WO2023171907A1 - 유로 모듈 및 이를 포함하는 전력 기기 - Google Patents
유로 모듈 및 이를 포함하는 전력 기기 Download PDFInfo
- Publication number
- WO2023171907A1 WO2023171907A1 PCT/KR2023/001058 KR2023001058W WO2023171907A1 WO 2023171907 A1 WO2023171907 A1 WO 2023171907A1 KR 2023001058 W KR2023001058 W KR 2023001058W WO 2023171907 A1 WO2023171907 A1 WO 2023171907A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vortex
- space
- substrate
- flow path
- fluid
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20218—Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
- H05K7/20272—Accessories for moving fluid, for expanding fluid, for connecting fluid conduits, for distributing fluid, for removing gas or for preventing leakage, e.g. pumps, tanks or manifolds
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2089—Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
- H05K7/20927—Liquid coolant without phase change
Definitions
- the present invention relates to a flow path module and a power device including the same, and more specifically, to a flow path module with a structure capable of improving cooling efficiency by forming a flow path for fluid for cooling, and to a power device including the same. .
- a power device refers to any device that is connected to an external power source or load and can receive or transmit power.
- Power devices include inverters, capacitors, and PCBs to control them, and can process and transmit delivered power according to the load.
- the heat sink may be located adjacent to a device that generates a lot of heat, and may be configured to receive and dissipate the generated heat.
- a fin-shaped heat sink may be provided that transfers heat in the form of conduction and dissipates heat in the form of convection.
- the heat sink is configured so that only components that can be contacted or combined can be cooled. That is, in the case of a member such as a PCB to which a heat sink cannot be directly contacted or coupled, cooling is difficult to easily perform.
- Korean Patent Document No. 10-0998213 discloses a PCB cooling device. Specifically, a PCB cooling device is disclosed that is capable of dissipating heat from a PCB by configuring a heat sink made of a shape memory alloy to directly contact and release semiconductor elements in contact with the PCB.
- the PCB cooling device disclosed in the above prior literature is provided in a plate shape similar to the PCB, it is difficult to contribute to miniaturization of the PCB and the device provided with the PCB cooling device. Furthermore, since the PCB cooling device disclosed in the above prior literature is made of a shape memory alloy, there is a risk that the manufacturing cost will increase and the manufacturing process will become complicated.
- Korean Patent Publication No. 10-2021-0002271 discloses a PCB cooling device. Specifically, a PCB cooling device capable of cooling a PCB by spraying cooling water onto the PCB is disclosed.
- the PCB cooling device disclosed in the prior literature is water cooling, not air cooling. Therefore, in order for the above prior literature to be applied, a separate process for waterproofing the PCB is required.
- the PCB cooling device disclosed in the above prior literature requires a separate coolant tank and piping member to supply and circulate coolant. Therefore, it is difficult for the above prior literature to achieve simplification and miniaturization of the structure of power devices.
- the present invention is intended to solve the above problems, and the purpose of the present invention is to provide a flow path module with a structure in which components can be effectively cooled and a power device including the same.
- Another object of the present invention is to provide a flow path module with a structure that can minimize blind spots where fluid for cooling cannot flow, and a power device including the same.
- Another object of the present invention is to provide a flow path module with a structure in which fluid for cooling can flow smoothly and a power device including the same.
- Another object of the present invention is to provide a flow path module with a structure in which components can be effectively cooled without a separate fluid source and a power device including the same.
- Another object of the present invention is to provide a flow path module with a structure that can improve design freedom and freedom of arrangement, and a power device including the same.
- a flow path dividing member in communication with the space of the housing, through which fluid flowing in the space flows;
- a duct member coupled to the flow path dividing member and communicating with the flow path dividing member through which the fluid flows; and a vortex forming member coupled to the duct member and communicating with the duct member through which the fluid flows, wherein the vortex forming member is formed on an inner surface of an end portion in an extension direction thereof to cause the fluid to form a vortex.
- a flow path module is provided, which is formed and includes a vortex protrusion configured to be discharged.
- the vortex forming member includes a vortex body extending in one direction, and one end of the extending direction is coupled to the duct member; and a vortex arm extending in the other direction, one end in the extending direction is coupled to the vortex forming member, and the other end in the extending direction is formed open so that the fluid is discharged.
- a flow path module may be provided. there is.
- the vortex forming member includes a first vortex hollow formed through the inside of the vortex body along the one direction and communicating with the inside of the duct member;
- a flow path module may be provided, including a second vortex hollow formed through the inside of the vortex arm along the other direction and communicating with the first vortex hollow and the outside, respectively.
- the fluid includes a portion flowing along the one direction in the first vortex hollow; And a flow path module branched from the first vortex hollow to another portion exposed to the outside through the second vortex hollow may be provided.
- a flow path module may be provided in which a plurality of the vortex arms are formed, and the plurality of vortex arms are coupled to the outer periphery of the vortex body at different positions.
- the vortex protrusion may be provided with a flow path module in which the vortex protrusion is formed to protrude radially inward from the inner surface of the other end of the vortex arm.
- a flow path module may be provided in which a plurality of the vortex protrusions are provided, and the plurality of vortex protrusions are arranged to be spaced apart from each other along the inner periphery of the inner surface of the vortex arm.
- a flow path module may be provided in which the vortex forming member extends along one direction, and the duct member extends obliquely at a predetermined angle with respect to the one direction.
- the duct member may be provided with a flow path module in which one end in the extending direction is coupled with and communicates with the vortex forming member, and the other end in the extending direction is coupled with and communicates with the flow path dividing member.
- the duct member may be provided as a flow path module formed of a flexible material.
- the flow path dividing member includes: a divided body coupled to the duct member; And a flow path module may be provided, which is formed inside the divided body and includes a divided space that is open and into which the fluid flows.
- the divided body includes: a first divided surface surrounding a portion of the divided space; a second dividing surface extending at a predetermined angle with the first dividing surface and surrounding another portion of the dividing space; It includes a third split surface and a fourth split surface that are each continuous with the first split surface and the second split surface and are disposed to face each other with the split space therebetween, and the duct member is configured to form the second split surface.
- a flow path module may be provided that extends obliquely by the predetermined angle along which the surface extends.
- the flow path dividing member and the duct member are disposed to face each other with a support plate disposed in the space of the housing in between, and are respectively coupled to one side and the other side of the support plate, and are located inside the support plate.
- a flow path module may be provided in which support through-holes communicating with the flow path dividing member and the duct member are formed through each other.
- a housing having a housing space portion communicating with the outside formed therein; an electrically conductive portion accommodated in the housing space and electrically connected to the outside; and a flow path module coupled to the current conductive portion to form a flow path for a fluid that cools the current conductive portion, wherein the current conductive portion includes a plurality of substrates arranged to be stacked and spaced apart from each other, and the flow path module is a flow path dividing member that communicates with the housing space and allows fluid flowing in the housing space to flow into it; a duct member coupled to any one of the plurality of substrates and the flow path dividing member, and communicating with the flow path dividing member through which the fluid flows; and a vortex forming member coupled to one of the plurality of substrates and another one located adjacent to the one, and communicating with the duct member through which the fluid flows, wherein the vortex forming member extends
- a power device is provided, including a vortex protrusion formed on an inner surface of an end of the
- the vortex forming member includes: a first vortex forming member coupled to a pair of adjacent substrates among the plurality of substrates; And a second vortex forming member that is coupled to another pair of substrates adjacent to each other among the plurality of substrates and communicates with the first vortex forming member, wherein the plurality of substrates are located at the lowermost side, and the lower side is a first substrate coupled to the duct member and an upper side thereof coupled to the first vortex forming member; a second substrate disposed on an upper side of the first substrate and spaced apart from the first substrate, a lower side of which is coupled to the first vortex forming member, and an upper side of which is coupled to the second vortex forming member; And a power device including a third substrate disposed on an upper side of the second substrate and spaced apart from the second substrate, the lower side of which is coupled to the second vortex forming member.
- a first substrate through-hole, a second substrate through-hole, and a third substrate through-hole are formed through the insides of the first substrate, the second substrate, and the third substrate, respectively, and the duct member penetrates the first substrate.
- a power device may be provided, wherein the first vortex forming member communicates with the first substrate through hole and the second substrate through hole, and the second vortex forming member communicates with the second substrate through hole.
- a portion of the fluid flowing into the first vortex forming member is discharged into the first flow space, which is a space formed between the first substrate and the second substrate, and the remaining portion is discharged into the second vortex forming member.
- the fluid flowing and flowing into the second vortex forming member is partially discharged into the second flow space, which is a space formed between the second substrate and the third substrate, and the remaining portion is discharged to the upper side of the third substrate.
- a power device that is discharged into a third flow space, which is a space formed in may be provided.
- the vortex forming member includes a vortex body extending in a direction in which the plurality of substrates are stacked, and having a first vortex hollow formed therein penetrating along the extending direction; And a vortex arm extending in a direction different from the vortex body and having a second vortex hollow inside each of the first vortex hollow and the flow space in communication with the flow space is formed penetrating along the direction of extension.
- a power device may be provided. there is.
- the vortex protrusion may be provided with a power device located adjacent to an end of the inner surface of the vortex arm surrounding the second vortex hollow.
- the housing includes a blower coupled to one surface thereof to provide a conveying force that causes external fluid to flow into the housing space, and the flow path dividing member is configured to provide a conveying force that flows into the housing space by the conveying force.
- a power device may be provided that is disposed on a flow path through which fluid flows, and is configured to allow some of the introduced fluid to flow to the flow path dividing member.
- the components of the flow path module and the power device including the same according to an embodiment of the present invention can be effectively cooled.
- Components accommodated inside the housing may be cooled by external fluid flowing into the housing space.
- the external fluid flows in the housing space and exchanges heat with the contained components to cool them.
- the flow path module is provided with a flow path dividing member that communicates with the housing space.
- the fluid flowing into the housing space may be divided and a portion of it may flow in the flow path dividing member.
- the flow path dividing member includes a dividing surface formed to extend obliquely.
- the fluid flowing into the flow path dividing member flows along the dividing surface and may flow toward the duct member and the vortex forming member.
- the duct member and the vortex forming member are each in communication with the flow path dividing member.
- the vortex forming member includes a vortex protrusion formed at a portion where its inside and outside communicate.
- the fluid flowing into the vortex forming member is discharged to the outside and is formed into a vortex by the vortex protrusion.
- the fluid discharged from the vortex forming member flows in various forms and heat exchange with components can proceed smoothly.
- each component of the power device can be effectively cooled by the fluid discharged from the vortex forming member.
- the flow path module and power equipment including the same can minimize blind spots where fluid for cooling cannot flow.
- a plurality of substrates are stacked and arranged to be spaced apart from each other.
- a flow space is formed between the plurality of substrates.
- the vortex forming member is disposed in the flow space, so that fluid flowing into the vortex forming member can be discharged into the flow space.
- the fluid discharged into the flow space may flow while cooling the substrate and components coupled to the substrate.
- the fluid for cooling can flow in a large space and various spaces. Accordingly, blind spots where fluid for cooling cannot flow can be minimized.
- components disposed away from the heat dissipation member, such as the substrate, can also be effectively cooled.
- fluid for cooling can flow smoothly in the flow path module and the power device including the same according to an embodiment of the present invention.
- the flow path dividing member includes a divided space through which the divided fluid flows and a dividing surface that partially surrounds the divided space and guides the divided fluid toward the duct member.
- the divided fluid may flow along the dividing surface and toward the duct member.
- the duct member may have its inner surface inclined and extended.
- the slope of the inner surface of the duct member may be formed to correspond to the slope of the dividing surface.
- the inner surface of the duct member may extend smoothly without any separate protrusions.
- the fluid flowing in the housing space can be discharged into the flow space through the flow path dividing member, duct member, and vortex forming member without significant flow resistance. Accordingly, the fluid for cooling can flow smoothly.
- the components of the flow path module and the power device including the same according to an embodiment of the present invention can be effectively cooled without a separate fluid source.
- the fluid for cooling the components of the power device may be given a conveying force by the operation of the blower.
- fluid remaining outside the housing may flow into the housing space. Due to the conveying force applied by the blower, fluid can continuously flow in the housing space. That is, no separate member is required to supply fluid for cooling.
- the flow path dividing member is disposed on the path of the fluid flowing in the housing space. That is, no separate device is required to guide the fluid toward the flow path dividing member. When the blower operates, part of the fluid flowing into the housing space may flow into the flow path dividing member to cool the substrate.
- the fluid can flow and cool various components without a separate source or additional power source.
- the flow path module and power equipment including the same according to an embodiment of the present invention can have improved design freedom and freedom of arrangement.
- the flow path module is located between the substrates and is configured to discharge fluid into the space between the substrates.
- Euro modules can be manufactured to fit the size of the tiny spaces formed between substrates. That is, even if the Euro module is provided, the size of the power device does not increase.
- the flow path module may have a plurality of vortex forming members.
- a plurality of vortex forming members may be respectively positioned between each pair of substrates disposed adjacent to each other.
- vortex forming members may also be additionally provided correspondingly. That is, the number of vortex forming members can be adjusted so that the flow path module can be easily scaled up or scaled down.
- the flow path module is located in a dead space formed between the substrates. In other words, no additional space is required to accommodate the Euro module.
- the utilization of the space inside the power device is improved, and it can be transformed into various forms depending on the capacity of the power device. Accordingly, the degree of design freedom and freedom of arrangement can be improved.
- FIG. 1 is a perspective view showing a power device according to an embodiment of the present invention.
- FIG. 2 is a partially open perspective view showing the internal configuration of the power device of FIG. 1.
- FIG. 3 is a cross-sectional view taken along line A-A illustrating the internal configuration of the power device of FIG. 1.
- FIG. 4 is a partially enlarged cross-sectional view showing a coupling structure between a flow path module and a PCB provided in the power device of FIG. 1.
- FIG. 5 is an exploded perspective view showing the coupling structure between the flow path module of FIG. 4 and the PCB.
- FIG. 6 is a perspective view showing some components of the flow path module of FIG. 4.
- FIG. 7 is a perspective view showing a flow path module provided in the power device of FIG. 1.
- FIG. 8 is an exploded perspective view showing a coupling structure between components of the flow path module of FIG. 7.
- FIG. 9 is a partially open perspective view showing a duct member provided in the flow path module of FIG. 7.
- FIG. 10 is a side cross-sectional view showing a duct member provided in the flow path module of FIG. 7.
- FIG. 11 is a front cross-sectional view showing a vortex forming member provided in the flow path module of FIG. 7.
- FIG. 12 is a plan cross-sectional view showing a vortex forming member provided in the flow path module of FIG. 7.
- FIG. 13 is a partial perspective view showing a modified example of the vortex forming member of FIG. 12.
- FIG. 14 is a partially open perspective view showing a flow path formed inside the flow path module of FIG. 7.
- FIG. 15 is a side cross-sectional view showing a flow path formed inside the flow path module of FIG. 7.
- FIG. 16 is a side cross-sectional view showing a flow path formed inside the power device of FIG. 1.
- FIG. 17 is a front cross-sectional view showing a flow path formed inside the power device of FIG. 1.
- 18 to 21 are partially opened perspective views showing a flow path formed inside the power device of FIG. 1.
- communication means that one or more members are connected to each other in fluid communication.
- the communication channel may be formed by a member such as a conduit, pipe, or piping.
- conducting means that one or more members are connected to each other to transmit current or electrical signals.
- electricity may be formed in a wired form using a conductor member, or in a wireless form such as Bluetooth, Wi-Fi, or RFID.
- fluid used in the following description refers to any form of material whose shape, etc. can be modified by external force.
- the fluid may be introduced into the interior of the power device 10 and exchange heat with the components of the power device 10 . By the heat exchange, various components provided in the power device 10 can be cooled.
- the fluid may be a gas such as air.
- a power device 10 according to an embodiment of the present invention is shown.
- the power device 10 may be provided in any form that can accommodate various electrical and electronic devices therein and perform preset functions.
- the power device 10 may be equipped with any device including an inverter, an insulated gate bipolar transistor (IGBT), a printed circuit board (PCB), etc.
- IGBT insulated gate bipolar transistor
- PCB printed circuit board
- the power device 10 may be connected to an external power source or load.
- the power device 10 may be configured to receive power from an external power source, process the delivered power in various forms, and then transfer it to an external load.
- the fluid flowing into the power device 10 flows in various spaces inside the power device 10 and is preferably configured to exchange heat with various components.
- the power device 10 may include a flow path module 11 to form various flow paths for fluid introduced for cooling. Accordingly, the components of the power device 10 according to an embodiment of the present invention can be effectively cooled, and operational reliability can be improved.
- the power device 10 includes a housing 100, an electric current conducting part 200, a flow path dividing member 300, a duct member 400, and a vortex forming member 500.
- the flow path module 11 constituting the flow path dividing member 300, the duct member 400, and the vortex forming member 500 will be described in a separate section.
- the housing 100 forms the outer shape of the power device 10.
- the housing 100 is a part of the power device 10 exposed to the outside.
- a space is formed inside the housing 100 so that various components of the power device 10 can be mounted.
- the inside of the housing 100 is connected to an external power source or load.
- Components accommodated inside the housing 100 may be connected to an external power source or load.
- a conductive wire member (not shown) may pass through the inside of the housing 100.
- the housing 100 may be formed of an electrically insulating material. This is to prevent random energization with an external power source or load, and to prevent accidents such as electric shock with workers located adjacent to the power device 10.
- the housing 100 may be formed of a highly heat-resistant material. This is to prevent safety accidents that may be caused by damage from heat generated from components of the power device 10 accommodated inside the housing 100 or heating by the generated heat.
- the housing 100 may be formed of a synthetic resin material such as poly carbonate (PC).
- PC poly carbonate
- the housing 100 communicates with the outside. Fluid outside the housing 100 may flow into the interior of the housing 100. Various components accommodated inside the housing 100 may be cooled by heat exchange with the introduced fluid.
- the housing 100 may be provided in any shape capable of mounting the components of the power device 10.
- the housing 100 has a rectangular pillar shape with an extension length in the front-to-back direction longer than an extension length in the left-right direction and a height in the vertical direction.
- the housing 100 includes a first housing 110, a second housing 120, a blower 130, a terminal 140, a housing space 150, and a support plate 160. do.
- the first housing 110 forms part of the outer shape of the housing 100. In the illustrated embodiment, the first housing 110 forms the upper side of the housing 100 .
- the first housing 110 is coupled to the second housing 120.
- the first housing 110 may be removably coupled to the second housing 120.
- coupling and separation of the first housing 110 and the second housing 120 can be easily performed, so that manufacturing and maintenance of the power device 10 can be simplified.
- a space is formed inside the first housing 110.
- the space communicates with a space formed inside the second housing 120.
- the space formed inside the first housing 110 may be defined as the first space 151
- the space formed inside the second housing 120 may be defined as the second space 152.
- One side of the first housing 110 in the illustrated embodiment, the lower side is open.
- the interior of the first housing 110 may communicate with the interior of the second housing 120 through one side, that is, the lower side.
- the first housing 110 is coupled to the terminal portion 140.
- Various components accommodated inside the housing 100 may be connected to an external power source or load through the terminal portion 140.
- the terminal portion 140 is located at one end in the longitudinal direction of the first housing 110, in the illustrated embodiment, on the front end surface.
- the first housing 110 includes ribs 111 and a ventilation portion 112.
- the ribs 111 form part of the first housing 110 .
- the ribs 111 reinforce the rigidity of the first housing 110.
- the ribs 111 are formed in the width direction of the first housing 110, that is, on the left and right sides, respectively.
- the ribs 111 extend in the height direction of the first housing 110, in the vertical direction in the illustrated embodiment. Accordingly, the rigidity of the first housing 110 in the height direction can be strengthened.
- a plurality of ribs 111 may be formed.
- the plurality of ribs 111 may be arranged to be spaced apart from each other along the longitudinal direction of the first housing 110 .
- the ribs 111 are arranged to be spaced apart from each other along the front-back direction.
- the space formed by the plurality of ribs 111 spaced apart from each other may be defined as the ventilation portion 112.
- the ventilation portion 112 communicates with the interior space of the first housing 110, that is, the first space 151, and the outside. Fluid outside the first housing 110, that is, fluid for cooling, may flow into the first space 151 through the ventilation portion 112. Additionally, the fluid inside the first housing 110, that is, the fluid for which heat exchange has been completed, may flow out of the first space 151 through the ventilation portion 112.
- the ventilation portion 112 is formed through the surface of the first housing 110.
- the ventilation portion 112 may be formed at any location that can communicate with the interior space of the first housing 110 and the exterior.
- the ventilation portion 112 is formed in the same manner as the rib 111 in the width direction of the first housing 110, that is, on the left and right sides, respectively.
- the ventilation portion 112 extends in the height direction of the first housing 110, in the vertical direction in the illustrated embodiment.
- the shape of the ventilation portion 112 may be changed to correspond to the shape of the ribs 111.
- a plurality of ventilation portions 112 may be formed.
- the plurality of ventilation portions 112 may be arranged to be spaced apart from each other along the longitudinal direction of the first housing 110 .
- the ventilation portions 112 are arranged to be spaced apart from each other along the front-to-back direction.
- the ventilation portion 112 is formed between the ribs 111 located adjacent to each other. That is, the ventilation portion 112 is formed by spaced apart a pair of ribs 111 located adjacent to each other.
- a plurality of ribs 111 are formed and arranged in the longitudinal direction of the first housing 110, in the front-back direction in the illustrated embodiment. Accordingly, a plurality of ventilation portions 112 may also be formed and disposed in the longitudinal direction of the first housing 110, or in the front-back direction in the illustrated embodiment.
- the ribs 111 and the ventilation portion 112 are arranged alternately and continuously along the longitudinal direction of the first housing 110.
- the second housing 120 forms another part of the outer shape of the housing 100. In the illustrated embodiment, the second housing 120 forms the lower side of the housing 100 .
- the second housing 120 is coupled to the first housing 110.
- the second housing 120 may be removably coupled to the first housing 110.
- a space is formed inside the second housing 120.
- the space communicates with a space formed inside the first housing 110. Accordingly, the first space 151 and the second space 152 are communicated as described above.
- One side of the second housing 120 in the illustrated embodiment, the upper side, is open.
- the interior of the second housing 120 communicates with the interior of the first housing 110 through one side, that is, the upper side.
- first housing 110 and the second housing 120 have one side facing each other open, and the interiors of the first housing 110 and the second housing 120 communicate with each other.
- the components of the power device 10 can be accommodated throughout the interior of the first housing 110 and the second housing 120 . Additionally, as will be described later, fluid flowing into one of the first housing 110 and the second housing 120 may flow into the other.
- the second housing 120 communicates with the outside. External fluid may flow into the second housing 120 and exchange heat with various components accommodated therein.
- one longitudinal end of the second housing 120 that is, the front end, is open and communicates with the outside.
- the second housing 120 is coupled to the blowing unit 130.
- Various components accommodated inside the housing 100 may be cooled by fluid introduced by the blower 130.
- the blower 130 provides a conveying force for fluid outside the housing 100 to flow into the inside of the housing 100.
- the blower 130 is located in a portion of the second housing 120 that communicates with the outside, and can transmit a transfer force from the outside toward the inside of the second housing 120 to the external fluid.
- the blower 130 is located at one end in the longitudinal direction of the second housing 120, that is, at the front end.
- the blower 130 may be accommodated inside the second housing 120 and disposed so as not to be exposed to the outside.
- the blowing unit 130 is connected to the terminal unit 140.
- the power required to operate the blower 130 may be transmitted from the terminal 140 or an external power source connected to the terminal 140.
- the operator may apply a control signal to control the operation of the blower 130 through the terminal unit 140.
- the blower 130 may be provided in any form capable of providing a conveying force to the external fluid and causing the fluid to flow into the interior of the housing 100.
- the blower 130 is provided in the form of a fan including a plurality of blades.
- a plurality of blowing units 130 may be provided.
- the plurality of blowing units 130 may be arranged in various shapes to apply a conveying force to an external fluid.
- two blowers 130 are provided and arranged side by side in the width direction of the housing 100, that is, in the left and right directions.
- the fluid flowing into the internal space of the second housing 120, that is, the second space 152, by the blower 130 is a component accommodated in the second space 152, that is, a switching element 210, which will be described later, and heat dissipation. Heat is exchanged with the member 220 and the like, and these can be cooled.
- the power device 10 can divide the flow of fluid flowing into the second space 152 and guide it to the first space 151. Accordingly, components accommodated in the first space 151, such as the substrate 230 and the capacitor 250, can be effectively cooled. A detailed description of this will be provided later.
- the terminal unit 140 is a part where the internal space of the housing 100 is electrically connected to the outside.
- the terminal unit 140 conducts electricity between an external power source or load and various components accommodated inside the housing 100.
- the terminal unit 140 may include a plurality of operating members.
- the operating member is provided with a button, dial, or touch screen, and can receive various control signals to operate the power device 10.
- the terminal portion 140 is coupled to the first housing 110.
- the terminal portion 140 is located at one end in the longitudinal direction of the first housing 110, in the illustrated embodiment, at the front end.
- the operator can easily energize the terminal unit 140 located on the front side and an external power source or load. Additionally, in an embodiment in which the terminal unit 140 is provided with an operating member, the operator can easily control the power device 10 by manipulating the terminal unit 140 located on the front side.
- the terminal unit 140 is electrically connected to various components accommodated in the internal space of the housing 100 and may be placed in any position where a control signal can be received from the operator.
- the terminal portion 140 is electrically connected to other components of the power device 10.
- the terminal unit 140 may be connected to the blowing unit 130 and the energizing unit 200.
- the space in which various components that are connected to the terminal portion 140 are mounted may be defined as the housing space portion 150.
- the housing space 150 is a space formed inside the first housing 110 and the second housing 120.
- the housing space 150 mounts various components constituting the power device 10.
- the housing space 150 may accommodate the blower 130, the support plate 160, the current conductor 200, and the flow path module 11.
- the housing space 150 is surrounded and defined by the first housing 110 and the second housing 120.
- the housing space 150 is not exposed to the outside by the surfaces of the first housing 110 and the second housing 120.
- the housing space 150 communicates with the outside. External fluid may flow into the housing space 150 and cool the accommodated components before being discharged.
- the housing space 150 is electrically connected to the outside. Various components accommodated in the housing space 150 may be connected to an external power source or load.
- the housing space 150 includes a first space 151 and a second space 152.
- the first space 151 is a space formed inside the first housing 110.
- the first space 151 is formed surrounded by the surface of the first housing 110.
- the first space 151 is surrounded on its front side, rear side, top side, left side, and right side by the surface of the first housing 110.
- the first space 151 may be said to be partially surrounded by the surface of the first housing 110.
- the first space 151 Another part of the first space 151, the lower side in the illustrated embodiment, is formed open.
- the first space 151 communicates with the second space 152 through the other part, that is, the lower side.
- External fluid flowing into the second space 152 may flow into the first space 151 through the communication.
- the first space 151 communicates with the outside.
- the fluid flowing from the second space 152 to the first space 151 may be discharged to the outside.
- the communication can be achieved by a ventilation portion 112 formed in the first housing 110.
- the ventilation portion 112 is not provided with a separate member to limit the flow direction of the fluid. Accordingly, external fluid may flow into the first space 115 through the ventilation portion 112 and exchange heat with components accommodated inside the first space 115.
- the first space 151 accommodates the substrate 230 and some components of the flow path module 11.
- the first space 151 is connected to the second space 152. Components of the power device 10 may be accommodated across the first space 151 and the second space 152 .
- the second space 152 is a space formed inside the second housing 120.
- the second space 152 is formed surrounded by the surface of the second housing 120.
- the second space 152 is surrounded on its front, rear, lower, left, and right sides by the surface of the second housing 120.
- the second space 152 may be said to be partially surrounded by the surface of the second housing 120.
- Another part of the second space 152 is formed open.
- the second space 152 communicates with the first space 151 through the other part, that is, the upper side.
- the external fluid flowing into the second space 152 may flow into the first space 151.
- the second space 152 communicates with the outside. Specifically, the second space 152 communicates with the outside through one side of the second housing 120 where the blower 130 is located, or the front side in the illustrated embodiment. External fluid may flow into the second space 152 through the front side by the transfer force applied by the blower 130.
- the fluid flowing into the second space 152 may flow while cooling the components accommodated in the second space 152. Additionally, some of the fluid flowing into the second space 152 may flow into the first space 151 through the flow path module 11.
- the flow path module 11 communicates with the first space 151 and the second space 152, respectively. Accordingly, the components accommodated in the first space 151 and the components accommodated in the second space 152 can be effectively cooled. A detailed description of this will be provided later.
- the second space 152 accommodates the support plate 160, the switching element 210 of the current conductor 200, the heat dissipation member 220, and the capacitor 250.
- the support plate 160 supports the flow path dividing member 300 of the flow path module 11.
- the support plate 160 is located in the second space 152.
- the support plate 160 physically and partially partitions the first space 151 and the second space 152.
- the support plate 160 divides the first space 151 and the second space 152 along its height direction, or in the illustrated embodiment, along its vertical direction.
- the support plate 160 is coupled to the heat dissipation member 220 of the energizing part 200. By the above combination, the support plate 160 can be stably maintained in a state accommodated in the second space 152. In the illustrated embodiment, the rear end of the support plate 160 is coupled to the heat dissipation member 220.
- the support plate 160 is coupled to the flow path dividing member 300.
- the flow path dividing member 300 can be coupled to the housing 100. Accordingly, the support plate 160 may be said to support the flow path dividing member 300.
- the support plate 160 divides the first space 151 and the second space 152, communicates with the flow path dividing member 300, and may be provided in any shape capable of supporting the flow path dividing member 300. You can.
- the support plate 160 is provided in the shape of a square plate extending in the longitudinal and width directions of the housing 100, that is, in the front-back and left-right directions, respectively.
- a support through hole 161 is formed inside the support plate 160.
- the support through hole 161 is formed through the support plate 160 in the thickness direction, in the vertical direction in the illustrated embodiment.
- the support through hole 161 communicates with the upper and lower sides of the support plate 160. Through the communication, the first space 151 and the second space 152 may be communicated.
- the support through hole 161 may communicate with the divided space 320 of the flow path dividing member 300. Due to the communication, a portion of the fluid flowing into the second space 152 may pass through the divided space 320 and the through hole (not shown) and flow into the duct member 400.
- the support through hole 161 overlaps some components of the flow path module 11, that is, the flow path dividing member 300 and the duct member 400, in the height direction, in the vertical direction in the illustrated embodiment. can be placed. Accordingly, it can be said that the support through hole 161 forms a flow path for fluid flowing into the second space 152 together with the flow path module 11.
- the support through hole 161 may be of any shape capable of communicating with the flow path dividing member 300 and the duct member 400.
- the support through-hole 161 has a circular cross-section and has a cylindrical shape extending in the vertical direction.
- the energizing unit 200 is a component of the power device 10 that conducts electricity with an external power source or load.
- the energizing unit 200 may be configured in various forms necessary for the power device 10 to perform its function.
- the current conduction unit 200 includes a switching element 210 to perform a switching function.
- the current carrying unit 200 may include various types of electronic devices such as inverter elements.
- the current conducting part 200 is mounted inside the housing 100.
- the energizing part 200 is not arbitrarily exposed to the outside of the housing 100. At this time, some of the components of the current-carrying unit 200 are accommodated inside the first housing 110, and other components are accommodated inside the second housing 120.
- the switching element 210, the heat dissipation member 220, and the capacitor 250 of the current conducting unit 200 are accommodated in the second space 152. Additionally, the substrate 230 of the current conducting part 200 is accommodated in the first space 151.
- the first space 151 and the second space 152 communicate with each other. Accordingly, it can be said that the energizing part 200 is accommodated throughout the first space 151 and the second space 152.
- the energizing unit 200 is energized with an external power source or load.
- the energization is achieved by the energizing part 200 being energized with the terminal part 140. That is, the energizing part 200 is energized with an external power source or load via the terminal part 140.
- the current conductor 200 includes a switching element 210, a heat dissipation member 220, a substrate 230, a substrate communication hole 240, and a capacitor 250.
- the switching element 210 operates by switching according to an applied control signal to open and close the circuit.
- the switching element 210 is connected to an external power source or load through the terminal unit 140. Since the operating principle and function of the switching element 210 is a well-known technology, detailed description thereof will be omitted.
- the switching element 210 may be provided in any form capable of opening and closing a circuit through a switching operation.
- the switching element 210 may be provided as an Insulated Gate Bipolar Transistor (IGBT).
- IGBT Insulated Gate Bipolar Transistor
- the switching element 210 is connected to the substrate 230.
- a control signal for operating the switching element 210 may be transmitted from the substrate 230.
- the switching element 210 is connected to the capacitor 250. Power required to operate the switching element 210 may be transmitted from the capacitor 250.
- the switching element 210 is accommodated inside the housing 100. Specifically, the switching element 210 is accommodated in the second space 152, but is located biased toward the first space 151. That is, in the embodiment shown in FIGS. 3 and 4 , the switching element 210 is positioned toward the upper side in the second space 152 .
- the switching element 210 is located adjacent to the heat dissipation member 220 and the substrate 230. In the illustrated embodiment, the switching element 210 is located between the heat dissipation member 220 and the second substrate 232.
- the switching element 210 may include a plurality of elements. Accordingly, as the switching element 210 operates, a large amount of heat may be generated. Accordingly, a heat dissipation member 220 is provided to effectively dissipate and cool the switching element 210.
- the heat dissipation member 220 receives heat generated by the switching element 210 and radiates it to the outside. At this time, the heat emitted by the heat radiation member 220 may be transferred to the fluid flowing in the second space 152. Accordingly, the switching element 210 can be cooled.
- the heat dissipation member 220 is accommodated in the second space 152.
- the heat dissipation member 220 is located adjacent to the switching element 210.
- the heat dissipation member 220 may be in contact with the switching element 210 to receive heat in the form of conduction.
- the heat dissipation member 220 is located below the switching element 210, and its upper surface is in contact with the lower surface of the switching element 210.
- the heat dissipation member 220 may be provided in any form capable of receiving heat from the switching element 210 and transferring the received heat back to the fluid flowing into the second space 152.
- the heat dissipation member 220 may be formed by having a plurality of fins arranged side by side and spaced apart from each other.
- the heat dissipation member 220 is supported on the second housing 120.
- the lower side of the heat dissipation member 220 is supported by the lower inner surface of the second housing 120 .
- the board 230 receives control signals for the operation of the power device 10. Additionally, the substrate 230 controls the switching element 210 and the capacitor 250 according to the applied control signal. The substrate 230 is electrically connected to the terminal unit 140, the switching element 210, and the capacitor 250, respectively.
- the substrate 230 may be provided in any form capable of receiving a control signal from the outside and controlling the switching element 210 and the capacitor 250 according to the received control signal.
- the substrate 230 may be provided as a printed circuit board (PCB).
- the substrate 230 is provided as a PCB
- the operating principle of the PCB is a well-known technology, so detailed description will be omitted.
- a plurality of substrates 230 may be provided.
- the plurality of substrates 230 are arranged to be spaced apart from each other, but may be electrically conductive to each other. Additionally, the plurality of substrates 230 may be electrically connected to the terminal unit 140, the switching element 210, and the capacitor 250, respectively.
- three substrates 230 are provided, including a first substrate 231, a second substrate 232, and a third substrate 233.
- the first substrate 231, the second substrate 232, and the third substrate 233 are stacked and spaced apart from each other along the height direction of the housing 100, or in the vertical direction in the illustrated embodiment.
- the substrate 230 is disposed to be spaced apart from the heat dissipation member 220. Therefore, it is difficult for heat generated in the substrate 230 to be transferred to the heat dissipation member 220. Likewise, heat generated from any electrical element coupled to the substrate 230 is also difficult to transfer to the heat dissipation member 220.
- the power device 10 includes a flow path module 11, so that fluid can flow between the plurality of substrates 230. Accordingly, the plurality of substrates 230 and the electrical elements respectively coupled to the plurality of substrates 230 can be effectively cooled. A detailed description of this will be provided later.
- the first substrate 231 is located at the bottom. Additionally, the third substrate 233 is located at the uppermost side, and the second substrate 232 is located between the first substrate 231 and the third substrate 233. That is, the first substrate 231, the second substrate 232, and the third substrate 233 are sequentially stacked.
- the first substrate 231, the second substrate 232, and the third substrate 233 are arranged to be spaced apart from each other by a predetermined distance. Accordingly, a space is formed between each of the substrates 231, 232, and 233 due to the separation. In the illustrated embodiment, three substrates 230 are provided, so three spaces may also be formed.
- the space formed on the upper side of the first substrate 231 may be defined as the first flow space S1.
- the first flow space S1 may also be defined as a space formed below the second substrate 232. Accordingly, the first flow space S1 may be defined as a space formed between the first substrate 231 and the second substrate 232.
- the space formed on the upper side of the second substrate 232 may be defined as the second flow space S2.
- the second flow space S2 may also be defined as a space formed below the third substrate 233. Accordingly, the second flow space S2 may be defined as a space formed between the second substrate 232 and the third substrate 233.
- the space formed on the upper side of the third substrate 233 may be defined as the third flow space S3.
- the third flow space S3 may be defined as a space formed below the upper surface of the first housing 110. Accordingly, the third flow space S3 may be defined as a space formed between the third substrate 233 and the upper surface of the first housing 110.
- the plurality of substrates 230 and the plurality of flow spaces S1, S2, and S3 are arranged and formed to be alternately stacked.
- the flow path module 11 which will be described later, may be configured to split fluid introduced from the outside.
- the divided fluid may flow in each flow space (S1, S2, and S3) through the flow path module 11. Accordingly, the substrate 230 and the electrical elements coupled to the substrate 230 can be effectively cooled. A detailed description of this will be provided later.
- a substrate communication hole 240 is formed inside the substrate 230.
- the substrate communication hole 240 is formed through the inside of the substrate 230.
- the substrate communication hole 240 is formed through the thickness direction of the substrate 230, in the vertical direction in the illustrated embodiment, and includes a plurality of flow spaces (S1, S2, S3) arranged to face each other with the substrate 230 interposed therebetween. ) communicates.
- the substrate communication holes 240 may be formed on each of the plurality of substrates 230 .
- three substrates 230 are provided, including a first substrate 231, a second substrate 232, and a third substrate 233.
- three substrate communication holes 240 may be provided, including a first substrate communication hole 241, a second substrate communication hole 242, and a third substrate communication hole 243.
- the first substrate communication hole 241, the second substrate communication hole 242, and the third substrate communication hole 243 are in communication with each other.
- the fluid flowing into the housing 100 may sequentially pass through the first substrate communication hole 241, the second substrate communication hole 242, and the third substrate communication hole 243.
- the first substrate communication hole 241 is formed through the inside of the first substrate 231 in the thickness direction.
- the first substrate communication hole 241 communicates with the flow path module 11.
- the first substrate communication hole 241 has one side facing the second space 152, and in the illustrated embodiment, the lower side is connected to the divided space 320 of the flow path dividing member 300 and the duct member 400 in communication therewith. communicates with The other side of the first substrate communication hole 241 facing the first housing 110, in the illustrated embodiment, the upper side, communicates with the vortex forming member 500, specifically the first vortex forming member 500a.
- a portion of the fluid flow path divided by the flow path dividing member 300 may extend to the first substrate communication hole 241 through the dividing space 320 and the duct member 400. Additionally, some of the flow paths may extend to the vortex forming member 500.
- the second substrate communication hole 242 is formed through the inside of the second substrate 232 in the thickness direction.
- the second substrate communication hole 242 is in communication with the flow path module 11, so that fluid passing through the first substrate communication hole 241 can flow.
- the lower side communicates with the vortex forming member 500, specifically the first vortex forming member 500a. Accordingly, the second substrate communication hole 242 may be in communication with the first substrate communication hole 241.
- the other side of the second substrate communication hole 242 facing the first housing 110 in the illustrated embodiment, the upper side, communicates with the vortex forming member 500, specifically the second vortex forming member 500b.
- a portion of the fluid flowing into the first vortex forming member 500a flows out into the first flow space (S1). Another part of the fluid flowing into the first vortex forming member 500a may flow into the second vortex forming member 500b through the second substrate communication hole 242.
- the third substrate communication hole 243 is formed through the inside of the third substrate 233 in the thickness direction.
- the third substrate communication hole 243 is in communication with the flow path module 11, so that fluid passing through the second substrate communication hole 242 can flow.
- the lower side communicates with the vortex forming member 500, specifically the second vortex forming member 500b.
- the other side of the third substrate communication hole 243 facing the first housing 110 in the illustrated embodiment, the upper side, communicates with the first space 151.
- the first substrate communication hole 241, the second substrate communication hole 242, and the third substrate communication hole 243 overlap in the height direction of the housing 100, in the vertical direction in the illustrated embodiment. It is placed neatly.
- first substrate communication hole 241, the second substrate communication hole 242, and the third substrate communication hole 243 are part of the flow path module 11, specifically the duct member 400 and the vortex forming member 500. ) and the height direction of the housing 100, in the illustrated embodiment, are arranged to overlap in the vertical direction.
- the duct member 400 extends obliquely along the front-back direction. Accordingly, it will be understood that the first substrate communication hole 241 and the support through hole 161 coupled to each end of the duct member 400 are not arranged to overlap in the vertical direction.
- the arrangement method of the first substrate communication hole 241, the second substrate communication hole 242, and the third substrate communication hole 243 is in communication with the flow path module 11, so that the fluid introduced from the outside flows into the first to third flows. It can be arranged in any way that can flow in space (S1, S2, S3).
- the first substrate communication hole 241, the second substrate communication hole 242, and the third substrate communication hole 243 may be formed in any shape that can communicate with the flow path module 11.
- the first substrate communication hole 241, the second substrate communication hole 242, and the third substrate communication hole 243 have a circular cross-section and have a disk shape extending in the vertical direction.
- the shapes of the first substrate communication hole 241, the second substrate communication hole 242, and the third substrate communication hole 243 may change depending on the shape of the duct member 400 or the vortex forming member 500.
- the capacitor 250 supplies power necessary for the switching element 210 and the substrate 230 to operate.
- the capacitor 250 is connected to the switching element 210 and the substrate 230.
- the capacitor 250 can receive power from an external power source and store it.
- the capacitor 250 may be connected to an external power source through the terminal unit 140.
- the capacitor 250 is accommodated inside the housing 100.
- the capacitor 250 is accommodated in the second space 152 formed inside the second housing 120.
- the capacitor 250 is coupled to the substrate 230, specifically the first substrate 231 located at the bottom.
- the capacitor 250 may be connected to the first substrate 231 and transmit power.
- each component of the conductive unit 200 that is, the switching element 210, the substrate 230, and the capacitor 250, may conduct electricity to each other.
- a plurality of capacitors 250 may be provided.
- the plurality of capacitors 250 may be connected to the terminal unit 140, the switching element 210, and the substrate 230, respectively.
- the power device 10 includes a flow path module 11.
- the flow path module 11 is provided in the power device 10 and forms the flow of fluid flowing into the power device 10 into various forms.
- the introduced fluid may flow to various locations through the flow path module 11. Additionally, the introduced fluid may flow in the form of a vortex by the flow path module 11. Accordingly, cooling of the components accommodated inside the power device 10 can proceed effectively.
- the flow path module 11 is accommodated inside the housing 100. Specifically, part of the flow path module 11 is accommodated inside the first housing 110, and another part of the flow path module 11 is accommodated inside the second housing 120. Referring to FIGS. 3 and 4 , the flow path dividing member 300 and the duct member 400 are located in the second space 152, and the vortex forming member 500 is located in the first space 151.
- the flow module 11 is combined with other components of the power device 10 .
- the flow path module 11 is coupled to the support plate 160 and the substrate 230, respectively.
- the flow path module 11 communicates with various spaces formed inside the power device 10.
- the flow path module 11 includes a first space 151, a second space 152, a first flow space (S1), a second flow space (S2), and a third flow space (S3). are connected to each other.
- the fluid flowing into the second space 152 from the outside flows along the flow path module 11 and may flow into other spaces 151, S1, S2, and S3.
- a detailed description of the fluid flow path formed by the flow path module 11 will be described later.
- the flow path module 11 includes a flow path dividing member 300, a duct member 400, and a vortex forming member 500.
- the flow path dividing member 300, the duct member 400, and the vortex forming member 500 are in communication with each other.
- the flow path dividing member 300 divides fluid flowing into the housing 100 from the outside.
- the flow path dividing member 300 is located inside the second housing 120.
- the flow path dividing member 300 is in communication with the second space 152, and a portion of the fluid flowing in the second space 152 may be divided and flow into the flow path dividing member 300. At this time, as described above, the conveying force for the fluid to flow into the second space 152 from the outside is provided by the blower 130.
- the flow path dividing member 300 is coupled to the support plate 160.
- the flow path dividing member 300 communicates with the support through hole 161 formed inside the support plate 160.
- the divided fluid may pass through the support through hole 161 through the flow path dividing member 300.
- the flow path dividing member 300 is located between the heat dissipation member 220 and the capacitor 250. Additionally, the flow path dividing member 300 is coupled to the lower side of the support plate 160.
- the position of the flow path dividing member 300 is disposed at an arbitrary position capable of dividing the fluid flowing into the second space 152 and guiding the divided fluid to the support through hole 161, and is combined with an arbitrary member. It can be.
- the flow path dividing member 300 communicates with the duct member 400.
- the fluid divided by the flow path dividing member 300 may sequentially pass through the flow path dividing member 300 and the support through hole 161 and flow into the duct member 400.
- the flow path dividing member 300 includes a divided body 310, a divided space 320, and a coupling protrusion 330.
- the dividing body 310 forms the body of the flow path dividing member 300.
- the dividing body 310 substantially serves to divide the fluid flowing in the second space 152.
- the split body 310 is coupled to the support plate 160.
- the split body 310 may be tightly coupled to the support plate 160. Accordingly, the divided fluid may flow toward the duct member 400 without returning to the second space 152.
- the split body 310 may be of any shape capable of dividing the fluid flowing into the second space 152 and guiding it toward the duct member 400.
- the split body 310 is formed to have one side opposite to the blower 130, that is, the rear side, inclined.
- the fluid divided by the split body 310 flows along the rear side surface inclined toward the support plate 160 and can proceed smoothly to the duct member 400.
- a divided space 320 is formed inside the divided body 310.
- the divided body 310 is formed to at least partially surround the divided space 320.
- the divided body 310 is formed to surround the divided space 320 from the left, right, lower, and rear sides.
- the divided body 310 is continuous with the coupling protrusion 330.
- the split body 310 may be coupled to the support plate 160 by a coupling protrusion 330.
- the split body 310 has a first split surface 311, a second split surface 312, a third split surface 313, a fourth split surface 314, and a coupling surface 315. Includes.
- the first split surface 311 forms one side of the split body 310.
- the first division surface 311 is arranged to surround the division space 320 on one side. In the illustrated embodiment, the first split surface 311 forms the front lower surface of the split body 310.
- the first division surface 311 partially surrounds the division space 320.
- the first dividing surface 311 is arranged to surround the front lower side of the dividing space 320.
- the first split surface 311 may extend along its width and length directions.
- the first split surface 311 has an extension length in the front-back direction that is shorter than the extension length in the left-right direction.
- the first split surface 311 may form a predetermined angle and extend in the direction of fluid flow, that is, in the front-back direction. In one embodiment, the first split surface 311 may be formed to extend in the front-back direction so as to be parallel to the substrate 230 .
- the first split surface 311 forms a predetermined angle and is continuous with the second split surface 312.
- the second split surface 312 forms the other surface of the split body 310.
- the second dividing surface 312 is arranged to surround the dividing space 320 on the other side. In the depicted embodiment, the second split surface 312 forms the rear side of the split body 310.
- the second dividing surface 312 partially surrounds the dividing space 320 .
- the second dividing surface 312 is disposed surrounding the rear side of the dividing space 320.
- the second split surface 312 guides the fluid flowing into the split space 320.
- the fluid entering the divided space 320 may flow along the second divided surface 312 and may flow toward the support through hole 161 and the duct member 400.
- the second split surface 312 may extend along its width and length directions.
- the second split surface 312 has an extension length in the front-to-back direction that is longer than the extension length in the left-right direction.
- the second split surface 312 may form a predetermined angle and extend in the direction of fluid flow, that is, in the front-back direction.
- the second split surface 312 extends obliquely toward the upper rear side. That is, the second split surface 312 may be defined as an inclined surface for guiding the inflow fluid.
- the width directions of the first split surface 311 and the second split surface 312 are coupled to the third split surface 313 and the fourth split surface 314, respectively.
- the third split surface 313 and the fourth split surface 314 each form another surface of the split body 310.
- the third split surface 313 and the fourth split surface 314 are arranged to surround the split space 320 on the other side.
- the third split surface 313 and the fourth split surface 314 form the left and right sides of the split body 310, respectively.
- the third split surface 313 and the fourth split surface 314 partially surround the split space 320 .
- the third split surface 313 and the fourth split surface 314 are arranged to surround the left and right sides of the split space 320, respectively.
- the third split surface 313 and the fourth split surface 314 guide the fluid flowing into the split space 320 so that it does not arbitrarily escape in the width direction, or in the left and right directions in the illustrated embodiment.
- the fluid entering the split space 320 may be guided by the third split surface 313 and the fourth split surface 314 and flow toward the duct member 400 without flowing out in the width direction.
- the third split surface 313 and the fourth split surface 314 are combined with the first split surface 311 and the second split surface 312 and may be of any shape capable of surrounding the split space 320. there is.
- the third split surface 313 and the fourth split surface 314 have a trapezoidal cross-sectional shape with the upper and lower sides being parallel.
- the cross section of the third split surface 313 and the cross section of the fourth split surface 314 have an upper extension length longer than a lower extension length. Accordingly, it will be understood that the rear edges of the cross section of the third split surface 313 and the cross section of the fourth split surface 314 extend obliquely upward.
- the coupling surface 315 is a portion where the flow path dividing member 300 contacts the support plate 160 or the duct member 400.
- the coupling surface 315 may be tightly coupled to the support plate 160 or the duct member 400. Accordingly, no clearance occurs between the coupling surface 315 and the support plate 160 or the duct member 400, and the fluid flowing into the divided space 320 can flow toward the duct member 400.
- the coupling surface 315 may be formed on one side of the split body 310 facing the support plate 160 or the duct member 400. In the depicted embodiment, engagement surface 315 forms the upper surface of segmented body 310. In the above embodiment, the engagement surface 315 may extend parallel to the support plate 160.
- the coupling surface 315 may extend along the upper end of the split body 310.
- the engagement surface 315 forms the upper surface of the split body 310.
- the coupling surface 315 may be formed to have the shape of a bracket.
- a pair of portions of the coupling surfaces 315 may be arranged to face each other with the partition space 320 in between.
- the portion located on the left and the portion located on the right of the coupling surface 315 are arranged to face each other with the partition space 320 in between.
- a coupling protrusion 330 is located on the pair of parts.
- the divided space 320 is a flowing space that flows into and is divided into the second space 152.
- the divided space 320 is in communication with the second space 152 so that the divided fluid can flow in.
- the divided space 320 communicates with the support through hole 161 and the duct member 400. Fluid flowing into the divided space 320 may pass through the support through hole 161 and flow into the interior of the duct member 400.
- the divided space 320 is formed inside the divided body 310. Specifically, the divided space 320 may be surrounded by a plurality of surfaces constituting the divided body 310. As described above, the divided space 320 is partially surrounded by the first to fourth divided surfaces 311, 312, 313, and 314.
- the divided space 320 communicates with the outside.
- the direction in which fluid flows from the second space 152 in the illustrated embodiment, the front side is open and communicates with the second space 152. Fluid in the second space 152 may flow into the divided space 320 through the front side.
- the upper part of the divided space 320 in the direction in which fluid flows out of the divided space 320 is also open and communicates with the support through hole 161 and the duct hollow 420.
- the fluid flowing in the divided space 320 may flow into the support through hole 161 and the duct hollow 420 through the upper side.
- the divided space 320 may be of any shape that allows fluid to flow therein. As described above, in the illustrated embodiment, the divided space 320 is surrounded on the front lower side by the first divided surface 311 and on the rear side by the second divided surface 312. The left and right sides of the divided space 320 are surrounded by the third divided surface 313 and the fourth divided surface 314, respectively.
- the fluid flowing into the second space 152 flows into the divided space 320 on the front side, then flows inclined upward and flows through the upper side into the support through hole 161 and the duct hollow 420. You can.
- the coupling protrusion 330 is a portion where the flow path dividing member 300 is coupled to the support plate 160.
- the coupling protrusion 330 is formed to protrude upward from the split body 310 in a direction toward the support plate 160, in the illustrated embodiment.
- the coupling protrusion 330 is located on one side of the divided body 310 facing the support plate 160.
- the engaging protrusion 330 is located on the engaging surface 315 located on the upper side of the split body 310.
- the coupling protrusion 330 may be fitted into the support plate 160.
- a groove into which the engaging protrusion 360 is inserted may be recessed or formed through the inside of the support plate 160.
- the coupling protrusion 330 may be provided in any shape that can be coupled to the support plate 160.
- the coupling protrusion 330 has a square cross-section in the horizontal direction and is formed to have a height in the vertical direction.
- a plurality of coupling protrusions 330 may be provided.
- the plurality of coupling protrusions 330 may be spaced apart from each other and coupled to the support plate 160 at different positions.
- the coupling protrusions 330 are provided in a pair, including a first coupling protrusion 331 located on the left and a second coupling protrusion 332 located on the right.
- the first coupling protrusion 331 and the second coupling protrusion 332 are arranged to be spaced apart in the left and right directions.
- the pair of coupling protrusions 330 are arranged to face each other in the width direction of the divided space 320 with the divided space 320 interposed therebetween.
- the plurality of coupling protrusions 330 are coupled to the support plate 160 at a plurality of positions, the coupled state of the flow path dividing member 300 and the support plate 160 can be stably maintained.
- the duct member 400 communicates with the flow path dividing member 300 and the vortex forming member 500.
- the fluid that is divided by the flow path dividing member 300 and passes through the support through hole 161 may flow into the duct member 400.
- Duct member 400 is positioned between support plate 160 and substrate 230.
- the duct member 400 is coupled to the support plate 160 and the substrate 230, respectively.
- the lower end of the duct member 400 is coupled to the support plate 160
- the upper end of the duct member 400 is coupled to the substrate 230.
- the duct member 400 is in communication with the flow path dividing member 300 and the vortex forming member 500, respectively.
- the duct member 400 communicates with the divided space 320 through the support through hole 161.
- the fluid flowing into the second space 152 may flow into the interior of the duct member 400 through the divided space 320 and the support through hole 161 in that order.
- the interior of the duct member 400 communicates with the support through hole 161 and the divided space 320, respectively.
- the duct member 400 communicates with the vortex hollows 530 and 540 formed inside the vortex forming member 500 through the substrate communication hole 240. Fluid flowing into the duct member 400 may flow into the vortex hollows 530 and 540 through the substrate communication hole 240. The interior of the duct member 400 communicates with the substrate communication hole 240 and the vortex hollow 530 and 540, respectively.
- the duct member 400 may extend at a predetermined angle based on the vertical direction.
- the lower end of the duct member 400 is positioned biased toward the front side, and its upper end is positioned biased toward the rear side. That is, in the illustrated embodiment, the duct member 400 has an “S”-shaped cross section.
- the inner surface of the duct member 400 may be formed to have an inclination corresponding to the second dividing surface 312 of the flow path dividing member 300. In one embodiment, the inner surface of the duct member 400 may be formed to have the same inclination as the second split surface 312 with respect to the horizontal direction.
- the duct member 400 may be formed of a flexible material. This is to prevent the power device 10 from being separated from the support plate 160 or the substrate 230 due to vibration generated as the power device 10 operates.
- the duct member 400 may be formed of an electrically insulating material. This is to prevent arbitrary electricity flow between the support plate 160 and the substrate 230 to which the duct member 400 is coupled.
- the duct member 400 may be formed of a thermally insulating material. This is to prevent heat transfer between the support plate 160 and the substrate 230.
- the duct member 400 may be made of rubber or silicon.
- the duct member 400 is shown as being directly coupled to the vortex forming member 500. However, it will be understood that a plurality of substrates 230 may be coupled between the duct member 400 and the plurality of vortex forming members 500.
- duct member 400 includes a duct body 410, a duct cavity 420, and a duct edge 430.
- Duct body 410 forms the body of duct member 400.
- the duct body 410 is a part where the duct member 400 is coupled to the support plate 160 and the substrate 230.
- the duct body 410 extends between the support plate 160 and the substrate 230. As described above, the support plate 160 and the substrate 230 are stacked and spaced apart in the vertical direction. Accordingly, the duct body 410 may be said to extend in the vertical direction.
- the lower end may be coupled to the support plate 160.
- the one end of the duct body 410 may be directly coupled to the coupling surface 315 of the flow path dividing member 300.
- the upper end is the substrate 230, specifically the first substrate located at the bottom of the plurality of substrates 230. It can be combined with (231).
- the duct body 410 covers the support through hole 161 and the substrate communication hole 240 and may be coupled to the support plate 160 and the substrate 230, respectively.
- a duct hollow 420 is formed inside the duct body 410.
- the inner surface of the duct body 410 extends to surround the duct hollow 420 in the radial direction.
- the inner surface of the duct body 410 is formed to extend obliquely upward in a direction from the front side to the rear side.
- the inner surface of the duct body 410 extends obliquely with respect to the support plate 160 or the first substrate 231.
- no separate bending part may be formed on the inner surface of the duct body 410.
- the inner surface of the duct body 410 may extend obliquely and smoothly. Accordingly, the resistance to fluid flow inside the duct body 410 is minimized, and the fluid can flow smoothly.
- the duct hollow 420 is a space in which fluid divided through the flow path dividing member 300 flows.
- the duct hollow 420 is formed inside the duct body 410.
- the duct hollow 420 is formed to extend obliquely upward in the direction in which the duct body 410 extends, that is, from the front side to the rear side in the illustrated embodiment.
- Each end in the extending direction of the hollow duct 420 is formed open.
- the duct hollow 420 is formed through the inside of the duct body 410 along the extension direction of the duct body 410.
- the duct hollow 420 communicates with the partition space 320 and the vortex hollow 530 and 540, respectively.
- each end in the extending direction of the duct hollow 420 which faces the flow path dividing member 300, and in the illustrated embodiment, the lower end, communicates with the divided space 320.
- the one end of the hollow duct 420 may communicate with the divided space 320 through the support through hole 161 formed in the support plate 160.
- the upper end communicates with the vortex hollow 530 and 540.
- the other end of the duct hollow 420 may be in communication with the vortex hollow 530, 540 through the substrate 230, specifically the first substrate communication hole 241 formed inside the first substrate 231. there is.
- the duct edge 430 is a portion where the duct member 400 is coupled to the flow path dividing member 300. Duct edges 430 are formed on the inner and outer surfaces of the duct body 410, respectively.
- the duct edge 430 includes a first portion extending horizontally toward the duct hollow 420 and a second portion continuous with the first portion and extending vertically toward the support plate 160. Includes. That is, in the illustrated embodiment, the duct corner 430 has a cross-sectional shape of one corner of a rectangle.
- the coupling surface 315 of the flow path dividing member 300 may be coupled to the duct edge 430.
- the duct edge 430 and the coupling surface 315 are tightly coupled, so that any communication between the duct hollow 420 and the outside can be blocked.
- duct edge 430 may be coupled with support plate 160. That is, in the above embodiment, the duct member 400 may be coupled to the flow path dividing member 300 via the support plate 160. At this time, the support plate 160 may be provided with components for coupling to the duct edge 430, for example, protrusions, etc.
- the duct member 400 is coupled to the vortex forming member 500.
- the duct member 400 communicates with the vortex forming member 500.
- the vortex forming member 500 functions as a passage through which fluid passing through the duct member 400, that is, fluid divided by the flow path dividing member 300, is discharged between the plurality of substrates 230.
- fluid for cooling may flow in the space between the plurality of substrates 230, that is, in the first to third flow spaces S1, S2, and S3.
- the substrate 230 without a separate heat dissipation member can also be effectively cooled.
- the vortex forming member 500 is positioned between the plurality of substrates 230 .
- the plurality of substrates 230 are stacked and spaced apart from each other in the vertical direction. Accordingly, it can be said that the vortex forming members 500 are arranged alternately with the plurality of substrates 230 in the vertical direction.
- the vortex forming member 500 is connected to a plurality of substrates 230, respectively.
- the vortex forming member 500 extends between a plurality of substrates 230 that are stacked and spaced apart from each other. In the illustrated embodiment, the vortex forming member 500 extends in the vertical direction.
- one end facing the first housing 110 in the illustrated embodiment, the upper end is coupled to the substrate 230 located relatively above.
- the other end facing the second housing 120, in the illustrated embodiment, the lower end is coupled to the substrate 230 located relatively lower.
- the vortex forming member 500 may be formed of an electrically insulating material.
- the vortex forming member 500 is coupled to different substrates 230 to prevent random electricity flow between the substrates 230 .
- the vortex forming member 500 may be formed of a thermal insulating material.
- the fluid discharged from the vortex forming member 500 to the first to third flow spaces S1, S2, and S3 is configured to cool the substrate 230.
- the vortex forming member 500 is preferably formed of a heat insulating material so as to be maintained at a lower temperature than the first to third flow spaces S1, S2, and S3 and the substrate 230.
- the vortex forming member 500 communicates with the duct member 400. Specifically, the other end of the vortex forming member 500, in the illustrated embodiment, the lower end, communicates with the hollow duct 420 through the substrate communication hole 240.
- the vortex forming member 500 communicates with the first to third flow spaces S1, S2, and S3.
- the fluid flowing inside the vortex forming member 500 may be discharged into the first to third flow spaces S1, S2, and S3.
- a plurality of vortex forming members 500 may be provided.
- the plurality of vortex forming members 500 may be arranged in the direction in which the plurality of substrates 230 are stacked and spaced apart from each other, in the vertical direction in the illustrated embodiment.
- the plurality of vortex forming members 500 may be in communication with each other. Specifically, the lower end of the vortex forming member 500 positioned relatively above communicates with the upper end of the vortex forming member 500 positioned relatively lower through the substrate communication hole 240 .
- two vortex forming members 500 are provided, including a first vortex forming member 500a and a second vortex forming member 500b.
- the first vortex forming member 500a is located between the first substrate 231 and the second substrate 232. Therefore, it can be said that the first vortex forming member 500a is located in the first flow space S1.
- the lower end of the first vortex forming member 500a is coupled to the first substrate 231 and communicates with the first substrate communication hole 241.
- the upper end of the first vortex forming member 500a is coupled to the second substrate 232 and communicates with the second substrate communication hole 242.
- the second vortex forming member 500b is located between the second substrate 232 and the third substrate 233. Accordingly, it can be said that the second vortex forming member 500b is located in the second flow space S2.
- the lower end of the second vortex forming member 500b is coupled to the second substrate 232 and communicates with the second substrate communication hole 242. Through the communication, the first vortex forming member 500a and the second vortex forming member 500b may be communicated.
- the upper end of the second vortex forming member 500b is coupled to the third substrate 233 and communicates with the third substrate communication hole 243. Through the communication, the second vortex forming member 500b and the third flow space S3 may be in communication.
- the number of vortex forming members 500 may be changed. At this time, the number of vortex forming members 500 may be changed corresponding to the number of substrates 230. That is, as described above, the vortex forming member 500 is located between a pair of substrates 230 disposed adjacent to each other. Accordingly, it will be understood that the number of vortex forming members 500 may be one less than the number of substrates 230 .
- each flow space S1, S2, S3
- a single vortex forming member 500 is shown to be provided in the first flow space (S1) and the second flow space (S2).
- a plurality of vortex forming members 500 may be disposed in each flow space (S1, S2, S3).
- the first vortex forming member 500a and the second vortex forming member 500b are different in the components they are coupled to and in communication with each other, but their structures are the same. Accordingly, in the following description, the parts that the first vortex forming member 500a and the second vortex forming member 500b have in common will be collectively referred to as the vortex forming member 500.
- the vortex forming member 500 includes a vortex body 510, a vortex arm 520, a first vortex hollow 530, a second vortex hollow 540, It includes vortex protrusions 550 and vortex ribs 560.
- the vortex body 510 forms part of the outer shape of the vortex forming member 500.
- the vortex body 510 extends between a pair of substrates 230 positioned adjacent to each other. In the illustrated embodiment, the vortex body 510 extends in the vertical direction.
- One end of the vortex body 510 in the extending direction is coupled to the substrate 230 located relatively above the pair of substrates 230 .
- the other end in the extension direction of the vortex body 510, in the illustrated embodiment, the lower end is coupled to the substrate 230 located relatively lower among the pair of substrates 230.
- each end of the vortex body 510 covers the substrate communication hole 240 and may be coupled to each substrate 230.
- the vortex body 510 has a first vortex hollow 530 formed therein, and may have any shape through which fluid can flow.
- the vortex body 510 has a circular outer circumference and is formed to have a ring-shaped cross-section with a first vortex hollow 530 formed therethrough.
- the vortex body 510 is coupled to the vortex arm 520.
- the first vortex hollow 530 may communicate with the second vortex hollow 540 formed inside the vortex arm 520.
- a vortex rib 560 is formed at a portion where the vortex body 510 and the vortex arm 520 are joined.
- the vortex arm 520 forms another part of the outline of the vortex forming member 500.
- the vortex arm 520 extends in a direction different from the vortex body 510. In the illustrated embodiment, the vortex arm 520 extends in the horizontal direction.
- Each end in the direction in which the vortex arm 520 extends is open and communicates with the outside.
- the vortex forming member 500 may be in communication with the first flow space (S1) and the second flow space (S2).
- the fluid flowing into the vortex forming member 500 may be discharged into the first flow space (S1) or the second flow space (S2) through the vortex arm 520.
- the vortex arm 520 has a second vortex hollow 540 formed therein, capable of discharging the fluid flowing into the vortex forming member 500 into the first flow space (S1) or the second flow space (S2). It may be provided in any form.
- the vortex arm 520 is circular and has an annular cross-section with a second vortex hollow 540 formed therethrough.
- the vortex arm 520 may be formed to extend in any direction capable of discharging the fluid into the first flow space (S1) or the second flow space (S2). Referring again to FIGS. 2 to 5, the vortex arm 520 extends in the width direction of the housing 100, that is, in the left and right directions.
- the vortex arm 520 may extend in the longitudinal direction of the housing 100, that is, in the front-to-back direction, or may extend in a diagonal direction.
- the direction of extension of the vortex arm 520 is various components disposed in the first flow space (S1) or the second flow space (S2), for example, the substrate 230 or a switching element coupled to the substrate 230 ( 210), etc., may change depending on the arrangement of any configuration that generates heat.
- the fluid discharged from the vortex arm 520 flows in the first flow space (S1) or the second flow space (S2) and can cool various components.
- a plurality of vortex arms 520 may be provided.
- a plurality of vortex arms 520 may be coupled to the vortex body 510 at different positions.
- the vortex arm 520 includes a first arm 521 disposed on the left side of the vortex body 510 and a second arm 522 disposed on the right side of the vortex body 510.
- the first arm 521 and the second arm 522 are disposed to face each other with the vortex body 510 interposed therebetween.
- the vortex arms 520 are provided in a plurality of pairs and may extend in different directions. In the illustrated embodiment, the vortex arms 520 are provided as a pair extending in the left and right directions, but additional pairs of vortex arms 520 extending in the front-back direction, diagonal direction, etc. may be provided.
- a vortex rib 560 is formed at a portion where the vortex arm 520 and the vortex body 510 are joined.
- vortex protrusions 550 are formed on the inner surface adjacent to each end of the vortex arm 520.
- the first vortex hollow 530 is formed through the inside of the vortex forming member 500.
- the first vortex hollow 530 communicates with the duct member 400.
- the fluid that has passed through the duct member 400 may flow into the inside of the vortex forming member 500 through the first vortex hollow 530.
- the first vortex hollow 530 extends along the extension direction of the vortex body 510. Each end in the extending direction of the first vortex hollow 530 is open and communicates with the outside. In the illustrated embodiment, the first vortex hollow 530 is formed to extend in the same vertical direction as the vortex body 510. The upper and lower ends of the first vortex hollow 530 are each formed open.
- first vortex hollow 530 formed in the first vortex forming member 500a its lower end communicates with the duct hollow 420 through the first substrate communication hole 241. Additionally, in the above case, the upper end of the first vortex hollow 530 communicates with the lower end of the second vortex forming member 500b through the second substrate communication hole 242.
- first vortex hollow 530 formed in the second vortex forming member 500b its lower end is the first vortex hollow formed in the first vortex forming member 500a by the second substrate communication hole 242. It communicates with the upper end of 530.
- the upper end of the first vortex hollow 530 communicates with the third flow space S3 through the third substrate communication hole 243.
- the first vortex hollow 530 communicates with the second vortex hollow 540.
- the second vortex hollow 540 forms a path through which the fluid introduced through the first vortex hollow 530 is discharged to each flow space (S1, S2).
- the second vortex hollow 540 communicates with the first vortex hollow 530.
- the second vortex hollow 540 is formed through the inside of the vortex forming member 500.
- the second vortex hollow 540 extends along the extension direction of the vortex arm 520.
- Each end in the extension direction of the second vortex hollow 540 is open and communicates with the outside.
- the second vortex hollow 540 extends in the left and right directions in the same manner as the vortex arm 520.
- the second vortex hollow 540 extends across the first arm 521 and the second arm 522.
- vortex protrusions 550 are formed on the inner surface of the vortex arm 520 surrounding each end of the second vortex hollow 540.
- the vortex protrusion 550 forms a vortex in the flow of fluid discharged from the second vortex hollow 540 toward each flow space (S1, S2).
- the fluid flows in a spiral fashion by the vortex protrusion 550 and may enter the flow spaces S1 and S2.
- the contact area between the fluid and the substrate 230 may be increased, and heat exchange therebetween may be activated.
- the substrate 230 can be effectively cooled by the introduced fluid.
- the vortex protrusion 550 is formed on the inner surface of the vortex arm 520.
- the vortex protrusion 550 is formed on the inner surface of the vortex arm 520, adjacent to an end of the vortex arm 520.
- the vortex protrusion 550 may be provided in any shape capable of forming the flow of fluid discharged from the second vortex hollow 540 into a vortex.
- the vortex protrusion 550 is shaped like a protrusion extending radially inward of the vortex arm 520.
- the vortex protrusion 550 may be provided in the shape of a blade.
- the vortex protrusion 550 may extend in a vortex shape from the radial outside of the vortex hollow (530, 540) toward the inside. Accordingly, the flow of fluid discharged while passing through the space between the vortex protrusions 550 may be formed into a vortex.
- the vortex protrusion 550 may be provided in a polygonal shape extending obliquely.
- the vortex protrusion 550 is formed to have the shape of a wing and may extend from the radial outside of the vortex hollow (530, 540) toward the inside. Accordingly, the flow of fluid discharged while passing through the space between the vortex protrusions 550 may be formed into a vortex.
- the vortex protrusion 550 may be formed as a protrusion or groove in the shape of a rifling mark.
- a plurality of vortex protrusions 550 may be provided.
- a plurality of vortex protrusions 550 may be arranged to be spaced apart from each other along the inner surface of the vortex arm 520.
- a plurality of vortex protrusions 550 are arranged to be spaced apart from each other along the inner periphery of the vortex arm 520.
- the vortex protrusions 550 may be provided in a plurality of groups. A plurality of groups of vortex protrusions 550 may be arranged at different positions to form a vortex in the flow of fluid discharged through each end of the second vortex hollow 540. In the illustrated embodiment, a pair of vortex protrusions 550 are provided and disposed adjacent to each end in the direction in which the vortex arm 520 extends.
- the vortex rib 560 reinforces the coupled state of the vortex body 510 and the vortex arm 520.
- the vortex rib 560 is formed at a portion where the vortex body 510 and the vortex arm 520 are connected. In the illustrated embodiment, the vortex ribs 560 are located on the underside of the vortex arm 520, adjacent to the outer periphery of the vortex body 510.
- a plurality of vortex ribs 560 may be formed.
- the plurality of vortex ribs 560 may be positioned adjacent to each of the plurality of vortex arms 520.
- two vortex ribs 560 may be provided and positioned adjacent to the first arm 521 and the second arm 522, respectively.
- a groove may be formed on the radial inner side of the portion where the vortex rib 560 is formed.
- the groove smoothly connects the inner surface of the vortex body 510 surrounding the first vortex hollow 530 and the inner surface of the vortex arm 520 surrounding the second vortex hollow 540.
- the fluid flowing into the first vortex hollow 530 can easily flow into the second vortex hollow 540.
- the power device 10 includes a flow path module 11.
- the flow path module 11 forms a flow path through which fluid can flow toward the substrate 230, which is difficult to cool directly by the heat dissipation member 220. Accordingly, the fluid introduced for cooling the components of the power device 10 flows in the substrate 230 or the space between the substrates 230 and may exchange heat with the substrate 230.
- the substrate 230 and elements coupled to the substrate 230 can be effectively cooled. Accordingly, the cooling efficiency of the power device 10 can be improved, and the operational reliability of the power device 10 can be improved.
- FIGS. 14 to 21 a fluid flow path formed inside the power device 10 according to an embodiment of the present invention will be described with reference to FIGS. 14 to 21.
- the fluid flow path is indicated by an arrow.
- the fluid flow path described below is formed by the fluid introduced when the blower 130 operates.
- the fluid flowing into the divided space 320 of the flow path dividing member 300 passes through the support through hole 161 formed in the support plate 160 and flows into the duct hollow 420.
- the fluid flowing into the duct hollow 420 flows into the first vortex hollow 530 communicating therewith.
- the first vortex hollow 530 is formed inside the first vortex forming member 500a.
- the fluid flows along the first vortex hollow (530).
- the fluid reaches the second vortex hollow 540, a portion of the fluid continues to flow along the first vortex hollow 530 and flows into the first vortex hollow 530 of the second vortex forming member 500b. Another portion of the fluid enters the second vortex cavity 540.
- a vortex protrusion 550 is formed on the inner peripheral surface of the vortex arm 520 surrounding the end of the second vortex hollow 540. Accordingly, the fluid is formed as a vortex and is discharged from the second vortex hollow 540 to the first flow space (S1).
- the fluid (that is, a portion of the fluid) flowing into the first vortex hollow 530 of the second vortex forming member 500b flows along the first vortex hollow 530.
- the fluid reaches the second vortex hollow 540, a portion of the fluid continues to flow along the first vortex hollow 530 and flows into the third flow space S3.
- a portion of the fluid may exchange heat with the elements accommodated in the third flow space S3, thereby cooling the elements.
- a vortex protrusion 550 is formed on the inner peripheral surface of the vortex arm 520 surrounding the end of the second vortex hollow 540. Accordingly, the fluid is formed as a vortex and is discharged from the second vortex hollow 540 to the second flow space (S2).
- the various elements disposed in the first to third flow spaces (S1, S2, and S3) and the plurality of substrates 230 surrounding the first to third flow spaces (S1, S2, and S3) can be effectively cooled. there is.
- a fluid flow path is formed inside the power device 10 according to an embodiment of the present invention.
- the external fluid When the blowing unit 130 is operated by a control signal applied to the terminal unit 140, the external fluid receives a conveying force from the blowing unit 130.
- the external fluid flows into the inside of the housing 100, specifically into the second space 152 of the second housing 120, by the applied transfer force.
- a capacitor 250 is located between the blower 130 and the flow path dividing member 300. Accordingly, the fluid flowing into the second space 152 exchanges heat with the capacitor 250 and flows toward one side in the longitudinal direction of the second housing 120, or toward the rear side in the illustrated embodiment.
- a flow path dividing member 300 is positioned between the capacitor 250 and the heat dissipation member 220. Accordingly, a portion of the fluid flowing in the second space 152 is divided and flows into the flow path dividing member 300.
- the surface facing the inflow fluid that is, the second split surface 312, is formed to extend inclined upward. Accordingly, the fluid entering the divided space 320 moves upward along the second divided surface 312.
- the divided space 320 communicates with the hollow duct 420 through the support through hole 161.
- the duct hollow 420 is in communication with the first vortex forming member 500a through the first substrate communication hole 241, and the first vortex forming member 500a is connected to the second substrate communication hole 242. 2 It communicates with the vortex forming member 500b.
- the second vortex forming member 500b communicates with the third flow space S3 through the third substrate communication hole 243.
- the fluid flowing into the duct hollow 420 through the divided space 320 flows into the first to third flow spaces S1, S2, and S3 through the above-described process and flows to the substrate 230 and the substrate 230. Heat can be exchanged with combined elements, etc.
- the substrate 230 and devices coupled thereto can be effectively cooled.
- housing 110 first housing
- terminal portion 150 housing space portion
- First space 152 Second space
- first substrate 232 second substrate
- first substrate communication hole 242 second substrate communication hole
- coupling protrusion 331 first coupling protrusion
- 500a first vortex forming member
- 500b second vortex forming member
- first vortex hollow 540 second vortex hollow
- vortex protrusion 560 vortex rib
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
유로 모듈 및 이를 포함하는 전력 기기가 개시된다. 본 발명의 일 측면에 따른 유로 모듈은 하우징의 공간과 연통되어, 상기 공간에서 유동되는 유체가 유입되는 유로 분할 부재; 상기 유로 분할 부재와 결합되며, 상기 유로 분할 부재와 연통되어 상기 유체가 유동되는 덕트 부재; 및 상기 덕트 부재와 결합되며, 상기 덕트 부재와 연통되어 상기 유체가 유동되는 와류 형성 부재를 포함하며, 상기 와류 형성 부재는, 그 연장 방향의 단부의 내면에 형성되어, 상기 유체가 와류(vortex)로 형성되며 토출되게 구성되는 와류 돌기를 포함할 수 있다.
Description
본 발명은 유로 모듈 및 이를 포함하는 전력 기기에 관한 것으로, 보다 상세하게는, 냉각을 위한 유체의 유로를 형성하여, 냉각 효율성을 향상시킬 수 있는 구조의 유로 모듈 및 이를 포함하는 전력 기기에 관한 것이다.
전력 기기는 외부의 전원 또는 부하와 통전되어 전력을 전달받거나 전달할 수 있는 임의의 기기를 지칭한다. 전력 기기는 인버터, 커패시터 및 이들을 제어하기 위한 PCB 등을 포함하여, 전달된 전력을 부하에 맞게 처리하여 전달할 수 있다.
전력 기기가 작동됨에 따라, 전력 기기에 구비되는 다양한 구성 요소에서는 열이 발생된다. 각 구성 요소가 과열될 경우, 열에 의한 손상 가능성이 있다. 이 경우, 각 구성 요소 및 전력 기기의 작동 신뢰성이 저하될 우려가 있다. 더 나아가, 과열 상태가 지속될 경우, 화재 등 안전 사고의 위험성 또한 존재한다.
이에, 현재 사용 중인 전력 기기에는 히트싱크(heat sink)가 구비된다. 히트싱크는 특히 많은 열을 발생시키는 장치에 인접하게 위치되어, 발생된 열을 전달받아 방열하게 구성될 수 있다. 일 예로, 전도(conduction)의 형태로 열을 전달받고 대류(conviction)의 형태로 열을 방출하는 핀(fin) 형태의 히트싱크가 구비될 수 있다.
그런데, 전통적인 형태의 전력 기기의 경우, 히트싱크가 접촉, 결합될 수 있는 구성 요소만 냉각될 수 있게 구성된다. 즉, 히트싱크가 직접 접촉, 결합될 수 없는 PCB 등의 부재의 경우, 냉각이 용이하게 수행되기 어렵다.
또한, 전력 기기가 고도화, 집적화됨에 따라 PCB 등이 복수 개 구비되는 경우가 증가되고 있다. 이 경우, 복수 개의 PCB 사이에 형성되는 공간에서도 열이 발생될 수 있다. 그런데, 상기 공간의 경우 히트싱크가 구비되기에는 협소하여, 효과적인 냉각이 어렵다.
한국등록특허문헌 제10-0998213호는 PCB 냉각 장치를 개시한다. 구체적으로, 형상기억합금으로 이루어지는 방열판이 PCB에 접촉된 반도체 소자들과 직접 접촉, 해제되게 구성하여, PCB를 방열시킬 수 있는 PCB 냉각 장치를 개시한다.
그런데, 상기 선행문헌이 개시하는 PCB 냉각 장치는 PCB와 유사하게 판형으로 구비되므로, 따라서, PCB 및 PCB 냉각 장치가 구비되는 장치의 소형화에 기여하기 어렵다. 더 나아가, 상기 선행문헌이 개시하는 PCB 냉각장치는 형상기억합금을 소재로 하는 바, 제작 단가가 상승되고, 제작 공정이 복잡해질 우려가 있다.
한국공개특허특허문헌 제10-2021-0002271호는 PCB 냉각 장치를 개시한다. 구체적으로, 냉각을 위한 냉각수를 PCB에 분사하여 PCB를 냉각할 수 있는 PCB 냉각 장치를 개시한다.
그런데, 상기 선행문헌이 개시하는 PCB 냉각 장치는 공랭식(air cooling)이 아닌 수냉식(water cooling)이다. 따라서, 상기 선행문헌이 적용되기 위해서는 PCB를 방수 처리하기 위한 별도의 공정이 요구된다.
더 나아가, 상기 선행문헌이 개시하는 PCB 냉각 장치는 냉각수를 공급, 순환시키기 위한 별도의 냉각수 탱크 및 배관 부재가 요구된다. 따라서, 상기 선행문헌은 전력 기기의 구조의 간명화 및 소형화를 달성하기 어렵다.
한국등록특허문헌 제10-0998213호 (2010.12.03.)
한국공개특허문헌 제10-2021-0002271호 (2021.01.07.)
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 본 발명의 목적은 구성 요소들이 효과적으로 냉각될 수 있는 구조의 유로 모듈 및 이를 포함하는 전력 기기를 제공하는 것이다.
본 발명의 다른 목적은 냉각을 위한 유체가 유동되지 못하는 사각 지대가 최소화될 수 있는 구조의 유로 모듈 및 이를 포함하는 전력 기기를 제공하는 것이다.
본 발명의 또다른 목적은 냉각을 위한 유체가 원활하게 유동될 수 있는 구조의 유로 모듈 및 이를 포함하는 전력 기기를 제공하는 것이다.
본 발명의 또다른 목적은 별도의 유체 공급원 없이도 구성 요소들이 효과적으로 냉각될 수 있는 구조의 유로 모듈 및 이를 포함하는 전력 기기를 제공하는 것이다.
본 발명의 또다른 목적은 설계 자유도 및 배치 자유도가 향상될 수 있는 구조의 유로 모듈 및 이를 포함하는 전력 기기를 제공하는 것이다.
본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야의 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 측면에 따르면, 하우징의 공간과 연통되어, 상기 공간에서 유동되는 유체가 유입되는 유로 분할 부재; 상기 유로 분할 부재와 결합되며, 상기 유로 분할 부재와 연통되어 상기 유체가 유동되는 덕트 부재; 및 상기 덕트 부재와 결합되며, 상기 덕트 부재와 연통되어 상기 유체가 유동되는 와류 형성 부재를 포함하며, 상기 와류 형성 부재는, 그 연장 방향의 단부의 내면에 형성되어, 상기 유체가 와류(vortex)로 형성되며 토출되게 구성되는 와류 돌기를 포함하는, 유로 모듈이 제공된다.
이때, 상기 와류 형성 부재는, 일 방향으로 연장 형성되어, 그 연장 방향의 일 단부가 상기 덕트 부재와 결합되는 와류 몸체; 및 타 방향으로 연장 형성되어, 그 연장 방향의 일 단부가 상기 와류 형성 부재와 결합되고, 그 연장 방향의 타 단부가 개방 형성되어 상기 유체가 토출되는 와류 암을 포함하는, 유로 모듈이 제공될 수 있다.
또한, 상기 와류 형성 부재는, 상기 와류 몸체의 내부에 상기 일 방향을 따라 관통 형성되어, 상기 덕트 부재의 내부와 연통되는 제1 와류 중공; 및 상기 와류 암의 내부에 상기 타 방향을 따라 관통 형성되어, 상기 제1 와류 중공 및 외부와 각각 연통되는 제2 와류 중공을 포함하는, 유로 모듈이 제공될 수 있다.
이때, 상기 유체는, 상기 제1 와류 중공에서 상기 일 방향을 따라 유동되는 일부; 및 상기 제1 와류 중공에서 상기 제2 와류 중공을 통과하여 외부로 노출되는 다른 일부로 분지되는, 유로 모듈이 제공될 수 있다.
또한, 상기 와류 암은 복수 개 형성되어, 복수 개의 상기 와류 암은 서로 다른 위치에서 상기 와류 몸체의 외주와 결합되는, 유로 모듈이 제공될 수 있다.
또한, 상기 와류 돌기는, 상기 와류 암의 상기 타 단부의 내면에서 방사상 내측을 향해 돌출 형성되는, 유로 모듈이 제공될 수 있다.
이때, 상기 와류 돌기는 복수 개 구비되어, 복수 개의 상기 와류 돌기는 상기 와류 암의 상기 내면의 내주를 따라 서로 이격되어 배치되는, 유로 모듈이 제공될 수 있다.
또한, 상기 와류 형성 부재는 일 방향을 따라 연장 형성되고, 상기 덕트 부재는 상기 일 방향에 대해 소정의 각도로 경사지게 연장 형성되는, 유로 모듈이 제공될 수 있다.
이때, 상기 덕트 부재는, 그 연장 방향의 일 단부가 상기 와류 형성 부재와 결합되어 연통되고, 그 연장 방향의 타 단부가 상기 유로 분할 부재와 결합되어 연통되는, 유로 모듈이 제공될 수 있다.
또한, 상기 덕트 부재는 플렉서블(flexible)한 소재로 형성되는, 유로 모듈이 제공될 수 있다.
이때, 상기 유로 분할 부재는, 상기 덕트 부재와 결합되는 분할 몸체; 및 상기 분할 몸체의 내부에 형성되며, 개방 형성되어 상기 유체가 유입되는 분할 공간을 포함하는, 유로 모듈이 제공될 수 있다.
또한, 상기 분할 몸체는, 상기 분할 공간의 일 부분을 둘러싸는 제1 분할 면; 상기 제1 분할 면과 소정의 각도를 이루며 연장되고, 상기 분할 공간의 다른 부분을 둘러싸는 제2 분할 면; 상기 제1 분할 면 및 상기 제2 분할 면과 각각 연속되며, 상기 분할 공간을 사이에 두고 서로 마주하게 배치되는 제3 분할 면 및 제4 분할 면을 포함하며, 상기 덕트 부재는, 상기 제2 분할 면이 연장되는 상기 소정의 각도만큼 경사지게 연장되는, 유로 모듈이 제공될 수 있다.
이때, 상기 유로 분할 부재 및 상기 덕트 부재는, 상기 하우징의 상기 공간에 배치되는 지지 플레이트를 사이에 두고 서로 마주하게 배치되며, 상기 지지 플레이트의 일측 및 타측에 각각 결합되고, 상기 지지 플레이트의 내부에는, 상기 유로 분할 부재 및 상기 덕트 부재와 각각 연통되는 지지 관통공이 관통 형성되는, 유로 모듈이 제공될 수 있다.
또한, 본 발명의 일 측면에 따르면, 외부와 연통되는 하우징 공간부가 그 내부에 형성된 하우징; 상기 하우징 공간부에 수용되며, 외부와 통전되는 통전부; 및 상기 통전부와 결합되어, 상기 통전부를 냉각하는 유체의 유로를 형성하게 구성되는 유로 모듈을 포함하며, 상기 통전부는, 서로 이격되어 적층되게 배치되는 복수 개의 기판을 포함하고, 상기 유로 모듈은, 상기 하우징 공간부와 연통되어, 상기 하우징 공간부에서 유동되는 유체가 유입되는 유로 분할 부재; 복수 개의 상기 기판 중 어느 하나 및 상기 유로 분할 부재와 결합되며, 상기 유로 분할 부재와 연통되어 상기 유체가 유동되는 덕트 부재; 및 복수 개의 상기 기판 중 상기 어느 하나 및 상기 어느 하나에 인접하게 위치되는 다른 하나와 결합되며, 상기 덕트 부재와 연통되어 상기 유체가 유동되는 와류 형성 부재를 포함하며, 상기 와류 형성 부재는, 그 연장 방향의 단부의 내면에 형성되어, 상기 유체가 와류(vortex)로 형성되며 토출되게 구성되는 와류 돌기를 포함하는, 전력 기기가 제공된다.
이때, 상기 와류 형성 부재는, 복수 개의 상기 기판 중 서로 인접한 어느 한 쌍의 기판과 결합되는 제1 와류 형성 부재; 및 복수 개의 상기 기판 중 서로 인접한 다른 한 쌍의 기판과 결합되어, 상기 제1 와류 형성 부재와 연통되는 제2 와류 형성 부재를 포함하고, 복수 개의 상기 기판은, 가장 하측에 위치되며, 그 하측은 상기 덕트 부재와 결합되고 그 상측은 상기 제1 와류 형성 부재와 결합되는 제1 기판; 상기 제1 기판의 상측에 상기 제1 기판과 이격되어 배치되며, 그 하측은 상기 제1 와류 형성 부재와 결합되고, 그 상측은 상기 제2 와류 형성 부재와 결합되는 제2 기판; 및 상기 제2 기판의 상측에 상기 제2 기판과 이격되어 배치되며, 그 하측이 상기 제2 와류 형성 부재와 결합되는 제3 기판을 포함하는, 전력 기기가 제공될 수 있다.
또한, 상기 제1 기판, 상기 제2 기판 및 상기 제3 기판의 내부에는 제1 기판 관통공, 제2 기판 관통공 및 제3 기판 관통공이 각각 관통 형성되고, 상기 덕트 부재는 상기 제1 기판 관통공과 연통되고, 상기 제1 와류 형성 부재는 상기 제1 기판 관통공 및 상기 제2 기판 관통공과 연통되며, 상기 제2 와류 형성 부재는 상기 제2 기판 관통공과 연통되는, 전력 기기가 제공될 수 있다.
이때, 상기 제1 와류 형성 부재로 유입된 상기 유체는, 일부가 상기 제1 기판 및 상기 제2 기판 사이에 형성되는 공간인 제1 유동 공간으로 토출되고, 나머지 일부가 상기 제2 와류 형성 부재로 유동되며, 상기 제2 와류 형성 부재로 유입된 상기 유체는, 일부가 상기 제2 기판 및 상기 제3 기판 사이에 형성되는 공간인 제2 유동 공간으로 토출되고, 나머지 일부가 상기 제3 기판의 상측에 형성되는 공간인 제3 유동 공간으로 토출되는, 전력 기기가 제공될 수 있다.
또한, 상기 와류 형성 부재는, 복수 개의 상기 기판이 적층되는 방향으로 연장 형성되며, 내부에 제1 와류 중공이 연장 방향을 따라 관통 형성된 와류 몸체; 및 상기 와류 몸체와 다른 방향으로 연장 형성되며, 내부에 상기 제1 와류 중공 및 상기 유동 공간과 각각 연통되는 제2 와류 중공이 연장 방향을 따라 관통 형성된 와류 암을 포함하는, 전력 기기가 제공될 수 있다.
이때, 상기 와류 돌기는, 상기 제2 와류 중공을 둘러싸는 상기 와류 암의 내면의 단부에 인접하게 위치되는, 전력 기기가 제공될 수 있다.
또한, 상기 하우징은, 그 일 면에 결합되어, 외부의 유체를 상기 하우징 공간부로 유동시키는 이송력을 제공하는 송풍부를 포함하며, 상기 유로 분할 부재는, 상기 이송력에 의해 상기 하우징 공간부로 유입된 유체가 유동되는 유로 상에 배치되어, 유입된 상기 유체 중 일부가 상기 유로 분할 부재로 유동되게 구성되는, 전력 기기가 제공될 수 있다.
상기의 구성에 따라, 본 발명의 실시 예에 따른 유로 모듈 및 이를 포함하는 전력 기기는 구성 요소들이 효과적으로 냉각될 수 있다.
하우징의 내부에 수용된 구성 요소는 하우징 공간부로 유입된 외부의 유체에 의해 냉각될 수 있다. 외부의 유체는 하우징 공간부에서 유동하며, 수용된 구성 요소와 열교환되어 구성 요소를 냉각한다.
유로 모듈에는 하우징 공간부와 연통되는 유로 분할 부재가 구비된다. 하우징 공간부에 유입된 유체는 분할되어 그 일부가 유로 분할 부재에서 유동될 수 있다.
유로 분할 부재는 경사지게 연장 형성된 분할 면을 포함한다. 유로 분할 부재로 유입된 유체는 상기 분할 면을 따라 유동되며 덕트 부재 및 와류 형성 부재를 향해 유동될 수 있다. 덕트 부재 및 와류 형성 부재는 유로 분할 부재와 각각 연통된다.
와류 형성 부재는 그 내부 및 외부가 연통되는 부분에 형성된 와류 돌기를 포함한다. 와류 형성 부재의 내부로 유입된 유체는 외부로 토출되며, 와류 돌기에 의해 와류(vortex)로 형성된다. 즉, 와류 형성 부재에서 토출되는 유체는 다양한 형태로 유동되며 구성 요소와의 열교환이 원활하게 진행될 수 있다.
이에 따라, 와류 형성 부재에서 토출된 유체에 의해, 전력 기기의 각 구성 요소가 효과적으로 냉각될 수 있다.
또한, 상기의 구성에 따라, 본 발명의 실시 예에 따른 유로 모듈 및 이를 포함하는 전력 기기는 냉각을 위한 유체가 유동되지 못하는 사각 지대가 최소화될 수 있다.
복수 개의 기판은 서로 이격되어 적층 배치된다. 복수 개의 기판 사이에는 유동 공간이 형성된다. 와류 형성 부재는 유동 공간에 배치되어, 와류 형성 부재로 유입된 유체는 유동 공간으로 토출될 수 있다. 유동 공간으로 토출된 유체는 기판 및 기판에 결합된 구성 요소를 냉각하며 유동될 수 있다.
따라서, 유로 모듈이 구비되지 않는 경우와 비교하였을 때, 냉각을 위한 유체가 넓은 공간 및 다양한 공간에서 유동될 수 있다. 이에 따라, 냉각을 위한 유체가 유동되지 못하는 사각 지대가 최소화될 수 있다.
결과적으로, 기판 등 방열 부재와 이격되게 배치되는 구성 요소들 또한 효과적으로 냉각될 수 있다.
또한, 상기의 구성에 따라, 본 발명의 실시 예에 따른 유로 모듈 및 이를 포함하는 전력 기기는 냉각을 위한 유체가 원활하게 유동될 수 있다.
유로 분할 부재는 분할된 유체가 유동되는 분할 공간 및 분할 공간을 부분적으로 둘러싸며, 분할된 유체를 덕트 부재를 향해 안내하는 분할 면을 포함한다. 분할된 유체는 분할 면을 따라 유동되며 덕트 부재를 향해 유동될 수 있다.
일 실시 예에서, 덕트 부재는 그 내면이 경사지게 연장될 수 있다. 상기 실시 예에서, 덕트 부재의 내면의 경사는 상기 분할 면의 경사에 대응되게 형성될 수 있다. 더 나아가, 덕트 부재의 상기 내면은 별도의 돌출부 없이 매끄럽게 연장될 수 있다.
따라서, 하우징 공간부에서 유동되던 유체는 유의미한 유동 저항 없이 유로 분할 부재, 덕트 부재 및 와류 형성 부재를 거쳐 유동 공간으로 토출될 수 있다. 이에 따라, 냉각을 위한 유체가 원활하게 유동될 수 있다.
또한, 상기의 구성에 따라, 본 발명의 실시 예에 따른 유로 모듈 및 이를 포함하는 전력 기기는 별도의 유체 공급원 없이도 구성 요소들이 효과적으로 냉각될 수 있다.
전력 기기의 구성 요소를 냉각하기 위한 유체는 송풍부의 작동에 의해 이송력을 인가받을 수 있다. 송풍부가 작동되면, 하우징의 외부에서 체류되던 유체가 하우징 공간부로 유입될 수 있다. 송풍부가 인가하는 이송력에 의해, 유체는 하우징 공간부에서 지속적으로 유동될 수 있다. 즉, 냉각을 위한 유체를 공급하기 위한 별도의 부재가 요구되지 않는다.
한편, 유로 분할 부재는 하우징 공간부에서 유동되는 유체의 경로 상에 배치된다. 즉, 유로 분할 부재를 향해 유체를 안내하기 위한 별도의 장치가 요구되지 않는다. 송풍부가 작동되면, 하우징 공간부에 유입된 유체의 일부가 유로 분할 부재로 유입되어, 기판 등을 냉각하게 유동될 수 있다.
따라서, 유체는 별도의 공급원 및 추가 동력원 없이도 유동되어, 다양한 구성 요소를 냉각할 수 있다.
또한, 상기의 구성에 따라, 본 발명의 실시 예에 따른 유로 모듈 및 이를 포함하는 전력 기기는 설계 자유도 및 배치 자유도가 향상될 수 있다.
유로 모듈은 기판 사이에 위치되어, 기판 사이의 공간으로 유체를 토출하게 구성된다. 유로 모듈은 기판 사이에 형성된 미소한 공간의 크기에 맞춰 미소하게 제작될 수 있다. 즉, 유로 모듈을 구비되더라도, 전력 기기의 크기가 증가되지 않는다.
유로 모듈의 와류 형성 부재는 복수 개 구비될 수 있다. 복수 개의 와류 형성 부재는 서로 인접하게 배치되는 각 쌍의 기판 사이에 각각 위치될 수 있다. 기판의 개수가 증가되면, 와류 형성 부재 또한 그에 대응되게 추가로 구비될 수 있다. 즉, 와류 형성 부재의 개수가 조정되어 유로 모듈의 스케일 업(scale up) 또는 스케일 다운(scale down)이 용이하게 진행될 수 있다.
또한, 유로 모듈은 기판 사이에 형성되는 사공간(dead space)에 위치된다. 즉, 유로 모듈을 구비하기 위해 별도의 추가 공간이 요구되지 않는다.
따라서, 전력 기기 내부 공간의 활용도가 향상되고, 전력 기기의 용량에 따라 다양한 형태로 변형이 가능하다. 이에 따라, 설계 자유도 및 배치 자유도가 향상될 수 있다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 본 발명의 실시 예에 따른 전력 장치를 도시하는 사시도이다.
도 2는 도 1의 전력 장치의 내부 구성을 도시하는 부분 개방 사시도이다.
도 3은 도 1의 전력 장치의 내부 구성을 도시하는 A-A 단면도이다.
도 4는 도 1의 전력 장치에 구비되는 유로 모듈 및 PCB 간의 결합 구조를 도시하는 부분 확대 단면도이다.
도 5는 도 4의 유로 모듈 및 PCB 간의 결합 구조를 도시하는 분해 사시도이다.
도 6은 도 4의 유로 모듈의 일부 구성 요소를 도시하는 사시도이다.
도 7은 도 1의 전력 장치에 구비되는 유로 모듈을 도시하는 사시도이다.
도 8은 도 7의 유로 모듈의 구성 요소 간의 결합 구조를 도시하는 분해 사시도이다.
도 9는 도 7의 유로 모듈에 구비되는 덕트 부재를 도시하는 부분 개방 사시도이다.
도 10은 도 7의 유로 모듈에 구비되는 덕트 부재를 도시하는 측단면도이다.
도 11은 도 7의 유로 모듈에 구비되는 와류 형성 부재를 도시하는 정단면도이다.
도 12는 도 7의 유로 모듈에 구비되는 와류 형성 부재를 도시하는 평단면도이다.
도 13은 도 12의 와류 형성 부재의 변형 예를 도시하는 부분 사시도이다.
도 14는 도 7의 유로 모듈의 내부에 형성되는 유로를 도시하는 부분 개방 사시도이다.
도 15는 도 7의 유로 모듈의 내부에 형성되는 유로를 도시하는 측단면도이다.
도 16은 도 1의 전력 기기의 내부에 형성되는 유로를 도시하는 측단면도이다.
도 17은 도 1의 전력 기기의 내부에 형성되는 유로를 도시하는 정단면도이다.
도 18 내지 도 21은 도 1의 전력 기기의 내부에 형성되는 유로를 도시하는 부분 개방 사시도이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시 예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되지 않는다. 본 발명을 명확하게 설명하기 위해서 도면에서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙였다.
본 명세서 및 청구범위에 사용된 단어와 용어는 통상적이거나 사전적인 의미로 한정 해석되지 않고, 자신의 발명을 최선의 방법으로 설명하기 위해 발명자가 용어와 개념을 정의할 수 있는 원칙에 따라 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
그러므로 본 명세서에 기재된 실시 예와 도면에 도시된 구성은 본 발명의 바람직한 일 실시 예에 해당하고, 본 발명의 기술적 사상을 모두 대변하는 것이 아니므로 해당 구성은 본 발명의 출원 시점에서 이를 대체할 다양한 균등물과 변형 예가 있을 수 있다.
이하의 설명에서는 본 발명의 특징을 명확하게 하기 위해, 일부 구성 요소들에 대한 설명이 생략될 수 있다.
1. 용어의 정의
이하의 설명에서 사용되는 "연통"이라는 용어는, 하나 이상의 부재가 서로 유체 소통 가능하게 연결됨을 의미한다. 일 실시 예에서, 연통은 관로, 파이프, 배관 등의 부재에 의해 형성될 수 있다.
이하의 설명에서 사용되는 "통전"이라는 용어는, 하나 이상의 부재가 서로 전류 또는 전기적 신호를 전달 가능하게 연결됨을 의미한다. 일 실시 예에서, 통전은 도선 부재 등에 의한 유선의 형태 또는 블루투스, Wi-Fi, RFID 등의 무선의 형태로 형성될 수 있다.
이하의 설명에서 사용되는 "유체"라는 용어는 외력에 의해 형상 등이 변형될 수 있는 임의의 형태의 물질을 의미한다. 유체는 전력 기기(10)의 내부로 유입되어, 전력 기기(10)의 구성 요소와 열교환되게 구성될 수 있다. 상기 열교환에 의해, 전력 기기(10)에 구비되는 다양한 구성 요소가 냉각될 수 있다. 일 실시 예에서, 유체는 공기 등의 기체일 수 있다.
이하의 설명에서 사용되는 "상측", "하측", "좌측", "우측", "전방 측" 및 "후방 측"이라는 용어는 첨부된 도면 전반에 걸쳐 도시된 좌표계를 참조하여 이해될 것이다.
2. 본 발명의 실시 예에 따른 전력 기기(10)의 구성의 설명
도 1 내지 도 5를 참조하면, 본 발명의 실시 예에 따른 전력 기기(10)가 도시된다.
전력 기기(10)는 내부에 다양한 전기, 전자 장치를 수용하여 기 설정된 기능을 수행할 수 있는 임의의 형태로 구비될 수 있다. 일 실시 예에서, 전력 기기(10)는 인버터(inverter), IGBT(Insulated Gate Bipolar Transistor), PCB(Printed Circuit Board) 등을 포함하는 임의의 장치로 구비될 수 있다.
상기 실시 예에서, 전력 기기(10)는 외부의 전원 또는 부하와 통전될 수 있다. 상기 실시 예에서, 전력 기기(10)는 외부의 전원으로부터 전력을 전달받고, 전달된 전력을 다양한 형태로 처리한 후 외부의 부하에 전달하게 구성될 수 있다.
이때, 전력 기기(10)가 작동됨에 따라, 전력 기기(10)의 내부에 실장된 다양한 구성 요소에서는 열이 발생될 수 있다. 과다한 열이 발생될 경우, 전력 기기(10)의 각 구성 요소의 손상이 유발되어 결과적으로 전력 기기(10)의 오작동이 발생될 수 있다.
또한, 전력 기기(10)의 각 구성 요소를 냉각하기 위한 유체가 유입되는 경우에도, 유체의 유로가 효과적으로 형성되지 못할 경우 냉각 효율이 향상되기 어렵다. 즉, 전력 기기(10)의 내부로 유입된 유체는 전력 기기(10) 내부의 다양한 공간에서 유동되며, 다양한 구성 요소와 열교환되게 구성되는 것이 바람직하다.
이에, 본 발명의 실시 예에 따른 전력 기기(10)는 유로 모듈(11)을 포함하여, 냉각을 위해 유입된 유체의 유로를 다양하게 형성할 수 있다. 이에 따라, 본 발명의 실시 예에 따른 전력 기기(10)는 그 구성 요소가 효과적으로 냉각되어, 작동 신뢰성이 향상될 수 있다.
도시된 실시 예에서, 전력 기기(10)는 하우징(100), 통전부(200), 유로 분할 부재(300), 덕트 부재(400) 및 와류 형성 부재(500)를 포함한다. 상기 구성 요소 중 유로 분할 부재(300), 덕트 부재(400) 및 와류 형성 부재(500)를 구성하는 유로 모듈(11)은 별항으로 설명한다.
하우징(100)은 전력 기기(10)의 외형을 형성한다. 하우징(100)은 전력 기기(10)가 외부로 노출되는 부분이다. 하우징(100)의 내부에는 공간이 형성되어, 전력 기기(10)의 다양한 구성 요소가 실장될 수 있다.
하우징(100)의 내부는 외부의 전원 또는 부하와 통전된다. 하우징(100)의 내부에 수용된 구성 요소들은 외부의 전원 또는 부하와 통전될 수 있다. 상기 통전을 위해, 하우징(100)의 내부에는 도선 부재(미도시) 등이 관통될 수 있다.
하우징(100)은 전기 절연성 소재로 형성될 수 있다. 외부의 전원 또는 부하 등과의 임의 통전을 방지하고, 전력 기기(10)에 인접하게 위치된 작업자와의 감전 사고 등이 방지되기 위함이다.
하우징(100)은 고내열성 소재로 형성될 수 있다. 하우징(100)의 내부에 수용된 전력 기기(10)의 구성 요소에서 발생된 열에 의해 손상되거나, 발생된 열에 의해 가열되어 발생될 수 있는 안전 사고 등을 방지하기 위함이다.
일 실시 예에서, 하우징(100)은 PC(Poly Carbonate) 등 합성 수지 소재로 형성될 수 있다.
하우징(100)은 외부와 연통된다. 하우징(100)의 외부의 유체는 하우징(100)의 내부로 유입될 수 있다. 하우징(100)의 내부에 수용된 다양한 구성 요소들은 유입된 유체와 열교환되며 냉각될 수 있다.
하우징(100)은 전력 기기(10)의 구성 요소들을 실장할 수 있는 임의의 형상으로 구비될 수 있다. 도시된 실시 예에서, 하우징(100)은 전후 방향의 연장 길이가 좌우 방향의 연장 길이보다 길고, 상하 방향의 높이를 갖는 사각기둥 형상이다.
도시된 실시 예에서, 하우징(100)은 제1 하우징(110), 제2 하우징(120), 송풍부(130), 단자부(140), 하우징 공간부(150) 및 지지 플레이트(160)를 포함한다.
제1 하우징(110)은 하우징(100)의 외형의 일부를 형성한다. 도시된 실시 예에서, 제1 하우징(110)은 하우징(100)의 상측을 형성한다.
제1 하우징(110)은 제2 하우징(120)과 결합된다. 일 실시 예에서, 제1 하우징(110)은 제2 하우징(120)과 탈거 가능하게 결합될 수 있다. 상기 실시 예에서, 제1 하우징(110)과 제2 하우징(120)의 결합 및 분리가 용이하게 진행되어, 전력 기기(10)의 제작 및 유지 보수가 간명해질 수 있다.
제1 하우징(110)의 내부에는 공간이 형성된다. 상기 공간은 제2 하우징(120)의 내부에 형성된 공간과 연통된다. 후술될 바와 같이, 제1 하우징(110)의 내부에 형성된 공간은 제1 공간(151)으로, 제2 하우징(120)의 내부에 형성된 공간은 제2 공간(152)으로 정의될 수 있다.
제1 하우징(110)의 일측, 도시된 실시 예에서 하측은 개방 형성된다. 제1 하우징(110)의 내부는 상기 일측, 즉 하측을 통해 제2 하우징(120)의 내부와 연통될 수 있다.
제1 하우징(110)은 단자부(140)와 결합된다. 하우징(100)의 내부에 수용된 다양한 구성 요소는 단자부(140)를 통해 외부의 전원 또는 부하와 통전될 수 있다. 단자부(140)는 제1 하우징(110)의 길이 방향의 일 단부, 도시된 실시 예에서 전방 측 단부 면에 위치된다.
도시된 실시 예에서, 제1 하우징(110)은 리브(111) 및 통기부(112)를 포함한다.
리브(111)는 제1 하우징(110)의 일부를 형성한다. 리브(111)는 제1 하우징(110)의 강성을 보강한다. 도시된 실시 예에서, 리브(111)는 제1 하우징(110)의 폭 방향, 즉 좌측 및 우측 면에 각각 형성된다.
리브(111)는 제1 하우징(110)의 높이 방향, 도시된 실시 예에서 상하 방향으로 연장 형성된다. 이에 따라, 제1 하우징(110)의 높이 방향의 강성이 보강될 수 있다.
리브(111)는 복수 개 형성될 수 있다. 복수 개의 리브(111)는 제1 하우징(110)의 길이 방향을 따라 서로 이격되게 배치될 수 있다. 도시된 실시 예에서, 리브(111)는 전후 방향을 따라 서로 이격되어 배치된다.
복수 개의 리브(111)가 서로 이격되어 형성되는 공간은 통기부(112)로 정의될 수 있다.
통기부(112)는 제1 하우징(110)의 내부 공간, 즉 제1 공간(151)과 외부를 연통한다. 제1 하우징(110)의 외부의 유체, 즉 냉각을 위한 유체는 통기부(112)를 통해 제1 공간(151)으로 유입될 수 있다. 또한, 제1 하우징(110)의 내부의 유체, 즉 열교환이 완료된 유체는 통기부(112)를 통해 제1 공간(151)에서 유출될 수 있다.
통기부(112)는 제1 하우징(110)의 면에 관통 형성된다. 통기부(112)는 제1 하우징(110)의 내부 공간과 외부를 연통할 수 있는 임의의 위치에 형성될 수 있다. 도시된 실시 예에서, 통기부(112)는 리브(111)와 동일하게, 제1 하우징(110)의 폭 방향, 즉 좌측 및 우측 면에 각각 형성된다.
통기부(112)는 제1 하우징(110)의 높이 방향, 도시된 실시 예에서 상하 방향으로 연장 형성된다. 통기부(112)의 형상은 리브(111)의 형상에 상응하게 변경될 수 있다.
통기부(112)는 복수 개 형성될 수 있다. 복수 개의 통기부(112)는 제1 하우징(110)의 길이 방향을 따라 서로 이격되게 배치될 수 있다. 도시된 실시 예에서, 통기부(112)는 전후 방향을 따라 서로 이격되어 배치된다.
이때, 통기부(112)는 서로 인접하게 위치되는 리브(111) 사이에 형성된다. 즉, 통기부(112)는 서로 인접하게 위치되는 한 쌍의 리브(111)가 이격되어 형성된다.
상술한 바와 같이, 리브(111)는 복수 개 형성되어 제1 하우징(110)의 길이 방향, 도시된 실시 예에서 전후 방향으로 배치된다. 이에, 통기부(112) 또한 복수 개 형성되어 제1 하우징(110)의 길이 방향, 도시된 실시 예에서 전후 방향으로 배치될 수 있다.
따라서, 리브(111)와 통기부(112)는 제1 하우징(110)의 길이 방향을 따라 교번적으로 연속되게 배치됨이 이해될 것이다.
제2 하우징(120)은 하우징(100)의 외형의 다른 일부를 형성한다. 도시된 실시 예에서, 제2 하우징(120)은 하우징(100)의 하측을 형성한다.
제2 하우징(120)은 제1 하우징(110)과 결합된다. 일 실시 예에서, 제2 하우징(120)은 제1 하우징(110)과 탈거 가능하게 결합될 수 있음은 상술한 바와 같다.
제2 하우징(120)의 내부에는 공간이 형성된다. 상기 공간은 제1 하우징(110)의 내부에 형성된 공간과 연통된다. 이에 따라, 제1 공간(151)과 제2 공간(152)이 연통됨은 상술한 바와 같다.
제2 하우징(120)의 일측, 도시된 실시 예에서 상측은 개방 형성된다. 제2 하우징(120)의 내부는 상기 일측, 즉 상측을 통해 제1 하우징(110)의 내부와 연통된다.
따라서, 제1 하우징(110)과 제2 하우징(120)은 서로 마주하는 각 일 측이 개방 형성되어, 그 내부가 서로 연통된다고 할 수 있을 것이다.
이에 따라, 전력 기기(10)의 구성 요소는 제1 하우징(110) 및 제2 하우징(120)의 내부에 걸쳐 수용될 수 있다. 또한, 후술될 바와 같이, 제1 하우징(110) 및 제2 하우징(120) 중 어느 하나의 내부로 유입된 유체는 다른 하나의 내부로 유동될 수 있다.
제2 하우징(120)은 외부와 연통된다. 외부의 유체는 제2 하우징(120)의 내부로 유입되어, 그 내부에 수용된 다양한 구성 요소와 열교환될 수 있다. 도시된 실시 예에서, 제2 하우징(120)의 길이 방향의 일 단부, 즉 전방 측 단부가 개방 형성되어 외부와 연통된다.
제2 하우징(120)은 송풍부(130)와 결합된다. 하우징(100)의 내부에 수용된 다양한 구성 요소는 송풍부(130)에 의해 유입된 유체에 의해 냉각될 수 있다.
송풍부(130)는 하우징(100)의 외부의 유체가 하우징(100)의 내부로 유동되기 위한 이송력을 제공한다.
송풍부(130)는 제2 하우징(120)이 외부와 연통되는 부분에 위치되어, 외부에서 제2 하우징(120)의 내부를 향하는 방향의 이송력을 외부의 유체에 전달할 수 있다. 도시된 실시 예에서, 송풍부(130)는 제2 하우징(120)의 길이 방향의 일 단부, 즉 전방 측 단부에 위치된다. 일 실시 예에서, 송풍부(130)는 제2 하우징(120)의 내부에 수용되어 외부로 임의 노출되지 않게 배치될 수 있다.
송풍부(130)는 단자부(140)와 통전된다. 송풍부(130)가 작동되기 위해 필요한 전력은 단자부(140) 또는 단자부(140)와 통전되는 외부의 전원으로부터 전달될 수 있다. 일 실시 예에서, 작업자는 단자부(140)를 통해 송풍부(130)의 작동을 제어하기 위한 제어 신호를 인가할 수 있다.
송풍부(130)는 외부의 유체에 이송력을 제공하여, 유체를 하우징(100)의 내부로 유동시킬 수 있는 임의의 형태로 구비될 수 있다. 도시된 실시 예에서, 송풍부(130)는 복수 개의 블레이드(blade)를 포함하는 팬(fan)의 형태로 구비된다.
송풍부(130)는 복수 개 구비될 수 있다. 복수 개의 송풍부(130)는 다양한 형태로 배치되어, 외부의 유체에 이송력을 인가할 수 있다. 도시된 실시 예에서, 송풍부(130)는 두 개 구비되어, 하우징(100)의 폭 방향, 즉 좌우 방향으로 나란하게 배치된다.
송풍부(130)에 의해 제2 하우징(120)의 내부 공간, 즉 제2 공간(152)으로 유입된 유체는 제2 공간(152)에 수용된 구성 요소, 즉 후술될 스위칭 소자(210), 방열 부재(220) 등과 열교환되며 이들을 냉각할 수 있다.
특히, 본 발명의 실시 예에 따른 전력 기기(10)는 제2 공간(152)으로 유입된 유체의 유동을 분할하여, 제1 공간(151)으로 유도할 수 있다. 이에 따라, 제1 공간(151)에 수용된 구성 요소, 예를 들면 기판(230) 및 커패시터(250) 등이 효과적으로 냉각될 수 있다. 이에 대한 상세한 설명은 후술하기로 한다.
단자부(140)는 하우징(100)의 내부 공간이 외부와 통전되는 부분이다. 단자부(140)는 외부의 전원 또는 부하와 하우징(100)의 내부에 수용된 다양한 구성 요소를 통전한다.
일 실시 예에서, 단자부(140)는 복수 개의 조작 부재를 구비할 수 있다. 상기 조작 부재는 버튼, 다이얼 또는 터치 스크린 등으로 구비되어, 전력 기기(10)가 작동되기 위한 다양한 제어 신호를 인가받을 수 있다.
단자부(140)는 제1 하우징(110)에 결합된다. 단자부(140)는 제1 하우징(110)의 길이 방향의 일 단부, 도시된 실시 예에서 전방 측 단부에 위치된다.
이에 따라, 작업자는 전방 측에 위치되는 단자부(140)와 외부의 전원 또는 부하를 용이하게 통전시킬 수 있다. 또한, 단자부(140)에 조작 부재가 구비되는 실시 예에서, 작업자는 전방 측에 위치되는 단자부(140)를 조작하여 전력 기기(10)를 용이하게 제어할 수 있다.
단자부(140)는 하우징(100)의 내부 공간에 수용된 다양한 구성 요소와 통전되고, 작업자로부터 제어 신호를 인가받을 수 있는 임의의 위치에 배치될 수 있다.
단자부(140)는 전력 기기(10)의 다른 구성 요소와 통전된다. 일 실시 예에서, 단자부(140)는 송풍부(130) 및 통전부(200)와 통전될 수 있다.
단자부(140)와 통전되는 다양한 구성 요소가 실장되는 공간, 즉 제1 하우징(110) 및 제2 하우징(120)의 내부에 형성된 공간은 하우징 공간부(150)로 정의될 수 있다.
하우징 공간부(150)는 제1 하우징(110) 및 제2 하우징(120)의 내부에 형성된 공간이다. 하우징 공간부(150)는 전력 기기(10)를 구성하는 다양한 구성 요소를 실장한다. 도시된 실시 예에서, 하우징 공간부(150)에는 송풍부(130), 지지 플레이트(160), 통전부(200) 및 유로 모듈(11)이 수용될 수 있다.
하우징 공간부(150)는 제1 하우징(110) 및 제2 하우징(120)에 의해 둘러싸여 정의된다. 하우징 공간부(150)는 제1 하우징(110) 및 제2 하우징(120)의 면에 의해 외부로 임의 노출되지 않게 된다.
하우징 공간부(150)는 외부와 연통된다. 외부의 유체는 하우징 공간부(150)로 유입되어 수용된 구성 요소를 냉각한 후 배출될 수 있다.
하우징 공간부(150)는 외부와 통전된다. 하우징 공간부(150)에 수용된 다양한 구성 요소는 외부의 전원 또는 부하와 통전될 수 있다.
도시된 실시 예에서, 하우징 공간부(150)는 제1 공간(151) 및 제2 공간(152)을 포함한다.
제1 공간(151)은 제1 하우징(110)의 내부에 형성된 공간이다. 제1 공간(151)은 제1 하우징(110)의 면에 둘러싸여 형성된다. 도시된 실시 예에서, 제1 공간(151)은 그 전방 측, 후방 측, 상측, 좌측 및 우측이 제1 하우징(110)의 면에 둘러싸인다.
따라서, 제1 공간(151)은 제1 하우징(110)의 면에 부분적으로 둘러싸인다고 할 수 있을 것이다.
제1 공간(151)의 다른 부분, 도시된 실시 예에서 하측은 개방 형성된다. 제1 공간(151)은 상기 다른 부분, 즉 하측을 통해 제2 공간(152)과 연통된다. 제2 공간(152)에 유입된 외부의 유체는 상기 연통에 의해 제1 공간(151)으로 유동될 수 있다.
제1 공간(151)은 외부와 연통된다. 제2 공간(152)에서 제1 공간(151)으로 유동된 유체는 외부로 배출될 수 있다. 상기 연통은 제1 하우징(110)에 형성된 통기부(112)에 의해 달성될 수 있다.
이때, 통기부(112)에는 유체의 유동 방향을 제한하기 위한 별도의 부재가 구비되지 않는다. 따라서, 외부의 유체는 통기부(112)를 통해 제1 공간(115)으로 유입되어, 제1 공간(115)의 내부에 수용된 구성 요소들과 열교환될 수 있다.
제1 공간(151)에는 전력 기기(10)의 일부 구성 요소가 수용된다. 도시된 실시 예에서, 제1 공간(151)에는 기판(230) 및 유로 모듈(11)의 일부 구성 요소가 수용된다.
제1 공간(151)은 제2 공간(152)과 연통된다. 전력 기기(10)의 구성 요소들은 제1 공간(151) 및 제2 공간(152)에 걸쳐 수용될 수 있다.
제2 공간(152)은 제2 하우징(120)의 내부에 형성된 공간이다. 제2 공간(152)은 제2 하우징(120)의 면에 둘러싸여 형성된다. 도시된 실시 예에서, 제2 공간(152)은 그 전방 측, 후방 측, 하측, 좌측 및 우측이 제2 하우징(120)의 면에 둘러싸인다.
따라서, 제2 공간(152)은 제2 하우징(120)의 면에 부분적으로 둘러싸인다고 할 수 있을 것이다.
제2 공간(152)의 다른 부분, 도시된 실시 예에서 상측은 개방 형성된다. 제2 공간(152)은 상기 다른 부분, 즉 상측을 통해 제1 공간(151)과 연통된다. 제2 공간(152)에 유입된 외부의 유체가 제1 공간(151)으로 유동될 수 있음은 상술한 바와 같다.
제2 공간(152)은 외부와 연통된다. 구체적으로, 제2 공간(152)은 제2 하우징(120)의 부분 중 송풍부(130)가 위치되는 일측, 도시된 실시 예에서 전방 측을 통해 외부와 연통된다. 외부의 유체는 송풍부(130)가 인가하는 이송력에 의해, 상기 전방 측을 통해 제2 공간(152)으로 유입될 수 있다.
제2 공간(152)으로 유입된 유체는 제2 공간(152)에 수용된 구성 요소를 냉각하며 유동될 수 있다. 또한, 제2 공간(152)에 유입된 유체 중 일부는 유로 모듈(11)을 통해 제1 공간(151)으로 유동될 수 있다.
즉, 유로 모듈(11)은 제1 공간(151) 및 제2 공간(152)과 각각 연통된다. 이에 따라, 제1 공간(151)에 수용된 구성 요소 및 제2 공간(152)에 수용된 구성 요소가 효과적으로 냉각될 수 있다. 이에 대한 상세한 설명은 후술하기로 한다.
제2 공간(152)에는 전력 기기(10)의 다른 구성 요소가 수용된다. 도시된 실시 예에서, 제2 공간(152)에는 지지 플레이트(160), 통전부(200)의 스위칭 소자(210), 방열 부재(220) 및 커패시터(250)가 수용된다.
지지 플레이트(160)는 유로 모듈(11)의 유로 분할 부재(300)를 지지한다. 지지 플레이트(160)는 제2 공간(152)에 위치된다.
지지 플레이트(160)는 제1 공간(151)과 제2 공간(152)을 물리적으로, 부분적으로 구획한다. 지지 플레이트(160)는 제1 공간(151)과 제2 공간(152)을 그 높이 방향, 도시된 실시 예에서 상하 방향을 따라 구획한다.
지지 플레이트(160)는 통전부(200)의 방열 부재(220)와 결합된다. 상기 결합에 의해, 지지 플레이트(160)는 제2 공간(152)에 수용된 상태로 안정적으로 유지될 수 있다. 도시된 실시 예에서, 지지 플레이트(160)의 후방 측 단부가 방열 부재(220)와 결합된다.
지지 플레이트(160)는 유로 분할 부재(300)와 결합된다. 상기 결합에 의해, 유로 분할 부재(300)가 하우징(100)에 결합될 수 있다. 이에, 지지 플레이트(160)는 유로 분할 부재(300)를 지지한다고 할 수 있을 것이다.
지지 플레이트(160)는 제1 공간(151) 및 제2 공간(152)을 구획하고, 유로 분할 부재(300)와 연통되며, 유로 분할 부재(300)를 지지할 수 있는 임의의 형태로 구비될 수 있다. 도시된 실시 예에서, 지지 플레이트(160)는 하우징(100)의 길이 방향 및 폭 방향, 즉 전후 방향 및 좌우 방향으로 각각 연장 형성된 사각의 판형으로 구비된다.
지지 플레이트(160)의 내부에는 지지 관통공(161)이 형성된다. 지지 관통공(161)은 지지 플레이트(160)의 두께 방향, 도시된 실시 예에서 상하 방향으로 관통 형성된다.
지지 관통공(161)은 지지 플레이트(160)의 상측 및 하측을 연통한다. 상기 연통에 의해, 제1 공간(151)과 제2 공간(152)이 연통될 수 있다.
또한, 지지 관통공(161)은 유로 분할 부재(300)의 분할 공간(320)과 연통될 수 있다. 상기 연통에 의해, 제2 공간(152)에 유입된 유체의 일부가 분할 공간(320) 및 상기 관통공(미도시)을 통과하여 덕트 부재(400)로 유동될 수 있다.
일 실시 예에서, 지지 관통공(161)은 유로 모듈(11)의 일부 구성 요소, 즉 유로 분할 부재(300) 및 덕트 부재(400)와 그 높이 방향, 도시된 실시 예에서 상하 방향으로 겹쳐지게 배치될 수 있다. 따라서, 지지 관통공(161)은 유로 모듈(11)과 함께 제2 공간(152)에 유입된 유체의 유로를 형성한다고 할 수 있을 것이다.
지지 관통공(161)은 유로 분할 부재(300)와 덕트 부재(400)를 연통할 수 있는 임의의 형상일 수 있다. 도 5에 도시된 실시 예에서, 지지 관통공(161)은 원형의 단면을 갖고 상하 방향으로 연장 형성된 원기둥 형상이다.
지지 관통공(161)을 포함하여, 하우징(100)의 내부에 형성되는 유체의 유로에 대한 상세한 설명은 후술하기로 한다.
통전부(200)는 전력 기기(10)의 구성 요소 중 외부의 전원 또는 부하와 통전되는 구성 요소이다. 통전부(200)는 전력 기기(10)가 그 기능을 수행하기 위해 필요한 다양한 형태로 구성될 수 있다. 도시된 실시 예에서는 통전부(200)가 스위칭 소자(210)를 포함하여 스위칭 기능을 수행하게 구성된다. 도면 부호가 부여되지는 않았으나, 통전부(200)는 인버터 소자 등 다양한 형태의 전자적 장치를 포함할 수 있다.
통전부(200)는 하우징(100)의 내부에 실장된다. 통전부(200)는 하우징(100)의 외부로 임의 노출되지 않는다. 이때, 통전부(200)의 구성 요소의 일부는 제1 하우징(110)의 내부에, 다른 일부는 제2 하우징(120)의 내부에 수용된다.
구체적으로, 통전부(200)의 스위칭 소자(210), 방열 부재(220) 및 커패시터(250)는 제2 공간(152)에 수용된다. 또한, 통전부(200)의 기판(230)은 제1 공간(151)에 수용된다.
상술한 바와 같이, 제1 공간(151) 및 제2 공간(152)은 서로 연통된다. 이에, 통전부(200)는 제1 공간(151) 및 제2 공간(152)에 걸쳐 수용된다고 할 수 있을 것이다.
통전부(200)는 외부의 전원 또는 부하와 통전된다. 상기 통전은, 통전부(200)가 단자부(140)와 통전되어 달성된다. 즉, 통전부(200)는 단자부(140)를 매개로 외부의 전원 또는 부하와 통전된다.
도시된 실시 예에서, 통전부(200)는 스위칭 소자(210), 방열 부재(220), 기판(230), 기판 연통공(240) 및 커패시터(250)를 포함한다.
스위칭 소자(210)는 인가된 제어 신호에 따라 스위칭(switching) 작동되어, 회로를 개폐하게 구성된다. 스위칭 소자(210)는 단자부(140)를 통해 외부의 전원 또는 부하와 통전된다. 스위칭 소자(210)의 작동 원리 및 기능은 잘 알려진 기술이므로, 이에 대한 상세한 설명은 생략하기로 한다.
스위칭 소자(210)는 스위칭 작동에 의해 회로를 개폐할 수 있는 임의의 형태로 구비될 수 있다. 일 실시 예에서, 스위칭 소자(210)는 IGBT(Insulated Gate Bipolar Transistor)로 구비될 수 있다.
스위칭 소자(210)는 기판(230)과 통전된다. 스위칭 소자(210)가 작동되기 위한 제어 신호는 기판(230)에서 전달될 수 있다.
스위칭 소자(210)는 커패시터(250)와 통전된다. 스위칭 소자(210)의 작동에 필요한 전력은 커패시터(250)에서 전달될 수 있다.
스위칭 소자(210)는 하우징(100)의 내부에 수용된다. 구체적으로, 스위칭 소자(210)는 제2 공간(152)에 수용되되, 제1 공간(151)에 치우치게 위치된다. 즉, 도 3 내지 도 4에 도시된 실시 예에서, 스위칭 소자(210)는 제2 공간(152)에서 상측에 치우쳐 위치된다.
스위칭 소자(210)는 방열 부재(220) 및 기판(230)에 인접하게 위치된다. 도시된 실시 예에서, 스위칭 소자(210)는 방열 부재(220) 및 제2 기판(232) 사이에 위치된다.
스위칭 소자(210)는 복수 개의 소자를 포함할 수 있다. 이에, 스위칭 소자(210)가 작동됨에 따라, 다량의 열이 발생될 수 있다. 이에, 스위칭 소자(210)를 효과적으로 방열, 냉각하기 위해 방열 부재(220)가 구비된다.
방열 부재(220)는 스위칭 소자(210)에서 발생된 열을 전달받고, 이를 외부에 방출한다. 이때, 방열 부재(220)가 방출하는 열은 제2 공간(152)에서 유동되는 유체로 전달될 수 있다. 이에 따라, 스위칭 소자(210)가 냉각될 수 있다.
방열 부재(220)는 제2 공간(152)에 수용된다. 방열 부재(220)는 스위칭 소자(210)에 인접하게 위치된다. 일 실시 예에서, 방열 부재(220)는 스위칭 소자(210)와 접촉되어, 전도(conduction)의 형태로 열을 전달받을 수 있다. 도시된 실시 예에서, 방열 부재(220)는 스위칭 소자(210)의 하측에 위치되어, 그 상측 면이 스위칭 소자(210)의 하측 면과 접촉된다.
방열 부재(220)는 스위칭 소자(210)로부터 열을 전달받고, 전달받은 열을 다시 제2 공간(152)에 유입된 유체에 전달할 수 있는 임의의 형태로 구비될 수 있다. 일 실시 예에서, 방열 부재(220)는 복수 개의 핀(fin)이 서로 이격되어 나란하게 배치되어 형성될 수 있다.
방열 부재(220)는 제2 하우징(120)에 지지된다. 도 3에 도시된 실시 예에서, 방열 부재(220)의 하측은 제2 하우징(120)의 하측 내면에 의해 지지된다.
기판(230)은 전력 기기(10)의 작동에 대한 제어 신호를 인가받는다. 또한, 기판(230)은 인가받은 제어 신호에 따라 스위칭 소자(210) 및 커패시터(250)를 제어한다. 기판(230)은 단자부(140), 스위칭 소자(210) 및 커패시터(250)와 각각 통전된다.
기판(230)은 외부로부터 제어 신호를 인가받고, 인가받은 제어 신호에 따라 스위칭 소자(210) 및 커패시터(250)를 제어할 수 있는 임의의 형태로 구비될 수 있다. 도시된 실시 예에서, 기판(230)은 인쇄회로기판(Printed Circuit Board, PCB)으로 구비될 수 있다.
기판(230)이 PCB로 구비되는 실시 예에서, PCB의 작동 원리는 잘 알려진 기술이므로 상세한 설명은 생략하기로 한다.
기판(230)은 복수 개 구비될 수 있다. 복수 개의 기판(230)은 서로 이격되어 배치되되, 서로 통전될 수 있다. 또한, 복수 개의 기판(230)은 각각 단자부(140), 스위칭 소자(210) 및 커패시터(250)와 통전될 수 있다.
도시된 실시 예에서, 기판(230)은 제1 기판(231), 제2 기판(232) 및 제3 기판(233)을 포함하여 세 개 구비된다. 제1 기판(231), 제2 기판(232) 및 제3 기판(233)은 하우징(100)의 높이 방향, 도시된 실시 예에서 상하 방향을 따라 서로 이격되어 적층된다.
도시된 실시 예에서, 기판(230)은 방열 부재(220)와 이격되게 배치된다. 따라서, 기판(230)에서 발생된 열은 방열 부재(220)로 전달되기 어렵다. 마찬가지로, 기판(230)에 결합된 임의의 전기적 소자에서 발생된 열 또한 방열 부재(220)로 전달되기 어렵다.
이에, 본 발명의 실시 예에 따른 전력 기기(10)는 유로 모듈(11)을 포함하여, 복수 개의 기판(230) 사이에 유체가 유동될 수 있다. 이에 따라, 복수 개의 기판(230) 및 복수 개의 기판(230)에 각각 결합된 전기적 소자가 효과적으로 냉각될 수 있다. 이에 대한 상세한 설명은 후술하기로 한다.
도시된 실시 예에서, 제1 기판(231)은 가장 하측에 위치된다. 또한, 제3 기판(233)은 가장 상측에 위치되며, 제2 기판(232)은 제1 기판(231)과 제3 기판(233) 사이에 위치된다. 즉, 제1 기판(231), 제2 기판(232) 및 제3 기판(233)은 순차적으로 적층된다.
이때, 제1 기판(231), 제2 기판(232) 및 제3 기판(233)은 서로 소정 거리만큼 이격되어 배치된다. 이에, 각 기판(231, 232, 233) 사이에는 상기 이격에 의한 공간이 형성된다. 도시된 실시 예에서, 기판(230)은 세 개 구비되는 바, 상기 공간 또한 세 개 형성될 수 있다.
도 4를 참조하면, 제1 기판(231)의 상측에 형성되는 공간은 제1 유동 공간(S1)으로 정의될 수 있다. 동시에, 제1 유동 공간(S1)은 제2 기판(232)의 하측에 형성되는 공간으로도 정의될 수 있다. 이에, 제1 유동 공간(S1)은 제1 기판(231)과 제2 기판(232) 사이에 형성되는 공간으로 정의될 수 있다.
또한, 제2 기판(232)의 상측에 형성되는 공간은 제2 유동 공간(S2)으로 정의될 수 있다. 동시에, 제2 유동 공간(S2)은 제3 기판(233)의 하측에 형성되는 공간으로도 정의될 수 있다. 이에, 제2 유동 공간(S2)은 제2 기판(232)과 제3 기판(233) 사이에 형성되는 공간으로 정의될 수 있다.
더 나아가, 제3 기판(233)의 상측에 형성되는 공간은 제3 유동 공간(S3)으로 정의될 수 있다. 동시에, 제3 유동 공간(S3)은 제1 하우징(110)의 상면의 하측에 형성되는 공간으로 정의될 수 있다. 이에, 제3 유동 공간(S3)은 제3 기판(233)과 제1 하우징(110)의 상면 사이에 형성되는 공간으로 정의될 수 있다.
따라서, 복수 개의 기판(230)과 복수 개의 유동 공간(S1, S2, S3)은 교번적으로 적층되게 배치, 형성됨이 이해될 것이다.
후술될 유로 모듈(11)은 외부에서 유입된 유체를 분할하게 구성될 수 있다. 분할된 유체는 유로 모듈(11)을 통해 각 유동 공간(S1, S2, S3)에서 유동될 수 있다. 이에 따라, 기판(230) 및 기판(230)에 결합된 전기적 소자가 효과적으로 냉각될 수 있다. 이에 대한 상세한 설명은 후술하기로 한다.
기판(230)의 내부에는 기판 연통공(240)이 형성된다.
기판 연통공(240)은 기판(230)의 내부에 관통 형성된다. 기판 연통공(240)은 기판(230)의 두께 방향, 도시된 실시 예에서 상하 방향으로 관통 형성되어, 기판(230)을 사이에 두고 서로 마주하게 배치되는 복수 개의 유동 공간(S1, S2, S3)을 연통한다.
기판 연통공(240)은 복수 개의 기판(230)에 각각 형성될 수 있다. 도시된 실시 예에서, 기판(230)은 제1 기판(231), 제2 기판(232) 및 제3 기판(233)을 포함하여 세 개 구비된다. 이에, 기판 연통공(240) 또한 제1 기판 연통공(241), 제2 기판 연통공(242) 및 제3 기판 연통공(243)을 포함하여 세 개 구비될 수 있다.
이때, 제1 기판 연통공(241), 제2 기판 연통공(242) 및 제3 기판 연통공(243)은 서로 연통된다. 하우징(100)의 내부로 유입된 유체는 제1 기판 연통공(241), 제2 기판 연통공(242) 및 제3 기판 연통공(243)을 차례로 통과할 수 있다.
제1 기판 연통공(241)은 제1 기판(231)의 내부에 그 두께 방향으로 관통 형성된다. 제1 기판 연통공(241)은 유로 모듈(11)과 연통된다.
구체적으로, 제1 기판 연통공(241)은 제2 공간(152)을 향하는 일측, 도시된 실시 예에서 하측이 유로 분할 부재(300)의 분할 공간(320) 및 이와 연통되는 덕트 부재(400)와 연통된다. 제1 기판 연통공(241)이 제1 하우징(110)을 향하는 타측, 도시된 실시 예에서 상측은 와류 형성 부재(500), 구체적으로 제1 와류 형성 부재(500a)와 연통된다.
유로 분할 부재(300)에 의해 분할된 유체의 유로 중 일부는 분할 공간(320) 및 덕트 부재(400)를 거쳐 제1 기판 연통공(241)까지 연장될 수 있다. 또한, 상기 일부의 유로는 와류 형성 부재(500)로 연장될 수 있다.
제2 기판 연통공(242)은 제2 기판(232)의 내부에 그 두께 방향으로 관통 형성된다. 제2 기판 연통공(242)은 유로 모듈(11)과 연통되어, 제1 기판 연통공(241)을 통과한 유체가 유동될 수 있다.
구체적으로, 제2 기판 연통공(242)은 제2 공간(152)을 향하는 일측, 도시된 실시 예에서 하측이 와류 형성 부재(500), 구체적으로 제1 와류 형성 부재(500a)와 연통된다. 이에 따라, 제2 기판 연통공(242)은 제1 기판 연통공(241)과 연통될 수 있다.
또한, 제2 기판 연통공(242)이 제1 하우징(110)을 향하는 타측, 도시된 실시 예에서 상측은 와류 형성 부재(500), 구체적으로 제2 와류 형성 부재(500b)와 연통된다.
제1 와류 형성 부재(500a)로 유입된 유체의 일부는 제1 유동 공간(S1)으로 유출된다. 제1 와류 형성 부재(500a)로 유입된 유체의 다른 일부는 제2 기판 연통공(242)을 통해 제2 와류 형성 부재(500b)로 유동될 수 있다.
제3 기판 연통공(243)은 제3 기판(233)의 내부에 그 두께 방향으로 관통 형성된다. 제3 기판 연통공(243)은 유로 모듈(11)과 연통되어, 제2 기판 연통공(242)을 통과한 유체가 유동될 수 있다.
구체적으로, 제3 기판 연통공(243)은 제2 공간(152)을 향하는 일측, 도시된 실시 예에서 하측이 와류 형성 부재(500), 구체적으로 제2 와류 형성 부재(500b)와 연통된다.
또한, 제3 기판 연통공(243)이 제1 하우징(110)을 향하는 타측, 도시된 실시 예에서 상측은 제1 공간(151)과 연통된다.
제2 와류 형성 부재(500b)로 유입된 유체의 일부는 제2 유동 공간(S2)으로 유출된다. 제2 와류 형성 부재(500b)로 유입된 유체의 다른 일부는 제3 기판 연통공(243)을 통해 제1 공간(151)으로 유동될 수 있다.
도시된 실시 예에서, 제1 기판 연통공(241), 제2 기판 연통공(242) 및 제3 기판 연통공(243)은 하우징(100)의 높이 방향, 도시된 실시 예에서 상하 방향으로 겹쳐지게 배치된다.
또한, 제1 기판 연통공(241), 제2 기판 연통공(242) 및 제3 기판 연통공(243)은 유로 모듈(11)의 일부, 구체적으로 덕트 부재(400) 및 와류 형성 부재(500)와 하우징(100)의 높이 방향, 도시된 실시 예에서 상하 방향으로 겹쳐지게 배치된다.
이때, 후술될 바와 같이, 덕트 부재(400)는 전후 방향을 따라 경사지게 연장된다. 따라서, 덕트 부재(400)의 각 단부와 결합되는 제1 기판 연통공(241) 및 지지 관통공(161)은 상하 방향으로 겹쳐지게 배치되지 않음이 이해될 것이다.
제1 기판 연통공(241), 제2 기판 연통공(242) 및 제3 기판 연통공(243)의 배치 방식은 유로 모듈(11)과 연통되어 외부에서 유입된 유체를 제1 내지 제3 유동 공간(S1, S2, S3)에서 유동시킬 수 있는 임의의 방식으로 배치될 수 있다.
제1 기판 연통공(241), 제2 기판 연통공(242) 및 제3 기판 연통공(243)은 유로 모듈(11)과 연통될 수 있는 임의의 형상으로 형성될 수 있다. 도시된 실시 예에서, 제1 기판 연통공(241), 제2 기판 연통공(242) 및 제3 기판 연통공(243)은 원형의 단면을 갖고 상하 방향으로 연장 형성된 원판 형상이다.
제1 기판 연통공(241), 제2 기판 연통공(242) 및 제3 기판 연통공(243)의 형상은 덕트 부재(400) 또는 와류 형성 부재(500)의 형상에 따라 변경될 수 있다.
커패시터(250)는 스위칭 소자(210) 및 기판(230)이 작동되기 위해 필요한 전력을 공급한다. 커패시터(250)는 스위칭 소자(210) 및 기판(230)과 통전된다.
커패시터(250)는 외부의 전원에 의해 전력을 공급받아 저장할 수 있다. 커패시터(250)는 단자부(140)에 의해 외부의 전원과 통전될 수 있다.
커패시터(250)는 하우징(100)의 내부에 수용된다. 도시된 실시 예에서, 커패시터(250)는 제2 하우징(120)의 내부에 형성되는 제2 공간(152)에 수용된다.
커패시터(250)는 기판(230), 구체적으로 가장 하측에 위치되는 제1 기판(231)과 결합된다. 커패시터(250)는 제1 기판(231)과 통전되어, 전력을 전달할 수 있다.
이에 따라, 통전부(200)의 각 구성 요소, 즉 스위칭 소자(210), 기판(230) 및 커패시터(250)가 서로 통전될 수 있다.
커패시터(250)는 복수 개 구비될 수 있다. 복수 개의 커패시터(250)는 각각 단자부(140), 스위칭 소자(210) 및 기판(230)과 통전될 수 있다.
커패시터(250)에 전력이 저장되고, 저장된 전력이 다른 구성 요소에 전달되는 과정은 잘 알려진 기술이므로 상세한 설명은 생략하기로 한다.
3. 본 발명의 실시 예에 따른 유로 모듈(11)의 구성의 설명
다시 도 2 내지 도 5를 참조하면, 본 발명의 실시 예에 따른 전력 기기(10)는 유로 모듈(11)을 포함한다.
유로 모듈(11)은 전력 기기(10)에 구비되어, 전력 기기(10)의 내부로 유입된 유체의 유동을 다양한 형태로 형성한다. 유입된 유체는 유로 모듈(11)을 통해 다양한 위치로 유동될 수 있다. 또한, 유입된 유체는 유로 모듈(11)에 의해 와류(vortex) 형태로 유동될 수 있다. 이에 따라, 전력 기기(10)의 내부에 수용된 구성 요소의 냉각이 효과적으로 진행될 수 있다.
유로 모듈(11)은 하우징(100)의 내부에 수용된다. 구체적으로, 유로 모듈(11)의 일부는 제1 하우징(110)의 내부에, 유로 모듈(11)의 다른 일부는 제2 하우징(120)의 내부에 수용된다. 도 3 내지 도 4를 참조하면, 유로 분할 부재(300) 및 덕트 부재(400)는 제2 공간(152)에, 와류 형성 부재(500)는 제1 공간(151)에 위치된다.
유로 모듈(11)은 전력 기기(10)의 다른 구성 요소와 결합된다. 도시된 실시 예에서, 유로 모듈(11)은 지지 플레이트(160) 및 기판(230)과 각각 결합된다.
유로 모듈(11)은 전력 기기(10)의 내부에 형성되는 다양한 공간과 연통된다. 도시된 실시 예에서, 유로 모듈(11)은 제1 공간(151), 제2 공간(152), 제1 유동 공간(S1), 제2 유동 공간(S2), 및 제3 유동 공간(S3)과 각각 연통된다.
이에 따라, 외부에서 제2 공간(152)으로 유입된 유체는 유로 모듈(11)을 따라 유동되며 다른 공간(151, S1, S2, S3)으로 유동될 수 있다. 유로 모듈(11)에 의해 형성되는 유체의 유로에 대한 상세한 설명은 후술하기로 한다.
이하, 다시 도 2 내지 도 5 및 도 6 내지 도 13을 더 참조하여 본 발명의 실시 예에 따른 유로 모듈(11)을 상세하게 설명한다.
도시된 실시 예에서, 유로 모듈(11)은 유로 분할 부재(300), 덕트 부재(400) 및 와류 형성 부재(500)를 포함한다. 유로 분할 부재(300), 덕트 부재(400) 및 와류 형성 부재(500)는 서로 연통된다.
유로 분할 부재(300)는 외부에서 하우징(100)의 내부로 유입된 유체를 분할한다. 유로 분할 부재(300)는 제2 하우징(120)의 내부에 위치된다.
유로 분할 부재(300)는 제2 공간(152)과 연통되어, 제2 공간(152)에서 유동되는 유체의 일부가 분할되어 유로 분할 부재(300)로 유동될 수 있다. 이때, 상기 유체가 외부로부터 제2 공간(152)으로 유입되기 위한 이송력은 송풍부(130)에 의해 제공됨은 상술한 바와 같다.
유로 분할 부재(300)는 지지 플레이트(160)에 결합된다. 유로 분할 부재(300)는 지지 플레이트(160)의 내부에 형성된 지지 관통공(161)과 연통된다. 분할된 유체는 유로 분할 부재(300)를 거쳐 지지 관통공(161)을 통과할 수 있다.
도시된 실시 예에서, 유로 분할 부재(300)는 방열 부재(220)와 커패시터(250) 사이에 위치된다. 또한, 유로 분할 부재(300)는 지지 플레이트(160)의 하측과 결합된다.
유로 분할 부재(300)의 위치는 제2 공간(152)으로 유입된 유체를 분할하고, 분할된 유체를 지지 관통공(161)으로 안내할 수 있는 임의의 위치에 배치되어, 임의의 부재와 결합될 수 있다.
유로 분할 부재(300)는 덕트 부재(400)와 연통된다. 유로 분할 부재(300)에 의해 분할된 유체는 유로 분할 부재(300) 및 지지 관통공(161)을 차례로 통과하여 덕트 부재(400)로 유동될 수 있다.
도 6을 참조하면, 도시된 실시 예에 따른 유로 분할 부재(300)는 분할 몸체(310), 분할 공간(320) 및 결합 돌기(330)를 포함한다.
분할 몸체(310)는 유로 분할 부재(300)의 몸체를 형성한다. 분할 몸체(310)는 제2 공간(152)에서 유동되는 유체를 분할하는 역할을 실질적으로 수행한다.
분할 몸체(310)는 지지 플레이트(160)와 결합된다. 일 실시 예에서, 분할 몸체(310)는 지지 플레이트(160)와 밀착 결합될 수 있다. 이에 따라, 분할된 유체는 다시 제2 공간(152)으로 복귀되지 않고 덕트 부재(400)를 향해 유동될 수 있다.
분할 몸체(310)는 제2 공간(152)에 유입된 유체를 분할하여 덕트 부재(400)를 향해 가이드할 수 있는 임의의 형상일 수 있다. 도시된 실시 예에서, 분할 몸체(310)는 송풍부(130)에 반대되는 일측, 즉 후방 측 면이 경사지게 형성된다.
따라서, 상기 실시 예에서, 분할 몸체(310)에 의해 분할된 유체는 지지 플레이트(160)를 향해 경사지게 형성된 상기 후방 측 면을 따라 유동되며, 덕트 부재(400)로 원활하게 진행될 수 있다.
분할 몸체(310)의 내부에는 분할 공간(320)이 형성된다. 분할 몸체(310)는 분할 공간(320)을 적어도 부분적으로 둘러싸게 형성된다. 도시된 실시 예에서, 분할 몸체(310)는 분할 공간(320)을 좌측, 우측, 하측 및 후방 측에서 둘러싸게 형성된다.
분할 몸체(310)는 결합 돌기(330)와 연속된다. 분할 몸체(310)는 결합 돌기(330)에 의해 지지 플레이트(160)에 결합될 수 있다.
도시된 실시 예에서, 분할 몸체(310)는 제1 분할 면(311), 제2 분할 면(312), 제3 분할 면(313), 제4 분할 면(314) 및 결합 면(315)을 포함한다.
제1 분할 면(311)은 분할 몸체(310)의 일 면을 형성한다. 제1 분할 면(311)은 일 측에서 분할 공간(320)을 둘러싸게 배치된다. 도시된 실시 예에서, 제1 분할 면(311)은 분할 몸체(310)의 전방의 하측 면을 형성한다.
제1 분할 면(311)은 분할 공간(320)을 부분적으로 둘러싼다. 도시된 실시 예에서, 제1 분할 면(311)은 분할 공간(320)의 전방의 하측을 둘러싸게 배치된다.
제1 분할 면(311)은 그 폭 방향 및 길이 방향을 따라 연장 형성될 수 있다. 도시된 실시 예에서, 제1 분할 면(311)은 전후 방향의 연장 길이가 좌우 방향의 연장 길이보다 짧게 형성된다.
제1 분할 면(311)은 소정의 각도를 이루며 유체의 유동 방향, 즉 전후 방향으로 연장될 수 있다. 일 실시 예에서, 제1 분할 면(311)은 기판(230)과 평행하도록, 전후 방향으로 연장 형성될 수 있다.
제1 분할 면(311)은 소정의 각도를 이루며 제2 분할 면(312)과 연속된다.
제2 분할 면(312)은 분할 몸체(310)의 타 면을 형성한다. 제2 분할 면(312)은 타 측에서 분할 공간(320)을 둘러싸게 배치된다. 도시된 실시 예에서, 제2 분할 면(312)은 분할 몸체(310)의 후방측 면을 형성한다.
제2 분할 면(312)은 분할 공간(320)을 부분적으로 둘러싼다. 도시된 실시 예에서, 제2 분할 면(312)은 분할 공간(320)의 후방 측을 둘러싸게 배치된다.
제2 분할 면(312)은 분할 공간(320)으로 유입된 유체를 안내한다. 분할 공간(320)에 진입된 유체는 제2 분할 면(312)을 따라 유동되며 지지 관통공(161) 및 덕트 부재(400)를 향해 유동될 수 있다.
제2 분할 면(312)은 그 폭 방향 및 길이 방향을 따라 연장 형성될 수 있다. 도시된 실시 예에서, 제2 분할 면(312)은 전후 방향의 연장 길이가 좌우 방향의 연장 길이보다 길게 형성된다.
제2 분할 면(312)은 소정의 각도를 이루며 유체의 유동 방향, 즉 전후 방향으로 연장될 수 있다. 도시된 실시 예에서, 제2 분할 면(312)은 후방의 상측을 향해 경사지게 연장된다. 즉, 제2 분할 면(312)은 유입된 유체를 가이드하기 위한 경사면으로 정의될 수 있다.
제1 분할 면(311) 및 제2 분할 면(312)의 폭 방향은 각각 제3 분할 면(313) 및 제4 분할 면(314)과 결합된다.
제3 분할 면(313) 및 제4 분할 면(314)은 각각 분할 몸체(310)의 다른 타 면을 형성한다. 제3 분할 면(313) 및 제4 분할 면(314)은 다른 타 측에서 분할 공간(320)을 둘러싸게 배치된다. 도시된 실시 예에서, 제3 분할 면(313) 및 제4 분할 면(314)은 각각 분할 몸체(310)의 좌측 면 및 우측 면을 형성한다.
제3 분할 면(313) 및 제4 분할 면(314)은 분할 공간(320)을 부분적으로 둘러싼다. 도시된 실시 예에서, 제3 분할 면(313) 및 제4 분할 면(314)은 각각 분할 공간(320)의 좌측 및 우측을 둘러싸게 배치된다.
제3 분할 면(313) 및 제4 분할 면(314)은 분할 공간(320)으로 유입된 유체가 폭 방향, 도시된 실시 예에서 좌우 방향으로 임의 이탈되지 않도록 가이드한다. 분할 공간(320)에 진입된 유체는 제3 분할 면(313) 및 제4 분할 면(314)에 가이드되어 그 폭 방향으로 유출되지 않고 덕트 부재(400)를 향해 유동될 수 있다.
제3 분할 면(313) 및 제4 분할 면(314)은 제1 분할 면(311) 및 제2 분할 면(312)과 결합되고, 분할 공간(320)을 둘러쌀 수 있는 임의의 형상일 수 있다. 도시된 실시 예에서, 제3 분할 면(313) 및 제4 분할 면(314)은 그 단면의 형상이 상측과 하측이 평행한 사다리꼴 형상이다.
이때, 제3 분할 면(313)의 단면 및 제4 분할 면(314)의 단면은 상측의 연장 길이가 하측의 연장 길이보다 길게 형성된다. 이에 따라, 제3 분할 면(313)의 단면 및 제4 분할 면(314)의 단면의 후방 측 모서리는 상측을 향해 경사지게 연장됨이 이해될 것이다.
결합 면(315)은 유로 분할 부재(300)가 지지 플레이트(160) 또는 덕트 부재(400)와 접촉되는 부분이다. 결합 면(315)은 지지 플레이트(160) 또는 덕트 부재(400)에 밀착 결합될 수 있다. 이에 따라, 결합 면(315)과 지지 플레이트(160) 또는 덕트 부재(400) 사이에는 유격이 발생되지 않아, 분할 공간(320)으로 유입된 유체는 덕트 부재(400)를 향해 유동될 수 있다.
결합 면(315)은 지지 플레이트(160) 또는 덕트 부재(400)를 향하는 분할 몸체(310)의 일측에 형성될 수 있다. 도시된 실시 예에서, 결합 면(315)은 분할 몸체(310)의 상측 면을 형성한다. 상기 실시 예에서, 결합 면(315)은 지지 플레이트(160)에 대해 평행하게 연장될 수 있다.
결합 면(315)은 분할 몸체(310)의 상측 단부를 따라 연장 형성될 수 있다. 달리 표현하면, 결합 면(315)은 분할 몸체(310)의 상측 면을 형성한다. 상기 실시 예에서, 결합 면(315)은 브라켓(bracket)의 형상을 갖게 형성될 수 있다.
상기 실시 예에서, 결합 면(315) 중 한 쌍의 부분은 분할 공간(320)을 사이에 두고 서로 마주하게 배치될 수 있다. 도시된 실시 예에서, 결합 면(315) 중 좌측에 위치되는 부분과 우측에 위치되는 부분은 분할 공간(320)을 사이에 두고 서로 마주하게 배치된다.
상기 한 쌍의 부분에는 결합 돌기(330)가 위치된다.
분할 공간(320)은 제2 공간(152)에 유입되어 분할된 유동되는 공간이다. 분할 공간(320)은 제2 공간(152)과 연통되어 분할된 유체가 유입될 수 있다.
분할 공간(320)은 지지 관통공(161) 및 덕트 부재(400)와 연통된다. 분할 공간(320)으로 유입된 유체는 지지 관통공(161)을 통과하여 덕트 부재(400)의 내부로 유동될 수 있다.
분할 공간(320)은 분할 몸체(310)의 내부에 형성된다. 구체적으로, 분할 공간(320)은 분할 몸체(310)를 구성하는 복수 개의 면에 의해 둘러싸일 수 있다. 상술한 바와 같이, 분할 공간(320)은 제1 내지 제4 분할 면(311, 312, 313, 314)에 의해 부분적으로 둘러싸인다.
분할 공간(320)은 외부와 연통된다. 분할 공간(320)의 부분 중 제2 공간(152)에서 유체가 유입되는 방향, 도시된 실시 예에서 전방 측은 개방 형성되어 제2 공간(152)과 연통된다. 제2 공간(152)의 유체는 상기 전방 측을 통해 분할 공간(320)으로 유동될 수 있다.
또한, 분할 공간(320)의 부분 중 유체가 분할 공간(320)에서 유출되는 방향, 도시된 실시 예에서 상측 역시 개방 형성되어 지지 관통공(161) 및 덕트 중공(420)과 연통된다. 분할 공간(320)에서 유동된 유체는 상기 상측을 통해 지지 관통공(161) 및 덕트 중공(420)으로 유동될 수 있다.
분할 공간(320)에 유입된 유체가 상측으로 경사지게 이동됨은 제2 분할 면(312)의 형상에 기인함이 이해될 것이다.
분할 공간(320)은 내부에서 유체가 유동될 수 있는 임의의 형상일 수 있다. 상술한 바와 같이, 도시된 실시 예에서, 분할 공간(320)은 전방의 하측은 제1 분할 면(311)에 의해, 후방 측은 제2 분할 면(312)에 의해 감싸진다. 분할 공간(320)의 좌측 및 우측은 각각 제3 분할 면(313) 및 제4 분할 면(314)에 의해 둘러싸인다.
이에 따라, 제2 공간(152)으로 유입된 유체는 그 전방 측으로 분할 공간(320)에 유입된 후, 상측으로 경사지게 유동되어 상측을 통해 지지 관통공(161) 및 덕트 중공(420)으로 유동될 수 있다.
결합 돌기(330)는 유로 분할 부재(300)가 지지 플레이트(160)와 결합되는 부분이다. 결합 돌기(330)는 분할 몸체(310)에서 지지 플레이트(160)를 향하는 방향, 도시된 실시 예에서 상측으로 돌출 형성된다.
결합 돌기(330)는 분할 몸체(310)의 부분 중 지지 플레이트(160)를 향하는 일측에 위치된다. 도시된 실시 예에서, 결합 돌기(330)는 분할 몸체(310)의 상측에 위치되는 결합 면(315)에 위치된다.
일 실시 예에서, 결합 돌기(330)는 지지 플레이트(160)에 끼움 결합될 수 있다. 상기 실시 예에서, 지지 플레이트(160)의 내부에는 결합 돌기(360)가 삽입되기 위한 홈이 함몰 또는 관통 형성될 수 있다.
결합 돌기(330)는 지지 플레이트(160)와 결합될 수 있는 임의의 형상으로 구비될 수 있다. 도시된 실시 예에서, 결합 돌기(330)는 그 수평 방향의 단면이 사각형이고, 상하 방향의 높이를 갖게 형성된다.
결합 돌기(330)는 복수 개 구비될 수 있다. 복수 개의 결합 돌기(330)는 서로 이격되어, 서로 다른 위치에서 지지 플레이트(160)와 결합될 수 있다.
도시된 실시 예에서, 결합 돌기(330)는 좌측에 위치되는 제1 결합 돌기(331) 및 우측에 위치되는 제2 결합 돌기(332)를 포함하여 한 쌍으로 구비된다. 제1 결합 돌기(331) 및 제2 결합 돌기(332)는 좌우 방향으로 이격되어 배치된다. 달리 표현하면, 한 쌍의 결합 돌기(330)는 분할 공간(320)을 사이에 두고 분할 공간(320)의 폭 방향으로 서로 마주하게 배치된다.
따라서, 복수 개의 결합 돌기(330)가 복수 개의 위치에서 지지 플레이트(160)와 결합되므로, 유로 분할 부재(300)와 지지 플레이트(160)의 결합 상태가 안정적으로 유지될 수 있다.
덕트 부재(400)는 유로 분할 부재(300) 및 와류 형성 부재(500)를 연통한다. 유로 분할 부재(300)에 의해 분할되어, 지지 관통공(161)을 통과된 유체는 덕트 부재(400)로 유동될 수 있다.
덕트 부재(400)는 지지 플레이트(160) 및 기판(230) 사이에 위치된다. 덕트 부재(400)는 지지 플레이트(160) 및 기판(230)과 각각 결합된다. 도시된 실시 예에서, 덕트 부재(400)의 하측 단부는 지지 플레이트(160)와, 덕트 부재(400)의 상측 단부는 기판(230)과 결합된다.
덕트 부재(400)는 유로 분할 부재(300) 및 와류 형성 부재(500)와 각각 연통된다.
구체적으로, 덕트 부재(400)는 지지 관통공(161)을 통해 분할 공간(320)과 연통된다. 제2 공간(152)에 유입된 유체는 분할 공간(320) 및 지지 관통공(161)을 차례로 거쳐 덕트 부재(400)의 내부로 유동될 수 있다. 덕트 부재(400)의 내부는 지지 관통공(161) 및 분할 공간(320)과 각각 연통된다.
또한, 덕트 부재(400)는 기판 연통공(240)을 통해 와류 형성 부재(500)의 내부에 형성된 와류 중공(530, 540)과 연통된다. 덕트 부재(400)의 내부에 유입된 유체는 기판 연통공(240)을 거쳐 와류 중공(530, 540)으로 유동될 수 있다. 덕트 부재(400)의 내부는 기판 연통공(240) 및 와류 중공(530, 540)과 각각 연통된다.
덕트 부재(400)는 수직 방향을 기준으로 소정의 각도를 이루며 연장될 수 있다. 도시된 실시 예에서, 덕트 부재(400)는 그 하측 단부가 전방 측에 치우치게 위치되고, 그 상측 단부가 후방 측에 치우치게 위치된다. 즉, 도시된 실시 예에서, 덕트 부재(400)는 그 단면이 "S"자 형상으로 형성된다.
덕트 부재(400)의 상기 형상에 의해, 덕트 부재(400)의 내면은 유로 분할 부재(300)의 제2 분할 면(312)에 상응하는 기울기를 갖게 형성될 수 있다. 일 실시 예에서, 덕트 부재(400)의 내면은 수평 방향에 대해 제2 분할 면(312)과 같은 기울기를 갖게 형성될 수 있다.
이에 따라, 덕트 부재(400)의 내부에서의 유동 저항이 최소화되어 유체가 원활하게 유동될 수 있다.
덕트 부재(400)는 플렉서블(flexible)한 소재로 형성될 수 있다. 전력 기기(10)가 작동됨에 따라 발생되는 진동에 의해 지지 플레이트(160) 또는 기판(230)과 임의 분리되지 않기 위함이다.
덕트 부재(400)는 전기 절연성 소재로 형성될 수 있다. 덕트 부재(400)가 결합되는 지지 플레이트(160) 및 기판(230) 간의 임의 통전이 방지되기 위함이다.
덕트 부재(400)는 열 절연성 소재로 형성될 수 있다. 지지 플레이트(160) 및 기판(230) 사이의 열전달을 방지하기 위함이다.
일 실시 예에서, 덕트 부재(400)는 고무(rubber) 또는 실리콘(silicon) 소재로 형성될 수 있다.
이해의 편의를 위해, 도 7 내지 도 8에서는 덕트 부재(400)가 와류 형성 부재(500)에 직접 결합되는 것으로 도시되었다. 다만, 덕트 부재(400) 및 복수 개의 와류 형성 부재(500) 사이에는 복수 개의 기판(230)이 결합될 수 있음이 이해될 것이다.
도 9 내지 도 10에 도시된 실시 예에서, 덕트 부재(400)는 덕트 몸체(410), 덕트 중공(420) 및 덕트 모서리(430)를 포함한다.
덕트 몸체(410)는 덕트 부재(400)의 몸체를 형성한다. 덕트 몸체(410)는 덕트 부재(400)가 지지 플레이트(160) 및 기판(230)과 결합되는 부분이다. 덕트 몸체(410)는 지지 플레이트(160)와 기판(230) 사이에서 연장된다. 상술한 바와 같이, 지지 플레이트(160) 및 기판(230)은 상하 방향으로 이격되어 적층 배치된다. 이에, 덕트 몸체(410)는 상하 방향으로 연장된다고 할 수 있을 것이다.
덕트 몸체(410)의 연장 방향의 단부 중 지지 플레이트(160)를 향하는 일 단부, 도시된 실시 예에서 하측 단부는 지지 플레이트(160)와 결합될 수 있다. 지지 관통공(161)이 충분히 크게 형성되는 실시 예에서, 덕트 몸체(410)의 상기 일 단부는 유로 분할 부재(300)의 결합 면(315)과 직접 결합될 수 있다.
덕트 몸체(410)의 연장 방향의 단부 중 기판(230)을 향하는 타 단부, 도시된 실시 예에서 상측 단부는 기판(230), 구체적으로 복수 개의 기판(230) 중 가장 하측에 위치되는 제1 기판(231)과 결합될 수 있다.
이때, 덕트 몸체(410)는 지지 관통공(161) 및 기판 연통공(240)을 덮으며 각각 지지 플레이트(160) 및 기판(230)과 결합될 수 있다.
덕트 몸체(410)의 내부에는 덕트 중공(420)이 형성된다. 덕트 몸체(410)의 내면은 덕트 중공(420)을 방사 방향에서 둘러싸며 연장된다. 상술한 바와 같이, 덕트 몸체(410)의 내면은 전방 측에서 후방 측을 향하는 방향으로 상측을 향해 경사지게 연장 형성된다.
달리 표현하면, 덕트 몸체(410)의 내면은 지지 플레이트(160) 또는 제1 기판(231)에 대해 경사지게 연장 형성된다.
일 실시 예에서, 덕트 몸체(410)의 내면에는 별도의 절곡부(bending part)가 형성되지 않을 수 있다. 달리 표현하면, 덕트 몸체(410)의 내면은 경사지게 연장되되 매끄럽게(smooth) 연장될 수 있다. 따라서, 덕트 몸체(410)의 내부에서의 유체의 유동 저항이 최소화되어, 유체가 원활하게 유동될 수 있다.
덕트 중공(420)은 유로 분할 부재(300)를 통해 분할된 유체가 유동되는 공간이다. 덕트 중공(420)은 덕트 몸체(410)의 내부에 형성된다. 덕트 중공(420)은 덕트 몸체(410)가 연장되는 방향, 즉 도시된 실시 예에서 전방 측에서 후방 측으로 상측을 향해 경사지게 연장 형성된다.
덕트 중공(420)의 연장 방향의 각 단부, 도시된 실시 예에서 상측 단부 및 하측 단부는 각각 개방 형성된다. 달리 표현하면, 덕트 중공(420)은 덕트 몸체(410)의 내부에, 덕트 몸체(410)의 연장 방향을 따라 관통 형성된다.
덕트 중공(420)은 분할 공간(320) 및 와류 중공(530, 540)과 각각 연통된다.
구체적으로, 덕트 중공(420)의 연장 방향의 각 단부 중 유로 분할 부재(300)를 향하는 일 단부, 도시된 실시 예에서 하측 단부는 분할 공간(320)과 연통된다. 이때, 덕트 중공(420)의 상기 일 단부는 지지 플레이트(160)에 형성된 지지 관통공(161)에 의해 분할 공간(320)과 연통될 수 있다.
덕트 중공(420)의 연장 방향의 각 단부 중 기판(230) 또는 와류 형성 부재(500)를 향하는 타 단부, 도시된 실시 예에서 상측 단부는 와류 중공(530, 540)과 연통된다. 이때, 덕트 중공(420)의 상기 타 단부는 기판(230), 구체적으로 제1 기판(231)의 내부에 형성된 제1 기판 연통공(241)에 의해 와류 중공(530, 540)과 연통될 수 있다.
덕트 모서리(430)는 덕트 부재(400)가 유로 분할 부재(300)와 결합되는 부분이다. 덕트 모서리(430)는 덕트 몸체(410)의 내면 및 외면에 각각 형성된다.
도시된 실시 예에서, 덕트 모서리(430)는 덕트 중공(420)을 향해 수평하게 연장되는 제1 부분 및 상기 제1 부분과 연속되며, 지지 플레이트(160)를 향해 수직하게 연장되는 제2 부분을 포함한다. 즉, 도시된 실시 예에서, 덕트 모서리(430)는 그 단면이 사각형의 일 모서리 형상이다.
덕트 모서리(430)에는 유로 분할 부재(300)의 결합 면(315)이 결합될 수 있다. 일 실시 예에서, 덕트 모서리(430)와 결합 면(315)은 밀착 결합되어, 덕트 중공(420)과 외부의 임의 연통이 차단될 수 있다.
다른 실시 예에서, 덕트 모서리(430)는 지지 플레이트(160)와 결합될 수 있다. 즉, 상기 실시 예에서, 덕트 부재(400)는 지지 플레이트(160)를 매개로 유로 분할 부재(300)와 결합될 수 있다. 이때, 지지 플레이트(160)에는 덕트 모서리(430)와 결합되기 위한 구성 요소, 예를 들면 돌출부 등이 구비될 수 있다.
어느 경우라도, 분할 공간(320)에 유입되어 지지 관통공(161)을 통과한 유체가 덕트 중공(420)이 아닌 다른 위치로 유동되는 상황이 방지될 수 있으면 족하다.
덕트 부재(400)는 와류 형성 부재(500)와 결합된다. 덕트 부재(400)는 와류 형성 부재(500)와 연통된다.
와류 형성 부재(500)는 덕트 부재(400)를 거친 유체, 즉 유로 분할 부재(300)에 의해 분할된 유체가 복수 개의 기판(230) 사이로 배출되는 통로로 기능된다. 와류 형성 부재(500)에 의해, 복수 개의 기판(230) 사이의 공간, 즉 제1 내지 제3 유동 공간(S1, S2, S3)에서 냉각을 위한 유체가 유동될 수 있다.
이에 따라, 별도의 방열 부재가 구비되지 않는 기판(230) 또한 효과적으로 냉각될 수 있다.
다시 도 4를 참조하면, 와류 형성 부재(500)는 복수 개의 기판(230) 사이에 위치된다. 상술한 바와 같이, 복수 개의 기판(230)은 상하 방향으로 서로 이격되어 적층된다. 이에, 와류 형성 부재(500)는 복수 개의 기판(230)과 상하 방향을 따라 교번적으로 배치된다고 할 수 있을 것이다.
와류 형성 부재(500)는 복수 개의 기판(230)과 각각 연결된다. 와류 형성 부재(500)는 서로 이격되어 적층된 복수 개의 기판(230) 사이에서 연장된다. 도시된 실시 예에서, 와류 형성 부재(500)는 상하 방향으로 연장 형성된다.
와류 형성 부재(500)의 연장 방향의 단부 중 제1 하우징(110)을 향하는 일 단부, 도시된 실시 예에서 상측 단부는 상대적으로 상측에 위치되는 기판(230)과 결합된다. 와류 형성 부재(500)의 연장 방향의 단부 중 제2 하우징(120)을 향하는 타 단부, 도시된 실시 예에서 하측 단부는 상대적으로 하측에 위치되는 기판(230)과 결합된다.
와류 형성 부재(500)는 전기 절연성 소재로 형성될 수 있다. 와류 형성 부재(500)는 서로 다른 기판(230)과 결합되는 바, 상기 기판(230) 사이의 임의 통전이 방지되기 위함이다.
와류 형성 부재(500)는 열 절연성 소재로 형성될 수 있다. 와류 형성 부재(500)에서 제1 내지 제3 유동 공간(S1, S2, S3)으로 토출되는 유체는 기판(230)의 냉각을 수행하게 구성된다. 이에, 와류 형성 부재(500)는 제1 내지 제3 유동 공간(S1, S2, S3) 및 기판(230)보다 낮은 온도로 유지되도록, 열 절연성 소재로 형성되는 것이 바람직하다.
와류 형성 부재(500)는 덕트 부재(400)와 연통된다. 구체적으로, 와류 형성 부재(500)의 상기 타 단부, 도시된 실시 예에서 하측 단부는 기판 연통공(240)을 통해 덕트 중공(420)과 연통된다.
와류 형성 부재(500)는 제1 내지 제3 유동 공간(S1, S2, S3)과 연통된다. 와류 형성 부재(500)의 내부로 유동된 유체는 제1 내지 제3 유동 공간(S1, S2, S3)으로 토출될 수 있다.
와류 형성 부재(500)는 복수 개 구비될 수 있다. 복수 개의 와류 형성 부재(500)는 복수 개의 기판(230)이 서로 이격되어 적층되는 방향, 도시된 실시 예에서 상하 방향으로 배치될 수 있다.
복수 개의 와류 형성 부재(500)는 서로 연통될 수 있다. 구체적으로, 상대적으로 상측에 위치되는 와류 형성 부재(500)는 그 하측 단부가 기판 연통공(240)에 의해 상대적으로 하측에 위치되는 와류 형성 부재(500)의 상측 단부와 연통된다.
도시된 실시 예에서, 와류 형성 부재(500)는 제1 와류 형성 부재(500a) 및 제2 와류 형성 부재(500b)를 포함하여 두 개 구비된다.
제1 와류 형성 부재(500a)는 제1 기판(231) 및 제2 기판(232) 사이에 위치된다. 따라서, 제1 와류 형성 부재(500a)는 제1 유동 공간(S1)에 위치된다고 할 수 있을 것이다.
제1 와류 형성 부재(500a)의 하측 단부는 제1 기판(231)과 결합되어, 제1 기판 연통공(241)과 연통된다. 제1 와류 형성 부재(500a)의 상측 단부는 제2 기판(232)과 결합되어, 제2 기판 연통공(242)과 연통된다.
제2 와류 형성 부재(500b)는 제2 기판(232) 및 제3 기판(233) 사이에 위치된다. 따라서, 제2 와류 형성 부재(500b)는 제2 유동 공간(S2)에 위치된다고 할 수 있을 것이다.
제2 와류 형성 부재(500b)의 하측 단부는 제2 기판(232)과 결합되어, 제2 기판 연통공(242)과 연통된다. 상기 연통에 의해, 제1 와류 형성 부재(500a)와 제2 와류 형성 부재(500b)가 연통될 수 있다.
또한, 제2 와류 형성 부재(500b)의 상측 단부는 제3 기판(233)과 결합되어, 제3 기판 연통공(243)과 연통된다. 상기 연통에 의해, 제2 와류 형성 부재(500b)와 제3 유동 공간(S3)이 연통될 수 있다.
와류 형성 부재(500)의 개수는 변경될 수 있다. 이때, 와류 형성 부재(500)의 개수는 기판(230)의 개수에 상응하게 변경될 수 있다. 즉, 상술한 바와 같이, 와류 형성 부재(500)는 서로 인접하게 배치되는 한 쌍의 기판(230) 사이에 위치된다. 따라서, 와류 형성 부재(500)는 기판(230)의 개수보다 하나 적게 구비될 수 있음이 이해될 것이다.
한편, 각 유동 공간(S1, S2, S3)에 배치되는 와류 형성 부재(500)의 개수는 변경될 수 있다. 도시된 실시 예에서는 제1 유동 공간(S1) 및 제2 유동 공간(S2)에 단수 개의 와류 형성 부재(500)가 구비되는 것으로 도시되었다. 대안적으로, 각 유동 공간(S1, S2, S3)마다 복수 개의 와류 형성 부재(500)가 배치될 수 있다.
상기 실시 예에서, 복수 개의 와류 형성 부재(500)에서 토출되는 유체 간의 간섭이 발생되지 않도록, 후술될 제2 와류 중공(540)을 연장한 가상의 직선들이 유동 공간(S1, S2, S3)에서 서로 교차되지 않게 배치되는 것이 바람직하다.
제1 와류 형성 부재(500a) 및 제2 와류 형성 부재(500b)는 결합되는 구성 요소 및 연통되는 구성 요소에 차이가 있되, 그 구조는 동일하다. 이에, 이하의 설명에서는 제1 와류 형성 부재(500a) 및 제2 와류 형성 부재(500b)가 서로 공통되는 부분에 대한 설명은 와류 형성 부재(500)로 통칭하여 설명하기로 한다.
도 11 내지 도 13을 참조하면, 도시된 실시 예에 따른 와류 형성 부재(500)는 와류 몸체(510), 와류 암(520), 제1 와류 중공(530), 제2 와류 중공(540), 와류 돌기(550) 및 와류 리브(560)를 포함한다.
와류 몸체(510)는 와류 형성 부재(500)의 외형의 일부를 형성한다. 와류 몸체(510)는 서로 인접하게 위치되는 한 쌍의 기판(230) 사이에서 연장된다. 도시된 실시 예에서, 와류 몸체(510)는 상하 방향으로 연장 형성된다.
와류 몸체(510)의 연장 방향의 일 단부, 도시된 실시 예에서 상측 단부는 한 쌍의 기판(230) 중 상대적으로 상측에 위치되는 기판(230)과 결합된다. 와류 몸체(510)의 연장 방향의 타 단부, 도시된 실시 예에서 하측 단부는 한 쌍의 기판(230) 중 상대적으로 하측에 위치되는 기판(230)과 결합된다.
이때, 와류 몸체(510)의 각 단부는 기판 연통공(240)을 덮으며 각 기판(230)에 결합될 수 있다.
와류 몸체(510)는 내부에 제1 와류 중공(530)이 형성되어, 유체가 유동될 수 있는 임의의 형상일 수 있다. 도시된 실시 예에서, 와류 몸체(510)는 그 외주는 원형이되, 내부에 제1 와류 중공(530)이 관통 형성된 환형(ring shape)의 단면을 갖게 형성된다.
와류 몸체(510)는 와류 암(520)과 결합된다. 상기 결합에 의해, 제1 와류 중공(530)은 와류 암(520)의 내부에 형성된 제2 와류 중공(540)과 연통될 수 있다.
와류 몸체(510)와 와류 암(520)이 결합되는 부분에는 와류 리브(560)가 형성된다.
와류 암(520)은 와류 형성 부재(500)의 외형의 다른 일부를 형성한다. 와류 암(520)은 와류 몸체(510)와 다른 방향으로 연장된다. 도시된 실시 예에서, 와류 암(520)은 수평 방향으로 연장 형성된다.
와류 암(520)의 연장 방향의 각 단부는 개방 형성되어 외부와 연통된다. 상기 연통에 의해, 와류 형성 부재(500)는 제1 유동 공간(S1) 및 제2 유동 공간(S2)과 연통될 수 있다. 와류 형성 부재(500)로 유동된 유체는 와류 암(520)을 거쳐 제1 유동 공간(S1) 또는 제2 유동 공간(S2)으로 토출될 수 있다.
와류 암(520)은 내부에 제2 와류 중공(540)이 형성되어, 와류 형성 부재(500)로 유입된 유체를 제1 유동 공간(S1) 또는 제2 유동 공간(S2)에 토출할 수 있는 임의의 형태로 구비될 수 있다. 도시된 실시 예에서, 와류 암(520)은 원형이되, 내부에 제2 와류 중공(540)이 관통 형성된 환형의 단면을 갖게 형성된다.
와류 암(520)은 상기 유체를 제1 유동 공간(S1) 또는 제2 유동 공간(S2)으로 토출할 수 있는 임의의 방향으로 연장 형성될 수 있다. 다시 도 2 내지 도 5를 참조하면, 와류 암(520)은 하우징(100)의 폭 방향, 즉 좌우 방향으로 연장 형성된다.
대안적으로, 와류 암(520)은 하우징(100)의 길이 방향, 즉 전후 방향으로 연장 형성되거나 사선 방향으로 연장될 수 있다. 이때, 와류 암(520)의 연장 방향은 제1 유동 공간(S1) 또는 제2 유동 공간(S2)에 배치된 다양한 구성, 예를 들면 기판(230) 또는 기판(230)에 결합된 스위칭 소자(210) 등 열을 발생시키는 임의의 구성의 배치 방식에 따라 변경될 수 있다.
어느 경우라도, 와류 암(520)에서 토출된 유체가 제1 유동 공간(S1) 또는 제2 유동 공간(S2)에서 유동되며, 다양한 구성 요소를 냉각할 수 있으면 족하다.
와류 암(520)은 복수 개 구비될 수 있다. 복수 개의 와류 암(520)은 서로 다른 위치에서 와류 몸체(510)와 결합될 수 있다. 도시된 실시 예에서, 와류 암(520)은 와류 몸체(510)의 좌측에 배치되는 제1 암(521) 및 와류 몸체(510)의 우측에 배치되는 제2 암(522)을 포함한다. 상기 실시 예에서, 제1 암(521) 및 제2 암(522)은 와류 몸체(510)를 사이에 두고 서로 마주하게 배치된다.
일 실시 예에서, 와류 암(520)은 복수 개의 쌍으로 구비되어, 서로 다른 방향으로 연장될 수 있다. 도시된 실시 예에서, 와류 암(520)은 좌우 방향으로 연장 형성된 한 쌍으로 구비되나, 전후 방향, 사선 방향 등으로 연장 형성된 추가 쌍의 와류 암(520)이 구비될 수 있다.
와류 암(520)과 와류 몸체(510)가 결합되는 부분에는 와류 리브(560)가 형성된다. 또한, 와류 암(520)의 각 단부에 인접한 내면에는 와류 돌기(550)가 형성된다.
제1 와류 중공(530)은 와류 형성 부재(500)의 내부에 관통 형성된다. 제1 와류 중공(530)은 덕트 부재(400)와 연통된다. 덕트 부재(400)를 통과한 유체는 제1 와류 중공(530)을 통해 와류 형성 부재(500)의 내부로 유동될 수 있다.
제1 와류 중공(530)은 와류 몸체(510)의 연장 방향을 따라 연장된다. 제1 와류 중공(530)의 연장 방향의 각 단부는 개방 형성되어 외부와 연통된다. 도시된 실시 예에서, 제1 와류 중공(530)은 와류 몸체(510)와 동일하게 상하 방향으로 연장 형성된다. 제1 와류 중공(530)의 상측 단부 및 하측 단부는 각각 개방 형성된다.
제1 와류 형성 부재(500a)에 형성된 제1 와류 중공(530)의 경우, 그 하측 단부는 제1 기판 연통공(241)에 의해 덕트 중공(420)과 연통된다. 또한, 상기의 경우, 제1 와류 중공(530)의 상측 단부는 제2 기판 연통공(242)에 의해 제2 와류 형성 부재(500b)의 하측 단부와 연통된다.
마찬가지로, 제2 와류 형성 부재(500b)에 형성된 제1 와류 중공(530)의 경우, 그 하측 단부는 제2 기판 연통공(242)에 의해 제1 와류 형성 부재(500a)에 형성된 제1 와류 중공(530)의 상측 단부와 연통된다. 상기의 경우, 제1 와류 중공(530)의 상측 단부는 제3 기판 연통공(243)에 의해 제3 유동 공간(S3)과 연통된다.
제1 와류 중공(530)은 제2 와류 중공(540)과 연통된다.
제2 와류 중공(540)은 제1 와류 중공(530)을 통해 유입된 유체가 각 유동 공간(S1, S2)으로 토출되는 경로를 형성한다. 제2 와류 중공(540)은 제1 와류 중공(530)과 연통된다.
제2 와류 중공(540)은 와류 형성 부재(500)의 내부에 관통 형성된다. 제2 와류 중공(540)은 와류 암(520)의 연장 방향을 따라 연장된다. 제2 와류 중공(540)의 연장 방향의 각 단부는 개방 형성되어 외부와 연통된다. 도시된 실시 예에서, 제2 와류 중공(540)은 와류 암(520)과 동일하게 좌우 방향으로 연장 형성된다. 제2 와류 중공(540)은 제1 암(521) 및 제2 암(522)에 걸쳐 연장된다.
상술한 바와 같이, 제2 와류 중공(540)의 각 단부를 둘러싸는 와류 암(520)의 내면에는 와류 돌기(550)가 형성된다.
와류 돌기(550)는 제2 와류 중공(540)에서 각 유동 공간(S1, S2)을 향해 토출되는 유체의 유동을 와류(vortex)로 형성한다. 유체는 와류 돌기(550)에 의해 나선형으로 선회 유동되며 유동 공간(S1, S2)으로 진입될 수 있다.
이에 따라, 유체와 기판(230) 간의 접촉 면적이 증가되어, 그 사이의 열교환이 활성화될 수 있다. 결과적으로, 유입된 유체에 의해 기판(230)이 효과적으로 냉각될 수 있다.
와류 돌기(550)는 와류 암(520)의 내면에 형성된다. 도시된 실시 예에서, 와류 돌기(550)는 와류 암(520)의 단부에 인접하게, 와류 암(520)의 내면에 형성된다.
와류 돌기(550)는 제2 와류 중공(540)에서 토출되는 유체의 유동을 와류로 형성할 수 있는 임의의 형태로 구비될 수 있다. 도시된 실시 예에서, 와류 돌기(550)는 와류 암(520)의 방사상 내측을 향해 연장 형성된 돌기 형상이다.
도 13을 참조하면, 와류 돌기(550)의 다양한 변형 예가 도시된다.
도 13의 (a)를 참조하면, 와류 돌기(550)는 블레이드(blade)의 형상으로 구비될 수 있다. 상기 실시 예에서, 와류 돌기(550)는 와류 중공(530, 540)의 방사상 외측에서 내측을 향해 소용돌이 형상으로 연장될 수 있다. 이에 따라, 와류 돌기(550) 사이의 공간을 통과하며 토출되는 유체의 유동이 와류로 형성될 수 있다.
도 13의 (b)를 참조하면, 와류 돌기(550)는 경사지게 연장되는 다각형의 형상으로 구비될 수 있다. 상기 실시 예에서, 와류 돌기(550)는 윙(wing)의 형상을 갖게 형성되어, 와류 중공(530, 540)의 방사상 외측에서 내측을 향해 연장될 수 있다. 이에 따라, 와류 돌기(550) 사이의 공간을 통과하며 토출되는 유체의 유동이 와류로 형성될 수 있다.
대안적으로, 와류 돌기(550)는 선조흔(rifling mark) 형상의 돌기 또는 홈으로 형성될 수 있다.
와류 돌기(550)는 복수 개 구비될 수 있다. 복수 개의 와류 돌기(550)는 와류 암(520)의 내면을 따라 서로 이격되어 배치될 수 있다. 도시된 실시 예에서, 복수 개의 와류 돌기(550)는 와류 암(520)의 내주를 따라 서로 이격되게 배치된다.
와류 돌기(550)는 복수 개의 군(group)으로 구비될 수 있다. 복수 개의 군의 와류 돌기(550)는 서로 다른 위치에 배치되어, 제2 와류 중공(540)의 각 단부를 통해 토출되는 유체의 유동을 와류로 형성하게 구성될 수 있다. 도시된 실시 예에서, 와류 돌기(550)는 한 쌍의 군이 구비되어, 와류 암(520)이 연장되는 방향의 각 단부에 인접하게 배치된다.
와류 리브(560)는 와류 몸체(510)와 와류 암(520)의 결합 상태를 보강한다. 와류 리브(560)는 와류 몸체(510)와 와류 암(520)이 연결되는 부분에 형성된다. 도시된 실시 예에서, 와류 리브(560)는 와류 암(520)의 하측에, 와류 몸체(510)의 외주에 인접하게 위치된다.
와류 리브(560)는 복수 개 형성될 수 있다. 복수 개의 와류 리브(560)는 복수 개의 와류 암(520)에 각각 인접하게 위치될 수 있다. 도시된 실시 예에서, 와류 리브(560)는 두 개 구비되어 제1 암(521) 및 제2 암(522)에 각각 인접하게 위치될 수 있다.
와류 리브(560)가 형성된 부분의 방사상 내측에는 홈(도면 부호 미부여)이 형성될 수 있다. 상기 홈은 제1 와류 중공(530)을 둘러싸는 와류 몸체(510)의 내면과 제2 와류 중공(540)을 둘러싸는 와류 암(520)의 내면을 매끄럽게 연결한다.
이에 따라, 제1 와류 중공(530)으로 유입된 유체는 제2 와류 중공(540)으로 용이하게 유동될 수 있다.
4. 본 발명의 실시 예에 따른 전력 기기(10)의 내부에 형성되는 유체의 유로의 설명
이상 설명한 본 발명의 실시 예에 따른 전력 기기(10)는 유로 모듈(11)을 포함한다. 유로 모듈(11)은 방열 부재(220)에 의해 직접 냉각되기 어려운 기판(230)을 향해 유체가 유동될 수 있는 유로를 형성한다. 이에 따라, 전력 기기(10)의 구성 요소의 냉각을 위해 유입된 유체는 기판(230) 또는 기판(230) 사이의 공간에서 유동되며, 기판(230)과 열교환될 수 있다.
결과적으로, 기판(230)에 인접하게 방열 부재(220)가 구비되지 않는 경우에도, 기판(230) 및 기판(230)에 결합된 소자 등이 효과적으로 냉각될 수 있다. 따라서, 전력 기기(10)의 냉각 효율이 향상되어, 전력 기기(10)의 작동 신뢰성이 향상될 수 있다.
이하, 도 14 내지 도 21을 참조하여 본 발명의 실시 예에 따른 전력 기기(10)의 내부에 형성되는 유체의 유로를 설명한다. 도시된 실시 예에서, 유체의 유로는 화살표로 표시되었다. 상술한 바와 같이, 이하에서 설명되는 유체의 유로는 송풍부(130)가 작동되어 유입된 유체에 의해 형성됨이 이해될 것이다.
먼저, 도 14 내지 도 15를 참조하면, 본 발명의 실시 예에 따른 유로 모듈(11)의 내부에 형성되는 유체의 유로가 도시된다. 이해의 편의를 위해, 유로 분할 부재(300), 지지 플레이트(160) 및 각 기판(230)의 도시는 생략되었다.
유로 분할 부재(300)의 분할 공간(320)에 유입된 유체는 지지 플레이트(160)에 형성된 지지 관통공(161)을 통과하여 덕트 중공(420)으로 유입된다. 덕트 중공(420)으로 유입된 유체는 이와 연통되는 제1 와류 중공(530)으로 유동된다. 이때, 상기 제1 와류 중공(530)은 제1 와류 형성 부재(500a)의 내부에 형성됨이 이해될 것이다.
유체는 제1 와류 중공(530)을 따라 유동된다. 유체가 제2 와류 중공(540)에 도달되면, 유체의 일부는 제1 와류 중공(530)을 따라 계속 유동되어, 제2 와류 형성 부재(500b)의 제1 와류 중공(530)으로 유입된다. 유체의 다른 일부는 제2 와류 중공(540)으로 진입된다.
이때, 제2 와류 중공(540)의 단부를 둘러싸는 와류 암(520)의 내주면에는 와류 돌기(550)가 형성된다. 이에 따라, 유체는 와류로 형성되며 제2 와류 중공(540)에서 제1 유동 공간(S1)으로 토출된다.
한편, 제2 와류 형성 부재(500b)의 제1 와류 중공(530)으로 유입된 유체(즉, 상기 유체의 일부)는 제1 와류 중공(530)을 따라 유동된다. 유체가 제2 와류 중공(540)에 도달되면, 유체의 일부는 제1 와류 중공(530)을 따라 계속 유동되어 제3 유동 공간(S3)으로 유입된다. 상기 유체의 일부는 제3 유동 공간(S3)에 수용된 소자 등과 열교환되어, 상기 소자 등이 냉각될 수 있다.
유체의 다른 일부는 제2 와류 중공(540)으로 진입된다. 이때, 제2 와류 중공(540)의 단부를 둘러싸는 와류 암(520)의 내주면에는 와류 돌기(550)가 형성된다. 이에 따라, 유체는 와류로 형성되며 제2 와류 중공(540)에서 제2 유동 공간(S2)으로 토출된다.
따라서, 제1 내지 제3 유동 공간(S1, S2, S3)에 배치되는 다양한 소자 및 제1 내지 제3 유동 공간(S1, S2, S3)을 둘러싸는 복수 개의 기판(230)이 효과적으로 냉각될 수 있다.
다음으로, 도 16 내지 도 21을 참조하면, 본 발명의 실시 예에 따른 전력 기기(10)의 내부에 형성되는 유체의 유로가 형성된다.
단자부(140)에 인가된 제어 신호에 의해 송풍부(130)가 작동되면, 외부의 유체가 송풍부(130)에 의해 이송력을 인가받는다. 외부의 유체는 인가된 이송력에 의해, 하우징(100)의 내부, 구체적으로 제2 하우징(120)의 제2 공간(152)으로 유입된다.
송풍부(130)와 유로 분할 부재(300) 사이에는 커패시터(250)가 위치된다. 이에, 제2 공간(152)으로 유입된 유체는 커패시터(250)와 열교환되며 제2 하우징(120)의 길이 방향의 일측, 도시된 실시 예에서 후방 측으로 진행된다.
이때, 커패시터(250)와 방열 부재(220) 사이에는 유로 분할 부재(300)가 위치된다. 이에 따라, 제2 공간(152)에서 유동되는 유체의 일부는 분할되어, 유로 분할 부재(300)로 유입된다.
유입된 유체가 마주하는 면, 즉 제2 분할 면(312)은 상측으로 경사지게 연장 형성된다. 따라서, 분할 공간(320)으로 진입된 유체는 제2 분할 면(312)을 따라 상측으로 이동된다.
분할 공간(320)은 지지 관통공(161)에 의해 덕트 중공(420)과 연통된다. 또한, 덕트 중공(420)은 제1 기판 연통공(241)에 의해 제1 와류 형성 부재(500a)와 연통되며, 제1 와류 형성 부재(500a)는 제2 기판 연통공(242)에 의해 제2 와류 형성 부재(500b)와 연통된다. 더 나아가, 제2 와류 형성 부재(500b)는 제3 기판 연통공(243)에 의해 제3 유동 공간(S3)과 연통된다.
분할 공간(320)을 거쳐 덕트 중공(420)으로 유입된 유체는 상술한 과정을 통해, 제1 내지 제3 유동 공간(S1, S2, S3)으로 유동되어 기판(230) 및 기판(230)에 결합된 소자 등과 열교환될 수 있다.
따라서, 기판(230) 등을 냉각하기 위한 별도의 방열 부재가 구비되지 않는 경우에도, 기판(230) 및 이에 결합된 소자 등이 효과적으로 냉각될 수 있다.
본 발명의 실시 예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 의해 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.
10: 전력 기기 11: 유로 모듈
100: 하우징 110: 제1 하우징
111: 리브 112: 통기부
120: 제2 하우징 130: 송풍부
140: 단자부 150: 하우징 공간부
151: 제1 공간 152: 제2 공간
160: 지지 플레이트 161: 지지 관통공
200: 통전부 210: 스위칭 소자
220: 방열 부재 230: 기판
231: 제1 기판 232: 제2 기판
233: 제3 기판 240: 기판 연통공
241: 제1 기판 연통공 242: 제2 기판 연통공
243: 제3 기판 연통공 250: 커패시터
300: 유로 분할 부재 310: 분할 몸체
311: 제1 분할 면 312: 제2 분할 면
313: 제3 분할 면 314: 제4 분할 면
315: 결합 면 320: 분할 공간
330: 결합 돌기 331: 제1 결합 돌기
332: 제2 결합 돌기 400: 덕트 부재
410: 덕트 몸체 420: 덕트 중공
430: 덕트 모서리 500: 와류 형성 부재
500a: 제1 와류 형성 부재 500b: 제2 와류 형성 부재
510: 와류 몸체 520: 와류 암
521: 제1 암 522: 제2 암
530: 제1 와류 중공 540: 제2 와류 중공
550: 와류 돌기 560: 와류 리브
S1: 제1 유동 공간 S2: 제2 유동 공간
S3: 제3 유동 공간
Claims (20)
- 하우징의 공간과 연통되어, 상기 공간에서 유동되는 유체가 유입되는 유로 분할 부재;상기 유로 분할 부재와 결합되며, 상기 유로 분할 부재와 연통되어 상기 유체가 유동되는 덕트 부재; 및상기 덕트 부재와 결합되며, 상기 덕트 부재와 연통되어 상기 유체가 유동되는 와류 형성 부재를 포함하며,상기 와류 형성 부재는,그 연장 방향의 단부의 내면에 형성되어, 상기 유체가 와류(vortex)로 형성되며 토출되게 구성되는 와류 돌기를 포함하는,유로 모듈.
- 제1항에 있어서,상기 와류 형성 부재는,일 방향으로 연장 형성되어, 그 연장 방향의 일 단부가 상기 덕트 부재와 결합되는 와류 몸체; 및타 방향으로 연장 형성되어, 그 연장 방향의 일 단부가 상기 와류 형성 부재와 결합되고, 그 연장 방향의 타 단부가 개방 형성되어 상기 유체가 토출되는 와류 암을 포함하는,유로 모듈.
- 제2항에 있어서,상기 와류 형성 부재는,상기 와류 몸체의 내부에 상기 일 방향을 따라 관통 형성되어, 상기 덕트 부재의 내부와 연통되는 제1 와류 중공; 및상기 와류 암의 내부에 상기 타 방향을 따라 관통 형성되어, 상기 제1 와류 중공 및 외부와 각각 연통되는 제2 와류 중공을 포함하는,유로 모듈.
- 제3항에 있어서,상기 유체는,상기 제1 와류 중공에서 상기 일 방향을 따라 유동되는 일부; 및상기 제1 와류 중공에서 상기 제2 와류 중공을 통과하여 외부로 노출되는 다른 일부로 분지되는,유로 모듈.
- 제2항에 있어서,상기 와류 암은 복수 개 형성되어, 복수 개의 상기 와류 암은 서로 다른 위치에서 상기 와류 몸체의 외주와 결합되는,유로 모듈.
- 제2항에 있어서,상기 와류 돌기는,상기 와류 암의 상기 타 단부의 내면에서 방사상 내측을 향해 돌출 형성되는,유로 모듈.
- 제6항에 있어서,상기 와류 돌기는 복수 개 구비되어, 복수 개의 상기 와류 돌기는 상기 와류 암의 상기 내면의 내주를 따라 서로 이격되어 배치되는,유로 모듈.
- 제1항에 있어서,상기 와류 형성 부재는 일 방향을 따라 연장 형성되고,상기 덕트 부재는 상기 일 방향에 대해 소정의 각도로 경사지게 연장 형성되는,유로 모듈.
- 제8항에 있어서,상기 덕트 부재는,그 연장 방향의 일 단부가 상기 와류 형성 부재와 결합되어 연통되고,그 연장 방향의 타 단부가 상기 유로 분할 부재와 결합되어 연통되는,유로 모듈.
- 제1항에 있어서,상기 덕트 부재는 플렉서블(flexible)한 소재로 형성되는,유로 모듈.
- 제1항에 있어서,상기 유로 분할 부재는,상기 덕트 부재와 결합되는 분할 몸체; 및상기 분할 몸체의 내부에 형성되며, 개방 형성되어 상기 유체가 유입되는 분할 공간을 포함하는,유로 모듈.
- 제11항에 있어서,상기 분할 몸체는,상기 분할 공간의 일 부분을 둘러싸는 제1 분할 면;상기 제1 분할 면과 소정의 각도를 이루며 연장되고, 상기 분할 공간의 다른 부분을 둘러싸는 제2 분할 면;상기 제1 분할 면 및 상기 제2 분할 면과 각각 연속되며, 상기 분할 공간을 사이에 두고 서로 마주하게 배치되는 제3 분할 면 및 제4 분할 면을 포함하며,상기 덕트 부재는,상기 제2 분할 면이 연장되는 상기 소정의 각도만큼 경사지게 연장되는,유로 모듈.
- 제11항에 있어서,상기 유로 분할 부재 및 상기 덕트 부재는,상기 하우징의 상기 공간에 배치되는 지지 플레이트를 사이에 두고 서로 마주하게 배치되며, 상기 지지 플레이트의 일측 및 타측에 각각 결합되고,상기 지지 플레이트의 내부에는,상기 유로 분할 부재 및 상기 덕트 부재와 각각 연통되는 지지 관통공이 관통 형성되는,유로 모듈.
- 외부와 연통되는 하우징 공간부가 그 내부에 형성된 하우징;상기 하우징 공간부에 수용되며, 외부와 통전되는 통전부; 및상기 통전부와 결합되어, 상기 통전부를 냉각하는 유체의 유로를 형성하게 구성되는 유로 모듈을 포함하며,상기 통전부는,서로 이격되어 적층되게 배치되는 복수 개의 기판을 포함하고,상기 유로 모듈은,상기 하우징 공간부와 연통되어, 상기 하우징 공간부에서 유동되는 유체가 유입되는 유로 분할 부재;복수 개의 상기 기판 중 어느 하나 및 상기 유로 분할 부재와 결합되며, 상기 유로 분할 부재와 연통되어 상기 유체가 유동되는 덕트 부재; 및복수 개의 상기 기판 중 상기 어느 하나 및 상기 어느 하나에 인접하게 위치되는 다른 하나와 결합되며, 상기 덕트 부재와 연통되어 상기 유체가 유동되는 와류 형성 부재를 포함하며,상기 와류 형성 부재는,그 연장 방향의 단부의 내면에 형성되어, 상기 유체가 와류(vortex)로 형성되며 토출되게 구성되는 와류 돌기를 포함하는,전력 기기.
- 제14항에 있어서,상기 와류 형성 부재는,복수 개의 상기 기판 중 서로 인접한 어느 한 쌍의 기판과 결합되는 제1 와류 형성 부재; 및복수 개의 상기 기판 중 서로 인접한 다른 한 쌍의 기판과 결합되어, 상기 제1 와류 형성 부재와 연통되는 제2 와류 형성 부재를 포함하고,복수 개의 상기 기판은,가장 하측에 위치되며, 그 하측은 상기 덕트 부재와 결합되고 그 상측은 상기 제1 와류 형성 부재와 결합되는 제1 기판;상기 제1 기판의 상측에 상기 제1 기판과 이격되어 배치되며, 그 하측은 상기 제1 와류 형성 부재와 결합되고, 그 상측은 상기 제2 와류 형성 부재와 결합되는 제2 기판; 및상기 제2 기판의 상측에 상기 제2 기판과 이격되어 배치되며, 그 하측이 상기 제2 와류 형성 부재와 결합되는 제3 기판을 포함하는,전력 기기.
- 제15항에 있어서,상기 제1 기판, 상기 제2 기판 및 상기 제3 기판의 내부에는 제1 기판 관통공, 제2 기판 관통공 및 제3 기판 관통공이 각각 관통 형성되고,상기 덕트 부재는 상기 제1 기판 관통공과 연통되고,상기 제1 와류 형성 부재는 상기 제1 기판 관통공 및 상기 제2 기판 관통공과 연통되며,상기 제2 와류 형성 부재는 상기 제2 기판 관통공과 연통되는,전력 기기.
- 제15항에 있어서,상기 제1 와류 형성 부재로 유입된 상기 유체는,일부가 상기 제1 기판 및 상기 제2 기판 사이에 형성되는 공간인 제1 유동 공간으로 토출되고, 나머지 일부가 상기 제2 와류 형성 부재로 유동되며,상기 제2 와류 형성 부재로 유입된 상기 유체는,일부가 상기 제2 기판 및 상기 제3 기판 사이에 형성되는 공간인 제2 유동 공간으로 토출되고, 나머지 일부가 상기 제3 기판의 상측에 형성되는 공간인 제3 유동 공간으로 토출되는,전력 기기.
- 제17항에 있어서,상기 와류 형성 부재는,복수 개의 상기 기판이 적층되는 방향으로 연장 형성되며, 내부에 제1 와류 중공이 연장 방향을 따라 관통 형성된 와류 몸체; 및상기 와류 몸체와 다른 방향으로 연장 형성되며, 내부에 상기 제1 와류 중공 및 상기 유동 공간과 각각 연통되는 제2 와류 중공이 연장 방향을 따라 관통 형성된 와류 암을 포함하는,전력 기기.
- 제18항에 있어서,상기 와류 돌기는,상기 제2 와류 중공을 둘러싸는 상기 와류 암의 내면의 단부에 인접하게 위치되는,전력 기기.
- 제14항에 있어서,상기 하우징은,그 일 면에 결합되어, 외부의 유체를 상기 하우징 공간부로 유동시키는 이송력을 제공하는 송풍부를 포함하며,상기 유로 분할 부재는,상기 이송력에 의해 상기 하우징 공간부로 유입된 유체가 유동되는 유로 상에 배치되어, 유입된 상기 유체 중 일부가 상기 유로 분할 부재로 유동되게 구성되는,전력 기기.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202380024106.2A CN118786760A (zh) | 2022-03-08 | 2023-01-20 | 流路模块以及包括其的电力设备 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220029273A KR20230132124A (ko) | 2022-03-08 | 2022-03-08 | 유로 모듈 및 이를 포함하는 전력 기기 |
KR10-2022-0029273 | 2022-03-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023171907A1 true WO2023171907A1 (ko) | 2023-09-14 |
Family
ID=87935608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2023/001058 WO2023171907A1 (ko) | 2022-03-08 | 2023-01-20 | 유로 모듈 및 이를 포함하는 전력 기기 |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR20230132124A (ko) |
CN (1) | CN118786760A (ko) |
WO (1) | WO2023171907A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000232792A (ja) * | 1999-02-09 | 2000-08-22 | Fuji Electric Co Ltd | 無停電電源装置 |
WO2001063666A1 (en) * | 2000-02-23 | 2001-08-30 | Teracom Ab | Apparatus for heat transport away from heated elements and a method for manufacturing the apparatus |
JP2009296836A (ja) * | 2008-06-09 | 2009-12-17 | Sansha Electric Mfg Co Ltd | 機器冷却装置 |
US20130329362A1 (en) * | 2012-03-29 | 2013-12-12 | Huawei Technologies Co., Ltd. | Board Cooling Apparatus and Information Equipment |
JP2020167877A (ja) * | 2019-03-29 | 2020-10-08 | 日本電産エレシス株式会社 | コネクタモジュール及び電力変換装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100998213B1 (ko) | 2010-06-03 | 2010-12-03 | 엘아이지넥스원 주식회사 | Pcb 냉각 장치 |
KR20210002271A (ko) | 2019-06-28 | 2021-01-07 | 주식회사 비엠이 | Pcb 냉각 장치 |
-
2022
- 2022-03-08 KR KR1020220029273A patent/KR20230132124A/ko unknown
-
2023
- 2023-01-20 CN CN202380024106.2A patent/CN118786760A/zh active Pending
- 2023-01-20 WO PCT/KR2023/001058 patent/WO2023171907A1/ko unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000232792A (ja) * | 1999-02-09 | 2000-08-22 | Fuji Electric Co Ltd | 無停電電源装置 |
WO2001063666A1 (en) * | 2000-02-23 | 2001-08-30 | Teracom Ab | Apparatus for heat transport away from heated elements and a method for manufacturing the apparatus |
JP2009296836A (ja) * | 2008-06-09 | 2009-12-17 | Sansha Electric Mfg Co Ltd | 機器冷却装置 |
US20130329362A1 (en) * | 2012-03-29 | 2013-12-12 | Huawei Technologies Co., Ltd. | Board Cooling Apparatus and Information Equipment |
JP2020167877A (ja) * | 2019-03-29 | 2020-10-08 | 日本電産エレシス株式会社 | コネクタモジュール及び電力変換装置 |
Also Published As
Publication number | Publication date |
---|---|
KR20230132124A (ko) | 2023-09-15 |
CN118786760A (zh) | 2024-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020145718A1 (ko) | 디스플레이용 기판 | |
WO2020153560A1 (ko) | 인버터 장치 및 이를 포함하는 인버터 패널 | |
WO2021157873A1 (ko) | 냉각 플레이트 및 이의 제조 방법 | |
WO2018174468A1 (ko) | 냉장고 | |
WO2020145763A1 (ko) | 조리기기 | |
WO2023171907A1 (ko) | 유로 모듈 및 이를 포함하는 전력 기기 | |
WO2022270920A1 (en) | Aerosol-generating device | |
WO2020153559A1 (ko) | 인버터 장치 및 이를 포함하는 전력변환장치 | |
WO2021182789A2 (ko) | 기중 차단기 | |
WO2023120915A1 (ko) | 전력 변환 모듈 및 이를 포함하는 전력 공급 장치 | |
WO2023120916A1 (ko) | 덕트 모듈 및 이를 포함하는 전력 변환 모듈 | |
WO2023224149A1 (ko) | 양면 냉각형 전력반도체 패키지 | |
WO2023219187A1 (ko) | 양면 냉각형 전력반도체 패키지 | |
WO2023204454A1 (ko) | 냉각 모듈 및 이를 포함하는 배터리 차단 장치 | |
WO2024147485A1 (ko) | 공기 조화기 | |
WO2020153558A1 (ko) | 전력 변환 장치 | |
WO2024085365A1 (ko) | 아크 소호 장치 | |
WO2022250486A1 (ko) | 전기 레인지 | |
WO2024186009A1 (ko) | 서브 모듈 | |
WO2024147528A1 (ko) | 고정 접점부 및 이를 포함하는 차단기 | |
WO2023163410A1 (ko) | 아크 슈트 및 이를 포함하는 부하 개폐기 | |
WO2022114763A1 (ko) | 커버 조립체 및 이를 포함하는 전력 변환 장치 | |
WO2024111898A1 (ko) | 조리기기 | |
WO2024162611A1 (ko) | 전력 기기 | |
WO2021100984A1 (ko) | 크로스바 조립체 및 이를 포함하는 트립 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23767012 Country of ref document: EP Kind code of ref document: A1 |