WO2018008530A1 - 導電性フィルム、電子ペーパー、タッチパネル、及びフラットパネルディスプレイ - Google Patents

導電性フィルム、電子ペーパー、タッチパネル、及びフラットパネルディスプレイ Download PDF

Info

Publication number
WO2018008530A1
WO2018008530A1 PCT/JP2017/024004 JP2017024004W WO2018008530A1 WO 2018008530 A1 WO2018008530 A1 WO 2018008530A1 JP 2017024004 W JP2017024004 W JP 2017024004W WO 2018008530 A1 WO2018008530 A1 WO 2018008530A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
metal wire
fine
pattern
fine metal
Prior art date
Application number
PCT/JP2017/024004
Other languages
English (en)
French (fr)
Inventor
信也 松原
誠之 阿部
雄巳 小野
彩人 射庭
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to US16/312,006 priority Critical patent/US20190235670A1/en
Priority to JP2018526332A priority patent/JP6647399B2/ja
Priority to KR1020187034455A priority patent/KR102173346B1/ko
Priority to CN201780038314.2A priority patent/CN109328388A/zh
Priority to EP17824135.2A priority patent/EP3483898A4/en
Publication of WO2018008530A1 publication Critical patent/WO2018008530A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/047Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using sets of wires, e.g. crossed wires
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display

Definitions

  • the present invention relates to a conductive film, and electronic paper, a touch panel, and a flat panel display using the conductive film.
  • ITO indium tin oxide
  • Non-Patent Document 1 discloses a technique for producing a thin metal wire having a minimum line width of 0.8 ⁇ m on a plastic substrate by printing without using a vacuum technique. It is said that the conductive film obtained by the said technique is excellent in the light transmittance and sheet resistance compared with the other conductive film obtained using ITO, silver nanowire, graphene, etc.
  • Non-Patent Document 1 there is a trade-off problem that in any technique for producing a conductive film, if the sheet resistance is reduced, the light transmittance is extremely reduced. .
  • the line width In order to reduce the sheet resistance from the viewpoint of reducing power loss, the line width must be increased and the line thickness increased, but if the line width is increased and the line thickness is increased, the corresponding increase is required. Only due to the loss of light transmission. Therefore, it has been impossible to produce a conductive film having a low sheet resistance and a high light transmittance according to the prior art.
  • the fine metal wires cannot be densely arranged from the viewpoint of securing the light transmittance.
  • an element In an electronic device using such a conductive film, an element must be arranged at the position of the thin metal wire of the conductive film.
  • the fine metal wires cannot be densely arranged, the electric field is uneven near the fine metal wires, and the electric field is weak near the fine metal wires. Therefore, the metal fine wire density (pitch) of an electroconductive film becomes a bottleneck, and there exists a problem that the precision improvement of a touchscreen or an image cannot be achieved. That is, in the conductive film using the fine metal wires as in Non-Patent Document 1, there is a trade-off problem that if the light transmittance is to be ensured, the density of the fine metal wires must be reduced.
  • the present invention has been made in view of the above-described conventional problems, and has a low sheet resistance and a high visible light transmittance, and can reduce the metal wire pitch while maintaining the visible light transmittance. It is an object to provide a conductive film, and an electronic paper, a touch panel, and a flat panel display using the conductive film.
  • the present inventors diligently studied to solve the above problems.
  • the conductive film having a fine metal wire by making the line width of the fine metal wire less than the lower limit wavelength of visible light, an optical behavior different from the case where the fine wire width is larger than the visible light wavelength, It has been found that the trade-off between sheet resistance and visible light transmittance can be solved, and the present invention has been completed.
  • the present invention is as follows. [1] A transparent substrate; Having a conductive portion made of a fine metal wire pattern disposed on the transparent substrate, The metal fine wire pattern is composed of metal fine wires, When the thin metal wire is projected onto a plane, the projection width that is the longest of the projection widths of the thin metal wire is less than the lower limit wavelength of visible light. Conductive film. [2] The projected width of the thin metal wire is less than 360 nm, The conductive film as described in [1] above.
  • the pitch of the thin metal wire pattern is larger than the sum of the upper limit wavelength of visible light and the lower limit wavelength of visible light,
  • the aperture ratio of the fine metal wire pattern is 40 to 99%.
  • the visible light transmittance of the conductive film is 80 to 100%.
  • the sheet resistance of the conductive film is 0.1 to 1000 ⁇ / sq.
  • the fine metal wire pattern is a mesh pattern, The conductive film according to any one of [1] to [8] above.
  • the fine metal wire pattern is a line pattern, The conductive film according to any one of [1] to [8] above.
  • the fine metal wire includes a conductive component and a non-conductive component; The conductive film according to any one of [1] to [10] above.
  • [12] Comprising the conductive film according to any one of [1] to [11] above; Electronic paper.
  • [14] Comprising the conductive film according to any one of [1] to [11] above; Flat panel display.
  • the sheet resistance is low and the visible light transmittance is high, and the conductive film capable of reducing the fine metal wire pitch while maintaining the visible light transmittance, and the conductive film are used.
  • Electronic paper, touch panels, and flat panel displays can be provided.
  • mode of the electroconductive film of this embodiment which has a mesh pattern The top view showing another aspect of the electroconductive film of this embodiment which has a mesh pattern
  • the top view of the metal fine wire pattern for demonstrating the relationship between the aperture ratio and pitch of the electroconductive film of this embodiment which has a line pattern
  • the top view showing one mode of electronic paper provided with the conductive film of this embodiment V-V ′ partial cross-sectional view of the electronic paper of this embodiment
  • a top view illustrating an embodiment of an electronic paper including a conventional conductive film The perspective view showing an aspect of a touch panel provided with the conductive film of this embodiment.
  • the present embodiment the embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • the present invention is not limited to this, and various modifications are possible without departing from the scope of the present invention. It is.
  • the conductive film of the present embodiment has a transparent substrate and a conductive portion made of a thin metal wire pattern disposed on the transparent substrate, and the fine metal wire pattern is composed of a thin metal wire,
  • the longest projection width (hereinafter also referred to as “longest projection width W0”) of the projection width of the thin metal wire is less than the lower limit wavelength of visible light.
  • FIG. 1 shows a top view of a conductive film in which the fine metal wire pattern is a mesh pattern as one aspect of the conductive film of the present embodiment.
  • the conductive film 10 of the present embodiment has a conductive portion 13 composed of a fine metal wire pattern 12 on a transparent substrate 11.
  • an extraction electrode for connection to a controller or the like may be formed according to the use application of the conductive film 10.
  • the transparent base material 11 can have the electroconductive part 13 on the single side
  • the conductive portion 13 is composed of a thin metal wire pattern 12 configured to be energized or charged (charged).
  • the conductive portion 13 functions as a transparent electrode of a screen portion such as electronic paper, a touch panel, and a flat panel display.
  • the metal fine line pattern 12 is composed of a metal fine line 14 having a longest projection width W0 that is less than the lower limit wavelength of visible light.
  • FIG. 6 is a partial cross-sectional view taken along the line III-III ′ of the conductive film of FIG.
  • the line width of the fine metal wire is sufficiently longer than the upper limit wavelength of visible light, visible light hitting the fine metal wire is reflected and shielded.
  • the wavelength of an optical wave is extremely small compared to a sound wave or the like, the diffraction angle at which the wave wraps around an obstacle is small. Therefore, when the distance between adjacent openings is long (the line width of the fine metal wire is sufficiently longer than the upper limit wavelength of visible light), light from adjacent openings does not interfere with each other. Therefore, there is a limit in improving the transparency of the conductive film having the conventional fine metal wire pattern, and a person can visually recognize the fine metal wire.
  • the longest projection width (longest projection width W0) when a thin metal wire is projected onto a plane is set to be less than the lower limit wavelength of visible light.
  • the longest projection width W0 is smaller than the wavelength of visible light, light from adjacent openings can interfere and merge even with a light wave having a small diffraction angle.
  • the optical path difference is smaller as the longest projected width W0 is smaller, the phase difference is less likely to occur, and the influence of weakening due to interference is small. Therefore, when the longest projection width W0 of the metal fine line is shorter than the wavelength of visible light, it is difficult for a person to visually recognize the fine line, and the transparency is improved.
  • the phenomenon that occurs when the longest projected width W0 of the metal thin wire is shorter than the wavelength of visible light is completely different from that of the long thin metal wire.
  • the longest projected width W0 is 100 ⁇ m and the aperture ratio is 90% (the metal fine line pattern is 10% of the conductive film).
  • the longest projection width W0 is 200 ⁇ m and the aperture ratio is 90%
  • the light transmittance is the same, but in the present embodiment,
  • the longest projection width W0 is 100 nm and the aperture ratio is 90% (a state in which the thin metal wire pattern covers 10% of the conductive film)
  • the longest projection width W0 is 100 ⁇ m and the aperture ratio is As a result, the light transmittance is high as compared with the case of 90% (a state in which the thin metal wire pattern covers 10% of the conductive film).
  • a conductive film having an aperture ratio of 90% (a state in which the metal fine line pattern covers 10% of the conductive film) using a fine metal wire having a longest projected width W0 of 100 ⁇ m
  • the longest of 100 nm When a conductive film having an aperture ratio of 90% (a state in which the metal fine line pattern covers 10% of the conductive film) is formed using a metal fine wire having a projected width W0, the latter is more suitable for the latter. More (the pitch between the lines is 1/1000 shorter) is arranged. Therefore, in an electronic device using a conductive film using a thin metal wire, an element must be arranged at the position of the thin metal wire of the conductive film.
  • the fine metal wire density (pitch) is set. It is possible to improve the accuracy of the touch panel and the image without worrying about it.
  • the fine metal wires can be densely arranged, the electric field non-uniformity problem that the electric field is strong near the fine metal wire and the electric field is weak in the area away from the fine metal wire can be solved. It becomes possible.
  • Transparent substrate “Transparent” of the transparent substrate means that the visible light transmittance is preferably 80% or more, more preferably 90% or more, and further preferably 95% or more. .
  • the visible light transmittance can be measured according to JIS R 3106: 1998.
  • transparent base material for example, transparent inorganic base materials, such as glass; Acrylic ester, methacrylic ester, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycarbonate, polyarylate, polyvinyl chloride And transparent organic substrates such as polyethylene, polypropylene, polystyrene, nylon, aromatic polyamide, polyetheretherketone, polysulfone, polyethersulfone, polyimide, and polyetherimide.
  • polyethylene terephthalate is preferable from the viewpoint of cost.
  • a polyimide is preferable from a viewpoint of heat resistance.
  • polyethylene terephthalate and polyethylene naphthalate are preferable from the viewpoint of adhesion to metal wiring.
  • the transparent substrate may be made of one material or may be a laminate of two or more materials. Further, when two or more kinds of materials are laminated, the organic base material or the inorganic base material may be laminated, or the organic base material and the inorganic base material may be laminated. Good.
  • the thickness of the transparent substrate is preferably 5 to 500 ⁇ m, more preferably 10 to 100 ⁇ m.
  • the conductive portion is a fine metal wire pattern disposed on the transparent substrate.
  • the metal fine line pattern is composed of a metal fine line having a longest projected width W0 that is less than the lower limit wavelength of visible light.
  • a material of a metal fine wire For example, gold
  • the fine metal wire may contain a non-conductive component in addition to one or more conductive components selected from the group consisting of gold, silver, copper, and aluminum.
  • the conductive component is made of only a conductive metal.
  • the non-conductive component is not particularly limited, and examples thereof include metal oxides and organic compounds. These non-conductive components are components derived from components contained in the ink described later, and include metal oxides and organic compounds remaining in the fine metal wires after firing among the components contained in the ink. It is done.
  • the content ratio of the conductive component is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more.
  • the upper limit of the content rate of an electroconductive component is not specifically limited, It is 100 mass%.
  • the content ratio of the non-conductive component is preferably 20% by mass or less, more preferably 10% by mass or less, and further preferably 5% by mass or less.
  • the minimum of the content rate of a nonelectroconductive component is not restrict
  • the metal fine line pattern can be designed according to the intended use of the electronic device and is not particularly limited. For example, a mesh pattern formed by crossing a plurality of metal fine lines in a mesh shape (FIGS. 1 and 2) And a line pattern (FIGS. 3 and 4) in which a plurality of substantially parallel fine metal wires are formed. Further, the metal fine line pattern may be a combination of a mesh pattern and a line pattern.
  • the mesh pattern mesh may be a square or rectangle as shown in FIG. 1 or a polygon such as a rhombus as shown in FIG. 2.
  • the fine metal wire constituting the line pattern may be a straight line as shown in FIG. 3 or a curved line as shown in FIG. Further, even in the fine metal wires constituting the mesh pattern, the fine metal wires can be curved.
  • the line width of the fine metal wire is determined from the viewpoint of diffraction and interference of visible light, and from this viewpoint, the longest projection width (the longest projection width) when the fine metal wire is projected onto a plane. W0) is less than the lower limit wavelength of visible light.
  • FIG. 5 shows a cross-sectional view of a fine metal wire for explaining the longest projected width W0 of the fine metal wire. “Longest projected width W0” refers to a projection width that is widest when the fine metal wire is rotated in the longitudinal direction while the fine metal wire is projected on a plane. Taking FIG.
  • the fine metal wire is slightly rotated around the longitudinal direction.
  • the projection width becomes the widest in (c). Therefore, the longest projection width W0 in the thin metal wire having the rectangular cross section is the projection width obtained in the case (c).
  • the longest projection width W0 can be obtained similarly. For example, even in a thin metal wire having a substantially elliptical cross section, the longest projected width W0 can be obtained by rotating the thin metal wire in the longitudinal direction while projecting the thin metal wire on a plane.
  • the front projection line width W1, the height H, and the pitch P of the metal fine line pattern are defined as shown in FIG.
  • the pitch P is the sum of the distance between the front projection line width W1 and the fine metal wires.
  • the “front projected line width W1” is the line width of the fine metal wire 14 when the fine metal wire 14 is projected onto the surface of the transparent base material 11 from the side of the transparent base material 11 on which the fine metal wire pattern 12 is arranged.
  • the width of the surface of the fine metal wire 14 in contact with the transparent substrate 11 is the front projection line width W1.
  • the longest projection width of the fine metal wire (the longest projection width W0) of the thin metal wire is less than the lower limit wavelength of visible light, preferably less than 360 nm. More preferably, it is 325 nm or less, More preferably, it is 300 nm or less, More preferably, it is 250 nm or less, Especially preferably, it is 200 nm or less. As the longest projection width W0 is thinner, the fine line is less visible due to the diffraction effect, and the transparency is further improved.
  • the lower limit of the longest projected width W0 of the fine metal wire is not particularly limited, but is preferably 10 nm or more, more preferably 25 nm or more, and further preferably 50 nm or more.
  • the manufacturing yield is further improved, and the disconnection of the thin metal wire tends to be further suppressed.
  • the aperture ratio is the same, the number of the fine metal wires can be increased as the line width of the fine metal wires is reduced. Thereby, the electrolysis distribution of the conductive film becomes more uniform, and a device with higher resolution can be manufactured. Moreover, even if a disconnection occurs in a part of the fine metal wires, the influence of the other fine metal wires can be compensated for.
  • the aspect ratio represented by the height H of the fine metal wire relative to the front projection line width W1 of the fine metal wire is preferably 0.1 to 2, more preferably 0.2 to 1.5, and still more preferably 0. 4 to 1.
  • the pitch P of the fine metal wire pattern is preferably larger than the sum of the upper limit wavelength of visible light and the lower limit wavelength of visible light.
  • the pitch P of the fine metal wire pattern is 1.2 ⁇ m or more, more preferably 1.5 ⁇ m or more, and further preferably 2 ⁇ m or more.
  • the pitch P of the fine metal wire pattern is 1.2 ⁇ m or more, that is, the distance between the fine metal wires is not less than the upper limit wavelength of visible light, the reflection of visible light by the fine metal wire can be further suppressed, and the transparency is improved. It tends to improve.
  • the upper limit wavelength of visible light means 830 nm
  • the lower limit wavelength of visible light means 360 nm
  • the sum of the upper limit wavelength of visible light and the lower limit wavelength of visible light 1.19 ⁇ m.
  • the pitch P of the fine metal wire pattern is preferably 72 ⁇ m or less, more preferably 50 ⁇ m or less, and further preferably 25 ⁇ m or less.
  • the pitch P of the fine metal wire pattern is 72 ⁇ m or less, the electrolytic distribution of the conductive film becomes more uniform, and a device with higher resolution can be manufactured.
  • the shape of the fine metal line pattern is a mesh pattern, the aperture ratio can be 99% by setting the pitch of the fine metal line pattern having a line width of 360 nm to 71.8 ⁇ m.
  • the front projection line width W1, the aspect ratio, and the pitch of the fine metal line pattern can be confirmed by viewing the cross section of the conductive film with an electron microscope or the like. Further, since the pitch and the aperture ratio have the relational expressions described later, if one is known, the other can be calculated.
  • a method for adjusting the line width, aspect ratio, and pitch of the fine metal line pattern to a desired range a method for adjusting a groove of a plate used in a method for producing a conductive film described later, and a method for adjusting the metal particles in the ink to be used.
  • the average particle diameter may be several nm.
  • the aperture ratio of the fine metal wire pattern is preferably 40% or more, more preferably 50% or more, still more preferably 60% or more, and still more preferably 70. % Or more, even more preferably 80% or more, and particularly preferably 90% or more.
  • the aperture ratio of the fine metal wire pattern is preferably 99% or less, more preferably 95% or less, still more preferably 90% or less, and still more preferably. 80% or less, even more preferably 70% or less, and particularly preferably 60% or less.
  • the appropriate value of the aperture ratio of the fine metal wire pattern varies depending on the shape of the fine metal wire pattern.
  • the aperture ratio is preferably 68.4% or more, and in the case of a mesh pattern, it is preferably 46.8% or more. Further, the opening ratio of the fine metal wire pattern can be appropriately combined with the above upper limit and lower limit values according to the required performance (transparency and sheet resistance) of the target electronic device.
  • the “opening ratio of the metal fine line pattern” can be calculated by the following formula for the region where the metal fine line pattern on the transparent substrate is formed.
  • FIG. 7 shows a schematic diagram of a mesh pattern (grid pattern) having pattern units 16.
  • the aperture ratio and the pitch have the following relational expressions.
  • FIG. 8 shows a schematic diagram of a line pattern.
  • the aperture ratio and the pitch have the following relational expressions.
  • Aperture ratio ((Pitch P ⁇ Front projection width W1) / Pitch P) ⁇ 100
  • the sheet resistance of the conductive film is preferably 0.1 to 1000 ⁇ / sq, more preferably 0.1 to 500 ⁇ / sq, still more preferably 0.1 to 100 ⁇ / sq, and still more preferably. 0.1 to 20 ⁇ / sq, even more preferably 0.1 to 10 ⁇ / sq.
  • the sheet resistance of the conductive film can be measured by the method described in ASTM F390-11. As the sheet resistance is lower, power loss tends to be suppressed. Therefore, it is possible to obtain an electronic paper, a touch panel, and a flat panel display with low power consumption.
  • the sheet resistance of the conductive film tends to decrease by improving the aspect ratio (height) of the fine metal wires. It can also be adjusted by selecting the metal material type constituting the fine metal wire.
  • the visible light transmittance of the conductive film is preferably equal to or higher than the aperture ratio of the fine metal wire pattern.
  • the visible light transmittance of the conductive film is preferably 80 to 100%, more preferably 90 to 100%, and still more preferably 95 to 100%.
  • the visible light transmittance can be measured by calculating the transmittance in the visible light (360 to 830 nm) range in accordance with the total light transmittance of JIS K 7361-1: 1997.
  • the visible light transmittance is equal to or higher than the aperture ratio of the metal fine line pattern, and it is difficult for human eyes to visually recognize the fine line.
  • the permeability is improved beyond the limit of the aperture ratio of the fine metal wire pattern.
  • the visible light transmittance of the conductive film tends to be improved by making the longest projection width W0 of the fine metal wire thinner or improving the aperture ratio.
  • an ink containing the metal particle whose average primary particle diameter is 100 nm or less is used on a transparent substrate using a plate having a groove of a desired metal fine line pattern. And a method having a step of transferring to the substrate. More specifically, the step of coating the ink on the transfer medium, and the surface of the transfer medium coated with the ink and the convex surface of the relief plate are opposed to each other and pressed and brought into contact with the surface of the relief plate.
  • the step of transferring the ink on the surface and the surface of the transfer medium coated with the ink and the surface of the transparent substrate (substrate to be printed) are opposed to each other and pressed to remove the ink remaining on the surface of the transfer medium. And a method of transferring to the surface of the material.
  • the component contained in the ink that can be used in the method for producing the conductive film of the present embodiment is not particularly limited, but for example, an average primary particle size of 100 nm or less including a metal component such as gold, silver, copper, or aluminum.
  • a surfactant, a dispersant, and a solvent may be further contained.
  • a reducing agent or the like may be included as necessary.
  • the average primary particle size of the metal particles is preferably 100 nm or less, more preferably 50 nm or less, and even more preferably 10 nm or less. Further, the lower limit of the average primary particle size of the metal particles is not particularly limited, but may be 1 nm or more. When the average primary particle size of the metal particles is 100 nm or less, the longest projected width W0 of the obtained metal fine wire can be further reduced.
  • the “average primary particle size” means the particle size of each metal particle (so-called primary particle), and an aggregate (so-called secondary particle) formed by collecting a plurality of metal particles. It is distinguished from the average secondary particle size, which is the particle size of.
  • the metal particles as long as it contains a metal component such as gold, silver, copper, or aluminum, an oxide such as copper oxide, or a core / shell in which the core portion is copper and the shell portion is copper oxide. It may be in the form of particles.
  • the aspect of the metal particles can be appropriately determined from the viewpoint of dispersibility and sinterability.
  • the surfactant is not particularly limited, and examples thereof include a fluorine-based surfactant and a silicone-based surfactant. By using such a surfactant, the coating property of the ink on the transfer medium (blanket) and the smoothness of the coated ink are improved, and a more uniform coating film tends to be obtained.
  • the surfactant is preferably configured so that the metal particles can be dispersed and hardly remains during sintering.
  • the dispersant is not particularly limited, and examples thereof include a dispersant that has a non-covalent bond or interaction with the metal particle surface, and a dispersant that has a covalent bond with the metal particle surface.
  • examples of the functional group capable of noncovalent bonding or interaction include a dispersant having a phosphate group.
  • examples of the solvent include alcohol solvents such as monoalcohols and polyhydric alcohols; alkyl ether solvents; hydrocarbon solvents; ketone solvents; ester solvents. These may be used alone or in combination of one or more. For example, the combined use of a monoalcohol having 10 or less carbon atoms and a polyhydric alcohol having 10 or less carbon atoms can be mentioned.
  • the solvent is preferably configured so that the metal particles can be dispersed and hardly remains during sintering.
  • the method for producing a conductive film of the present embodiment may include a step of sintering metal particles in the ink transferred to the surface of the transparent substrate, in addition to the above steps.
  • the firing is not particularly limited as long as the metal particles are fused to form a metal particle sintered film (conductive fine metal wire). Firing may be performed in, for example, a firing furnace, or may be performed using plasma, a heating catalyst, ultraviolet rays, vacuum ultraviolet rays, electron beams, infrared lamp annealing, flash lamp annealing, laser, or the like.
  • heat treatment is preferably performed in a non-oxidizing atmosphere. Further, when the oxide is difficult to be reduced only by the reducing agent that can be included in the ink, it is preferable to fire in a reducing atmosphere.
  • the non-oxidizing atmosphere is an atmosphere that does not contain an oxidizing gas such as oxygen, and includes an inert atmosphere and a reducing atmosphere.
  • the inert atmosphere is an atmosphere filled with an inert gas such as argon, helium, neon or nitrogen.
  • the reducing atmosphere refers to an atmosphere in which a reducing gas such as hydrogen or carbon monoxide exists.
  • the dispersion coating film may be fired as a closed system by filling these gases into a firing furnace. Alternatively, the dispersion coating film may be fired while flowing these gases using a firing furnace as a flow system.
  • the dispersion coating film is fired in a non-oxidizing atmosphere
  • the firing may be performed in a pressurized atmosphere or a reduced pressure atmosphere.
  • the firing temperature is not particularly limited, but is preferably 20 ° C. or higher and 400 ° C. or lower, more preferably 50 ° C. or higher and 300 ° C. or lower, and further preferably 80 ° C. or higher and 200 ° C. or lower.
  • a baking temperature of 400 ° C. or lower is preferable because a substrate having low heat resistance can be used.
  • the firing temperature is 20 ° C. or higher because the formation of the sintered film proceeds sufficiently and the conductivity tends to be good.
  • the obtained sintered film contains a conductive component derived from metal particles, and may contain a non-conductive component in addition to the components used in the ink and the firing temperature.
  • FIG. 9 shows a top view showing an aspect of electronic paper provided with the conductive film (mesh pattern) of the present embodiment
  • FIG. 10 shows a partial cross-sectional view of VV ′ of the electronic paper of the present embodiment
  • FIG. 11 is a top view illustrating an embodiment of electronic paper having the same aperture ratio as that in FIG. 9 and having a long metal film having a longest projected width W0 and including a conventional conductive film.
  • the electronic paper 20 is configured such that an electronic fine line pattern 12 is arranged on a cup 21 and an electric field can be applied to the cup 21.
  • a charged black pigment 22 and a charged white pigment 23 are accommodated in the cup 21 of the electronic paper 20, and the bottom electrode 24 and the conductive film 10 are The behavior of the charged black pigment 22 and the charged white pigment 23 is controlled by the electric field between them.
  • the electronic paper 20 including the conductive film 10 of the present embodiment can provide a higher resolution image. Note that the configuration of the electronic paper 20 of the present embodiment is not limited to the above.
  • the touch panel of this embodiment is not particularly limited as long as it includes the conductive film.
  • FIG. 12 the perspective view showing the one aspect
  • the two conductive films 10 exist on the front and back surfaces of the insulator 31, and the two conductive films 10 face each other so that the line patterns intersect.
  • the conductive film 10 may have an extraction electrode 32.
  • the extraction electrode 32 connects the fine metal wire 14 and a controller 33 (CPU or the like) for switching energization to the fine metal wire 14.
  • FIG. 13 is a perspective view showing another aspect of the touch panel provided with the conductive film (line pattern) of the present embodiment.
  • the touch panel 30 includes the thin metal wire patterns 12 on both surfaces of the conductive film 10 of the present embodiment instead of including the two conductive films 10 on the front and back surfaces of the insulator 31. Thereby, the two metal fine wire patterns 12 are provided on the front and back surfaces of the insulator 31 (transparent substrate 11).
  • the touch panel of the present embodiment is not limited to the capacitance method, and may be a resistance film method, a projection capacitance method, a surface capacitance method, or the like.
  • the conductive film of the present invention has industrial applicability as a transparent electrode for electronic paper, touch panels, flat panel displays and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Non-Insulated Conductors (AREA)
  • Position Input By Displaying (AREA)
  • Laminated Bodies (AREA)

Abstract

透明基材と、該透明基材上に配された金属細線パターンからなる導電部と、を有し、前記金属細線パターンが、金属細線から構成されており、前記金属細線を平面に投影したときに、前記金属細線の投影幅のうち、最長となる前記投影幅が、可視光の下限波長未満である、導電性フィルム。

Description

導電性フィルム、電子ペーパー、タッチパネル、及びフラットパネルディスプレイ
 本発明は、導電性フィルム、並びに、それを用いた電子ペーパー、タッチパネル、及びフラットパネルディスプレイに関する。
 従来、電子ペーパー、タッチパネル、及びフラットパネルディスプレイ等のデバイスには、酸化インジウムスズ(ITO)を用いた透明な導電性フィルムが用いられている。しかしながら、ITOを用いた導電性フィルムは、低コスト化及び省資源化の観点から問題がある。
 そこで、ITOに代わる導電性フィルムについて種々の研究がなされている。例えば、非特許文献1には、プラスチック基板上に、最小線幅0.8μmの金属細線を、真空技術を使うことなく、印刷で作製する技術が開示されている。当該技術で得られた導電性フィルムは、ITOや銀ナノワイヤー、グラフェンなどを用いて得られた他の導電性フィルムと比べ、光透過率やシート抵抗が優れているとされている。
Nature Communications 7, Article number: 11402
 しかしながら、非特許文献1の図8aに示されるように、導電性フィルムを作製するいずれの技術においてもシート抵抗を下げようとすれば光透過率も極端に低下するというトレードオフの問題が存在する。これは、電力損失を低減する観点からシート抵抗を低下させようとすれば、線幅を太く、線の厚みを厚くしなければならないが、線幅を太く、線の厚みを厚くすればその分だけ光透過性が失われるということに起因する。したがって、従来技術によりシート抵抗が低くかつ光透過率が高い導電性フィルムを作製することは不可能であった。
 また、非特許文献1のような金属細線を用いた導電性フィルムでは、光透過率確保の観点から金属細線を密に配することができない。このような導電性フィルムを用いた電子デバイスは、導電性フィルムの金属細線の位置に素子を配置しなければならない。また、金属細線を密に配することができないため、金属細線の近くは電界が強く、金属細線から離れたところは電界が弱いという電界の不均一も生じる。そのため、導電性フィルムの金属細線密度(ピッチ)がボトルネックとなり、タッチパネルや画像の高精度化が図れないという問題がある。すなわち、非特許文献1のような金属細線を用いた導電性フィルムでは、光透過率を確保しようとすれば金属細線密度を下げざるを得ないというトレードオフの問題が存在する。
 仮に、シート抵抗と光透過率のトレードオフの問題を解決する技術が開発されれば、電力損失が少なく、光透過性にも優れる導電性フィルムが実現可能となり、また、光透過率と金属細線密度のトレードオフの問題を解決する技術が開発されれば、従来よりも高精度の電子デバイスを与えることができ、光透過性にも優れる導電性フィルムが実現可能となる。
 本発明は、上記従来の問題点に鑑みてなされたものであり、シート抵抗が低く、かつ可視光透過率が高い上、可視光透過率を維持しつつ金属細線ピッチを小さくすることが可能な導電性フィルム、並びに、該導電性フィルムを用いた電子ペーパー、タッチパネル、及びフラットパネルディスプレイを提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意検討した。その結果、金属細線を有する導電性フィルムにおいて、金属細線の線幅を可視光の下限波長未満とすることにより、金属細線の線幅が可視光波長よりも大きい場合と異なる光学挙動が発現し、シート抵抗と可視光透過率のトレードオフの問題を解決し得ることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下のとおりである。
〔1〕
 透明基材と、
 該透明基材上に配された金属細線パターンからなる導電部と、を有し、
 前記金属細線パターンが、金属細線から構成されており、
 前記金属細線を平面に投影したときに、前記金属細線の投影幅のうち、最長となる前記投影幅が、可視光の下限波長未満である、
 導電性フィルム。
〔2〕
 前記金属細線の投影幅が、360nm未満である、
 前項〔1〕に記載の導電性フィルム。
〔3〕
 前記透明基材の前記金属細線パターンが配された面側から、前記金属細線を前記透明基材の表面上に投影したときの前記金属細線の線幅を、正面投影線幅としたとき、
 前記金属細線の前記正面投影線幅に対する前記金属細線の高さで表されるアスペクト比が、0.1~2である、
 前項〔1〕又は〔2〕に記載の導電性フィルム。
〔4〕
 前記導電性フィルムの可視光透過率が、前記金属細線パターンの開口率以上である、
 前項〔1〕~〔3〕のいずれか1項に記載の導電性フィルム。
〔5〕
 前記金属細線パターンのピッチが、可視光の上限波長と可視光の下限波長の和よりも大きい、
 前項〔1〕~〔4〕のいずれか1項に記載の導電性フィルム。
〔6〕
 前記金属細線パターンの開口率が、40~99%である、
 前項〔1〕~〔5〕のいずれか1項に記載の導電性フィルム。
〔7〕
 前記導電性フィルムの可視光透過率が、80~100%である、
 前項〔1〕~〔6〕のいずれか1項に記載の導電性フィルム。
〔8〕
 前記導電性フィルムのシート抵抗が、0.1~1000Ω/sqである、
 前項〔1〕~〔7〕のいずれか1項に記載の導電性フィルム。
〔9〕
 前記金属細線パターンが、メッシュパターンである、
 前項〔1〕~〔8〕のいずれか1項に記載の導電性フィルム。
〔10〕
 前記金属細線パターンが、ラインパターンである、
 前項〔1〕~〔8〕のいずれか1項に記載の導電性フィルム。
〔11〕
 前記金属細線が、導電性成分と非導電性成分とを含む、
 前項〔1〕~〔10〕のいずれか1項に記載の導電性フィルム。
〔12〕
 前項〔1〕~〔11〕のいずれか1項に記載の導電性フィルムを備える、
 電子ペーパー。
〔13〕
 前項〔1〕~〔11〕のいずれか1項に記載の導電性フィルムを備える、
 タッチパネル。
〔14〕
 前項〔1〕~〔11〕のいずれか1項に記載の導電性フィルムを備える、
 フラットパネルディスプレイ。
 本発明によれば、シート抵抗が低く、かつ可視光透過率が高い上、可視光透過率を維持しつつ金属細線ピッチを小さくすることが可能な導電性フィルム、並びに、該導電性フィルムを用いた電子ペーパー、タッチパネル、及びフラットパネルディスプレイを提供することができる。
メッシュパターンを有する本実施形態の導電性フィルムの一態様を表す上面図 メッシュパターンを有する本実施形態の導電性フィルムの別態様を表す上面図 ラインパターンを有する本実施形態の導電性フィルムの一態様を表す上面図 ラインパターンを有する本実施形態の導電性フィルムの別態様を表す上面図 金属細線の最長投影幅W0を説明するための金属細線の断面図 図1の導電性フィルムのIII-III’の部分断面図 メッシュパターンを有する本実施形態の導電性フィルムの開口率とピッチとの関係を説明するための金属細線パターンの上面図 ラインパターンを有する本実施形態の導電性フィルムの開口率とピッチとの関係を説明するための金属細線パターンの上面図 本実施形態の導電性フィルムを備える電子ペーパーの一態様を表す上面図 本実施形態の電子ペーパーのV-V’の部分断面図 従来の導電性フィルムを備える電子ペーパーの一態様を表す上面図 本実施形態の導電性フィルムを備えるタッチパネルの一態様を表す斜視図 本実施形態の導電性フィルムを備えるタッチパネルの別態様を表す斜視図
 以下、本発明の実施の形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。
〔導電性フィルム〕
 本実施形態の導電性フィルムは、透明基材と、該透明基材上に配された金属細線パターンからなる導電部と、を有し、前記金属細線パターンが、金属細線から構成されており、前記金属細線を平面に投影したときに、前記金属細線の投影幅のうち、最長となる前記投影幅(以下、「最長投影幅W0」ともいう。)が、可視光の下限波長未満である。
 図1に、本実施形態の導電性フィルムの一態様として、金属細線パターンがメッシュパターンである導電性フィルムの上面図を示す。本実施形態の導電性フィルム10は、透明基材11上に、金属細線パターン12からなる導電部13を有する。
 透明基材11上には、導電部13の他、導電性フィルム10の使用用途に応じてコントローラー等に接続するための取出し電極(不図示)が形成されていてもよい。なお、透明基材11は片面又は両面に導電部13を有することができ、一方の面に複数の導電部13を有していてもよい。導電部13は、通電または荷電(帯電)させることができるように構成された金属細線パターン12からなる。本実施形態の導電性フィルム10を電子デバイスに組み入れたときに、導電部13は、電子ペーパー、タッチパネル、及びフラットパネルディスプレイ等の画面部分の透明電極として機能する。
 金属細線パターン12は、可視光の下限波長未満の最長投影幅W0を有する金属細線14から構成される。図6に、図1の導電性フィルムのIII-III’の部分断面図を示す。従来は、金属細線の線幅が可視光の上限波長よりも充分長いため、金属細線にあたった可視光が反射し、遮光される。また、光波は音波等に比べると波長が極めて小さいため、障害物の背後に波が回り込む回折角度が小さい。そのため、隣り合う開口部の距離が長い(金属細線の線幅が可視光の上限波長よりも充分長い)場合、隣り合う開口部からの光同士が干渉することはない。したがって、従来の金属細線パターンを有する導電性フィルムの透明性の向上には限界があり、人は金属細線を視認できてしまう。
 これに対し、本実施形態においては、金属細線を平面に投影したときに最長となる投影幅(最長投影幅W0)を可視光の下限波長未満とする。最長投影幅W0が可視光の波長よりも小さい場合、回折角度が小さい光波であっても隣り合う開口部からの光同士が干渉し、合流することができる。また、最長投影幅W0が小さいほど光路差も小さいため、位相差もできにくく、干渉によって弱めあう影響も少ない。したがって、金属細線の最長投影幅W0が可視光の波長よりも短い場合、人は細線を視認しにくく、透過性は向上することになる。このように、金属細線の最長投影幅W0が可視光の波長よりも短い場合と長い場合で生じる現象は全く異なる。
 そのため、従来の可視光の上限波長よりも長い最長投影幅W0を有する金属細線パターンでは、例えば、最長投影幅W0が100μmであり開口率が90%(金属細線パターンが導電性フィルムの10%を覆った状態)である場合と、最長投影幅W0が200μmであり開口率が90%である場合とを比較しても、その光透過率は同等であるが、これに対し、本実施形態においては、例えば、最長投影幅W0が100nmであり開口率が90%(金属細線パターンが導電性フィルムの10%を覆った状態)である場合においては、最長投影幅W0が100μmであり開口率が90%(金属細線パターンが導電性フィルムの10%を覆った状態)である場合と比較して、光透過率が高いという結果となる。
 100μmの最長投影幅W0を有する金属細線を用いて開口率が90%(金属細線パターンが導電性フィルムの10%を覆った状態)である導電性フィルムを構成する場合に比べて、100nmの最長投影幅W0を有する金属細線を用いて開口率が90%(金属細線パターンが導電性フィルムの10%を覆った状態)である導電性フィルムを構成する場合には、後者の方が金属細線をより多く(線間ピッチを1/1000短く)配置することとなる。そのため、金属細線を用いた導電性フィルムを用いた電子デバイスでは、導電性フィルムの金属細線の位置に素子を配置しなければならないが、本実施形態の導電性フィルムでは金属細線密度(ピッチ)を気にすることなく、タッチパネルや画像の高精度化を図ることが可能となる。また、本実施形態においては金属細線を密に配することができるため、金属細線の近くは電界が強く、金属細線から離れたところは電界が弱いという電界の不均一の問題も解消することが可能となる。
〔透明基材〕
 透明基材の「透明」とは、可視光透過率が、好ましくは80%以上であることをいい、より好ましくは90%以上であることをいい、さらに好ましくは95%以上であることをいう。ここで、可視光透過率は、JIS R 3106:1998に準拠して測定することができる。
 透明基材の材料としては、特に限定されないが、例えば、ガラス等の透明無機基材;アクリル酸エステル、メタクリル酸エステル、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリアリレート、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、ポリスチレン、ナイロン、芳香族ポリアミド、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド等の透明有機基材が挙げられる。このなかでも、コストの観点から、ポチエチレンテレフタレートが好ましい。また、耐熱性という観点では、ポリイミドが好ましい。さらに、金属配線との密着性の観点から、ポリエチレンテレフタレート及びポリエチレンナフタレートが好ましい。
 透明基材は、1種の材料からなるものであっても、2種以上の材料が積層されたものであってもよい。また、2種以上の材料が積層されたものである場合、有機基材又は無機基材同士が積層されたものであっても、有機基材及び無機基材が積層されたものであってもよい。
 透明基材の厚さは、好ましくは5~500μmであり、より好ましくは10~100μmである。
〔導電部〕
 導電部は、透明基材上に配された金属細線パターンである。金属細線パターンは、可視光の下限波長未満である最長投影幅W0を有する金属細線から構成される。金属細線の材料としては、特に限定されないが、例えば、金、銀、銅、アルミが挙げられる。このなかでも、コスト及び導電性の観点から銅が好ましい。
 さらに、金属細線は、上記金、銀、銅、及びアルミからなる群より選ばれる1種以上の導電性成分に加え、非導電性成分を含んでもよい。ここで、導電性成分としては、導電性金属のみからなる。また、非導電性成分としては、特に制限されないが、例えば、金属酸化物及び有機化合物が挙げられる。なお、これら非導電性成分としては、後述するインクに含まれる成分に由来する成分であって、インクに含まれる成分のうち焼成を経た後の金属細線に残留する金属酸化物及び有機化合物が挙げられる。導電性成分の含有割合は、好ましくは80質量%以上であり、より好ましくは90質量%以上であり、さらに好ましくは95質量%以上である。導電性成分の含有割合の上限は、特に制限されないが、100質量%である。また、非導電性成分の含有割合は、好ましくは20質量%以下であり、より好ましくは10質量%以下、さらに好ましくは5質量%以下である。非導電性成分の含有割合の下限は、特に制限されないが、0質量%である。
(金属細線パターン)
 金属細線パターンは、目的とする電子デバイスの用途に応じて設計することができ、特に限定されないが、例えば、複数の金属細線が網目状に交差して形成されるメッシュパターン(図1及び2)や、複数の略平行な金属細線が形成されたラインパターン(図3及び4)が挙げられる。また、金属細線パターンは、メッシュパターンとラインパターンとが組み合わされたものであってもよい。メッシュパターンの網目は、図1に示されるような正方形又は長方形であっても、図2に示されるようなひし形等の多角形であってもよい。また、ラインパターンを構成する金属細線は、図3に示されるような直線であっても、図4に示されるような曲線であってもよい。さらに、メッシュパターンを構成する金属細線においても、金属細線を曲線とすることができる。
 上述したとおり、本実施形態においては、金属細線の線幅は可視光の回折及び干渉の観点から定められ、この観点から、金属細線を平面に投影したときに最長となる投影幅(最長投影幅W0)を可視光の下限波長未満とする。図5に、金属細線の最長投影幅W0を説明するための金属細線の断面図を示す。「最長投影幅W0」とは、金属細線を平面に投影しつつ、金属細線を長手方向に回転させたときに最も広くなる投影幅をいう。図5を例にすると、長方形の断面を有する金属細線を、縦に投影した場合(a)や、横に投影した場合(b)と比較して、金属細線を長手方向を軸に少し回転させて長方形の対角線と投影面が平行になるように投影した場合(c)に最も投影幅が広くなる。したがって、長方形の断面を有する金属細線における最長投影幅W0は、場合(c)により得られる投影幅となる。また、金属細線が長方形以外の断面を有する場合においても、同様に最長投影幅W0を得ることができる。例えば、略楕円形の断面を有する金属細線においても、金属細線を平面に投影しつつ、金属細線を長手方向に回転させることで最長投影幅W0を得ることができる。
 また、金属細線パターンの正面投影線幅W1、高さH、及びピッチPは、図6に示されるように定義される。ピッチPは、正面投影線幅W1と金属細線間の距離の和である。なお、「正面投影線幅W1」は、透明基材11の金属細線パターン12が配された面側から、金属細線14を透明基材11の表面上に投影したときの金属細線14の線幅をいう。図6を例にすると、長方形の断面を有する金属細線14においては、透明基材11と接している金属細線14の面の幅が正面投影線幅W1となる。
(最長投影幅W0)
 金属細線を平面に投影したときに、金属細線の投影幅のうち、金属細線の最長となる投影幅(最長投影幅W0)は、可視光の下限波長未満であり、好ましくは360nm未満であり、より好ましくは325nm以下であり、さらに好ましくは300nm以下であり、よりさらに好ましくは250nm以下であり、特に好ましくは200nm以下である。最長投影幅W0が細いほど、回折効果により細線がより視認されにくく、透過性がより向上する。なお、金属細線の最長投影幅W0の下限は、特に限定されないが、好ましくは10nm以上であり、より好ましくは25nm以上、さらに好ましくは50nm以上である。金属細線の最長投影幅W0の下限が上記範囲内であることにより、製造歩留まりがより向上し、金属細線の断線がより抑制される傾向にある。また、開口率を同じとした場合、金属細線の線幅が細いほど、金属細線の本数を増やすことが可能となる。これにより、導電性フィルムの電解分布がより均一となり、より高解像度のデバイスを作製することが可能となる。また、一部の金属細線で断線が生じたとしても、それによる影響を他の金属細線が補うことができる。
(アスペクト比)
 金属細線の正面投影線幅W1に対する金属細線の高さHで表されるアスペクト比は、好ましくは0.1~2であり、より好ましくは0.2~1.5であり、さらに好ましくは0.4~1である。金属細線の最長投影幅W0を可視光の下限波長未満としつつアスペクト比を高くすることにより、可視光透過率を低下させることなくシート抵抗をより向上できる傾向にある。
(ピッチ)
 金属細線パターンのピッチPは、好ましくは可視光の上限波長と可視光の下限波長の和よりも大きい。具体的には、金属細線パターンのピッチPは、1.2μm以上であり、より好ましくは1.5μm以上であり、さらに好ましくは2μm以上である。金属細線パターンのピッチPが1.2μm以上、即ち金属細線間の距離が可視光上限波長以上であることにより、可視光が金属細線により反射されることをより抑制することができ、透明性がより向上する傾向にある。なお、ここで、「可視光の上限波長」とは、830nmをいい、「可視光の下限波長」とは、360nmをいい、「可視光の上限波長と可視光の下限波長の和」とは、1.19μmをいう。
 また、金属細線パターンのピッチPは、好ましくは72μm以下であり、より好ましくは50μm以下であり、さらに好ましくは25μm以下である。金属細線パターンのピッチPが72μm以下であることにより、導電性フィルムの電解分布がより均一となり、より高解像度のデバイスを作製することが可能となる。なお、金属細線パターンの形状がメッシュパターンである場合には、線幅360nmの金属細線パターンのピッチを71.8μmとすることにより、開口率99%とすることができる。
 なお、金属細線パターンの正面投影線幅W1、アスペクト比、及びピッチは、導電性フィルム断面を電子顕微鏡等で見ることにより確認することができる。また、ピッチと開口率は後述する関係式を有するため、一方が分かればもう一方を算出することもできる。また、金属細線パターンの線幅、アスペクト比、及びピッチを所望の範囲に調整する方法としては、後述する導電性フィルムの製造方法において用いる版の溝を調整する方法、用いるインク中の金属粒子の平均粒子径を数nmとすること等が挙げられる。
(開口率)
 導電性フィルムの透明性向上の観点から、金属細線パターンの開口率は、好ましくは40%以上であり、より好ましくは50%以上であり、さらに好ましくは60%以上であり、よりさらに好ましくは70%以上であり、さらにより好ましくは80%以上であり、特に好ましくは90%以上である。また、導電性フィルムの導電性の観点から、金属細線パターンの開口率は、好ましくは99%以下であり、より好ましくは95%以下であり、さらに好ましくは90%以下であり、よりさらに好ましくは80%以下であり、さらにより好ましくは70%以下であり、特に好ましくは60%以下である。金属細線パターンの開口率は、金属細線パターンの形状によっても適正な値が異なる。ラインパターンの場合には、開口率68.4%以上、メッシュパターンの場合には46.8%以上であることが好ましい。また、金属細線パターンの開口率は、目的とする電子デバイスの要求性能(透明性及びシート抵抗)に応じて、上記上限値下限値を適宜組み合わせることができる。
 なお、「金属細線パターンの開口率」とは、透明基材上の金属細線パターンが形成されている領域について以下の式で算出することができる。透明基材上の金属細線パターンが形成されている領域とは、図1のSで示される範囲であり、金属細線パターンが形成されていない縁部等は除かれる。
 金属細線パターンの開口率=(1-金属細線パターンの占める面積/透明基材の面積)×100
 また、開口率とピッチの関係式は、細線パターンの形状によって異なるが、以下のように算出することができる。図7に、パターン単位16を有するメッシュパターン(グリッド(格子)パターン)の模式図を示す。このメッシュパターンの場合、開口率とピッチは下記関係式を有する。
 開口率={開口部15の面積/パターン単位16の面積}×100
    ={(ピッチP1-正面投影幅W11)×(ピッチP2-正面投影幅W12)/ピッチP1×ピッチP2}×100
 また、図8にラインパターンの模式図を示す。このラインパターンの場合は、開口率とピッチは下記関係式を有する。
 開口率=((ピッチP-正面投影幅W1)/ピッチP)×100
(シート抵抗)
 導電性フィルムのシート抵抗は、好ましくは0.1~1000Ω/sqであり、より好ましくは0.1~500Ω/sqであり、さらに好ましくは0.1~100Ω/sqであり、よりさらに好ましくは0.1~20Ω/sqであり、さらにより好ましくは0.1~10Ω/sqである。導電性フィルムのシート抵抗は、ASTM F390-11に記載の方法により測定することができる。シート抵抗が低いほど電力損失が抑制される傾向にある。そのため、消費電力の少ない電子ペーパー、タッチパネル、及びフラットパネルディスプレイを得ることが可能となる。
 導電性フィルムのシート抵抗は、金属細線のアスペクト比(高さ)を向上させることにより、低下する傾向にある。また、金属細線を構成する金属材料種の選択によっても調整することが可能である。
(可視光透過率)
 導電性フィルムの可視光透過率は、好ましくは金属細線パターンの開口率以上である。具体的には、導電性フィルムの可視光透過率は、好ましくは80~100%であり、より好ましくは90~100%であり、さらに好ましくは95~100%である。ここで、可視光透過率は、JIS K 7361-1:1997の全光線透過率に準拠して、その可視光(360~830nm)の範囲の透過率を算出することで測定することができる。本実施形態においては、上述したように、最長投影幅W0が可視光の波長よりも小さいことにより、可視光透過率が金属細線パターンの開口率以上となり、人の目には細線が視認されにくく、透過性が金属細線パターンの開口率の限界を超えて向上することになる。
 導電性フィルムの可視光透過率は、金属細線の最長投影幅W0をより細くしたり、開口率を向上させたりすることにより、より向上する傾向にある。
〔導電性フィルムの製造方法〕
 本実施形態の導電性フィルムの製造方法としては、特に限定されないが、平均一次粒径が100nm以下の金属粒子を含むインクを、所望の金属細線パターンの溝を有する版を用いて透明基材上に転写する工程を有する方法が挙げられる。より具体的には、転写媒体上にインクをコーティングする工程と、インクがコーティングされた転写媒体表面と凸版の凸部表面とを対向させて、押圧、接触させ、凸版の凸部表面に転写媒体表面上のインクを転移させる工程と、インクがコーティングされた転写媒体表面と透明基材(被印刷基材)の表面とを対向させて、押圧して、転写媒体表面に残ったインクを透明基材の表面に転写させる工程とを有する方法が挙げられる。
(インク)
 本実施形態の導電性フィルムの製造方法において用いられ得るインクに含まれる成分としては、特に限定されないが、例えば、金、銀、銅、又はアルミなどの金属成分を含む平均一次粒径100nm以下の金属粒子のほか、界面活性剤、分散剤、及び溶剤をさらに含有してもよい。また、このほか、必要に応じて還元剤などを含んでいてもよい。
 金属粒子の平均一次粒径は、好ましくは100nm以下であり、より好ましくは50nm以下であり、さらに好ましくは10nm以下である。また、金属粒子の平均一次粒径の下限は特に制限されないが、1nm以上が挙げられる。金属粒子の平均一次粒径が100nm以下であることにより、得られる金属細線の最長投影幅W0をより細くすることができる。なお、本実施形態において「平均一次粒径」とは、金属粒子1つ1つ(所謂一次粒子)の粒径をいい、金属粒子が複数個集まって形成される凝集体(所謂二次粒子)の粒径である平均二次粒径とは区別される。
 金属粒子としては、金、銀、銅、又はアルミなどの金属成分を含むものであれば、酸化銅等の酸化物や、コア部が銅でありシェル部が酸化銅であるようなコア/シェル粒子の態様であってもよい。金属粒子の態様は、分散性や焼結性の観点から、適宜決めることができる。
 界面活性剤としては、特に制限されないが、例えば、フッ素系界面活性剤、シリコーン系界面活性剤などが挙げられる。このような界面活性剤を用いることにより、転写媒体(ブランケット)へのインクのコーティング性、コーティングされたインクの平滑性が向上し、より均一な塗膜が得られる傾向にある。なお、界面活性剤は、金属粒子を分散可能であり、かつ焼結の際に残留しにくいよう構成されていることが好ましい。
 また、分散剤としては、特に制限されないが、例えば、金属粒子表面に非共有結合又は相互作用をする分散剤、金属粒子表面に共有結合をする分散剤が挙げられる。非共有結合又は相互作用をする官能基としてはリン酸基を有する分散剤が挙げられる。このような、分散剤を用いることにより、金属粒子の分散性がより向上する傾向にある。
 さらに、溶剤としては、モノアルコール及び多価アルコール等のアルコール系溶剤;アルキルエーテル系溶剤;炭化水素系溶剤;ケトン系溶剤;エステル系溶剤などが挙げられる。これらは単独で使用されてもよく、1種以上で併用されても良い。たとえば、炭素数10以下のモノアルコールと炭素数10以下の多価アルコールとの併用などが挙げられる。このような、溶剤を用いることにより、転写媒体(ブランケット)へのインクのコーティング性、転写媒体から凸版へのインクの転移性、転写媒体から透明基材へのインクの転写性、及び金属粒子の分散性がより向上する傾向にある。なお、溶剤は、金属粒子を分散可能であり、かつ焼結の際に残留しにくいよう構成されていることが好ましい。
 本実施形態の導電性フィルムの製造方法においては、上記工程に加えて、透明基材の表面に転写されたインク中の金属粒子を焼結する工程を有していてもよい。焼成は、金属粒子が融着して、金属粒子焼結膜(導電性の金属細線)を形成することができる方法であれば特に制限されない。焼成は、例えば、焼成炉で行ってもよいし、プラズマ、加熱触媒、紫外線、真空紫外線、電子線、赤外線ランプアニール、フラッシュランプアニール、レーザーなどを用いて行ってもよい。得られる焼結膜が酸化されやすい場合には、非酸化性雰囲気中において加熱処理することが好ましい。また、インクに含まれ得る還元剤のみで酸化物が還元されにくい場合には、還元性雰囲気で焼成することが好ましい。
 非酸化性雰囲気とは酸素等の酸化性ガスを含まない雰囲気であり、不活性雰囲気と還元性雰囲気がある。不活性雰囲気とは、例えば、アルゴン、ヘリウム、ネオンや窒素等の不活性ガスで満たされた雰囲気である。また、還元性雰囲気とは、水素、一酸化炭素等の還元性ガスが存在する雰囲気を指す。これらのガスを焼成炉中に充填して密閉系として分散体塗布膜を焼成してもよい。また、焼成炉を流通系にしてこれらのガスを流しながら分散体塗布膜を焼成してもよい。分散体塗布膜を非酸化性雰囲気で焼成する場合には、焼成炉中を一旦真空に引いて焼成炉中の酸素を除去し、非酸化性ガスで置換することが好ましい。また、焼成は、加圧雰囲気で行なってもよいし、減圧雰囲気で行なってもよい。
 焼成温度は、特に制限はないが、好ましくは20℃以上400℃以下であり、より好ましくは50℃以上300℃以下であり、さらに好ましくは80℃以上200℃以下である。焼成温度が400℃以下であることにより、耐熱性の低い基板を使用することができるので好ましい。また、焼成温度が20℃以上であることにより、焼結膜の形成が十分に進行し、導電性が良好となる傾向があるため好ましい。なお、得られる焼結膜は、金属粒子に由来する導電性成分を含み、そのほか、インクに用いた成分や焼成温度に応じて、非導電性成分を含みうる。
〔電子ペーパー〕
 本実施形態の電子ペーパーは、上記導電性フィルムを備えるものであれば特に制限されない。図9に、本実施形態の導電性フィルム(メッシュパターン)を備える電子ペーパーの一態様を表す上面図を示し、図10に本実施形態の電子ペーパーのV-V’の部分断面図を示し、図11に、図9と同じ開口率を有し、金属細線の最長投影幅W0が太い、従来の導電性フィルムを備える電子ペーパーの一態様を表す上面図を示す。
 図9に示されるように、電子ペーパー20においては、カップ21上に電子細線パターン12が配されカップ21に対して電界をかけることができるように構成されている。具体的には、図10に示されるように、電子ペーパー20のカップ21中には、帯電した黒顔料22と帯電した白顔料23とが収容されており、ボトム電極24と導電性フィルム10の間の電界により帯電黒顔料22と帯電白顔料23の挙動が制御される。
 この際、図9と図11の対比で示されるように、開口率が同じであっても、金属細線パターンが細かい方がカップ21の直上を横断する金属細線14が多くなり、カップ21により均一に電解をかけることが可能となる。したがって、本実施形態の導電性フィルム10を備える電子ペーパー20はより高解像度の画像を与えることが可能となる。なお、本実施形態の電子ペーパー20の構成は上記に限定されない。
〔タッチパネル〕
 本実施形態のタッチパネルは、上記導電性フィルムを備えるものであれば特に制限されない。図12に、本実施形態の導電性フィルム(ラインパターン)を備えるタッチパネルの一態様を表す斜視図を示す。静電容量方式のタッチパネル30においては、絶縁体31の表裏面に2枚の導電性フィルム10が存在し、2枚の導電性フィルム10は、ラインパターンが交差するように対向する。また、導電性フィルム10は、取り出し電極32を有していてもよい。取り出し電極32は、金属細線14と、金属細線14への通電切り替えを行うためのコントローラー33(CPU等)とを接続する。
 また、図13に、本実施形態の導電性フィルム(ラインパターン)を備えるタッチパネルの別態様を表す斜視図を示す。このタッチパネル30は、絶縁体31の表裏面に2枚の導電性フィルム10を備える代わりに、本実施形態の導電性フィルム10の両面に金属細線パターン12を備える。これにより、絶縁体31(透明基材11)の表裏面に2つの金属細線パターン12を備えるものとなる。
 なお、本実施形態のタッチパネルは、静電容量方式に限定されず、抵抗膜方式、投影型静電容量方式、及び表面型静電容量方式等としてもよい。
〔フラットパネルディスプレイ〕
 本実施形態のフラットパネルディスプレイは、上記導電性フィルムを備えるものであれば特に制限されない。
 本発明の導電性フィルムは、電子ペーパー、タッチパネル、及びフラットパネルディスプレイ等の透明電極として、産業上の利用可能性を有する。
 10…導電性フィルム
 11…透明基材
 12…金属細線パターン
 13…導電部
 14…金属細線
 15…開口部
 16…パターン単位
 20…電子ペーパー
 21…カップ
 22…黒顔料
 23…白顔料
 24…ボトム電極
 30…タッチパネル
 31…絶縁体
 32…取り出し電極
 33…コントローラー

Claims (14)

  1.  透明基材と、
     該透明基材上に配された金属細線パターンからなる導電部と、を有し、
     前記金属細線パターンが、金属細線から構成されており、
     前記金属細線を平面に投影したときに、前記金属細線の投影幅のうち、最長となる前記投影幅が、可視光の下限波長未満である、
     導電性フィルム。
  2.  前記金属細線の投影幅が、360nm未満である、
     請求項1に記載の導電性フィルム。
  3.  前記透明基材の前記金属細線パターンが配された面側から、前記金属細線を前記透明基材の表面上に投影したときの前記金属細線の線幅を、正面投影線幅としたとき、
     前記金属細線の前記正面投影線幅に対する前記金属細線の高さで表されるアスペクト比が、0.1~2である、
     請求項1又は2に記載の導電性フィルム。
  4.  前記導電性フィルムの可視光透過率が、前記金属細線パターンの開口率以上である、
     請求項1~3のいずれか1項に記載の導電性フィルム。
  5.  前記金属細線パターンのピッチが、可視光の上限波長と可視光の下限波長の和よりも大きい、
     請求項1~4のいずれか1項に記載の導電性フィルム。
  6.  前記金属細線パターンの開口率が、40~99%である、
     請求項1~5のいずれか1項に記載の導電性フィルム。
  7.  前記導電性フィルムの可視光透過率が、80~100%である、
     請求項1~6のいずれか1項に記載の導電性フィルム。
  8.  前記導電性フィルムのシート抵抗が、0.1~1000Ω/sqである、
     請求項1~7のいずれか1項に記載の導電性フィルム。
  9.  前記金属細線パターンが、メッシュパターンである、
     請求項1~8のいずれか1項に記載の導電性フィルム。
  10.  前記金属細線パターンが、ラインパターンである、
     請求項1~8のいずれか1項に記載の導電性フィルム。
  11.  前記金属細線が、導電性成分と非導電性成分とを含む、
     請求項1~10のいずれか1項に記載の導電性フィルム。
  12.  請求項1~11のいずれか1項に記載の導電性フィルムを備える、
     電子ペーパー。
  13.  請求項1~11のいずれか1項に記載の導電性フィルムを備える、
     タッチパネル。
  14.  請求項1~11のいずれか1項に記載の導電性フィルムを備える、
     フラットパネルディスプレイ。
PCT/JP2017/024004 2016-07-08 2017-06-29 導電性フィルム、電子ペーパー、タッチパネル、及びフラットパネルディスプレイ WO2018008530A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/312,006 US20190235670A1 (en) 2016-07-08 2017-06-29 Electrically conductive film, electronic paper, touch panel, and flat panel display
JP2018526332A JP6647399B2 (ja) 2016-07-08 2017-06-29 導電性フィルム、電子ペーパー、タッチパネル、及びフラットパネルディスプレイ
KR1020187034455A KR102173346B1 (ko) 2016-07-08 2017-06-29 도전성 필름, 전자 페이퍼, 터치 패널, 및 플랫 패널 디스플레이
CN201780038314.2A CN109328388A (zh) 2016-07-08 2017-06-29 导电性薄膜、电子纸、触摸面板以及平板显示器
EP17824135.2A EP3483898A4 (en) 2016-07-08 2017-06-29 CONDUCTIVE FILM, ELECTRONIC PAPER, TOUCH PANEL AND FLAT SCREEN DISPLAY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016136273 2016-07-08
JP2016-136273 2016-07-08

Publications (1)

Publication Number Publication Date
WO2018008530A1 true WO2018008530A1 (ja) 2018-01-11

Family

ID=60912838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024004 WO2018008530A1 (ja) 2016-07-08 2017-06-29 導電性フィルム、電子ペーパー、タッチパネル、及びフラットパネルディスプレイ

Country Status (7)

Country Link
US (1) US20190235670A1 (ja)
EP (1) EP3483898A4 (ja)
JP (1) JP6647399B2 (ja)
KR (1) KR102173346B1 (ja)
CN (1) CN109328388A (ja)
TW (1) TWI650775B (ja)
WO (1) WO2018008530A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112514004A (zh) * 2018-07-30 2021-03-16 旭化成株式会社 导电性薄膜、以及使用了其的导电性薄膜卷、电子纸、触摸面板和平板显示器
CN112514003A (zh) * 2018-07-30 2021-03-16 旭化成株式会社 导电性薄膜、以及使用了其的导电性薄膜卷、电子纸、触摸面板和平板显示器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102041269B1 (ko) * 2019-05-20 2019-11-06 유한회사 대동 눈 보호구용 투명 발열체 및 그의 제조방법
US11815957B2 (en) * 2019-12-10 2023-11-14 Asahi Kasei Kabushiki Kaisha Conductive film and roll thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278845A (ja) * 2005-03-30 2006-10-12 Toppan Printing Co Ltd 導電性パターンの形成方法
JP2006294550A (ja) * 2005-04-14 2006-10-26 Osaka Prefecture Univ プリント基板配線用導電性インキおよびプリント基板配線方法
JP2010153698A (ja) * 2008-12-26 2010-07-08 Nissha Printing Co Ltd 透明導電性シートとその製造方法、加飾成形品
JP2013180556A (ja) * 2012-03-05 2013-09-12 Lintec Corp 透明導電性フィルム及びその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009039423A1 (en) * 2007-09-19 2009-03-26 Ravenbrick, Llc Low-emissivity window films and coatings incoporating nanoscale wire grids
JP5643774B2 (ja) * 2009-02-26 2014-12-17 スリーエム イノベイティブ プロパティズ カンパニー 低視認性の重ね合わせられた微小パターンを有する、タッチスクリーンセンサ及びパターン基材
JPWO2011090034A1 (ja) * 2010-01-19 2013-05-23 国立大学法人京都大学 導電膜及びその製造方法
DE112011100972T5 (de) * 2010-03-19 2013-01-17 Sumitomo Metal Mining Co. Ltd. Transparenter leitender Film
WO2012093530A1 (ja) * 2011-01-06 2012-07-12 リンテック株式会社 透明導電性積層体および有機薄膜デバイス
EP2671438A4 (en) * 2011-02-02 2017-06-14 3M Innovative Properties Company Patterned substrates with darkened conductor traces
US20130182405A1 (en) * 2011-12-30 2013-07-18 Lightwave Power, Inc. Nanowire enhanced transparent conductor and polarizer
CN104838342B (zh) * 2012-12-07 2018-03-13 3M创新有限公司 在基板上制作透明导体的方法
US20160041649A1 (en) * 2013-03-29 2016-02-11 Showa Denko K.K. Transparent conductive substrate production method and transparent conductive substrate
CN103207702B (zh) * 2013-03-30 2016-08-24 深圳欧菲光科技股份有限公司 触摸屏及其制造方法
JP2015138514A (ja) * 2014-01-24 2015-07-30 大日本印刷株式会社 タッチパネル用位置検知電極部材、該電極部材を用いてなるタッチパネル、及び該タッチパネルを用いた画像表示装置
JP6196180B2 (ja) * 2014-03-26 2017-09-13 日東電工株式会社 透光性導電フィルム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278845A (ja) * 2005-03-30 2006-10-12 Toppan Printing Co Ltd 導電性パターンの形成方法
JP2006294550A (ja) * 2005-04-14 2006-10-26 Osaka Prefecture Univ プリント基板配線用導電性インキおよびプリント基板配線方法
JP2010153698A (ja) * 2008-12-26 2010-07-08 Nissha Printing Co Ltd 透明導電性シートとその製造方法、加飾成形品
JP2013180556A (ja) * 2012-03-05 2013-09-12 Lintec Corp 透明導電性フィルム及びその製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112514004A (zh) * 2018-07-30 2021-03-16 旭化成株式会社 导电性薄膜、以及使用了其的导电性薄膜卷、电子纸、触摸面板和平板显示器
CN112514003A (zh) * 2018-07-30 2021-03-16 旭化成株式会社 导电性薄膜、以及使用了其的导电性薄膜卷、电子纸、触摸面板和平板显示器
EP3832669A4 (en) * 2018-07-30 2021-09-22 Asahi Kasei Kabushiki Kaisha CONDUCTIVE FILM AND CONDUCTIVE FILM ROLL, ELECTRONIC PAPER, TOUCH SCREEN AND FLAT SCREEN DISPLAY UNIT USING IT
EP4030443A1 (en) * 2018-07-30 2022-07-20 Asahi Kasei Kabushiki Kaisha Conductive film and conductive film roll, electronic paper, touch panel and flat-panel display comprising the same
EP4030442A1 (en) * 2018-07-30 2022-07-20 Asahi Kasei Kabushiki Kaisha Conductive film and conductive film roll, electronic paper, touch panel and flat-panel display comprising the same
US11520451B2 (en) 2018-07-30 2022-12-06 Asahi Kasei Kabushiki Kaisha Conductive film and conductive film roll, electronic paper, touch panel and flat-panel display comprising the same
US11620028B2 (en) 2018-07-30 2023-04-04 Asahi Kasei Kabushiki Kaisha Conductive film and conductive film roll, electronic paper, touch panel and flat-panel display comprising the same
US11635863B2 (en) 2018-07-30 2023-04-25 Asahi Kasei Kabushiki Kaisha Conductive film and conductive film roll, electronic paper, touch panel and flat-panel display comprising the same
US11877391B2 (en) 2018-07-30 2024-01-16 Asahi Kasei Kabushiki Kaisha Conductive film and conductive film roll, electronic paper, touch panel and flat-panel display comprising the same

Also Published As

Publication number Publication date
US20190235670A1 (en) 2019-08-01
TW201802830A (zh) 2018-01-16
TWI650775B (zh) 2019-02-11
JPWO2018008530A1 (ja) 2019-04-11
EP3483898A4 (en) 2019-06-12
JP6647399B2 (ja) 2020-02-14
CN109328388A (zh) 2019-02-12
EP3483898A1 (en) 2019-05-15
KR20190002614A (ko) 2019-01-08
KR102173346B1 (ko) 2020-11-03

Similar Documents

Publication Publication Date Title
KR101306563B1 (ko) 전도성 구조체 및 이의 제조방법
TWI441199B (zh) 導電結構體及其製造方法
WO2018008530A1 (ja) 導電性フィルム、電子ペーパー、タッチパネル、及びフラットパネルディスプレイ
TWI595508B (zh) 透明導電性膜及圖像顯示裝置
KR101285514B1 (ko) 터치패널 및 이를 포함하는 디스플레이 장치
KR101359737B1 (ko) 터치패널 및 이를 포함하는 디스플레이 장치
KR20120130053A (ko) 전도성 기판 및 이를 포함하는 터치 패널
KR20130033994A (ko) 전도성 패턴을 포함하는 터치 패널
TW201329812A (zh) 包括導電圖案之導電基板及包含其之觸控面板
JP2022115901A (ja) 導電性フィルム、並びに、それを用いた導電性フィルムロール、電子ペーパー、タッチパネル、及びフラットパネルディスプレイ
JP2022022233A (ja) 導電性フィルム、並びに、それを用いた導電性フィルムロール、電子ペーパー、タッチパネル及びフラットパネルディスプレイ
WO2012144643A1 (ja) 透明導電性素子、入力装置、電子機器、透明導電性素子の製造方法
TWM487477U (zh) 觸控面板之電極層之結構

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018526332

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187034455

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17824135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017824135

Country of ref document: EP

Effective date: 20190208