protrusion 622, and the right protrusion 632 support the rear, left, and right bottom surfaces of the wafer W, respectively, so that the wafer W is supported at three points.
  • the contact area of the wafer W can be minimized, thereby preventing damage to the wafer W due to the contact of the wafer W, and the like. can do.
  • a left inclined portion 640 may be formed on an outer surface of a portion in which the rear support 610 and the left support 620 extend.
  • the left inclined portion 640 is formed to be inclined outward from the rear to the front.
  • the right inclined portion 650 may be formed on the outer surface of the portion in which the rear support 610 and the right support 630 extend.
  • the right inclined portion 650 is also inclined in the outward direction from the rear to the front.
  • the left and right inclined portions 640 and 650 are related to the compact structure of the wafer storage container 10.
  • left and right sides of the wafer storage container 10 are formed with inclined portions such as left and right inclined portions 640 and 650, and the left and right inclined portions 640 and 650 are supported to have a shape corresponding thereto. It is formed at 600.
  • the inclined portions as described above have a function of minimizing the area of the wafer storage container 10, whereby the wafer storage container 10 has a compact structure.
  • a left recessed portion 660 is formed on the inner side of the portion where the rear support 610 and the left support 620 extend, and a right recessed on the inner side of the portion where the rear support 610 and the right support 630 extend.
  • the portion 670 is formed.
  • the left recessed portion 660 is formed concave in the rearward direction between the rear arc portion 611 and the left arc portion 621.
  • the right recessed portion 670 is formed concave in the rearward direction between the rear arc portion 611 and the right arc portion 631.
  • the finger (not shown) of the robot arm is a support 600, That is, a function of preventing contact with the inner surface of the rear support part 610, thereby, the wafer (W) easily enters the storage chamber 200 through the front opening 251 to the support 600 Can be supported.
  • the back protrusion 612, the left protrusion 622, and the right protrusion 632 are formed on the back arc 611, the left arc 621, and the right arc 631, respectively.
  • the area excluding the left and right recesses 660 and 670 of the support 600 is closed by the wafer W. Accordingly, the support 600 on which the wafer W is supported serves as a partition in the vertical direction in the storage chamber 200, and thus, the vertical flow of the purge gas may be limited.
  • purge gas is formed in the region where the left and right recesses 660 and 670 are located. Since it is injected in the horizontal direction, the vertical flow of the purge gas may be limited by the purge gas injected in the horizontal direction.
  • the injection hole 390 of the first-second injection unit 310b, the second-second injection unit 320b, and the third-second injection unit 330b may include a left recess 660. Inject the purge gas in the direction. Further, the injection holes 390 of the first to fourth injection parts 310d, the second to four injection parts 320d, and the third to four injection parts 330d are purged in the direction in which the right concave part 670 is located. It will inject gas.
  • the injection holes 390 of the first to third injection units 310, 320, and 330 inject the purge gas in the direction in which the left and right concave portions 660 are positioned.
  • the injected purge The gas is injected in the horizontal direction.
  • the purge gas is injected to flow in a kind of horizontal layer.
  • the above-described support 600 has been described on the basis that the left and right recesses 660 and 670 are formed in order to prevent the finger of the robot arm from contacting the support 600, but the finger of the robot arm According to the shape, the support 600 may be formed in a shape without the left and right recesses 660 and 670. Therefore, when the wafer W is supported on the support 600, the inner space of the support 600 (the space opened to support the wafer W) is closed by the wafer W. It is possible to more effectively achieve the limitation of the vertical flow of purge gas.
  • first front exhaust part 710 and the second front exhaust part 750 will be described.
  • the first and second front exhaust parts 710 and 750 are disposed at both front sides of the storage chamber 200, respectively. By exhausting the gas, the external gas is blocked to flow into the storage chamber 200.
  • the external gas refers to all gases including external air.
  • the first front exhaust part 710 is disposed in front of the first-first to third-first injection parts 310a, 320a, and 330a to be disposed at the front left side of the storage chamber 200.
  • the first front exhaust part 710 has a first exhaust slit 720 and fourth through sixth exhaust spaces 721a and 721b communicating with the first exhaust slit 720. 721c and fourth to sixth vertical exhaust passages 731a, 731b, and 731c communicating with the fourth to sixth exhaust spaces 721a, 721b, and 721c, respectively.
  • the first exhaust slit 720 is formed by opening the right side surface of the first front exhaust part 710.
  • the first exhaust slit 720 has a slit shape in which the vertical length is longer than the horizontal length.
  • the fourth to sixth exhaust spaces 721a, 721b, and 721c communicate with the first exhaust slit 720, and the first front exhaust part 710 to correspond to the first to third purging regions 210, 220, and 230. Is formed inside. Therefore, the fourth exhaust space 721a, the fifth exhaust space 721b, and the sixth exhaust space 721c are arranged in the upper to lower order of the first front exhaust part 710, and the fourth to sixth exhaust spaces.
  • the height of each of 721a, 721b, and 721c is the same as the height of each of the first to third purging regions 210, 220, and 230.
  • the fourth to sixth vertical exhaust passages 731a, 731b, and 731c are formed so as to extend in the vertical direction in the first front exhaust part 710, and one end of each of the fourth to sixth vertical exhaust passages 731a, 731b, and 731c.
  • the exhaust spaces 721a, 721b, and 721c communicate with each other, and the other ends thereof communicate with the fourth through sixth exhaust communication holes 816a, 816b, and 816c of the first lower plate 810, respectively. Therefore, the fourth to sixth vertical exhaust passages 731a, 731b, and 731c are the fourth to sixth external gases exhausted through the fourth to sixth exhaust spaces 721a, 721b, and 721c. It serves as a passage for flowing to the six exhaust communication holes (816a, 816b, 816c).
  • each of the fourth to sixth vertical exhaust flow paths 731a, 731b, and 731c, 731a, 731b, and 731c may be formed in a hole shape formed in a lower surface of the first front exhaust part 710.
  • the fourth to sixth exhaust communication holes (816a, 816b, 816c) may be easily communicated with the fourth to sixth exhaust communication holes (816a, 816b, 816c).
  • the second front exhaust part 750 includes seventh through ninth exhaust spaces 761a and 761b communicating with the second exhaust slit 760 and the second exhaust slit 720. , 761c), and seventh through ninth vertical exhaust passages 771a, 771b, and 771c, 771a, 771b, and 771c, which communicate with each of the seventh through ninth exhaust spaces 721a, 721b, and 721c.
  • the second exhaust slit 760 is formed by opening the left side surface of the second front exhaust part 750.
  • the second exhaust slit 760 has a slit shape in which the vertical length is longer than the horizontal length.
  • the seventh to ninth exhaust spaces 761a, 761b, and 761c communicate with the second exhaust slit 760, and the second front exhaust part 750 to correspond to the first to third purging regions 210, 220, and 230. Is formed inside. Therefore, the seventh exhaust space 761a, the eighth exhaust space 761b, and the ninth exhaust space 761c are disposed in the upper to lower order of the second front exhaust part 750, and the seventh to ninth exhaust spaces are arranged.
  • the height of each of the 761a, 761b, and 761c is the same as the height of each of the first to third purging regions 210, 220, and 230.
  • the seventh to ninth vertical exhaust flow paths 771a, 771b, and 771c are formed to extend in the vertical direction in the second front exhaust part 750, and each end thereof is the seventh to ninth.
  • the exhaust spaces 761a, 761b, and 761c communicate with each other, and the other ends thereof communicate with the seventh through ninth exhaust communication holes 817a, 817b, and 817c of the first lower plate 810, respectively. Therefore, the seventh through ninth vertical exhaust passages 771a, 771b, and 771c (771a, 771b, and 771c) discharge the external gas discharged through the seventh through ninth exhaust spaces 761a, 761b, and 761c. It serves as a passage to flow to the nine exhaust communication holes (817a, 817b, 817c).
  • each of the seventh to ninth vertical exhaust passages 771a, 771b, and 771c (771a, 771b, and 771c) may be formed in a hole shape formed in the lower surface of the second front exhaust part 750. For this reason, it is possible to easily communicate with the seventh to ninth exhaust communication holes 817a, 817b, and 817c.
  • the first front exhaust part 710 and the second front exhaust part 750 include the first exhaust slit 720 and the second exhaust slit. 760 may exhaust the external gas.
  • the external gas may be blocked in advance into the storage compartment 200 through the front opening 251, and thus, the external gas is mixed with the purge gas injected into the storage chamber 200 to generate a kind of turbulence. It can be prevented from forming.
  • the first exhaust slit 720 is formed on the right side of the first front exhaust part 710 to be opened from the front of the storage chamber 200 to the right direction
  • the second exhaust slit 760 is It is formed on the left side of the second front exhaust part 750 to open in the front to the right of the storage chamber 200.
  • the external gas can be easily exhausted in the left and right directions by the first and second front exhaust parts 710 and 750, and thus, the external gas can be more effectively blocked from entering the storage chamber 200. have.
  • first to second front exhaust parts 710 and 750 may exhaust the purge gas in the first to third purging regions 210, 220, and 230 as well as the external gas.
  • the first to third injection parts 310a, 320a and 330a and the second to third injection parts 310b, 320b and 330b are sprayed on each other.
  • the purge gas injected in the front direction among the purge gases may be exhausted by the first and second front exhaust parts 710 and 750.
  • the first and second front exhaust parts 710 and 750 are the first to third injection parts 310a, 320a and 330a and the first to second injection parts 310b and 320b.
  • the first to second injection parts 310a, 320a, 330a in the first, second supply unit (510, 520) By exhausting a part of the purge gas injected in the forward direction of the purge gas injected from the, 330b, the first to second injection parts 310a, 320a, 330a in the first, second supply unit (510, 520) ) And the flow of purge gas supplied to the first to second to third injection parts 310b, 320b, and 330b.
  • the first and second front exhaust parts 710 and 750 may include the first-first to third-first injection parts 310a, 320a, and 330a and the first-2. Since the purge gas injected from the third to third injection parts 310b, 320b, and 330b is exhausted, the flow may be more desired.
  • the first and second supply parts 510 and 520 are relatively rearward due to the organic coupling relationship between the first and second front exhaust parts 710 and 750 and the first and second supply parts 510 and 520 as described above.
  • the flow of purge gas supplied to may be smooth.
  • the flow flow of the purge gas flowing in the storage chamber 200 can be adjusted, thereby removing the fume of the wafer W. It is possible to prevent the dead zone not to be generated.
  • the purge gas flows from the inside of the storage chamber 200 to the outside of the storage chamber 200, that is, from the rear to the front direction.
  • the flow is generated, and thus, the purge gas can be easily flowed to the entire region of the wafer (W). Therefore, the fume removal of the whole area
  • the fourth to sixth exhaust spaces 721a, 721b, and 721c are described as being in communication with one exhaust slit, that is, the first exhaust slit 720, the fourth to sixth exhaust spaces 721a, 721b, 721c) Three slits may be provided to correspond to the respective heights. Accordingly, in this case, the first front exhaust part 710 may more easily achieve selective exhaust of external gases having a height corresponding to each of the first to third purging regions 210, 220, and 230.
  • the second front exhaust part 750 can more easily achieve selective exhaust of external gases having a height corresponding to each of the first to third purging regions 210, 220, and 230.
  • the lower plate 800 forms the lower surface of the wafer storage container 10 to close the lower portion of the storage chamber 200 and store the purge gas supplied from the outside. Function to flow into the container (10).
  • the lower plate 800 may be formed by combining the first to third lower plates 810, 820, and 830 of the same shape.
  • the second lower plate 820 is coupled to the lower portion of the first lower plate 810
  • the third lower plate 830 is coupled to the lower portion of the second lower plate 820.
  • a lower portion of the third lower plate 830 is provided with a connection member 850 to which an external supply line (not shown) and an external exhaust line (not shown) and a support member 860 are installed.
  • the support member 860 is installed on the lower left and right sides of the lower surface of the lower plate 800, that is, the lower surface of the third lower plate 830, and when the wafer storage container 10 is placed on a load port or the like, It keeps the level and keeps it stable.
  • the first lower plate 810 forms the bottom surface of the storage chamber 200, the first through third through fourth supply communication holes 811a through 813d, and the first through the first through plates.
  • Nine exhaust communication holes 815a, 815b, 815c, 816a, 816b, 816c, 817a, 817b, and 817c are formed through the upper and lower surfaces of the first lower plate 810, respectively.
  • the first through third through communication holes 811a, 812a, and 813a and the first through second through third supply holes 811b, 812b, and 813b are disposed on the upper surface of the first lower plate 810, respectively. It is formed on the rear left side of the first lower plate 810 to correspond to the first supply part 510 disposed.
  • Each of the first-first to third-first supply communication holes 811a, 812a, and 813a and the first to second to third-second supply communication holes 811b, 812b, and 813b has one end of the first supply part 510. It communicates with each of 1-1st-3-1st supply communication hole 811a, 812a, 813a, and 1-2-2rd-3rd supply communication hole 811b, 812b, 813b, and the other end is a 2nd lower plate And a first through second through third supply paths 821a, 822a, and 823a and a second through third through second supply paths 821b, 822b, and 823b of 820, respectively.
  • the first to third through third supply communication holes 811c, 812c and 813c and the first through third through fourth supply communication holes 811d, 812d and 813d are formed on the upper surface of the first lower plate 810. It is formed on the rear right side of the first lower plate 810 to correspond to the second supply part 520 is disposed.
  • Each of the first to third through third supply communication holes 811c, 812c, and 813c and the first through third through fourth supply communication holes 811d, 812d, and 813d has one end of the second supply part 520.
  • the first to third exhaust communication holes 815a, 815b, and 815c are formed at the rear of the first lower plate 810 to correspond to the exhaust part 400 disposed on the upper surface of the first lower plate 810.
  • One end of each of the first to third exhaust communication holes 815a, 815b, and 815c communicates with each of the first to third vertical exhaust passages 411, 421, and 431 of the exhaust part 400, and the other end of the first to third exhaust communication holes 815a, 815b, and 815c. In communication with the first rear discharge hole 825 of the plate 820.
  • the fourth to sixth exhaust communication holes 816a, 816b, and 816c are formed on the front left side of the first lower plate 810 to correspond to the first front exhaust part 710 disposed on the upper surface of the first lower plate 810. do.
  • Each of the fourth through sixth exhaust communication holes 816a, 816b, and 816c communicates with each of the fourth through sixth vertical exhaust passages 731a, 731b, and 731c of the first front exhaust part 710, and the other end thereof.
  • Each of the fourth to sixth exhaust passages 826a, 826b, and 826c of the second lower plate 820 is communicated with each other.
  • the seventh to ninth exhaust communication holes 817a, 817b, and 817c are formed on the front right side of the first lower plate 810 to correspond to the second front exhaust part 750 disposed on the upper surface of the first lower plate 810. do.
  • each of the seventh through ninth exhaust communication holes 817a, 817b, and 817c communicates with each of the seventh through ninth vertical exhaust flow paths 771a, 771b, and 771c of the second front exhaust part 750, and the other end thereof.
  • the seventh to ninth exhaust passages 827a, 827b, and 827c of the second lower plate 820 are communicated with each other.
  • the second lower plate 820 is coupled to the lower portion of the first lower plate 810, the first to third through fourth supply paths 821 a to 823 d, and the first rear side.
  • the discharge hole 825 and the fourth to ninth exhaust passages 826a, 826b, 826c, 827a, 827b, and 827c are formed through the upper and lower surfaces of the second lower plate 820, respectively.
  • the first to third supply passages 821a to 823b extend from the rear left side of the second lower plate 820 to the rear center direction.
  • One end of the first-first to third-second supply passages 821a to 823b communicates with the first-first to third-second supply communication holes 811a to 813b of the first lower plate 810, respectively.
  • the other end communicates with the first-first to third-second inlet holes 831a to 833b of the third lower plate 830, respectively.
  • the first to third supply channels 821c to 823d extend from the rear right side of the second lower plate 820 to the rear center direction.
  • the first to third supply paths 821c to 823d of the first to third through fourth supply passages 821c to 823d communicate with the first to third through fourth supply communication holes 811c to 813d of the first lower plate 810, respectively.
  • the other end is in communication with the first to third through third inlet holes 831c to 833d of the third lower plate 830, respectively.
  • the lengths of the first-first to third-fourth supply paths 821a to 823d are longer than the first-first to first-fourth supply paths 821a to 821d. 822d) is shorter, and the 3-1 to 3-4 supply passages 823a to 823d are shorter than the 2-1 to 2-4 supply passages 822a to 822d.
  • the length of the supply passage for supplying the purge gas to the third injection unit 330 is formed to be shorter than the length of the supply passage for supplying the purge gas to the first injection unit 310 and the second injection unit 320.
  • a sufficient amount of purge gas may be injected into the third purging region 230 partitioned above the storage chamber 200.
  • a sufficient amount of purge gas can also be supplied to the injection portion located in the upper portion, thereby, a uniform amount of the first to third purging region (210, 220, 230) Purge gas may be injected.
  • the first rear discharge hole 825 is formed behind the second lower plate 820.
  • the first rear discharge hole 825 has an upper portion communicating with the first to third exhaust communication holes 815a, 815b, and 815c of the first lower plate 810, and the lower portion thereof has a second lower portion of the third lower plate 830. It communicates with the rear exhaust hole 490.
  • the fourth to sixth exhaust passages 826a, 826b, and 826c are formed to extend in the front center direction from the front left side of the second lower plate 820.
  • each of the fourth to sixth exhaust passages 826a, 826b, and 826c communicates with the fourth to sixth exhaust communication holes 816a, 816b, and 816c of the first lower plate 810, respectively.
  • the third to sixth discharge holes 836a, 836b, and 836c of the lower plate 830 are respectively communicated with each other.
  • the seventh through ninth exhaust passages 827a, 827b, and 827c extend from the front right side of the second lower plate 820 in the front center direction.
  • the seventh through ninth exhaust passages 827a, 827b, and 827c respectively have one end communicated with the seventh through ninth exhaust communication holes 817a, 817b, and 817c of the first lower plate 810, respectively.
  • the seventh to ninth discharge holes 837a, 837b, and 837c of the lower plate 830 communicate with each other.
  • the lengths of the fourth to ninth exhaust passages 826a, 826b, 826c, 827a, 827b, and 827c are longer than the fourth and seventh exhaust passages 826a and 827a, respectively.
  • the flow path 827b is shorter, and the sixth exhaust path 826c and the ninth exhaust path 827c are shorter than the fifth exhaust path 826b and the eighth exhaust path 827b.
  • the length of the exhaust passage through which the external gas is exhausted through the sixth exhaust space 721c of the first front exhaust part 710 and the ninth exhaust space 761c of the second front exhaust part 750 is determined. Outside through the fourth exhaust space 721a of the front exhaust unit 710, the fifth exhaust space 721b, and the seventh exhaust space 761a and the eighth exhaust space 761b of the second front exhaust unit 750.
  • the exhaust resistance of the 1st, 2nd front exhaust parts 710 and 750 can be made the same.
  • the flow path 826b the sixth vertical exhaust channel 731c + the sixth exhaust channel 826c
  • the fourth to sixth exhaust spaces 721a and 721b of the first front exhaust part 710 are formed.
  • the exhaust resistance of the 721c may be formed to be the same, and thus, uniform exhaust to the fourth to sixth exhaust spaces 721a, 721b, and 721c may be achieved.
  • the exhaust resistance can be formed equally, and thus, uniform exhaust to the seventh through ninth exhaust spaces 761a, 761b, and 761c can be achieved.
  • the third lower plate 830 is coupled to the lower portion of the second lower plate 820, the first to third to fourth inlet holes 831a to 833d, and the second rear side.
  • the discharge hole 835 and the fourth to ninth discharge holes 836a, 836b, 836c, 837a, 837b, and 837c are formed through the upper and lower surfaces of the third lower plate 830, respectively.
  • the first through third inlet holes 831a, 832a, and 833a and the first through second through third inlet holes 831b, 832b, and 833b are located at the rear center of the third lower plate 830. In the rearward direction.
  • the first to third inlet holes 831c, 832c, and 833c and the first to third to fourth inlet holes 831d, 832d, and 833d are based on the centerline of the third lower plate 830.
  • Rear center of the third lower plate 830 so as to be symmetrical with the first-first to third-first inlet holes 831a, 832a, and 833a and the first to second to third-2 inlet holes 831b, 832b, and 833b.
  • Each of the upper portions of the first to third to fourth inlet holes 831a to 833d communicates with the first to third to fourth supply passages 821a to 823d of the second lower plate 820.
  • the first-first and third inlet holes 831a and 831c communicate with the first-first main inlet hole 851a of the connecting member 850, and the second-first and second inlet holes 832a and 832c. ) Is in communication with the 2-1 main inlet hole 852a of the connecting member 850, and the 3-1, 3-3 inlet holes 833a, 833c are the 3-1 main inlet of the connecting member 850 It communicates with the hole 853a.
  • the first and second inlet holes 831b and 831d communicate with the first and second main inlet 851b of the connecting member 850, and the second and second inlet holes 832b and 832d.
  • the second rear discharge hole 835 has an upper surface and a lower surface of the second lower plate 820 behind the third lower plate 830 to communicate with the first rear discharge hole 825 of the second lower plate 820. It is formed through.
  • One end of the second rear discharge hole 835 communicates with the first rear discharge hole 825, and the other end of the second rear discharge hole 835 communicates with the integrated discharge passage 855 of the connection member 850.
  • the fourth to ninth discharge holes 836a, 836b, 836c, 837a, 837b, and 837c are positioned ahead of the first to third to fourth inlet holes 831a to 833d. It is formed through the upper and lower surfaces of the second lower plate 820 in the center.
  • each of the fourth to ninth discharge holes 836a, 836b, 836c, 837a, 837b, and 837c has a fourth to ninth exhaust passages 826a, 826b, 826c, 827a, and 827b of the second lower plate 820. 827c, respectively, and the other end thereof is in communication with the integrated discharge passage 855 of the connecting member 850.
  • the flow path inside the lower plate 800 forms a complicated shape. Even if it can be formed easily.
  • the wafer storage container 10 when the wafer storage container 10 is coupled to a load port or the like and connected to an external supply / exhaust line, the supply / exhaust communication holes and supply / exhaust flow paths of the first to third lower plates 810, 820, and 830 as described above.
  • the supply / exhaust communication holes and supply / exhaust flow paths of the first to third lower plates 810, 820, and 830 as described above.
  • connection member 850 is installed under the lower plate 800, that is, under the third lower plate 830.
  • connection member 850 functions to connect the first-first to third-second external supply lines (not shown) and the external exhaust line (not shown) to the wafer storage container 10.
  • connection member 850 is provided with first-first to third-second main inlets 851a to 853b, an integrated discharge passage 855, and a main exhaust hole 490.
  • the first-first main inlet 851a communicates with the first-first and first-first inlet holes 831a and 831c of the third lower plate 830, and the second-first main inlet hole 852a is formed in the first lower inlet hole 852a.
  • the first and second inflow holes 832a and 832c of the third lower plate 830 communicate with each other. It communicates with the 3-3 inflow holes 833a and 833c.
  • the first and second main inflow holes 851b communicate with the first and second inflow holes 831b and 831d of the third lower plate 830, and the second and second main inflow holes 852b are formed in the first and second main inflow holes 852b.
  • 3-2 and 2-4 inlet holes 832b and 832d of the lower plate 830 communicate with each other, and the third and second main inlet holes 853b and 3-2 of the third lower plate 830 are connected. It communicates with 3-4 inflow holes 833b and 833d.
  • the first-first to third-second main inlets 851a to 853b are connected to the first-first to third-second external supply lines, respectively.
  • the first-first to third-second external supply lines that is, six external supply lines are individually controlled, six injections communicating with the first-first to third-2 main inlet holes 851a to 853b.
  • the purge gas may be separately injected to the first to third purging regions 210, 220, and 230, which will be described later.
  • the integrated discharge passage 855 includes the second rear discharge hole 835 and the fourth through ninth discharge holes 836a, 836b, 836c, 837a, 837b, and 837c of the second lower plate 820 and the main exhaust hole 490. It serves as a flow path to communicate with).
  • An external exhaust line is connected to the main exhaust hole 490, whereby purge gas, fume of the wafer W, and external gas, which are exhausted through the integrated exhaust passage 855, are easily provided to the outside of the wafer storage container 10. Can be discharged.
  • the upper plate 900 forms an upper surface of the wafer storage container 10 and functions to close an upper portion of the storage chamber 200.
  • the lower surface of the upper plate 900 is coupled to the upper surface of the fourth horizontal member 114, the upper surface of the eighth horizontal member 118 and the upper surface of the exhaust unit 400.
  • the overall shape of the upper plate 900 has the same shape as the overall shape of the lower plate 800.
  • the lower surface of the upper plate 900 may be provided with a wafer detection sensor (not shown).
  • the wafer detection sensor may detect whether the wafer W is accommodated and whether the support W is supported by which support 600 among the plurality of supports 600.
  • the purge gas supply / injection flow of the wafer storage container 10 may be connected to the first to third main inlets 851a and 853b. It is made by 1-1 to 3-2 external supply line.
  • the first-first external supply line supplies the purge gas to the first-first injection unit 310a and the first-three injection unit 310c
  • the first-second external supply line supplies the first-second injection unit (
  • the purge gas is supplied to 310b) and the first to fourth injection parts 310d. Therefore, purge gas is supplied to each of the first to first to fourth injection parts 310a to 310d by the first-first external supply line and the first-second external supply line.
  • the first purging region 210 is partitioned into the storage chamber 200 by being injected from the first-first to first-fourth injection units 310a to 310d.
  • the 2-1 external supply line supplies the purge gas to the 2-1 injection unit 320a and the 2-3 injection unit 320c
  • the 2-2 external supply line supplies the 2-2 injection unit
  • the purge gas is supplied to the 320b) and the second to fourth injection parts 320d. Therefore, purge gas is supplied to each of the 2-1 to 2-4 injection parts 320a to 320d by the 2-1 external supply line and the 2-2 external supply line.
  • the second purging region 220 is partitioned into the storage chamber 200 by being injected from the 2-1 to 2-4 spraying units 320a to 320d into the storage chamber 200.
  • the 3-1 external supply line supplies the purge gas to the 3-1 injection unit 330a and the 3-3 injection unit 330c
  • the 3-2 external supply line supplies the 3-2 injection unit ( 330b) and the third to fourth injection parts 330d are supplied to the purge gas. Therefore, purge gas is supplied to each of the 3-1 to 3-4 injection parts 330a to 330d by the 3-1 external supply line and the 3-2 external supply line.
  • the third purging region 230 is partitioned into the storage chamber 200 by being injected from the 3-1 to 3-4 injection parts 330a to 330d into the storage chamber 200.
  • a purge gas including the first purging region 210 by the first-first external supply line and the first-second external supply line. Describe the supply / injection flow.
  • the purge gas When the purge gas is supplied from the first-first external supply line, the purge gas is supplied to the first-first supply passage 821a and the first-third by the first-first main inlet hole 851a of the connection member 850. The flow is divided into a supply passage 821c.
  • the purge gas flowing into the first-first supply passage 821a flows into the first-first supply communication hole 811a and flows into the first-first vertical supply passage 541a of the first supply unit 510.
  • the purge gas flowing into the first-first vertical supply passage 541a is supplied into the first-first injection unit 310a through the first-first supply space 531a and the first-first supply hole 371a. . In this way, the purge gas supplied into the first-first injection unit 310a is injected to the left side of the first purging region 210 through the injection hole 390.
  • the purge gas flowing into the 1-3 supply passage 821c flows into the 1-3 supply communication hole 811c and flows into the 1-3 vertical supply passage 541c of the second supply unit 520.
  • the purge gas flowing into the 1-3 vertical supply passage 541c is supplied into the 1-3 injection part 310c through the 1-3 supply space 531c and the 1-3 supply hole 371c. . In this way, the purge gas supplied into the 1-3 injection part 310c is injected to the right side of the first purging region 210 through the injection hole 390.
  • the purge gas When the purge gas is supplied from the 1-2 external supply line, the purge gas is supplied to the 1-2 supply passage 821b and the 1-4 by the 1-2 main inlet 851b of the connecting member 850. The flow is divided into a supply flow path 821d.
  • the purge gas flowing into the 1-2 supply passage 821b flows into the 1-2 supply communication hole 811b and flows into the 1-2 vertical supply passage 541b of the first supply unit 510.
  • the purge gas flowing into the 1-2 vertical supply passage 541b is supplied into the 1-2 injection part 310b through the 1-2 supply space 531b and the 1-2 supply hole 371b. .
  • the purge gas supplied into the first-second injection part 310b is injected to the rear left side of the first purging region 210 through the injection hole 390.
  • the purge gas which flowed into the 1-4th supply channel 821d flows into the 1-4th supply communication hole 811d, and flows into the 1-4th vertical supply channel 541d of the second supply unit 520.
  • the purge gas flowing into the 1-4 vertical supply passage 541d is supplied into the 1-4 injection part 310d through the 1-4 supply space 531d and the 1-4 supply hole 371d. .
  • the purge gas supplied into the first to fourth injection parts 310d is injected to the rear right side of the first purging region 210 through the injection hole 390.
  • a purge gas including the second purging region 220 by the second first external supply line and the second second external supply line. Describe the supply / injection flow.
  • the purge gas When the purge gas is supplied from the 2-1th external supply line, the purge gas is supplied to the 2-1th supply passage 822a and the 2-3th by the 2-1th main inlet hole 852a of the connection member 850. The flow is divided into a supply flow path 822c.
  • the purge gas flowing into the second-first supply passage 822a flows into the second-first supply communication hole 812a and flows into the second-first vertical supply passage 542a of the first supply unit 510.
  • the purge gas flowing into the 2-1 vertical supply flow path 542a is supplied into the 2-1 injection part 320a through the 2-1 supply space 532a and the 2-1 supply hole 372a. .
  • the purge gas supplied into the second-first injection unit 320a is injected to the right side of the second purging region 220 through the injection hole 390.
  • the purge gas flowing into the 2-3 supply channel 822c flows into the 2-3 supply communication hole 812c, and flows into the 2-3 vertical supply channel 542c of the second supply unit 520.
  • the purge gas flowing into the 2-3rd vertical supply passage 542c is supplied into the 2-3rd injection section 320c through the 2-3rd supply space 532c and the 2-3rd supply hole 372c. . In this way, the purge gas supplied into the second-3 injection part 320c is injected to the right side of the second purging region 220 through the injection hole 390.
  • the purge gas When the purge gas is supplied from the second-2 external supply line, the purge gas is supplied to the second-second supply passage 822b and the second-4 by the second-second main inlet hole 852b of the connecting member 850. The flow is divided into a supply flow path 822d.
  • the purge gas flowing into the second-second supply passage 822b flows into the second-second supply communication hole 812b and flows into the second-second vertical supply passage 542b of the first supply unit 510.
  • the purge gas flowing into the second-second vertical supply passage 542b is supplied into the second-second injection unit 320b through the second-second supply space 532b and the second-second supply hole 372b. .
  • the purge gas supplied into the second-second injection part 320b is injected to the rear left side of the second purging region 220 through the injection hole 390.
  • the purge gas which flowed into the 2-4 supply channel 822d flows into the 2-4 supply communication hole 812d, and flows into the 2-4 vertical supply channel 542d of the second supply unit 520.
  • the purge gas flowing into the 2-4 vertical supply passage 542d is supplied into the 2-4 injection part 320d through the 2-4 supply space 532d and the 2-4 supply hole 372d. .
  • the purge gas supplied into the second to fourth injection parts 320d is injected to the rear right side of the second purging region 220 through the injection hole 390.
  • the purge gas including the third purging region 230 is formed by the third external supply line and the third external supply line. Describe the supply / injection flow.
  • the purge gas When the purge gas is supplied from the 3-1 external supply line, the purge gas is supplied to the 3-1 supply passage 823a and the 3-3 by the 3-1 main inflow hole 853a of the connection member 850. The flow is divided into a supply flow path 823c.
  • the purge gas flowing into the 3-1st supply channel 823a flows into the 3-1st supply communication hole 813a and flows into the 3-1st vertical supply channel 543a of the first supply unit 510.
  • the purge gas flowing into the 3-1 vertical supply passage 543a is supplied into the 3-1 injection part 330a through the 3-1 supply space 533a and the 3-1 supply hole 373a. . In this way, the purge gas supplied into the 3-1 th injection portion 330a is injected to the right side of the third purging region 230 through the injection hole 390.
  • the purge gas which flowed into the 3rd-3rd supply path 823c flows into the 3rd-3rd supply communication hole 813c, and flows into the 3rd-3rd vertical supply path 543c of the 2nd supply part 520.
  • the purge gas flowing into the third-3rd vertical supply passage 543c is supplied into the third-3 injection section 330c through the third-3 supply space 533c and the third-3 supply hole 373c. . In this way, the purge gas supplied into the third-3 injection portion 330c is injected to the right side of the third purging region 230 through the injection hole 390.
  • the purge gas When the purge gas is supplied from the third-2 external supply line, the purge gas is supplied to the third-second supply passage 823b and the third-4 by the third-second main inlet 885b of the connecting member 850.
  • the flow is divided into a supply flow path 823d.
  • the purge gas flowing into the third-2 supply passage 823b flows into the third-2 supply communication hole 813b and flows into the third-2 vertical supply passage 543b of the first supply unit 510.
  • the purge gas flowing into the third-second vertical supply passage 543b is supplied into the third-second injection section 330b through the third-second supply space 533b and the third-second supply hole 373b. . In this way, the purge gas supplied into the third-2 injection portion 330b is injected to the rear left side of the third purging region 230 through the injection hole 390.
  • the purge gas flowing into the 3-4 supply channel 823d flows into the 3-4 supply communication hole 813d and flows into the 3-4 vertical supply channel 543d of the second supply unit 520.
  • the purge gas flowing into the 3-4 vertical supply passage 543d is supplied into the 3-4 injection unit 330d through the 3-4 supply space 533d and the 3-4 supply hole 373d. .
  • the purge gas supplied into the third to fourth injection parts 330d is injected to the rear right side of the third purging region 230 through the injection holes 390.
  • the wafer storage container 10 includes the first-first, one-third injection parts 310a, 310c, the first-second, 1-4 injection parts 310b, 310d. ), 2-1, 2-3 injection parts 320a, 320c, 2-2, 2-4 injection parts 320b, 320d, 3-1, 3-3 injection parts 330a, 330c, and
  • the 3-2, 3-4 injection parts 330b and 330d are individually supplied with the purge gas by the first-first to third-second external supply lines, and the first to third purging areas 210 and 220 respectively. 230, purge gas injection can be achieved.
  • the purge gas may be selectively injected only to a desired region among the first to third purging regions 210, 220, and 230.
  • the robot arm accommodates and supports the wafer W only on the support 600 positioned in the second purging region 220
  • the robot arm is purged in the 2-1 external supply line and / or the 2-2 external supply line.
  • purging of the wafer W positioned in the second purging region 220 may be achieved. Therefore, unlike the prior art, waste of unnecessary purge gas can be reduced.
  • the pressure of the purge gas supplied to the third and third external supply lines using the MFC is used.
  • the pressure of the purge gas injected into the third purging region 230 in the 3-1 to 3-4 injection parts 330a to 330d through the injection hole 390 is also increased. Therefore, unlike the prior art, a sufficient amount of purge gas may also be injected into the third purging region 230 positioned above the inside of the storage chamber 200.
  • the exhaust flow of the purge gas, the fume of the wafer W, and the external gas of the wafer storage container 10 according to the preferred embodiment of the present invention is connected to the main exhaust hole 857. (Not shown).
  • the exhaust unit 400 is a fume of the purge gas and the wafer W injected into the first to third purging regions 210, 220, and 230 by the first-first to third-second injection units 310a to 330d. Exhaust gas, and the first and second front exhaust parts 710 and 750 exhaust the external gas outside the wafer storage container 10.
  • the purge gas of the first to third purging regions 210, 220, and 230 and the fume of the wafer W are formed by the exhaust unit 400. This exhaust flow will be described.
  • the purge gas and the fume of the wafer W in the first purging region 210 flow to the first exhaust space 410 through the exhaust hole 490. .
  • the purge gas and the fume of the wafer W flowing into the first exhaust space 410 flow through the first vertical exhaust passage 411 to the first exhaust communication hole 815a and the first rear discharge hole 825. ), And flows to the integrated discharge passage 855 via the second rear discharge hole 835.
  • the purge gas and the fume of the wafer W flowing in the integrated discharge passage 855 flow into the main exhaust hole 857, and are then exhausted to the outside of the wafer storage container 10 through an external exhaust line.
  • the purge gas and the fume of the wafer W in the second purging region 220 flow to the second exhaust space 420 through the exhaust hole 490.
  • the purge gas and the fume of the wafer W flowing into the second exhaust space 420 flow through the second vertical exhaust passage 421 to the second exhaust communication hole 815b and the first rear discharge hole 825. ), And flows to the integrated discharge passage 855 via the second rear discharge hole 835.
  • the purge gas and the fume of the wafer W flowing in the integrated discharge passage 855 flow into the main exhaust hole 857, and are then exhausted to the outside of the wafer storage container 10 through an external exhaust line.
  • the purge gas and the fume of the wafer W in the third purging region 230 flow to the third exhaust space 430 through the exhaust hole 490.
  • the purge gas and the fume of the wafer W flowing into the third exhaust space 430 flow into the second exhaust communication hole 815c through the third vertical exhaust passage 431, and the first rear discharge hole 825. ), And flows to the integrated discharge passage 855 via the second rear discharge hole 835.
  • the purge gas and the fume of the wafer W flowing in the integrated discharge passage 855 flow into the main exhaust hole 857, and are then exhausted to the outside of the wafer storage container 10 through an external exhaust line.
  • the fumes of the purge gas and the wafer W exhausted through the exhaust part 400 are exhausted through respective exhaust flow paths, that is, three exhaust flow paths, and then the first rear discharge of the second lower plate 820 is discharged. From the holes 825 are collected and exhausted.
  • the first to third vertical exhaust passages 411, 42, and 431 are provided.
  • a valve is provided.
  • each of the first to third vertical exhaust passages 411, 42, and 431 may be provided with a valve such as a solenoid valve, and by controlling the solenoid valve, the first to third purging regions 210, 220, Selective evacuation of the purge gas of 230 and the fume of the wafer W can be easily achieved. Accordingly, when the purge gas is selectively injected from the first to third purging regions 310a to 330d to the first to third purging regions 210, 220, and 230, the first to third purging regions are used. The purge gas and the fume of the wafer W may be exhausted only in the purging region in which the purge gas is injected among the 210, 220, and 230.
  • a valve such as a solenoid valve
  • the purging of the purge gas to the first to third purging regions 210, 220, and 230 and the evacuation of the purge gas and the fume are selectively performed to further uniformly purge the wafer W described above. Excellent guarantees can be made, and unnecessary waste of purge gas can also be significantly reduced.
  • the exhaust unit 400 may be connected to an external supply line to inject a purge gas.
  • the first to third purging regions 210, 220, and 230 may be used.
  • the purge gas may be selectively injected into each rear of the.
  • the external gases outside the front left side of the wafer storage container 10 are fourth through sixth through the first exhaust slit 720 of the first front exhaust unit 710. Flow into the exhaust spaces 721a, 721b, and 721c.
  • the external gas flowing into the fourth exhaust space 721a flows to the fourth exhaust communication hole 816a through the fourth vertical exhaust passage 731a, and the fourth exhaust passage 826a and the fourth discharge hole 836a. It will flow through the integrated discharge flow path (855).
  • the external gas flowing in the integrated discharge passage 855 flows to the main exhaust hole 857, and then is exhausted to the outside of the wafer storage container 10 through the external exhaust line.
  • the external gas flowing into the fifth exhaust space 721b flows to the fifth exhaust communication hole 816b through the fifth vertical exhaust passage 731b, and the fifth exhaust passage 826b and the fifth discharge hole 836b. It will flow through the integrated discharge flow path (855).
  • the external gas flowing in the integrated discharge passage 855 flows to the main exhaust hole 857, and then is exhausted to the outside of the wafer storage container 10 through the external exhaust line.
  • the external gas flowing into the sixth exhaust space 721c flows into the sixth exhaust communication hole 816c through the sixth vertical exhaust passage 731c, and the fifth exhaust passage 826c and the fifth discharge hole 836c. It will flow through the integrated discharge flow path (855).
  • the external gas flowing in the integrated discharge passage 855 flows to the main exhaust hole 857, and then is exhausted to the outside of the wafer storage container 10 through the external exhaust line.
  • the external gas flowing into the seventh exhaust space 761a flows into the seventh exhaust communication hole 817a through the seventh vertical exhaust flow path 771a, and the seventh exhaust flow path 827a and the seventh discharge hole 837a. It will flow through the integrated discharge flow path (855).
  • the external gas flowing in the integrated discharge passage 855 flows to the main exhaust hole 857, and then is exhausted to the outside of the wafer storage container 10 through the external exhaust line.
  • the external gas flowing into the eighth exhaust space 761b flows through the eighth vertical exhaust passage 771b into the eighth exhaust communication hole 817b, and the eighth exhaust passage 827b and the eighth discharge hole 837b. It will flow through the integrated discharge flow path (855).
  • the external gas flowing in the integrated discharge passage 855 flows to the main exhaust hole 857, and then is exhausted to the outside of the wafer storage container 10 through the external exhaust line.
  • the external gas flowing into the ninth exhaust space 761c flows through the ninth vertical exhaust passage 771c into the ninth exhaust communication hole 817c, and the ninth exhaust passage 827c and the ninth discharge hole 837c. It will flow through the integrated discharge flow path (855).
  • the external gas flowing in the integrated discharge passage 855 flows to the main exhaust hole 857, and then is exhausted to the outside of the wafer storage container 10 through the external exhaust line.
  • the first and second front exhaust parts 710 and 750 respectively exhaust the external gas outside the front left and right sides of the wafer storage container 10 to enter the interior of the storage chamber 200 through the front opening 251.
  • the external gas to be used in advance it is possible to prevent the purging of the wafer W formed in the first to third purging regions 210, 220, and 230.
  • the external gas exhausted through the first and second front exhaust parts 710 and 750 is exhausted through respective exhaust flow paths, that is, six exhaust flow paths, and then the integrated exhaust flow path 855 of the connection member 850. ) Will be collected and exhausted.
  • the fourth to ninth exhaust passages 826a, 826b, 826c, 827a, 827b, and 827c are provided in the).
  • each of the fourth to ninth exhaust passages 826a, 826b, 826c, 827a, 827b, and 827c may be provided with a valve such as a solenoid valve, and by controlling the solenoid valve, the first to third purging region may be provided.
  • a valve such as a solenoid valve
  • the outside of the region corresponding to the height of the purging region can be selectively discharged only for the gas, so that the inflow of external gas into the purging region where purging is performed can be blocked in advance.
  • first and second front exhaust parts 710 and 750 may be connected to an external supply line to inject a purge gas, and in this case, outside of the wafer storage container 10 The purge gas is injected to the front left and right sides.
  • the injection of the purge gas through the first and second front exhaust parts 710 and 750 is such that when the contamination of the external gas outside the wafer storage container 10 is severe (for example, fume or the like is applied to the outside of the wafer storage container 10). Purge gas is injected to prevent fume from remaining in other semiconductor processing equipment located outside the wafer storage container 10, and the contaminated external gas is introduced into the storage chamber 200. Can be blocked.
  • first injection part 310a to 310d first to first injection parts
  • 371a to 371d 1-1 to 1-4 supply holes
  • exhaust portion 410 first exhaust space
  • first vertical exhaust flow path 420 second exhaust space
  • third vertical exhaust flow path 440 exhaust wall inner wall surface
  • first supply unit 520 second supply unit
  • 531a to 531d 1-1 to 1-4 supply spaces
  • support 610 rear support
  • first front exhaust part 720 first exhaust slit
  • second front exhaust portion 760 second exhaust slit
  • connecting member 851a first-first main inlet

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

본 발명은 웨이퍼 수납용기에 관한 것으로서, 특히, 수납실 내부에 수직방향으로 복수개의 퍼징영역을 구획하고, 상기 복수개의 퍼징영역에 퍼지가스를 분사함으로써, 웨이퍼의 균일한 퍼징을 보장할 수 있을 뿐만 아니라, 퍼지가스의 낭비없이 효율적인 웨이퍼의 퍼징을 달성할 수 있는 웨이퍼 수납용기에 관한 것이다.

Description

웨이퍼 수납용기
본 발명은 웨이퍼 수납용기에 관한 것으로서, 수납실에 수납되는 웨이퍼에 퍼지가스를 공급하여 상기 웨이퍼의 퓸을 제거하는 웨이퍼 수납용기에 관한 것이다.
일반적으로 반도체 소자는 웨이퍼 상에 증착 공정, 연마 공정, 포토리소그래피 공정, 식각 공정, 이온주입 공정, 세정 공정, 검사 공정, 열처리 공정 등이 선택적이면서도 반복적으로 수행되어 제조되며, 이렇게 반도체 소자로 형성되기 위하여 웨이퍼는 각 공정에서 요구되는 특정 위치로 운반되어 진다.
웨이퍼는 고정밀도의 물품으로서 외부의 오염 물질과 충격으로부터 오염되거나 손상되지 않도록 개구형 통합형 포드(Front Opening Unifie Pod, FOUP) 등과 같은 웨이퍼 수납용기에 수납되어 보관되거나 운반되어 진다.
이 경우, 공정상에서 사용되는 공정 가스 및 공정상의 부산물인 퓸(Fume) 등이 제거되지 않고 웨이퍼 표면에 잔존하게 되며, 이로 인해, 공정 중 반도체 제조장비의 오염이 발생하거나, 웨이퍼의 에칭 패턴(etch pattern) 불량 등이 발생하여 웨이퍼의 신뢰성이 저하되는 문제가 있다.
최근에 이러한 문제를 해결하기 위해, 웨이퍼 수납용기에 수납된 웨이퍼에 퍼지가스를 공급하여, 웨이퍼의 표면에 잔존하는 퓸을 제거하거나, 웨이퍼의 산화를 방지하는 퍼징(Purging) 기술들이 개발되고 있다.
웨이퍼 수납용기에 수납되는 웨이퍼의 퍼징을 달성하기 위하여, 웨이퍼 수납용기는 로드 포트(Load Port) 등과 같이 퍼지가스의 공급이 가능한 공급장치와 결합되고, 웨이퍼 수납용기에 수납된 웨이퍼에 퍼지가스를 공급하게 된다. 따라서, 웨이퍼 수납용기에는 상기 공급장치에서 공급된 퍼지가스가 유동하는 유로 및 퍼지가스가 분사되는 분사구 등이 구비된다.
위와 같이, 퍼지가스의 공급이 가능한 웨이퍼 수납용기로는 한국공개특허 제2015-0087015호(이하, '종래기술' 이라 한다)에 기재된 것이 공지되어 있다.
종래기술의 웨이퍼 카세트는 웨이퍼를 지지하며 퍼지가스를 수납실에 분사하는 복수개의 적재대와, 배기부와 연통되어 웨이퍼 카세트의 퍼지가스 및 퓸을 배기하는 흡기공을 포함하여 구성된다.
또한, 복수개의 적재대에는 퍼지가스가 유동하는 퍼지가스 유로와, 상기 퍼지가스 유로와 연통되는 퍼지가스 배출구가 구비된다. 따라서, 퍼지가스는 퍼지가스 공급원으로부터 공급되어 상기 퍼지가스 유로와 연통된 측부 가스관을 통해 적재대 내부로 유입된 후, 퍼지가스 배출구를 통해 수납실로 분사되게 된다.
그러나, 종래기술의 웨이퍼 카세트는 하나의 측부 가스관이 복수개의 적재대에 구비된 퍼지가스 유로와 연통되게 되므로, 복수개의 적재대 각각에서 분사되는 퍼지가스를 개별적으로 제어할 수 없게 된다. 따라서, 수납실의 일부 영역에만 웨이퍼가 수납될 경우(예컨데, 수납실의 하부에 배치되는 적재대에만 웨이퍼가 적재될 경우)에도, 웨이퍼가 수납되지 않은 중앙 영역 및 상부 영역에도 퍼지가스가 분사될 수밖에 없으며, 이로 인해, 불필요한 퍼지가스의 낭비가 발생할 수 있다는 문제점이 있다.
본 발명은 전술한 문제를 해결하기 위해 안출된 것으로서, 웨이퍼의 균일한 퍼징을 보장하고 퍼지가스의 낭비를 최소화할 수 있도록 하는 웨이퍼 수납용기를 제공하는 것을 목적으로 한다.
또한, 본 발명의 다른 목적은 수납실의 수직방향으로 구획된 복수개의 퍼징영역에 분사되는 퍼지가스를 개별적으로 제어하여 분사함으로써, 웨이퍼의 독립적인 퍼징을 달성할 수 있도록 하는 웨이퍼 수납용기를 제공하는 것을 목적으로 한다.
또한, 본 발명의 다른 목적은 수납실에 수직방향으로 복수개 구비되는 지지대에 오목부를 구비하여 전방 개구부를 통해 웨이퍼가 수납실로 출입시, 상기 웨이퍼를 이송하는 로봇암이 간섭되는 것을 방지할 수 있는 웨이퍼 수납용기를 제공하는 것을 목적으로 한다.
또한, 본 발명의 다른 목적은 지지대에 웨이퍼가 지지시, 지지대와 웨이퍼 사이에 형성되는 공간을 최소화함으로써, 수납실로 분사되는 퍼지가스의 수직방향 유동을 최소화하여, 수납실에 구획된 복수개의 퍼징영역으로의 개별적인 퍼지가스 분사를 더욱 효율적으로 할 수 있는 웨이퍼 수납용기를 제공하는 것을 목적으로 한다.
또한, 본 발명의 다른 목적은 수납실의 전방 양측에 전방 배기부를 구비함으로써, 외부 기체가 수납실 내부로 유입되는 것을 차단하여, 수납실에서 이루어지는 웨이퍼의 퍼징을 더욱 효율적으로 달성할 수 있는 웨이퍼 수납용기를 제공하는 것을 목적으로 한다.
본 발명의 일 특징에 따른 웨이퍼 수납용기는 전방 개구부를 통해 수납된 웨이퍼가 수납되는 수납실; 상기 수납실에 퍼지가스를 분사하는 복수개의 분사부; 및 상기 수납실의 퍼지가스 및 퓸을 배기하는 배기부;를 포함하되, 상기 수납실은 수직방향으로 복수개의 퍼징영역으로 구획가능하고, 상기 각각의 퍼징영역에 퍼지가스를 분사하는 분사부는 개별적으로 퍼지가스를 공급받아 상기 퍼징영역 각각에 분사하는 것을 특징으로 한다.
또한, 상기 복수개의 분사부 각각은 상기 수납실과 접하는 분사부 내벽면을 구비하고, 상기 분사부 내벽면에는 퍼지가스가 상기 수납실로 분사되도록 하는 분사구멍이 형성된 것을 특징으로 한다.
또한, 상기 복수개의 분사부는 상기 수직방향으로 구획된 복수개의 퍼징영역 각각과 대응되도록 수직방향으로 적층되게 배치되는 것을 특징으로 한다.
또한, 상기 복수개의 분사부에 퍼지가스를 공급하는 공급부;를 더 포함하되, 상기 공급부는 수직방향으로 연장된 복수개의 수직공급유로를 구비하고, 상기 복수개의 수직공급유로는 상기 복수개의 분사부와 각각 연통되는 것을 특징으로 한다.
또한, 상기 배기부는 상기 수납실과 접하는 배기부 내벽면을 구비하고, 상기 배기부 내벽면에는 상기 수납실의 퍼지가스 및 퓸이 상기 배기부로 배기되도록 하는 배기구멍이 형성된 것을 특징으로 한다.
또한, 상기 배기부는 상기 배기구멍과 연통되는 복수개의 배기공간과, 상기 복수개의 배기공간 각각과 연통되는 복수개의 수직배기유로를 구비하되, 상기 복수개의 배기공간은 상기 수직방향을 구획된 복수개의 퍼징영역 각각과 대응되도록 상기 배기부 내부에서 수직방향으로 적층되게 배치되는 것을 특징으로 한다.
이상에서 설명한 바와 같은 본 발명의 웨이퍼 수납용기에 따르면, 다음과 같은 효과가 있다.
수납실의 상부에 수납되는 웨이퍼에도 충분한 양의 퍼지가스가 분사할 수 있으므로, 수납실에 수납되는 복수개의 웨이퍼의 퍼징을 균일하게 할 수 있으며, 이로 인해, 웨이퍼 제조 공정의 신뢰성을 보장할 수 있다.
또한, 복수개의 퍼징영역 중 웨이퍼가 위치한 영역에만 퍼지가스를 선택적으로 분사하여, 웨이퍼의 퍼징을 달성할 수 있으므로, 불필요한 퍼지가스의 낭비를 방지할 수 있다.
도 1은 본 발명의 바람직한 실시 예에 따른 웨이퍼 수납용기의 사시도.
도 2는 도 1의 분해 사시도.
도 3은 도 1의 정면도.
도 4는 도 3의 제1 내지 제3퍼징영역에 주입되는 퍼지가스의 유동을 도시한 정면도.
도 5는 도 1의 제1분사부내벽면을 도시한 부분 사시도.
도 6은 도 1의 제1-1 내지 제3-2분사부를 도시한 부분 사시도.
도 7은 도 6의 제1-1 내지 제3-2분사부의 퍼지가스 유동을 도시한 부분 사시도.
도 8은 도 1의 좌측의 단면을 도시한 좌측 단면도.
도 9는 도 8의 제1전방배기부로 배기되는 외부 기체의 유동 및 배기부로 배기되는 퍼지가스 및 퓸의 유동을 도시한 우측 단면도.
도 10은 도 1의 제2분사부 내벽면을 도시한 부분 사시도.
도 11은 도 1의 제1-3 내지 제3-4분사부를 도시한 부분 사시도.
도 12는 도 11의 제1-3 내지 제3-4분사부의 퍼지가스 유동을 도시한 부분 사시도.
도 13은 도 1의 우측의 단면을 도시한 우측 단면도.
도 14는 도 13의 제2전방배기부로 배기되는 외부 기체의 유동 및 배기부로 배기되는 퍼지가스 및 퓸의 유동을 도시한 우측 단면도.
도 15는 도 1의 평면 단면도.
도 16은 도 15의 지지대에 지지된 웨이퍼에 분사되는 퍼지가스의 유동 및 배기부로 배기되는 퍼지가스 및 퓸의 유동을 도시한 평면 단면도.
도 17은 도 1의 배기부의 정면을 도시한 정면도.
도 18은 도 17의 배기부의 배면의 단면을 도시한 도시한 배면 단면도.
도 19는 도 1의 제1공급부의 우측면을 도시한 우측면도.
도 20은 도 1의 제2공급부의 좌측면을 도시한 좌측면도.
도 21은 도 1의 지지대의 평면도.
도 22는 도 21의 지지대에 웨이퍼가 지지된 것을 도시한 도.
도 23는 도 1의 제1전방배기부의 우측면을 도시한 사시도.
도 24는 도 23의 제1전방배기부의 좌측면의 단면을 도시한 단면 사시도.
도 25는 도 1의 제2전방배기부의 좌측면을 도시한 사시도.
도 26은 도 25의 제2전방배기부의 우측면의 단면을 도시한 단면 사시도.
도 27은 도 1의 하부 플레이트의 분해 사시도.
도 28은 도 27의 제1하부 플레이트의 평면도.
도 29는 도 27의 제2하부 플레이트의 평면도.
도 30은 도 27의 제3하부 플레이트의 평면도.
도 31은 도 27의 연결부의 평면도.
도 32는 도 27의 하부 플레이트 내부의 퍼지가스 유동을 도시한 평면도.
도 33은 본 발명의 바람직한 실시 예에 따른 웨이퍼 수납용기의 퍼지가스 공급/분사 유동을 도시한 개략도.
도 34는 본 발명의 바람직한 실시 예에 따른 웨이퍼 수납용기의 퍼지가스, 퓸 및 외부기체의 배기 유동을 도시한 개략도.
이하에서 언급되는 '퍼지가스'는 웨이퍼의 퓸을 제거하기 위한 불활성 가스를 통칭하는 말이며, 특히, 불활성 가스 중 하나인 질소(N2) 가스일 수 있다.
또한, '퍼징(Purging)'은 웨이퍼에 퍼지가스를 분사하여 웨이퍼 표면에 잔존하는 퓸을 제거하거나, 웨이퍼의 산화를 방지하는 것을 통칭하는 말이다.
본 발명의 바람직한 실시 예에 따른 웨이퍼 수납용기는 전방 개구부를 통해 수납된 웨이퍼가 수납되는 수납실과, 수납실에 퍼지가스를 분사하는 복수개의 분사부와, 수납실의 퍼지가스 및 퓸을 배기하는 배기부와, 복수개의 분사부에 퍼지가스를 공급하는 공급부를 포함하여 구성된다.
수납실의 전방에는 전방 개구부가 형성되어 있으며, 전방 개구부를 통해 웨이퍼가 수납실 내부로 출입하게 된다.
수납실의 내부에는 웨이퍼를 지지하는 지지대가 구비되며, 지지대에 웨이퍼가 지지되어 수납됨으로써, 전방 개구부를 통해 수납된 웨이퍼가 용이하게 수납될 수 있다.
복수개의 분사부는 웨이퍼가 수납된 수납실에 퍼지가스를 분사하며, 배기부는 복수개의 분사부에 의해 수납실로 분사된 퍼지가스와, 웨이퍼의 퓸을 배기하고, 공급부는 웨이퍼 수납용기의 외부에서 유입된 퍼지가스를 복수개의 분사부로 공급한다.
전술한 수납실은 수직방향으로 복수개의 퍼징영역으로 구획가능하다. 이 경우, 퍼징영역은 복수개의 분사부 각각이 개별적으로 퍼지가스를 공급받아 수납실로 퍼지가스를 분사하여, 웨이퍼의 퍼징이 이루어지는 영역을 말한다.
위와 같은 퍼징영역의 갯수는 본 발명의 목적을 달성할 수 있는 범위 내에서 웨이퍼 수납용기의 용도 및 크기에 따라 다양하게 구획될 수 있다.
웨이퍼의 제조 공정시 10개의 웨이퍼 단위로 각 공정에 웨이퍼의 이송이 이루어지는 경우가 많으므로, 한 개의 퍼징영역에서 10개의 웨이퍼의 퍼징이 달성되도는 것이 바람직하며, 웨이퍼 수납용기에 수납되는 웨이퍼의 갯수는 30개인 것이 일반적이다.
따라서, 웨이퍼 수납용기에 수납되는 웨이퍼의 갯수가 30개일 때, 수납실에 구획되는 퍼징영역은 예컨데, 3개의 퍼징영역으로 구획될 수 있다.
이 경우, 웨이퍼 수납용기는 3개의 분사부 즉, 제1 내지 제3분사부가 구비되어 제1 내지 제3퍼징영역이 구획되는 것이 바람직하며, 이하, 이를 기준으로 설명한다.
전술한 바와 같이, 개별적으로 퍼지가스를 공급받아 수납실에 퍼지가스를 분사하는 제1 내지 제3분사부가 구비되는 경우, 수납실은 제1 내지 제3퍼징영역으로 구획 가능하다. 이 경우, 제1분사부는 제1퍼징영역에 퍼지가스를 분사하고, 제2분사부는 제2퍼징영역에 퍼지가스를 분사하고, 제3분사부는 제3퍼징영역에 퍼지가스를 분사하게 되며, 제1 내지 제3퍼징영역은 수납실 내부에서 수직방향으로 구획된다.
위와 같이, 제1 내지 제3분사부가 개별적으로 퍼지가스를 공급받아 수납실에 퍼지가스를 분사함으로써, 수납실에 수직방향으로 제1 내지 제3퍼징영역을 구획시키는 것을 달성하기 위하여, 제1 내지 제3분사부 각각은 제1 내지 제3퍼징영역 각각과 대응되는 수직방향 위치를 갖는 분사구멍이 형성될 수 있다.
예컨데, 제1 내지 제3퍼징영역이 하부에서 상부순으로 제1퍼징영역, 제2퍼징영역, 제3퍼징영역으로 수납실에서 구획된 경우(즉, 제1퍼징영역은 수납실의 하부 영역, 제2퍼징영역은 수납실의 중간 영역, 제3퍼징영역은 수납실의 상부영역이다) 제1분사부에 형성되는 분사구멍은 제1퍼징영역의 높이와 대응되는 위치(하부 영역)에 형성될 수 있다. 따라서, 제1분사부는 개별적으로 퍼지가스를 공급받아 수납실의 하부 영역인 제1퍼징영역에만 퍼지가스를 분사할 수 있다.
또한, 제2분사부에 형성되는 분사구멍은 제2퍼징영역의 높이와 대응되는 위치(중간 영역)에 형성될 수 있으며, 이로 인해, 제2분사부는 개별적으로 퍼지가스를 공급받아 수납실의 중간 영역인 제2퍼징영역에만 퍼지가스를 분사할 수 있다.
또한, 제3분사부에 형성되는 분사구멍은 제3퍼징영역의 높이와 대응되는 위치(상부 영역)에 형성될 수 있으며, 이로 인해, 제3분사부는 개별적으로 퍼지가스를 공급받아 수납실의 중간 영역인 제3퍼징영역에만 퍼지가스를 분사할 수 있다.
위와 같이, 본 발명의 웨이퍼 수납용기의 경우, 제1 내지 제3분사부가 개별적으로 퍼지가스를 공급받아 수납실에 분사함으로써, 수납실 내부에 수직방향으로 구획되는 제1 내지 제3퍼징영역이 형성되게 된다.
따라서, 제1 내지 제3퍼징영역 각각으로 유동하는 퍼지가스의 유동이 개별적으로 이뤄지게 되며, 이로 인해, 종래기술과 달리 수납실의 상부영역인 제3퍼징영역으로 유동하는 퍼지가스는 제1퍼징영역이나 제2퍼징영역으로 유동하지 않아도 되므로, 퍼지가스의 유동량의 손실이 발생하지 않게 된다.
따라서, 본 발명의 웨이퍼 수납용기의 경우, 종래기술과 달리 수납실의 상부영역인 제3퍼징영역에도 충분한 양의 퍼지가스가 분사될 수 있다.
또한, 제1 내지 제3분사부가 개별적으로 퍼지가스를 공급받으므로, 제1 내지 제3분사부로의 퍼지가스 공급을 제어함에 따라, 수납실의 제1 내지 제3퍼징영역에 분사되는 퍼지가스를 제어할 수 있으며, 이로 인해, 제1 내지 제3퍼징영역 중 웨이퍼가 수납되어 수납되는 영역에만 퍼지가스를 분사할 수 있다. 따라서, 종래기술에서 웨이퍼가 수납되지 않은 영역에 퍼지가스를 분사함으로써 발생하게 되는 퍼지가스의 낭비를 방지할 수 있으며, 수납실에 수납된 웨이퍼의 대기시간에 맞춰 웨이퍼에 퍼지가스를 분사하여 웨이퍼의 퓸을 제거함으로써, 일부 웨이퍼의 퓸이 제거되지 못해 발생하는 웨이퍼 불량의 발생을 최소화 할 수 있다.
전술한 바와 다른 구성으로, 제1 내지 제3분사부가 개별적으로 퍼지가스를 공급받아 수납실에 퍼지가스를 분사함으로써, 수납실에 수직방향으로 제1 내지 제3퍼징영역을 구획시키는 것을 달성하기 위하여, 제1 내지 제3분사부는 수직방향으로 구획된 제1 내지 제3퍼징영역과 대응되도록 수직방향으로 적층되게 배치될 수 있다.
예컨데, 제1 내지 제3퍼징영역이 하부에서 상부순으로 제1퍼징영역, 제2퍼징영역, 제3퍼징영역으로 수납실에서 구획된 경우(즉, 제1퍼징영역은 수납실의 하부 영역, 제2퍼징영역은 수납실의 중간 영역, 제3퍼징영역은 수납실의 상부영역이다), 제1 내지 제3분사부 또한, 하부에서 상부순으로 제1분사부, 제2분사부, 제3분사부가 수직방향으로 적층되게 배치될 수 있다. 이 경우, 제1 내지 제3분사부 각각은 수납실과 접하느 분사부 내벽면을 구비하며, 분사부 내벽면에는 퍼지가스가 수납실로 분사되도록 하는 분사구멍이 형성될 수 있다.
따라서, 제1분사부는 개별적으로 퍼지가스를 공급받아 제1분사부에 구비된 분사부 내벽면에 형성된 분사구멍을 통해 퍼지가스를 제1퍼징영역에만 분사할 수 있다.
또한, 제2분사부는 개별적으로 퍼지가스를 공급받아 제2분사부에 구비된 분사부 내벽면에 형성된 분사구멍을 통해 퍼지가스를 제2퍼징영역에만 분사할 수 있으며, 제3분사부 또한, 개별적으로 퍼지가스를 공급받아 제3분사부에 구비된 분사부 내벽면에 형성된 분사구멍을 통해 퍼지가스를 제3퍼징영역에만 분사할 수 있다.
위와 같이, 제1 내지 제3분사부가 수직방향으로 적층되게 배치되어 제1 내지 제3퍼징영역 각각에 퍼지가스를 분사하는 경우, 제1 내지 제3분사부 각각은 제1 내지 제3퍼징영역 각각에 다방향에서 퍼지가스를 분사하는 복수개의 분사부로 나눠질 수 있다.
예컨데, 제1퍼징영역에 퍼지가스를 분사하는 제1분사부는 제1퍼징영역의 전방 좌측에 퍼지가스를 분사하는 제1-1분사부와, 제1퍼징영역의 후방 좌측에 퍼지가스를 분사하는 제1-2분사부와, 제1퍼징영역의 전방 우측에 퍼지가스를 분사하는 제1-3분사부와, 제1퍼징영역의 후방 우측에 퍼지가스를 분사하는 제1-4분사부를 포함할 수 있다.
제2퍼징영역에 퍼지가스를 분사하는 제2분사부 또한, 제1분사부와 마찬가지로 제2퍼징영역의 전방 좌측에 퍼지가스를 분사하는 제2-1분사부와, 제2퍼징영역의 후방 좌측에 퍼지가스를 분사하는 제2-2분사부와, 제2퍼징영역의 전방 우측에 퍼지가스를 분사하는 제2-3분사부와, 제2퍼징영역의 후방 우측에 퍼지가스를 분사하는 제2-4분사부를 포함할 수 있다.
제3퍼징영역에 퍼지가스를 분사하는 제3분사부 또한, 제1분사부와 마찬가지로 제3퍼징영역의 전방 좌측에 퍼지가스를 분사하는 제3-1분사부와, 제3퍼징영역의 후방 좌측에 퍼지가스를 분사하는 제3-2분사부와, 제3퍼징영역의 전방 우측에 퍼지가스를 분사하는 제3-3분사부와, 제3퍼징영역의 후방 우측에 퍼지가스를 분사하는 제3-4분사부를 포함할 수 있다.
위와 같이, 제1 내지 제3분사부 각각이 제1-1 내지 제1-4분사부, 제2-1 내지 제2-4분사부, 제3-1 내지 제3-4분사부를 포함하여 구성됨으로써, 수납실의 제1 내지 제3퍼징영역 각각에 사영역없이 퍼지가스를 분사할 수 있으며, 이로 인해, 수납실에에 수납되는 웨이퍼의 퓸을 효율적으로 제거할 수 있다.
이하, 본 발명의 바람직한 실시 예에 따른 웨이퍼 수납용기의 하나의 실시 예로서, 전술한 바와 같이, 복수개의 분사부가 제1 내지 제3분사부로 이루어지고, 제1 내지 제3분사부 각각은 제1-1 내지 제1-4분사부와, 제2-1 내지 제2-4분사부와, 제3-1 내지 제3-4분사부를 포함하여 구성되는 것을 기준으로 설명한다.
이 경우, 수납실에는 30개의 웨이퍼가 수납되고, 수납실 내부는 제1 내지 제3분사부에 의해 수직방향으로 제1 내지 제3퍼징영역이 구획된다. 따라서, 제1 내지 제3퍼징영역 각각에는 10개의 웨이퍼가 위치하게 되며, 제1 내지 제3분사부에 의해 10개의 웨이퍼 각각의 퍼징이 달성될 수 있다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예에 따른 웨이퍼 수납용기(10)를 설명하면 다음과 같다.
도 1은 본 발명의 바람직한 실시 예에 따른 웨이퍼 수납용기의 사시도이고, 도 2는 도 1의 분해 사시도이고, 도 3은 도 1의 정면도이고, 도 4는 도 3의 제1 내지 제3퍼징영역에 주입되는 퍼지가스의 유동을 도시한 정면도이고, 도 5는 도 1의 제1분사부내벽면을 도시한 부분 사시도이고, 도 6은 도 1의 제1-1 내지 제3-2분사부를 도시한 부분 사시도이고, 도 7은 도 6의 제1-1 내지 제3-2분사부의 퍼지가스 유동을 도시한 부분 사시도이고, 도 8은 도 1의 좌측의 단면을 도시한 좌측 단면도이고, 도 9는 도 8의 제1전방배기부로 배기되는 외부 기체의 유동 및 배기부로 배기되는 퍼지가스 및 퓸의 유동을 도시한 우측 단면도이고, 도 10은 도 1의 제2분사부 내벽면을 도시한 부분 사시도이고, 도 11은 도 1의 제1-3 내지 제3-4분사부를 도시한 부분 사시도이고, 도 12는 도 11의 제1-3 내지 제3-4분사부의 퍼지가스 유동을 도시한 부분 사시도이고, 도 13은 도 1의 우측의 단면을 도시한 우측 단면도이고, 도 14는 도 13의 제2전방배기부로 배기되는 외부 기체의 유동 및 배기부로 배기되는 퍼지가스 및 퓸의 유동을 도시한 우측 단면도이고, 도 15는 도 1의 평면 단면도이고, 도 16은 도 15의 지지대에 지지된 웨이퍼에 분사되는 퍼지가스의 유동 및 배기부로 배기되는 퍼지가스 및 퓸의 유동을 도시한 평면 단면도이고, 도 17은 도 1의 배기부의 정면을 도시한 정면도이고, 도 18은 도 17의 배기부의 배면의 단면을 도시한 도시한 배면 단면도이고, 도 19는 도 1의 제1공급부의 우측면을 도시한 우측면도이고, 도 20은 도 1의 제2공급부의 좌측면을 도시한 좌측면도이고, 도 21은 도 1의 지지대의 평면도이고, 도 22는 도 21의 지지대에 웨이퍼가 지지된 것을 도시한 도이고, 도 23는 도 1의 제1전방배기부의 우측면을 도시한 사시도이고, 도 24는 도 23의 제1전방배기부의 좌측면의 단면을 도시한 단면 사시도이고, 도 25는 도 1의 제2전방배기부의 좌측면을 도시한 사시도이고, 도 26은 도 25의 제2전방배기부의 우측면의 단면을 도시한 단면 사시도이고, 도 27은 도 1의 하부 플레이트의 분해 사시도이고, 도 28은 도 27의 제1하부 플레이트의 평면도이고, 도 29는 도 27의 제2하부 플레이트의 평면도이고, 도 30은 도 27의 제3하부 플레이트의 평면도이고, 도 31은 도 27의 연결부의 평면도이고, 도 32는 도 27의 하부 플레이트 내부의 퍼지가스 유동을 도시한 평면도이고, 도 33은 본 발명의 바람직한 실시 예에 따른 웨이퍼 수납용기의 퍼지가스 공급/분사 유동을 도시한 개략도이고, 도 34는 본 발명의 바람직한 실시 예에 따른 웨이퍼 수납용기의 퍼지가스, 퓸 및 외부기체의 배기 유동을 도시한 개략도이다.
본 발명의 바람직한 실시 예에 따른 웨이퍼 수납용기(10)는 도 1 내지 도 3에 도시된 바와 같이, 전방 개구부(251)를 통해 수납된 웨이퍼(W)가 수납되는 수납실(200)과, 수납실(200)에 퍼지가스를 분사하는 제1 내지 제3분사부(310, 320, 330)와, 제1 내지 제3분사부(310, 320, 330)의 프레임을 이루는 제1 내지 제8수평부재(111 ~ 118) 및 제1 내지 제6수직부재(121 ~ 126)와, 수납실(200)의 퍼지가스 및 퓸을 배기하는 배기부(400)와, 제1 내지 제3분사부(310, 320, 330)에 퍼지가스를 공급하는 공급부와, 수납실(200) 내부에 구비되어 웨이퍼(W)를 지지하는 지지대(600)와, 수납실(200)의 전방 좌, 우측에 배치되는 제1, 2전방 배기부(710, 750)와, 웨이퍼 수납용기(10)의 하부면을 이루는 하부 플레이트(800)와, 하부 플레이트(800)의 하부에 설치되는 연결부재(850)와, 웨이퍼 수납용기(10)의 상부면을 이루는 상부 플레이트(900)를 포함하여 구성된다.
수납실(200)
이하, 수납실(200)에 대해 설명한다.
도 1 내지 도 3에 도시된 바와 같이, 수납실(200)은 내부에 웨이퍼(W)를 수납하는 기능을 하며, 제1 내지 제3분사부(310, 320, 330) 및 배기부(400)로 둘러싸인 내측 공간으로 정의된다.
수납실(200)의 전방에는 전방 개구부(251)가 형성되어 있으며, 전방 개구부(251)를 통해 웨이퍼(W)가 출입하게 된다.
수납실(200)의 상부면은 상부 플레이트(900)로 이루어져 있고, 수납실(200)의 하부면은 하부 플레이트(800)로 이루어져 있으며, 수납실(200)의 둘레면은 제1, 2분사부 내벽면(340, 350) 및 배기부 내벽면(440)에 의해 이루어져 있다.
따라서, 수납실(200)은 전방 개구부(251)를 제외한 상부면, 하부면, 둘레면이 상, 하부 플레이트(800)와, 제1, 2분사부 내벽면(340, 350) 및 배기부 내벽면(440)에 의해 폐쇄되어 있다.
또한, 수납실(200)의 둘레면을 이루는 제1, 2분사부 내벽면(340, 350)과 배기부 내벽면(440)에는 각각 분사구멍(390)과 배기구멍(490)이 형성되어 있으며, 분사구멍(490)을 통해 수납실(200)에 퍼지가스가 분사되거나, 배기구멍(490)을 통해 수납실(200)에 분사된 퍼지가스 및 웨이퍼(W)의 퓸이 배기될 수 있다.
수납실(200)의 내부에는 웨이퍼(W)를 지지하는 지지대(600)가 구비되며, 이로 인해, 웨이퍼(W)가 지지대(600)에 지지되어 수납실(200)에 용이하게 수납될 수 있다.
이 경우, 지지대(600)는, 도 5 및 도 10에 도시된 바와 같이, 수납실(200)의 좌측 후방 및 우측 후방에 각각 구비된 제1, 2지지대결합부(345, 355)에 의해 제1, 2분사부 내벽면(340, 350)에 용이하게 설치될 수 있다.
또한, 지지대(600)는 수납실(200)에 수납되는 웨이퍼(W)의 갯수에 따라 수직방향으로 복수개가 구비될 수 있다. 따라서, 수납실(200)에는 30개의 웨이퍼(W) 각각을 지지하는 30개의 지지대(600)가 구비되며, 이러한 지지대(600)에 대한 자세한 설명은 후술한다.
도 3 및 도 4에 도시된 바와 같이, 수납실(200)의 내부는 수직방향으로 제1 내지 제3퍼징영역(210, 220, 230)으로 구획되며, 이 경우, 하부에서 상부순으로 제1퍼징영역(210), 제2퍼징영역(220), 제3퍼징영역(230)이 차례대로 구획된다.
제1 내지 제3퍼징영역(210, 220, 230)은 수납실(200) 내부에서 구획되는 가상의 영역으로서, 제1 내지 제3분사부(310, 320, 330)에서 각각 분사되는 퍼지가스에 의해 웨이퍼(W)가 퍼징되는 영역을 말한다.
따라서, 수납실(200)에 수납되어 제1퍼징영역(210)에 위치하는 웨이퍼(W)는 제1분사부(310)에서 분사된 퍼지가스에 의해 퍼징되며, 제2퍼징영역(220)에 위치하는 웨이퍼(W)는 제2분사부(320)에서 분사된 퍼지가스에 의해 퍼징되고, 제3퍼징영역(230)에 위치하는 웨이퍼(W)는 제3분사부(330)에서 분사된 퍼지가스에 의해 퍼징된다.
또한, 제1분사부(310)로 공급되는 퍼지가스와, 제2분사부(320)로 공급되는 퍼지가스 및 제3분사부(330)로 공급되는 퍼지가스는 각각 개별적으로 공급되며, 이에 대한 자세한 설명은 후술한다.
제1 내지 제3분사부(310, 320, 330)
이하, 제1 내지 제3분사부(310, 320, 330)에 대해 설명한다.
도 3 및 도 4에 도시된 바와 같이, 제1 내지 제3분사부(310, 320, 330)는 수납실(200)의 둘레를 감싸도록 배치되며, 하부에서 상부순으로 제1분사부(310), 제2분사부(320), 제3분사부(330)로 수직방향으로 적층되게 배치됨으로써, 수납실(200)에서 수직방향으로 구획된 제1 내지 제3퍼징영역(210, 220, 230) 각각과 대응되도록 배치된다.
다시 말해, 제1분사부(310)는 하부 플레이트(800) 상부에 배치되고, 제2분사부(320)는 제1분사부(310)의 상부에 배치되고, 제3분사부(330)는 제2분사부(320) 상부 및 상부 플레이트(900) 하부에 배치된다. 즉, 하부 플레이트(800)와 상부 플레이트(900) 사이에 제1 내지 제3분사부(310, 320, 330)가 수직방향으로 3개의 층으로 배치되는 것이다. 따라서, 제1 내지 제3분사부(310, 320, 330)에서 분사되는 퍼지가스에 의한 제1 내지 제3퍼징영역(210, 220, 230)의 구획이 용이하게 이루어질 수 있다.
도 6 및 도 11에 도시된 바와 같이, 제1 내지 제3분사부(310, 320, 330)는 각각 제1-1 내지 제1-4분사부(310a ~ 310d), 제2-1 내지 제2-4분사부(320a ~ 320d) 및 제3-1 내지 제3-4분사부(330a ~ 330d)를 포함하여 구성될 수 있으며, 이 경우, 제1-1 내지 제1-4분사부(310a ~ 310d)는 제1퍼징영역(210)에 퍼지가스를 분사하고, 제2-1 내지 제2-4분사부(320a ~ 320d)는 제2퍼징영역(220)에 퍼지가스를 분사하고, 제3-1 내지 제3-4분사부(330a ~ 330d)는 제3퍼징영역(230)에 퍼지가스를 분사한다.
또한, 제1-1, 1-2분사부(310a, 310b), 제2-1, 2-2분사부(320a, 320b), 제3-1, 3-2분사부(330a, 330b), 제1-3, 1-4분사부(310c, 310d), 제2-3, 2-4분사부(320c, 320d), 제3-3, 3-4분사부(330c, 330d)는 각각 후술할 제1-1 내지 제3-2외부 공급라인(미도시)에 의해 개별적으로 퍼지가스를 공급받게 되며, 이에 대한 자세한 설명은 후술한다.
전술한 바와 같이, 제1분사부(310)와 제2분사부(320) 및 제3분사부(330)는 수직방향으로 적층되게 배치됨으로써, 서로 수직방향으로 구별된다.
다시 말해, 수납실(200)의 좌측 및 후방 좌측에 배치되는 제1-1, 1-2분사부(310a, 310b)와 제2-1, 2-2분사부(320a, 320b) 및 제3-1, 3-2분사부(330a, 330b)는 서로 수직방향으로 구별되며, 이와 같은 수직방향 구별은 다음과 같다.
제1-1, 1-2분사부(310a, 310b)와 제2-1, 2-2분사부(320a, 320b)의 사이에는 제2수평부재(112)가 구비되며, 이로 인해, 제1-1, 1-2분사부(310a, 310b)와 제2-1, 2-2분사부(320a, 320b)는 수직방향으로 구별된다.
제2-1, 2-2분사부(320a, 320b)와 제3-1, 3-2분사부(330a, 330b)의 사이에는 제3수평부재(113)가 구비되며, 이로 인해, 제2-1, 2-2분사부(320a, 320b)와 제3-1, 3-2분사부(330a, 330b)는 수직방향으로 구별된다.
또한, 수납실(200)의 우측 및 후방 우측에 배치되는 제1-3, 1-4분사부(310c, 310d)와 제2-3, 2-4분사부(320c, 320d) 및 제3-3, 3-4분사부(330c, 330d)는 서로 수직방향으로 구별되며, 이와 같은 수직방향 구별은 다음과 같다.
제1-3, 1-4분사부(310c, 310d)와 제2-3, 2-4분사부(320c, 320d)의 사이에는 제6수평부재(116)가 구비되며, 이로 인해, 제1-3, 1-4분사부(310c, 310d)와 제2-3, 2-4분사부(320c, 320d)는 수직방향으로 구별된다.
또한, 제2-3, 2-4분사부(320c, 320d)와 제3-3, 3-4분사부(330c, 330d)의 사이에는 제7수평부재(117)가 구비되며, 이로 인해, 제2-3, 2-4분사부(320c, 320d)와 제3-3, 3-4분사부(330c, 330d)는 수직방향으로 구별된다.
또한, 수납실(200)의 좌측 및 후방 좌측에 배치되는 제1-1분사부(310a)와 제1-2분사부(310b), 제2-1분사부(320a)와 제2-2분사부(320b) 및 제3-1분사부(330a)와 제3-2분사부(330b) 각각의 사이에는 제2수직부재(122)가 구비된다. 따라서, 제1-1분사부(310a)와 제1-2분사부(310b)는 수평방향으로 구별되고, 제2-1분사부(320a)와 제2-2분사부(320b)는 수평방향으로 구별되고, 제3-1분사부(330a)와 제3-2분사부(330b)는 수평방향으로 구별된다.
또한, 수납실(200)의 우측 및 후방 우측에 배치되는 제1-3분사부(310c)와 제1-4분사부(310d), 제2-3분사부(320c)와 제2-4분사부(320d) 및, 제3-3분사부(330c)와 제3-4분사부(330d) 각각의 사이에는 제5수직부재(125)가 구비된다 따라서, 제1-3분사부(310c)와 제1-4분사부(310d)는 수평방향으로 구별되고, 제2-3분사부(320c)와 제2-4분사부(320d)는 수평방향으로 구별되고, 제3-3분사부(330c)와 제3-4분사부(330d)는 수평방향으로 구별된다.
제1-1, 1-2분사부(310a, 310b), 제2-1, 2-2분사부(320a, 320b) 및 제3-1, 3-2분사부(330a, 330b)의 내측면은 제1분사부 내벽면(340)으로 이루어지며, 제1-1, 1-2분사부(310a, 310b), 제2-1, 2-2분사부(320a, 320b) 및 제3-1, 3-2분사부(330a, 330b)의 외측면은 제1분사부 외벽면(361)으로 이루어진다.
이 경우, 제1분사부 내벽면(340)은 수납실(200)과 제1-1, 1-2분사부(310a, 310b), 제2-1, 2-2분사부(320a, 320b) 및 제3-1, 3-2분사부(330a, 330b) 사이에 구비된다.
따라서, 제1분사부 내벽면(340)은 제1-1, 1-2분사부(310a, 310b), 제2-1, 2-2분사부(320a, 320b) 및 제3-1, 3-2분사부(330a, 330b)의 내측면을 이룸과 동시에 수납실(200)의 외측면(또는 둘레면)을 이루게 된다. 다시 말해, 제1-1, 1-2분사부(310a, 310b), 제2-1, 2-2분사부(320a, 320b) 및 제3-1, 3-2분사부(330a, 330b)는 제1분사부 내벽면(340)에 의해 수납실(200)의 좌측 및 후방 좌측에 접하게 된다.
제1분사부 외벽면(361)은 제1분사부 내벽면(340)으로 부터 수납실(200)과 반대 방향으로 이격되게 구비되며, 이러한 제1분사부 내벽면(340)과 제1분사부 외벽면(361) 사이에는 이격 공간이 형성되어 있다.
따라서, 제1-1, 1-2분사부(310a, 310b), 제2-1, 2-2분사부(320a, 320b) 및 제3-1, 3-2분사부(330a, 330b) 각각은 제1분사부 내벽면(340)과 제1분사부 외벽면(361) 사이의 이격 공간으로 정의될 수 있다.
제1-3, 1-4분사부(310c, 310d), 제2-3, 2-4분사부(320c, 320d) 및 제3-3, 3-4분사부(330c, 330d)의 내측면은 제2분사부 내벽면(350)으로 이루어지며, 제1-3, 1-4분사부(310c, 310d), 제2-3, 2-4분사부(320c, 320d) 및 제3-3, 3-4분사부(330c, 330d)의 외측면은 제2분사부 외벽면(362)으로 이루어진다.
이 경우, 제2분사부 내벽면(350)은 수납실(200)과 제1-3, 1-4분사부(310c, 310d), 제2-3, 2-4분사부(320c, 320d) 및 제3-3, 3-4분사부(330c, 330d) 사이에 구비된다.
따라서, 제2분사부 내벽면(350)은 제1-3, 1-4분사부(310c, 310d), 제2-3, 2-4분사부(320c, 320d) 및 제3-3, 3-4분사부(330c, 330d)의 내측면을 이룸과 동시에 수납실(200)의 외측면(또는 둘레면)을 이루게 된다. 다시 말해, 제1-3, 1-4분사부(310c, 310d), 제2-3, 2-4분사부(320c, 320d) 및 제3-3, 3-4분사부(330c, 330d)는 제2분사부 내벽면(350)에 의해 수납실(200)의 우측 및 후방 우측에 접하게 된다.
제2분사부 외벽면(362)은 제2분사부 내벽면(350)으로 부터 수납실(200)과 반대 방향으로 이격되게 구비되며, 이러한 제2분사부 내벽면(350)과 제2분사부 외벽면(362) 사이에는 이격 공간이 형성되어 있다.
따라서, 제1-3, 1-4분사부(310c, 310d), 제2-3, 2-4분사부(320c, 320d) 및 제3-3, 3-4분사부(330c, 330d) 각각은 제2분사부 내벽면(350)과 제2분사부 외벽면(362) 사이의 이격 공간으로 정의될 수 있다.
전술한 제1-1 내지 제3-4분사부(310a ~ 330d)에는 수납실(200) 내부의 온도 및 습도를 조절하는 히터(미도시)가 구비될 수 있다.
히터는 제1-1 내지 제3-4분사부(310a ~ 330d)와 대응되도록 제1-1 내지 제3-4히터로 이루어질 수 있다.
제1-1 내지 제3-4히터는 각각 제1-1 내지 제3-4분사부(310a ~ 330d) 외측에 구비되도록 위치하도록 제1, 2분사부외벽면(361, 362)의 외측면에 설치될 수 있다.
이 경우, 제1-1 내지 제3-4히터가 외부에 노출되지 않도록, 제1, 2분사부 외벽면(361, 362)로부터 외측 방향으로 이격되는 위치에 커버(미도시)를 설치하는 것이 바람직하다. 따라서, 웨이퍼 수납용기(10)의 최외각 둘레면은 커버로 이루어지게 되며, 제1-1 내지 제3-4히터는 제1, 2분사부 외벽면(361, 362)과 커버 사이에 위치하게 된다.
제1-1 내지 제3-4히터는 개별적으로 제어되는 것이 바람직하며, 이로 인해, 제1-1 내지 제3-4분사부(310a ~ 330d) 중 제1 내지 제3퍼징영역(210, 220, 230)에 퍼지가스를 분사하는 분사부에 대응되는 히터만 작동되도록 할 수 있다.
예컨데, 제2-2분사부(320b)가 제2퍼징영역(220)으로 퍼지가스를 분사할 때, 제2-2히터가 작동함으로써, 제2-2분사부(320b)에서 분사되는 퍼지가스와 수납실(200)의 제2퍼징영역(220)을 가열할 수 있다. 따라서, 제2퍼징영역(220)에 수납되는 웨이퍼(W)의 퍼징이 용이하게 이루어질 수 있으며, 제2퍼징영역(220) 내부의 습도가 낮아지게 되어, 웨이퍼(W)의 산화를 방지할 수 있다.
위와 같이, 제1-1 내지 제3-4히터의 개별제어는 제1-1 내지 제3-4분사부(310a ~ 330d)의 개별 제어와 유기적으로 이뤄질 수 있다. 따라서, 제1 내지 제3퍼징영역(210, 220, 230) 중 원하는 퍼징영역에만 히터로 인한 온도 및 습도 조절을 달성할 수 있으며, 이로 인해, 최소한의 에너지(전기 등)로 웨이퍼(W)의 산화 방지를 달성할 수 있다.
분사구멍(390)
이하, 제1분사부 내벽면(340) 및 제2분사부 내벽면(350)에 형성되는 분사구멍(390)에 대해 설명한다.
도 3, 도 5, 도 8, 도 10 및 도 13에 도시된 바와 같이, 제1분사부 내벽면(340) 및 제2분사부 내벽면(350)에는 복수개의 분사구멍(390)이 형성된다.
이 경우, 복수개의 분사구멍(390)은 행과 열을 갖는 매트릭스 형태로 형성될 수 있으며, 전술한 바와 같이, 본 발명의 바람직한 실시 예에 따른 웨이퍼 수납용기(10)는 30개의 웨이퍼(W)를 수납하여 퍼징하는 것이므로, 복수개의 분사구멍(390)은 30개의 행을 갖는 것이 바람직하다.
또한, 복수개의 분사구멍(390)은 30개의 지지대(600)의 상부에 각각 위치하도록 형성되는 것이 바람직하다. 다시 말해, 지지대(600)의 상부와 하부 각각에는 복수개의 분사구멍(390)이 위치하도록 제1, 2분사부 내벽면(340, 350)에 형성됨으로써, 30개의 지지대(600)에 각각 지지되는 30개의 웨이퍼(W) 상부로 퍼지가스가 용이하게 분사될 수 있다.
제1분사부 내벽면(340)에 형성된 분사구멍(390) 중 제1퍼징영역(210)과 대응되는 높이에 위치하는 분사구멍(390)은 제1-1, 1-2분사부(310a, 310b)와 제1퍼징영역(210)의 좌측 및 후방 좌측을 연통시킨다. 따라서, 제1-1, 1-2분사부(310a, 310b)의 내부에 공급된 퍼지가스는 분사구멍을 통해 제1퍼징영역(210)의 좌측 및 후방 좌측으로 분사될 수 있다.
제1분사부 내벽면(340)에 형성된 분사구멍(390) 중 제2퍼징영역(220)과 대응되는 높이에 위치하는 분사구멍(390)은 제2-1, 2-2분사부(320a, 320b)와 제2퍼징영역(220)의 좌측 및 후방 좌측을 연통시킨다. 따라서, 제2-1, 2-2분사부(320a, 320b)의 내부에 공급된 퍼지가스는 분사구멍을 통해 제1퍼징영역(210)의 좌측 및 후방 좌측으로 분사될 수 있다.
제1분사부 내벽면(340)에 형성된 분사구멍(390) 중 제3퍼징영역(230)과 대응되는 높이에 위치하는 분사구멍(390)은 제3-1, 3-2분사부(330a, 330b)와 제3퍼징영역(230)의 좌측 및 후방 좌측을 각각 연통시킨다. 따라서, 제3-1, 3-2분사부(330a, 330b)의 내부에 공급된 퍼지가스는 분사구멍을 통해 제1퍼징영역(210)의 좌측 및 후방 좌측으로 분사될 수 있다.
제2분사부 내벽면(350)에 형성된 분사구멍(390) 중 제1퍼징영역(210)과 대응되는 높이에 위치하는 분사구멍(390)은 제1-3, 1-4분사부(310c, 310d)와 제1퍼징영역(210)의 우측 및 후방 우측을 연통시킨다. 따라서, 제1-3, 1-4분사부(310c, 310d)의 내부에 공급된 퍼지가스는 분사구멍을 통해 제1퍼징영역(210)의 우측 및 후방 우측으로 분사될 수 있다.
제2분사부 내벽면(350)에 형성된 분사구멍(390) 중 제2퍼징영역(220)과 대응되는 높이에 위치하는 분사구멍(390)은 제2-3, 2-4분사부(320c, 320d)와 제2퍼징영역(220)의 우측 및 후방 우측을 연통시킨다. 따라서, 제2-3, 2-4분사부(320c, 320d)의 내부에 공급된 퍼지가스는 분사구멍을 통해 제1퍼징영역(210)의 우측 및 후방 우측으로 분사될 수 있다.
제2분사부 내벽면(350)에 형성된 분사구멍(390) 중 제3퍼징영역(230)과 대응되는 높이에 위치하는 분사구멍(390)은 제3-3, 3-4분사부(330c, 330d)와 제3퍼징영역(230)의 우측 및 후방 우측을 연통시킨다. 따라서, 제3-3, 3-4분사부(330c, 330d)의 내부에 공급된 퍼지가스는 분사구멍을 통해 제1퍼징영역(210)의 우측 및 후방 우측으로 분사될 수 있다.
위와 같이, 제1-1 내지 제3-4분사부(310a ~ 330d)는 제1분사부 내벽면(340) 및 제2분사부 내벽면(350)에 형성된 분사구멍을 통해 제1 내지 제3퍼징영역(210, 220, 230) 즉, 수납실(200) 내부로 퍼지가스를 분사하게 된다.
이 경우, 제1-1 내지 제3-2분사부(310a ~ 330b) 각각에 소정의 퍼지가스가 공급되어 저장됨으로써, 상기 각 분사부에 저장된 퍼지가스의 내부 압력이 상승하게 되고, 이러한 내부 압력에 의해 분사구멍(390)을 통해 제1 내지 제3퍼징영역(210, 220, 230)으로 퍼지가스가 분사되게 된다.
위와 같이, 퍼지가스가 수납실(200)의 둘레면을 이루는 제1분사부 내벽면(340) 및 제2분사부 내벽면(350)의 분사구멍(390)에서 분사됨으로써, 종래기술 보다 사영역을 최소화 할 수 있다는 효과가 있다.
상세하게 설명하면, 종래기술의 경우 분사구들이 구비된 별도의 분사부재들이 수납실의 양측면에 구비되어 퍼지가스를 분사하였으나, 본 발명의 바람직한 실시 예에 따른 웨이퍼 수납용기(10)의 경우, 제1, 2분사부 내벽면(340, 350)에 분사구멍(390)을 직접 형성하여 퍼지가스를 분사하게 된다. 따라서, 단순히 제1, 2분사부 내벽면(340, 350)에 분사구멍(390)을 형성함으로써, 제1 내지 제3퍼징영역(210, 220, 230)으로 분사되는 퍼지가스의 분사 방향을 용이하게 조절할 수 있으며, 이로 인해, 사영역 발생을 최소화하는 최적의 분사구멍(390)의 배열을 쉽게 형성시킬 수 있다.
또한, 제1, 2분사부 내벽면(340, 350)에 분사구멍(390)을 형성시킴으로써, 분사구멍(390)의 갯수를 쉽게 추가할 수 있으며, 분사구멍(390)의 갯수가 많아지게 되어 복수개의 분사구멍(390)이 촘촘하게 배치될 경우, 수납실(200)의 둘레면인 제1, 2분사부 내벽면(340, 350) 전체에서 퍼지가스가 분사되는 것과 같은 일종의 면 분사 효과를 달성할 수 있다. 따라서, 종래기술과 달리, 균일한 분사압력이 보장될 수 있으며, 이로 인해, 웨이퍼(W)의 일부 영역에만 집중적으로 퍼지가스의 분사가 이루어지는 것을 방지할 수 있다.
또한, 웨이퍼 수납용기(10)의 장기간 사용으로 인해, 분사구멍(390)이 퓸에 의해 오염되어 막히게 되는 경우, 제1, 2분사부 내벽면(340, 350)을 교체함으로써, 분사구멍(390)의 막힘으로 인한 문제점들을 해결할 수 있어 웨이퍼 수납용기(10)의 용이한 유지관리가 달성될 수 있다.
또한, 전술한 실시 예와 달리, 분사구멍(390)은 제1, 2분사부 내벽면(340, 350)에서 수직방향으로 30개 이상의 행을 가질 수 있다. 다시 말해, 복수개로 구비된 지지대(600)들 사이에 하나의 분사구멍(390)이 위치하지 않고, 수직방향으로 2개 이상의 분사구멍(390)이 형성될 수도 있다. 따라서, 하나의 퍼징영역에 수직방향으로 10개 보다 많은 수의 분사구멍(390)이 형성될 수 있으며, 이로 인해, 웨이퍼(W)의 퍼징이 더욱 용이하게 달성될 수 있다.
또한, 분사구멍(390)의 형상은 직사각형 슬릿 형상, 단부가 원호인 슬릿 형상, 원형 구멍 형상, 다각형의 구멍 형상 등 여러가지 형상을 갖도록 형성될 수 있다.
제1-1 내지 제3- 2공급구멍 (371a ~ 373b) 및 제1-3 내지 제3- 4공급구멍 (371c ~ 373d)
이하, 제1분사부 외벽면(361)에 형성되는 제1-1 내지 제3-2공급구멍(371a ~ 373b)과, 제2분사부 외벽면(362)에 형성되는 제1-3 내지 제3-4공급구멍(371c ~ 373d)에 대해 설명한다.
도 6 및 도 7에 도시된 바와 같이, 제1-1 내지 제3-2공급구멍(371a ~ 373b)은 제1분사부 외벽면(361)에 형성된다.
제1-1공급구멍(371a)은 제1-1분사부(310a) 내부와 제1공급부(510)의 제1-1공급공간(531a)을 연통시키며, 이로 인해, 제1-1공급공간(531a)의 퍼지가스가 제1-1분사부(310a) 내부로 유동될 수 있다.
제1-2공급구멍(371b)은 제1-2분사부(310b) 내부와 제1공급부(510)의 제1-2공급공간(531b)을 연통시키며, 이로 인해, 제1-2공급공간(531b)의 퍼지가스가 제1-2분사부(310b) 내부로 유동될 수 있다.
제2-1공급구멍(372a)은 제2-1분사부(320a) 내부와 제1공급부(510)의 제2-1공급공간(532a)을 연통시키며, 이로 인해, 제2-1공급공간(532a)의 퍼지가스가 제2-1분사부(320a) 내부로 유동될 수 있다.
제2-2공급구멍(372b)은 제2-1분사부(320a) 내부와 제1공급부(510)의 제2-1공급공간(532a)을 연통시키며, 이로 인해, 제2-1공급공간(532a)의 퍼지가스가 제2-1분사부(320a) 내부로 유동될 수 있다.
제3-1공급구멍(373a)은 제3-1분사부(330a) 내부와 제1공급부(510)의 제3-1공급공간(533a)을 연통시키며, 이로 인해, 제3-1공급공간(533a)의 퍼지가스가 제3-1분사부(330a) 내부로 유동될 수 있다.
제3-2공급구멍(373b)은 제3-2분사부(330b) 내부와 제1공급부(510)의 제3-2공급공간(533b)을 연통시키며, 이로 인해, 제3-2공급공간(533b)의 퍼지가스가 제3-2분사부(330b) 내부로 유동될 수 있다.
도 11 및 도 12에 도시된 바와 같이, 제1-3 내지 제3-4공급구멍(371c ~ 373d)은 제2분사부 외벽면(362)에 형성된다.
제1-3공급구멍(371c)은 제1-3분사부(310c) 내부와 제2공급부(520)의 제1-3공급공간(531c)을 연통시키며, 이로 인해, 제1-3공급공간(531c)의 퍼지가스가 제1-3분사부(310c) 내부로 유동될 수 있다.
제1-4공급구멍(371d)은 제1-4분사부(310d) 내부와 제2공급부(520)의 제1-4공급공간(531d)을 연통시키며, 이로 인해, 제1-4공급공간(531d)의 퍼지가스가 제1-4분사부(310d) 내부로 유동될 수 있다.
제2-3공급구멍(372c)은 제2-3분사부(320c) 내부와 제2공급부(520)의 제2-3공급공간(532c)을 연통시키며, 이로 인해, 제2-3공급공간(532c)의 퍼지가스가 제2-3분사부(320c) 내부로 유동될 수 있다.
제2-4공급구멍(372d)은 제2-4분사부(320d) 내부와 제2공급부(520)의 제2-4공급공간(532d)을 연통시키며, 이로 인해, 제2-4공급공간(532d)의 퍼지가스가 제2-4분사부(320d) 내부로 유동될 수 있다.
제3-3공급구멍(373c)은 제3-3분사부(330c) 내부와 제2공급부(520)의 제3-3공급공간(533c)을 연통시키며, 이로 인해, 제3-3공급공간(533c)의 퍼지가스가 제3-3분사부(330c) 내부로 유동될 수 있다.
제3-4공급구멍(373d)은 제3-4분사부(330d) 내부와 제2공급부(520)의 제3-4공급공간(533d)을 연통시키며, 이로 인해, 제3-4공급공간(533d)의 퍼지가스가 제3-4분사부(330d) 내부로 유동될 수 있다.
전술한 제1-1 내지 제3-4공급구멍(371a ~ 373d)은 수직방향 길이가 수평방향 길이보다 길게 형성되는 슬릿 형태로 형성되는 것이 바람직하다.
또한, 제1-1 내지 제3-4공급구멍(371a ~ 373d)의 수평방향 길이는 제1-1 내지 제3-4공급구멍(371a ~ 373d) 각각과 연통되는 제1, 2공급부의 제1-1 내지 제3-4공급공간(531a ~ 533d)의 수평방향 길이보다 짧게 형성되는 것이 바람직하다.
이는, 제1-1 내지 제3-4공급공간(531a ~ 533d)에서 제1-1 내지 제3-4공급구멍(371a ~ 373d)으로 퍼지가스가 유동할 때, 상대적으로 넓은 넓이를 갖는 제1-1 내지 제3-4공급공간(531a ~ 533d)에서 상대적으로 작은 넓이를 갖는 제1-1 내지 제3-4공급구멍(371a ~ 373d)으로 유동하게 됨으로써, 퍼지가스의 분사압을 순간적으로 상승시킬 수 있기 때문이다.
위와 같이, 퍼지가스의 분사압이 순간적으로 상승하게 되면, 퍼지가스가 제1-1 내지 제3-4분사부(310a ~ 330d) 내부 전체로 용이하게 유동될 수 있으며, 이로 인해, 제1-1 내지 제3-4분사부(310a ~ 330d)에서 분사되는 퍼지가스가 제1 내지 제3퍼징영역(210, 220, 230) 전체로 더욱 원활하게 분사될 수 있다.
제1 내지 제8수평부재(111 ~ 118) 및 제1 내지 제6수직부재(121 ~ 126)
이하, 제1 내지 제8수평부재(111 ~ 118) 및 제1 내지 제6수직부재(121 ~ 126)에 대해 설명한다.
도 2 및 도 6에 도시된 바와 같이, 제1 내지 제4수평부재(111 ~ 114) 및 제1 내지 제3수직부재(121 ~ 123)는 수납실(200)의 좌측에 배치된다.
제1 내지 제4수평부재(111 ~ 114)는 제1 내지 제3수직부재(121 ~ 123)에 의해 연결되며, 이러한 연결구조로 인해, 제1 내지 제4수평부재(111 ~ 114) 및 제1 내지 제3수직부재(121 ~ 123)는 제1-1 내지 제3-2분사부(310a ~ 330b)의 뼈대, 즉, 프레임을 이루게 된다.
이 경우, 제1 내지 제4수평부재(111 ~ 114)와 제1 내지 제3수직부재(121 ~ 123) 각각은 소정의 폭을 갖을 수 있으며, 상기 폭은 제1분사부 내벽면(340) 및 제1분사부 외벽면(361) 사이의 이격 공간의 폭과 같은 크기를 갖는다. 따라서, 상기 폭에 의해 제1-1 내지 제3-2분사부(310a ~ 330b)의 내부 공간의 폭이 정의될 수 있다.
도 2 및 도 10에 도시된 바와 같이, 제5 내지 제8수평부재(115 ~ 118) 및 제4 내지 제6수직부재(124 ~ 126)는 수납실(200)의 우측에 배치된다.
제5 내지 제8수평부재(115 ~ 118)는 제4 내지 제6수직부재(124 ~ 126)에 의해 연결되며, 이러한 연결구조로 인해, 제5 내지 제8수평부재(115 ~ 118) 및 제4 내지 제6수직부재(124 ~ 126)는 제1-3 내지 제3-4분사부(310c ~ 330d)의 뼈대, 즉, 프레임을 이루게 된다.
이 경우, 제5 내지 제8수평부재(115 ~ 118)와 제4 내지 제6수직부재(124 ~ 126) 각각은 소정의 폭을 갖을 수 있으며, 상기 폭은 제2분사부 내벽면(350) 및 제2분사부 외벽면(362) 사이의 이격 공간의 폭과 같은 크기를 갖는다. 따라서, 상기 폭에 의해 제1-3 내지 제3-4분사부(310c ~ 330d)의 내부 공간의 폭이 정의 된다.
배기부(400)
이하, 배기부(400)에 대해 설명한다.
도 2 내지 도 14에 도시된 바와 같이, 배기부(400)는 제1-2 내지 제3-2분사부(310b, 320b, 330b)와 제1-4 내지 제3-4분사부(310d, 320d, 330d) 사이에 배치된다. 따라서, 제1 내지 제3분사부(310, 320, 330)에 의해 수납실(200) 내부로 분사된 퍼지가스 및 웨이퍼(W)의 퓸을 수납실(200)의 후방으로 배기하는 기능을 한다.
도 5, 도 6, 도 10, 도 11 및 도 17에 도시된 바와 같이, 배기부(400)의 내측면은 배기부 내벽면(440)으로 이루어진다.
이 경우, 배기부 내벽면(440)은 수납실(200)과 배기부(400) 사이에 구비된다.
따라서, 배기부 내벽면(440)은 배기부(400)의 내측면을 이룸과 동시에 수납실(200)의 외측면(또는 둘레면)을 이루게 된다. 다시 말해, 배기부(400)는 배기부 내벽면(440)에 의해 수납실(200)의 후방에 접하게 된다.
배기부 내벽면(440)에는 복수개의 배기구멍(490)이 형성되며, 전술한 바와 같이, 본 발명의 바람직한 실시 예에 따른 웨이퍼 수납용기(10)는 30개의 웨이퍼(W)를 수납하여 퍼징하는 것이므로, 배기부 내벽면(440)에는 30개의 배기구멍(490)이 형성되는 것이 바람직하다.
이 경우, 30개의 배기구멍(490)은 수직방향으로 형성되며, 각각의 배기구멍(490)은 전술한 분사구멍(390)의 행과 같은 높이를 갖도록 위치하는 것이 바람직하다. 다시 말해, 배기구멍(490)은 분사구멍(390)과 마찬가지로, 30개의 지지대(600)의 상부에 각각 위치하도록 형성되는 것이 바람직하다.
도 17 및 도 18에 도시된 바와 같이, 배기부(400)는 배기구멍(490)과 연통되는 제1 내지 제3배기공간(410, 420, 430)과, 제1 내지 제3배기공간(410, 420, 430)과 각각 연통되는 제1 내지 제3수직배기유로(411, 421, 431)가 구비될 수 있다.
제1 내지 제3배기공간(410, 420, 430)은 배기부(400) 내부에서 하부에서 상부순으로 제1배기공간(410), 제2배기공간(420), 제3배기공간(430)으로 적층되게 배치되며, 이로 인해, 수납실(200)에서 수직방향으로 구획된 제1 내지 제3퍼징영역(210, 220, 230) 각각과 대응된다.
따라서, 제1배기공간(410)과 연통된 배기구멍(490)을 통해 제1퍼징영역(210)에 분사된 퍼지가스 및 웨이퍼(W)의 퓸이 배기되고, 제2배기공간(420)과 연통된 배기구멍(490)을 통해 제2퍼징영역(220)에 분사된 퍼지가스 및 웨이퍼(W)의 퓸이 배기되고, 제3배기공간(430)과 연통된 배기구멍(490)을 통해 제3퍼징영역(230)에 분사된 퍼지가스 및 웨이퍼(W)의 퓸이 배기된다.
이 경우, 제1배기공간(410)과 연통되는 배기구멍(490)의 갯수는 10개이고, 제2배기공간(420)과 연통되는 배기구멍(490)의 갯수는 10개이고, 제3배기공간(430)과 연통되는 배기구멍(490)의 갯수는 10개이다.
따라서, 제1퍼징영역(210)에 수납되게 되는 10개의 웨이퍼(W)의 퓸이 퍼지가스와 함께 제1배기공간(410)으로 배기될 수 있으며, 제2퍼징영역(220)에 수납되게 되는 10개의 웨이퍼(W)의 퓸이 퍼지가스와 함께 제2배기공간(420)으로 배기될 수 있고, 제3퍼징영역(230)에 수납되게 되는 10개의 웨이퍼(W)의 퓸이 퍼지가스와 함께 제3배기공간(430)으로 배기될 수 있다.
제1수직배기유로(411)는 배기부(400) 내부에서 수직으로 연장되게 구비되며, 일단이 제1배기공간(410)과 연통되고, 타단은 후술할 제1하부 플레이트(810)의 제1배기연통구멍(815a)과 연통된다. 따라서, 제1수직배기유로(411)는 제1배기공간(410)으로 배기된 퍼지가스를 제1배기연통구멍(815a)으로 유동시키는 통로 역할을 한다.
제2수직배기유로(421)는 배기부(400) 내부에서 수직으로 연장되게 구비되며, 일단이 제2배기공간(420)과 연통되고, 타단은 후술할 제1하부 플레이트(810)의 제2배기연통구멍(815b)과 연통된다. 따라서, 제2수직배기유로(421)는 제2배기공간(420)으로 배기된 퍼지가스를 제2배기연통구멍(815b)으로 유동시키는 통로 역할을 한다.
제3수직배기유로(431)는 배기부(400) 내부에서 수직으로 연장되게 구비되며, 일단이 제3배기공간(430)과 연통되고, 타단은 후술할 제1하부 플레이트(810)의 제3배기연통구멍(815c)과 연통된다. 따라서, 제3수직배기유로(431)는 제3배기공간(430)으로 배기된 퍼지가스를 제3배기연통구멍(815c)으로 유동시키는 통로 역할을 한다.
위와 같이, 수납실(200)의 둘레면을 이루는 배기부(400)의 배기부 내벽면(440)에 배기구멍(490)이 형성되어 배기구멍(490)을 통해 퍼지가스 및 웨이퍼(W)의 퓸이 배기됨으로써, 웨이퍼 수납용기(10)의 유지관리가 용이하다는 효과가 있다. 즉, 배기구멍(490)이 퓸에 의해 오염되어 막히게 되는 경우, 배기부 내벽면(440)만을 교체함으로써, 쉽게 배기구멍(490)의 막힘으로 인한 문제점들을 해결할 수 있다.
또한, 전술한 실시 예와 달리, 배기구멍(490)은 배기부 내벽면(440)에서 수직방향으로 30개 이상이 형성될 수 있다. 다시 말해, 복수개로 구비된 지지대(600)들 사이에 하나의 배기구멍(490)이 위치하지 않고, 수직방향으로 2개 이상의 분사구멍(490)이 형성될 수도 있다. 따라서, 하나의 퍼징영역에 수직방향으로 10개 보다 많은 수의 배기구멍(490)이 형성될 수 있으며, 이로 인해, 웨이퍼(W)의 퍼징 후 발생하는 퓸의 배기가 더욱 용이하게 달성될 수 있다.
또한, 배기구멍(490)의 형상은 직사각형 슬릿 형상, 단부가 원호인 슬릿 형상, 원형 구멍 형상, 다각형의 구멍 형상 등 여러가지 형상을 갖도록 형성될 수 있다.
공급부
이하, 공급부에 대해 설명한다.
도 2, 도 5, 도 6, 도 10, 도 11 및 도 15에 도시된 바와 같이, 공급부는 제1-1 내지 제3-2분사부(310a ~ 330b)의 외측에 배치되어 수납실(200)을 기준으로 좌측에 배치되는 제1공급부(510)와, 제1-3 내지 제3-4분사부(310c ~ 330d)의 외측에 배치되어 수납실(200)을 기준으로 우측에 배치되는 제2공급부(520)로 구성될 수 있다.
제1공급부(510)는 하부 플레이트(800)를 통해 유입되는 퍼지가스를 제1-1 내지 제3-2분사부(310a ~ 330b)로 공급하는 기능을 하고, 제2공급부(520)는 하부 플레이트(800)를 통해 유입되는 퍼지가스를 제1-3 내지 제3-4분사부(310c ~ 330d)로 공급하는 기능을 한다.
도 19에 도시된 바와 같이, 제1공급부(510)에는 제1-1 내지 제3-2공급구멍(371a ~ 373b)과 각각 연통되는 제1-1 내지 제3-2공급공간(531a ~ 533b)과, 제1-1 내지 제3-2공급공간(531a ~ 533b) 각각과 연통되는 제1-1 내지 제3-2수직공급유로(541a ~ 543b)가 구비된다.
제1-1 내지 제3-2공급공간(531a ~ 533b)은 내부에 퍼지가스가 저장되어 제1-1 내지 제3-2공급구멍(371a ~ 373b)을 통해 제1-1 내지 제3-2분사부(310a ~ 330b)로 공급되는 공간을 말하며, 제1공급부(510)의 우측면을 개구하며 형성된다.
제1-1 내지 제3-1공급공간(531a, 532a, 533a)은 제1공급부(510)의 중심선(도 19의 C1)을 기준으로 전방 측에 형성되며, 제1-2 내지 제3-2공급공간(531b, 532b, 533b)은 제1공급부(510)의 중심선(도 19의 C1)을 기준으로 후방측에 형성된다. 즉, 제1-1 내지 제3-1공급공간(531a, 532a, 533a)과 제1-2 내지 제3-2공급공간(531b, 532b, 533b)은 제1공급부(510)의 중심선(도 19의 C1)을 기준으로 서로 대칭되게 배치된다.
제1-1 내지 제3-2공급공간(531a ~ 533b) 각각은 제1-1 내지 제3-2공급구멍(371a ~ 373b) 각각과 대응되기 위해, 제1-1공급공간(531a) 및 제1-2공급공간(531b), 제2-1공급공간(532a) 및 제2-2공급공간(532b), 제3-1공급공간(533a) 및 제3-2공급공간(533b)이 제1공급부(510)의 하부에서 상부순으로 차례대로 배치된다.
또한, 제1-1공급공간(531a) 및 제1-2공급공간(531b), 제2-1공급공간(532a) 및 제2-2공급공간(532b), 제3-1공급공간(533a) 및 제3-2공급공간(533b) 순으로 갈수록 공급공간의 크기는 크게 형성된다.
위와 같이, 제1공급부(510)의 상부로 갈수록 공급공간의 크기가 커지게 형성됨으로써, 제3-1공급공간(533a) 및 제3-2공급공간(533b) 내부로 유동되는 퍼지가스의 유동량이 많아지게 되고, 이로 인해, 제3-1분사부(330a) 및 제3-2분사부(330b)에 충분한 양의 퍼지가스가 공급될 수 있다.
따라서, 제3-1분사부(330a) 및 제3-2분사부(330b)가 제3퍼징영역(230)에 충분한 양의 퍼지가스를 분사할 수 있으며, 수납실(200)의 상부에 구획되는 제3퍼징영역(230)에서의 웨이퍼(W)의 퍼징이 용이하게 달성될 수 있다.
제1-1 내지 제3-2수직공급유로(541a ~ 543b)는 제1공급부(510) 내부에서 수직방향으로 연장되게 형성되며, 각각의 일단은 제1-1 내지 제3-2공급공간(531a ~ 533b) 각각과 연통되고, 각각의 타단은 제1하부 플레이트(810)에 형성된 제1-1 내지 제3-2공급연통구멍(811a ~ 813b)과 연통된다. 따라서, 제1-1 내지 제3-2수직공급유로(541a ~ 543b)는 제1-1 내지 제3-2공급연통구멍(811a ~ 813b)에서 유입된 퍼지가스를 제1-1 내지 제3-2공급공간(531a ~ 533b)으로 유동시키는 통로 역할을 한다.
이 경우, 제1-1 내지 제3-2수직공급유로(541a ~ 543b)의 각각의 타단은 제1공급부의 하면에 개구된 구멍형태로 형성될 수 있으며, 이로 인해, 제1-1 내지 제3-2공급연통구멍(811a ~ 813b)과 용이하게 연통될 수 있다.
도 20에 도시된 바와 같이, 제2공급부(520)에는 제1-3 내지 제3-4공급구멍(371c ~ 373d)과 각각 연통되는 제1-3 내지 제3-4공급공간(531c ~ 533d)과, 제1-3 내지 제3-4공급공간(531c ~ 533d) 각각과 연통되는 제1-3 내지 제3-4수직공급유로(541c ~ 543d)가 구비된다.
제1-3 내지 제3-4공급공간(531c ~ 533d)은 내부에 퍼지가스가 저장되어 제1-3 내지 제3-4공급구멍(371c ~ 373d)을 통해 제1-3 내지 제3-4분사부(310c ~ 330d)로 공급되는 공간을 말하며, 제2공급부(520)의 좌측면을 개구하며 형성된다.
제1-3 내지 제3-3공급공간(531c, 532c, 533c)은 제2공급부(520)의 중심선(도 20의 C2)을 기준으로 전방 측에 형성되며, 제1-4 내지 제3-4공급공간(531d, 532d, 533d)은 제2공급부(520)의 중심선(도 20의 C2)을 기준으로 후방측에 형성된다. 즉, 제1-3 내지 제3-3공급공간(531c, 532c, 533c)과 제1-4 내지 제3-4공급공간(531d, 532d, 533d)은 제2공급부(520)의 중심선(도 20의 C2)을 기준으로 서로 대칭되게 배치된다.
제1-3 내지 제3-4공급공간(531c ~ 533d) 각각은 제1-3 내지 제3-4공급구멍(371c ~ 373d) 각각과 대응되기 위해, 제1-3공급공간(531c) 및 제1-4공급공간(531d), 제2-3공급공간(532c) 및 제2-4공급공간(532d), 제3-3공급공간(533c) 및 제3-4공급공간(533d)이 제2공급부(520)의 하부에서 상부순으로 차례대로 배치된다.
또한, 제1-3공급공간(531c) 및 제1-4공급공간(531d), 제2-3공급공간(532c) 및 제2-4공급공간(532d), 제3-3공급공간(533c) 및 제3-4공급공간(533d) 순으로 갈수록 공급공간의 크기는 크게 형성된다.
위와 같이, 제2공급부(520)의 상부로 갈수록 공급공간의 크기가 커지게 형성됨으로써, 제3-3공급공간(533c) 및 제3-4공급공간(533d) 내부로 유동되는 퍼지가스의 유동량이 많아지게 되고, 이로 인해, 제3-3분사부(330c) 및 제3-4분사부(330d)에 충분한 양의 퍼지가스가 공급될 수 있다.
따라서, 제3-3분사부(330c) 및 제3-4분사부(330d)가 제3퍼징영역(230)에 충분한 양의 퍼지가스를 분사할 수 있으며, 수납실(200)의 상부에 구획되는 제3퍼징영역(230)에서의 웨이퍼(W)의 퍼징이 용이하게 달성될 수 있다.
제1-3 내지 제3-4수직공급유로(541c ~ 543d)는 제2공급부(520) 내부에서 수직방향으로 연장되게 형성되며, 각각의 일단은 제1-3 내지 제3-4공급공간(531c ~ 533d) 각각과 연통되고, 각각의 타단은 제1하부 플레이트(810)에 형성된 제1-3 내지 제3-4공급연통구멍(811c ~ 813d)과 연통된다. 따라서, 제1-3 내지 제3-4수직공급유로(541c ~ 543d)는 제1-3 내지 제3-4공급연통구멍(811c ~ 813d)에서 유입된 퍼지가스를 제1-3 내지 제3-4공급공간(531c ~ 533d)으로 유동시키는 통로 역할을 한다.
이 경우, 제1-3 내지 제3-4수직공급유로(541c ~ 543d)의 각각의 타단은 제2공급부(520)의 하면에 개구된 구멍형태로 형성될 수 있으며, 이로 인해, 제1-3 내지 제3-4공급연통구멍(811c ~ 813d)과 용이하게 연통될 수 있다.
위와 같은, 제1공급부(510) 및 제2공급부(520)의 구성으로 인해, 하부 플레이트(800)를 통해 유입되는 퍼지가스를 제1-1 내지 제3-4분사부(310a ~ 330d)로 용이하게 공급할 수 있다.
전술한 바와 같이, 본 발명의 바람직한 실시 예에 따른 웨이퍼 수납용기(10)는 제1공급부(510)가 제1-1 내지 제3-2분사부(310a ~ 330b)의 외측에 배치되어 제1-1 내지 제3-2분사부(310a ~ 330b) 내부에 퍼지가스를 공급하고, 제2공급부(520)가 제1-3 내지 제3-4분사부(310c ~ 330d)의 외측에 배치되어 제1-3 내지 제3-4분사부(310c ~ 330d) 내부에 퍼지가스를 공급한다.
따라서, 2개의 공급부만을 이용하여, 12개의 분사부에 퍼지가스의 공급을 달성할 수 있으며, 이로 인해, 웨이퍼 수납용기(10)의 컴팩트한 구조를 달성할 수 있다.
지지대(600)
이하, 지지대(600)에 대해 설명한다.
도 1 내지 도 3에 도시된 바와 같이, 지지대(600)는 수납실(200) 내부에 수납되는 웨이퍼(W)를 지지하는 기능을 하며, 수납실(200) 내부에서 수직방향으로 복수개가 구비될 수 있다. 이 경우, 본 발명의 바람직한 실시 예에 따른 웨이퍼 수납용기(10)는 30개의 웨이퍼(W)를 퍼징하는 것이므로, 지지대(600)의 30개가 구비된다.
도 21 및 도 22에 도시된 바와 같이, 지지대(600)는 후방지지부(610)와, 후방지지부(610)의 좌측에서 전방 방향으로 연장되게 형성되는 좌측지지부(620)와, 후방지지부(610)의 우측에서 전방 방향으로 연장되게 형성되는 우측지지부(630)를 포함하여 구성된다.
후방지지부(610)는 웨이퍼(W)의 후방을 지지하는 기능을 하며, 후방지지부(610)에는 후방원호부(611)가 형성되어 있다.
후방원호부(611)는 후방지지부(610)의 상면으로부터 하부 방향으로 단차지게 형성되며, 원호 형상을 갖는다.
이 경우, 후방원호부(611)는 웨이퍼(W)의 곡률과 같은 곡률을 갖는 원호 형상이며, 이로 인해, 후방원호부(611), 좌측원호부(621) 및 우측원호부(631)를 가상의 선으로 이으며 웨이퍼(W)와 같은 원형 형상이 만들어 진다.
후방원호부(611)에는 후방돌출부(612)가 형성되며, 후방돌출부(612)는 웨이퍼(W)의 후방 하면을 지지하는 기능을 한다.
좌측지지부(620)는 후방지지부(610)의 좌측으로부터 전방 방향으로 연장되게 형성되며, 웨이퍼(W)의 좌측을 지지하는 기능을 한다. 또한, 좌측지지부(620)에는 좌측원호부(621)가 형성되어 있다.
좌측원호부(621)는 좌측지지부(620)의 상면으로부터 하부 방향으로 단차지게 형성되며, 원호 형상을 갖는다.
이 경우, 좌측원호부(621)는 웨이퍼(W)의 곡률과 같은 곡률을 갖는 원호 형상이며, 이로 인해, 후방원호부(611), 좌측원호부(621) 및 우측원호부(631)를 가상의 선으로 이으며 웨이퍼(W)와 같은 원형 형상이 만들어 진다.
좌측원호부(621)에는 좌측돌출부(622)가 형성되며, 후방돌출부(612)는 웨이퍼(W)의 우측 하면을 지지하는 기능을 한다.
우측지지부(630)는 우측지지부(630)의 좌측으로부터 전방 방향으로 연장되게 형성되며, 웨이퍼(W)의 우측을 지지하는 기능을 한다. 또한, 우측지지부(630)에는 우측원호부(631)가 형성되어 있다.
우측원호부(631)는 우측지지부(630)의 상면으로부터 하부 방향으로 단차지게 형성되며, 원호 형상을 갖는다.
이 경우, 우측원호부(631)는 웨이퍼(W)의 곡률과 같은 곡률을 갖는 원호 형상이며, 이로 인해, 후방원호부(611), 좌측원호부(621) 및 우측원호부(631)를 가상의 선으로 이으며 웨이퍼(W)와 같은 원형 형상이 만들어 진다.
우측원호부(631)에는 우측돌출부(632)가 형성되며, 후방돌출부(612)는 웨이퍼(W)의 좌측 하면을 지지하는 기능을 한다.
위와 같이, 후방돌출부(612), 좌측돌출부(622) 및 우측돌출부(632)가 웨이퍼(W)의 후방, 좌측 및 우측 하면을 각각 지지함으로써, 웨이퍼(W)는 3점으로 지지되게 된다. 이처럼, 3개의 돌출부에 의해 웨이퍼(W)가 3점 지지됨으로써, 웨이퍼(W)의 접촉면적을 최소화할 수 있으며, 이로 인해, 웨이퍼(W)의 접촉으로 인한 웨이퍼(W)의 파손 등을 방지할 수 있다.
후방지지부(610)와 좌측지지부(620)가 연장되는 부분의 외측면에는 좌측경사부(640)가 형성될 수 있다.
좌측경사부(640)는 후방에서 전방으로 갈수록 외측 방향으로 경사지게 형성된다.
후방지지부(610)와 우측지지부(630)가 연장되는 부분의 외측면에는 우측경사부(650)가 형성될 수 있다.
우측경사부(650) 또한, 후방에서 전방으로 갈수록 외측 방향으로 경사지게 형성된다.
위와 같은, 좌, 우측경사부(640, 650)는 웨이퍼 수납용기(10)의 컴팩트한 구조와 관련이 있다.
즉, 웨이퍼 수납용기(10)의 좌, 우측은 좌, 우측경사부(640, 650)와 같은 경사부가 형성되어 있으며, 좌, 우측경사부(640, 650)는 이에 대응되는 형상을 갖기 위해 지지대(600)에 형성되는 것이다.
위와 같은 경사부들은 웨이퍼 수납용기(10)의 면적을 최소화하는 기능을 하게 되며, 이로 인해, 웨이퍼 수납용기(10)가 컴팩트한 구조를 갖게 되는 것이다.
후방지지부(610)와 좌측지지부(620)가 연장되는 부분의 내측면에는 좌측오목부(660)가 형성되며, 후방지지부(610)와 우측지지부(630)가 연장되는 부분의 내측면에는 우측오목부(670)가 형성된다.
좌측오목부(660)는 후방원호부(611)와 좌측원호부(621) 사이에서 후방 방향으로 오목하게 형성된다.
우측오목부(670)는 후방원호부(611)와 우측원호부(631) 사이에서 후방 방향으로 오목하게 형성된다.
위와 같은 좌, 우측오목부(660, 670)는 웨이퍼(W)가 로봇암(미도시)에 의해 수납실(200)로 수납될 때, 로봇암의 핑거(미도시)가 지지대(600), 즉, 후방지지부(610)의 내측면에 접촉하는 것을 방지하는 기능을 하며, 이로 인해, 웨이퍼(W)가 전방 개구부(251)를 통해 수납실(200)로 용이하게 출입하여 지지대(600)에 지지될 수 있다.
위와 같은 지지대(600)의 구성 및 형상으로 인해, 도 22에 도시된 바와 같이, 웨이퍼(W)가 지지대(600)에 지지될 경우, 수납실(200) 내부에서 퍼지가스의 수직방향 유동을 최소화할 수 있다.
상세하게 설명하면, 웨이퍼(W)가 후방원호부(611), 좌측원호부(621) 및 우측원호부(631) 각각에 형성된 후방돌출부(612), 좌측돌출부(622) 및 우측돌출부(632)에 의해 3점 지지되면, 지지대(600)의 좌, 우측오목부(660, 670)를 제외한 영역이 웨이퍼(W)에 의해 폐쇄되게 된다. 따라서, 웨이퍼(W)가 지지된 지지대(600)는 수납실(200) 내부에서 수직방향으로 일종의 칸막이 역할을 하게 되며, 이로 인해, 퍼지가스의 수직방향 유동이 제한될 수 있다.
또한, 지지대(600)에서 좌, 우측 오목부(660, 670)가 형성된 영역이 웨이퍼(W)에 의해 폐쇄되어 있지 않더라도, 좌, 우측 오목부(660, 670)가 위치하는 영역에 퍼지가스가 수평 방향으로 분사되므로, 상기 수평 방향으로 분사되는 퍼지가스에 의해 퍼지가스의 수직방향 유동이 제한될 수 있다.
상세하게 설명하면, 제1-2분사부(310b), 제2-2분사부(320b), 제3-2분사부(330b)의 분사구멍(390)은 좌측 오목부(660)가 위치하는 방향으로 퍼지가스를 분사하게 된다. 또한, 제1-4분사부(310d), 제2-4분사부(320d), 제3-4분사부(330d)의 분사구멍(390)은 우측 오목부(670)가 위치하는 방향으로 퍼지가스를 분사하게 된다.
위와 같이, 제1 내지 제3분사부(310, 320, 330)의 분사구멍(390)은 좌, 우측 오목부(660)가 위치하는 방향으로 퍼지가스를 분사하게 되며, 이 경우, 분사된 퍼지가스는 수평방향으로 분사되게 된다. 따라서, 상기 퍼지가스는 일종의 수평방향 층을 이루며 분사되어 유동되게 된다.
이러한 수평방향 층을 이루며 유동되는 퍼지가스에 의해, 좌, 우측 오목부(660, 670)를 통해 퍼지가스가 수직방향으로 유동되는 것을 방지할 수 있으며, 이로 인해, 지지대(600)가 퍼지가스의 수직방향 유동을 제한하는 것을 달성할 수 있다.
전술한 지지대(600)에 의한 퍼지가스의 수직방향 유동의 제한은 후술할 제1 내지 제3분사부(310, 320, 330)의 개별 제어를 더욱 효율적으로 달성할 수 있게 한다.
또한, 전술한 지지대(600)는 로봇암의 핑거가 지지대(600)에 접촉하는 것을 방지하기 위해, 좌, 우측 오목부(660, 670)가 형성되어 있는 것을 기준으로 설명하였으나, 로봇암의 핑거 형상에 따라, 지지대(600)는 좌, 우측 오목부(660, 670)가 없는 형상으로도 형성될 수 있다. 따라서, 이러한 지지대(600)에 웨이퍼(W)가 지지될 경우에는 웨이퍼(W)에 의해 지지대(600)의 내측 공간(웨이퍼(W)를 지지하기 위해 개구된 공간)이 폐쇄되게 되며, 전술한 퍼지가스의 수직방향 유동의 제한을 더욱 효과적으로 달성할 수 있게 된다.
제1전방 배기부 (710) 및 제2전방 배기부 (750)
이하, 제1전방 배기부(710) 및 제2전방 배기부(750)에 대해 설명한다.
도 1, 도 2, 도 5, 도 6, 도 10 및 도 11에 도시된 바와 같이, 제1, 2전방 배기부(710, 750)는 수납실(200)의 전방 양측에 각각 배치되며, 외부 기체를 배기함으로써, 외부 기체가 수납실(200) 내부로 유입되는 것을 차단하는 기능을 한다.
이 경우, 외부 기체는 외부 공기를 포함하는 모든 기체를 말한다.
제1전방 배기부(710)는 수납실(200)의 전방 좌측에 배치되도록 제1-1 내지 제3-1분사부(310a, 320a, 330a)의 전방에 배치된다.
도 23 및 도 24에 도시된 바와 같이, 제1전방 배기부(710)에는 제1배기슬릿(720)과, 제1배기슬릿(720)과 연통되는 제4 내지 제6배기공간(721a, 721b, 721c)과, 제4 내지 제6배기공간(721a, 721b, 721c) 각각과 연통되는 제4 내지 제6수직배기유로(731a, 731b, 731c)(731a, 731b, 731c)가 구비된다.
제1배기슬릿(720)은 제1전방 배기부(710)의 우측면을 개구하며 형성된다. 이 경우, 제1배기슬릿(720)은 수직방향 길이가 수평방향 길이보다 긴 슬릿 형상을 갖는다.
제4 내지 제6배기공간(721a, 721b, 721c)은 제1배기슬릿(720)과 연통되며, 제1 내지 제3퍼징영역(210, 220, 230)과 대응되도록 제1전방 배기부(710)의 내부에 형성된다. 따라서, 제1전방 배기부(710)의 하부에서 상부순으로 제4배기공간(721a), 제5배기공간(721b), 제6배기공간(721c)이 배치되며, 제4 내지 제6배기공간(721a, 721b, 721c) 각각의 높이는 제1 내지 제3퍼징영역(210, 220, 230) 각각의 높이와 동일하게 형성된다.
제4 내지 제6수직배기유로(731a, 731b, 731c)(731a, 731b, 731c)는 제1전방 배기부(710) 내부에서 수직방향으로 연장되게 형성되며, 각각의 일단은 제4 내지 제6배기공간(721a, 721b, 721c)과 연통되고, 각각의 타단은 각각 제1하부 플레이트(810)의 제4 내지 제6배기연통구멍(816a, 816b, 816c)과 연통된다. 따라서, 제4 내지 제6수직배기유로(731a, 731b, 731c)(731a, 731b, 731c)는 제4 내지 제6배기공간(721a, 721b, 721c)을 통해 배기되는 외부 기체를 제4 내지 제6배기연통구멍(816a, 816b, 816c)으로 유동시키는 통로 역할을 한다.
이 경우, 제4 내지 제6수직배기유로(731a, 731b, 731c)(731a, 731b, 731c)의 각각의 타단은 제1전방 배기부(710)의 하면에 개구된 구멍형태로 형성될 수 있으며, 이로 인해, 제4 내지 제6배기연통구멍(816a, 816b, 816c)과 용이하게 연통될 수 있다.
도 25 및 도 26에 도시된 바와 같이, 제2전방 배기부(750)에는 제2배기슬릿(760)과, 제2배기슬릿(720)과 연통되는 제7 내지 제9배기공간(761a, 761b, 761c)과, 제7 내지 제9배기공간(721a, 721b, 721c) 각각과 연통되는 제7 내지 제9수직배기유로(771a, 771b, 771c)(771a, 771b, 771c)가 구비된다.
제2배기슬릿(760)은 제2전방 배기부(750)의 좌측면을 개구하며 형성된다. 이 경우, 제2배기슬릿(760)은 수직방향 길이가 수평방향 길이보다 긴 슬릿 형상을 갖는다.
제7 내지 제9배기공간(761a, 761b, 761c)은 제2배기슬릿(760)과 연통되며, 제1 내지 제3퍼징영역(210, 220, 230)과 대응되도록 제2전방 배기부(750)의 내부에 형성된다. 따라서, 제2전방 배기부(750)의 하부에서 상부순으로 제7배기공간(761a), 제8배기공간(761b), 제9배기공간(761c)이 배치되며, 제7 내지 제9배기공간(761a, 761b, 761c) 각각의 높이는 제1 내지 제3퍼징영역(210, 220, 230) 각각의 높이와 동일하게 형성된다.
제7 내지 제9수직배기유로(771a, 771b, 771c)(771a, 771b, 771c)는 제2전방 배기부(750) 내부에서 수직방향으로 연장되게 형성되며, 각각의 일단은 제7 내지 제9배기공간(761a, 761b, 761c)과 연통되고, 각각의 타단은 각각 제1하부 플레이트(810)의 제7 내지 제9배기연통구멍(817a, 817b, 817c)과 연통된다. 따라서, 제7 내지 제9수직배기유로(771a, 771b, 771c)(771a, 771b, 771c)는 제7 내지 제9배기공간(761a, 761b, 761c)을 통해 배기되는 외부 기체를 제7 내지 제9배기연통구멍(817a, 817b, 817c)으로 유동시키는 통로 역할을 한다.
이 경우, 제7 내지 제9수직배기유로(771a, 771b, 771c)(771a, 771b, 771c)의 각각의 타단은 제2전방 배기부(750)의 하면에 개구된 구멍형태로 형성될 수 있으며, 이로 인해, 제7 내지 제9배기연통구멍(817a, 817b, 817c)과 용이하게 연통될 수 있다.
위와 같은 구성에 의해, 도 9, 도 14, 도 16에 도시된 바와 같이, 제1전방 배기부(710) 및 제2전방 배기부(750)는 제1배기슬릿(720) 및 제2배기슬릿(760)을 통해 외부 기체를 배기할 수 있다.
따라서, 외부 기체가 전방 개구부(251)를 통해 수납실(200) 내부로 유입되는 것을 사전에 차단할 수 있으며, 이로 인해, 외부 기체가 수납실(200)에 분사되는 퍼지가스와 혼합되어 일종의 난류가 형성되는 것을 방지할 수 있다.
또한, 전술한 바와 같이, 제1배기슬릿(720)은 수납실(200)의 전방에서 우측 방향으로 개구되도록 제1전방 배기부(710)의 우측면에 형성되고, 제2배기슬릿(760)은 수납실(200)의 전방에서 우측 방향으로 개구되도록 제2전방 배기부(750)의 좌측면에 형성된다.
따라서, 외부 기체가 제1, 2전방 배기부(710, 750)에 의해 좌, 우 방향으로 용이하게 배기될 수 있으며, 이로 인해, 외부 기체가 수납실(200)에 유입되는 것을 더욱 효과적으로 차단할 수 있다.
또한, 제1 내지 제2전방 배기부(710, 750)는 외부 기체 뿐만 아니라, 제1 내지 제3퍼징영역(210, 220, 230) 내의 퍼지가스를 배기할 수도 있다.
다시 말해, 도 16에 도시된 바와 같이, 제1-1 내지 제3-1분사부(310a, 320a, 330a) 및 제1-2 내지 제3-2분사부(310b, 320b, 330b)에서 분사된 퍼지가스 중 전방 방향으로 분사된 퍼지가스는 제1, 2전방 배기부(710, 750)에 의해 배기될 수 있다.
위와 같이, 제1, 2전방 배기부(710, 750)가 제1-1 내지 제3-1분사부(310a, 320a, 330a) 및 제1-2 내지 제3-2분사부(310b, 320b, 330b)에서 분사된 퍼지가스 중 전방 방향으로 분사된 퍼지가스 중 일부를 배기함으로써, 제1, 2공급부(510, 520)에서 제1-1 내지 제3-1분사부(310a, 320a, 330a) 및 제1-2 내지 제3-2분사부(310b, 320b, 330b)로 공급되는 퍼지가스의 유동을 더욱 원할하게 하는 효과가 있다.
다시 말해, 제1, 2공급부(510, 520)에서 제1-1 내지 제3-1분사부(310a, 320a, 330a) 및 제1-2 내지 제3-2분사부(310b, 320b, 330b)로 공급되는 퍼지가스의 유동은 제1-1 내지 제3-1분사부(310a, 320a, 330a) 및 제1-2 내지 제3-2분사부(310b, 320b, 330b)의 크기로 인해 상대적으로 약한 유동을 보일 수 있으나, 전술한 바와 같이, 제1, 2전방 배기부(710, 750)가 제1-1 내지 제3-1분사부(310a, 320a, 330a) 및 제1-2 내지 제3-2분사부(310b, 320b, 330b)에서 분사된 퍼지가스를 배기하므로, 상기 유동이 더욱 원할해질 수 있다.
따라서, 위와 같은 제1, 2전방 배기부(710, 750)와, 제1, 2공급부(510, 520)의 유기적인 결합관계에 의해 제1, 2공급부(510, 520)가 상대적으로 후방 쪽으로 배치되더라도, 제1, 2공급부(510, 520)에서 제1-1 내지 제3-1분사부(310a, 320a, 330a) 및 제1-2 내지 제3-2분사부(310b, 320b, 330b)로 공급되는 퍼지가스의 유동은 원할해질 수 있다는 효과가 발생한다.
또한, 제1, 2전방 배기부(710, 750)의 흡인력에 따라, 수납실(200)에서 유동하는 퍼지가스의 유동 흐름이 조절될 수 있게 되며, 이로 인해, 웨이퍼(W)의 퓸을 제거하지 못하는 사영역이 발생하는 것을 방지할 수 있다.
다시 말해, 제1, 2전방 배기부(710, 750)의 흡인력이 강해지면, 퍼지가스가 수납실(200) 내부에서 수납실(200) 외부, 즉, 후방에서 전방 방향으로 퍼지가스가 유동하는 흐름이 발생하게 되며, 이로 인해, 웨이퍼(W)의 전 영역에 퍼지가스가 용이하게 유동될 수 있다. 따라서, 웨이퍼(W)의 전 영역의 퓸 제거를 더욱 용이하게 달성할 수 있다.
위에서는 제4 내지 제6배기공간(721a, 721b, 721c)이 하나의 배기슬릿, 즉, 제1배기슬릿(720)과 연통되는 것으로 설명하였으나, 제4 내지 제6배기공간(721a, 721b, 721c) 각각의 높이와 대응되도록 형성되는 3개의 슬릿이 구비될 수도 있다. 따라서, 이 경우, 제1전방 배기부(710)는 제1 내지 제3퍼징영역(210, 220, 230) 각각에 대응되는 높이의 외부 기체들의 선택적인 배기를 더욱 용이하게 달성할 수 있다.
물론, 제7 내지 제9배기공간(761a, 761b, 761c) 각각의 높이와 대응되도록 형성되는 3개의 슬릿이 구비될 수도 있다. 따라서, 이 경우, 제2전방 배기부(750)는 제1 내지 제3퍼징영역(210, 220, 230) 각각에 대응되는 높이의 외부 기체들의 선택적인 배기를 더욱 용이하게 달성할 수 있다.
하부 플레이트(800)
이하, 하부 플레이트(800)에 대해 설명한다.
도 1 내지 도 3에 도시된 바와 같이, 하부 플레이트(800)는 웨이퍼 수납용기(10)의 하부면을 이룸으로써, 수납실(200)의 하부를 폐쇄하고, 외부에서 공급된 퍼지가스를 웨이퍼 수납용기(10)로 유입하는 기능을 한다.
또한, 하부 플레이트(800)는, 도 27에 도시된 바와 같이, 동형의 제1 내지 제3하부 플레이트(810, 820, 830)의 결합으로 이루어질 수 있다.
이 경우, 제1하부 플레이트(810)의 하부에 제2하부 플레이트(820)가 결합하고, 제2하부 플레이트(820) 하부에 제3하부 플레이트(830)가 결합한다.
또한, 제3하부 플레이트(830)의 하부에는 외부 공급라인(미도시) 및 외부 배기라인(미도시)들이 연결되는 연결부재(850)와, 받침부재(860)가 설치된다.
이 경우, 받침부재(860)는 하부 플레이트(800)의 하면, 즉, 제3하부 플레이트(830)의 하면 전방 좌, 우측에 설치되며, 웨이퍼 수납용기(10)를 로드 포트 등에 올려 놓을 때, 수평을 유지하며 안정적으로 올려 놓아지게 하는 기능을 한다.
제1하부 플레이트(810)
이하, 제1하부 플레이트(810)에 대해 설명하다.
도 28에 도시된 바와 같이, 제1하부 플레이트(810)는 수납실(200)의 바닥면을 이루며, 제1-1 내지 제3-4공급연통구멍(811a ~ 813d)과, 제1 내지 제9배기연통구멍(815a, 815b, 815c, 816a, 816b, 816c, 817a, 817b, 817c)이 각각 제1하부 플레이트(810)의 상면과 하면을 관통하여 형성된다,
제1-1 내지 제3-1공급연통구멍(811a, 812a, 813a) 및 제1-2 내지 제3-2공급연통구멍(811b, 812b, 813b)은 제1하부 플레이트(810)의 상면에 배치되는 제1공급부(510)와 대응되도록 제1하부 플레이트(810)의 후방 좌측에 형성된다.
제1-1 내지 제3-1공급연통구멍(811a, 812a, 813a) 및 제1-2 내지 제3-2공급연통구멍(811b, 812b, 813b) 각각은 일단이 제1공급부(510)의 제1-1 내지 제3-1공급연통구멍(811a, 812a, 813a) 및 제1-2 내지 제3-2공급연통구멍(811b, 812b, 813b) 각각과 연통되고, 타단이 제2하부 플레이트(820)의 제1-1 내지 제3-1공급유로(821a, 822a, 823a) 및 제1-2 내지 제3-2공급유로(821b, 822b, 823b) 각각과 연통된다.
제1-3 내지 제3-3공급연통구멍(811c, 812c, 813c) 및 제1-4 내지 제3-4공급연통구멍(811d, 812d, 813d)은 제1하부 플레이트(810)의 상면에 배치되는 제2공급부(520)와 대응되도록 제1하부 플레이트(810)의 후방 우측에 형성된다.
제1-3 내지 제3-3공급연통구멍(811c, 812c, 813c) 및 제1-4 내지 제3-4공급연통구멍(811d, 812d, 813d) 각각은 일단이 제2공급부(520)의 제1-3 내지 제3-3공급연통구멍(811c, 812c, 813c) 및 제1-4 내지 제3-4공급연통구멍(811d, 812d, 813d) 각각과 연통되고, 타단이 제2하부 플레이트(820)의 제1-3 내지 제3-3공급유로(821c, 822c, 823c) 및 제1-4 내지 제3-4공급유로(821d, 822d, 823d) 각각과 연통된다.
제1 내지 제3배기연통구멍(815a, 815b, 815c)은 제1하부 플레이트(810)의 상면에 배치되는 배기부(400)와 대응되도록 제1하부 플레이트(810)의 후방에 형성된다.
제1 내지 제3배기연통구멍(815a, 815b, 815c) 각각은 일단이 배기부(400)의 제1 내지 제3수직배기유로(411, 421, 431) 각각과 연통되고, 타단이 제2하부 플레이트(820)의 제1후방 배출구멍(825)과 연통된다.
제4 내지 제6배기연통구멍(816a, 816b, 816c)은 제1하부 플레이트(810)의 상면에 배치되는 제1전방 배기부(710)와 대응되도록 제1하부 플레이트(810) 전방 좌측에 형성된다.
제4 내지 제6배기연통구멍(816a, 816b, 816c) 각각은 일단이 제1전방 배기부(710)의 제4 내지 제6수직배기유로(731a, 731b, 731c) 각각과 연통되고, 타단이 제2하부 플레이트(820)의 제4 내지 제6배기유로(826a, 826b, 826c) 각각과 연통된다.
제7 내지 제9배기연통구멍(817a, 817b, 817c)은 제1하부 플레이트(810)의 상면에 배치되는 제2전방 배기부(750)와 대응되도록 제1하부 플레이트(810) 전방 우측에 형성된다.
제7 내지 제9배기연통구멍(817a, 817b, 817c) 각각은 일단이 제2전방 배기부(750)의 제7 내지 제9수직배기유로(771a, 771b, 771c) 각각과 연통되고, 타단이 제2하부 플레이트(820)의 제7 내지 제9배기유로(827a, 827b, 827c) 각각과 연통된다.
제2하부 플레이트(820)
이하, 제2하부 플레이트(820)에 대해 설명한다.
도 29에 도시된 바와 같이, 제2하부 플레이트(820)는 제1하부 플레이트(810)의 하부에 결합되며, 제1-1 내지 제3-4공급유로(821a ~ 823d)와, 제1후방 배출구멍(825) 및 제4 내지 제9배기유로(826a, 826b, 826c, 827a, 827b, 827c)가 각각 제2하부 플레이트(820)의 상면과 하면을 관통하여 형성된다.
제1-1 내지 제3-2공급유로(821a ~ 823b)는 제2하부 플레이트(820)의 후방 좌측에서 후방 중앙 방향으로 연장되게 형성된다.
제1-1 내지 제3-2공급유로(821a ~ 823b)는 그 일단이 제1하부 플레이트(810)의 제1-1 내지 제3-2공급연통구멍(811a ~ 813b)과 각각 연통되며, 타단이 제3하부 플레이트(830)의 제1-1 내지 제3-2유입구멍(831a ~ 833b)과 각각 연통된다.
제1-3 내지 제3-4공급유로(821c ~ 823d)는 제2하부 플레이트(820)의 후방 우측에서 후방 중앙 방향으로 연장되게 형성된다.,
*제1-3 내지 제3-4공급유로(821c ~ 823d)는 그 일단이 제1하부 플레이트(810)의 제1-3 내지 제3-4공급연통구멍(811c ~ 813d)과 각각 연통되며, 타단이 제3하부 플레이트(830)의 제1-3 내지 제3-4유입구멍(831c ~ 833d)과 각각 연통된다.
제1-1 내지 제3-4공급유로(821a ~ 823d)의 길이는 제1-1 내지 제1-4공급유로(821a ~ 821d) 보다 제2-1 내지 제2-4공급유로(822a ~ 822d)가 더 짧게 형성되고, 제2-1 내지 제2-4공급유로(822a ~ 822d) 보다 제3-1 내지 제3-4공급유로(823a ~ 823d)가 더 짧게 형성되는 것이 바람직하다.
위와 같이, 제3분사부(330)로 퍼지가스를 공급하는 공급유로의 길이를 제1분사부(310) 및 제2분사부(320)로 퍼지가스를 공급하는 공급유로의 길이보다 짧게 형성함으로써, 수납실(200)의 상부에 구획되는 제3퍼징영역(230)으로 충분한 양의 퍼지가스가 분사될 수 있다.
위와 같이 공급유로의 길이를 조절함으로써, 상부에 위치하는 분사부에도 충분한 양의 퍼지가스가 공급될 수 있으며, 이로 인해, 제1 내지 제3퍼징영역(210, 220, 230)에 균일한 양의 퍼지가스가 분사될 수 있다.
제1후방 배출구멍(825)은 제2하부 플레이트(820)의 후방에 형성된다.
제1후방 배출구멍(825)은 상부가 제1하부 플레이트(810)의 제1 내지 제3배기연통구멍(815a, 815b, 815c)과 연통되고, 하부가 제3하부 플레이트(830)의 제2후방 배기구멍(490)과 연통된다.
제4 내지 제6배기유로(826a, 826b, 826c)는 제2하부 플레이트(820)의 전방 좌측에서 전방 중앙 방향으로 연장되게 형성된다.
제4 내지 제6배기유로(826a, 826b, 826c)는 각각 그 일단이 제1하부 플레이트(810)의 제4 내지 제6배기연통구멍(816a, 816b, 816c)와 각각 연통되며, 타단이 제3하부 플레이트(830)의 제4 내지 제6배출구멍(836a, 836b, 836c)과 각각 연통된다.
제7 내지 제9배기유로(827a, 827b, 827c)는 제2하부 플레이트(820)의 전방 우측에서 전방 중앙 방향으로 연장되게 형성된다.
제7 내지 제9배기유로(827a, 827b, 827c)는 각각 그 일단이 제1하부 플레이트(810)의 제7 내지 제9배기연통구멍(817a, 817b, 817c)과 각각 연통되며, 타단이 제3하부 플레이트(830)의 제7 내지 제9배출구멍(837a, 837b, 837c)과 각각 연통된다.
제4 내지 제9배기유로(826a, 826b, 826c, 827a, 827b, 827c)의 길이는 제4배기유로(826a) 및 제7배기유로(827a) 보다 제5배기유로(826b) 및 제8배기유로(827b)가 더 짧게 형성되고, 제5배기유로(826b) 및 제8배기유로(827b) 보다 제6배기유로(826c) 및 제9배기유로(827c)가 더 짧게 형성되는 것이 바람직하다.
위와 같이, 제1전방 배기부(710)의 제6배기공간(721c) 및 제2전방 배기부(750)의 제9배기공간(761c)을 통해 외부 기체를 배기하는 배기유로의 길이를 제1전방 배기부(710)의 제4배기공간(721a), 제5배기공간(721b) 및 제2전방 배기부(750)의 제7배기공간(761a), 제8배기공간(761b)을 통해 외부 기체를 배기하는 배기유로의 길이보다 짧게 형성함으로써, 제1, 2전방 배기부(710, 750)의 배기 저항을 동일하게 만들 수 있다.
상세하게 설명하면, 제1전방 배기부(710)를 기준으로 유로의 길이를 "제4수직배기유로(731a) + 제4배기유로(826a) = 제5수직배기유로(731b) + 제5배기유로(826b) = 제6수직배기유로(731c) + 제6배기유로(826c)" 와 같은 조건으로 형성시키면, 제1전방 배기부(710)의 제4 내지 제6배기공간(721a, 721b, 721c)의 배기 저항이 동일하게 형성될 수 있으며, 이로 인해, 제4 내지 제6배기공간(721a, 721b, 721c)으로의 균일한 배기가 달성될 수 있다.
또한, 제2전방 배기부(750)를 기준으로 유로의 길이를 "제7수직배기유로(771a) + 제7배기유로(827a) = 제8수직배기유로(771b) + 제8배기유로(827b) = 제9수직배기유로(771c) + 제9배기유로(827c)" 와 같은 조건으로 형성시키면, 제2전방 배기부(750)의 제7 내지 제9배기공간(761a, 761b, 761c)의 배기 저항이 동일하게 형성될 수 있으며, 이로 인해, 제7 내지 제9배기공간(761a, 761b, 761c)으로의 균일한 배기가 달성될 수 있다.
제3하부 플레이트(830)
이하, 제3하부 플레이트(830)에 대해 설명한다.
도 30에 도시된 바와 같이, 제3하부 플레이트(830)는 제2하부 플레이트(820)의 하부에 결합되며, 제1-1 내지 제3-4유입구멍(831a ~ 833d)과, 제2후방 배출구멍(835) 및 제4 내지 제9배출구멍(836a, 836b, 836c, 837a, 837b, 837c)이 각각 제3하부 플레이트(830)의 상면과 하면을 관통하여 형성된다.
제1-1 내지 제3-1유입구멍(831a, 832a, 833a) 및 제1-2 내지 제3-2유입구멍(831b, 832b, 833b)은 제3하부 플레이트(830)의 후방 중앙에 전방에서 후방 방향으로 배열되도록 형성된다.
제1-3 내지 제3-3유입구멍(831c, 832c, 833c) 및 제1-4 내지 제3-4유입구멍(831d, 832d, 833d)은 제3하부 플레이트(830)의 중심선을 기준으로 제1-1 내지 제3-1유입구멍(831a, 832a, 833a) 및 제1-2 내지 제3-2유입구멍(831b, 832b, 833b)와 대칭되도록 제3하부 플레이트(830)의 후방 중앙에 전방에서 후방 방향으로 배열된다.
제1-1 내지 제3-4유입구멍(831a ~ 833d)의 상부 각각은 제2하부 플레이트(820)의 제1-1 내지 제3-4공급유로(821a ~ 823d)와 연통된다.
제1-1, 1-3유입구멍(831a, 831c)은 연결부재(850)의 제1-1메인 유입구멍(851a)과 연통되고, 제2-1, 2-3유입구멍(832a, 832c)은 연결부재(850)의 제2-1메인 유입구멍(852a)과 연통되고, 제3-1, 3-3유입구멍(833a, 833c)은 연결부재(850)의 제3-1메인 유입구멍(853a)과 연통된다.
제1-2, 1-4유입구멍(831b, 831d)은 연결부재(850)의 제1-2메인 유입구멍(851b)과 연통되고, 제2-2, 2-4유입구멍(832b, 832d)은 연결부재(850)의 제2-2메인 유입구멍(852b)과 연통되고, 제3-2, 3-4유입구멍(833b, 833d)은 연결부재(850)의 제3-2메인 유입구멍(853b)과 연통된다.
제2후방 배출구멍(835)은 제2하부 플레이트(820)의 제1후방 배출구멍(825)과 연통되도록 제3하부 플레이트(830)의 후방에 제2하부 플레이트(820)의 상면과 하면을 관통하여 형성된다.
제2후방 배출구멍(835)은 일단이 제1후방 배출구멍(825)과 연통되고, 타단이 연결부재(850)의 통합배출유로(855)와 연통된다.
제4 내지 제9배출구멍(836a, 836b, 836c, 837a, 837b, 837c)은 제1-1 내지 제3-4유입구멍(831a ~ 833d) 보다 전방에 위치하도록 제2하부 플레이트(820)의 중앙에 제2하부 플레이트(820)의 상면과 하면을 관통하여 형성된다.
제4 내지 제9배출구멍(836a, 836b, 836c, 837a, 837b, 837c) 각각의 일단은 제2하부 플레이트(820)의 제4 내지 제9배기유로(826a, 826b, 826c, 827a, 827b, 827c)와 각각 연통되고, 각각의 타단은 연결부재(850)의 통합배출유로(855)와 연통된다.
전술한 바와 같이, 제1 내지 제3하부 플레이트(810, 820, 830)에 각각 공급/배기연통구멍, 공급/배기유로 등을 형성시킴으로써, 하부 플레이트(800) 내부의 유로 형상이 복잡한 형상을 이루고 있더라도 이를 용이하게 형성시킬 수 있다.
또한, 웨이퍼 수납용기(10)가 로드 포트 등에 결합되어 외부 공급/배기 라인과 연결될 때, 위와 같은 제1 내지 제3하부 플레이트(810, 820, 830)의 공급/배기연통구멍, 공급/배기유로 등을 적절하게 형성시킴으로써, 퍼지가스가 공급되는 공급라인들과 퍼지가스 및 퓸을 배기하는 배기라인을 단순화 시킬 수 있다.
연결부재(850)
이하, 연결부재(850)에 대해 설명한다.
도 27에 도시된 바와 같이, 연결부재(850)는 하부 플레이트(800)의 하부, 즉, 제3하부 플레이트(830)의 하부에 설치된다.
연결부재(850)는 제1-1 내지 제3-2외부 공급라인(미도시)과, 외부 배기라인(미도시)을 웨이퍼 수납용기(10)에 연결하는 기능을 한다.
도 31에 도시된 바와 같이, 연결부재(850)에는 제1-1 내지 제3-2메인 유입구멍(851a ~ 853b)과, 통합배출유로(855) 및 메인 배기구멍(490)이 형성된다.
제1-1메인 유입구멍(851a)은 제3하부 플레이트(830)의 제1-1, 1-3유입구멍(831a, 831c)과 연통되고, 제2-1메인 유입구멍(852a)은 제3하부 플레이트(830)의 제2-1, 2-3유입구멍(832a, 832c)과 연통되고, 제3-1메인 유입구멍(853a)은 제3하부 플레이트(830)의 제3-1, 3-3유입구멍(833a, 833c)과 연통된다.
제1-2메인 유입구멍(851b)은 제3하부 플레이트(830)의 제1-2, 1-4유입구멍(831b, 831d)과 연통되고, 제2-2메인 유입구멍(852b)은 제3하부 플레이트(830)의 제2-2, 2-4유입구멍(832b, 832d)과 연통되고, 제3-2메인 유입구멍(853b)은 제3하부 플레이트(830)의 제3-2, 3-4유입구멍(833b, 833d)과 연통된다.
제1-1 내지 제3-2메인 유입구멍(851a ~ 853b)은 각각 제1-1 내지 제3-2외부 공급라인과 연결된다.
따라서, 제1-1 내지 제3-2외부 공급라인 즉, 6개의 외부 공급라인이 개별제어됨에 따라, 제1-1 내지 제3-2메인 유입구멍(851a ~ 853b)과 연통된 6개의 주입부가 제1 내지 제3퍼징영역(210, 220, 230)에 퍼지가스를 개별적으로 분사할 수 있으며, 이에 대한 자세한 설명은 후술한다.
통합배출유로(855)는 제2하부 플레이트(820)의 제2후방 배출구멍(835) 및 제4 내지 제9배출구멍(836a, 836b, 836c, 837a, 837b, 837c)과 메인 배기구멍(490)을 연통시키는 유로 기능을 한다.
메인 배기구멍(490)에는 외부 배기라인이 연결되며, 이로 인해, 통합배출유로(855)로 배기된 퍼지가스, 웨이퍼(W)의 퓸, 외부 기체 등이 웨이퍼 수납용기(10)의 외부로 용이하게 배출될 수 있다.
상부 플레이트(900)
도 1 내지 도 3에 도시된 바와 같이, 상부 플레이트(900)는 웨이퍼 수납용기(10)의 상부면을 이루며, 수납실(200)의 상부를 폐쇄하는 기능을 한다.
이 경우, 상부 플레이트(900)는 그 하면이 제4수평부재(114)의 상면, 제8수평부재(118)의 상면 및 배기부(400)의 상면에 결합된다.
상부 플레이트(900)의 전체적인 형상은 하부 플레이트(800)의 전체적인 형상과 동일한 형상을 갖는다.
상부 플레이트(900)의 하면에는 웨이퍼 감지 센서(미도시)가 구비될 수 있다.
웨이퍼 감지 센서는 웨이퍼(W)가 수납되어 있는지 여부와, 복수개의 지지대(600) 중 어느 지지대(600)에 웨이퍼(W)가 지지되어 있는지 여부를 감지할 수 있다.
웨이퍼 수납용기(10)의 퍼지가스 공급/분사 유동
이하, 본 발명의 바람직한 실시 예에 따른 웨이퍼 수납용기(10)의 퍼지가스 공급/분사 유동에 대해 설명한다.
도 33에 도시된 바와 같이, 본 발명의 바람직한 실시 예에 따른 웨이퍼 수납용기(10)의 퍼지가스 공급/분사 유동은 제1-1 내지 제3-2메인 유입구멍(851a, 853b)에 연결된 제1-1 내지 제3-2외부 공급라인에 의해 이루어지게 된다.
제1-1외부 공급라인은 제1-1분사부(310a) 및 제1-3분사부(310c)에 퍼지가스를 공급하게 되고, 제1-2외부 공급라인은 제1-2분사부(310b) 및 제1-4분사부(310d)에 퍼지가스를 공급하게 된다. 따라서, 제1-1외부 공급라인 및 제1-2외부 공급라인에 의해, 제1-1 내지 제1-4분사부(310a ~ 310d) 각각으로 퍼지가스가 공급되며, 이렇게 공급된 퍼지가스가 제1-1 내지 제1-4분사부(310a ~ 310d)에서 수납실(200)로 분사됨으로써, 수납실(200)에 제1퍼징영역(210)이 구획된다.
제2-1외부 공급라인은 제2-1분사부(320a) 및 제2-3분사부(320c)에 퍼지가스를 공급하게 되고, 제2-2외부 공급라인은 제2-2분사부(320b) 및 제2-4분사부(320d)에 퍼지가스를 공급하게 된다. 따라서, 제2-1외부 공급라인 및 제2-2외부 공급라인에 의해, 제2-1 내지 제2-4분사부(320a ~ 320d) 각각으로 퍼지가스가 공급되며, 이렇게 공급된 퍼지가스가 제2-1 내지 제2-4분사부(320a ~ 320d)에서 수납실(200)로 분사됨으로써, 수납실(200)에 제2퍼징영역(220)이 구획된다.
제3-1외부 공급라인은 제3-1분사부(330a) 및 제3-3분사부(330c)에 퍼지가스를 공급하게 되고, 제3-2외부 공급라인은 제3-2분사부(330b) 및 제3-4분사부(330d)에 퍼지가스를 공급하게 된다. 따라서, 제3-1외부 공급라인 및 제3-2외부 공급라인에 의해, 제3-1 내지 제3-4분사부(330a ~ 330d) 각각으로 퍼지가스가 공급되며, 이렇게 공급된 퍼지가스가 제3-1 내지 제3-4분사부(330a ~ 330d)에서 수납실(200)로 분사됨으로써, 수납실(200)에 제3퍼징영역(230)이 구획된다.
이하, 제1-1 내지 제3-2외부 공급라인에 의해 제1 내지 제3퍼징영역(210, 220, 230) 각각으로 이루어지는 퍼지가스의 공급/분사 유동에 대해 상세하게 설명한다.
제1-1외부 공급라인 및 제1-2외부 공급라인에 의한 퍼지가스 공급/분사 유동
이하, 도 4, 도 7, 도 12, 도 16, 도 32 및 도 33을 참조하여 제1-1외부 공급라인 및 제1-2외부 공급라인에 의해 제1퍼징영역(210)으로 이루어지는 퍼지가스 공급/분사 유동에 대해 설명한다.
제1-1외부 공급라인에서 퍼지가스가 공급되면, 상기 퍼지가스는 연결부재(850)의 제1-1메인 유입구멍(851a)에 의해 제1-1공급유로(821a)와 제1-3공급유로(821c)로 나눠져 유동한다.
제1-1공급유로(821a)로 유동된 퍼지가스는 제1-1공급연통구멍(811a)으로 유동되어, 제1공급부(510)의 제1-1수직공급유로(541a)로 유동한다. 제1-1수직공급유로(541a)로 유동된 퍼지가스는 제1-1공급공간(531a)과 제1-1공급구멍(371a)을 통해 제1-1분사부(310a) 내부로 공급된다. 이렇게, 제1-1분사부(310a) 내부로 공급된 퍼지가스는 분사구멍(390)을 통해 제1퍼징영역(210)의 좌측으로 분사된다.
제1-3공급유로(821c)로 유동된 퍼지가스는 제1-3공급연통구멍(811c)으로 유동되어, 제2공급부(520)의 제1-3수직공급유로(541c)로 유동한다. 제1-3수직공급유로(541c)로 유동된 퍼지가스는 제1-3공급공간(531c)과 제1-3공급구멍(371c)을 통해 제1-3분사부(310c) 내부로 공급된다. 이렇게, 제1-3분사부(310c) 내부로 공급된 퍼지가스는 분사구멍(390)을 통해 제1퍼징영역(210)의 우측으로 분사된다.
제1-2외부 공급라인에서 퍼지가스가 공급되면, 상기 퍼지가스는 연결부재(850)의 제1-2메인 유입구멍(851b)에 의해 제1-2공급유로(821b)와 제1-4공급유로(821d)로 나눠져 유동한다.
제1-2공급유로(821b)로 유동된 퍼지가스는 제1-2공급연통구멍(811b)으로 유동되어, 제1공급부(510)의 제1-2수직공급유로(541b)로 유동한다. 제1-2수직공급유로(541b)로 유동된 퍼지가스는 제1-2공급공간(531b)과 제1-2공급구멍(371b)을 통해 제1-2분사부(310b) 내부로 공급된다. 이렇게, 제1-2분사부(310b) 내부로 공급된 퍼지가스는 분사구멍(390)을 통해 제1퍼징영역(210)의 후방 좌측으로 분사된다.
제1-4공급유로(821d)로 유동된 퍼지가스는 제1-4공급연통구멍(811d)으로 유동되어, 제2공급부(520)의 제1-4수직공급유로(541d)로 유동한다. 제1-4수직공급유로(541d)로 유동된 퍼지가스는 제1-4공급공간(531d)과 제1-4공급구멍(371d)을 통해 제1-4분사부(310d) 내부로 공급된다. 이렇게, 제1-4분사부(310d) 내부로 공급된 퍼지가스는 분사구멍(390)을 통해 제1퍼징영역(210)의 후방 우측으로 분사된다.
제2-1외부 공급라인 및 제2-2외부 공급라인에 의한 퍼지가스 공급/분사 유동
이하, 도 4, 도 7, 도 12, 도 16, 도 32 및 도 33을 참조하여 제2-1외부 공급라인 및 제2-2외부 공급라인에 의해 제2퍼징영역(220)으로 이루어지는 퍼지가스 공급/분사 유동에 대해 설명한다.
제2-1외부 공급라인에서 퍼지가스가 공급되면, 상기 퍼지가스는 연결부재(850)의 제2-1메인 유입구멍(852a)에 의해 제2-1공급유로(822a)와 제2-3공급유로(822c)로 나눠져 유동한다.
제2-1공급유로(822a)로 유동된 퍼지가스는 제2-1공급연통구멍(812a)으로 유동되어, 제1공급부(510)의 제2-1수직공급유로(542a)로 유동한다. 제2-1수직공급유로(542a)로 유동된 퍼지가스는 제2-1공급공간(532a)과 제2-1공급구멍(372a)을 통해 제2-1분사부(320a) 내부로 공급된다. 이렇게, 제2-1분사부(320a) 내부로 공급된 퍼지가스는 분사구멍(390)을 통해 제2퍼징영역(220)의 우측으로 분사된다.
제2-3공급유로(822c)로 유동된 퍼지가스는 제2-3공급연통구멍(812c)으로 유동되어, 제2공급부(520)의 제2-3수직공급유로(542c)로 유동한다. 제2-3수직공급유로(542c)로 유동된 퍼지가스는 제2-3공급공간(532c)과 제2-3공급구멍(372c)을 통해 제2-3분사부(320c) 내부로 공급된다. 이렇게, 제2-3분사부(320c) 내부로 공급된 퍼지가스는 분사구멍(390)을 통해 제2퍼징영역(220)의 우측으로 분사된다.
제2-2외부 공급라인에서 퍼지가스가 공급되면, 상기 퍼지가스는 연결부재(850)의 제2-2메인 유입구멍(852b)에 의해 제2-2공급유로(822b)와 제2-4공급유로(822d)로 나눠져 유동한다.
제2-2공급유로(822b)로 유동된 퍼지가스는 제2-2공급연통구멍(812b)으로 유동되어, 제1공급부(510)의 제2-2수직공급유로(542b)로 유동한다. 제2-2수직공급유로(542b)로 유동된 퍼지가스는 제2-2공급공간(532b)과 제2-2공급구멍(372b)을 통해 제2-2분사부(320b) 내부로 공급된다. 이렇게, 제2-2분사부(320b) 내부로 공급된 퍼지가스는 분사구멍(390)을 통해 제2퍼징영역(220)의 후방 좌측으로 분사된다.
제2-4공급유로(822d)로 유동된 퍼지가스는 제2-4공급연통구멍(812d)으로 유동되어, 제2공급부(520)의 제2-4수직공급유로(542d)로 유동한다. 제2-4수직공급유로(542d)로 유동된 퍼지가스는 제2-4공급공간(532d)과 제2-4공급구멍(372d)을 통해 제2-4분사부(320d) 내부로 공급된다. 이렇게, 제2-4분사부(320d) 내부로 공급된 퍼지가스는 분사구멍(390)을 통해 제2퍼징영역(220)의 후방 우측으로 분사된다.
제3-1외부 공급라인 및 제3-2외부 공급라인에 의한 퍼지가스 공급/분사 유동
이하, 도 4, 도 7, 도 12, 도 16, 도 32 및 도 33를 참조하여 제3-1외부 공급라인 및 제3-2외부 공급라인에 의해 제3퍼징영역(230)으로 이루어지는 퍼지가스 공급/분사 유동에 대해 설명한다.
제3-1외부 공급라인에서 퍼지가스가 공급되면, 상기 퍼지가스는 연결부재(850)의 제3-1메인 유입구멍(853a)에 의해 제3-1공급유로(823a)와 제3-3공급유로(823c)로 나눠져 유동한다.
제3-1공급유로(823a)로 유동된 퍼지가스는 제3-1공급연통구멍(813a)으로 유동되어, 제1공급부(510)의 제3-1수직공급유로(543a)로 유동한다. 제3-1수직공급유로(543a)로 유동된 퍼지가스는 제3-1공급공간(533a)과 제3-1공급구멍(373a)을 통해 제3-1분사부(330a) 내부로 공급된다. 이렇게, 제3-1분사부(330a) 내부로 공급된 퍼지가스는 분사구멍(390)을 통해 제3퍼징영역(230)의 우측으로 분사된다.
제3-3공급유로(823c)로 유동된 퍼지가스는 제3-3공급연통구멍(813c)으로 유동되어, 제2공급부(520)의 제3-3수직공급유로(543c)로 유동한다. 제3-3수직공급유로(543c)로 유동된 퍼지가스는 제3-3공급공간(533c)과 제3-3공급구멍(373c)을 통해 제3-3분사부(330c) 내부로 공급된다. 이렇게, 제3-3분사부(330c) 내부로 공급된 퍼지가스는 분사구멍(390)을 통해 제3퍼징영역(230)의 우측으로 분사된다.
제3-2외부 공급라인에서 퍼지가스가 공급되면, 상기 퍼지가스는 연결부재(850)의 제3-2메인 유입구멍(853b)에 의해 제3-2공급유로(823b)와 제3-4공급유로(823d)로 나눠져 유동한다.
제3-2공급유로(823b)로 유동된 퍼지가스는 제3-2공급연통구멍(813b)으로 유동되어, 제1공급부(510)의 제3-2수직공급유로(543b)로 유동한다. 제3-2수직공급유로(543b)로 유동된 퍼지가스는 제3-2공급공간(533b)과 제3-2공급구멍(373b)을 통해 제3-2분사부(330b) 내부로 공급된다. 이렇게, 제3-2분사부(330b) 내부로 공급된 퍼지가스는 분사구멍(390)을 통해 제3퍼징영역(230)의 후방 좌측으로 분사된다.
제3-4공급유로(823d)로 유동된 퍼지가스는 제3-4공급연통구멍(813d)으로 유동되어, 제2공급부(520)의 제3-4수직공급유로(543d)로 유동한다. 제3-4수직공급유로(543d)로 유동된 퍼지가스는 제3-4공급공간(533d)과 제3-4공급구멍(373d)을 통해 제3-4분사부(330d) 내부로 공급된다. 이렇게, 제3-4분사부(330d) 내부로 공급된 퍼지가스는 분사구멍(390)을 통해 제3퍼징영역(230)의 후방 우측으로 분사된다.
전술한 바와 같이, 본 발명의 바람직한 실시 예에 따른 웨이퍼 수납용기(10)는 제1-1, 1-3분사부(310a, 310c), 제1-2, 1-4분사부(310b, 310d), 제2-1, 2-3분사부(320a, 320c), 제2-2, 2-4분사부(320b, 320d), 제3-1, 3-3분사부(330a, 330c) 및 제3-2, 3-4분사부(330b, 330d)가 각각 제1-1 내지 제3-2외부 공급라인에 의해 개별적으로 퍼지가스를 공급받아, 제1 내지 제3퍼징영역(210, 220, 230)으로의 퍼지가스 분사를 달성할 수 있다.
따라서, 제1-1 내지 제3-2외부 공급라인의 퍼지가스 공급을 제어함으로써, 제1 내지 제3퍼징영역(210, 220, 230) 중 원하는 영역에만 선택적으로 퍼지가스를 분사할 수 있다.
예컨데, 로봇암이 제2퍼징영역(220)에 위치하는 지지대(600)에만 웨이퍼(W)를 수납하여 지지시키는 경우, 제2-1외부 공급라인 및/또는 제2-2외부 공급라인에서 퍼지가스를 공급하여 제2퍼징영역(220)에만 퍼지가스가 분사되게 함으로써, 제2퍼징영역(220)에 위치하는 웨이퍼(W)의 퍼징을 달성할 수 있다. 따라서, 종래기술과 달리, 불필요한 퍼지가스의 낭비를 줄일 수 있다.
또한, 수납실(200)에 수납되는 웨이퍼(W)의 균일한 퍼징을 보장할 수 있다.
예컨데, 제1-1 내지 제3-2외부 공급라인 각각에 MFC(Mass Flow Controller)가 구비된 경우, 상기 MFC를 이용하여 제3-1, 3-2외부 공급라인으로 공급되는 퍼지가스의 압력을 높이게 되면, 분사구멍(390)을 통해 제3-1 내지 제3-4분사부(330a ~ 330d) 내부에서 제3퍼징영역(230)으로 분사되는 퍼지가스의 압력 또한 높아지게 된다. 따라서, 종래기술과 달리, 수납실(200) 내부에서 상부에 위치하는 제3퍼징영역(230)에도 충분한 양의 퍼지가스가 분사될 수 있으며, 이러한 방법으로 제1-1 내지 제3-2외부 공급라인에서 공급되는 퍼지가스의 공급 압력을 각각 다르게 설정함으로써, 수납실(200)에 수납되는 웨이퍼(W)에 균일한 퍼징을 달성할 수 있다.
웨이퍼 수납용기(10)의 퍼지가스, 퓸 및 외부 기체의 배기 유동
이하, 본 발명의 바람직한 실시 예에 따른 웨이퍼 수납용기(10)의 퍼지가스, 웨이퍼(W)의 퓸, 외부 기체의 배기 유동에 대해 설명한다.
도 34에 도시된 바와 같이, 본 발명의 바람직한 실시 예에 따른 웨이퍼 수납용기(10)의 퍼지가스, 웨이퍼(W)의 퓸, 외부 기체의 배기 유동은 메인 배기구멍(857)에 연결된 외부 배기라인(미도시)에 의해 이루어지게 된다.
배기부(400)는 제1-1 내지 제3-2분사부(310a ~ 330d)에 의해 제1 내지 제3퍼징영역(210, 220, 230)으로 분사된 퍼지가스 및 웨이퍼(W)의 퓸을 배기하는 기능을 하고, 제1, 2전방 배기부(710, 750)은 웨이퍼 수납용기(10) 외부의 외부 기체를 배기하는 기능을 한다.
이하, 배기부(400)와 제1, 2전방 배기부(710, 750)의 배기 유동에 대해 상세하게 설명한다.
배기부(400)에 의한 퍼지가스 및 퓸의 배기 유동
이하, 도 9, 도 14, 도 16, 도 32 및 도 34를 참조하여 배기부(400)에 의해 제1 내지 제3퍼징영역(210, 220, 230)의 퍼지가스 및 웨이퍼(W)의 퓸이 배기되는 배기유동에 대해 설명한다.
흡인 팬 등에 의해 외부 배기라인에 흡인력이 발생하게 되면, 제1퍼징영역(210) 내의 퍼지가스 및 웨이퍼(W)의 퓸은 배기구멍(490)을 통해 제1배기공간(410)으로 유동하게 된다. 제1배기공간(410)으로 유동된 퍼지가스 및 웨이퍼(W)의 퓸은 제1수직배기유로(411)를 통해 제1배기연통구멍(815a)으로 유동하게 되며, 제1후방 배출구멍(825), 제2후방 배출구멍(835)을 거쳐 통합배출유로(855)로 유동하게 된다. 이렇게 통합배출유로(855)로 유동된 퍼지가스 및 웨이퍼(W)의 퓸은 메인 배기구멍(857)으로 유동한 후, 외부 배기라인을 통해 웨이퍼 수납용기(10) 외부로 배기되게 된다.
흡인 팬 등에 의해 외부 배기라인에 흡인력이 발생하게 되면, 제2퍼징영역(220) 내의 퍼지가스 및 웨이퍼(W)의 퓸은 배기구멍(490)을 통해 제2배기공간(420)으로 유동하게 된다. 제2배기공간(420)으로 유동된 퍼지가스 및 웨이퍼(W)의 퓸은 제2수직배기유로(421)를 통해 제2배기연통구멍(815b)으로 유동하게 되며, 제1후방 배출구멍(825), 제2후방 배출구멍(835)을 거쳐 통합배출유로(855)로 유동하게 된다. 이렇게 통합배출유로(855)로 유동된 퍼지가스 및 웨이퍼(W)의 퓸은 메인 배기구멍(857)으로 유동한 후, 외부 배기라인을 통해 웨이퍼 수납용기(10) 외부로 배기되게 된다.
흡인 팬 등에 의해 외부 배기라인에 흡인력이 발생하게 되면, 제3퍼징영역(230) 내의 퍼지가스 및 웨이퍼(W)의 퓸은 배기구멍(490)을 통해 제3배기공간(430)으로 유동하게 된다. 제3배기공간(430)으로 유동된 퍼지가스 및 웨이퍼(W)의 퓸은 제3수직배기유로(431)를 통해 제2배기연통구멍(815c)으로 유동하게 되며, 제1후방 배출구멍(825), 제2후방 배출구멍(835)을 거쳐 통합배출유로(855)로 유동하게 된다. 이렇게 통합배출유로(855)로 유동된 퍼지가스 및 웨이퍼(W)의 퓸은 메인 배기구멍(857)으로 유동한 후, 외부 배기라인을 통해 웨이퍼 수납용기(10) 외부로 배기되게 된다.
전술한 바와 같이, 배기부(400)를 통해 배기되는 퍼지가스 및 웨이퍼(W)의 퓸은 각각의 배기 유로, 즉 3개의 배기 유로를 통해 배기되다가 제2하부 플레이트(820)의 제1후방 배출구멍(825)부터 하나로 모아져 배기되게 된다.
이는, 하나의 외부 배기라인의 흡인력을 통해 퍼지가스 및 웨이퍼(W)의 퓸을 용이하게 배기하기 위함이다. 따라서, 제1 내지 제3퍼징영역(210, 220, 230)의 퍼지가스 및 웨이퍼(W)의 퓸의 선택적인 배기를 하기 위해서는, 제1 내지 제3수직배기유로(411, 42, 431)에는 밸브가 구비되는 것이 바람직하다.
다시 말해, 제1 내지 제3수직배기유로(411, 42, 431) 각각에는 솔레노이드 밸브 등과 같은 밸브가 구비될 수 있으며, 이러한 솔레노이드 밸브를 제어함으로써, 제1 내지 제3퍼징영역(210, 220, 230)의 퍼지가스 및 웨이퍼(W)의 퓸의 선택적인 배기를 용이하게 달성할 수 있다. 따라서, 제1-1 내지 제3-2분사부(310a ~ 330d)에서 제1 내지 제3퍼징영역(210, 220, 230)으로 선택적으로 퍼지가스를 분사할 때, 제1 내지 제3퍼징영역(210, 220, 230) 중 퍼지가스가 분사된 퍼징영역에만 퍼지가스 및 웨이퍼(W)의 퓸을 배기할 수 있다.
위와 같이, 제1 내지 제3퍼징영역(210, 220, 230)으로의 퍼지가스 분사 및 퍼지가스와 퓸의 배기를 제어하여, 선택적으로 행함으로써, 전술한 웨이퍼(W)의 균일한 퍼징을 더욱 우수하게 보장할 수 있으며, 불필요한 퍼지가스의 낭비 또한 현저하게 줄일 수 있다.
또한, 전술한 바 실시 예와 달리, 배기부(400)는 외부 공급라인과 연결되어 퍼지가스를 분사하는 기능을 할 수도 있으며, 이 경우, 제1 내지 제3퍼징영역(210, 220, 230)의 후방 각각에 선택적으로 퍼지가스를 분사할 수 있다.
제1전방배기부(710, 750)에 의한 외부 기체의 배기 유동
이하, 도 9, 도 14, 도 16, 도 32 및 도 34를 참조하여 제1, 2전방배기부(710, 750)에 의해 배기되는 외부 기체의 배기 유동에 대해 설명한다.
흡인 팬 등에 의해 외부 배기라인에 흡인력이 발생하게 되면, 웨이퍼 수납용기(10) 전방 좌측 외부의 외부 기체들은 제1전방 배기부(710)의 제1배기슬릿(720)을 통해 제4 내지 제6배기공간(721a, 721b, 721c)으로 유동하게 된다.
제4배기공간(721a)으로 유동된 외부기체는 제4수직배기유로(731a)를 통해 제4배기연통구멍(816a)으로 유동하게 되며, 제4배기유로(826a) 및 제4배출구멍(836a)을 거쳐 통합배출유로(855)로 유동하게 된다. 이렇게 통합배출유로(855)로 유동된 외부 기체는 메인 배기구멍(857)으로 유동한 후, 외부 배기라인을 통해 웨이퍼 수납용기(10) 외부로 배기되게 된다.
제5배기공간(721b)으로 유동된 외부기체는 제5수직배기유로(731b)를 통해 제5배기연통구멍(816b)으로 유동하게 되며, 제5배기유로(826b) 및 제5배출구멍(836b)을 거쳐 통합배출유로(855)로 유동하게 된다. 이렇게 통합배출유로(855)로 유동된 외부 기체는 메인 배기구멍(857)으로 유동한 후, 외부 배기라인을 통해 웨이퍼 수납용기(10) 외부로 배기되게 된다.
제6배기공간(721c)으로 유동된 외부기체는 제6수직배기유로(731c)를 통해 제6배기연통구멍(816c)으로 유동하게 되며, 제5배기유로(826c) 및 제5배출구멍(836c)을 거쳐 통합배출유로(855)로 유동하게 된다. 이렇게 통합배출유로(855)로 유동된 외부 기체는 메인 배기구멍(857)으로 유동한 후, 외부 배기라인을 통해 웨이퍼 수납용기(10) 외부로 배기되게 된다.
흡인 팬 등에 의해 외부 배기라인에 흡인력이 발생하게 되면, 웨이퍼 수납용기(10) 전방 우측 외부의 외부 기체들은 제2전방 배기부(750)의 제2배기슬릿(760)을 통해 제7 내지 제9배기공간(761a, 761b, 761c)으로 유동하게 된다.
제7배기공간(761a)으로 유동된 외부기체는 제7수직배기유로(771a)를 통해 제7배기연통구멍(817a)으로 유동하게 되며, 제7배기유로(827a) 및 제7배출구멍(837a)을 거쳐 통합배출유로(855)로 유동하게 된다. 이렇게 통합배출유로(855)로 유동된 외부 기체는 메인 배기구멍(857)으로 유동한 후, 외부 배기라인을 통해 웨이퍼 수납용기(10) 외부로 배기되게 된다.
제8배기공간(761b)으로 유동된 외부기체는 제8수직배기유로(771b)를 통해 제8배기연통구멍(817b)으로 유동하게 되며, 제8배기유로(827b) 및 제8배출구멍(837b)을 거쳐 통합배출유로(855)로 유동하게 된다. 이렇게 통합배출유로(855)로 유동된 외부 기체는 메인 배기구멍(857)으로 유동한 후, 외부 배기라인을 통해 웨이퍼 수납용기(10) 외부로 배기되게 된다.
제9배기공간(761c)으로 유동된 외부기체는 제9수직배기유로(771c)를 통해 제9배기연통구멍(817c)으로 유동하게 되며, 제9배기유로(827c) 및 제9배출구멍(837c)을 거쳐 통합배출유로(855)로 유동하게 된다. 이렇게 통합배출유로(855)로 유동된 외부 기체는 메인 배기구멍(857)으로 유동한 후, 외부 배기라인을 통해 웨이퍼 수납용기(10) 외부로 배기되게 된다.
위와 같이, 제1, 2전방 배기부(710, 750)가 각각 웨이퍼 수납용기(10) 전방 좌, 우측 외부의 외부 기체를 배기함으로써, 전방 개구부(251)를 통해 수납실(200) 내부로 유입되는 외부 기체를 사전에 차단함으로써, 제1 내지 제3퍼징영역(210, 220, 230)에서 이루어지는 웨이퍼(W)의 퍼징이 방해되는 것을 방지할 수 있다.
전술한 바와 같이, 제1, 2전방 배기부(710, 750)를 통해 배기되는 외부 기체는 각각의 배기 유로, 즉, 6개의 배기 유로를 통해 배기되다가 연결부재(850)의 통합배출유로(855)부터 하나로 모아져 배기되게 된다.
이는, 하나의 외부 배기라인의 흡인력을 통해 외부 기체를 용이하게 배기하기 위함이다. 따라서, 제1 내지 제3퍼징영역(210, 220, 230)과 대응되는 높이에서의 외부 기체를 선택적인 배기하기 위해서는, 제4 내지 제9배기유로(826a, 826b, 826c, 827a, 827b, 827c)에 밸브가 구비되는 것이 바람직하다.
다시 말해, 제4 내지 제9배기유로(826a, 826b, 826c, 827a, 827b, 827c) 각각에는 솔레노이드 밸브 등과 같은 밸브가 구비될 수 있으며, 이러한 솔레노이드 밸브를 제어함으로써, 제1 내지 제3퍼징영역(210, 220, 230)과 대응되는 높이에서의 외부 기체에 대한 선택적인 배기를 용이하게 달성할 수 있다.
따라서, 전술한 바와 같이, 제1 내지 제3퍼징영역(210, 220, 230) 중 어느 하나의 퍼징영역에 선택적으로 퍼지가스를 분사 및 배기할 경우, 상기 퍼징영역의 높이와 대응되는 영역의 외부 기체에 대해서만 선택적으로 배기를 할 수 있으며, 이로 인해, 퍼징이 이루어지는 퍼징영역으로의 외부 기체의 유입을 사전에 차단할 수 있다.
또한, 전술한 실시 예와 달리, 제1, 2전방 배기부(710, 750)는 외부 공급라인과 연결되어 퍼지가스를 분사하는 기능을 할 수도 있으며, 이 경우, 웨이퍼 수납용기(10) 외부의 전방 좌, 우측에 퍼지가스를 분사하게 된다.
이렇게 제1, 2전방 배기부(710, 750)를 통해 퍼지가스를 분사하는 것은 웨이퍼 수납용기(10) 외부의 외부 기체의 오염이 심한 경우(예컨데, 퓸 등이 웨이퍼 수납용기(10) 외부에 잔존해 있는 경우) 퍼지가스를 분사하여, 웨이퍼 수납용기(10) 외부에 위치하는 다른 반도체 공정 장비에 퓸이 잔존하는 것을 방지함과 동시에 상기 오염된 외부 기체가 수납실(200) 내부로 유입되는 것을 차단할 수 있다.
전술한 바와 같이, 본 발명의 바람직한 실시 예를 참조하여 설명하였지만, 해당 기술분야의 통상의 기술자는 하기의 특허 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 또는 변형하여 실시할 수 있다.
(부호의 설명)
10: 웨이퍼 수납용기
111 ~ 118: 제1 내지 제8수평부재
121 ~ 126: 제1 내지 제6수직부재
200: 수납실 210: 제1퍼징영역
220: 제2퍼징영역 230: 제3퍼징영역
251: 전방 개구부
310: 제1분사부 310a ~ 310d: 제1-1 내지 제1-4분사부
320: 제2분사부 320a ~ 320d: 제2-1 내지 제2-4분사부
330: 제3분사부 330a ~ 330d: 제3-1 내지 제3-4분사부
340: 제1분사부 내벽면 345: 제1지지대결합부
350: 제2분사부 내벽면 355: 제2지지대 결합부
361: 제1분사부 외벽면 362: 제2분사부 외벽면
371a ~ 371d: 제1-1 내지 제1-4공급구멍
372a ~ 372d: 제2-1 내지 제2-4공급구멍
373a ~ 373d: 제3-1 내지 제3-4공급구멍
390: 분사구멍
400: 배기부 410: 제1배기공간
411: 제1수직배기유로 420: 제2배기공간
421: 제2수직배기유로 430: 제3배기공간
431: 제3수직배기유로 440: 배기부 내벽면
490: 배기구멍
510: 제1공급부 520: 제2공급부
531a ~ 531d: 제1-1 내지 제1-4공급공간
532a ~ 532d: 제2-1 내지 제2-4공급공간
533a ~ 533d: 제3-1 내지 제3-4공급공간
541a ~ 541d: 제1-1 내지 제1-4수직공급유로
542a ~ 542d: 제2-1 내지 제2-4수직공급유로
543a ~ 543d: 제3-1 내지 제3-4수직공급유로
600: 지지대 610: 후방지지부
611: 후방원호부 612: 후방돌출부
620: 좌측지지부 621: 좌측원호부
622: 좌측돌출부 630: 우측지지부
631: 우측원호부 632: 우측돌출부
640: 좌측경사부 650: 우측경사부
660: 좌측오목부 670: 우측오목부
710: 제1전방 배기부 720: 제1배기슬릿
721a ~ 721c: 제4 내지 제6배기공간
731a ~ 731c: 제4 내지 제6수직배기유로
750: 제2전방 배기부 760: 제2배기슬릿
761a ~ 761c: 제7 내지 제9배기공간
771a ~ 771c: 제7 내지 제9수직배기유로
800: 하부 플레이트 810: 제1하부 플레이트
811a ~ 811d: 제1-1 내지 제1-4공급연통구멍
812a ~ 812d: 제2-1 내지 제2-4공급연통구멍
813a ~ 813d: 제3-1 내지 제3-4공급연통구멍
815a ~ 815c: 제1 내지 제3배기연통구멍
816a ~ 816c: 제4 내지 제6배기연통구멍
817a ~ 817c: 제7 내지 제9배기연통구멍
820: 제2하부 플레이트
821a ~ 821d: 제1-1 내지 제1-4공급유로
822a ~ 822d: 제2-1 내지 제2-4공급유로
823a ~ 823d: 제3-1 내지 제3-4공급유로
825: 제1후방 배출구멍
826a ~ 826c: 제4 내지 제6배기유로
827a ~ 827c: 제7 내지 제9배기유로
830: 제3하부 플레이트
831a ~ 831d: 제1-1 내지 제1-4유입구멍
832a ~ 832d: 제2-1 내지 제2-4유입구멍
833a ~ 833d: 제3-1 내지 제3-4유입구멍
835: 제2후방 배출구멍
836a ~ 836c: 제4 내지 제6배출구멍
837a ~ 837c: 제7 내지 제9배출구멍
850: 연결부재 851a: 제1-1메인 유입구멍
851b: 제1-2메인 유입구멍 852a: 제2-1메인 유입구멍
852b: 제2-2메인 유입구멍 853a: 제3-1메인 유입구멍
853b: 제3-2메인 유입구멍 855: 통합배출유로
857: 메인 배기구멍 860: 받침부재
900: 상부 플레이트 W: 웨이퍼

Claims (6)

  1. 전방 개구부를 통해 수납된 웨이퍼가 수납되는 수납실;
    상기 수납실에 퍼지가스를 분사하는 복수개의 분사부; 및
    상기 수납실의 퍼지가스 및 퓸을 배기하는 배기부;를 포함하되,
    상기 수납실은 수직방향으로 복수개의 퍼징영역으로 구획가능하고, 상기 각각의 퍼징영역에 퍼지가스를 분사하는 분사부는 개별적으로 퍼지가스를 공급받아 상기 퍼징영역 각각에 분사하는 것을 특징으로 하는 웨이퍼 수납용기.
  2. 제1항에 있어서,
    상기 복수개의 분사부 각각은 상기 수납실과 접하는 분사부 내벽면을 구비하고, 상기 분사부 내벽면에는 퍼지가스가 상기 수납실로 분사되도록 하는 분사구멍이 형성된 것을 특징으로 하는 웨이퍼 수납용기.
  3. 제1항에 있어서,
    상기 복수개의 분사부는 상기 수직방향으로 구획된 복수개의 퍼징영역 각각과 대응되도록 수직방향으로 적층되게 배치되는 것을 특징으로 하는 웨이퍼 수납용기.
  4. 제3항에 있어서,
    상기 복수개의 분사부에 퍼지가스를 공급하는 공급부;를 더 포함하되,
    상기 공급부는 수직방향으로 연장된 복수개의 수직공급유로를 구비하고, 상기 복수개의 수직공급유로는 상기 복수개의 분사부와 각각 연통되는 것을 특징으로 하는 웨이퍼 수납용기.
  5. 제1항에 있어서,
    상기 배기부는 상기 수납실과 접하는 배기부 내벽면을 구비하고, 상기 배기부 내벽면에는 상기 수납실의 퍼지가스 및 퓸이 상기 배기부로 배기되도록 하는 배기구멍이 형성된 것을 특징으로 하는 웨이퍼 수납용기.
  6. 제5항에 있어서,
    상기 배기부는 상기 배기구멍과 연통되는 복수개의 배기공간과, 상기 복수개의 배기공간 각각과 연통되는 복수개의 수직배기유로를 구비하되,
    상기 복수개의 배기공간은 상기 수직방향을 구획된 복수개의 퍼징영역 각각과 대응되도록 상기 배기부 내부에서 수직방향으로 적층되게 배치되는 것을 특징으로 하는 웨이퍼 수납용기.
PCT/KR2017/006703 2016-07-06 2017-06-26 웨이퍼 수납용기 WO2018008879A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/314,837 US11075100B2 (en) 2016-07-06 2017-06-26 Container for storing wafer
US17/246,325 US11710651B2 (en) 2016-07-06 2021-04-30 Container for storing wafer
US18/327,708 US20230307276A1 (en) 2016-07-06 2023-06-01 Container for storing wafer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0085649 2016-07-06
KR1020160085649A KR101865636B1 (ko) 2016-07-06 2016-07-06 웨이퍼 수납용기

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/314,837 A-371-Of-International US11075100B2 (en) 2016-07-06 2017-06-26 Container for storing wafer
US17/246,325 Continuation US11710651B2 (en) 2016-07-06 2021-04-30 Container for storing wafer

Publications (1)

Publication Number Publication Date
WO2018008879A1 true WO2018008879A1 (ko) 2018-01-11

Family

ID=60912780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/006703 WO2018008879A1 (ko) 2016-07-06 2017-06-26 웨이퍼 수납용기

Country Status (4)

Country Link
US (3) US11075100B2 (ko)
KR (1) KR101865636B1 (ko)
TW (1) TWI745393B (ko)
WO (1) WO2018008879A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109633220A (zh) * 2019-01-29 2019-04-16 江阴佳泰电子科技有限公司 一种预吹洗式晶圆探针台
CN112289718A (zh) * 2019-07-13 2021-01-29 家登精密工业股份有限公司 基板载具及其气体扩散模块
CN113182244A (zh) * 2021-03-29 2021-07-30 江苏亚电科技有限公司 光伏硅片清洗方法
TWI809449B (zh) * 2020-10-22 2023-07-21 南亞科技股份有限公司 氣體沖洗裝置以及氣體沖洗方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI660895B (zh) * 2018-02-06 2019-06-01 旺宏電子股份有限公司 晶圓傳送盒
KR101874809B1 (ko) * 2018-02-08 2018-07-05 김원기 오염물질 배출 장치
KR102113275B1 (ko) * 2018-04-19 2020-05-20 주식회사 저스템 버퍼 챔버용 웨이퍼 퍼지 장치
KR102172073B1 (ko) * 2018-09-28 2020-10-30 세메스 주식회사 기판 수납 장치 및 상기 기판 수납 장치를 이용한 기판 처리 장치
KR101962752B1 (ko) * 2018-10-08 2019-07-31 주식회사 싸이맥스 양방향 배기구조 사이드 스토리지
US10964570B2 (en) 2018-12-03 2021-03-30 Samsung Electronics Co., Ltd. Semiconductor wafer storage system and method of supplying fluid for semiconductor wafer storage
KR102202463B1 (ko) 2019-03-13 2021-01-14 세메스 주식회사 기판 처리 장치 및 방법
KR102212856B1 (ko) * 2019-04-08 2021-02-05 주식회사 에이케이테크 사이드 스토리지의 웨이퍼 수용 카세트용 내부 후면 가스 분사 유닛
CN113257725B (zh) * 2021-03-29 2022-10-18 无锡亚电智能装备有限公司 一种具有清洗功能的半导体晶圆盒
TWI824554B (zh) * 2021-06-08 2023-12-01 美商恩特葛瑞斯股份有限公司 晶圓容器及潔淨系統
IL312877A (en) * 2021-11-17 2024-07-01 Entegris Inc Gas diffusers, houses, devices and related methods
TW202341328A (zh) * 2022-04-07 2023-10-16 嘉鼎科技股份有限公司 前開式運載容器
KR102641706B1 (ko) * 2023-09-07 2024-02-28 주식회사 인시스템스 가열 질소를 이용한 웨이퍼 퍼지 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080458A (ja) * 2004-09-13 2006-03-23 Dainichi Shoji Kk ウエハキャリア
KR20080054354A (ko) * 2006-12-12 2008-06-17 가부시키가이샤 히다치 고쿠사이 덴키 기판 처리 장치, 반도체 장치의 제조 방법 및 반응 용기
KR20140091909A (ko) * 2013-01-14 2014-07-23 우범제 웨이퍼 처리장치의 배기시스템
KR20150087154A (ko) * 2015-03-16 2015-07-29 우범제 퓸 제거 장치
KR20150087703A (ko) * 2014-01-22 2015-07-30 삼성전자주식회사 가스 충진부를 구비하는 웨이퍼 스토리지 장치 및 이를 이용하는 반도체 제조 장치

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62263629A (ja) * 1986-05-12 1987-11-16 Hitachi Ltd 気相成長装置
JP3960787B2 (ja) 2001-11-30 2007-08-15 信越ポリマー株式会社 精密基板収納容器
JP2004235516A (ja) 2003-01-31 2004-08-19 Trecenti Technologies Inc ウエハ収納治具のパージ方法、ロードポートおよび半導体装置の製造方法
JP4319434B2 (ja) 2003-03-11 2009-08-26 東京エレクトロン株式会社 ゲートバルブ及び真空容器
US6899145B2 (en) * 2003-03-20 2005-05-31 Asm America, Inc. Front opening unified pod
JP5157100B2 (ja) * 2006-08-04 2013-03-06 東京エレクトロン株式会社 成膜装置及び成膜方法
US20080173238A1 (en) * 2006-12-12 2008-07-24 Hitachi Kokusai Electric Inc. Substrate processing apparatus, method of manufacturing semiconductor device, and reaction vessel
JP4577663B2 (ja) 2008-03-04 2010-11-10 Tdk株式会社 パージ制御装置及びそれを備えるロードボート装置
JP5528308B2 (ja) 2010-11-22 2014-06-25 信越ポリマー株式会社 基板収納容器
JP2013161924A (ja) 2012-02-03 2013-08-19 Tokyo Electron Ltd 基板収容容器のパージ装置及びパージ方法
TW201413780A (zh) 2012-09-24 2014-04-01 Eugene Technology Co Ltd 煙氣移除設備及基板處理設備
KR101682473B1 (ko) * 2013-10-18 2016-12-05 삼성전자주식회사 사이드 스토리지 및 이를 구비하는 반도체 소자 제조 설비
KR102162366B1 (ko) * 2014-01-21 2020-10-06 우범제 퓸 제거 장치
KR102397525B1 (ko) * 2014-07-25 2022-05-12 신에츠 폴리머 가부시키가이샤 기판 수납 용기
US9881826B2 (en) 2014-10-24 2018-01-30 Lam Research Corporation Buffer station with single exit-flow direction
KR101758213B1 (ko) 2015-09-25 2017-07-14 주식회사 싸이맥스 가스 노즐플레이트를 구비한 사이드 스토리지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080458A (ja) * 2004-09-13 2006-03-23 Dainichi Shoji Kk ウエハキャリア
KR20080054354A (ko) * 2006-12-12 2008-06-17 가부시키가이샤 히다치 고쿠사이 덴키 기판 처리 장치, 반도체 장치의 제조 방법 및 반응 용기
KR20140091909A (ko) * 2013-01-14 2014-07-23 우범제 웨이퍼 처리장치의 배기시스템
KR20150087703A (ko) * 2014-01-22 2015-07-30 삼성전자주식회사 가스 충진부를 구비하는 웨이퍼 스토리지 장치 및 이를 이용하는 반도체 제조 장치
KR20150087154A (ko) * 2015-03-16 2015-07-29 우범제 퓸 제거 장치

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109633220A (zh) * 2019-01-29 2019-04-16 江阴佳泰电子科技有限公司 一种预吹洗式晶圆探针台
CN109633220B (zh) * 2019-01-29 2021-08-24 江阴佳泰电子科技有限公司 一种预吹洗式晶圆探针台
CN112289718A (zh) * 2019-07-13 2021-01-29 家登精密工业股份有限公司 基板载具及其气体扩散模块
TWI809449B (zh) * 2020-10-22 2023-07-21 南亞科技股份有限公司 氣體沖洗裝置以及氣體沖洗方法
US12027399B2 (en) 2020-10-22 2024-07-02 Nanya Technology Corporation Gas purge device and gas purging method
CN113182244A (zh) * 2021-03-29 2021-07-30 江苏亚电科技有限公司 光伏硅片清洗方法
CN113182244B (zh) * 2021-03-29 2022-10-18 江苏亚电科技有限公司 光伏硅片清洗方法

Also Published As

Publication number Publication date
US20210257240A1 (en) 2021-08-19
US20190311929A1 (en) 2019-10-10
KR101865636B1 (ko) 2018-06-08
TW201802006A (zh) 2018-01-16
US11075100B2 (en) 2021-07-27
US11710651B2 (en) 2023-07-25
TWI745393B (zh) 2021-11-11
KR20180005489A (ko) 2018-01-16
US20230307276A1 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
WO2018008879A1 (ko) 웨이퍼 수납용기
WO2020145718A1 (ko) 디스플레이용 기판
WO2017111451A1 (ko) 웨이퍼 수납용기
WO2021006414A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
WO2020153560A1 (ko) 인버터 장치 및 이를 포함하는 인버터 패널
WO2021006415A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
WO2021157873A1 (ko) 냉각 플레이트 및 이의 제조 방법
WO2019013506A1 (ko) 이에프이엠 및 이에프이엠 시스템
WO2017069369A1 (ko) 선형 증발 증착 장치
WO2019194326A1 (ko) 웨이퍼 수납용기
WO2019240516A2 (ko) 게이트 밸브 시스템 및 이의 제어 방법
WO2020153559A1 (ko) 인버터 장치 및 이를 포함하는 전력변환장치
WO2024162611A1 (ko) 전력 기기
WO2023128150A1 (ko) 유체 정화 장치 및 이를 포함하는 전력 기기
WO2024085365A1 (ko) 아크 소호 장치
WO2024150965A1 (ko) 아크 소호 장치
WO2023128149A1 (ko) 유체 정화 장치 및 이를 포함하는 전력 기기
WO2023128151A1 (ko) 유체 정화 장치 및 이를 포함하는 전력 기기
WO2023171907A1 (ko) 유로 모듈 및 이를 포함하는 전력 기기
WO2022098217A1 (ko) 단락 조정 장치 및 이를 포함하는 모듈형 멀티 레벨 컨버터
Durán Nebreda et al. ATARI videogame code networks
WO2023191288A1 (ko) 몰드 변압기용 금형 및 이를 이용한 몰드 변압기의 제조 방법
WO2021112342A1 (ko) 아크 박스 및 이를 포함하는 전자 접촉기
WO2022181980A1 (ko) 아크 슈트 및 이를 포함하는 부하 개폐기
WO2022181986A1 (ko) 아크 슈트 및 이를 포함하는 부하 개폐기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17824435

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17824435

Country of ref document: EP

Kind code of ref document: A1