WO2018008399A1 - 光コネクタ - Google Patents

光コネクタ Download PDF

Info

Publication number
WO2018008399A1
WO2018008399A1 PCT/JP2017/022828 JP2017022828W WO2018008399A1 WO 2018008399 A1 WO2018008399 A1 WO 2018008399A1 JP 2017022828 W JP2017022828 W JP 2017022828W WO 2018008399 A1 WO2018008399 A1 WO 2018008399A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
ferrule
blocks
accommodated
optical fibers
Prior art date
Application number
PCT/JP2017/022828
Other languages
English (en)
French (fr)
Inventor
泰志 坂本
松井 隆
中島 和秀
浩太郎 齊藤
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2018526017A priority Critical patent/JP6616509B2/ja
Priority to EP17824006.5A priority patent/EP3470898B1/en
Priority to CN201780035553.2A priority patent/CN109219765B/zh
Priority to US16/313,724 priority patent/US10585235B2/en
Publication of WO2018008399A1 publication Critical patent/WO2018008399A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/381Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres
    • G02B6/3826Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres characterised by form or shape
    • G02B6/3831Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres characterised by form or shape comprising a keying element on the plug or adapter, e.g. to forbid wrong connection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3834Means for centering or aligning the light guide within the ferrule
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3885Multicore or multichannel optical connectors, i.e. one single ferrule containing more than one fibre, e.g. ribbon type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/36642D cross sectional arrangements of the fibres
    • G02B6/36722D cross sectional arrangements of the fibres with fibres arranged in a regular matrix array
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/36642D cross sectional arrangements of the fibres
    • G02B6/3676Stacked arrangement

Definitions

  • the present invention relates to an optical connector for connecting a multi-core optical fiber.
  • a technique using individual blocks has been proposed as a technique for aligning the rotation angles of the plurality of multi-core optical fibers.
  • a plurality of multi-core optical fibers are respectively accommodated in individual blocks to adjust the rotation angle, and the aligned individual blocks are accommodated side by side in an accommodating portion in a ferrule (for example, non-blocking) (See Patent Document 2).
  • each of the plurality of individual blocks has a clearance. Therefore, as the number of multi-core optical fibers increases, the clearances of the individual blocks are integrated, resulting in a large axis deviation.
  • the axial misalignment includes an axial misalignment in the rotation direction of the optical fiber due to the clearance and vertical and horizontal axial misalignments with respect to the cross section of the optical fiber.
  • the present invention has been made paying attention to the above circumstances, and in the case of accommodating a plurality of multi-core optical fibers, it is possible to reduce the clearance between the blocks for fixing and holding the multi-core optical fibers to enable high-precision alignment.
  • An optical connector is provided.
  • 1st aspect of this invention is an optical connector, Comprising: The position of the direction orthogonal to the optical axis of each multi-core optical fiber, and the rotation angle centering on the said optical axis are hold
  • the multi-core block has a square cross-sectional shape having a clearance with respect to a design value, and the receiving portion of the ferrule is a square.
  • the multi-core block that has a cross-sectional shape and that is accommodated in the housing portion of the ferrule as the clearance is larger when an allowable value of a rotation angle in the optical axis direction of the multi-core block in the housing portion of the ferrule is determined. It is preferable that the number of the multi-core blocks to be accommodated in the accommodating portion of the ferrule is smaller as the number of rotations is smaller and the allowable value of the rotation angle is smaller.
  • the cross-sectional shape of the multi-core block is an a ⁇ b square having a clearance of ⁇ a and ⁇ b with respect to a design value.
  • the housing section has an x ⁇ y square shape, and the allowable rotation angle of the multi-core block in the housing section of the ferrule satisfies both of the following formulas (1) and (2): To meet It is preferable that the number m ⁇ n of the multi-core blocks to be accommodated in the accommodating portion of the ferrule is set.
  • the multi-core block has a maximum clearance of m ⁇ ⁇ a / 2 and n ⁇ ⁇ b / 2 in the housing portion of the ferrule. It is preferable to rotate.
  • each of the multi-core optical fibers includes a plurality of cores and a clad surrounding the plurality of cores. It is preferable that the distance between the center of the core and the center of the clad is equal and that there is an allowable rotation angle deviation determined based on the distance.
  • each of the multi-core optical fibers includes a plurality of cores and a clad surrounding the plurality of cores. It is preferable that the distance between one core center and the center of the clad is different from the distance between each remaining core center and the center of the clad and has an allowable rotational angle deviation determined based on the maximum distance.
  • the multi-core block in which a plurality of multi-core optical fibers are fixedly held together is accommodated in the accommodating portion in the ferrule. For this reason, multiple multi-core optical fibers can be fixed and held individually in blocks, and compared with the case where these blocks are placed side by side in a ferrule, the clearance between the blocks can be reduced and highly accurate alignment can be performed. It becomes.
  • the smaller the allowable rotation angle of the multi-core block in the ferrule housing portion the smaller the number of multi-core blocks accommodated, and the larger the clearance, the smaller the number of multi-core blocks accommodated. Is set.
  • the number of multi-fiber blocks accommodated can be set to an optimal number. Thereby, the connection loss resulting from the rotation angle shift of the multi-core block can be greatly reduced.
  • an optical connector that enables high-precision alignment by reducing the clearance between blocks that hold and hold the multi-core optical fibers. Can be provided.
  • the perspective view which shows the external appearance of the optical connector which concerns on one Embodiment of this invention The perspective view which shows the 1st Example of the multi-core block accommodated in the optical connector shown in FIG.
  • the perspective view which shows the 2nd Example of the multi-core block accommodated in the optical connector shown in FIG. FIG. 5 is a cross-sectional view illustrating a state where the multi-core block illustrated in FIG. 4 is accommodated in the optical connector illustrated in FIG. 1.
  • the cross-sectional view which shows the state which accommodated the multi-core block which concerns on the 3rd Example of this invention in the optical connector The cross-sectional view which shows the state which accommodated the multi-core block which concerns on the 4th Example of this invention in the optical connector.
  • the cross-sectional view which shows the state which accommodated the multi-core block which concerns on the 4th Example of this invention in the optical connector The cross-sectional view which shows the state which accommodated the multi-core block which concerns on the 4th Example of this invention in the optical connector.
  • the cross-sectional view which shows the state which accommodated the multi-core block which concerns on the 4th Example of this invention in the optical connector The figure for demonstrating the relationship between the clearance of a multi-core block, and a rotation angle.
  • the figure for demonstrating the relationship between the clearance of a multi-core block, and a rotation angle The figure for demonstrating the relationship between the clearance of a multi-core block, and a rotation angle.
  • FIG. 1 is a perspective view showing an appearance of an optical connector according to an embodiment of the present invention.
  • the optical connector 1 is composed of an MT (Mechanically Transferable) type optical connector, and includes an MT ferrule 10, a ribbon fiber 13, and a boot 12 that protects the ribbon fiber 13 at the end of the MT ferrule 10.
  • Reference numerals 11a and 11b denote guide pin holes, into which guide pins (not shown) of the optical connector to be connected are inserted when the optical connector is connected.
  • a hollow accommodating portion having a square cross section is provided, and at least one multi-core block is accommodated in the accommodating portion.
  • multi-core blocks will be described.
  • FIG. 2 is a perspective view showing a first embodiment of the multi-core block
  • FIG. 3 is a view showing a state in which the multi-core block is accommodated in the MT ferrule 10.
  • four multi-core blocks 41 to 44 having a strip shape are used.
  • the multi-core blocks 41 to 44 are accommodated in the accommodating portion of the MT ferrule 10 while being arranged in a row in the horizontal direction (horizontal direction) in the figure. At this time, the multi-core blocks 41 to 44 are arranged so as to be in close contact with each other and with no gap formed between the inner wall of the accommodating portion of the MT ferrule 10.
  • FIG. 4 is a perspective view showing a second embodiment of the multi-core block
  • FIG. 5 is a view showing a state in which the multi-core block is accommodated in the MT ferrule 10.
  • the multi-core block 30 is accommodated in a state in which the upper and lower surfaces and the side surfaces are in contact with the inner wall surface of the accommodating portion provided in the MT ferrule 10 as shown in FIG.
  • FIG. 6A shows a first configuration example of the present embodiment.
  • FIG. 6B shows a second configuration example of the present embodiment.
  • FIG. 7A shows a first configuration example of the present embodiment.
  • the MT ferrule 10 is housed in the housing part in a state where the side surface is in contact with the inner wall surface of the MT ferrule 10 housing part.
  • FIG. 7B shows a second configuration example.
  • N 1)
  • the upper and lower surfaces and each side surface are inside the accommodating portion of the MT ferrule 10. It is accommodated in the accommodating portion of the MT ferrule 10 while being in contact with the wall surface.
  • FIG. 7C shows a third configuration example.
  • the MT ferrule 10 is housed in the housing portion in a state of being in contact with the inner wall surface.
  • FIG. 7D shows a fourth configuration example.
  • one multi-core block which is a quadrangular prism in which 32 insertion holes are formed in an 8 ⁇ 4 matrix is prepared, and a total of 32 insertion holes are provided in each insertion hole of the multi-core block 90.
  • the multi-core block 90 is accommodated in a state where the upper and lower surfaces and each side surface are in contact with the inner wall surface of the accommodating portion of the MT ferrule 10 as shown in FIG. 7D.
  • the multi-core block 90 is accommodated in the MT ferrule 10 while being fixedly held in a state of being arranged in a 2 ⁇ 8 matrix on the core block 90.
  • the accommodated number (m ⁇ n) of multi-core blocks for the MT ferrule 10 is set as follows. Hereinafter, description will be made with reference to FIGS. 8A to 8C and FIG. That is, the size in the accommodation part of the MT ferrule 10 is x ⁇ y (mm) as shown in FIG. 8A, and m ⁇ n multi-core blocks are accommodated in the accommodation part of the MT ferrule 10.
  • Each multi-core block has a clearance of ⁇ a and ⁇ b, respectively, with respect to the design value a ⁇ b of the outer size of the multi-core block, as shown in FIG. 8B. Under the above conditions, the multi-core block rotates within the accommodating portion of the MT ferrule 10 within a clearance range of maximum m ⁇ ⁇ a / 2 and n ⁇ ⁇ b / 2 as shown in FIG. 8C.
  • the rotation angle is the smaller of ⁇ x ⁇ or ⁇ y, and the allowable angle of these rotation angles is expressed by the following equation. In order to satisfy this condition, the number of accommodated multi-core blocks for the MT ferrule 10 (m ⁇ n) is determined.
  • MCFs multi-core optical fibers
  • the number m ⁇ n of accommodating the multi-core block in the accommodating portion is an appropriate value. By doing so, it is possible to significantly reduce the connection loss due to the rotational angle deviation of the multi-core block.
  • the allowable rotational angle deviation is determined by the allowable splice loss and the core arrangement structure of the multi-core fiber.
  • FIG. 10A and FIG. 10B show an example of the axis shift of the core position at the connection point due to the rotation angle shift using a 4-core fiber as an example. If the distance between the center of each core and the center of the clad including these cores (the origin on the xy-axis plane in the drawing) is E, a rotational angle deviation ⁇ occurs (the core position is indicated by a dotted line in FIG. 10B).
  • FIG. 11 is a graph showing the relationship between the rotational angle deviation relative to the core and the connection loss.
  • the core MFD the ITU-T global standard recommendation G.I. It is set to 9.0 ⁇ m which is within the MFD range described in 652 (single mode optical fiber).
  • E is the same in all cores, but in general, E is not necessarily the same in all cores.
  • the allowable rotational angle deviation is determined from the rotational angle deviation which is equal to or less than the allowable connection loss for the core having the largest E.
  • a plurality of multi-core optical fibers 21 to 2k are fixedly held in one multi-core block 30 and accommodated in the accommodating portion in the MT ferrule 10.
  • a plurality of multi-core optical fibers 21 to 2k are dispersed and fixedly held in a smaller number of multi-core blocks 41 to 44, and the multi-core blocks 41 to 44 are accommodated side by side in the accommodating portion of the MT ferrule 10. .
  • the smaller the allowable rotation angle of the multi-core block in the housing portion of the MT ferrule 10 is set, the smaller the number of multi-fiber blocks accommodated, and the larger the clearance, the smaller the number of multi-fiber blocks accommodated. It is set as follows. By doing in this way, according to the size of the accommodating part of MT ferrule 10, the size of a multi-fiber block, and the allowable rotation angle, the number of multi-fiber blocks accommodated can be set to an optimal number. Thereby, the connection loss resulting from the rotation angle shift
  • the cross-sectional shape may be other shapes such as a diamond shape or a trapezoidal shape, and it is more preferable if the shape is such that the block does not easily rotate.
  • the material of the block is not limited to resin.
  • the present invention is not limited to the above embodiment, and can be embodied by modifying the constituent elements without departing from the scope of the invention. Moreover, you may combine suitably the some component currently disclosed by the said embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

複数のマルチコア光ファイバを、各マルチコア光ファイバの光軸と直交する方向の位置および前記光軸を中心とする回転角度を所定の状態に保持して固定する、少なくとも1個の多心ブロックと、前記多心ブロックを収容する収容部を有するフェルールとを備える、光コネクタを提供する。

Description

光コネクタ
 本発明は、マルチコア光ファイバを接続する光コネクタに関する。
 本願は、2016年7月4日に、日本に出願された特願2016-132511号に基づき優先権を主張し、これらの内容をここに援用する。
 マルチコア光ファイバを光コネクタにより接続する場合には、当該光ファイバのコアを調心する必要がある。調心には、光ファイバの断面において、水平および垂直方向の位置を調整する手法と、光ファイバの長手方向を中心軸として回転角度を調整する手法がある(例えば、非特許文献1を参照)。
 複数のマルチコア光ファイバを一括して接続する多心型の光コネクタにおいては、複数のマルチコア光ファイバの回転角度を調心する手法として、個別ブロックを用いた手法が提案されている。このような手法では、複数のマルチコア光ファイバをそれぞれ個別ブロックに収容して回転角度を調心し、調心された複数の個別ブロックをフェルール内の収容部に並べて収容している(例えば、非特許文献2を参照)。
R. Nagase, K. Sakaime, K. Watanabe, and T. Saito, "MU-Type Multicore Fiber Connector", Trans. IEICE, Vol. E96-C, No. 9, pp. 1173-1177, (2013). K. Watanabe, T. Saito, K. Kawasaki, M. Iwaya, T. Ando, K. Suematsu, M. Shiino, "Development of MPO type 8-multicore fiber connector", in Proc. OFC2015, W4B.3, (2015).
 しかしながら、非特許文献2に記載された手法では、複数の個別ブロックがそれぞれクリアランスを有しているため、マルチコア光ファイバの本数が増えるほど個別ブロックのクリアランスが積算され、その結果大きな軸ずれを引き起こすことがある。軸ずれとしては、クリアランスによる光ファイバの回転方向の軸ずれと、光ファイバの断面に対する垂直および水平方向の軸ずれがある。
 本発明は上記事情に着目してなされたもので、複数のマルチコア光ファイバを収容する場合に、当該各マルチコア光ファイバを固定保持するブロック間のクリアランスを軽減して高精度の調心を可能にした光コネクタを提供する。
 本発明の第1態様は、光コネクタであって、複数のマルチコア光ファイバを、各マルチコア光ファイバの光軸と直交する方向の位置および前記光軸を中心とする回転角度を所定の状態に保持して固定する、少なくとも1個の多心ブロックと、前記多心ブロックを収容する収容部を有するフェルールと、を備える。
 本発明の第2態様は、上記第1態様に記載の光コネクタにおいて、前記多心ブロックは、設計値に対してクリアランスを有する方形の断面形状を有し、前記フェルールの前記収容部は方形の断面形状を有し、前記フェルールの前記収容部における前記多心ブロックの光軸方向の回転角度の許容値が決まる場合に、上記クリアランスが大きいほど前記フェルールの前記収容部に収容する前記多心ブロックの数が少なく、かつ前記回転角度の許容値が小さいほど前記フェルールの前記収容部に収容する前記多心ブロックの数が少ないことが好ましい。
 本発明の第3態様は、上記第2態様に記載の光コネクタにおいて、上記多心ブロックの前記断面形状が、設計値に対しΔa、Δbのクリアランスを有するa×bの方形であり、前記フェルールの前記収容部の前記断面形状が、x×yの方形であり、前記フェルールの前記収容部における前記多心ブロックの許容可能な前記回転角度が、下記式(1)および(2)の両方を満たすように、
Figure JPOXMLDOC01-appb-M000002
前記フェルールの前記収容部に収容する前記多心ブロックの数m×nが設定されることが好ましい。
 本発明の第4態様は、上記第3態様に記載の光コネクタにおいて、前記フェルールの収容部に収容する多心ブロックの数m×nが、n=1かつm≦5であることが好ましい。
 本発明の第5態様は、上記第3態様に記載の光コネクタにおいて、前記フェルールの収容部に収容する多心ブロックの数m×nが、n=2かつm≦5であることが好ましい。
 本発明の第6態様は、上記第3態様に記載の光コネクタにおいて、前記多心ブロックは、前記フェルールの前記収容部内において、最大m・Δa/2およびn・Δb/2のクリアランスの範囲で回転することが好ましい。
 本発明の第7態様は、上記第1態様に記載の光コネクタにおいて、前記各マルチコア光ファイバは、複数のコアと、前記複数のコアを囲むクラッドとを有し、前記複数のコアにおいて、各コア中心と前記クラッドの中心との距離が等しく、前記距離に基づいて決定される許容回転角度ずれを有することが好ましい。
 本発明の第8態様は、上記第1態様に記載の光コネクタにおいて、前記各マルチコア光ファイバは、複数のコアと、前記複数のコアを囲むクラッドとを有し、前記複数のコアにおいて、少なくとも1つのコア中心と前記クラッドの中心との距離が、残りの各コア中心と前記クラッドの前記中心との距離と異なり、最大距離に基づいて決定される許容回転角度ずれを有することが好ましい。
 上記本発明の上記態様によれば、複数のマルチコア光ファイバを一括して固定保持した多心ブロックがフェルール内の収容部に収容される。このため、複数のマルチコア光ファイバを個々にブロックで固定保持して、これらのブロックをフェルール内に並べて収容する場合に比べ、ブロック間のクリアランスを低減して高精度の位置合わせを行うことが可能となる。
 また、フェルールの収容部内における多心ブロックの許容可能な回転角度が小さいほど多心ブロックの収容数が少なくなるように設定され、また上記クリアランスが大きいほど多心ブロックの収容数が少なくなるように設定される。このようにすることで、フェルールの収容部のサイズ、多心ブロックのサイズ、および許容可能な回転角度に応じて、多心ブロックの収容数を最適な数に設定することができる。これにより多心ブロックの回転角度ずれに起因する接続損失を大幅に低減することができる。
 すなわち本発明の上記態様によれば、複数のマルチコア光ファイバを収容する場合に、当該各マルチコア光ファイバを固定保持するブロック間のクリアランスを軽減して高精度の調心を可能にした光コネクタを提供することができる。
本発明の一実施形態に係る光コネクタの外観を示す斜視図。 図1に示した光コネクタに収容される多心ブロックの第1の実施例を示す斜視図。 図1に示した光コネクタに図2に示した多心ブロックを収容した状態を示す横断面図。 図1に示した光コネクタに収容される多心ブロックの第2の実施例を示す斜視図。 図1に示した光コネクタに図4に示した多心ブロックを収容した状態を示す横断面図。 光コネクタに本発明の第3の実施例に係る多心ブロックを収容した状態を示す横断面図。 光コネクタに本発明の第3の実施例に係る多心ブロックを収容した状態を示す横断面図。 光コネクタに本発明の第4の実施例に係る多心ブロックを収容した状態を示す横断面図。 光コネクタに本発明の第4の実施例に係る多心ブロックを収容した状態を示す横断面図。 光コネクタに本発明の第4の実施例に係る多心ブロックを収容した状態を示す横断面図。 光コネクタに本発明の第4の実施例に係る多心ブロックを収容した状態を示す横断面図。 多心ブロックのクリアランスと回転角度の関係を説明するための図。 多心ブロックのクリアランスと回転角度の関係を説明するための図。 多心ブロックのクリアランスと回転角度の関係を説明するための図。 多心ブロックのクリアランスと回転角度に応じて設定される、多心ブロックの二次元方向の配置数の上限値を示すグラフ。 4コアファイバにおける回転角度ずれによるコア位置の軸ずれの例を示す図。 4コアファイバにおける回転角度ずれによるコア位置の軸ずれの例を示す図。 コアに対する回転角度ずれと接続損失との関係を示すグラフ。
 以下、図面を参照して本発明に係る実施形態を説明する。
[第1の実施形態]
 図1は、本発明の一実施形態に係る光コネクタの外観を示す斜視図である。光コネクタ1はMT(Mechanically Transferable)型光コネクタから構成され、MTフェルール10と、リボンファイバ13と、MTフェルール10の端部においてリボンファイバ13を保護するブーツ12とを備えている。なお、11a,11bはガイドピンホールであり、光コネクタの接続時に接続相手となる光コネクタのガイドピン(図示省略)が挿入される。
 上記MTフェルール10内には横断面形状が方形である空洞の収容部が設けられており、収容部内に少なくとも1つの多心ブロックが収容される。以下、多心ブロックに関するいくつかの実施例を説明する。
(第1の実施例)
 図2は多心ブロックの第1の実施例を示す斜視図、図3は当該多心ブロックをMTフェルール10内に収容した状態を示す図である。
 第1の実施例では、短冊状である4個の多心ブロック41~44を使用する。多心ブロック41~44にはそれぞれ2本の挿入孔が設けられ、これらの挿入孔にマルチコア光ファイバ21~2k(この実施形態ではk=8本)が挿入される。このとき、多心ブロック41~44における上記挿入孔の形成位置は、マルチコア光ファイバ21~2k(k=8)の光軸と直交する二次元方向の精度を規定する。また、マルチコア光ファイバ21~2k(k=8)の光軸を中心とする回転角度は、多心ブロック41~44の上辺に対し同一の予め設定した角度となるように調心される。
 上記多心ブロック41~44は、図3に示すように、図中横方向(水平方向)に一列に並べられた状態でMTフェルール10の収容部内に収容される。このとき、多心ブロック41~44は互いに密着した状態で、かつMTフェルール10の収容部内壁との間に隙間が生じないように配置される。
 このような構成であるから、8本のマルチコア光ファイバ21~2k(k=8)を一括収容する光コネクタにおいて、マルチコア光ファイバ21~2k(k=8)は2本一組で4個の多心ブロック41~44に固定保持される。このため、マルチコア光ファイバ21~2k(k=8)の調心精度は4個の多心ブロック41~44のクリアランスの積算値となる。この結果、マルチコア光ファイバ21~2k(k=8)を1本ずつブロックに収容して合計8個のブロックをMTフェルールに収容する場合に比べ、ブロック間のクリアランスを1/2に低減して、マルチコア光ファイバ21~2k(k=8)の調心精度を高めることが可能となる。
(第2の実施例)
 図4は多心ブロックの第2の実施例を示す斜視図、図5は当該多心ブロックをMTフェルール10内に収容した状態を示す図である。
 第2の実施例の多心ブロックでは、平板状である1個の多心ブロック30に8本の挿入孔を一列に設け、挿入孔に8本のマルチコア光ファイバ21~2k(k=8)を挿入し、それぞれ軸中心の回転角度を調心している。上記8本の挿入孔は、マルチコア光ファイバ21~2k(k=8)の光軸と直交する二次元方向の位置精度を規定する。多心ブロック30は、上下面および各側面が図5に示すようにMTフェルール10内に設けられた収容部の内壁面に接触する状態で収容される。
 このような構成であるから、8本のマルチコア光ファイバ21~2k(k=8)を一括収容する光コネクタにおいて、マルチコア光ファイバ21~2k(k=8)は8本が1個の多心ブロック30に固定保持される。このため、マルチコア光ファイバ21~2k(k=8)の調心精度は、1個の多心ブロック30のみのクリアランスにより決まる。従って、マルチコア光ファイバ21~2k(k=8)を1本ずつブロックに収容して合計8個のブロックをMTフェルール10に収容する場合に比べ、ブロック間のクリアランスを1/8に低減して、マルチコア光ファイバ21~2k(k=8)の調心精度をさらに高めることが可能となる。
(第3の実施例)
 第3の実施例では、合計32本のマルチコア光ファイバ21~2k(k=32)を、複数の多心ブロックに分散配置すると共に、各多心ブロックにおいて一例に並べた状態で固定保持し、これらの多心ブロックを重ねた状態でMTフェルール10内に収容している。
 図6Aは本実施例の第1の構成例を示す。第1の構成例では、4本の挿入孔が一列に形成された平板状である多心ブロックを8個用意し、これらの多心ブロック51~5m×n(m=8,n=1)の挿入孔に合計32本のマルチコア光ファイバ21~2k(k=32)を4本ずつ挿入して固定保持している。上記各多心ブロック51~5m×n(m=8,n=1)における4本の挿入孔は、マルチコア光ファイバ21~2k(k=32)の光軸と直交する二次元方向の位置精度を規定する。上記多心ブロック51~5m×n(m=8,n=1)を、図6Aに示すように横方向に一列に並べた状態でMTフェルール10の収容部に収容している。
 このような構成であるから、32本のマルチコア光ファイバ21~2k(k=32)を一括収容する光コネクタにおいて、32本のマルチコア光ファイバ21~2k(k=32)が4本ずつ8個の多心ブロック51~5m×n(m=8,n=1)に分散して固定保持され、8個の多心ブロック51~5m×n(m=8,n=1)が、横方向に一列に並べられた状態でMTフェルール10内に収容される。
 このため、マルチコア光ファイバ21~2k(k=32)の調心精度は、横方向に対しては8個の多心ブロック51~5m(m=8)のクリアランスの積算値により決定され、縦方向においては多心ブロック51~5n(n=1)の個々のクリアランスにより決定される。この結果、マルチコア光ファイバ21~2k(k=32)を1本ずつブロックに収容して合計32個のブロックをMTフェルール10の収容部に収容する場合に比べ、ブロック間のクリアランスを大幅に低減して、マルチコア光ファイバ21~2k(k=32)の調心精度を高めることが可能となる。
 図6Bは本実施例の第2の構成例を示す。第2の構成例では、図4および図5に示したように8本の挿入孔が一列に形成された平板状である多心ブロックを4個用意し、これらの多心ブロック61~6n(n=4)の各挿入孔に合計32本のマルチコア光ファイバ21~2k(k=32)を固定保持している。上記各多心ブロック61~6n(n=4)における8本の挿入孔は、マルチコア光ファイバ21~2k(k=32)の光軸と直交する二次元方向の位置精度を規定する。上記多心ブロック61~6m×n(m=1,n=4)を、図6Bに示すように縦方向に4層に重ねた状態でMTフェルール10の収容部に収容している。
 このような構成であるから、32本のマルチコア光ファイバ21~2k(k=32)を一括収容する光コネクタにおいて、32本のマルチコア光ファイバ21~2k(k=32)が8本ずつ4個の多心ブロック61~6m×n(m=1,n=4)に分散されてそれぞれ横方向に一列に配置された状態で固定保持され、4個の多心ブロック61~6m×n(m=1,n=4)が縦方向に4層に重ねられた状態でMTフェルール10内に収容される。
 このため、マルチコア光ファイバ21~2k(k=32)の調心精度は、縦方向に対しては4個の多心ブロック61~6n(n=4)のクリアランスの積算値により決定され、横方向においては多心ブロック61~6m(m=1)の個々のクリアランスにより決定される。この結果、マルチコア光ファイバ21~2k(k=32)を1本ずつブロックに収容して合計32個のブロックをMTフェルールに収容する場合に比べ、ブロック間のクリアランスを大幅に低減して、マルチコア光ファイバ21~2k(k=32)の調心精度を高めることが可能となる。
(第4の実施例)
 第4の実施例では、合計32本のマルチコア光ファイバ21~2k(k=32)を、複数の多心ブロックに分散してそれぞれマトリクス状に配置した状態で固定保持し、多心ブロックを並べてMTフェルール10内に収容している。また、マルチコア光ファイバ21~2k(k=32)が、1個の多心ブロックに一括してマトリクス状に配置した状態で固定保持されている。
 図7Aは本実施例の第1の構成例を示す。第1の構成例では、4本の挿入孔が2×2のマトリクス状に形成された正四角柱である多心ブロックを8個用意し、これらの多心ブロック71~7m×n(m=4,n=2)の各挿入孔に、合計32本のマルチコア光ファイバ21~2k(k=32)を4本ずつ分散し、かつそれぞれマトリクス状に配置した状態で固定保持している。
 上記各多心ブロック71~7m×n(m=4,n=2)における4本の挿入孔は、マルチコア光ファイバ21~2k(k=32)の光軸と直交する二次元方向の位置精度を規定する。上記多心ブロック71~7m×n(m=4,n=2)を、図7Aに示すように横方向に4個、縦方向に2層に重ねて並べた状態で、各上下面および各側面がMTフェルール10の収容部の内壁面に接触する状態でMTフェルール10の収容部に収容している。
 このような構成であるから、32本のマルチコア光ファイバ21~2k(k=32)を一括収容する光コネクタにおいて、32本のマルチコア光ファイバ21~2k(k=32)が、4本ずつ8個の多心ブロック71~7m×n(m=4,n=2)に分散され、それぞれマトリクス状に配置された状態で固定保持される。さらに、8個の多心ブロック71~7m×n(m=4,n=2)が、図7Aに示すように横方向に4個、縦方向に2個並べた状態でMTフェルール10内に収容される。
 このため、マルチコア光ファイバ21~2k(k=32)の調心精度は、横方向に対しては4個の多心ブロック71~7m(m=4)のクリアランスの積算値により決まり、縦方向においては2個の多心ブロック71~7n(n=2)のクリアランスの積算値により決定される。この結果、マルチコア光ファイバ21~2k(k=32)を1本ずつブロックに収容して合計32個のブロックをMTフェルールに収容する場合に比べ、ブロック間のクリアランスを大幅に低減して、マルチコア光ファイバ21~2k(k=32)の調心精度を高めることが可能となる。
 図7Bは第2の構成例を示す。第2の構成例では、8本の挿入孔が2×4のマトリクス状に形成された四角柱である多心ブロックを4個用意し、これらの多心ブロック81~8m×n(m=4,n=1)の各挿入孔に、合計32本のマルチコア光ファイバ21~2k(k=32)を分散し、それぞれマトリクス状に配置した状態で固定保持している。
 上記各多心ブロック81~8m×n(m=4,n=1)における8本の挿入孔は、マルチコア光ファイバ21~2k(k=32)の光軸と直交する二次元方向の位置精度を規定する。上記多心ブロック81~8m×n(m=4,n=1)を、図7Bに示すように横方向に4個並べた状態で、上下面および各側面がMTフェルール10の収容部の内壁面に接触する状態でMTフェルール10の収容部に収容している。
 このような構成であるから、32本のマルチコア光ファイバ21~2k(k=32)を一括収容する光コネクタにおいて、32本のマルチコア光ファイバ21~2k(k=32)が、8本ずつ4個の多心ブロック81~8m×n(m=4,n=1)に分散され、それぞれマトリクス状に配置された状態で固定保持され、4個の多心ブロック81~8m×n(m=4,n=1)が横方向に並べられた状態でMTフェルール10内に収容される。
 このため、マルチコア光ファイバ21~2k(k=32)の調心精度は、横方向に対しては4個の多心ブロック81~8m(m=4)のクリアランスの積算値により決まり、縦方向においては個々の多心ブロック81~8n(n=1)のクリアランスのみにより決定される。この結果、マルチコア光ファイバ21~2k(k=32)を1本ずつブロックに収容して合計32個のブロックをMTフェルールに収容する場合に比べ、ブロック間のクリアランスを低減して、マルチコア光ファイバ21~2k(k=32)の調心精度を高めることが可能となる。
 図7Cは第3の構成例を示す。第3の構成例では、16本の挿入孔が2×8のマトリクス状に形成された四角柱である多心ブロックを2個用意し、これらの多心ブロック91~9m×n(m=1,n=2)の各挿入孔に、合計32本のマルチコア光ファイバ21~2k(k=32)を分散させ、かつそれぞれ2×8のマトリクス状に配置した状態で固定保持している。
 上記各多心ブロック91~9m×n(m=1,n=2)における16本の挿入孔は、マルチコア光ファイバ21~2k(k=32)の光軸と直交する二次元方向の位置精度を規定する。上記多心ブロック91~9m×n(m=1,n=2)を、図7Cに示すように縦方向に2層に重ねた状態で、上下面および各側面がMTフェルール10の収容部の内壁面に接触する状態でMTフェルール10の収容部に収容している。
 このような構成であるから、32本のマルチコア光ファイバ21~2k(k=32)を一括収容する光コネクタにおいて、32本のマルチコア光ファイバ21~2k(k=32)が、16本ずつ2個の多心ブロック91~9m×n(m=1,n=2)に分散され、それぞれ2×8のマトリクス状に配置された状態で固定保持される。2個の多心ブロック91~9m×n(m=1,n=2)が縦方向に2層に重ねられた状態でMTフェルール10内に収容される。
 このため、マルチコア光ファイバ21~2k(k=32)の調心精度は、縦方向に対しては2個の多心ブロック91~9n(n=2)のクリアランスの積算値により決まり、横方向においては個々の多心ブロック91~9m(m=1)のクリアランスのみにより決定される。この結果、マルチコア光ファイバ21~2k(k=32)を1本ずつブロックに収容して合計32個のブロックをMTフェルールに収容する場合に比べ、ブロック間のクリアランスを低減して、マルチコア光ファイバ21~2k(k=32)の調心精度を高めることが可能となる。
 図7Dは第4の構成例を示す。第4の構成例では、32本の挿入孔が8×4のマトリクス状に形成された四角柱である多心ブロックを1個用意し、この多心ブロック90の各挿入孔に、合計32本のマルチコア光ファイバ21~2k(k=32)を8×4のマトリクス状に配置した状態で固定保持している。上記各多心ブロック90における32本の挿入孔は、マルチコア光ファイバ21~2k(k=32)の光軸と直交する二次元方向の位置精度を規定する。上記多心ブロック90を、上下面および各側面が図7Dに示すようにMTフェルール10の収容部の内壁面に接触する状態で収容している。
 このような構成であるから、32本のマルチコア光ファイバ21~2k(k=32)を一括収容する光コネクタにおいて、32本のマルチコア光ファイバ21~2k(k=32)が、1個の多心ブロック90に2×8のマトリクス状に配置された状態で固定保持され、多心ブロック90がMTフェルール10内に収容される。
 このため、マルチコア光ファイバ21~2k(k=32)の調心精度は、縦方向および横方向の何れに対しても1個の多心ブロック90のクリアランスのみにより決定される。この結果、マルチコア光ファイバ21~2k(k=32)を1本ずつブロックに収容して合計32個のブロックをMTフェルールに収容する場合に比べ、ブロック間のクリアランスを大幅に低減して、マルチコア光ファイバ21~2k(k=32)の調心精度をより一層高めることが可能となる。
 MTフェルール10に対する多心ブロックの収容数(m×n)は、以下のように設定される。以下、図8A~図8Cおよび図9を参照して説明する。
 すなわち、MTフェルール10の収容部内のサイズを図8Aに示すようにx×y(mm)とし、MTフェルール10の収容部にm×n個の多心ブロックを収容する。また、個々の多心ブロックは、図8Bに示すように、多心ブロックの外形サイズの設計値a×bに対しそれぞれΔa、Δbのクリアランスを有している。上記条件の下で、多心ブロックはMTフェルール10の収容部内において、図8Cに示すように最大m・Δa/2およびn・Δb/2のクリアランスの範囲で回転する。
 回転角度は、θx-θもしくはθ-θyの小さい方であり、これらの回転角度の許容可能な角度は、下記式のように表される。
Figure JPOXMLDOC01-appb-M000003
 この条件を満たすように、MTフェルール10に対する多心ブロックの収容数(m×n)を決定する。
 例えば、多心ブロックを収容するMTフェルール10の収容部のサイズがx=3.2mm、y=1.8mmの場合、収容部内で多心ブロックが回転可能な角度と多心ブロックのクリアランスに応じて、収容部内における多心ブロックの横方向の配列数mおよび縦方向の積層数nは、図9に示す各線の整数値以下の数にしなければいけない。また、y=1.0mmおよびy=0.5mmの場合においても、同様の数以下となる。
 図9において、実線および破線は、それぞれ許容できる角度を1度、0.5度とした場合の結果であり、丸、三角、四角および菱形の印は、クリアランスを1、3、5、10μmとしたときの結果である。例えば、n=1とした場合、クリアランスが5μmであれば、許容できる回転角度を0.5度以下にするには、mを5以下にする。またn=2とした場合にも、許容可能な回転角度を0.5度以下にするには、mを5以下にする。さらに、n=1で、クリアランスが10μmの場合には、許容できる回転角度を1度以下にするには、mを5以下にする。
 すなわち、図9から明らかなように、許容できる回転角度が小さいほどmおよびnの数を少なくする。また、クリアランスが大きいほど、mおよびnの数を少なくする。特に、n=1およびn=2の場合には、m≦5に設定することが好ましい。
 ちなみに、非特許文献2に記載されている8本のマルチコア光ファイバ(MCF)に対してそれぞれブロックを1個ずつ用い、8個のブロックをMTフェルール内にn=1およびm=8の状態で収容した場合、クリアランスが10μmのブロックでは、対向する接続相手のマルチコア光ファイバとの間で最大3度近く回転角度ずれが生じる。その結果、1dB近い接続損失が発生する場合がある。
 これに対し、例えば図4に示したように8本のマルチコア光ファイバ21~2k(k=8)を1個の多心ブロックに一列に並べて固定保持し、多心ブロック30を図5に示すようにn=1、m=1としてMTフェルール10内に収容した場合には、回転角度ずれを最大0.4度程度に低減できる。その結果、接続損失を0.05dB以下に改善できる。またn=2の場合においても、回転角度ずれを最大0.7度程度に低減でき、その結果接続損失を0.1dB以下に改善できる。
 すなわち、MTフェルール10の収容部のサイズ、多心ブロックのクリアランス、および収容部内における多心ブロックの許容可能な回転角度に応じて、収容部内における多心ブロックの収容数m×nを適切な値にすることで、多心ブロックの回転角度ずれに起因する接続損失を大幅に低減できる。
 許容できる回転角度ずれは、許容できる接続損失およびマルチコアファイバのコア配置構造によって決定される。図10Aおよび図10Bに、4コアファイバを例とした回転角度ずれによる接続点でのコア位置の軸ずれの例を示す。各コアの中心と、これらのコアを含むクラッドの中心(図中ではxy軸平面上の原点)との距離をEとすると、回転角度ずれθが発生した場合(図10Bにコア位置を点線で示す)の接続点でのコア同士の軸ずれ量dは、三角関数の余弦定理から以下のように求められる。
Figure JPOXMLDOC01-appb-M000004
 また、接続損失α(dB)は、ファイバのモードフィールド直径MFDより、以下の式から求められる。なお、W=MFD/2である。
Figure JPOXMLDOC01-appb-M000005
 図11は、コアに対する回転角度ずれと接続損失との関係を示すグラフである。ここでは、E=30,40,50μmのコアとした時の回転角度ずれに対する接続損失の計算結果を示す。なお、コアのMFDとしては、ITU-Tの世界標準勧告G.652(シングルモード光ファイバ)に記載のMFD範囲内である9.0μmとしている。
 図11に示されるように、コアのクラッド中心からの距離Eに対して回転ずれに対する接続損失特性が大きく変わっており、Eが大きくなることで接続損失が大きくなることがわかる。また、例えばE=30μmであれば接続損失を0.1dB以下に抑えようとすると、許容される回転角度ずれは0.7°であることがわかる。一方、E=50μmでは、0.4°となり、Eが大きいコアに対しては許容される回転角度は小さくなる。
 ここで、例として挙げた4コアファイバでは全てのコアでEが同じであるが、一般にはEが全てのコアで同じであるとは限らない。各コアでEが異なるマルチコアファイバにおいては、許容される回転角度ずれは、Eが最も大きいコアに対して許容される接続損失以下となる回転角度ずれから決定される。
 以上詳述したように本発明の一実施形態では、複数のマルチコア光ファイバ21~2kを1個の多心ブロック30に固定保持してMTフェルール10内の収容部に収容する。或いは、複数のマルチコア光ファイバ21~2kをそれより少数の多心ブロック41~44に複数数本ずつ分散させて固定保持し、多心ブロック41~44をMTフェルール10の収容部内に並べて収容する。
 従って、複数のマルチコア光ファイバ21~2kを個々にブロックで固定保持して、ブロックをMTフェルール10内に並べて収容する場合に比べ、ブロック間のクリアランスを低減して高精度の位置合わせを行うことが可能となる。
 また、MTフェルール10の収容部内における多心ブロックの許容可能な回転角度が小さいほど多心ブロックの収容数が少なくなるように設定し、また上記クリアランスが大きいほど多心ブロックの収容数が少なくなるように設定している。このようにすることで、MTフェルール10の収容部のサイズ、多心ブロックのサイズ、および許容可能な回転角度に応じて、多心ブロックの収容数を最適な数に設定することができる。これにより、多心ブロックの回転角度ずれに起因する接続損失を大幅に低減することができる。
[その他の実施形態]
 上記実施形態では、多心ブロックとして横断面形状が方形である平板状または柱状の樹脂製ブロックを使用した場合を例にとって説明した。しかし、横断面形状は、菱形や台形状等のその他の形状であってもよく、ブロックの回転が生じ難い形状であればなお好適である。また、ブロックの材質についても樹脂に限定されない。
 その他、多心ブロックにおけるマルチコア光ファイバの設置数や配置パターン、フェルールに対する多心ブロックの収容数やその配置パターン、1個の光コネクタに収容するマルチコア光ファイバの数や多心ブロックの数等についても、本発明の要旨を逸脱しない範囲で種々変形して実施可能である。
 本発明は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素を適宜組み合せてもよい。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態に亘る構成要素を適宜組み合せてもよい。
 1…光コネクタ、10…フェルール、11a,11b…ガイドピンホール、12…ブーツ、13…リボンファイバ、21~2k…マルチコア光ファイバ、30,41~44,51~5m×n,61~6m×n,71~7m×n,81~8m×n,90,91~9m×n…多心ブロック

Claims (8)

  1.  複数のマルチコア光ファイバを、各マルチコア光ファイバの光軸と直交する方向の位置および前記光軸を中心とする回転角度を所定の状態に保持して固定する、少なくとも1個の多心ブロックと、
     前記多心ブロックを収容する収容部を有するフェルールと、
    を備える、光コネクタ。
  2.  前記多心ブロックは、設計値に対してクリアランスを有する方形の断面形状を有し、
     前記フェルールの前記収容部は方形の断面形状を有し、
     前記フェルールの前記収容部における前記多心ブロックの光軸方向の回転角度の許容値が決まる場合に、前記クリアランスが大きいほど前記フェルールの前記収容部に収容する前記多心ブロックの数が少なく、かつ前記回転角度の許容値が小さいほど前記フェルールの前記収容部に収容する前記多心ブロックの数が少ない、
    請求項1記載の光コネクタ。
  3.  前記多心ブロックの前記断面形状が、設計値に対しΔa、Δbのクリアランスを有するa×bの方形であり、前記フェルールの前記収容部の前記断面形状が、x×yの方形であり、
     前記フェルールの前記収容部における前記多心ブロックの許容可能な前記回転角度が、下記式(1)および(2)の両方を満たすように、
    Figure JPOXMLDOC01-appb-M000001
    前記フェルールの前記収容部に収容する前記多心ブロックの数m×nが設定される、
    請求項2記載の光コネクタ。
  4.  前記フェルールの前記収容部に収容する前記多心ブロックの数m×nが、n=1かつm≦5である、請求項3記載の光コネクタ。
  5.  前記フェルールの前記収容部に収容する前記多心ブロックの数m×nが、n=2かつm≦5である、請求項3記載の光コネクタ。
  6.  前記多心ブロックは、前記フェルールの前記収容部内において、最大m・Δa/2およびn・Δb/2のクリアランスの範囲で回転する、請求項3記載の光コネクタ。
  7.  前記各マルチコア光ファイバは、複数のコアと、前記複数のコアを囲むクラッドとを有し、
     前記複数のコアにおいて、各コア中心と前記クラッドの中心との距離が等しく、
     前記距離に基づいて決定される許容回転角度ずれを有する、
    請求項1記載の光コネクタ。
  8.  前記各マルチコア光ファイバは、複数のコアと、前記複数のコアを囲むクラッドとを有し、
     前記複数のコアにおいて、少なくとも1つのコア中心と前記クラッドの中心との距離が、残りの各コア中心と前記クラッドの前記中心との距離と異なり、
     最大距離に基づいて決定される許容回転角度ずれを有する、
    請求項1記載の光コネクタ。
PCT/JP2017/022828 2016-07-04 2017-06-21 光コネクタ WO2018008399A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018526017A JP6616509B2 (ja) 2016-07-04 2017-06-21 光コネクタ
EP17824006.5A EP3470898B1 (en) 2016-07-04 2017-06-21 Method of manufacturing an optical connector
CN201780035553.2A CN109219765B (zh) 2016-07-04 2017-06-21 光连接器
US16/313,724 US10585235B2 (en) 2016-07-04 2017-06-21 Optical connector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-132511 2016-07-04
JP2016132511 2016-07-04

Publications (1)

Publication Number Publication Date
WO2018008399A1 true WO2018008399A1 (ja) 2018-01-11

Family

ID=60912670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022828 WO2018008399A1 (ja) 2016-07-04 2017-06-21 光コネクタ

Country Status (5)

Country Link
US (1) US10585235B2 (ja)
EP (1) EP3470898B1 (ja)
JP (1) JP6616509B2 (ja)
CN (1) CN109219765B (ja)
WO (1) WO2018008399A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187178A1 (ja) * 2020-03-16 2021-09-23 住友電気工業株式会社 光ファイバ接続部品及び光ファイバ接続部品の製造方法
WO2022138951A1 (ja) * 2020-12-25 2022-06-30 住友電気工業株式会社 コネクタ付きケーブル
WO2024029270A1 (ja) * 2022-08-03 2024-02-08 住友電気工業株式会社 光コネクタ、フェルール、及び光結合構造

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7400739B2 (ja) * 2019-01-17 2023-12-19 住友電気工業株式会社 光コネクタの製造方法
CN112558231A (zh) * 2019-09-10 2021-03-26 富晋精密工业(晋城)有限公司 光纤阵列装置
JP2022019241A (ja) * 2020-07-17 2022-01-27 住友電気工業株式会社 多心コネクタの製造方法及び多心コネクタ
CN113341514A (zh) * 2021-06-30 2021-09-03 长飞光纤光缆股份有限公司 一种基于双lc接口的多通道光模块
CN113433629B (zh) * 2021-06-30 2022-03-18 长飞光纤光缆股份有限公司 一种基于mpo接口的双扇入扇出的多通道光模块
CN113359252B (zh) * 2021-06-30 2022-03-18 长飞光纤光缆股份有限公司 一种基于mpo接口的单扇入扇出的多通道光模块

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098860A (ja) * 2000-07-12 2002-04-05 Molex Inc 光コネクタ用の整列装置
US20140219609A1 (en) * 2013-02-05 2014-08-07 Commscope, Inc. Of North Carolina Methods of connectorizing multi-core fiber optic cables and related apparatus
JP2015079145A (ja) * 2013-10-17 2015-04-23 三菱電線工業株式会社 光ファイバ多心構造及びそれに用いる光ファイバ心線
JP2016504620A (ja) * 2012-12-05 2016-02-12 オーエフエス ファイテル,エルエルシー フェルール又は製造治具においてマルチコアファイバを位置合せする構造及び技法
WO2016031678A1 (ja) * 2014-08-29 2016-03-03 古河電気工業株式会社 多心コネクタ、コネクタおよびコネクタ接続構造

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105829936A (zh) * 2013-12-18 2016-08-03 住友电气工业株式会社 光学互连部件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098860A (ja) * 2000-07-12 2002-04-05 Molex Inc 光コネクタ用の整列装置
JP2016504620A (ja) * 2012-12-05 2016-02-12 オーエフエス ファイテル,エルエルシー フェルール又は製造治具においてマルチコアファイバを位置合せする構造及び技法
US20140219609A1 (en) * 2013-02-05 2014-08-07 Commscope, Inc. Of North Carolina Methods of connectorizing multi-core fiber optic cables and related apparatus
JP2015079145A (ja) * 2013-10-17 2015-04-23 三菱電線工業株式会社 光ファイバ多心構造及びそれに用いる光ファイバ心線
WO2016031678A1 (ja) * 2014-08-29 2016-03-03 古河電気工業株式会社 多心コネクタ、コネクタおよびコネクタ接続構造

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP3470898A4 *
WATANABE, K. ET AL.: "MPO Type 8-Multicore Fiber Connector With Physical Contact Connection", JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 34, no. 2, 15 January 2016 (2016-01-15), pages 351 - 357, XP011598985 *
WATANABE, K. ET AL.: "MT Type connector for 2x6 multicore fibers", 2016 IEEE PHOTONICS SOCIETY SUMMER TOPICAL MEETING SERIES(SUM, 25 August 2016 (2016-08-25), pages 228 - 229, XP032949092 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187178A1 (ja) * 2020-03-16 2021-09-23 住友電気工業株式会社 光ファイバ接続部品及び光ファイバ接続部品の製造方法
WO2022138951A1 (ja) * 2020-12-25 2022-06-30 住友電気工業株式会社 コネクタ付きケーブル
WO2024029270A1 (ja) * 2022-08-03 2024-02-08 住友電気工業株式会社 光コネクタ、フェルール、及び光結合構造

Also Published As

Publication number Publication date
US20190170931A1 (en) 2019-06-06
EP3470898B1 (en) 2021-08-25
CN109219765A (zh) 2019-01-15
EP3470898A1 (en) 2019-04-17
JPWO2018008399A1 (ja) 2018-11-01
JP6616509B2 (ja) 2019-12-04
EP3470898A4 (en) 2020-02-12
CN109219765B (zh) 2020-07-28
US10585235B2 (en) 2020-03-10

Similar Documents

Publication Publication Date Title
JP6616509B2 (ja) 光コネクタ
EP3088925B1 (en) Method for manufacturing multicore-optical-fiber connector and multicore optical fiber
EP3734338B1 (en) Connection device, optical connector manufacturing device, connection method, and method for manufacturing optical connector
US9864150B2 (en) Optical interconnection component
EP2790046B1 (en) Junction structure for multicore optical fiber and method for manufacturing junction structure for multicore optical fiber
US10067299B2 (en) Tunable optical fiber connectors and connector and cable sub-assemblies and assemblies
US11054586B2 (en) Optical connector and optical connection structure
US10670814B2 (en) Optical connector and optical connection structure
US20120321253A1 (en) Method of connecting optical fiber and connecting structure of optical fiber
US20210271034A1 (en) Optical-fiber holding component, optical connector, and optical coupling structure
US11543599B2 (en) Ferrules including keying features and fiber optic junctions including the same
WO2020149262A1 (ja) 光コネクタおよび光接続構造
EP2944989A1 (en) Optical component and optical communication system
US10031298B2 (en) Extended access optical fiber connector ferrule
JP2004219567A (ja) 多心光コネクタ
US11327250B1 (en) Optical interconnect devices
JP5323800B2 (ja) アレイ型光学素子
JPS6150283B2 (ja)
Saito et al. Accurate Passive Rotational Alignment of Multi-Core Fibre with Double-D-Shape Cladding on V Groove
JP2021026167A (ja) 光コネクタ
JPS60254008A (ja) 偏波面保存光フアイバ集合体整列用コネクタ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018526017

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17824006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017824006

Country of ref document: EP

Effective date: 20190114