WO2018008511A1 - 成長性遺伝形質を有するアカマダラハタの識別方法 - Google Patents

成長性遺伝形質を有するアカマダラハタの識別方法 Download PDF

Info

Publication number
WO2018008511A1
WO2018008511A1 PCT/JP2017/023930 JP2017023930W WO2018008511A1 WO 2018008511 A1 WO2018008511 A1 WO 2018008511A1 JP 2017023930 W JP2017023930 W JP 2017023930W WO 2018008511 A1 WO2018008511 A1 WO 2018008511A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
linkage group
correspond
positions
grouper
Prior art date
Application number
PCT/JP2017/023930
Other languages
English (en)
French (fr)
Inventor
崇 坂本
照遵 尾崎
カノンボーン・ケシュワン
Original Assignee
国立大学法人東京海洋大学
デパートメント オブ フィッシャリーズ ミニストリー オブ アグリカルチャー アンド コーペレイティブズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京海洋大学, デパートメント オブ フィッシャリーズ ミニストリー オブ アグリカルチャー アンド コーペレイティブズ filed Critical 国立大学法人東京海洋大学
Publication of WO2018008511A1 publication Critical patent/WO2018008511A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Definitions

  • the present invention relates to a method for identifying a red-backed grouper (Tiger Grouper / Epinephelus fuscoguttatus) having a high-growth genetic trait (hereinafter referred to as "growth hereditary trait").
  • growth hereditary trait a high-growth genetic trait
  • the present invention also relates to a method for identifying red-backed grouper having a growth heritable trait using "genetic marker” or "MS marker”.
  • Grouper fish generally have a high market value, and the grouper grouper is red-tailed grouper, which is actively cultivated in Southeast Asian countries. It takes about 2 years to grow a red-backed grouper until it can be shipped to the market.
  • the inventors have already published a linkage map created using microsatellite of rainbow trout (Oncorhynchus mykiss) and Que (Kelp Grouper / Epinephelus bruneus) and the results of QTL analysis of growth genetic traits using this (Non-patent documents 1, 2 etc.).
  • the farmed red-backed grouper takes a long time to grow and requires several years of breeding for shipping. For this reason, the cost of raising feed and the like is high, and the risk of infection is high. Therefore, if individuals having a growth genetic trait can be selected, these costs and risks can be minimized, the productivity of the aquaculture site can be improved, and the breeding research at the seedling production site can be made more efficient.
  • the present invention provides a method by which a high growth marker of red-backed grouper can be developed to distinguish a fish having a high growth trait.
  • Non-patent Document 2 (about 100) developed by the inventors for Kee (Kelp Grouper / Epinephelus bruneus), male parent, female parent and their offspring (analytical family) By finding the relationship (linkage relationship) between each genetic marker, a genetic map of Red-backed Grouper was created (details omitted).
  • QTL analysis was performed on the above-mentioned genetic markers for the large and small groups of cultured red-spotted grouper (BW), six major genetic markers affecting growth genetic traits were discovered (Examples described below). 1) The usefulness was confirmed in other families (Example 2 described later). This indicates that these genetic markers can be used to detect the growing hereditary traits of red-backed grouper.
  • the present invention relates to a growth genetic trait comprising a polynucleotide having a base sequence having a microsatellite sequence, which is a DNA marker locus sequence of any of the following (1) to (6) or a partial sequence thereof: It is a genetic marker for identifying a red-backed grouper.
  • DNA marker locus Ebr00010FRA (SEQ ID NO: 1) on linkage group 12 (positions 487 to 534 correspond to microsatellite sequences)
  • DNA marker locus Ebr00935FRA (SEQ ID NO: 2) on linkage group 12 (positions 131 to 162 correspond to microsatellite sequences)
  • DNA marker locus Ebr00846FRA (SEQ ID NO: 3) on linkage group 21 (positions 173 to 206 correspond to microsatellite sequences)
  • DNA marker locus Ebr00924FRA (SEQ ID NO: 4) on linkage group 21 (positions 321 to 344 correspond to microsatellite sequences)
  • DNA marker locus CfuSTR210 (SEQ ID NO: 5) on linkage group 21 (positions 106 to 127 correspond to microsatellite sequences)
  • DNA marker locus Ebr01255FRA (SEQ ID NO: 6) on linkage group 21 (positions 113 to 136 correspond to micro
  • Bold letters indicate microsatellite sequences, and underlines indicate primer sequences used in the examples.
  • the microsatellite sequences (repetitive sequences) of the marker loci Ebr00010FRA, Ebr00935FRA and Ebr00846FRA are (ATGT) 12, (AC) 16 and (AC) 17, respectively. It is a figure which shows the base sequence of three marker loci shown in Table 1 and 2.
  • FIG. Bold letters indicate microsatellite sequences, and underlines indicate primer sequences used in the examples.
  • the microsatellite sequences (repetitive sequences) of the marker loci Ebr00924FRA, CfuSTR210 and Ebr01255FRA are (AC) 12, (AC) 11 and (AC) 12, respectively.
  • the genetic markers of the present invention used to identify red spotted grouper having a growing heritable trait are shown in the table below.
  • This marker is a genetic marker included in the genetic marker (Non-patent Document 2) developed by the inventors for quee (Kelp Grouper / Epinephelus bruneus).
  • Non-patent Document 2 developed by the inventors for quee (Kelp Grouper / Epinephelus bruneus).
  • Table 1 affect the growth hereditary traits (see Examples described later).
  • primer sequences that amplify the MS region are relatively conserved even in related species, and MS papers can be used in related species other than the species that developed the MS marker. (Eg Morris et al., 1996; Sakamoto et al., 1996; Ohara et al., 2003).
  • Non-patent Document 2 the genetic marker developed for the close species que
  • the method for discriminating whether or not the red-eye grouper of the present invention has a growth hereditary trait comprises the following steps. Step 1) DNA is extracted from the red-backed grouper, its eggs or processed products thereof, and a polynucleotide comprising a partial sequence including any of the following marker locus sequences or microsatellite sequences thereof is amplified.
  • DNA marker locus Ebr00010FRA (SEQ ID NO: 1) on linkage group 12 (positions 487 to 534 correspond to microsatellite sequences)
  • DNA marker locus Ebr00935FRA (SEQ ID NO: 2) on linkage group 12 (positions 131 to 162 correspond to microsatellite sequences)
  • DNA marker locus Ebr00846FRA (SEQ ID NO: 3) on linkage group 21 (positions 173 to 206 correspond to microsatellite sequences)
  • DNA marker locus Ebr00924FRA (SEQ ID NO: 4) on linkage group 21 (positions 321 to 344 correspond to microsatellite sequences)
  • DNA marker locus CfuSTR210 (SEQ ID NO: 5) on linkage group 21 (positions 106 to 127 correspond to microsatellite sequences)
  • DNA marker locus Ebr01255FRA (SEQ ID NO: 6) on linkage group 21 (positions 113 to 136 correspond to micro
  • the primer used in this amplification may be any primer that can amplify the polynucleotide of the above-mentioned microsatellite sequence, and is an oligonucleotide that specifically hybridizes with this polynucleotide, preferably under stringent conditions.
  • specifically hybridizing means that cross-hybridization does not occur significantly with DNA encoding other proteins under normal hybridization conditions, preferably under stringent conditions.
  • the stringent conditions are, for example, conditions of 60 ° C. and 6 ⁇ SSC.
  • an oligonucleotide comprising at least 18 consecutive bases in any of the following marker locus sequences, a polynucleotide comprising one of the two base sequences sandwiching the microsatellite sequence.
  • An oligonucleotide complementary to an oligonucleotide consisting of a nucleotide and the other base sequence, or two oligonucleotides complementary to these can be used.
  • DNA marker locus Ebr00010FRA (SEQ ID NO: 1) on linkage group 12 (positions 487 to 534 correspond to microsatellite sequences)
  • DNA marker locus Ebr00935FRA (SEQ ID NO: 2) on linkage group 12 (positions 131 to 162 correspond to microsatellite sequences)
  • DNA marker locus Ebr00846FRA (SEQ ID NO: 3) on linkage group 21 (positions 173 to 206 correspond to microsatellite sequences)
  • DNA marker locus Ebr00924FRA (SEQ ID NO: 4) on linkage group 21 (positions 321 to 344 correspond to microsatellite sequences)
  • DNA marker locus CfuSTR210 (SEQ ID NO: 5) on linkage group 21 (positions 106 to 127 correspond to microsatellite sequences)
  • DNA marker locus Ebr01255FRA (SEQ ID NO: 6) on linkage group 21 (positions 113 to 136 correspond to micro
  • Step 2) Separately, a red-backed grouper that is recognized as a growth heritable trait is subcultured. This subculture is usually performed for about two generations. Microsatellite sequences are amplified for this red-backed grouper in the same manner as in step 1) above.
  • Step 3) The amplification results of the steps 1) and 2) are compared, and when they match, it is identified that the red-backed grouper has a growth heritable trait. If not, it is identified that the red-backed grouper is not a growth hereditary trait. In this step, if the sizes of the polynucleotides to be compared match, the red-backed grouper may be identified as having a growth heritable trait.
  • a diagnostic kit for discriminating whether red-backed grouper has a growth hereditary trait using the DNA marker of the present invention comprises the above-mentioned PCR primer, and further comprises a heat-resistant DNA polymerase (such as Taq polymerase) and detection. Therefore, a probe to be paired with the amplification product may be included. Furthermore, this kit may contain, for example, deoxyribonucleotide triphosphates (dATP, dCTP, dGTP, dTTP), buffers, etc. as other consumable reagents.
  • dATP deoxyribonucleotide triphosphates
  • dCTP dCTP
  • dGTP dGTP
  • dTTP buffers
  • a breeding family was created as a breeding case analysis family.
  • For the production we used red-faced grouper bred at Krabi Research Institute of Thai Fisheries Bureau.
  • Each analysis kindred, artificially bred Akamadarahata male one individual and one female individuals were generated F 1 generation 3 family (Analysis families A, analysis family B, analysis family C).
  • Example 1 For each analysis family created by artificial mating, after raising the obtained fry for 5 months, remove morphologically abnormal or floating bag defective individuals, and each individual normal fish of the same size with an average of about 150 mm is a pit tag for individual identification Was inserted into the body and used for evaluation breeding tests. Finally, 500 individuals from Analyzes A, 270 from Analyzes B, and 262 from Analyzes C were used for the high growth trait evaluation test. Each family was kept for 12 months in a separate ginger. Body weight was measured after the rearing test to evaluate high growth traits.
  • ⁇ Determination of marker type> Collect the caudal fins of 1 cm square of each individual of the backcross family that had undergone phenotyping, lysis buffer [125 mM NaCl, 10 mM Tris-HCl (pH 7.5), 10 mM EDTA (Ph8.0)], Proteinase 500 ⁇ l of digestion solution containing 5 ⁇ l of K (20 mg / ml) (Takara) and 50 ⁇ l of 10% SDS was added and incubated overnight at 37 ° C.
  • Centrifugation (15000 rpm, 4 ° C., 10 minutes) was performed, and after confirming that the DNA pellet was deposited, the supernatant was discarded.
  • the DNA pellet and the wall surface of the tube were washed by adding 1 ml of 70% ethanol and mixing by inverting, and then centrifuging (15000 rpm, 4 ° C., 5 minutes), discarding the supernatant, and air drying for about 5 minutes. After air drying, 50 ⁇ l of TE buffer [10 mM Tris-HCl (pH 8.0), 1 mM EDTA (pH 8.0)] was added to dissolve the DNA.
  • Non-patent Document 2 grouper / quee MS markers (Non-patent Document 2) were used, and analysis was performed using a total of 456 MS marker loci including the MS markers shown in Table 1.
  • Table 2 shows the primers used in this example (only those corresponding to the MS markers in Table 1). All primer synthesis and fluorescent labeling were outsourced to Operon Biotechnology Co., Ltd. The 5 ′ side of the forward primer was used with fluorescent labeling (TET). Primers were synthesized in the same manner for other markers (details are omitted).
  • the PCR method is an 11 ⁇ l solution containing 10 ng PCR reaction buffer (Mg 2+ ), 2.5 Mm dNTP, 1% BSA, 5 U Taq DNA polymerase (Takara: Ex-Tag) 50 ng template DNA, and GeneAmpPCRSystem9700 (Applied Biosystems). After initial denaturation at 95 ° C for 3 minutes, denaturation at 95 ° C for 30 seconds, annealing at 62 ° C for 1 minute, extension at 72 ° C for 1 minute for 30 cycles, final extension at 72 ° C for 5 minutes, and rapid cooling to 12 ° C PCR was performed.
  • ⁇ QTL analysis> For analysis family A, 45 individuals with good growth and 45 individuals with poor growth were used for the first stage analysis. Next, for the genetic markers that are statistically significant in the first stage analysis (related to high growth traits), the second stage analysis was performed using all individuals (500 individuals). In the first stage analysis using the analysis family A, using the above-mentioned MS marker, collecting information on the marker type of a total of 90 individuals of 45 individuals with good growth and 45 individuals with poor growth, and their parents, We investigated the correspondence between phenotypes (high and low growth) and marker types. The phenotype was the weight of each individual. MapQTL software was used for QTL analysis.
  • the number of analyzed individuals was increased to 500 individuals, and marker type information was collected using the MS marker (p ⁇ 0.05) that was significant in the first stage test. Similarly, the correspondence between the phenotype and the marker type was examined.
  • Ebr00846FRA, Ebr00924FRA, CfuSTR210, and Ebr01255FRA are Kruskal-wallis test: P ⁇ 0.05, and also have a high score that is significantly higher than the MapQTL software experimental score Lod score> 1.9 (level considered to be a linkage). It can be said that it is related.
  • the linkage group 12 marker loci Ebr00010FRA and Ebr00935FRA, and the linkage group 21 marker loci Ebr00846FRA, Ebr00924FRA, CfuSTR210 and Ebr01255FRA exceed the reference value (MapQTL software experimental level Lod score> 1.9). It is a Lod Score and can be said to be related to a high growth trait.
  • Non-patent Document 2 Ebr01242FRA in linkage group 13, Ebr00702FRA in linkage group 17, Ebr00314FRA, linkage group 18 ElaSTR405Db and Ebr01212FRA
  • lod scores 0.00 to 0.54
  • Example 2 In order to examine the effectiveness of genetic markers that are statistically significant in analysis family A (related to high-growth traits), as a third stage analysis, all individuals in analysis family B and analysis family C ( Analysis family B: 270 individuals, analysis family C: 262 individuals).
  • the reference value that is linked varies depending on the number of samples of analysis families and the number of analysis markers.
  • the reference value in Table 5 (3rd stage: other family) is the level at which the Lod score> 1.6 is considered to be a chain at the experimental level.
  • the six markers that are considered to be associated with high growth traits in Family A analyzed in Example 1 are: Similarly, other families (analytical family B and analytical family C) were found to be statistically significantly related to high growth traits. Thus, these genetic markers have been shown to be statistically significantly associated with high-growth traits in multiple unrelated families. Can be said to be a hereditary trait in Red-backed Grouper.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

アカマダラハタの高成長性マーカーを開発して、個体を殺すことなく高成長性の形質を持つ魚を判別することのできる方法を提供する。クエについて開発した遺伝マーカーを利用して、アカマダラハタの遺伝地図を作成し、養殖アカマダラハタの体重の大きい群と小さい群について上記遺伝マーカーについてQTL解析を行ったところ、成長性遺伝形質に影響を与える6つの主要な遺伝マーカー(連鎖群12上のDNAマーカー座Ebr00010FRA(配列番号1)及びEbr00935FRA(配列番号2)並びに連鎖群21上のDNAマーカー座Ebr00846FRA(配列番号3)、Ebr00924FRA(配列番号4)、CfuSTR210(配列番号5)及びEbr01255FRA(配列番号6))が見出された。 

Description

成長性遺伝形質を有するアカマダラハタの識別方法
 この発明は、高成長性の遺伝的形質(以下「成長性遺伝形質」という。)を有するアカマダラハタ(Tiger Grouper / Epinephelus fuscoguttatus)を識別する方法に関し、より詳細には、特定のDNAマーカー(以下「遺伝マーカー」又は「MSマーカー」ともいう。)を用いて成長性遺伝形質を有するアカマダラハタを識別する方法に関する。
 ハタ科魚類は一般に市場価値が高く、ハタ科の魚であるアカマダラハタは、東南アジア諸国で盛んに養殖されている。アカマダラハタの養殖においては、市場に出荷できるサイズになるまで2年程度の長時間を要している。
 発明者らは、既に、ニジマス(Oncorhynchus mykiss)とクエ(Kelp Grouper / Epinephelus bruneus)のマイクロサテライトを用いて作成した連鎖地図とこれを用いた成長性遺伝形質のQTL解析の結果を発表している(非特許文献1、2等)。
Genetics 155(3) 1331-1345 (2000) Mar Biotechnol DOI 10.1007/s10126-015-9673-5 (2015)
 養殖アカマダラハタは成長に長時間を要し、出荷のためには数年の飼育期間を設けなければならない。そのため飼料等の飼育コストが大きく、感染症の罹患リスクも大きい。そのため、成長性遺伝形質を持つ個体を選別できれば、これらのコストやリスクを最小限にして、養殖現場の生産性を向上し、種苗生産現場における育種研究を効率化することができる。
 本発明は、アカマダラハタの高成長性マーカーを開発して、高成長性の形質を持つ魚を判別することのできる方法を提供する。
 発明者らがクエ(Kelp Grouper / Epinephelus bruneus)について開発した遺伝マーカー(非特許文献2)(100 個程度)を利用して、アカマダラハタのオス親、メス親及びその子孫(解析家系)について、各遺伝マーカー間の関連性(連鎖関係)を見出すことにより、アカマダラハタの遺伝地図を作成した(詳細は省略する)。
 別途、養殖アカマダラハタの体重(BW)の大きい群と小さい群について上記遺伝マーカーについてQTL解析を行ったところ、成長性遺伝形質に影響を与える6つの主要な遺伝マーカーが発見され(後述の実施例1)、その有用性を他の家系で確認した(後述の実施例2)。このことは、これらの遺伝マーカーを用いてアカマダラハタの成長性遺伝形質を検出できることを示している。
 即ち、本発明は、下記(1)~(6)のいずれかのDNAマーカー座配列又はその部分配列であって、そのマイクロサテライト配列を有する塩基配列を有するポリヌクレオチドから成る、成長性遺伝形質を有するアカマダラハタを識別するための遺伝マーカーである。
(1)連鎖群12上のDNAマーカー座Ebr00010FRA(配列番号1)(その487~534位がマイクロサテライト配列に相当する。)
(2)連鎖群12上のDNAマーカー座Ebr00935FRA(配列番号2)(その131~162位がマイクロサテライト配列に相当する。)
(3)連鎖群21上のDNAマーカー座Ebr00846FRA(配列番号3)(その173~206位がマイクロサテライト配列に相当する。)
(4)連鎖群21上のDNAマーカー座Ebr00924FRA(配列番号4)(その321~344位がマイクロサテライト配列に相当する。)
(5)連鎖群21上のDNAマーカー座CfuSTR210(配列番号5)(その106~127位がマイクロサテライト配列に相当する。)
(6)連鎖群21上のDNAマーカー座Ebr01255FRA(配列番号6)(その113~136位がマイクロサテライト配列に相当する。)
 また、本発明は、アカマダラハタ、その卵又はそれらの加工品から抽出したDNAについて、この遺伝マーカーを検出することから成る、アカマダラハタの成長性遺伝形質を識別する方法である。
アカマダラハタの連鎖群(LG)12のMSマーカーの関連を示す地図である。Fはメス、Mはオスを示す。マーカー座Ebr00010FRAとEbr00935FRAは、それぞれ同一連鎖群上にある。 アカマダラハタの連鎖群(LG)12のMSマーカーの関連を示す地図である。Fはメス、Mはオスを示す。マーカー座Ebr00846FRA、Ebr00924FRA及びCfuSTR210はメスの同一連鎖群上にあり、マーカー座CfuSTR210及びEbr01255FRAはオスの同一連鎖群上にある。 表1及び2に示す3つのマーカー座の塩基配列を示す図である。太字はマイクロサテライト配列、下線は実施例で用いたプライマー配列を示す。マーカー座Ebr00010FRA、Ebr00935FRA及びEbr00846FRAのマイクロサテライト配列(繰返配列)は、それぞれ、(ATGT)12、(AC)16及び(AC)17である。 表1及び2に示す3つのマーカー座の塩基配列を示す図である。太字はマイクロサテライト配列、下線は実施例で用いたプライマー配列を示す。マーカー座Ebr00924FRA、CfuSTR210及びEbr01255FRAのマイクロサテライト配列(繰返配列)は、それぞれ、(AC)12、(AC)11及び(AC)12である。 解析家系AにおけるMSマーカー(Ebr00010FRA)の検出を示すゲル電気泳動像である。この図において、雌親魚はNo.1とNo.4で示されるバンドを持ち、雄親魚はNo.2とNo.3で示されるバンドを持ち、解析家系Aの高成長形質を示した子孫1と2は、雌親由来のNo.4のバンドを持ち、解析家系Aの低成長形質を示した子孫3と4は、雌親由来のNo.1のバンドを持っている。
 成長性遺伝形質を有するアカマダラハタを識別するために用いる本発明の遺伝マーカーを下表に示す。
Figure JPOXMLDOC01-appb-T000001
 このマーカーは発明者らがクエ(Kelp Grouper / Epinephelus bruneus)について開発した遺伝マーカー(非特許文献2)に含まれる遺伝マーカーであり、これらを用いてアカマダラハタの成長性遺伝形質についてQTL解析を行ったところ、この表1に示す遺伝マーカーが成長性遺伝形質に影響を与えることを見出した(後述の実施例参照)。
 一般的にMS領域を増幅するプライマーの配列は、近縁種でも比較的に保存性が高く、MSマーカーは、そのMSマーカーを開発した種以外の近縁種でも利用可能なことが多くの論文で示されている(例えば、Morris et al., 1996;Sakamoto et al., 1996;Ohara et al., 2003)。このことは、魚類だけでなく哺乳類等においても報告されている(例えば、Moore et al., 1991)。そのため、本発明のアカマダラハタの成長性遺伝形質の解析においても、その近縁種であるクエについて開発した遺伝マーカー(非特許文献2)を利用した。
 本発明のアカマダラハタが成長性遺伝形質を有するか否かを識別する方法は下記工程から成る。
工程1)
 アカマダラハタ、その卵又はそれらの加工品からDNAを抽出し、そのDNAについて、下記いずれかのマーカー座配列又はそのマイクロサテライト配列を含む部分配列から成るポリヌクレオチドを増幅する。
(1)連鎖群12上のDNAマーカー座Ebr00010FRA(配列番号1)(その487~534位がマイクロサテライト配列に相当する。)
(2)連鎖群12上のDNAマーカー座Ebr00935FRA(配列番号2)(その131~162位がマイクロサテライト配列に相当する。)
(3)連鎖群21上のDNAマーカー座Ebr00846FRA(配列番号3)(その173~206位がマイクロサテライト配列に相当する。)
(4)連鎖群21上のDNAマーカー座Ebr00924FRA(配列番号4)(その321~344位がマイクロサテライト配列に相当する。)
(5)連鎖群21上のDNAマーカー座CfuSTR210(配列番号5)(その106~127位がマイクロサテライト配列に相当する。)
(6)連鎖群21上のDNAマーカー座Ebr01255FRA(配列番号6)(その113~136位がマイクロサテライト配列に相当する。)
 この増幅(PCR反応)に用いるプライマーとしては、上記マイクロサテライト配列のポリヌクレオチドを増幅できるものであればよく、このポリヌクレオチドと、好ましくはストリンジェントな条件で、特異的にハイブリダイズするオリゴヌクレオチドであれば限定されない。ここで特異的にハイブリダイズするとは、通常のハイブリダイゼーション条件下、好ましくはストリンジェントな条件下において、他のタンパク質をコードするDNAとクロスハイブリダイゼーションを有意に生じないことを意味する。ストリンジェントな条件は、例えば、60℃、6×SSCの条件である。
 このようなプライマーとして、下記いずれかのマーカー座配列中の連続する少なくとも18個の塩基から成るオリゴヌクレオチドであって、そのマイクロサテライト配列を挟む2つの塩基配列のうち、一方の塩基配列から成るポリヌクレオチド、及び他方の塩基配列から成るオリゴヌクレオチドに相補的なオリゴヌクレオチド、又はこれらに相補的な配列の2つのオリゴヌクレオチドを用いることができる。
(1)連鎖群12上のDNAマーカー座Ebr00010FRA(配列番号1)(その487~534位がマイクロサテライト配列に相当する。)
(2)連鎖群12上のDNAマーカー座Ebr00935FRA(配列番号2)(その131~162位がマイクロサテライト配列に相当する。)
(3)連鎖群21上のDNAマーカー座Ebr00846FRA(配列番号3)(その173~206位がマイクロサテライト配列に相当する。)
(4)連鎖群21上のDNAマーカー座Ebr00924FRA(配列番号4)(その321~344位がマイクロサテライト配列に相当する。)
(5)連鎖群21上のDNAマーカー座CfuSTR210(配列番号5)(その106~127位がマイクロサテライト配列に相当する。)
(6)連鎖群21上のDNAマーカー座Ebr01255FRA(配列番号6)(その113~136位がマイクロサテライト配列に相当する。)
 これらプライマーは好ましくは18~25個、より好ましくは20~25個の塩基から成るオリゴヌクレオチドである。
 また、増幅産物の解析方法として質量分析法やキャピラリ電気泳動法などを用いてもよい。
工程2)
 別途、成長性遺伝形質と認められる系統のアカマダラハタを、継代飼育する。この継代飼育は通常2世代程度行う。このアカマダラハタに対して、上記工程1)と同様にマイクロサテライト配列を増幅する。
工程3)
 1)と2)の工程の増幅結果を比較し、これらが一致する場合に、アカマダラハタが成長性遺伝形質を有すると識別する。一致しない場合は、アカマダラハタが成長性遺伝形質ではないと識別する。この工程において、比較するポリヌクレオチドのサイズが一致する場合に、アカマダラハタが成長性遺伝形質を有すると識別してもよい。
 本発明のDNAマーカーを用いてアカマダラハタが成長性遺伝形質を有するか否かを識別するための診断キットは、上記PCR用プライマーから成り、更に、熱耐性DNAポリメラーゼ(Taqポリメラーゼなど)や検出のため増幅産物に対合させるプローブを含んでもよい。更に、このキットは、その他の消耗試薬として、例えば、デオキシリボヌクレオチド三リン酸(dATP, dCTP, dGTP, dTTP)、バッファー等を含んでもよい。
 以下、実施例にて本発明を例証するが本発明を限定することを意図するものではない。
飼育例
 解析家系として交配家系を作出した。その作出には、タイ水産局クラビ研究所で飼育されているアカマダラハタを用いた。各解析家系は、アカマダラハタを雄1個体と雌1個体で人為交配し、F1世代3家系を作出した(解析家系A、解析家系B、解析家系C)。
実施例1
 上記人為交配により作出した各解析家系について、得られた稚魚を5ヶ月間飼育した後、形態異常個体や浮き袋不良個体を取り除き、平均150mm程度で同サイズの正常魚の各個体に個体識別用のピットタグを体内に挿入し、評価飼育試験に用いた。最終的に、解析家系Aは500個体、解析家系Bは270個体、解析家系Cは262個体を高成長形質評価試験に用いた。各解析家系はそれぞれ別の生簀で12ヶ月間飼育した。飼育試験後に体重を測定し、高成長形質を評価した。
<マーカー型の判定>
 表現型の判定を行った戻し交配家系の各個体の尾鰭を1cm角の大きさで採取し、lysis buffer [125mM NaCl, 10mM Tris-HCl(pH7.5), 10mMEDTA(Ph8.0)]、Proteinase K(20mg/ml)(Takara)5μl、10%SDS 50μlを含む消化溶液を500 μl加え、37℃で一晩インキュベートした。PCI(phenol : chloroform : isoamylalchorl = 25 : 24 : 1)を等量加えてよく混和し、遠心分離(12000rpm、25℃、10分)、上清を新しいチューブに移した。さらに、CIA(chloroform:isoamylalchorl=24:1)を等量加えて転倒混和した後、遠心分離(12000rpm、25℃、5分)、上清を新しいチューブに移した。そこへ3M酢酸ナトリウムを1/10量、続いて2-propanolを等量加え、転倒混和した。遠心分離(15000rpm、4℃、10分)を行い、DNAペレットが析出していることを確認した後、上清を捨てた。70%エタノールを1ml加えて転倒混和することでDNAペレットおよびチューブの壁面を洗い、その後遠心分離(15000rpm、4℃、5分)を行って上澄みを捨て、5分程度の風乾を行った。風乾の後、TE buffer [10mM Tris-HCl(pH 8.0), 1mM EDTA(pH 8.0)]を50μl加えてDNAの溶解を行った。
 第1段階の解析には、ハタ・クエ類MSマーカー(非特許文献2)を用い、表1に示すMSマーカーを含む合計456個のMSマーカー座を用いて解析した。本実施例で用いたプライマー(表1のMSマーカーに対応するもののみ)を表2に示す。プライマーの合成および蛍光標識は全てオペロンバイオテクノロジー株式会社に委託した。forward primerの5' 側を蛍光標識(TET)して用いた。この他のマーカーについても同様にしてプライマーを合成した(詳細は省略する)。
Figure JPOXMLDOC01-appb-T000002
 PCR法は、10×PCR reaction buffer(Mg2+), 2.5Mm dNTP, 1%BSA, 5U Taq DNA polymerase(Takara: Ex-Tag)50ng のテンプレートDNAを含む11μlの溶液で、GeneAmpPCRSystem9700(Applied Biosystems)にて、初期変性95℃ 3分間行った後、変性95℃ 30秒、アニーリング62℃ 1分、伸長72℃ 1分を1サイクルとして30サイクル、最終伸長を72℃ 5分間行い、12℃に急冷することでPCRを行った。PCR反応後、得られたPCR産物に等量のloading dyeを加え、95℃ 5分間熱変性によって1本鎖にし、6%変性ポリアクリルアミドゲルにて電気泳動を行った。電気泳動後、ガラス板をバイオイメージングスキャナー (FLA-9000; FUJIFILM)で読み取り、コンピューターで映像化し、マーカーによって増幅されたアリルの分離パターン(マーカー型)を判定した。この電気泳動による解析では、ABI3100(Applied Biosystems)によるDNA断片解析法を用いる場合もある。合計456個のMSマーカーを用いて解析した。
<QTL解析>
 解析家系Aについては、はじめに成長の良かった45個体と成長が悪かった45個体を第一段階の解析に用いた。次に、第1段階の解析で統計学的に有意な遺伝マーカー(高成長形質と関連性がある)について、全個体(500個体)を用いて第2段階の解析を行った。
 解析家系Aを用いた第1段階の解析では、上述のMSマーカーを用い、成長の良かった45個体と成長が悪かった45個体の合計90個体とその両親のマーカー型の情報を収集して、表現型(高成長・低成長)とマーカー型の対応関係を調べた。表現型は各個体の体重を用いた。QTL解析には、MapQTL softwareを用いた。
 マーカーEbr00010FRAを用いた電気泳動の結果を図5に示す。子孫1と2は高成長の個体であり、子孫3と4は低成長の個体であった。高成長の子孫1と2は親のバンドNo.4を受け継いでいることが分かる。全個体(90)について同様の解析を行った(結果は省略する)。結果を下表に示す。他のマーカーについても同様の解析を行った(結果は省略する)。
Figure JPOXMLDOC01-appb-T000003
 第2段階では、解析個体数を全個体である500個体に増やし、第1段階の検定で有意であったMSマーカー(p<0.05)を用いてマーカー型の情報を収集し、第1段階と同様に表現型とマーカー型との対応関係を調べた。
 得られた結果を表4にまとめる。
 第1段階の解析で、連鎖群12の5マーカー座および連鎖群21の4マーカー座は、Kruskal-wallis test:P<0.05であり、またMapQTL softwareのクロモソームワイドレベルであるLod score>2.2(連鎖の可能性が残るレベル)を超え、高成長形質と関連性があると考えられ、第2段階の解析で、連鎖群12のマーカー座Ebr00010FRAとEbr00935FRA、及び連鎖群21の[坂本1]マーカー座Ebr00846FRA、Ebr00924FRA、CfuSTR210及びEbr01255FRAは、Kruskal-wallis test:P<0.05であり、またMapQTL softwareのエクペリメンタルレベルであるLod score>1.9(連鎖と考えられるレベル)を大きく超える値となり、高成長形質と関連性があるといえる。
Figure JPOXMLDOC01-appb-T000004
 この結果、連鎖群12のマーカー座Ebr00010FRAとEbr00935FRA、及び連鎖群21のマーカー座Ebr00846FRA、Ebr00924FRA、CfuSTR210及びEbr01255FRAでは、連鎖ありとする基準値(MapQTL softwareのエクペリメンタルレベルLod score>1.9)を越えるLod Scoreであり、高成長形質と関連性があるといえる。
 なお、クエ(Kelp Grouper / Epinephelus bruneus)において、その高成長形質と関連性があるとされた遺伝マーカー(非特許文献2:連鎖群13のEbr01242FRA、連鎖群17のEbr00702FRA、Ebr00314FRA、連鎖群18のElaSTR405Db、Ebr01212FRA)は、いずれもLod Scoreは低く(0.00~0.54)、アカマダラハタの高成長形質と関連性がある遺伝マーカーとはいえない。
実施例2
 解析家系Aで統計学的に有意となった遺伝マーカー(高成長形質と関連性がある)の有効性を検討するために第3段階の解析として、解析家系Bおよび解析家系Cの全個体(解析家系B:270個体、解析家系C:262個体)を用いて解析を行った。
Figure JPOXMLDOC01-appb-T000005
 この解析で用いるQTL解析では、解析家系のサンプル数や解析マーカー数などにより、連鎖しているとする基準値が異なる。表5(第3段階:他家系)での基準値は、エクペリメンタルレベルでLod score>1.6が連鎖と考えられるレベルになる。
 実施例1において解析家系Aで高成長形質と関連性があるとされた6つのマーカー(連鎖群12のマーカー座Ebr00010FRAとEbr00935FRA、及び連鎖群12のマーカー座Ebr00846FRA、Ebr00924FRA、CfuSTR210及びEbr01255FRA)は、他の家系(解析家系Bおよび解析家系C)でも同様に統計学的に有意に高成長形質と関連性がある遺伝マーカーであることが明らかになった。このようにこれらの遺伝マーカーが、関連の無い複数の家系において統計学的に高成長形質と有意に関連性があることが示されたが、これをもってこれらの遺伝マーカーで識別される高成長形質はアカマダラハタにおいて遺伝形質であるといえる。

Claims (6)

  1. 下記(1)~(6)のいずれかのDNAマーカー座配列又はその部分配列であって、そのマイクロサテライト配列を有する塩基配列を有するポリヌクレオチドから成る、成長性遺伝形質を有するアカマダラハタを識別するための遺伝マーカー。
    (1)連鎖群12上のDNAマーカー座Ebr00010FRA(配列番号1)(その487~534位がマイクロサテライト配列に相当する。)
    (2)連鎖群12上のDNAマーカー座Ebr00935FRA(配列番号2)(その131~162位がマイクロサテライト配列に相当する。)
    (3)連鎖群21上のDNAマーカー座Ebr00846FRA(配列番号3)(その173~206位がマイクロサテライト配列に相当する。)
    (4)連鎖群21上のDNAマーカー座Ebr00924FRA(配列番号4)(その321~344位がマイクロサテライト配列に相当する。)
    (5)連鎖群21上のDNAマーカー座CfuSTR210(配列番号5)(その106~127位がマイクロサテライト配列に相当する。)
    (6)連鎖群21上のDNAマーカー座Ebr01255FRA(配列番号6)(その113~136位がマイクロサテライト配列に相当する。)
  2. アカマダラハタ、その卵又はそれらの加工品から抽出したDNAについて、請求項1に記載の遺伝マーカーを検出することから成る、アカマダラハタの成長性遺伝形質を識別する方法。
  3. 下記工程から成る成長性遺伝形質を有するアカマダラハタの識別方法。
    1)アカマダラハタ、その卵又はそれらの加工品から抽出したDNAについて、請求項1に記載の遺伝マーカーであるポリヌクレオチドを増幅する工程、
    2)別途継代飼育の結果、成長性遺伝形質を有すると認められる系統のアカマダラハタについて、上記1)と同じ工程を実施する工程、及び
    3)1)と2)の工程の増幅結果を比較し、これらが一致する場合に、アカマダラハタが成長性遺伝形質を有すると識別する工程
  4. 工程3)において、比較するポリヌクレオチドのサイズが一致する場合に、アカマダラハタが成長性遺伝形質を有すると識別する請求項3に記載の方法。
  5. 下記(1)~(6)のいずれかのDNAマーカー座配列中の連続する少なくとも18個の塩基から成るオリゴヌクレオチドであって、そのマイクロサテライト配列を挟む2つの塩基配列のうち、一方の塩基配列から成るポリヌクレオチド、及び他方の塩基配列から成るオリゴヌクレオチドに相補的なオリゴヌクレオチド、又はこれらに相補的な配列の2つのオリゴヌクレオチドから成るPCR用プライマー。
    (1)連鎖群12上のDNAマーカー座Ebr00010FRA(配列番号1)(その487~534位がマイクロサテライト配列に相当する。)
    (2)連鎖群12上のDNAマーカー座Ebr00935FRA(配列番号2)(その131~162位がマイクロサテライト配列に相当する。)
    (3)連鎖群21上のDNAマーカー座Ebr00846FRA(配列番号3)(その173~206位がマイクロサテライト配列に相当する。)
    (4)連鎖群21上のDNAマーカー座Ebr00924FRA(配列番号4)(その321~344位がマイクロサテライト配列に相当する。)
    (5)連鎖群21上のDNAマーカー座CfuSTR210(配列番号5)(その106~127位がマイクロサテライト配列に相当する。)
    (6)連鎖群21上のDNAマーカー座Ebr01255FRA(配列番号6)(その113~136位がマイクロサテライト配列に相当する。)
  6. アカマダラハタが成長性遺伝形質を有するか否かを識別するための診断キットであって、請求項5に記載のPCR用プライマーを含むキット。
PCT/JP2017/023930 2016-07-04 2017-06-29 成長性遺伝形質を有するアカマダラハタの識別方法 WO2018008511A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-132224 2016-07-04
JP2016132224A JP6877680B2 (ja) 2016-07-04 2016-07-04 成長性遺伝形質を有するアカマダラハタの識別方法

Publications (1)

Publication Number Publication Date
WO2018008511A1 true WO2018008511A1 (ja) 2018-01-11

Family

ID=60912805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023930 WO2018008511A1 (ja) 2016-07-04 2017-06-29 成長性遺伝形質を有するアカマダラハタの識別方法

Country Status (3)

Country Link
JP (1) JP6877680B2 (ja)
TW (1) TW201809283A (ja)
WO (1) WO2018008511A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110402857A (zh) * 2019-08-30 2019-11-05 三亚福联水产发展有限公司 一种石斑鱼快繁方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109022588B (zh) * 2018-07-30 2021-12-14 中山大学 一种石斑鱼放流群体鉴别微卫星标记的特异性引物和应用
CN110338107A (zh) * 2019-06-25 2019-10-18 安徽红嘉农业科技有限公司 建立锦鲤体色繁殖家系的方法
KR102111238B1 (ko) * 2019-10-07 2020-05-14 한국수산자원공단 자바리 유전자 분석용 마이크로새틀라이트 마커 조성물 및 이를 이용한 자바리 분석방법
CN116179657B (zh) * 2022-12-30 2023-09-05 中国水产科学研究院珠江水产研究所 鉴定鳢的引物组合、微卫星标记组合、多重pcr体系及其方法和应用

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
DATABASE Genbank [O] 24 May 2010 (2010-05-24), XP055455268, Database accession no. FJ798812 *
DATABASE Genbank [O] 31 January 2014 (2014-01-31), XP055455252, Database accession no. AB756682 *
DATABASE Genbank [O] 31 January 2014 (2014-01-31), XP055455255, Database accession no. AB756607 *
DATABASE Genbank [O] 31 January 2014 (2014-01-31), XP055455262, Database accession no. AB756674 *
DATABASE Genbank [O] 31 January 2014 (2014-01-31), XP055455273, Database accession no. AB756947 *
DATABASE Genbank 31 January 2014 (2014-01-31), XP055455250, Database accession no. AB755827 *
KESSUWAN, K. ET AL.: "Detection of growth- related quantitative trait loci and high- resolution genetic linkage maps using simple sequence repeat markers in the kelp grouper (Epinephelus bruneus", MARINE BIOTECHNOLOGY, vol. 18, no. 1, February 2016 (2016-02-01), pages 57 - 84, XP035893877 *
KUBOTA, S. ET AL., DEFINITION: EPINEPHELUS BRUNEUS DNA, MICROSATELLITE: LOCUS EBR00846FRA, 31 January 2014 (2014-01-31), [retrieved on 20170911] *
KUBOTA, S. ET AL., DEFINITION: EPINEPHELUS BRUNEUS DNA, MICROSATELLITE: LOCUS EBR00924FRA, 31 January 2014 (2014-01-31), [retrieved on 20170911] *
KUBOTA, S. ET AL., DEFINITION: EPINEPHELUS BRUNEUS DNA, MICROSATELLITE: LOCUS EBR00935FRA, 31 January 2014 (2014-01-31), [retrieved on 20170911] *
KUBOTA, S. ET AL., DEFINITION: EPINEPHELUS BRUNEUS DNA, MICROSATELLITE: LOCUS EBR01255FRA, 31 January 2014 (2014-01-31), [retrieved on 20170911] *
KUBOTA, S. ET AL., DEFINITION: EPINEPHELUS BRUNEUS DNA, MICROSATELLITE: LOCUS EBRO0010FRA, 31 January 2014 (2014-01-31), [retrieved on 20170911] *
KUBOTA, S. ET AL.: "High-throughput simple sequence repeat (SSR) markers development for the kelp grouper (Epinephelus bruneus) and cross-species amplifications for Epinephelinae species", ADVANCES IN BIOSCIENCE AND BIOTECHNOLOGY, vol. 5, no. 2, 2014, pages 117 - 130, XP055455239 *
RENSHAW, M. A. ET AL., DEFINITION: CEPHALOPHOLIS FULVA CLONE CFU 26 MICROSATELLITE SEQUENCE, 24 May 2010 (2010-05-24), [retrieved on 20170911] *
RENSHAW, M. A. ET AL.: "PCR primers for nuclear-encoded microsatellites of the groupers Cephalopholis fulva (coney) and Epinephelus guttatus (red hind", CONSERVATION GENETICS, vol. 11, no. 3, 2010, pages 1197 - 1202, XP055455242 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110402857A (zh) * 2019-08-30 2019-11-05 三亚福联水产发展有限公司 一种石斑鱼快繁方法
CN110402857B (zh) * 2019-08-30 2021-12-03 三亚福联水产发展有限公司 一种石斑鱼快繁方法

Also Published As

Publication number Publication date
JP2018000116A (ja) 2018-01-11
JP6877680B2 (ja) 2021-05-26
TW201809283A (zh) 2018-03-16

Similar Documents

Publication Publication Date Title
WO2018008511A1 (ja) 成長性遺伝形質を有するアカマダラハタの識別方法
CN109554486B (zh) 与草鱼性状相关的snp分子标记及其应用
KR102062452B1 (ko) 터봇 친자 식별용 유전자 마커 및 이를 이용한 친자 확인방법
TW202124729A (zh) 一種與番木瓜結果性相關之分子標記
CN108424958A (zh) 一种大黄鱼遗传性别相关的snp标记及其引物和应用
CN109182556B (zh) 一种与瓦氏黄颡鱼生长性状相关的snp分子标记及应用
CN111690755B (zh) 提高尼罗罗非鱼选育效率的标记、方法、试剂盒及应用
CN110079609B (zh) 一种用于鉴定鸡白痢抗性鸡的分子标记及其应用
JP2008148612A (ja) 鶏の品種識別のためのツールおよびその利用
JP6193593B2 (ja) ブリ類の性識別方法
WO2022068215A1 (zh) 凡纳滨对虾抗弧菌相关est-str标记及其特异性引物和检测方法
Karamura et al. Genotyping the local banana landrace groups of East Africa
KR20200057633A (ko) 토마토 황화잎말림 바이러스 저항성 판별용 마커 및 이를 이용한 판별 방법
CN112218526A (zh) 用于单倍体胚基因分型的方法
KR102111238B1 (ko) 자바리 유전자 분석용 마이크로새틀라이트 마커 조성물 및 이를 이용한 자바리 분석방법
CN112029868B (zh) 三疣梭子蟹微卫星标记及在生长性状关联分析中的应用
CN109136392B (zh) 多代减数分裂雌核发育团头鲂的遗传多样性鉴定方法及试剂
JP6291644B2 (ja) エドワジェラ症耐性ヒラメの識別方法
Fuller et al. Extensive recombination suppression and chromosome-wide differentiation of a segregation distorter in Drosophila
EP3221471B1 (en) Method for predicting increased resistance of a rainbow trout to infectious pancreatic necrosis (ipn)
KR101437381B1 (ko) 참굴 삼배체 판별용 유전자 키트 및 이를 이용한 판별 방법
CN113151492B (zh) 一种与卵形鲳鲹耐低氧性状相关的snp分子标记及其应用
JP6041259B2 (ja) 低酸素耐性ヒラメの識別方法
CN110643717B (zh) 一种预示和鉴定公鸡心脏生长发育的分子标记方法
CN104837985B (zh) 用于floury(fl2)性状基因渗入的玉米中的floury 2基因特异性测定法

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17824116

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17824116

Country of ref document: EP

Kind code of ref document: A1