WO2020153559A1 - 인버터 장치 및 이를 포함하는 전력변환장치 - Google Patents
인버터 장치 및 이를 포함하는 전력변환장치 Download PDFInfo
- Publication number
- WO2020153559A1 WO2020153559A1 PCT/KR2019/010758 KR2019010758W WO2020153559A1 WO 2020153559 A1 WO2020153559 A1 WO 2020153559A1 KR 2019010758 W KR2019010758 W KR 2019010758W WO 2020153559 A1 WO2020153559 A1 WO 2020153559A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- inverter
- power
- panel
- unit
- intake
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0064—Magnetic structures combining different functions, e.g. storage, filtering or transformation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/003—Constructional details, e.g. physical layout, assembly, wiring or busbar connections
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2089—Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
- H05K7/20909—Forced ventilation, e.g. on heat dissipaters coupled to components
Definitions
- the present invention relates to an inverter device and a power conversion device including the same, and more specifically, to an electric power conversion device capable of increasing the power conversion capacity by providing a plurality of modular inverter devices and the inverter device as a module. It is about.
- the power converter generally receives DC power, converts it into AC power, and outputs it. This is due to the fact that the power source used for household and industrial use is mainly an AC power source.
- the capacity that the power converter can convert at one time or the capacity of the AC power that can be stored at one time can be referred to as “power conversion capacity”.
- the power conversion device may be provided and used in an ESS (Energy Storage System).
- ESS Electronic Storage System
- the power conversion capacity of the power conversion device is an important factor for determining the capacity of the ESS provided with the power conversion device.
- Inverters and filters are mentioned as components of the power converter.
- the inverter converts the input DC power into AC power.
- the filter performs filtering to remove noise of the AC power converted by the inverter.
- the power converter filters a DC panel (DC PNL) that receives DC power, a stack panel (STACK 1, 2 PNL) that converts DC power to AC power, and filters the converted AC power. It includes a filter panel for (FILTER PNL) and an AC panel (AC PNL) for outputting the converted AC power.
- DC PNL DC panel
- STACK 1, 2 PNL stack panel
- AC PNL AC panel
- the stack panel (STACK 1, 2 PNL) and the filter panel (FILTER PNL) are provided in separate forms. That is, according to the power conversion capacity, there is a limit to design changes to the power conversion device including all of the panels as a whole.
- the power conversion device according to the prior art described above has a drawback in that the fastening structure for transferring DC current to the stack and receiving AC current is complicated.
- the power converter according to the prior art has a separate connector (Connector) for electrically connecting a stack provided in the stack panel (STACK 1, 2 PNL) with a power transfer busbar. ).
- the stack includes a stack busbar protruding through the stack panels STACK 1 and 2 PNL.
- the power transfer busbar also includes a portion protruding toward the stack.
- the protruding portions of the stack busbar and the power transfer busbar are fastened by a connector.
- the connector is additionally fastened by rivets or bolts.
- a stack busbar, a power transfer busbar, and a connector must be matched.
- the stack busbar, the power transfer busbar, and the connector are made of copper, which is a metal with high electrical conductivity, the cost increase according to the above structure is also a problem that cannot be overlooked. .
- An object of the present invention is to provide an inverter device capable of solving the above-mentioned problems and a power conversion device including the same.
- an object of the present invention is to provide an inverter device and a power converter having a structure capable of changing the power conversion capacity of the power converter only by changing the number of inverter devices.
- an object of the present invention is to provide an inverter device and a power converter having a structure capable of realizing a compact power converter by reducing the physical size and volume of the power converter.
- an object of the present invention is to provide an inverter device and a power conversion device having a structure that allows easy connection between an inverter device and a main busbar for supplying power to the inverter device.
- an object of the present invention is to provide an inverter device and a power conversion device having a structure capable of easily coupling an inverter device to an inverter panel and easily separating an inverter device from the inverter panel.
- the first device unit having an inverter module for converting a DC power supply into an AC power supply to the external load; A second device portion positioned adjacent to the first device portion and having a filter for filtering noise of the AC power therein; And a housing accommodating the first device part and the second device part therein, and on one side of the housing, an input terminal part receiving the DC power; And an output terminal unit for outputting the AC power converted by the inverter module, wherein the input terminal unit and the output terminal unit deliver the DC power to the inverter module or the filter and receive the AC power from the inverter module or the filter.
- an inverter device configured to be directly connectable to a main busbar receiving AC power.
- a partition wall partitioning the first device portion and the second device portion may be provided inside the housing.
- the first device unit is formed on one side of the first device unit, a first intake unit through which air for cooling the inverter module is introduced into the first device unit; And a first exhaust portion formed on the other side opposite to one side of the first device portion, through which air introduced into the first intake portion is discharged, and the second device portion is in the same direction as one side of the first device portion.
- a second intake portion formed on one side of the second device portion facing the air, through which air for cooling the filter is introduced into the second device portion; And a second exhaust portion formed on the other side opposite to one side of the second device portion and through which air introduced into the second intake portion is discharged.
- the inverter device at least one of the first intake unit and the first exhaust unit is provided with a first blowing unit for providing a transfer force to the air flowing inside the first unit unit
- the second intake At least one of the unit and the second exhaust unit may be provided with a second blowing unit that provides a transfer force to the air flowing inside the second device unit.
- an inverter device for converting a DC power supply to an AC power supply to an external load; And a first main busbar receiving DC power from the outside and transmitting the AC power to the inverter device, and receiving the converted AC power from the inverter device and supplying the external load to the external load.
- a first device unit having an inverter module that converts power to AC power and supplies it to an external load;
- a second device portion positioned adjacent to the first device portion and having a filter for filtering noise of the AC power therein;
- a housing accommodating the first device part and the second device part therein, and on one side of the housing, an input terminal part receiving the DC power;
- an output terminal unit for outputting the AC power converted by the inverter module, wherein the first main busbar is configured to enable direct connection between the first main busbar and the input terminal unit and the output terminal unit.
- An inverter panel including a port is provided.
- the inverter panel includes a first inverter accommodating portion accommodating the inverter device, and the first main busbar may be positioned adjacent to the first inverter accommodating portion.
- the inverter panel is located adjacent to the first inverter accommodating portion, a second inverter accommodating portion accommodating the inverter device; And a second main busbar that receives the DC power from the outside and inputs it to the inverter device, receives the converted AC power from the inverter device, and supplies the converted AC power to the external load, wherein the second main busbar A second port configured to directly connect the input terminal portion and the output terminal portion of the inverter device accommodated in the second main busbar and the second inverter receiving portion may be included.
- an inverter device for converting a DC power supply to an AC power supply to an external load
- N inverter panels accommodating the inverter device, wherein the inverter panel receives DC power from the outside and transmits it to the inverter device, receives the converted AC power from the inverter device, and supplies it to the external load.
- the first device unit having a main bus bar, wherein the inverter device includes an inverter module that converts DC power into AC power and supplies it to an external load. It is located adjacent to the first device unit, and includes a second device unit having a filter for filtering noise of the AC power therein, and the main booth of each of the N inverter panels is different.
- a power conversion device in which the power conversion capacity is N times when the bars and the bars are electrically connected to each other.
- the power conversion device the first main busbar extends to one side of the inverter panel and the other side opposite to the one side, each of N inverter panels are arranged in contact with each other to the main busbar of the other inverter panel Can be placed as
- the power conversion device one side of the N inverter panel is provided with a power input panel for receiving the DC power transmitted from the outside, the other side of the N inverter panel is the converted AC power to the outside of the external A power output panel to be transmitted to a load is provided, and the power input panel, the N inverter panels, and the power output panel can be connected to each other so as to be energized.
- each inverter device includes both an inverter module and a filter. Therefore, each inverter device can independently convert DC power to AC power. Therefore, the power conversion capacity of the power conversion device can be increased just by increasing the number of inverter devices.
- both the stack and the filter are provided in the modular inverter device, the physical size and volume of the power converter can be reduced. Therefore, it is possible to implement a compact power conversion device.
- an electrical connection can be made between the main busbar and the inverter device simply by connecting the port to the inverter device. Therefore, an easy connection between the inverter device and the main busbar is possible.
- FIG. 1 is a front view of a DC power supply and an AC of a power conversion device according to the prior art.
- FIG. 2 is a diagram showing a configuration for supplying power to a stack provided in the power conversion device of FIG. 1.
- FIG 3 is a perspective view of a power conversion device according to an embodiment of the present invention.
- FIG. 4 is a front view of the power converter of FIG. 3.
- FIG. 5 is a side view of the inverter panel provided in the power conversion device of FIG. 3.
- FIG. 6 is a rear view of the power converter of FIG. 3.
- FIG. 7 is a perspective view of an inverter device provided in the power conversion device of FIG. 3.
- FIG. 8 is a view showing the internal configuration of the inverter device of FIG. 7.
- FIG. 9 is a front view of the inverter device of FIG. 7.
- FIG. 10 is a side view showing the internal configuration of the inverter device of FIG. 7.
- FIG. 11 is a rear view of the inverter device of FIG. 7.
- FIG. 12 is a view showing a process in which the inverter device according to an embodiment of the present invention is inserted into the inverter panel.
- FIG. 13 is a perspective view of a state in which an inverter panel according to an embodiment of the present invention is combined.
- FIG. 14 is a front view of FIG. 13.
- FIG. 15 is a perspective view of an indoor inverter panel according to another embodiment of the present invention.
- FIG. 16 is a front view of the indoor inverter panel of FIG. 15.
- 17 is a side view showing the internal configuration of the indoor inverter panel of FIG. 15.
- FIG. 18 is a rear view of the indoor inverter panel of FIG. 15.
- 19 is a perspective view of an outdoor inverter panel according to another embodiment of the present invention.
- FIG. 20 is a front view of the outdoor inverter panel of FIG. 19.
- 21 is a side view showing the internal configuration of the outdoor inverter panel of FIG. 19.
- FIG. 22 is a rear view of the outdoor inverter panel of FIG. 19.
- FIG. 23 is a front view of a power conversion device having a line conversion panel according to an embodiment of the present invention.
- FIG. 24 is a plan view of the power conversion device of FIG. 23.
- FIG. 25 is a rear view of the power return device of FIG. 23.
- 26 is a right side view (a) and a left side view (b) of the power conversion device of FIG. 23.
- FIG. 27 is a view showing a process of air flow in the inverter device of FIG. 7.
- FIG. 28 is a view showing a flow process of air inside the inverter panel according to an embodiment of the present invention.
- FIG. 29 is a view showing a process of air flow inside the indoor inverter panel according to FIG. 15 and the outdoor inverter panel according to FIG. 19.
- FIG. 30 is a view showing internal conductors of a line conversion panel provided in the power conversion device of FIG. 23.
- FIGS. 3, 7, 7, 8, 12, 13, and 15, 19, 23, 25 and 30 will be understood with reference to the coordinate system shown.
- the power conversion device 1 includes an inverter device 10, an inverter panel 500, and a power panel 600.
- the inverter device 10 is configured to be modular. Specifically, the inverter device 10 includes an inverter module 240 and a filter 340 to be described later therein.
- each of the inverter devices 10 can convert DC power to AC power and even filter the converted AC power.
- the inverter device 10 is coupled to the inverter panel 500, and as each inverter panel 500 is electrically connected, a power conversion device 1 according to an embodiment of the present invention is configured.
- each component of the power conversion device 1 according to the illustrated embodiment is arranged in a row toward the vertical direction of the front side and the rear side, that is, right and left.
- the arrangement method can be changed.
- a power input panel 610 and a power output panel 620 are provided at the right and left ends of the power converter 1.
- the power input panel 610 and the power output panel 620 constitute a power panel 600 in charge of inputting and outputting power.
- the positions of the power input panel 610 and the power output panel 620 transfer power to the inverter panel 500 and the inverter device 10 accommodated in the inverter panel 500, and the inverter panel 500 and the inverter device ( It can be changed to another location that can receive power from 10).
- a first panel intake part 511 and a second panel intake part 521 are provided on the front side of the inverter panel 500.
- the inverter panel 500 includes a structure in which external air can be introduced and discharged.
- the first panel intake part 511 and the second panel intake part 521 function as a passage through which external air flows into the inverter panel 500.
- the inverter panel 500 may accommodate a plurality of inverter devices 10 inside.
- the inverter panel 500 includes a first inverter receiving portion 510 formed on the upper side and a second inverter receiving portion 520 formed on the lower side of the first inverter receiving portion 510.
- the inverter device 10 may be accommodated in the first inverter accommodating part 510 and the second inverter accommodating part 520, respectively.
- a first panel intake portion 511 is formed on a front side of the first inverter accommodating portion 510, and a first panel exhaust portion 512 is formed on a rear side.
- a second panel intake portion 521 is formed on a front side of the second inverter accommodating portion 520, and a second panel exhaust portion 522 is formed on a rear side.
- the inverter panel 500 included in the power conversion device 1 includes a first panel exhaust unit 512 and a second panel exhaust unit 522 formed on a rear side surface. .
- a separate air inlet (not shown) and an air outlet (not shown) for cooling may be formed in the power panel 600.
- the inverter device 10 includes a configuration for converting the transferred DC power to AC power. Specifically, the inverter device 10 includes an inverter module 240 that performs a function of converting power. In addition, the inverter device 10 includes a filter 340 for filtering the AC power converted by the inverter module 240 (see FIG. 10).
- the inverter device 10 includes both the inverter module 240 and the filter 340. That is, the inverter device 10 itself includes all components necessary for converting DC power into AC power.
- the inverter device 10 has a predetermined power conversion capacity. In addition, when a plurality of inverter devices 10 are provided and connected to energize each other, the power conversion capacity may be increased by the increased number of inverter devices 10.
- the power conversion capacity can be increased just by providing a plurality of inverter devices 10.
- the inverter device 10 includes a housing 100, a first device part 200, a second device part 300, and a partition wall part 400.
- the housing 100 forms the outer shape of the inverter device 10.
- the housing 100 is a rectangular parallelepiped shape extending toward the front side and the rear side, but the shape of the housing 100 may be changed.
- the inverter device 10 may be accommodated in the inverter panel 500. In this case, it is sufficient if the plurality of inverter devices 10 have a shape that can be stably accommodated in the inverter panel 500.
- the housing 100 may be formed of an insulating material, for example, a plastic material.
- a switch (not shown) for controlling the operation of the inverter device 10 may be provided on the front side of the housing 100.
- One side of the housing 100 is provided with an input terminal portion 150a and an output terminal portion 150b.
- the input terminal portion 150a and the output terminal portion 150b are provided on the front side upper side of the housing 100.
- the input terminal unit 150a functions as a channel through which DC power is transmitted to the inverter device 10.
- an electrical signal for driving the inverter device 10 and controlling the inverter device 10 may be transmitted to the input terminal unit 150a.
- the output terminal unit 150b functions as a channel through which the AC power converted by the inverter device 10 is transmitted to the outside.
- an electrical signal regarding status information of the inverter device 10 may be output from the output terminal 150b.
- the port 551 to be described later is coupled to the input terminal portion 150a and the output terminal portion 150b. In one embodiment, the port 551 to be described later may be inserted and coupled to the input terminal portion 150a and the output terminal portion 150b.
- the input terminal unit 150a and the output terminal unit 150b according to the illustrated embodiment are integrally formed with the housing 100.
- the input terminal portion 150a and the output terminal portion 150b may be separately provided and coupled to the housing 100.
- the housing 100 may be divided into a first device unit 200 and a second device unit 300.
- the first device unit 200 and the second device unit 300 may be defined as a space formed inside the housing 100.
- the first device unit 200 and the second device unit 300 will be described assuming a three-dimensional structure having an external shape.
- the first device unit 200 accommodates the inverter module 240.
- the first device unit 200 is located under the second device unit 300 to be described later.
- the inverter module 240 accommodated in the first device portion 200 is generally heavier than the filter 340 to be accommodated in the second device portion 300 to be described later.
- the center of gravity moves to the lower side so that the inverter device 10 can be stably supported.
- the first device unit 200 and the second device unit 300 to be described later are physically separated by the partition wall 400. Detailed description thereof will be described later.
- the first device unit 200 includes a first intake unit 210a, a first exhaust unit 220a, a first blowing unit 230a, and an inverter module 240.
- the first intake unit 210a is a passage through which external air can be introduced into the first device unit 200.
- the first intake portion 210a may be provided in the form of a penetration hole.
- the first intake portion 210a is formed on the front side of the first device portion 200, but its position can be changed.
- the inverter module 240 accommodated inside the first device unit 200 After the outside air flowing into the first intake unit 210a cools the inverter module 240 accommodated inside the first device unit 200, it is discharged to the first exhaust unit 220a, which will be described later.
- the first exhaust unit 220a is a passage through which the outside air introduced into the first device unit 200 is heat exchanged with the inverter module 240 and then discharged.
- the first exhaust part 220a may be provided in the form of a through hole.
- the first blowing unit 230a provides a transfer force for the outside air to flow into the first device unit 200.
- the first blowing unit 230a may be provided with a structure capable of guiding air flow.
- the first blower 230a may be provided in the form of a fan.
- the first blowing unit 230a is positioned adjacent to the first intake unit 210a, but its position is changeable.
- the first blowing unit 230a may be located adjacent to the first exhaust unit 220a or may be provided inside the first device unit 200.
- the first blowing unit 230a is sufficient if it is provided where it can provide a transfer force for introducing outside air into the first device unit 200.
- the first device part 200 includes a third intake part 210c, a third exhaust part 220c, and a third blower part 230c.
- the third intake part 210c, the third exhaust part 220c, and the third blower part 230c are respectively lower sides of the first intake part 210a, the first exhaust part 220a, and the first blower part 230a.
- the structures and functions of the third intake part 210c, the third exhaust part 220c, and the third blower part 230c are as described above for the first intake part 210a, the first exhaust part 220a, and the first blower part. Same as (230c).
- the third intake part 210c, the third exhaust part 220c, and the third blower part 230c are additionally provided to cool the inside of the first device part 200 more effectively.
- the outside air for cooling the first device unit 200 is provided with a transfer force by the first blowing unit 230a and the third blowing unit 230c.
- the outside air flows into the first device part 200 through the first intake part 210a and the third intake part 210c, and then cools the inverter module 240 to be described later, and the first exhaust part 220c. And exhausted through the third exhaust unit 220c.
- Separate power supply means for transmitting electric power for driving the first blower 230a and the third blower 230c may be provided.
- the inverter module 240 is a part that substantially receives a DC power and converts it into AC power.
- the inverter module 240 includes a capacitor 241, a heat sink 242, an IGBT (isolated gate bipolar transistor) 243, an SMPS (switching mode power supply) 244, and a fuse. It may include.
- the inverter module 240 receives DC power through the input terminal unit 150a from the main busbar 550 to be described later. In addition, the AC power converted by the inverter module 240 is transmitted to the main busbar 550 to be described later through the output terminal unit 150b.
- the AC power converted by the inverter module 240 may be transmitted to a filter 340 to be described later to remove noise.
- an electrical means (not shown) may be provided to electrically connect the inverter module 240 and the filter 340 to be described later.
- the second device unit 300 accommodates the filter 340.
- the second device unit 300 is located above the first device unit 200.
- the filter 340 accommodated in the second device portion 300 is lighter than the inverter module 240 accommodated in the first device portion 200 (light weight).
- the second device part 300 and the first device part 200 are physically separated by the partition wall part 400. Detailed description thereof will be described later.
- the second device part 300 includes a second intake part 310, a second exhaust part 320, a second blower part 330, and a filter 340.
- the second intake unit 310 is a passage through which external air may be introduced into the second device unit 300.
- the second intake part 310 may be provided in the form of a through hole.
- the second intake portion 310 is formed on the front side of the second device portion 300, but its position can be changed.
- the second exhaust part 320 is a passage through which the outside air introduced into the second device part 300 is heat exchanged with the filter 340 and then discharged.
- the second exhaust unit 320 may also be provided in the form of a through hole.
- the second blowing unit 330 provides a transfer force for the outside air to flow into the second device unit 300.
- the second blowing unit 330 may be provided with a structure that can induce the flow of air.
- the second blower 330 may be provided in the form of a fan.
- the second blowing unit 330 is positioned adjacent to the second exhaust unit 320, but its position is changeable. Alternatively, the second blowing unit 330 may be positioned adjacent to the second exhaust unit 320 or may be provided inside the second device unit 300.
- the second blowing unit 330 is sufficient if it is provided in a place capable of providing a transfer force for introducing outside air into the second device unit 300.
- the second device unit 300 does not have an additional structure for inflow of outside air in addition to the above-described second intake unit 310, second exhaust unit 320, and second blower unit 330. Does not.
- the filter 340 accommodated in the second device unit 300 is due to a relatively small amount of heat generated compared to the inverter module 240 accommodated in the first device unit 200.
- the second device unit 300 may be provided with an additional structure for introducing outside air. This is preferably determined in consideration of the overall size of the inverter device 10, a coupling relationship with the inverter panel 500 to be described later, and the like.
- the outside air for cooling the second device unit 300 is provided with a transfer force by the second blowing unit 330.
- the outside air is introduced into the second device unit 300 through the second intake unit 310, and then the filter 340 to be described below is cooled and exhausted through the second exhaust unit 320.
- a separate power supply means (not shown) for transmitting power for driving the second blower 330 may be provided.
- the filter 340 is a part in which filtering for removing noise of AC power converted by the inverter module 240 is performed.
- the process of filtering the AC power by the filter 340 is a well-known technique, so a detailed description thereof will be omitted.
- the filter 340 receives DC power through the input terminal unit 150a from the main busbar 550 to be described later. In addition, the AC power filtered by the filter 340 is transmitted to the main busbar 550 to be described later through the output terminal unit 150b.
- an electrical means (not shown) for connecting the inverter module 240 and the filter 340 to be energized may be provided.
- the operation of the first blower 230a, the second blower 330 and the third blower 230c, the operating speed, and the like may be controlled independently of each other.
- the partition wall 400 partitions the first device portion 200 and the second device portion 300. Specifically, the first device portion 200 and the second device portion 300 are physically separated by the partition wall 400.
- the heat generation amount of the inverter module 240 accommodated in the first device unit 200 is higher than that of the filter 340 accommodated in the second device unit 300 as described above.
- the partition wall part 400 when the partition wall part 400 is not provided, the outside air introduced into the first device part 200 and the second device part 300 may be mixed. In this case, the air of the first device unit 200 having high heat is introduced into the second device unit 300, and the filter 340 may be damaged by high temperature.
- air cooling the filter 340 in the second device unit 300 may be introduced into the first device unit 200. It is obvious that the air will have a relatively high temperature compared to the outside air, so that the cooling efficiency of the inverter module 240 may be lowered.
- the partition wall part 400 physically separates the first device part 200 and the second device part 300 to prevent the outside air flowing into the device parts 200 and 300 from mixing with each other.
- the partition 400 may be formed of a material having low thermal conductivity.
- the position of the partition 400 may be changed according to the sizes of the first device unit 200 and the second device unit 300. For example, when the size of the first device unit 200 is smaller than the illustrated embodiment, the position of the partition wall 400 is lower along the boundary between the first device unit 200 and the second device unit 300. Can be moved to.
- the inverter panel 500 can accommodate the inverter device 10.
- the plurality of inverter panels 500 may be configured to be electrically connected to each other to thereby configure the power conversion device 1.
- inverter panel 500 according to an embodiment of the present invention will be described in detail with reference to FIGS. 3 to 6 and 12 to 14 again.
- the inverter panel 500 accommodates the inverter device 10.
- each inverter panel 500 accommodates the inverter device 10 on the upper side and the lower side, respectively. That is, one inverter panel 500 can accommodate two inverter devices 10.
- the number of inverter devices 10 that each inverter panel 500 can accommodate may be changed.
- the inverter device 10 is elongated in the upper and lower directions and accommodated in the inverter panel 500.
- the inverter device 10 may be laid down in the left and right directions and accommodated in the inverter panel 500.
- a door (not shown) that can be opened and closed may be provided on the front side of the inverter panel 500. Therefore, the front side of the inverter panel 500 is normally closed, and when the insertion and removal of the inverter device 10 is required, the front side of the inverter panel 500 may be opened by manipulating a door (not shown).
- the inverter panel 500 includes a first inverter accommodating portion 510, a second inverter accommodating portion 520, and a main busbar 550.
- the first inverter accommodating part 510 is a space in which the inverter device 10 is accommodated.
- the first inverter accommodating part 510 is formed as a space located above the inverter panel 500.
- An opening is formed on the front side of the first inverter accommodating part 510 so that the inverter device 10 can be accommodated inside the first inverter accommodating part 510 through the opening.
- a first panel intake part 511 is formed on the front side of the first inverter accommodating part 510.
- the first panel intake part 511 is a passage through which outside air may be introduced into the first inverter accommodating part 510.
- the first panel intake part 511 may be provided in the form of a through hole.
- the first panel exhaust part 512 is a passage through which external air introduced into the first inverter accommodating part 510 can be discharged outside the first inverter accommodating part 510.
- the first panel exhaust part 512 may be provided in the form of a through hole.
- the inverter device 10 accommodated in the first inverter accommodating unit 510 also has a structure for introducing and discharging outside air.
- the first inverter accommodating portion 510 also has a structure for introducing and discharging outside air.
- the outside air is the first panel intake part 511, the first intake part 210a to the third intake part 230a, the first exhaust part 210c to the third exhaust part 230c, and the first panel exhaust part It is possible to cool the inverter device 10 passing through the 512 in order.
- the second inverter accommodating part 520 is a space in which the inverter device 10 is accommodated.
- the second inverter accommodating part 520 is formed as a space located below the inverter panel 500.
- An opening is formed on the front side of the second inverter accommodating part 520, and the inverter device 10 may be accommodated inside the second inverter accommodating part 520 through the opening.
- the second panel intake part 521 is formed on the front side of the second inverter accommodating part 520.
- the second panel intake part 521 is a passage through which outside air may be introduced into the second inverter accommodating part 520.
- the second panel intake part 521 may be provided in the form of a through hole.
- the second panel exhaust part 522 is a passage through which the outside air introduced into the second inverter accommodating part 520 can be discharged outside the second inverter accommodating part 520.
- the second panel exhaust part 522 may be provided in the form of a through hole.
- a flow path of the outside air is formed after the inverter device 10 is accommodated by the outside air inlet and exhaust structure provided by the second inverter receiving unit 520.
- the outside air is the second panel intake section 521, the first intake section 210a to the third intake section 230a, the first exhaust section 210c to the third exhaust section 230c, and the second panel exhaust section
- the inverter device 10 can be cooled while passing through the 522 in order.
- the main bus bar 550 receives DC power from the outside and supplies it to the inverter device 10, and receives AC power converted by the inverter device 10 and transmits the converted AC power to an external load.
- the main busbar 550 is positioned to be biased to the rear side of the inverter panel 500, but the position of the main busbar 550 is changeable.
- the main busbar 550 is electrically connected to the power input panel 610 of the power panel 600. Therefore, DC power can be received from the power input panel 610 to the main bus bar 550.
- main busbar 550 is electrically connected to the power output panel 620 of the power panel 600. Therefore, the main bus bar 550 can transfer the AC power received from the inverter device 10 to an external load.
- each inverter panel 500 may be electrically connected to the main busbar 550 of the other inverter panel 500.
- the plurality of inverter panels 500 are arranged in a line so that the left and right sides contact each other.
- the main busbars 550 of each inverter panel 500 may be connected to each other so as to be energized.
- the power conversion capacity of the power conversion device 1 can be changed only by changing the number of inverter panels 500 provided in the power conversion device 1.
- the inverter device 10 having a predetermined power conversion capacity is accommodated in each inverter panel 500.
- the power conversion capacity of the entire power conversion device 1 is also increased.
- each inverter panel 500 is not provided in each inverter panel 500 but is provided separately, and each inverter panel 500 may be provided in a form that is electrically connected to the main bus bar 550.
- the main busbar 550 is provided as a first main busbar 550a and a second main busbar 550b (see FIGS. 13 and 14 ).
- the inverter panel 500 includes a first inverter receiving portion 510 on the upper side and a second inverter receiving portion 520 on the lower side.
- first main bus bar 550a is electrically connected to the inverter device 10 accommodated in the first inverter accommodating part 510.
- second main busbar 550b is electrically connected to the inverter device 10 accommodated in the second inverter accommodating part 520.
- main bus bar 550 may be provided in a singular number. That is, one main bus bar 550 may be electrically connected to both the inverter device 10 accommodated in the first inverter accommodating part 510 and the second inverter accommodating part 520.
- the main busbar 550 includes a port 551.
- the port 551 is a means for electrically connecting the main busbar 550 and the inverter device 10. Specifically, the main bus bar 550 is connected to the port 551 so as to be energized.
- the port 551 is coupled to the input terminal unit 150a and the output terminal unit 150b provided in the inverter device 10, so that the inverter device 10 and the main bus bar 550 are electrically connected.
- the port 551 has an input terminal portion 150a and an output terminal portion 150b. It is preferable to be detachably coupled with.
- the port 551 includes a first port 551a and a second port 552b.
- the first port 551a connects the first main busbar 550a and the inverter device 10 so as to be energized.
- the inverter device 10 is the inverter device 10 accommodated in the first inverter receiving unit 510.
- the second port 551b connects the second main bus bar 550b and the inverter device 10 so as to be energized.
- the inverter device 10 is the inverter device 10 accommodated in the second inverter receiving unit 520.
- the power conversion device 1 includes an indoor inverter panel 500a.
- the indoor inverter panel 500a is that the number of the inverter devices 10 is accommodated compared to the above-described inverter panel 500, and that it includes the PCB device accommodating part 530 for accommodating the PCB device 534. There is a difference.
- the indoor inverter panel 500a includes an indoor housing 501a, an indoor door 502a, a first inverter accommodating part 510, a PCB device accommodating part 530, and a base part 540. .
- the indoor housing 501a forms the outside of the indoor inverter panel 500a.
- the indoor housing 501a has a rectangular parallelepiped shape that is elongated to the upper and lower sides, but its shape is changeable.
- the indoor door 502a is located on the front side of the indoor housing 501a.
- the indoor door 502a may be provided in any structure that can open or close the front side of the indoor inverter panel 500a.
- a first panel intake portion 511 is formed in the indoor door 502a. Since the structure and function of the first panel intake unit 511 are as described above, a redundant description will be omitted.
- a first inverter accommodating part 510 and a PCB device accommodating part 530 are formed inside the indoor inverter panel 500a.
- the first inverter accommodating part 510 is located above the PCB device accommodating part 530. Since the structure and function of the first inverter accommodating part 510 are as described above, a redundant description will be omitted.
- the PCB device accommodating part 530 is located under the first inverter accommodating part 510. Inside the PCB device accommodating portion 530, a PCB device 534 for controlling the power conversion device 1 is accommodated.
- the PCB device 534 is electrically connected to the inverter device 10 and may be configured to control the inverter device 10.
- the PCB device accommodating portion 530 includes an outside air inlet portion 531, an outside air outlet portion 532, a panel blowing portion 533, and a PCB device 534.
- the PCB device receiving portion 530 may be provided with a filter 340.
- the outside air inlet 531 is a passage through which outside air for cooling the PCB device accommodated in the PCB device receiving unit 530 is introduced.
- the outside air inlet 531 is formed as an opening under the PCB device receiving portion 530.
- the outside air inlet portion 531 is positioned to be aligned with the outside air supply portion 542 of the base portion 540 to be described later.
- the outside air inlet 531 may be formed at an arbitrary position where the outside air can be introduced into the PCB device receiving portion 530. However, as will be described later, the position of the outside air inlet 531 is preferably determined corresponding to the position of the outside air supply unit 542 to be described later.
- the outside air discharge unit 532 is a passage through which the outside air introduced into the PCB device receiving unit 530 exchanges heat with the PCB device 534 and can be discharged.
- the outdoor air discharge unit 532 is formed as an opening on the rear side of the indoor inverter panel 500a.
- the outside air discharge unit 532 may be formed at an arbitrary position where air inside the PCB device receiving unit 530 can be discharged outside the PCB device receiving unit 530.
- a panel blowing portion 533 is provided at the outside air discharge portion 532.
- the panel blower 533 provides a transfer force for the outside air to flow into the indoor inverter panel 500a.
- the panel blower 533 may be provided with a structure capable of inducing the flow of air.
- the panel blower 533 may be provided in the form of a fan.
- the panel blowing portion 533 is positioned adjacent to the outside air discharge portion 532, but its position is changeable.
- the panel blowing portion 533 may be located adjacent to the outside air inlet portion 531 or may be provided inside the PCB device receiving portion 530.
- the panel blowing portion 533 is sufficient if it is provided in a place capable of providing a transfer force for introducing outside air into the PCB device receiving portion 530.
- the base portion 540 is located below the indoor housing 501a of the indoor inverter panel 500a.
- the base portion 540 spaces the indoor inverter panel 500a a predetermined distance from the ground.
- the base portion 540 forms a passage through which outside air for cooling the PCB device receiving portion 530 flows.
- the shape of the base portion 540 is preferably determined to correspond to the shape of the indoor housing 501a.
- the base portion 540 includes a first base intake portion 541a, a second base intake portion 541b, and an external air supply portion 542.
- the first base intake portion 541a is formed on the front side of the base portion 540.
- the first base intake portion 541a forms a passage through which outside air can be introduced into the base portion 540.
- the first base intake portion 541a may be formed in the form of a through hole.
- the first base intake portion 541a is formed on the front left and right sides of the base portion 540, respectively, but its position and number are changeable.
- the second base intake portion 541b is formed on the rear side of the base portion 540.
- the second base intake portion 541b forms a passage through which outside air can be introduced into the base portion 540.
- the second base intake portion 541b may be formed in the form of a through hole.
- the second base intake portion 541b is formed on the rear left and right sides of the base portion 540, respectively, but its position and number are changeable.
- the outside air supply unit 542 is a passage through the base unit 540 to allow outside air introduced into the base unit 540 to enter the PCB device receiving unit 530.
- the outside air supply unit 542 may be formed as an opening.
- the outside air supply unit 542 and the outside air inlet unit 531 of the PCB device receiving unit 530 are aligned with each other. That is, the outside air discharged from the outside air supply unit 542 does not leak to other places and flows into the PCB device receiving unit 530 through the outside air inlet unit 531.
- the transfer force for the outside air to flow may be generated naturally or may be provided by the panel blower 533.
- main bus bar 550 described above may be provided in the indoor inverter panel 500a. It is as described above that the main busbar 550 can be electrically connected to the inverter device 10, the PCB device 534, and the filter 340.
- the power conversion device 1 includes an outdoor inverter panel 500b.
- the outdoor inverter panel 500b assumes that the power converter 1 is provided outdoors.
- the outdoor inverter panel 500b not only accommodates the inverter device 10 therein, but also includes a PCB device 534.
- the outdoor inverter panel 500b is that the number of inverter devices 10 is accommodated compared to the above-described inverter panel 500, and that it includes the PCB device accommodating part 530 for accommodating the PCB device 534. There is a difference.
- the outdoor inverter panel 500a includes an outdoor housing 501b, an outdoor door 502b, a first inverter accommodating part 510, a PCB device accommodating part 530, and a base part 540. .
- the outdoor housing 501b forms the outside of the outdoor inverter panel 500a.
- the outdoor housing 501b has a rectangular parallelepiped shape that is elongated to the upper side and the lower side, but its shape is changeable.
- a roof is provided above the outdoor housing 501b. Therefore, even if the outdoor inverter panel 500b is provided outdoors, rain or snow may be prevented from flowing into the outdoor housing 501b.
- the outdoor door 502b is located on the front side of the outdoor housing 501b.
- the outdoor door 502b may be provided in any structure that can open or close the front side of the outdoor inverter panel 500a.
- a first panel intake portion 511 is formed in the outdoor door 502b. Since the structure and function of the first panel intake unit 511 are as described above, a redundant description will be omitted.
- a first inverter accommodating part 510 and a PCB device accommodating part 530 are formed inside the outdoor inverter panel 500a.
- the structures and functions of the first inverter accommodating part 510, the PCB device accommodating part 530, and the base part 540 are the same as those of the indoor inverter panel 500b described above. Therefore, the overlapping description will be omitted below.
- the power conversion device 1 includes a power panel 600 for receiving power from the outside and transmitting power to the outside.
- the power panel 600 is located adjacent to the inverter panel 500. In addition, the power panel 600 is electrically connected to the inverter panel 500.
- the power panel 600 receives DC power from the outside and transmits it to the inverter panel 500.
- the DC power delivered to the inverter panel 500 is transmitted to the inverter device 10 and converted into AC power.
- the power panel 600 receives AC power converted by the inverter device 10 from the inverter panel 500.
- the AC power delivered to the power panel 600 is transmitted to an external load.
- the power panel 600 includes a power input panel 610 and a power output panel 620.
- the power input panel 610 receives DC power from the outside. To this end, the power input panel 610 may be electrically connected to the outside.
- the power input panel 610 includes a power input terminal unit 611.
- the power input terminal unit 611 is a channel to which the power input panel 610 and external power are connected.
- the power input terminal unit 611 is electrically connected to an external power source by an input conductor cable (not shown).
- the DC power received by the power input panel 610 is transmitted to the inverter device 10 through the main busbar 550 of the inverter panel 500.
- a power supply means (not shown) may be provided to connect the power input terminal part 611 and the main bus bar 550 to be energized.
- the number of power input terminal portions 611 is preferably determined to correspond to the number of input power conversion lines 711.
- two input power conversion lines 711 may be provided, and accordingly, the number of power input terminal parts 611 is also provided in two.
- the power input panel 610 is located on the right side of the plurality of inverter panels 500. The position of the power input panel 610 may be changed.
- a vent (not shown) is formed on the front side of the power input panel 610 to allow outside air to cool the inside of the power input panel 610.
- an operation unit such as a switch is provided on the front side of the power input panel 610, and a control signal for operation of the power conversion device 1 may be applied.
- An input line conversion panel 710 to be described later may be provided on the other side facing the one side adjacent to the inverter panel 500 of the power input panel 610, that is, on the right side in the illustrated embodiment. This will be described later.
- the power output panel 620 transfers AC power to the outside. To this end, the power output panel 620 may be electrically connected to the outside.
- the power output panel 620 includes a power output terminal portion 621.
- the power output terminal unit 621 is a channel to which the power output panel 620 and an external load are connected.
- the power output terminal unit 621 is electrically connected to an external power source by an output lead cable (not shown).
- the AC power delivered from the power output panel 620 to an external load is transmitted to the power output panel 620 through the main busbar 550 of the inverter panel 500.
- a power supply means (not shown) for connecting the power output terminal part 621 and the main bus bar 550 to be energized may be provided.
- the number of power output terminal portions 621 is preferably determined to correspond to the number of output power conversion lines 721.
- three output power conversion lines 721 may be provided. Accordingly, the number of power output terminal parts 621 is also provided in three.
- the power output panel 620 is located on the left side of the plurality of inverter panels 500. The position of the power output panel 620 may be changed.
- a vent (not shown) is formed on the front side of the power output panel 620 to allow outside air to cool the inside of the power output panel 620.
- An output line conversion panel 720 to be described later may be provided on the other side of the power output panel 620, which is adjacent to one side adjacent to the inverter panel 500, that is, on the left side in the illustrated embodiment. This will be described later.
- the power conversion device 1 includes a line conversion panel 700 for changing the input path of the DC power and the output path of the AC power.
- the line conversion panel 700 is positioned adjacent to the power panel 600 and is electrically connected to the power panel 600.
- the line conversion panel 700 is a kind of module and may be coupled to the power panel 600 in an add-on method.
- the line converting panel 700 transfers power to the power panel 600 or changes a path for receiving power from the power panel 600.
- the line conversion panel 700 receives DC power from the outside and transmits it to the power panel 600. In addition, the line conversion panel 700 receives AC power from the power panel 600 and transmits it to an external load.
- the line conversion panel 700 includes an input line conversion panel 710 and an output line conversion panel 720.
- the input line conversion panel 710 receives DC power from the outside and transmits the received DC power to the power input panel 610.
- the input line conversion panel 710 is positioned adjacent to the power input panel 610. In addition, the input line conversion panel 710 is electrically connected to the power input panel 610.
- the input line conversion panel 710 is positioned adjacent to the right side of the power input panel 610, but its position may be changed. However, regardless of where the input line conversion panel 710 is located, the input line conversion panel 710 is preferably located adjacent to the power input panel 610.
- the input line conversion panel 710 includes an input power conversion line 711, an input opening 712, and an input line terminal portion 713.
- the input power conversion line 711 connects the input line terminal part 713 to be described later and the power input terminal part 611 of the power input panel 610 to be energized.
- the shape of the input power conversion line 711 may be changed. Specifically, the shape of the input power conversion line 711 may be changed according to the position of the input line terminal unit 713 and the position of the power input terminal unit 611 to be described later, and the structure of the input line conversion panel 710. .
- the position of the input line terminal unit 713 and the position of the power input terminal unit 611 to be described later may be freely determined by the input power conversion line 711.
- the input opening 712 is a passage through which an external input conductor cable (not shown) can be connected to the input line terminal unit 713 to be described later.
- the input openings 712 are formed on the upper, right, and rear sides of the input line conversion panel 710, respectively.
- input openings 712 are formed on the right side of the input line conversion panel 710 on the upper side and the lower side, respectively.
- the input opening 712 may be formed on one side of the input line conversion panel 710 that is not adjacent to the power input panel 610.
- the input opening 712 to which the input conductor cable (not shown) is not connected may be provided with a cover (not shown) so as to prevent entry of foreign matter or the like.
- the input line terminal unit 713 is a channel through which DC power is transmitted from the outside (see FIG. 30).
- the input line terminal unit 713 is connected to an external power source and a conductor input cable (not shown).
- the input line terminal portion 713 and the conductor input cable (not shown) may be screwed. In this case, it is possible to securely fasten the input line terminal portion 713 and the conductor input cable (not shown).
- a plurality of input line terminal parts 713 may be provided. Specifically, the input line terminal unit 713 may be provided for each of the plurality of input openings 712, respectively. Alternatively, the input line terminal part 713 may be provided at any one of the plurality of input openings 712. In this embodiment, a path for receiving DC power may be diversified. Therefore, the user's convenience can be improved.
- the output line conversion panel 720 receives DC power from the outside and transmits the received DC power to the power output panel 620.
- the output line conversion panel 720 is positioned adjacent to the power output panel 620. In addition, the output line conversion panel 720 is electrically connected to the power output panel 620.
- the output line conversion panel 720 is positioned adjacent to the left side of the power output panel 620, but the position may be changed. However, even if the output line conversion panel 720 is located anywhere, the output line conversion panel 720 is preferably located adjacent to the power output panel 620.
- the output line conversion panel 720 includes an output power conversion line 721, an output opening 722, and an output line terminal portion 723.
- the output power conversion line 721 connects the output line terminal unit 723 to be described later and the power output terminal unit 621 of the power output panel 620 so as to be energized.
- the shape of the output power conversion line 721 may be changed. Specifically, the shape of the output power conversion line 721 may be changed according to the position of the output line terminal unit 723 and the position of the power output terminal unit 621 to be described later, and the structure of the output line conversion panel 720. .
- the position of the output line terminal unit 723 and the position of the power output terminal unit 621 to be described later by the output power conversion line 721 can be freely determined.
- the output opening 722 is a passage through which an external output conductor cable (not shown) can be connected to the output line terminal unit 723 to be described later.
- the output openings 722 are formed on the upper, left and rear sides of the output line conversion panel 720, respectively.
- output openings 722 are formed on the upper and lower sides of the output line conversion panel 720, respectively. That is, the output opening 722 may be formed on one side of the output line conversion panel 720 that is not adjacent to the power output panel 620.
- the output opening 722 to which the output conductor cable (not shown) is not connected may be provided with a cover (not shown) so as to prevent the inflow of foreign substances or the like.
- the output line terminal portion 723 is a channel through which AC power is transmitted to an external load (see FIG. 30).
- the output line terminal portion 723 is connected to an external power source and a conductor output cable (not shown).
- the output line terminal portion 723 and the conductor output cable (not shown) may be screwed. In this case, it is possible to securely fasten the output line terminal portion 723 and the conductor output cable (not shown).
- a plurality of output line terminal units 723 may be provided. Specifically, the output line terminal unit 723 may be provided for each of the plurality of output openings 722, respectively. Alternatively, the output line terminal part 723 may be provided in any one or more of the plurality of output openings 722. In this embodiment, a path for transferring AC power may be diversified. Therefore, the user's convenience can be improved.
- Inverter device 10 may be introduced into the first device unit 200 and the second device unit 300, respectively.
- the introduced outside air may cool and discharge the inverter module 240 of the first device unit 200 and the filter 340 of the second device unit 300.
- the outside air continuously flows into the first device unit 200 by the operation of the first blowing unit 230a and the third blowing unit 230c. Therefore, the outside air introduced into the first device unit 200 is moved to the rear side of the first device unit 200 by being pushed to the outside air that is subsequently introduced.
- the inverter module 240 is positioned between the first intake part 210a and the third intake part 210c and the first exhaust part 220a and the third exhaust part 220c. Therefore, the inverter module 240 is cooled by heat exchange of the outside air with the inverter module 240.
- the outside air that has flowed inside the first device unit 200 reaches the rear side of the first device unit 200, and then is removed through the first exhaust unit 220a and the third exhaust unit 220c. 1 is discharged from the device 200.
- outside air passes through the second intake unit 310 and flows into the second device unit 300. At this time, the second blowing unit 330 provides the transfer force for the flow of outside air as described above.
- outside air may be introduced into the second device unit 300 by natural forces such as wind.
- the outside air continuously flows into the second device unit 300 by the operation of the second blowing unit 330. Therefore, the outside air introduced into the second device unit 300 is moved to the rear side of the second device unit 300 by being pushed to the outside air that is subsequently introduced.
- a filter 340 is positioned between the second intake part 310 and the second exhaust part 320. Therefore, the filter 340 is cooled by heat exchange of the outside air with the filter 340.
- the outside air flowing inside the second device unit 300 through the above-described process reaches the rear side of the second device unit 300 and then discharges from the second device unit 300 through the second exhaust unit 320. do.
- the first blower 230a, the second blower 330, and whether the third blower 230c is operated and the operating speed can be independently controlled.
- the first device part 200 and the second device part 300 are physically separated by the partition wall part 400.
- the inverter module 240 and the filter 340 can be effectively cooled without being influenced by each other.
- the (230c) is further provided.
- Outside air for cooling the inverter device 10 accommodated therein may be introduced into the inverter panel 500 according to an embodiment of the present invention.
- the introduced outside air may cool and discharge the inverter module 240 and the filter 340 provided in the inverter device 10.
- the first inverter accommodating part 510 and the second inverter accommodating part 520 include a first panel intake part 511 and a second panel intake part 521, respectively.
- the inverter device 10 accommodated in the first inverter receiving unit 510 When the inverter device 10 accommodated in the first inverter receiving unit 510 is operated, the first blowing unit 230a, the second blowing unit 330, and the third blowing unit 230c provided in the inverter device 10 are operated. Is working.
- the first blowing unit 230a, the second blowing unit 330, and the third blowing unit 230c provide a transfer force for external air to flow into the inverter panel 500. Accordingly, the outside air passes through the first panel intake part 511 and the second panel intake part 521 and flows into the inverter panel 500.
- the outside air introduced into the inverter panel 500 is still in a state of being supplied with a transfer force by the first blowing unit 230a, the second blowing unit 330, and the third blowing unit 230c. Therefore, the outside air flows into the first device portion 200 and the second device portion 300 of the inverter device 10.
- the outside air discharged from the inverter device 10 is still in the state of being supplied with the transfer force by the first blowing unit 230a, the second blowing unit 330, and the third blowing unit 230c. Therefore, the outside air is moved to the rear side of the inverter panel 500.
- the first panel exhaust section 512 and the second panel exhaust section 522 are formed on the rear side of the inverter panel 500. Therefore, the outside air passes through the first panel exhaust section 512 and the second panel exhaust section 522 and is discharged to the outside of the inverter panel 500.
- each panel intake section 511, 521, each intake section 210a, 310, 210c, inverter device 10, each exhaust section 220a, 320, 220c, and each panel exhaust section 512, 522 The outside air inlet and outlet flow paths are formed.
- Outside air for cooling the inverter device 10 and the PCB device 534 accommodated therein may be introduced into the indoor inverter panel 500a and the outdoor inverter panel 500b according to an embodiment of the present invention.
- the introduced outside air may cool and discharge the inverter module 240 and the filter 340 and the PCB device 534 provided in the inverter device 10.
- the air flow process in the PCB device receiving unit 530 is as follows.
- the PCB device accommodating portion 530 includes an outside air inlet portion 531, an outside air outlet portion 532, and a panel blowing portion 533.
- a base portion 540 is positioned below the PCB device accommodating portion 530.
- the panel blower 533 When power is applied to the PCB device 534, the panel blower 533 is operated. Alternatively, the panel blower 533 may be operated even when power is applied to the indoor inverter panel 500a and the outdoor inverter panel 500b.
- the outside air is provided with a transfer force for moving toward the first base intake 541a and the second base intake 541b of the base 540.
- outside air inlet 531 of the PCB device accommodating part 530 and the outside air supply part 542 of the base part 540 are aligned with each other so as to be in fluid communication.
- the outside air is introduced into the PCB device receiving portion 530 through the outside air inlet portion 531 of the PCB device receiving portion 530.
- the outside air flowing into the PCB device accommodating portion 530 is still supplied with the transfer force by the panel blowing portion 533. Accordingly, the outside air is moved toward the panel blowing portion 533 located at the rear side of the PCB device receiving portion 530.
- the outside air is moved toward the panel blower 533 and heat exchanged with the PCB device 534 or the filter 340 to cool the PCB device 534 or the filter 340.
- the outside air discharge portion 532 is formed on the rear side of the PCB device receiving portion 530. Accordingly, the outside air is discharged to the outside of the indoor inverter panel 500a and the outdoor inverter panel 500b through the outside air discharge unit 532.
- outside air inlet and outlet flow paths including the base intake parts 541a, 541b, the outside air supply part 542, the outside air inlet part 531, the PCB device receiving part 530, and the outside air outlet part 532 are formed. do.
- the power conversion device 1 includes a line conversion panel 700. As described above, the transmission position of the DC power and the transmission position of the AC power may be changed by the line conversion panel 700.
- the line conversion panel 700 may be positioned adjacent to the power panel 600.
- the input line conversion panel 710 is located on one side of the power input panel 610 and adjacent to the right side of the power input panel 610 in the illustrated embodiment.
- the output line conversion panel 720 is located on one side of the power output panel 620 and adjacent to the left side of the power output panel 620 in the illustrated embodiment.
- An inverter panel space S is formed between the power input panel 610 and the power output panel 620, so that the inverter panel 500 can be coupled.
- the power input terminal unit 611 provided on one side of the power input panel 610 is electrically connected to one side of the input power conversion line 711 provided on the input line conversion panel 710.
- the other side of the input power conversion line 711 is electrically connected to the input line terminal unit 713.
- the input line terminal portion 713 may be provided at a position where the input opening 712 is formed.
- the input opening 712 may be located on the right side, the upper side, and the rear side of the input line conversion panel 710. Therefore, the input line terminal unit 713 may also be located on the right, upper and rear sides of the input line conversion panel 710.
- the input line terminal portion 713 is electrically connected to an external input conductor cable (not shown). Accordingly, the external DC power is transmitted to the power input panel 610 through an input conductor cable (not shown), an input line terminal unit 713, an input power conversion line 711, and a power input terminal unit 611.
- the power output terminal unit 621 provided on one side of the power output panel 620 is electrically connected to one side of the output power conversion line 721 provided on the output line conversion panel 720.
- the other side of the output power conversion line 721 is electrically connected to the output line terminal unit 723.
- the output line terminal portion 723 may be provided at a position where the output opening 722 is formed.
- the output opening 722 may be located on the left, upper and rear sides of the output line conversion panel 720. Accordingly, the output line terminal unit 723 may also be located on the left, upper and rear sides of the output line conversion panel 720.
- the output line terminal unit 723 is electrically connected to an external output conductor cable (not shown).
- the AC power converted accordingly is transmitted to an external load through the power output terminal unit 621, the output power conversion line 721, the output line terminal unit 723, and an output lead cable (not shown).
- the power conversion device 1 comprises a modular inverter device 10.
- Each inverter device 10 includes both an inverter module 240 for converting DC power to AC power and a filter 340 for filtering the converted AC power.
- the power conversion capacity of the entire power conversion device 1 can be adjusted only by changing the number of inverter devices 10.
- the outside air for cooling the inverter device 10 flows into the first device unit 200 in which the inverter module 240 is accommodated, and the second device unit 300 in which the filter 340 is accommodated.
- the introduced outside air is not mixed with each other by the partition 400.
- the inverter panel 500 in which the inverter device 10 is accommodated is also provided with respective panel intake parts 511 and 521 and each panel exhaust part 512 and 522 for inflow of outside air. Therefore, effective cooling of the inverter device 10 accommodated inside the inverter panel 500 is possible.
- each inverter panel 500 can be scaled up by being electrically connected to each other. Therefore, even when it is necessary to change the power conversion capacity during use, the power conversion capacity can be changed simply by adding or reducing the inverter panel 500.
- the line conversion panel 700 is provided in an add-on method, it is possible to set various input directions of DC power and output directions of AC power. Therefore, since the input and output directions of the power source can be set according to the environment in which the power conversion device 1 is installed, user convenience can be improved.
- IGBT isolated gate bipolar transistor
- SMPS switching mode power supply
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Inverter Devices (AREA)
Abstract
인버터 장치 및 이를 포함하는 전력변환장치가 개시된다. 본 발명에 따른 인버터 장치는 모듈화되어 구성된다. 따라서 인버터 패널에 결합되는 인버터 장치의 개수를 증가시키는 것만으로도 인버터 패널의 전력변환용량을 증가시킬 수 있다. 또한 인버터 패널끼리 연결되어 전력변환장치가 구성되므로, 인버터 패널의 개수를 증가시키는 것만으로도 인버터 패널의 전력변환용량을 증가시킬 수 있다.
Description
본 발명은 인버터 장치 및 이를 포함하는 전력 변환 장치에 관한 것으로, 보다 구체적으로는, 인버터 장치가 모듈로 구비되고, 모듈화된 인버터 장치를 복수 개 구비함으로써 전력변환용량을 증가시킬 수 있는 전력 변환 장치에 관한 것이다.
전력변환장치는 일반적으로 직류 전원을 입력받고, 이를 교류 전원으로 변환하여 출력한다. 이는 가정용, 산업용으로 이용되는 전원은 주로 교류 전원임에 기인한다.
이때 전력변환장치가 한번에 변환할 수 있는 용량 또는 한번에 저장할 수 있는 교류 전원의 용량을 "전력변환용량"이라고 명명할 수 있다.
전력변환장치는 ESS(Energy Storage System, 에너지 저장 장치)에 구비되어 사용될 수 있다. 전력변환장치의 전력변환용량은 해당 전력변환장치가 구비되는 ESS의 용량을 결정하는 중요 인자가 된다.
전력변환장치의 구성 요소로 인버터와 필터를 들 수 있다. 인버터는 입력된 직류 전원을 교류 전원으로 변환하는 기능을 수행한다. 필터는 인버터에 의해 변환된 교류 전원의 노이즈를 제거하기 위한 필터링을 수행한다.
도 1을 참조하면, 종래 기술에 따른 전력변환장치는 직류 전원을 입력 받는 DC 패널(DC PNL), 직류 전원을 교류 전원으로 변환하는 스택 패널(STACK 1, 2 PNL), 변환된 교류 전원을 필터링하기 위한 필터 패널(FILTER PNL) 및 변환된 교류 전원을 출력하기 위한 AC 패널(AC PNL)을 포함한다.
이러한 전력변환장치는 스택 패널(STACK 1, 2 PNL) 및 필터 패널(FILTER PNL)이 분리된 형태로 구비된다. 즉, 전력변환용량에 따라 상기 각 패널들을 모두 포함하는 전력변환장치를 전체로 설계 변경해야 하는 한계가 있었다.
또한, 상술한 종래 기술에 따른 전력변환장치는 스택에 직류 전류를 전달하고 교류 전류를 전달받기 위한 체결 구조가 복잡하다는 단점이 있다.
도 2를 참조하면, 종래 기술에 따른 전력변환장치는 스택 패널(STACK 1, 2 PNL)에 구비된 스택(Stack)을 전력 전달 부스바(Transfer Busbar)와 전기적으로 연결하기 위해 별도의 커넥터(Connector)를 포함한다.
구체적으로, 스택(Stack)은 스택 패널(STACK 1, 2 PNL)로 돌출된 스택 부스바(Stack Busbar)를 포함한다. 또한, 전력 전달 부스바(Transfer Busbar) 또한 스택(Stack)을 향해 돌출된 부분을 포함한다.
스택 부스바(Stack Busbar)와 전력 전달 부스바(Transfer Busbar)의 돌출된 부분은 커넥터(Connector)에 의해 체결된다. 이때, 보다 신뢰성 있는 체결을 위해 커넥터(Connector)는 리벳 또는 볼트(Rivet or Bolt)에 의해 추가 체결이 요구된다.
따라서 종래 기술에 따른 전력변환장치는 스택(Stack)의 체결이 필연적으로 복잡해질 수밖에 없다.
먼저, 스택 부스바(Stack Busbar)와 전력 전달 부스바(Transfer Busbar) 및 커넥터(Connector)가 맞추어져야 한다.
또한, 커넥터(Connector)가 리벳 또는 볼트(Rivet or Bolt)에 의해 강하게 체결되므로, 스택(Stack)의 유지 보수 등을 위해 스택(Stack)을 분리하기 어렵다는 한계가 있다.
스택 부스바(Stack Busbar), 전력 전달 부스바(Transfer Busbar) 및 커넥터(Connector)가 전기 전도도가 높은 금속인 동(銅) 재질임을 감안하면, 상기 구조에 따른 단가 상승 또한 간과할 수 없는 문제이다.
한국등록특허공보 제10-0997012호 (2010.11.25.)
한국등록특허공보 제10-1636630호 (2016.07.05.)
본 발명의 목적은 상술한 문제점들을 해결할 수 있는 인버터 장치 및 이를 포함하는 전력변환장치를 제공함에 있다.
먼저, 인버터 장치의 개수를 변경하는 것만으로도 전력변환장치의 전력변환용량을 변경할 수 있는 구조의 인버터 장치 및 전력변환장치를 제공함을 일 목적으로 한다.
또한, 전력변환장치의 물리적인 크기 및 부피를 감소시켜 컴팩트한 전력변환장치를 구현할 수 있는 구조의 인버터 장치 및 전력변환장치를 제공함을 일 목적으로 한다.
또한, 인버터 장치와 인버터 장치에 전력을 공급하기 위한 메인 부스바 간의 용이한 연결이 가능한 구조의 인버터 장치 및 전력변환장치를 제공함을 일 목적으로 한다.
또한, 인버터 패널에 인버터 장치를 용이하게 결합할 수 있고, 인버터 패널로부터 인버터 장치를 용이하게 분리할 수 있는 구조의 인버터 장치 및 전력변환장치를 제공함을 일 목적으로 한다.
상기 목적을 달성하기 위해, 본 발명은, 내부에 직류 전원을 교류 전원으로 변환하여 외부의 부하에 공급하는 인버터 모듈을 구비하는 제1 장치부; 상기 제1 장치부에 인접하게 위치되며, 내부에 상기 교류 전원의 노이즈(noise)를 필터링하기 위한 필터를 구비하는 제2 장치부; 및 내부에 상기 제1 장치부 및 상기 제2 장치부를 수용하는 하우징을 포함하며, 상기 하우징의 일측에는, 상기 직류 전원을 입력받는 입력 단자부; 및 상기 인버터 모듈에 의해 변환된 상기 교류 전원을 출력하는 출력 단자부가 구비되며, 상기 입력 단자부 및 상기 출력 단자부는, 상기 인버터 모듈 또는 상기 필터에 상기 직류 전원을 전달하고 상기 인버터 모듈 또는 상기 필터로부터 상기 교류 전원을 전달받는 메인 부스바(busbar)와 직접 연결 가능하게 구성되는 인버터 장치를 개시한다.
또한, 상기 하우징의 내부에는, 상기 제1 장치부와 상기 제2 장치부를 구획하는 격벽부가 구비될 수 있다.
또한, 상기 제1 장치부는, 상기 제1 장치부의 일측에 형성되며, 상기 제1 장치부 내부로 상기 인버터 모듈을 냉각하기 위한 공기가 유입되는 제1 흡기부; 및 상기 제1 장치부의 일측에 대향하는 타측에 형성되며, 상기 제1 흡기부 내부로 유입된 공기가 배출되는 제1 배기부를 포함하고, 상기 제2 장치부는, 상기 제1 장치부의 일측과 같은 방향을 향하는 상기 제2 장치부의 일측에 형성되며, 상기 제2 장치부 내부로 상기 필터를 냉각하기 위한 공기가 유입되는 제2 흡기부; 및 상기 제2 장치부의 일측에 대향하는 타측에 형성되며, 상기 제2 흡기부 내부로 유입된 공기가 배출되는 제2 배기부를 포함할 수 있다.
또한, 상기 인버터 장치에는, 상기 제1 흡기부 및 상기 제1 배기부 중 어느 하나 이상에는 상기 제1 장치부 내부를 유동하는 공기에 이송력을 제공하는 제1 송풍부가 구비되고, 상기 제2 흡기부 및 상기 제2 배기부 중 어느 하나 이상에는 상기 제2 장치부 내부를 유동하는 공기에 이송력을 제공하는 제2 송풍부가 구비될 수 있다.
또한, 본 발명은, 직류 전원을 교류 전원으로 변환하여 외부의 부하에 공급하는 인버터 장치; 및 외부로부터 직류 전원을 전달받아 상기 인버터 장치에 전달하고, 변환된 상기 교류 전원을 상기 인버터 장치로부터 전달받아 상기 외부의 부하에 공급하는 제1 메인 부스바를 포함하며, 상기 인버터 장치는, 내부에 직류 전원을 교류 전원으로 변환하여 외부의 부하에 공급하는 인버터 모듈을 구비하는 제1 장치부; 상기 제1 장치부에 인접하게 위치되며, 내부에 상기 교류 전원의 노이즈(noise)를 필터링하기 위한 필터를 구비하는 제2 장치부; 및 내부에 상기 제1 장치부 및 상기 제2 장치부를 수용하는 하우징을 포함하며, 상기 하우징의 일측에는, 상기 직류 전원을 입력받는 입력 단자부; 및 상기 인버터 모듈에 의해 변환된 상기 교류 전원을 출력하는 출력 단자부가 구비되며, 상기 제1 메인 부스바는, 상기 제1 메인 부스바와 상기 입력 단자부 및 상기 출력 단자부를 직접 연결 가능하게 구성되는 제1 포트를 포함하는 인버터 패널을 제공한다.
또한, 상기 인버터 패널은, 상기 인버터 장치를 수용하는 제1 인버터 수용부를 포함하며, 상기 제1 메인 부스바는 상기 제1 인버터 수용부에 인접하게 위치될 수 있다.
또한, 상기 인버터 패널은, 상기 제1 인버터 수용부에 인접하게 위치되며, 상기 인버터 장치를 수용하는 제2 인버터 수용부; 및 외부로부터 상기 직류 전원을 전달받아 상기 인버터 장치에 입력하고, 변환된 상기 교류 전원을 상기 인버터 장치로부터 전달받아 상기 외부의 부하에 공급하는 제2 메인 부스바를 포함하며, 상기 제2 메인 부스바는, 상기 제2 메인 부스바와 상기 제2 인버터 수용부에 수용된 상기 인버터 장치의 상기 입력 단자부 및 상기 출력 단자부를 직접 연결 가능하게 구성되는 제2 포트를 포함할 수 있다.
또한, 본 발명은, 직류 전원을 교류 전원으로 변환하여 외부의 부하에 공급하는 인버터 장치; 및 상기 인버터 장치를 수용하는 인버터 패널을 N개 포함하고, 상기 인버터 패널은, 외부로부터 직류 전원을 전달받아 상기 인버터 장치에 전달하고 변환된 교류 전원을 상기 인버터 장치로부터 전달받아 상기 외부의 부하에 공급하는 메인 부스바를 구비하고, 상기 인버터 장치는, 내부에 직류 전원을 교류 전원으로 변환하여 외부의 부하에 공급하는 인버터 모듈을 구비하는 제1 장치부; 상기 제1 장치부에 인접하게 위치되며, 내부에 상기 교류 전원의 노이즈(noise)를 필터링하기 위한 필터를 구비하는 제2 장치부를 포함하며, N개의 상기 인버터 패널 각각이 다른 인버터 패널의 상기 메인 부스바와 서로 통전 가능하게 연결되면, 전력변환용량이 N배가 되는 전력 변환 장치를 제공한다.
또한, 상기 전력 변환 장치는, 상기 제1 메인 부스바는 상기 인버터 패널의 일측 및 상기 일측에 대향하는 타측으로 연장되고, N개의 상기 인버터 패널 각각은 다른 인버터 패널의 상기 메인 부스바와 서로 접촉되도록 일렬로 배치될 수 있다.
또한, 상기 전력변환장치는, N개의 상기 인버터 패널의 일측에는 외부로부터 전달된 상기 직류 전원을 전달받는 전원 입력 패널이 구비되고, N개의 상기 인버터 패널의 타측에는 변환된 상기 교류 전원을 상기 외부의 부하에 전달하는 전원 출력 패널이 구비되며, 상기 전원 입력 패널, N개의 상기 인버터 패널 및 상기 전원 출력 패널은 서로 통전 가능하게 연결될 수 있다.
본 발명에 따르면, 다음과 같은 효과가 있다.
먼저, 인버터 장치가 모듈화되어 구비되고, 각 인버터 장치는 인버터 모듈 및 필터를 모두 구비한다. 따라서 각 인버터 장치가 독립적으로 직류 전원을 교류 전원으로 전환할 수 있다. 따라서 인버터 장치의 개수를 증가시키는 것만으로도 전력변환장치의 전력변환용량이 증가될 수 있다.
또한, 스택과 필터가 모듈화된 인버터 장치에 모두 구비되므로, 전력변환장치의 물리적인 크기 및 부피가 감소될 수 있다. 따라서, 컴팩트한 전력변환장치의 구현이 가능하다.
또한, 인버터 장치에 포트를 결합시키는 것만으로도 메인 부스바와 인버터 장치 간에 전기적인 연결이 형성될 수 있다. 따라서, 인버터 장치와 메인 부스바의 용이한 연결이 가능하다.
또한, 인버터 장치는 인버터 패널의 일측에 형성된 개구부를 통해 삽입되거나 분리될 수 있다. 따라서 전력변환용량 증가를 위한 인버터 장치의 추가 및 인버터 장치의 유지 보수를 위한 인버터 장치의 분리가 용이해진다.
도 1은 종래 기술에 따른 전력 변환 장치의 직류 전원 및 교류 정면도이다.
도 2는 도 1의 전력 변환 장치에 구비되는 스택에 전력을 공급하기 위한 구성을 도시하는 도면이다.
도 3은 본 발명의 실시 예에 따른 전력 변환 장치의 사시도이다.
도 4는 도 3의 전력 변환 장치의 정면도이다.
도 5는 도 3의 전력 변환 장치에 구비되는 인버터 패널의 측면도이다.
도 6은 도 3의 전력 변환 장치의 배면도이다.
도 7은 도 3의 전력 변환 장치에 구비되는 인버터 장치의 사시도이다.
도 8은 도 7의 인버터 장치의 내부 구성을 도시하는 도면이다.
도 9는 도 7의 인버터 장치의 정면도이다.
도 10은 도 7의 인버터 장치의 내부 구성을 도시하는 측면도이다.
도 11은 도 7의 인버터 장치의 배면도이다.
도 12는 본 발명의 실시 예에 따른 인버터 장치가 인버터 패널에 삽입되는 과정을 도시하는 도면이다.
도 13은 본 발명의 실시 예에 따른 인버터 패널이 결합된 모습의 사시도이다.
도 14는 도 13의 정면도이다.
도 15는 본 발명의 다른 실시 예에 따른 실내 인버터 패널 사시도이다.
도 16은 도 15의 실내 인버터 패널의 정면도이다.
도 17은 도 15의 실내 인버터 패널의 내부 구성을 도시하는 측면도이다.
도 18은 도 15의 실내 인버터 패널의 배면도이다.
도 19는 본 발명의 또다른 실시 예에 따른 실외 인버터 패널의 사시도이다.
도 20은 도 19의 실외 인버터 패널의 정면도이다.
도 21은 도 19의 실외 인버터 패널의 내부 구성을 도시하는 측면도이다.
도 22는 도 19의 실외 인버터 패널의 배면도이다.
도 23은 본 발명의 실시 예에 따른 선로 변환 패널을 구비한 전력 변환 장치의 정면도이다.
도 24는 도 23의 전력 변환 장치의 평면도이다.
도 25는 도 23의 전력 반환 장치의 배면도이다.
도 26은 도 23의 전력 변환 장치의 우측면도(a) 및 좌측면도(b)이다.
도 27은 도 7의 인버터 장치 내부에서의 공기의 유동 과정을 도시하는 도면이다.
도 28은 본 발명의 실시 예에 따른 인버터 패널 내부에서의 공기의 유동 과정을 도시하는 도면이다.
도 29는 도 15에 따른 실내 인버터 패널 및 도 19에 따른 실외 인버터 패널 내부에서의 공기의 유동 과정을 도시하는 도면이다.
도 30은 도 23의 전력 변환 장치에 구비된 선로 변환 패널의 내부 도선을 도시하는 도면이다.
이하, 첨부한 도면들을 참조하여 본 발명의 실시 예에 따른 인버터 장치, 인버터 패널 및 이를 포함하는 전력 변환 장치를 상세하게 설명한다.
이하의 설명에서 사용되는 "전방 측", "후방 측", "좌측", "우측", "상측" 및 "후측"이라는 용어는 도 3, 도 7, 도 8, 도 12, 도 13, 도 15, 도 19, 도 23, 도 25 및 도 30에 도시된 좌표계를 참조하여 이해될 것이다.
이하의 설명에서 사용되는 단수의 표현은 문맥상 명백하게 어긋나지 않는 한, 복수의 개념을 포함하는 것으로 이해되어야 한다.
1. 본 발명의 실시 예에 따른 전력 변환 장치(1)의 구성의 설명
도 3 내지 도 6을 참조하면, 도시된 실시 예에 따른 전력 변환 장치(1)는 인버터 장치(10), 인버터 패널(500) 및 전원 패널(600)을 포함한다.
후술될 바와 같이, 본 발명의 실시 예에 따른 인버터 장치(10)는 모듈화 되어 구성된다. 구체적으로, 인버터 장치(10)는 그 내측에 후술될 인버터 모듈(240) 및 필터(340)를 포함한다.
따라서 인버터 장치(10) 각각은 직류 전원을 교류 전원으로 변환하고, 변환된 교류 전원의 필터링까지 가능하다. 이 인버터 장치(10)가 인버터 패널(500)에 결합되고, 각 인버터 패널(500)이 전기적으로 연결됨에 따라 본 발명의 실시 예에 따른 전력 변환 장치(1)가 구성된다.
도 3 및 도 4를 참조하면, 도시된 실시 예에 따른 전력 변환 장치(1)의 각 구성 요소는 전방 측 및 후방 측이 수직한 방향, 즉 우측 및 좌측을 향해 일렬로 배열된다. 상기 배열 방식은 변경 가능하다.
전력 변환 장치(1)의 우측 끝단 및 좌측 끝단에는 전원 입력 패널(610) 및 전원 출력 패널(620)이 구비된다. 전원 입력 패널(610) 및 전원 출력 패널(620)은 전원의 입력 및 출력을 담당하는 전원 패널(600)을 구성한다.
전원 입력 패널(610) 및 전원 출력 패널(620)의 위치는, 인버터 패널(500) 및 인버터 패널(500)에 수용된 인버터 장치(10)에 전원을 전달하고, 인버터 패널(500) 및 인버터 장치(10)로부터 전원을 전달받을 수 있는 여타 위치로 변경될 수 있다.
인버터 패널(500)의 전방 측면에는 제1 패널 흡기부(511) 및 제2 패널 흡기부(521)가 구비된다. 후술될 바와 같이, 본 발명의 실시 예에 따른 인버터 패널(500)은 외기가 유입되고 배출될 수 있는 구조를 포함한다. 제1 패널 흡기부(511) 및 제2 패널 흡기부(521)는 외기가 인버터 패널(500) 내부로 유입되는 통로로 기능한다.
도 5를 참조하면, 도시된 실시 예에 따른 인버터 패널(500)은 내측에 인버터 장치(10)를 복수 개 수용할 수 있다.
구체적으로, 인버터 패널(500)은 상측에 형성되는 제1 인버터 수용부(510) 및 제1 인버터 수용부(510)의 하측에 형성되는 제2 인버터 수용부(520)를 포함한다.
후술될 바와 같이, 제1 인버터 수용부(510) 및 제2 인버터 수용부(520)에는 인버터 장치(10)가 각각 수용될 수 있다.
제1 인버터 수용부(510)의 전방 측면에는 제1 패널 흡기부(511)가 형성되고, 후방 측면에는 제1 패널 배기부(512)가 형성된다.
또한, 제2 인버터 수용부(520)의 전방 측면에는 제2 패널 흡기부(521)가 형성되고, 후방 측면에는 제2 패널 배기부(522)가 형성된다.
도 6을 참조하면, 도시된 실시 예에 따른 전력 변환 장치(1)가 포함하는 인버터 패널(500)은 후방 측면에 제1 패널 배기부(512) 및 제2 패널 배기부(522)가 형성된다.
또한 도시되지는 않았으나, 전원 패널(600)에도 냉각을 위한 별도의 공기 유입구(미도시) 및 공기 배출구(미도시)가 형성될 수 있다.
(1) 인버터 장치(10)의 설명
인버터 장치(10)는 전달된 직류 전원을 교류 전원으로 변환하기 위한 구성을 포함한다. 구체적으로, 인버터 장치(10)는 전원을 변환하는 기능을 수행하는 인버터 모듈(240)을 포함한다. 또한, 인버터 장치(10)는 인버터 모듈(240)이 변환한 교류 전원을 필터링하기 위한 필터(340)를 포함한다(도 10 참조).
상술한 바와 같이, 본 발명의 실시 예에 따른 인버터 장치(10)는 인버터 모듈(240) 및 필터(340)를 모두 포함한다. 즉, 인버터 장치(10)는 그 자체로 직류 전원을 교류 전원으로 변환하기 위해 필요한 모든 구성을 포함한다.
인버터 장치(10)는 소정의 전력 변환 용량을 갖는다. 또한 인버터 장치(10)가 복수 개 구비되어 서로 통전되도록 연결될 경우, 늘어난 인버터 장치(10)의 개수만큼 전력 변환 용량이 증가될 수 있다.
따라서, 인버터 장치(10)가 복수 개 구비되는 것만으로도 전력 변환 용량이 증가될 수 있다.
이하, 도 7 내지 도 11을 참조하여 본 발명의 실시 예에 따른 인버터 장치(10)를 상세하게 설명한다.
도시된 실시 예에 따른 인버터 장치(10)는 하우징(100), 제1 장치부(200), 제2 장치부(300) 및 격벽부(400)를 포함한다.
1) 하우징(100)의 설명
하우징(100)은 인버터 장치(10)의 외형을 형성한다. 도시된 실시 예에서, 하우징(100)은 전방 측 및 후방 측으로 연장된 직육면체 형상이나, 하우징(100)의 형상은 변경될 수 있다.
후술될 바와 같이 인버터 장치(10)는 인버터 패널(500)에 수용될 수 있다. 이 때 복수 개의 인버터 장치(10)가 인버터 패널(500)에 안정적으로 수용될 수 있는 형상이면 족하다.
하우징(100)은 절연 가능한 재질, 예를 들면 플라스틱 같은 재질로 형성될 수 있다.
하우징(100)의 전방 측에는 인버터 장치(10)의 작동을 제어하기 위한 스위치(미도시) 등이 구비될 수 있다.
하우징(100)의 일측에는 입력 단자부(150a) 및 출력 단자부(150b)가 구비된다. 도시된 실시 예에서, 하우징(100)의 전방 측 상부에 입력 단자부(150a) 및 출력 단자부(150b)가 구비된다.
입력 단자부(150a)는 인버터 장치(10)에 직류 전원이 전달되는 채널(channel)로 기능된다. 또한, 입력 단자부(150a)에는 인버터 장치(10)를 구동하고, 인버터 장치(10)를 제어하기 위한 전기적 신호가 전달될 수도 있다.
출력 단자부(150b)는 인버터 장치(10)에서 변환된 교류 전원이 외부로 전달되는 채널로 기능된다. 또한, 출력 단자부(150b)에서 인버터 장치(10)의 상태 정보 등에 관한 전기적 신호가 출력될 수도 있다.
입력 단자부(150a) 및 출력 단자부(150b)에는 후술될 포트(551)가 결합된다. 일 실시 예에서, 후술될 포트(551)는 입력 단자부(150a) 및 출력 단자부(150b)에 삽입 결합될 수 있다.
도시된 실시 예에 따른 입력 단자부(150a) 및 출력 단자부(150b)는 하우징(100)과 일체로 형성된다. 대안적으로, 입력 단자부(150a) 및 출력 단자부(150b)는 별개로 구비되어 하우징(100)에 결합될 수 있다.
도시된 실시 예에 따른 하우징(100)은 제1 장치부(200) 및 제2 장치부(300)로 구획될 수 있다. 대안적으로, 제1 장치부(200) 및 제2 장치부(300)는 하우징(100)의 내측에 형성되는 공간으로 정의될 수도 있다.
다만, 이하의 설명에서는 설명 및 이해의 편의를 위해 제1 장치부(200) 및 제2 장치부(300)를 외형을 갖는 입체 구조로 가정하여 설명한다.
2) 제1 장치부(200)의 설명
제1 장치부(200)는 인버터 모듈(240)을 수용한다. 도시된 실시 예에서, 제1 장치부(200)는 후술될 제2 장치부(300)의 하측에 위치된다.
이는, 제1 장치부(200)에 수용되는 인버터 모듈(240)이 후술될 제2 장치부(300)에 수용될 필터(340)에 비해 고중량인 것이 일반적이기 때문이다.
제1 장치부(200)가 인버터 장치(10)의 하측에 위치됨에 따라, 무게 중심이 하측으로 이동되어 인버터 장치(10)가 안정적으로 지지될 수 있다.
제1 장치부(200)와 후술될 제2 장치부(300)는 격벽부(400)에 의해 물리적으로 분리된다. 이에 관한 상세한 설명은 후술하기로 한다.
제1 장치부(200)는 제1 흡기부(210a), 제1 배기부(220a), 제1 송풍부(230a) 및 인버터 모듈(240)을 포함한다.
제1 흡기부(210a)는 외기가 제1 장치부(200)로 유입될 수 있는 통로이다. 제1 흡기부(210a)는 통공(penetration hole)의 형태로 구비될 수 있다.
도시된 실시 예에서, 제1 흡기부(210a)는 제1 장치부(200)의 전방 측에 형성되나, 그 위치는 변경될 수 있다.
제1 흡기부(210a)로 유입된 외기는 제1 장치부(200) 내부에 수용된 인버터 모듈(240)을 냉각한 후, 후술될 제1 배기부(220a)로 배출된다.
제1 배기부(220a)는 제1 장치부(200) 내부로 유입된 외기가 인버터 모듈(240)과 열 교환된 후 배출될 수 있는 통로이다. 제1 배기부(220a)는 통공의 형태로 구비될 수 있다.
제1 송풍부(230a)는 외기가 제1 장치부(200) 내부로 유입되기 위한 이송력을 제공한다. 제1 송풍부(230a)는 공기의 유동을 유도할 수 있는 구조로 구비될 수 있다. 일 실시 예에서, 제1 송풍부(230a)는 팬(fan)의 형태로 구비될 수 있다.
도시된 실시 예에서, 제1 송풍부(230a)는 제1 흡기부(210a)에 인접하게 위치되나, 그 위치는 변경 가능하다. 대안적으로, 제1 송풍부(230a)는 제1 배기부(220a)에 인접하게 위치되거나, 제1 장치부(200) 내부에 구비될 수도 있다.
제1 송풍부(230a)는 외기를 제1 장치부(200) 내부로 유입시키기 위한 이송력을 제공할 수 있는 곳에 구비되면 족하다.
도시된 실시 예에서, 제1 장치부(200)는 제3 흡기부(210c), 제3 배기부(220c) 및 제3 송풍부(230c)를 포함한다. 제3 흡기부(210c), 제3 배기부(220c) 및 제3 송풍부(230c)는 각각 제1 흡기부(210a), 제1 배기부(220a) 및 제1 송풍부(230a)의 하측에 위치될 수 있다.
제3 흡기부(210c), 제3 배기부(220c) 및 제3 송풍부(230c)의 구조와 기능은 상술한 제1 흡기부(210a), 제1 배기부(220a) 및 제1 송풍부(230c)와 동일하다.
후술될 인버터 모듈(240)에서는 많은 양의 열이 발생된다. 이를 고려하여, 제1 장치부(200) 내부를 보다 효과적으로 냉각하기 위해 제3 흡기부(210c), 제3 배기부(220c) 및 제3 송풍부(230c)가 추가로 구비되는 것이 바람직하다.
따라서, 제1 장치부(200)를 냉각하기 위한 외기는 제1 송풍부(230a) 및 제3 송풍부(230c)에 의해 이송력을 제공받게 된다. 외기는 제1 흡기부(210a) 및 제3 흡기부(210c)를 통해 제1 장치부(200) 내부로 유입된 후, 후술될 인버터 모듈(240)을 냉각하고, 제1 배기부(220c) 및 제3 배기부(220c)를 통해 배기된다.
제1 송풍부(230a) 및 제3 송풍부(230c)가 구동되기 위한 전력을 전달하는 별도의 전력 공급 수단(미도시)이 구비될 수 있다.
인버터 모듈(240)은 직류 전원을 전달받아 교류 전원으로 변환하는 역할을 실질적으로 수행하는 부분이다.
인버터 모듈(240)은 커패시터(capacitor)(241), 히트 싱크(heatsink)(242), IGBT(절연 게이트 양극성 트랜지스터)(243), SMPS(스위칭 모드 파워 서플라이)(244) 및 퓨즈(fuse) 등을 포함할 수 있다.
인버터 모듈(240)이 직류 전원을 교류 전원으로 변환하는 과정은 잘 알려진 기술이므로 이에 대한 상세한 설명은 생략하기로 한다.
인버터 모듈(240)은 후술될 메인 부스바(550)로부터 입력 단자부(150a)를 통해 직류 전원을 전달받는다. 또한, 인버터 모듈(240)이 변환한 교류 전원은 출력 단자부(150b)를 통해 후술될 메인 부스바(550)에 전달된다.
또한, 인버터 모듈(240)이 변환한 교류 전원은 노이즈(noise) 제거를 위해 후술될 필터(340)에 전달될 수도 있다. 이를 위해, 인버터 모듈(240) 및 후술될 필터(340)를 통전 가능하게 연결하는 전기적 수단(미도시)이 구비될 수 있다.
3) 제2 장치부(300)의 설명
제2 장치부(300)는 필터(340)를 수용한다. 도시된 실시 예에서, 제2 장치부(300)는 제1 장치부(200)의 상측에 위치된다.
이는 상술한 바와 같이, 제2 장치부(300)에 수용되는 필터(340)가 제1 장치부(200)에 수용되는 인버터 모듈(240)에 비해 경량(light weight)임에 기인한다.
제2 장치부(300)와 제1 장치부(200)는 격벽부(400)에 의해 물리적으로 분리된다. 이에 관한 상세한 설명은 후술하기로 한다.
제2 장치부(300)는 제2 흡기부(310), 제2 배기부(320) 및 제2 송풍부(330) 및 필터(340)를 포함한다.
제2 흡기부(310)는 외기가 제2 장치부(300)로 유입될 수 있는 통로이다. 제2 흡기부(310)는 통공의 형태로 구비될 수 있다.
도시된 실시 예에서, 제2 흡기부(310)는 제2 장치부(300)의 전방 측에 형성되나, 그 위치는 변경될 수 있다.
제2 흡기부(310)로 유입된 외기는 제2 장치부(300) 내부에 수용된 필터(340)를 냉각한 후, 후술될 제2 배기부(320)로 배출된다.
제2 배기부(320)는 제2 장치부(300) 내부로 유입된 외기가 필터(340)와 열 교환된 후 배출될 수 있는 통로이다. 제2 배기부(320) 또한 통공의 형태로 구비될 수 있다.
제2 송풍부(330)는 외기가 제2 장치부(300) 내부로 유입되기 위한 이송력을 제공한다. 제2 송풍부(330)는 공기의 유동을 유도할 수 있는 구조로 구비될 수 있다. 일 실시 예에서, 제2 송풍부(330)는 팬의 형태로 구비될 수 있다.
도시된 실시 예에서, 제2 송풍부(330)는 제2 배기부(320)에 인접하게 위치되나, 그 위치는 변경 가능하다. 대안적으로, 제2 송풍부(330)는 제2 배기부(320)에 인접하게 위치되거나, 제2 장치부(300) 내부에 구비될 수도 있다.
제2 송풍부(330)는 외기를 제2 장치부(300) 내부로 유입시키기 위한 이송력을 제공할 수 있는 곳에 구비되면 족하다.
도시된 실시 예에서, 제2 장치부(300)는 상술한 제2 흡기부(310), 제2 배기부(320) 및 제2 송풍부(330) 외에 외기의 유입을 위한 추가 구조를 구비하지 않는다.
이는 상술한 바와 같이, 제2 장치부(300)에 수용된 필터(340)는 제1 장치부(200)에 수용된 인버터 모듈(240)에 비해 상대적으로 발열량이 적음에 기인한다.
대안적으로, 제2 장치부(300)에도 외기 유입을 위한 추가 구조가 구비될 수 있다. 이는 인버터 장치(10)의 전체적인 크기, 후술될 인버터 패널(500)과의 결합 관계 등을 고려하여 결정되는 것이 바람직하다.
제2 장치부(300)를 냉각하기 위한 외기는 제2 송풍부(330)에 의해 이송력을 제공받게 된다. 외기는 제2 흡기부(310)를 통해 제2 장치부(300) 내부로 유입된 후, 후술될 필터(340)를 냉각하고 제2 배기부(320)를 통해 배기된다.
제2 송풍부(330)가 구동되기 위한 전력을 전달하는 별도의 전력 공급 수단(미도시)이 구비될 수 있다.
필터(340)는 인버터 모듈(240)이 변환한 교류 전원의 노이즈를 제거하기 위한 필터링이 수행되는 부분이다.
필터(340)가 교류 전원을 필터링하는 과정은 잘 알려진 기술이므로 이에 대한 상세한 설명은 생략하기로 한다.
필터(340)는 후술될 메인 부스바(550)로부터 입력 단자부(150a)를 통해 직류 전원을 전달받는다. 또한, 필터(340)가 필터링한 교류 전원은 출력 단자부(150b)를 통해 후술될 메인 부스바(550)에 전달된다.
인버터 모듈(240)이 변환한 교류 전원을 필터(340)가 전달받기 위해, 인버터 모듈(240) 및 필터(340)를 통전 가능하게 연결하는 전기적 수단(미도시)이 구비될 수 있다.
상술한 제1 송풍부(230a), 제2 송풍부(330) 및 제3 송풍부(230c)의 작동 여부, 작동 속도 등은 서로 독립적으로 제어될 수 있다.
4) 격벽부(400)의 설명
격벽부(400)는 제1 장치부(200)와 제2 장치부(300)를 구획한다. 구체적으로, 제1 장치부(200)와 제2 장치부(300)는 격벽부(400)에 의해 물리적으로 분리된다.
이는, 후술할 바와 같이 제1 장치부(200) 및 제2 장치부(300) 내부로 유입된 외기가 서로 섞이는 것을 방지하기 위함이다.
구체적으로, 제1 장치부(200)에 수용되는 인버터 모듈(240)의 발열량이 제2 장치부(300)에 수용되는 필터(340)의 발열량에 비해 높음은 상술한 바와 같다.
이때 격벽부(400)가 구비되지 않을 경우, 제1 장치부(200) 및 제2 장치부(300) 내부로 유입된 외기가 섞일 수 있다. 이 경우, 높은 열을 갖는 제1 장치부(200)의 공기가 제2 장치부(300)로 유입되어 필터(340)가 고온에 의해 손상될 염려가 있다.
또한, 제2 장치부(300)에서 필터(340)를 냉각한 공기가 제1 장치부(200)에 유입될 수 있다. 상기 공기는 외기에 비해 상대적으로 높은 온도를 가질 것이 자명하므로 인버터 모듈(240)의 냉각 효율이 저하될 염려가 있다.
따라서, 격벽부(400)는 제1 장치부(200)와 제2 장치부(300)를 물리적으로 분리하여 각 장치부(200, 300)에 유입된 외기가 서로 섞이는 것을 방지한다.
격벽부(400)는 열전도도가 낮은 물질로 형성될 수 있다.
격벽부(400)의 위치는 제1 장치부(200)와 제2 장치부(300)의 크기에 따라 변경될 수 있다. 일 예로, 제1 장치부(200)의 크기가 도시된 실시 예보다 작아질 경우, 격벽부(400)의 위치는 제1 장치부(200)와 제2 장치부(300)의 경계를 따라 하측으로 이동될 수 있다.
(2) 인버터 패널(500)의 설명
본 발명의 실시 에에 따른 인버터 패널(500)은 인버터 장치(10)를 수용할 수 있다. 또한, 복수 개의 인버터 패널(500)이 서로 통전 가능하게 연결됨으로써 전력 변환 장치(1)를 구성할 수 있다.
이하, 다시 도 3 내지 도 6 및 도 12 내지 도 14를 참조하여 본 발명의 실시 예에 따른 인버터 패널(500)을 상세하게 설명한다.
인버터 패널(500)은 인버터 장치(10)를 수용한다. 도시된 실시 예에서, 각 인버터 패널(500)은 상측 및 하측에 인버터 장치(10)를 각각 수용한다. 즉, 하나의 인버터 패널(500)은 두 개의 인버터 장치(10)를 수용할 수 있다.
각 인버터 패널(500)이 수용할 수 있는 인버터 장치(10)의 개수는 변경될 수 있다.
도시된 실시 예에서, 인버터 장치(10)는 상측 및 하측 방향으로 길게 세워져 인버터 패널(500)에 수용된다. 대안적으로, 인버터 장치(10)는 좌측 및 우측 방향으로 길게 눕혀져 인버터 패널(500)에 수용될 수도 있다.
또한 인버터 패널(500)의 전방 측에는 개폐 가능한 도어(미도시)가 구비될 수 있다. 따라서 평소에는 인버터 패널(500)의 전방 측이 폐쇄되었다가, 인버터 장치(10)의 삽입 및 분리가 필요할 경우 도어(미도시)를 조작하여 인버터 패널(500)의 전방 측이 개방될 수 있다.
인버터 패널(500)은 제1 인버터 수용부(510), 제2 인버터 수용부(520), 메인 부스바(550)를 포함한다.
제1 인버터 수용부(510)는 인버터 장치(10)가 수용되는 공간이다. 도시된 실시 예에서, 제1 인버터 수용부(510)는 인버터 패널(500)의 상측에 위치되는 공간으로 형성된다.
제1 인버터 수용부(510)의 전방 측에는 개구부가 형성되어, 인버터 장치(10)는 개구부를 통해 제1 인버터 수용부(510)의 내측으로 수용될 수 있다.
제1 인버터 수용부(510)의 전방 측에는 제1 패널 흡기부(511)가 형성된다.
제1 패널 흡기부(511)는 제1 인버터 수용부(510) 내부로 외기가 유입될 수 있는 통로이다. 제1 패널 흡기부(511)는 통공의 형태로 구비될 수 있다.
제1 패널 배기부(512)는 제1 인버터 수용부(510) 내부에 유입된 외기가 제1 인버터 수용부(510) 외부로 배출될 수 있는 통로이다. 제1 패널 배기부(512)는 통공의 형태로 구비될 수 있다.
상술한 바와 같이, 제1 인버터 수용부(510)에 수용된 인버터 장치(10) 또한 외기가 유입되고 배출되기 위한 구조를 구비한다. 또한, 제1 인버터 수용부(510) 또한 외기가 유입되고 배출되기 위한 구조를 구비한다.
즉, 외기는 제1 패널 흡기부(511), 제1 흡기부(210a) 내지 제3 흡기부(230a), 제1 배기부(210c) 내지 제3 배기부(230c) 및 제1 패널 배기부(512)를 순서대로 통과하며 인버터 장치(10)를 냉각할 수 있게 된다.
외기의 유동 과정에 대한 상세한 설명은 후술하기로 한다.
제2 인버터 수용부(520)는 인버터 장치(10)가 수용되는 공간이다. 도시된 실시 예에서, 제2 인버터 수용부(520)는 인버터 패널(500)의 하측에 위치되는 공간으로 형성된다.
제2 인버터 수용부(520)의 전방 측에는 개구부가 형성되어, 인버터 장치(10)는 개구부를 통해 제2 인버터 수용부(520)의 내측으로 수용될 수 있다.
제2 인버터 수용부(520)의 전방 측에는 제2 패널 흡기부(521)가 형성된다.
제2 패널 흡기부(521)는 제2 인버터 수용부(520) 내부로 외기가 유입될 수 있는 통로이다. 제2 패널 흡기부(521)는 통공의 형태로 구비될 수 있다.
제2 패널 배기부(522)는 제2 인버터 수용부(520) 내부에 유입된 외기가 제2 인버터 수용부(520) 외부로 배출될 수 있는 통로이다. 제2 패널 배기부(522)는 통공의 형태로 구비될 수 있다.
제2 인버터 수용부(520)가 구비한 외기 유입 및 배기 구조에 의해, 인버터 장치(10)가 수용된 후 외기의 유로가 형성된다.
즉, 외기는 제2 패널 흡기부(521), 제1 흡기부(210a) 내지 제3 흡기부(230a), 제1 배기부(210c) 내지 제3 배기부(230c) 및 제2 패널 배기부(522)를 순서대로 통과하며 인버터 장치(10)를 냉각할 수 있게 된다.
외기의 유동 과정에 대한 상세한 설명은 후술하기로 한다.
메인 부스바(550)는 외부로부터 직류 전원을 전달받아 인버터 장치(10)에 공급하고, 인버터 장치(10)가 변환한 교류 전원을 전달받아 외부의 부하에 전달한다.
도시된 실시 예에서, 메인 부스바(550)는 인버터 패널(500)의 후측에 치우치도록 위치되나, 메인 부스바(550)의 위치는 변경 가능하다.
다만, 어느 경우라도 인버터 패널(500)에 수용된 인버터 장치(10)와 전기적으로 연결될 수 있으면 족하다.
메인 부스바(550)는 전원 패널(600)의 전원 입력 패널(610)과 통전 가능하게 연결된다. 따라서 메인 부스바(550)에는 전원 입력 패널(610)로부터 직류 전원을 전달받을 수 있다.
또한, 메인 부스바(550)는 전원 패널(600)의 전원 출력 패널(620)과 통전 가능하게 연결된다. 따라서 메인 부스바(550)는 인버터 장치(10)로부터 전달받은 교류 전원을 외부의 부하에 전달할 수 있다.
각 인버터 패널(500)의 메인 부스바(550)는 다른 인버터 패널(500)의 메인 부스바(550)와 통전 가능하게 연결될 수 있다.
즉, 도시된 실시 예에서, 복수 개의 인버터 패널(500)은 좌측 면 및 우측 면이 서로 접촉되도록 일렬로 배치된다. 이 때, 각 인버터 패널(500)의 메인 부스바(550)가 서로 통전 가능하게 연결될 수 있다.
따라서 전력 변환 장치(1)에 구비되는 인버터 패널(500)의 개수를 변경하는 것만으로도 전력 변환 장치(1)의 전력 변환 용량을 변경할 수 있다.
즉, 소정의 전력 변환 용량을 갖는 인버터 장치(10)는 각 인버터 패널(500)에 수용된다. 이러한 각 인버터 패널(500)이 복수 개 구비됨에 따라, 전력 변환 장치(1) 전체의 전력 변환 용량 또한 증가된다.
대안적으로, 메인 부스바(550)는 각 인버터 패널(500)에 구비되지 않고 별도로 구비되어 각 인버터 패널(500)이 메인 부스바(550)에 통전 가능하게 연결되는 형태로 구비될 수 있다.
도시된 실시 예에서, 메인 부스바(550)는 제1 메인 부스바(550a) 및 제2 메인 부스바(550b)로 구비된다(도 13 및 도 14 참조).
이는 인버터 패널(500)이 상측의 제1 인버터 수용부(510) 및 하측의 제2 인버터 수용부(520)를 구비함에 기인한 것이다.
즉, 제1 메인 부스바(550a)는 제1 인버터 수용부(510)에 수용된 인버터 장치(10)와 통전 가능하게 연결된다. 또한 제2 메인 부스바(550b)는 제2 인버터 수용부(520)에 수용된 인버터 장치(10)와 통전 가능하게 연결된다.
대안적으로, 메인 부스바(550)는 단수 개로 구비될 수도 있다. 즉, 하나의 메인 부스바(550)가 제1 인버터 수용부(510) 및 제2 인버터 수용부(520)에 수용된 인버터 장치(10) 모두와 통전 가능하게 연결될 수도 있다.
메인 부스바(550)는 포트(551)를 포함한다.
포트(551)는 메인 부스바(550)와 인버터 장치(10)를 통전 가능하게 연결하기 위한 수단이다. 구체적으로, 메인 부스바(550)는 포트(551)와 통전 가능하게 연결된다.
포트(551)는 인버터 장치(10)에 구비된 입력 단자부(150a) 및 출력 단자부(150b)와 결합됨으로써, 인버터 장치(10)와 메인 부스바(550)를 통전 가능하게 연결한다.
본 발명의 실시 예에 따른 인버터 장치(10)의 일 효과가 인버터 패널(500)에 용이하게 수용되고 분리될 수 있음을 고려하면, 포트(551)는 입력 단자부(150a) 및 출력 단자부(150b)와 착탈 가능하게 결합되는 것이 바람직하다.
포트(551)는 제1 포트(551a) 및 제2 포트(552b)를 포함한다.
제1 포트(551a)는 제1 메인 부스바(550a)와 인버터 장치(10)를 통전 가능하게 연결한다. 상술한 바와 같이, 이 인버터 장치(10)는 제1 인버터 수용부(510)에 수용된 인버터 장치(10)이다.
제2 포트(551b)는 제2 메인 부스바(550b)와 인버터 장치(10)를 통전 가능하게 연결한다. 상술한 바와 같이, 이 인버터 장치(10)는 제2 인버터 수용부(520)에 수용된 인버터 장치(10)이다.
(3) 실내 인버터 패널(500a)의 설명
본 발명의 일 실시 예에 따른 전력 변환 장치(1)는, 실내 인버터 패널(500a)을 포함한다.
실내 인버터 패널(500a)은 전력 변환 장치(1)가 실내에 구비되는 것을 전제한다. 또한, 실내 인버터 패널(500a)은 그 내측에 인버터 장치(10)를 수용할 뿐만 아니라, 후술될 PCB 장치(534)를 포함한다.
따라서 실내 인버터 패널(500a)은 상술한 인버터 패널(500)에 비해 인버터 장치(10)가 단수 개 수용된다는 점, PCB 장치(534)를 수용하기 위한 PCB 장치 수용부(530)를 포함한다는 점에 차이가 있다.
이하, 도 15 내지 도 18을 참조하여 본 발명의 실시 예에 따른 실내 인버터 패널(500a)을 상세하게 설명한다.
도시된 실시 예에 따른 실내 인버터 패널(500a)은 실내 하우징(501a), 실내 도어(502a), 제1 인버터 수용부(510), PCB 장치 수용부(530) 및 베이스부(540)를 포함한다.
실내 하우징(501a)은 실내 인버터 패널(500a)의 외측을 형성한다. 도시된 실시 예에서, 실내 하우징(501a)은 상측 및 하측으로 길게 형성된 직육면체 형상이나, 그 형상은 변경 가능하다.
실내 하우징(501a)의 전방 측에는 실내 도어(502a)가 위치된다. 실내 도어(502a)는 실내 인버터 패널(500a)의 전방 측을 개방하거나 폐쇄할 수 있는 임의의 구조로 구비될 수 있다.
실내 도어(502a)에는 제1 패널 흡기부(511)가 형성된다. 제1 패널 흡기부(511)의 구조 및 기능은 상술한 바와 같으므로, 중복되는 설명은 생략하기로 한다.
실내 인버터 패널(500a)의 내측에는 제1 인버터 수용부(510)와 PCB 장치 수용부(530)가 형성된다.
제1 인버터 수용부(510)는 PCB 장치 수용부(530)의 상측에 위치된다. 제1 인버터 수용부(510)의 구조 및 기능은 상술한 바와 같으므로, 중복되는 설명은 생략하기로 한다.
PCB 장치 수용부(530)는 제1 인버터 수용부(510)의 하측에 위치된다. PCB 장치 수용부(530)의 내측에는 전력 변환 장치(1)의 제어를 위한 PCB 장치(534)가 수용된다. PCB 장치(534)는 인버터 장치(10)와 전기적으로 연결되어, 인버터 장치(10)를 제어하도록 구성될 수 있다.
PCB 장치 수용부(530)는 외기 유입부(531), 외기 배출부(532), 패널 송풍부(533) 및 PCB 장치(534)를 포함한다.
또한, 도시된 바와 같이, PCB 장치 수용부(530)에는 필터(340)가 구비될 수 있다.
외기 유입부(531)는 PCB 장치 수용부(530)에 수용된 PCB 장치를 냉각하기 위한 외기가 유입되는 통로이다.
도시된 실시 예에서, 외기 유입부(531)는 PCB 장치 수용부(530)의 하측에 개구부로 형성된다. 외기 유입부(531)는 후술될 베이스부(540)의 외기 공급부(542)와 맞추어지도록 위치된다.
외기 유입부(531)는 외기가 PCB 장치 수용부(530) 내부로 유입될 수 있는 임의의 위치에 형성될 수 있다. 다만, 후술될 바와 같이, 외기 유입부(531)의 위치는 후술될 외기 공급부(542)의 위치에 상응하게 결정되는 것이 바람직하다.
외기 배출부(532)는 PCB 장치 수용부(530)에 유입된 외기가 PCB 장치(534)와 열교환한 후 배출될 수 있는 통로이다.
도시된 실시 예에서, 외기 배출부(532)는 실내 인버터 패널(500a)의 후측에 개구부로 형성된다. 외기 배출부(532)는 PCB 장치 수용부(530) 내부의 공기를 PCB 장치 수용부(530) 외부로 배출될 수 있는 임의의 위치에 형성될 수 있다.
외기 배출부(532)에는 패널 송풍부(533)가 구비된다.
패널 송풍부(533)는 외기가 실내 인버터 패널(500a) 내부로 유입되기 위한 이송력을 제공한다. 패널 송풍부(533)는 공기의 유동을 유도할 수 있는 구조로 구비될 수 있다. 일 실시 예에서, 패널 송풍부(533)는 팬의 형태로 구비될 수 있다.
도시된 실시 예에서, 패널 송풍부(533)는 외기 배출부(532)에 인접하게 위치되나, 그 위치는 변경 가능하다. 대안적으로, 패널 송풍부(533)는 외기 유입부(531)에 인접하게 위치되거나, PCB 장치 수용부(530) 내부에 구비될 수도 있다.
패널 송풍부(533)는 외기를 PCB 장치 수용부(530) 내부로 유입시키기 위한 이송력을 제공할 수 있는 곳에 구비되면 족하다.
베이스부(540)는 실내 인버터 패널(500a)의 실내 하우징(501a)의 하측에 위치된다. 베이스부(540)는 실내 인버터 패널(500a)을 지면으로부터 소정 거리 이격시킨다. 또한, 베이스부(540)는 PCB 장치 수용부(530)를 냉각하기 위한 외기가 유입되는 통로를 형성한다.
베이스부(540)의 형상은 실내 하우징(501a)의 형상에 상응하게 결정되는 것이 바람직하다.
베이스부(540)는 제1 베이스 흡기부(541a), 제2 베이스 흡기부(541b) 및 외기 공급부(542)를 포함한다.
제1 베이스 흡기부(541a)는 베이스부(540)의 전방 측에 형성된다. 제1 베이스 흡기부(541a)는 외기가 베이스부(540) 내부로 유입될 수 있는 통로를 형성한다. 제1 베이스 흡기부(541a)는 통공의 형태로 형성될 수 있다.
도시된 실시 예에서, 제1 베이스 흡기부(541a)는 베이스부(540)의 전방 좌측 및 우측에 각각 형성되나, 그 위치 및 개수는 변경 가능하다.
제2 베이스 흡기부(541b)는 베이스부(540)의 후방 측에 형성된다. 제2 베이스 흡기부(541b)는 외기가 베이스부(540) 내부로 유입될 수 있는 통로를 형성한다. 제2 베이스 흡기부(541b)는 통공의 형태로 형성될 수 있다.
도시된 실시 예에서, 제2 베이스 흡기부(541b)는 베이스부(540)의 후방 좌측 및 우측에 각각 형성되나, 그 위치 및 개수는 변경 가능하다.
외기 공급부(542)는 베이스부(540)에 유입된 외기가 PCB 장치 수용부(530)로 유입되기 위해 베이스부(540)를 빠져나가는 통로이다. 외기 공급부(542)는 개구부로 형성될 수 있다.
외기 공급부(542)와 PCB 장치 수용부(530)의 외기 유입부(531)는 서로 맞추어진다. 즉, 외기 공급부(542)에서 배출된 외기는 다른 곳으로 누출되지 않고 외기 유입부(531)를 통해 PCB 장치 수용부(530) 내부로 유입된다.
이 때 외기가 유동하기 위한 이송력은 자연 발생되거나, 패널 송풍부(533)에 의해 제공될 수도 있다.
실내 인버터 패널(500a)에서의 외기의 유동에 관한 상세한 설명은 후술하기로 한다.
또한, 도시되지는 않았으나 실내 인버터 패널(500a)에는 상술한 메인 부스바(550)가 구비될 수 있다. 메인 부스바(550)가 인버터 장치(10), PCB 장치(534) 및 필터(340)와 통전 가능하게 연결될 수 있음은 상술한 바와 같다.
(4) 실외 인버터 패널(500b)의 설명
본 발명의 일 실시 예에 따른 전력 변환 장치(1)는, 실외 인버터 패널(500b)을 포함한다.
실외 인버터 패널(500b)은 전력 변환 장치(1)가 실외에 구비되는 것을 전제한 것이다. 또한, 실외 인버터 패널(500b)은 그 내측에 인버터 장치(10)를 수용할 뿐만 아니라, PCB 장치(534)를 포함한다.
따라서 실외 인버터 패널(500b)은 상술한 인버터 패널(500)에 비해 인버터 장치(10)가 단수 개 수용된다는 점, PCB 장치(534)를 수용하기 위한 PCB 장치 수용부(530)를 포함한다는 점에 차이가 있다.
이하, 도 19 내지 도 22를 참조하여 본 발명의 실시 예에 따른 실외 인버터 패널(500b)을 상세하게 설명한다.
도시된 실시 예에 따른 실외 인버터 패널(500a)은 실외 하우징(501b), 실외 도어(502b), 제1 인버터 수용부(510), PCB 장치 수용부(530) 및 베이스부(540)를 포함한다.
실외 하우징(501b)은 실외 인버터 패널(500a)의 외측을 형성한다. 도시된 실시 예에서, 실외 하우징(501b)은 상측 및 하측으로 길게 형성된 직육면체 형상이나, 그 형상은 변경 가능하다.
실외 하우징(501b)의 상측에는 지붕이 구비된다. 따라서, 실외 인버터 패널(500b)이 실외에 구비되더라도, 비나 눈 등이 실외 하우징(501b)의 내부로 유입되는 것이 방지될 수 있다.
실외 하우징(501b)의 전방 측에는 실외 도어(502b)가 위치된다. 실외 도어(502b)는 실외 인버터 패널(500a)의 전방 측을 개방하거나 폐쇄할 수 있는 임의의 구조로 구비될 수 있다.
실외 도어(502b)에는 제1 패널 흡기부(511)가 형성된다. 제1 패널 흡기부(511)의 구조 및 기능은 상술한 바와 같으므로, 중복되는 설명은 생략하기로 한다.
실외 인버터 패널(500a)의 내측에는 제1 인버터 수용부(510)와 PCB 장치 수용부(530)가 형성된다.
제1 인버터 수용부(510), PCB 장치 수용부(530) 및 베이스부(540)의 구조 및 기능은 상술한 실내 인버터 패널(500b)과 동일하다. 따라서 이하 중복되는 설명은 생략하기로 한다.
(5) 전원 패널(600)의 설명
본 발명의 실시 예에 따른 전력 변환 장치(1)는 외부로부터 전원을 전달받고 외부에 전원을 전달하기 위한 전원 패널(600)을 포함한다.
이하, 도 3 및 도 4, 도 23 내지 도 25를 참조하여 도시된 실시 예에 따른 전원 패널(600)을 상세하게 설명한다.
전원 패널(600)은 인버터 패널(500)에 인접하게 위치된다. 또한, 전원 패널(600)은 인버터 패널(500)과 통전 가능하게 연결된다.
전원 패널(600)은 외부로부터 직류 전원을 전달받아 인버터 패널(500)에 전달한다. 인버터 패널(500)에 전달된 직류 전원은 인버터 장치(10)에 전달되어, 교류 전원으로 변환된다.
또한, 전원 패널(600)은 인버터 장치(10)에서 변환된 교류 전원을 인버터 패널(500)로부터 전달받는다. 전원 패널(600)에 전달된 교류 전원은 외부의 부하에 전달된다.
전원 패널(600)은 전원 입력 패널(610) 및 전원 출력 패널(620)을 포함한다.
전원 입력 패널(610)은 외부로부터 직류 전원을 전달받는다. 이를 위해, 전원 입력 패널(610)은 외부와 통전 가능하게 연결될 수 있다.
전원 입력 패널(610)은 전원 입력 단자부(611)를 포함한다.
전원 입력 단자부(611)는 전원 입력 패널(610)과 외부의 전원이 연결되는 채널이다. 전원 입력 단자부(611)는 입력 도선 케이블(미도시)에 의해 외부의 전원과 통전 가능하게 연결된다.
전원 입력 패널(610)이 전달받은 직류 전원은 인버터 패널(500)의 메인 부스바(550)를 통해 인버터 장치(10)에 전달된다. 이를 위해, 전원 입력 단자부(611)와 메인 부스바(550)를 통전 가능하게 연결하는 통전 수단(미도시)이 구비될 수 있다.
전원 입력 단자부(611)의 개수는 입력 전원 변환 선로(711)의 개수에 상응하게 결정되는 것이 바람직하다. 예를 들어, 직류 전원의 경우 입력 전원 변환 선로(711)가 두 개로 구비될 수 있는데, 이에 따라 전원 입력 단자부(611)의 개수 또한 두 개로 구비되는 것이다.
도시된 실시 예에서, 전원 입력 패널(610)은 복수 개의 인버터 패널(500)의 우측에 위치된다. 전원 입력 패널(610)의 위치는 변경될 수 있다.
전원 입력 패널(610)의 전방 측에는 통기구(미도시)가 형성되어, 전원 입력 패널(610) 내부를 냉각하기 위한 외기가 유입될 수 있다.
또한, 전원 입력 패널(610)의 전방 측면에는 스위치 등 조작부(미도시)가 구비되어, 전력 변환 장치(1)의 작동을 위한 제어 신호가 인가될 수 있다.
전원 입력 패널(610)의 인버터 패널(500)에 인접한 일측에 대향하는 타측, 즉 도시된 실시 예에서 우측 면에는 후술될 입력 선로 변환 패널(710)이 구비될 수 있다. 이에 대해서는 후술하기로 한다.
전원 출력 패널(620)은 교류 전원을 외부로 전달한다. 이를 위해, 전원 출력 패널(620)은 외부와 통전 가능하게 연결될 수 있다.
전원 출력 패널(620)은 전원 출력 단자부(621)를 포함한다.
전원 출력 단자부(621)는 전원 출력 패널(620)과 외부의 부하가 연결되는 채널이다. 전원 출력 단자부(621)는 출력 도선 케이블(미도시)에 의해 외부의 전원과 통전 가능하게 연결된다.
전원 출력 패널(620)로부터 외부의 부하에 전달되는 교류 전원은 인버터 패널(500)의 메인 부스바(550)를 통해 전원 출력 패널(620)에 전달된다. 이를 위해, 전원 출력 단자부(621)와 메인 부스바(550)를 통전 가능하게 연결하는 통전 수단(미도시)이 구비될 수 있다.
전원 출력 단자부(621)의 개수는 출력 전원 변환 선로(721)의 개수에 상응하게 결정되는 것이 바람직하다. 예를 들어, 교류 전원의 경우 출력 전원 변환 선로(721)가 세 개로 구비될 수 있는데, 이에 따라 전원 출력 단자부(621)의 개수 또한 세 개로 구비되는 것이다.
도시된 실시 예에서, 전원 출력 패널(620)은 복수 개의 인버터 패널(500)의 좌측에 위치된다. 전원 출력 패널(620)의 위치는 변경될 수 있다.
전원 출력 패널(620)의 전방 측에는 통기구(미도시)가 형성되어, 전원 출력 패널(620) 내부를 냉각하기 위한 외기가 유입될 수 있다.
전원 출력 패널(620)의 인버터 패널(500)에 인접한 일측에 대향하는 타측, 즉 도시된 실시 예에서 좌측 면에는 후술될 출력 선로 변환 패널(720)이 구비될 수 있다. 이에 대해서는 후술하기로 한다.
(6) 선로 변환 패널(700)의 설명
본 발명의 실시 예에 따른 전력 변환 장치(1)는 직류 전원의 입력 경로 및 교류 전원의 출력 경로를 변경하기 위한 선로 변환 패널(700)을 포함한다.
선로 변환 패널(700)은 전원 패널(600)에 인접하게 위치되고, 전원 패널(600)과 통전 가능하게 연결된다. 선로 변환 패널(700)은 일종의 모듈로, 애드온(add-on) 방식으로 전원 패널(600)에 결합될 수 있다.
이하, 도 23 내지 도 26을 참조하여 도시된 실시 예에 따른 선로 변환 패널(700)을 상세하게 설명한다.
선로 변환 패널(700)은 전원 패널(600)로 전원이 전달되거나, 전원 패널(600)로부터 전원을 전달받기 위한 경로를 변경한다.
선로 변환 패널(700)은 외부로부터 직류 전원을 전달받아 전원 패널(600)에 전달한다. 또한 선로 변환 패널(700)은 전원 패널(600)로부터 교류 전원을 전달받아 외부의 부하에 전달한다.
선로 변환 패널(700)은 입력 선로 변환 패널(710) 및 출력 선로 변환 패널(720)을 포함한다.
입력 선로 변환 패널(710)은 외부로부터 직류 전원을 전달받고, 전달받은 직류 전원을 전원 입력 패널(610)에 전달한다.
입력 선로 변환 패널(710)은 전원 입력 패널(610)에 인접하게 위치된다. 또한 입력 선로 변환 패널(710)은 전원 입력 패널(610)과 통전 가능하게 연결된다.
도시된 실시 예에서, 입력 선로 변환 패널(710)은 전원 입력 패널(610)의 우측에 인접하게 위치되나, 그 위치는 변경될 수 있다. 다만, 입력 선로 변환 패널(710)이 어느 곳에 위치되더라도, 입력 선로 변환 패널(710)은 전원 입력 패널(610)에 인접하게 위치되는 것이 바람직하다.
입력 선로 변환 패널(710)은 입력 전원 변환 선로(711), 입력 개구부(712) 및 입력 선로 단자부(713)를 포함한다.
입력 전원 변환 선로(711)는 후술될 입력 선로 단자부(713)와 전원 입력 패널(610)의 전원 입력 단자부(611)를 통전 가능하게 연결한다.
입력 전원 변환 선로(711)의 형상은 변경될 수 있다. 구체적으로, 입력 전원 변환 선로(711)의 형상은 후술될 입력 선로 단자부(713)의 위치 및 전원 입력 단자부(611)의 위치, 그리고 입력 선로 변환 패널(710) 내부의 구조에 따라 변경될 수 있다.
따라서, 입력 전원 변환 선로(711)에 의해 후술될 입력 선로 단자부(713)의 위치 및 전원 입력 단자부(611)의 위치가 자유롭게 결정될 수 있다.
입력 개구부(712)는 후술될 입력 선로 단자부(713)에 외부의 입력 도선 케이블(미도시)이 연결될 수 있는 통로이다.
도시된 실시 예에서, 입력 개구부(712)는 입력 선로 변환 패널(710)의 상측, 우측 및 후방 측에 각각 형성된다. 또한, 입력 선로 변환 패널(710)의 우측에는 입력 개구부(712)가 상측 및 하측에 각각 형성된다.
즉, 입력 개구부(712)는 전원 입력 패널(610)에 인접하지 않은 입력 선로 변환 패널(710)의 일측에 형성될 수 있다.
이는 후술될 입력 선로 단자부(713)의 위치 선정의 자유도를 증가시키기 위한 것이다. 즉, 입력 개구부(712)의 위치가 다양화될수록 전력 변환 장치(1)가 외부로부터 직류 전원을 전달받기 위한 입력 선로 단자부(713)의 위치를 다양하게 설정할 수 있다.
입력 도선 케이블(미도시)이 연결되지 않은 입력 개구부(712)는 이물질 등의 유입을 방지할 수 있도록 커버(미도시)가 구비될 수 있다.
입력 선로 단자부(713)는 외부로부터 직류 전원이 전달되는 채널이다(도 30 참조). 입력 선로 단자부(713)는 외부의 전원과 도선 입력 케이블(미도시)로 연결된다.
일 실시 예에서, 입력 선로 단자부(713)와 도선 입력 케이블(미도시)은 나사 결합될 수 있다. 이 경우, 입력 선로 단자부(713)와 도선 입력 케이블(미도시)의 견고한 체결이 가능하다.
입력 선로 단자부(713)는 복수 개 구비될 수 있다. 구체적으로, 입력 선로 단자부(713)는 복수 개의 입력 개구부(712)마다 각각 구비될 수 있다. 대안적으로, 입력 선로 단자부(713)는 복수 개의 입력 개구부(712) 중 어느 하나에 구비될 수 있다. 이러한 실시 예에서, 직류 전원을 전달받는 경로가 다양화될 수 있다. 따라서 사용자의 편의가 제고될 수 있다.
출력 선로 변환 패널(720)은 외부로부터 직류 전원을 전달받고, 전달받은 직류 전원을 전원 출력 패널(620)에 전달한다.
출력 선로 변환 패널(720)은 전원 출력 패널(620)에 인접하게 위치된다. 또한 출력 선로 변환 패널(720)은 전원 출력 패널(620)과 통전 가능하게 연결된다.
도시된 실시 예에서, 출력 선로 변환 패널(720)은 전원 출력 패널(620)의 좌측에 인접하게 위치되나, 그 위치는 변경될 수 있다. 다만, 출력 선로 변환 패널(720)이 어느 곳에 위치되더라도, 출력 선로 변환 패널(720)은 전원 출력 패널(620)에 인접하게 위치되는 것이 바람직하다.
출력 선로 변환 패널(720)은 출력 전원 변환 선로(721), 출력 개구부(722) 및 출력 선로 단자부(723)를 포함한다.
출력 전원 변환 선로(721)는 후술될 출력 선로 단자부(723)와 전원 출력 패널(620)의 전원 출력 단자부(621)를 통전 가능하게 연결한다.
출력 전원 변환 선로(721)의 형상은 변경될 수 있다. 구체적으로, 출력 전원 변환 선로(721)의 형상은 후술될 출력 선로 단자부(723)의 위치 및 전원 출력 단자부(621)의 위치, 그리고 출력 선로 변환 패널(720) 내부의 구조에 따라 변경될 수 있다.
따라서, 출력 전원 변환 선로(721)에 의해 후술될 출력 선로 단자부(723)의 위치 및 전원 출력 단자부(621)의 위치가 자유롭게 결정될 수 있다.
출력 개구부(722)는 후술될 출력 선로 단자부(723)에 외부의 출력 도선 케이블(미도시)이 연결될 수 있는 통로이다.
도시된 실시 예에서, 출력 개구부(722)는 출력 선로 변환 패널(720)의 상측, 좌측 및 후방 측에 각각 형성된다. 또한, 출력 선로 변환 패널(720)의 좌측에는 출력 개구부(722)가 상측 및 하측에 각각 형성된다. 즉, 출력 개구부(722)는 전원 출력 패널(620)에 인접하지 않은 출력 선로 변환 패널(720)의 일측에 형성될 수 있다.
이는 후술될 출력 선로 단자부(723)의 위치 선정의 자유도를 증가시키기 위한 것이다. 즉, 출력 개구부(722)의 위치가 다양화될수록 전력 변환 장치(1)로부터 외부의 부하에 교류 전원을 전달하기 위한 출력 선로 단자부(723)의 위치를 다양하게 설정할 수 있다.
출력 도선 케이블(미도시)이 연결되지 않은 출력 개구부(722)는 이물질 등의 유입을 방지할 수 있도록 커버(미도시)가 구비될 수 있다.
출력 선로 단자부(723)는 교류 전원이 외부의 부하로 전달되는 채널이다(도 30 참조). 출력 선로 단자부(723)는 외부의 전원과 도선 출력 케이블(미도시)로 연결된다.
일 실시 예에서, 출력 선로 단자부(723)와 도선 출력 케이블(미도시)은 나사 결합될 수 있다. 이 경우, 출력 선로 단자부(723)와 도선 출력 케이블(미도시)의 견고한 체결이 가능하다.
출력 선로 단자부(723)는 복수 개 구비될 수 있다. 구체적으로, 출력 선로 단자부(723)는 복수 개의 출력 개구부(722)마다 각각 구비될 수 있다. 대안적으로, 출력 선로 단자부(723)는 복수 개의 출력 개구부(722) 중 어느 하나 이상에 구비될 수 있다. 이러한 실시 예에서, 교류 전원을 전달하는 경로가 다양화될 수 있다. 따라서 사용자의 편의가 제고될 수 있다.
2. 본 발명의 실시 예에 따른 인버터 장치(10)의 공기 유동 과정의 설명
본 발명의 실시 예에 따른 인버터 장치(10)는 제1 장치부(200) 및 제2 장치부(300)로 각각 외기가 유입될 수 있다. 유입된 외기는 제1 장치부(200)의 인버터 모듈(240) 및 제2 장치부(300)의 필터(340)를 냉각하고 배출될 수 있다.
이하, 도 27을 참조하여 본 발명의 실시 예에 따른 인버터 장치(10)에서의 공기 유동 과정을 상세하게 설명한다.
먼저, 제1 장치부(200)에서의 공기의 유동 과정을 설명한다.
제1 송풍부(230a) 및 제3 송풍부(230c)가 작동되면, 외기가 제1 흡기부(210a) 및 제3 흡기부(210c)를 통과하여 제1 장치부(200) 내부로 유입된다. 이 때 제1 송풍부(230a) 및 제3 송풍부(230c)가 외기의 유동을 위한 이송력을 제공함은 상술한 바와 같다.
또한, 제1 송풍부(230a) 및 제3 송풍부(230c)가 가동되지 않더라도, 바람 등의 자연력에 의해 외기가 제1 장치부(200) 내부로 유입될 수 있다.
제1 송풍부(230a) 및 제3 송풍부(230c)의 작동에 의해 외기는 지속적으로 제1 장치부(200) 내부로 유입된다. 따라서 제1 장치부(200) 내부로 유입된 외기는 뒤이어 유입되는 외기에 밀려 제1 장치부(200)의 후측으로 이동된다.
이 때, 제1 흡기부(210a) 및 제3 흡기부(210c)와 제1 배기부(220a) 및 제3 배기부(220c) 사이에는 인버터 모듈(240)이 위치된다. 따라서 외기가 인버터 모듈(240)과 열 교환함으로써 인버터 모듈(240)이 냉각된다.
상술한 과정을 통해 제1 장치부(200) 내부에서 유동하던 외기는 제1 장치부(200)의 후측에 도달한 후, 제1 배기부(220a) 및 제3 배기부(220c)를 통해 제1 장치부(200)에서 배출된다.
다음으로, 제2 장치부(300)에서의 공기의 유동 과정을 설명한다.
제2 송풍부(330)가 작동되면, 외기가 제2 흡기부(310)를 통과하여 제2 장치부(300) 내부로 유입된다. 이 때 제2 송풍부(330)가 외기의 유동을 위한 이송력을 제공함은 상술한 바와 같다.
또한, 제2 송풍부(330)가 가동되지 않더라도, 바람 등의 자연력에 의해 외기가 제2 장치부(300) 내부로 유입될 수 있다.
제2 송풍부(330)의 작동에 의해 외기는 지속적으로 제2 장치부(300) 내부로 유입된다. 따라서 제2 장치부(300) 내부로 유입된 외기는 뒤이어 유입되는 외기에 밀려 제2 장치부(300)의 후측으로 이동된다.
이 때, 제2 흡기부(310) 및 제2 배기부(320) 사이에는 필터(340)가 위치된다. 따라서 외기가 필터(340)와 열 교환함으로써 필터(340)가 냉각된다.
상술한 과정을 통해 제2 장치부(300) 내부에서 유동하는 외기는 제2 장치부(300)의 후측에 도달한 후, 제2 배기부(320)를 통해 제2 장치부(300)에서 배출된다.
이 때, 제1 송풍부(230a), 제2 송풍부(330) 및 제3 송풍부(230c)의 작동 여부 및 작동 속도 등이 각각 독립적으로 제어될 수 있음은 상술한 바와 같다.
상술한 바와 같이, 제1 장치부(200)와 제2 장치부(300)는 격벽부(400)에 의해 물리적으로 분리된다.
따라서, 제1 장치부(200) 내부에서 유동하는 외기와 제2 장치부(300) 내부에서 유동하는 외기는 혼합되지 않게 된다.
그러므로, 인버터 모듈(240)과 필터(340)는 서로에 의한 영향을 받지 않고 효과적으로 냉각될 수 있다.
필터(340)의 발열량에 비해 인버터 모듈(240)의 발열량이 높다는 점에 기인하여, 제1 장치부(200)에 제3 흡기부(210c), 제3 배기부(220c) 및 제3 송풍부(230c)가 더 구비됨은 상술한 바와 같다.
3.1. 본 발명의 실시 예에 따른 인버터 패널(500)의 공기 유동 과정의 설명
본 발명의 실시 예에 따른 인버터 패널(500)에는 내부에 수용되는 인버터 장치(10)를 냉각하기 위한 외기가 유입될 수 있다. 유입된 외기는 인버터 장치(10)에 구비된 인버터 모듈(240) 및 필터(340)를 냉각하고 배출될 수 있다.
이하, 도 28을 참조하여 본 발명의 실시 예에 따른 인버터 패널(500)의 공기 유동 과정을 상세하게 설명한다.
상술한 바와 같이, 제1 인버터 수용부(510) 및 제2 인버터 수용부(520)는 제1 패널 흡기부(511) 및 제2 패널 흡기부(521)를 각각 구비한다.
제1 인버터 수용부(510)에 수용된 인버터 장치(10)가 작동되면, 인버터 장치(10)에 구비된 제1 송풍부(230a), 제2 송풍부(330) 및 제3 송풍부(230c)가 작동된다.
제1 송풍부(230a), 제2 송풍부(330) 및 제3 송풍부(230c)는 외기가 인버터 패널(500) 내부로 유입되기 위한 이송력을 제공한다. 이에 따라 외기는 제1 패널 흡기부(511) 및 제2 패널 흡기부(521)를 통과하여 인버터 패널(500) 내부로 유입된다.
인버터 패널(500) 내부로 유입된 외기는 여전히 제1 송풍부(230a), 제2 송풍부(330) 및 제3 송풍부(230c)에 의해 이송력을 제공받는 상태이다. 따라서, 외기는 인버터 장치(10)의 제1 장치부(200) 및 제2 장치부(300)로 유입된다.
외기가 인버터 장치(10) 내부로 유입된 후 배출되는 과정은 상술한 바와 같다.
인버터 장치(10)에서 배출된 외기는 여전히 제1 송풍부(230a), 제2 송풍부(330) 및 제3 송풍부(230c)에 의해 이송력을 제공받는 상태이다. 따라서, 외기는 인버터 패널(500)의 후측으로 이동된다.
상술한 바와 같이, 인버터 패널(500)의 후측에는 제1 패널 배기부(512) 및 제2 패널 배기부(522)가 형성된다. 따라서, 외기는 제1 패널 배기부(512) 및 제2 패널 배기부(522)를 통과하여 인버터 패널(500)의 외부로 배출된다.
정리하면, 각 패널 흡기부(511, 521), 각 흡기부(210a, 310, 210c), 인버터 장치(10), 각 배기부(220a, 320, 220c) 및 각 패널 배기부(512, 522)를 포함하는 외기 유입 및 배출 유로가 형성된다.
3.2. 본 발명의 실시 예에 따른 실내 인버터 패널(500a) 및 실외 인버터 패널(500b)의 공기 유동 과정의 설명
본 발명의 실시 예에 따른 실내 인버터 패널(500a) 및 실외 인버터 패널(500b)에는 내부에 수용되는 인버터 장치(10) 및 PCB 장치(534)를 냉각하기 위한 외기가 유입될 수 있다.
유입된 외기는 인버터 장치(10)에 구비된 인버터 모듈(240) 및 필터(340)와 PCB 장치(534)를 냉각하고 배출될 수 있다.
이하 도 29를 참조하여 본 발명의 실시 예에 따른 실내 인버터 패널(500a) 및 실외 인버터 패널(500b)의 공기 유동 과정을 상세하게 설명한다.
제1 인버터 수용부(510)에서의 외기 유동 과정은 상술한 바와 같으므로, 중복되는 설명은 생략하기로 한다.
PCB 장치 수용부(530)에서의 공기 유동 과정을 설명하면 다음과 같다.
상술한 바와 같이, PCB 장치 수용부(530)는 외기 유입부(531), 외기 배출부(532) 및 패널 송풍부(533)를 포함한다. 또한, PCB 장치 수용부(530)의 하측에는 베이스부(540)가 위치된다.
PCB 장치(534)에 전원이 인가되면, 패널 송풍부(533)가 작동된다. 대안적으로, 실내 인버터 패널(500a) 및 실외 인버터 패널(500b)에 전원이 인가되는 경우에도 패널 송풍부(533)가 작동될 수 있다.
패널 송풍부(533)가 작동됨에 따라, 외기는 베이스부(540)의 제1 베이스 흡기부(541a) 및 제2 베이스 흡기부(541b)를 향해 이동되기 위한 이송력을 제공받는다.
이는, PCB 장치 수용부(530)의 외기 유입부(531)와 베이스부(540)의 외기 공급부(542)가 유체 소통 가능하도록 서로 맞추어짐에 기인한다.
제1 베이스 흡기부(541a) 및 제2 베이스 흡기부(541b)를 통해 베이스부(540)로 유입된 외기는 외기 공급부(542)를 통과한다. 이 때, 외기는 패널 송풍부(533)에 의해 PCB 장치 수용부(530)를 향하도록 이송력을 제공받을 뿐만 아니라, 뒤따라서 베이스부(540) 내부로 유입되는 외기에 의해 밀리게 된다.
외기는 PCB 장치 수용부(530)의 외기 유입부(531)를 통해 PCB 장치 수용부(530) 내부로 유입된다.
PCB 장치 수용부(530) 내부로 유입된 외기는 여전히 패널 송풍부(533)에 의해 이송력을 제공받는 상태이다. 따라서, 외기는 PCB 장치 수용부(530)의 후측에 위치된 패널 송풍부(533)를 향해 이동된다.
이 때, 외기가 패널 송풍부(533)를 향해 이동되며 PCB 장치(534) 또는 필터(340)와 열 교환함으로써, PCB 장치(534) 또는 필터(340)가 냉각된다.
상술한 바와 같이, PCB 장치 수용부(530)의 후측에는 외기 배출부(532)가 형성된다. 따라서, 외기는 외기 배출부(532)를 통해 실내 인버터 패널(500a) 및 실외 인버터 패널(500b) 외부로 배출된다.
정리하면, 각 베이스 흡기부(541a, 541b), 외기 공급부(542), 외기 유입부(531), PCB 장치 수용부(530) 및 외기 배출부(532)를 포함하는 외기 유입 및 배출 유로가 형성된다.
4. 본 발명의 실시 예에 따른 전력 변환 장치(1)의 입력 전원 및 출력 전원의 경로가 변경되는 양태의 설명
본 발명의 실시 예에 따른 전력 변환 장치(1)는 선로 변환 패널(700)을 포함한다. 상술한 바와 같이, 선로 변환 패널(700)에 의해 직류 전원의 전달 위치 및 교류 전원의 전달 위치가 변경될 수 있다.
이하, 도 30을 참조하여 본 발명의 실시 예에 따른 전력 변환 장치(1)의 전원 입력 및 출력 경로가 변경되는 양태를 상세하게 설명한다.
상술한 바와 같이, 전원 패널(600)에 인접하게 선로 변환 패널(700)이 위치될 수 있다.
구체적으로, 입력 선로 변환 패널(710)은 전원 입력 패널(610)의 일측, 도시된 실시 예에서는 전원 입력 패널(610)의 우측에 인접하게 위치된다. 또한, 출력 선로 변환 패널(720)은 전원 출력 패널(620)의 일측, 도시된 실시 예에서는 전원 출력 패널(620)의 좌측에 인접하게 위치된다.
전원 입력 패널(610)과 전원 출력 패널(620) 사이에는 인버터 패널 공간부(S)가 형성되어, 인버터 패널(500)이 결합될 수 있다.
전원 입력 패널(610)의 일측에 구비된 전원 입력 단자부(611)는 입력 선로 변환 패널(710)에 구비된 입력 전원 변환 선로(711)의 일측과 통전 가능하게 연결된다.
또한, 입력 전원 변환 선로(711)의 타측은 입력 선로 단자부(713)와 통전 가능하게 연결된다.
이 때, 입력 선로 단자부(713)는 입력 개구부(712)가 형성된 위치에 구비될 수 있다.
상술한 바와 같이, 입력 개구부(712)는 입력 선로 변환 패널(710)의 우측, 상측 및 후측 등에 위치될 수 있다. 따라서, 입력 선로 단자부(713) 또한 입력 선로 변환 패널(710)의 우측, 상측 및 후측 등에 위치될 수 있다.
입력 선로 단자부(713)는 외부의 입력 도선 케이블(미도시)과 통전 가능하게 연결된다. 이에 따라 외부의 직류 전원은 입력 도선 케이블(미도시), 입력 선로 단자부(713), 입력 전원 변환 선로(711) 및 전원 입력 단자부(611)를 통해 전원 입력 패널(610)에 전달된다.
전원 출력 패널(620)의 일측에 구비된 전원 출력 단자부(621)는 출력 선로 변환 패널(720)에 구비된 출력 전원 변환 선로(721)의 일측과 통전 가능하게 연결된다.
또한, 출력 전원 변환 선로(721)의 타측은 출력 선로 단자부(723)와 통전 가능하게 연결된다.
이 때, 출력 선로 단자부(723)는 출력 개구부(722)가 형성된 위치에 구비될 수 있다.
상술한 바와 같이, 출력 개구부(722)는 출력 선로 변환 패널(720)의 좌측, 상측 및 후측 등에 위치될 수 있다. 따라서, 출력 선로 단자부(723) 또한 출력 선로 변환 패널(720)의 좌측, 상측 및 후측 등에 위치될 수 있다.
출력 선로 단자부(723)는 외부의 출력 도선 케이블(미도시)과 통전 가능하게 연결된다. 이에 따라 변환된 교류 전원은 전원 출력 단자부(621), 출력 전원 변환 선로(721), 출력 선로 단자부(723) 및 출력 도선 케이블(미도시)을 통해 외부의 부하에 전달된다.
5. 본 발명에 따른 전력 변환 장치(1)의 효과의 설명
본 발명에 따른 전력 변환 장치(1)는 모듈화된 인버터 장치(10)를 구비한다. 각 인버터 장치(10)는 직류 전원을 교류 전원으로 변환하기 위한 인버터 모듈(240)과 변환된 교류 전원을 필터링하기 위한 필터(340)를 모두 포함한다.
따라서, 인버터 장치(10)의 개수를 변경하는 것만으로도 전력 변환 장치(1) 전체의 전력 변환 용량이 조절될 수 있다.
또한, 인버터 장치(10)의 모듈화에 따라 인버터 장치 및 필터를 별도로 수용하기 위한 공간이 요구되지 않는다. 따라서, 전력 변환 장치(1)의 소형화가 가능하므로, 전력 변환 장치(1)를 설치하기 위해 요구되는 공간이 감소될 수 있다.
또한, 인버터 장치(10)를 냉각하기 위한 외기는 인버터 모듈(240)이 수용된 제1 장치부(200)와 필터(340)가 수용된 제2 장치부(300)에 각각 유입된다. 또한, 유입된 외기는 격벽부(400)에 의해 서로 혼합되지 않는다.
따라서, 각 장치부(200, 300)에서의 발열량에 따라 효과적인 냉각이 가능하다.
인버터 장치(10)가 수용되는 인버터 패널(500)에도 외기의 유입을 위한 각 패널 흡기부(511, 521) 및 각 패널 배기부(512, 522)가 구비된다. 따라서, 인버터 패널(500) 내부에 수용된 인버터 장치(10)의 효과적인 냉각이 가능하다.
또한, 각 인버터 패널(500)은 서로 통전 가능하게 연결됨으로써 스케일 업(scale up)이 가능하다. 따라서 사용 중 전력 변환 용량을 변경시킬 필요가 있는 경우에도, 인버터 패널(500)을 추가하거나 감소시키는 것만으로도 전력 변환 용량을 변경할 수 있다.
또한, 선로 변환 패널(700)이 애드온(add-on) 방식으로 구비됨에 따라, 직류 전원의 입력 방향 및 교류 전원의 출력 방향을 다양하게 설정할 수 있다. 따라서, 전력 변환 장치(1)가 설치되는 환경에 맞게 전원의 입력 및 출력 방향을 설정할 수 있으므로, 사용자의 편의가 제고될 수 있다.
이상 본 발명의 바람직한 실시 예를 참조하여 설명하였지만, 당 업계에서 통상의 지식을 가진 자라면 이하의 청구범위에 기재된 본 발명의 사상 및 영역을 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
1: 전력 변환 장치
10: 인버터 장치
100: 하우징
150a: 입력 단자부
150b: 출력 단자부
200: 제1 장치부
210a: 제1 흡기부
210c: 제3 흡기부
220a: 제1 배기부
220c: 제3 배기부
230a: 제1 송풍부
230c: 제3 송풍부
240: 인버터 모듈
241: 커패시터(capacitor)
242: 히트 싱크(heatsink)
243: IGBT(절연 게이트 양극성 트랜지스터)
244: SMPS(스위칭 모드 파워 서플라이)
245: 퓨즈(fuse)
300: 제2 장치부
310: 제2 흡기부
320: 제2 배기부
330: 제2 송풍부
340: 필터(filter)
400: 격벽부
500: 인버터 패널
500a: 실내 인버터 패널
500b: 실외 인버터 패널
501a: 실내 하우징
501b: 실외 하우징
502a: 실내 도어
502b: 실외 도어
510: 제1 인버터 수용부
511: 제1 패널 흡기부
512: 제1 패널 배기부
520: 제2 인버터 수용부
521: 제2 패널 흡기부
522: 제2 패널 배기부
530: PCB 장치 수용부
531: 외기 유입부
532: 외기 배출부
533: 패널 송풍부
534: PCB 장치
540: 베이스부
541a: 제1 베이스 흡기부
541b: 제2 베이스 흡기부
542: 외기 공급부
550: 메인 부스바
550a: 제1 메인 부스바
550b: 제2 메인 부스바
551: 포트
551a: 제1 포트
551b: 제2 포트
600: 전원 패널
610: 전원 입력 패널
611: 전원 입력 단자부
620: 전원 출력 패널
621: 전원 출력 단자부
700: 선로 변환 패널
710: 입력 선로 변환 패널
711: 입력 전원 변환 선로
712: 입력 개구부
713: 입력 선로 단자부
720: 출력 선로 변환 패널
721: 출력 전원 변환 선로
722: 출력 개구부
723: 출력 선로 단자부
S: 인버터 패널 공간부
Claims (10)
- 내부에 직류 전원을 교류 전원으로 변환하여 외부의 부하에 공급하는 인버터 모듈을 구비하는 제1 장치부;상기 제1 장치부에 인접하게 위치되며, 내부에 상기 교류 전원의 노이즈(noise)를 필터링하기 위한 필터를 구비하는 제2 장치부; 및내부에 상기 제1 장치부 및 상기 제2 장치부를 수용하는 하우징을 포함하며,상기 하우징의 일측에는,상기 직류 전원을 입력받는 입력 단자부; 및상기 인버터 모듈에 의해 변환된 상기 교류 전원을 출력하는 출력 단자부가 구비되며,상기 입력 단자부 및 상기 출력 단자부는, 상기 인버터 모듈 또는 상기 필터에 상기 직류 전원을 전달하고 상기 인버터 모듈 또는 상기 필터로부터 상기 교류 전원을 전달받는 메인 부스바(busbar)와 직접 연결 가능하게 구성되는,인버터 장치.
- 제1항에 있어서,상기 하우징의 내부에는,상기 제1 장치부와 상기 제2 장치부를 구획하는 격벽부가 구비되는,인버터 장치.
- 제2항에 있어서,상기 제1 장치부는,상기 제1 장치부의 일측에 형성되며, 상기 제1 장치부 내부로 상기 인버터 모듈을 냉각하기 위한 공기가 유입되는 제1 흡기부; 및상기 제1 장치부의 일측에 대향하는 타측에 형성되며, 상기 제1 흡기부 내부로 유입된 공기가 배출되는 제1 배기부를 포함하고,상기 제2 장치부는,상기 제1 장치부의 일측과 같은 방향을 향하는 상기 제2 장치부의 일측에 형성되며, 상기 제2 장치부 내부로 상기 필터를 냉각하기 위한 공기가 유입되는 제2 흡기부; 및상기 제2 장치부의 일측에 대향하는 타측에 형성되며, 상기 제2 흡기부 내부로 유입된 공기가 배출되는 제2 배기부를 포함하는,인버터 장치.
- 제3항에 있어서,상기 제1 흡기부 및 상기 제1 배기부 중 어느 하나 이상에는 상기 제1 장치부 내부를 유동하는 공기에 이송력을 제공하는 제1 송풍부가 구비되고,상기 제2 흡기부 및 상기 제2 배기부 중 어느 하나 이상에는 상기 제2 장치부 내부를 유동하는 공기에 이송력을 제공하는 제2 송풍부가 구비되는,인버터 장치.
- 직류 전원을 교류 전원으로 변환하여 외부의 부하에 공급하는 인버터 장치; 및외부로부터 직류 전원을 전달받아 상기 인버터 장치에 전달하고, 변환된 상기 교류 전원을 상기 인버터 장치로부터 전달받아 상기 외부의 부하에 공급하는 제1 메인 부스바를 포함하며,상기 인버터 장치는,내부에 직류 전원을 교류 전원으로 변환하여 외부의 부하에 공급하는 인버터 모듈을 구비하는 제1 장치부;상기 제1 장치부에 인접하게 위치되며, 내부에 상기 교류 전원의 노이즈(noise)를 필터링하기 위한 필터를 구비하는 제2 장치부; 및내부에 상기 제1 장치부 및 상기 제2 장치부를 수용하는 하우징을 포함하며,상기 하우징의 일측에는,상기 직류 전원을 입력받는 입력 단자부; 및상기 인버터 모듈에 의해 변환된 상기 교류 전원을 출력하는 출력 단자부가 구비되며,상기 제1 메인 부스바는,상기 제1 메인 부스바와 상기 입력 단자부 및 상기 출력 단자부를 직접 연결 가능하게 구성되는 제1 포트를 포함하는,인버터 패널.
- 제5항에 있어서,상기 인버터 장치를 수용하는 제1 인버터 수용부를 포함하며,상기 제1 메인 부스바는 상기 제1 인버터 수용부에 인접하게 위치되는,인버터 패널.
- 제6항에 있어서,상기 제1 인버터 수용부에 인접하게 위치되며, 상기 인버터 장치를 수용하는 제2 인버터 수용부; 및외부로부터 상기 직류 전원을 전달받아 상기 인버터 장치에 입력하고, 변환된 상기 교류 전원을 상기 인버터 장치로부터 전달받아 상기 외부의 부하에 공급하는 제2 메인 부스바를 포함하며,상기 제2 메인 부스바는,상기 제2 메인 부스바와 상기 제2 인버터 수용부에 수용된 상기 인버터 장치의 상기 입력 단자부 및 상기 출력 단자부를 직접 연결 가능하게 구성되는 제2 포트를 포함하는,인버터 패널.
- 직류 전원을 교류 전원으로 변환하여 외부의 부하에 공급하는 인버터 장치; 및상기 인버터 장치를 수용하는 인버터 패널을 N개 포함하고,상기 인버터 패널은, 외부로부터 직류 전원을 전달받아 상기 인버터 장치에 전달하고 변환된 교류 전원을 상기 인버터 장치로부터 전달받아 상기 외부의 부하에 공급하는 메인 부스바를 구비하고,상기 인버터 장치는,내부에 직류 전원을 교류 전원으로 변환하여 외부의 부하에 공급하는 인버터 모듈을 구비하는 제1 장치부;상기 제1 장치부에 인접하게 위치되며, 내부에 상기 교류 전원의 노이즈(noise)를 필터링하기 위한 필터를 구비하는 제2 장치부를 포함하며,N개의 상기 인버터 패널 각각이 다른 인버터 패널의 상기 메인 부스바와 서로 통전 가능하게 연결되면, 전력변환용량이 N배가 되는,전력 변환 장치.
- 제8항에 있어서,상기 제1 메인 부스바는 상기 인버터 패널의 일측 및 상기 일측에 대향하는 타측으로 연장되고,N개의 상기 인버터 패널 각각은 다른 인버터 패널의 상기 메인 부스바와 서로 접촉되도록 일렬로 배치되는,전력 변환 장치.
- 제9항에 있어서,N개의 상기 인버터 패널의 일측에는 외부로부터 전달된 상기 직류 전원을 전달받는 전원 입력 패널이 구비되고,N개의 상기 인버터 패널의 타측에는 변환된 상기 교류 전원을 상기 외부의 부하에 전달하는 전원 출력 패널이 구비되며,상기 전원 입력 패널, N개의 상기 인버터 패널 및 상기 전원 출력 패널은 서로 통전 가능하게 연결되는,전력 변환 장치.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980090061.2A CN113330677A (zh) | 2019-01-25 | 2019-08-23 | 逆变器装置以及包括其的电力转换装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2019-0009886 | 2019-01-25 | ||
KR1020190009886A KR102299859B1 (ko) | 2019-01-25 | 2019-01-25 | 인버터 장치 및 이를 포함하는 전력변환장치 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020153559A1 true WO2020153559A1 (ko) | 2020-07-30 |
Family
ID=71736946
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/010758 WO2020153559A1 (ko) | 2019-01-25 | 2019-08-23 | 인버터 장치 및 이를 포함하는 전력변환장치 |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR102299859B1 (ko) |
CN (1) | CN113330677A (ko) |
WO (1) | WO2020153559A1 (ko) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220001516U (ko) | 2020-12-18 | 2022-06-27 | 엘에스일렉트릭(주) | 인버터 장치 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101468144B1 (ko) * | 2014-05-21 | 2014-12-08 | 데스틴파워 주식회사 | 인버터 모듈 |
US20150214889A1 (en) * | 2014-01-28 | 2015-07-30 | Lg Electronics Inc. | Solar cell module and photovoltaic power generation system including the same |
KR20160069367A (ko) * | 2014-12-08 | 2016-06-16 | 엘에스산전 주식회사 | 태양광 인버터 스택 |
KR20160146380A (ko) * | 2015-06-12 | 2016-12-21 | 엘지전자 주식회사 | 전력변환장치 |
KR20180100951A (ko) * | 2017-03-03 | 2018-09-12 | 엘에스산전 주식회사 | 인버터 장치 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5011016B2 (ja) | 2007-07-30 | 2012-08-29 | 株式会社日立産機システム | 電力変換装置 |
IN2014CN03063A (ko) | 2011-10-06 | 2015-07-31 | Mitsubishi Electric Corp | |
JP6319074B2 (ja) * | 2014-12-15 | 2018-05-09 | 富士電機株式会社 | 電力変換装置 |
-
2019
- 2019-01-25 KR KR1020190009886A patent/KR102299859B1/ko active IP Right Grant
- 2019-08-23 WO PCT/KR2019/010758 patent/WO2020153559A1/ko active Application Filing
- 2019-08-23 CN CN201980090061.2A patent/CN113330677A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150214889A1 (en) * | 2014-01-28 | 2015-07-30 | Lg Electronics Inc. | Solar cell module and photovoltaic power generation system including the same |
KR101468144B1 (ko) * | 2014-05-21 | 2014-12-08 | 데스틴파워 주식회사 | 인버터 모듈 |
KR20160069367A (ko) * | 2014-12-08 | 2016-06-16 | 엘에스산전 주식회사 | 태양광 인버터 스택 |
KR20160146380A (ko) * | 2015-06-12 | 2016-12-21 | 엘지전자 주식회사 | 전력변환장치 |
KR20180100951A (ko) * | 2017-03-03 | 2018-09-12 | 엘에스산전 주식회사 | 인버터 장치 |
Also Published As
Publication number | Publication date |
---|---|
CN113330677A (zh) | 2021-08-31 |
KR20200092682A (ko) | 2020-08-04 |
KR102299859B1 (ko) | 2021-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020153560A1 (ko) | 인버터 장치 및 이를 포함하는 인버터 패널 | |
WO2021157873A1 (ko) | 냉각 플레이트 및 이의 제조 방법 | |
WO2010137921A2 (en) | Led driver | |
WO2018038371A1 (ko) | 청소기 | |
WO2019066233A1 (ko) | 제어기 및 이를 포함하는 모터 조립체 | |
WO2021157874A1 (ko) | 서브 모듈 | |
WO2020153559A1 (ko) | 인버터 장치 및 이를 포함하는 전력변환장치 | |
WO2020153558A1 (ko) | 전력 변환 장치 | |
WO2021157875A1 (ko) | 서브 모듈 | |
WO2023120915A1 (ko) | 전력 변환 모듈 및 이를 포함하는 전력 공급 장치 | |
WO2023120916A1 (ko) | 덕트 모듈 및 이를 포함하는 전력 변환 모듈 | |
WO2021182789A2 (ko) | 기중 차단기 | |
WO2020055080A1 (ko) | 전원 공급 시스템 | |
WO2020055019A1 (ko) | 전원 공급 장치 및 전원 공급 시스템 | |
WO2020055079A1 (ko) | 전원 공급 시스템 | |
WO2023171907A1 (ko) | 유로 모듈 및 이를 포함하는 전력 기기 | |
WO2020055078A1 (ko) | 전원 공급 장치 및 전원 공급 시스템 | |
WO2022098217A1 (ko) | 단락 조정 장치 및 이를 포함하는 모듈형 멀티 레벨 컨버터 | |
WO2024085365A1 (ko) | 아크 소호 장치 | |
WO2024147485A1 (ko) | 공기 조화기 | |
WO2022114763A1 (ko) | 커버 조립체 및 이를 포함하는 전력 변환 장치 | |
WO2024150965A1 (ko) | 아크 소호 장치 | |
WO2021157876A1 (ko) | 서브 모듈 | |
WO2024162611A1 (ko) | 전력 기기 | |
WO2023128150A1 (ko) | 유체 정화 장치 및 이를 포함하는 전력 기기 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19911826 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19911826 Country of ref document: EP Kind code of ref document: A1 |