WO2018003525A1 - 圧縮機 - Google Patents
圧縮機 Download PDFInfo
- Publication number
- WO2018003525A1 WO2018003525A1 PCT/JP2017/022190 JP2017022190W WO2018003525A1 WO 2018003525 A1 WO2018003525 A1 WO 2018003525A1 JP 2017022190 W JP2017022190 W JP 2017022190W WO 2018003525 A1 WO2018003525 A1 WO 2018003525A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tongue
- target
- valve
- passage
- refrigerant
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
- F04B39/10—Adaptations or arrangements of distribution members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/02—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
- F04C18/0207—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
- F04C18/0215—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/008—Hermetic pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/04—Heating; Cooling; Heat insulation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/12—Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/12—Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
- F04C29/124—Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
- F04C29/126—Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type
- F04C29/128—Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type of the elastic type, e.g. reed valves
Definitions
- This disclosure relates to a compressor.
- a compressor used for a gas injection cycle is known.
- the refrigerant flows into the compression chamber from the intermediate pressure inflow port.
- a reed valve is provided in order to prevent the refrigerant from flowing back from the compression chamber to the intermediate pressure inflow port.
- This disclosure aims to achieve both suppression of wear and improvement in performance of a reed valve that suppresses back flow of refrigerant in a passage from an intermediate pressure inflow port to a compression chamber in a compressor used in a gas injection cycle.
- a compressor used in a gas injection cycle forms a compression chamber, sucks and compresses low-pressure refrigerant from a suction port into the compression chamber, and compresses the compression from an intermediate pressure inflow port.
- a medium-pressure refrigerant having a pressure higher than that of the low-pressure refrigerant is sucked into the chamber and compressed, and the low-pressure refrigerant and the high-pressure refrigerant obtained as a result of the compression of the intermediate-pressure refrigerant in the compression chamber are discharged into the discharge port.
- a compression mechanism for discharging By opening and closing a reference passage that connects one of the discharge port and the suction port and the compression chamber, a reference reed valve that suppresses the reverse flow of the refrigerant in the passage, and the intermediate pressure inflow port to the compression chamber
- a target reed valve that suppresses the reverse flow of refrigerant from the compression chamber to the intermediate pressure inflow port by opening and closing the target passage to reach
- the reference reed valve includes a reference fixing portion and a reference tongue that is displaceable with respect to the reference fixing portion.
- the target reed valve has a target fixing portion and a target tongue that is displaceable with respect to the target fixing portion.
- the reverse pressure applied to the target tongue is larger than the reverse pressure applied to the reference tongue.
- the inventor has examined to increase the plate thickness Ti of the target tongue portion as compared with the conventional case. If the relationship of Dui / Ti ⁇ 2 ⁇ Dud / Td is established, the plate thickness Ti becomes larger than before and the rigidity of the target tongue portion becomes higher than before.
- the inventor examined this point, and the plate thickness of the target tongue portion in the conventional target reed valve becomes thinner than necessary to appropriately secure the flow rate of the refrigerant entering from the intermediate pressure inflow port. I noticed that there may be.
- the flow rate of the refrigerant entering from the intermediate pressure inflow port can be appropriately secured. In other words, as long as the rigidity of the target tongue is equal to or less than that of the reference tongue, an appropriate flow rate entering from the intermediate pressure inflow port can be ensured.
- FIG. 4 is a sectional view taken along the line IV-EFGGHIV in FIG. 3. It is an enlarged view of a discharge chamber.
- FIG. 6 is a sectional view taken along line VI-VI in FIG. 5.
- FIG. 7 is a sectional view taken along line VII-VII in FIG. 5. It is a top view of the state which has arrange
- FIG. 13B is a sectional view taken along line XIIIB-XIIIB in FIG. 13A. It is a top view of the reed valve in the intermediate injection valve concerning a 3rd embodiment. It is XV-XV sectional drawing of FIG. It is a top view of the reed valve in the intermediate injection valve concerning a 4th embodiment. It is XVII-XVII sectional drawing of FIG.
- a heat pump cycle 100 shown in FIG. 1 is used as a part of a heat pump type hot water heater to heat hot water.
- the heat pump cycle 100 is configured as a gas injection cycle, that is, an economizer refrigeration cycle in which an intermediate-pressure gas-phase refrigerant of a cycle is joined to a refrigerant in a pressurizing process in a compression chamber of the compressor 1.
- the heat pump cycle 100 includes a compressor 1, a water-refrigerant heat exchanger 2, a first expansion valve 3, a gas-liquid separator 4, a second expansion valve 5, an evaporator 6, and an oil separation.
- a container 7 is provided.
- the compressor 1 is a symmetrical scroll compressor that sucks and compresses refrigerant from the suction port 1a and discharges the compressed refrigerant to the discharge port 1b.
- the fluid compressed by the compressor 1, that is, the refrigerant circulating in the heat pump cycle 100 is specifically carbon dioxide (ie, CO 2 ). More specifically, this refrigerant mainly contains carbon dioxide.
- the refrigerant is mixed with oil that lubricates each sliding portion inside the compressor 1, and part of this oil circulates in the cycle together with the refrigerant.
- the water-refrigerant heat exchanger 2 is a heat exchanger that heats hot water by exchanging heat between hot water for hot water supply and high-pressure refrigerant discharged from the compressor 1.
- the first expansion valve 3 decompresses the refrigerant that has flowed out of the water-refrigerant heat exchanger 2.
- the gas-liquid separator 4 is disposed on the downstream side of the refrigerant flow of the first expansion valve 3 and the upstream side of the second expansion valve 5.
- the intermediate-pressure refrigerant decompressed by the first expansion valve 3 flows into the gas-liquid separator 4.
- the gas-liquid separator 4 separates the flowing intermediate-pressure refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant.
- the gas-liquid separator 4 allows a part of the gas-phase refrigerant to flow to the intermediate pressure inflow port 1c of the compressor 1 through the intermediate pressure refrigerant pipe INJ.
- the gas-liquid separator 4 causes the remaining gas-liquid two-phase refrigerant or the remaining gas-phase refrigerant to flow to the second expansion valve 5.
- the second expansion valve 5 depressurizes the liquid layer refrigerant separated from the gas-phase refrigerant by the water-refrigerant heat exchanger 2.
- the evaporator 6 is a heat exchanger that evaporates the refrigerant by exchanging heat between the outside air and the refrigerant decompressed by the second expansion valve 5.
- the oil separator 7 separates the lubricating oil from the high-pressure refrigerant discharged from the compressor 1, and returns the separated lubricating oil to each part in the compressor 1 from the oil return port 1d.
- the first expansion valve 3 and the second expansion valve 5 are both electric expansion valves having a motor.
- the valve opening degree of the first expansion valve 3 and the valve opening degree of the second expansion valve 5 are respectively adjusted according to a control signal from a control device (not shown).
- FIG. 2 is a schematic cross-sectional view showing the configuration of the compressor 1.
- FIG. 2 is not a cross section obtained by cutting a specific surface of the compressor 1, but is configured by collecting a plurality of different cross sections of the compressor 1.
- a compressor 1 shown in FIG. 2 is a scroll-type electric compressor, and a compression mechanism unit 10 that compresses refrigerant and an electric motor unit 20 that drives the compression mechanism unit 10 are arranged in the vertical direction (that is, the vertical direction). It is a vertical type.
- the compressor 1 includes a compression mechanism unit 10, an electric motor unit 20, a housing 30, and the like.
- the heat pump cycle 100 constitutes a supercritical refrigeration cycle in which the pressure of the high-pressure side refrigerant in the cycle from the discharge port 1b of the compressor 1 to the inlet side of the first expansion valve 3 is equal to or higher than the critical pressure.
- the heat pump water heater has a hot water storage tank, a hot water circulation circuit, a water pump, and the like (not shown).
- the hot water storage tank stores hot water heated by the water-refrigerant heat exchanger 2.
- the hot water circulation circuit circulates hot water between the hot water storage tank and the water-refrigerant heat exchanger 2.
- the water pump is disposed in the hot water circulation circuit and pumps hot water.
- the compressor 1 shown in FIG. 2 is a scroll-type electric compressor, and has a compression mechanism section 10, an electric motor section 20, a housing 30, and the like.
- Arrow DR1 in FIG. 2 has shown the up-down direction in the state which mounted the compressor 1 in the heat pump type water heater.
- the compression mechanism unit 10 sucks, compresses and discharges a refrigerant that is a compression target fluid. More specifically, the compression mechanism unit 10 forms a compression chamber, which will be described later, and sucks and compresses low-pressure refrigerant from the suction port 1a into the compression chamber. The compression mechanism unit 10 sucks and compresses the intermediate pressure refrigerant having a pressure higher than that of the low pressure refrigerant into the compression chamber from the intermediate pressure inflow port 1c. The compression mechanism unit 10 discharges a high-pressure refrigerant obtained as a result of compression of the low-pressure refrigerant and the intermediate-pressure refrigerant in the compression chamber to the discharge port 1b.
- the electric motor unit 20 drives the compression mechanism unit 10.
- the housing 30 accommodates the compression mechanism unit 10 and the electric motor unit 20.
- the compressor 1 is a so-called vertical installation in which a drive shaft 25 that transmits rotational driving force from the electric motor unit 20 to the compression mechanism unit 10 extends in the vertical direction DR1, and the compression mechanism unit 10 and the electric motor unit 20 are arranged in the vertical direction. Configured to type. More specifically, in this embodiment, the compression mechanism unit 10 is disposed below the electric motor unit 20.
- the housing 30 includes a cylindrical member 31 whose central axis extends in the vertical direction, a bowl-shaped upper lid member 32 that blocks the upper end of the cylindrical member 31, and a bowl-shaped lower lid member 33 that blocks the lower end of the cylindrical member 31. .
- the cylindrical member 31, the upper lid member 32, and the lower lid member 33 are integrally joined, so that the housing 30 has a sealed container structure.
- the cylindrical member 31, the upper lid member 32, and the lower lid member 33 are all made of an iron-based metal, and are joined to each other by welding.
- the housing 30 houses the compression mechanism unit 10 and the electric motor unit 20 in the housing 30.
- the electric motor unit 20 includes a stator 21 that forms a stator and a rotor 22 that forms a rotor.
- the stator 21 has a stator core and a stator coil wound around the stator core.
- the power supply terminal 23 is disposed on the upper cover member 32 of the housing 30, that is, the upper end portion of the housing 30.
- the drive shaft 25 is formed in a cylindrical shape, and an internal space thereof is an oil supply passage 251 that supplies lubricating oil to a sliding portion (that is, a lubrication target portion) of the drive shaft 25.
- the oil supply passage 251 is opened at the lower end surface of the drive shaft 25, and the upper end surface of the drive shaft 25 is closed by the closing member 26.
- a portion of the drive shaft 25 that protrudes below the rotor 22 is provided with a flange 252 that protrudes in the horizontal direction, which is a direction orthogonal to the axial direction parallel to the vertical direction DR1. Is provided with a balance weight 254. Balance weights 221 and 222 are also provided on both sides of the rotor 22 in the vertical direction.
- the drive shaft 25 is supported by a bearing member 27 and a bearing portion 291 of the middle housing 29.
- the middle housing 29 has a cylindrical shape whose outer diameter and inner diameter increase stepwise from the upper side toward the lower side, and the outermost peripheral surface thereof is fixed to the cylindrical member 31 of the housing 30.
- An upper portion of the middle housing 29 constitutes a bearing portion 291.
- the movable scroll 11 of the compression mechanism unit 10 is accommodated in the lower part of the middle housing 29.
- a fixed scroll 12 of the compression mechanism unit 10 is disposed below the movable scroll 11.
- the fixed scroll 12 is a fixed member that is fixed to the housing 30 and does not rotate.
- the movable scroll 11 is a turning side member that turns with respect to the fixed scroll 12.
- the movable scroll 11 has a disk-shaped substrate part 111
- the fixed scroll 12 has a substrate part 121.
- the substrate portions 111 and 121 are arranged so as to face each other in the vertical direction DR1.
- a cylindrical boss portion 113 into which the lower end portion of the drive shaft 25 is inserted is formed at the center portion on the upper surface side of the substrate portion 111 of the movable scroll 11.
- the lower end portion of the drive shaft 25 is an eccentric portion 253 that is eccentric with respect to the rotation center of the drive shaft 25.
- the movable scroll 11 and the middle housing 29 are provided with anti-rotation mechanisms 11 a and 29 a that prevent the movable scroll 11 from rotating about the eccentric portion 253. For this reason, when the drive shaft 25 rotates, the movable scroll 11 revolves around the center of rotation of the drive shaft 25 (that is, turns) without rotating around the eccentric portion 253.
- the movable scroll 11 has a tooth portion 112 protruding from the substrate portion 111 toward the fixed scroll 12 side.
- the tooth portion 112 is formed in a spiral shape.
- the fixed scroll 12 has a tooth part 122 protruding from the substrate part 121 toward the movable scroll 11 side.
- the tooth portion 122 is formed in a spiral shape and meshes with the tooth portion 112 of the movable scroll 11.
- the tooth portions 112 and 122 of the scrolls 11 and 12 are engaged with each other and contacted at a plurality of locations, thereby forming a plurality of compression chambers formed in a crescent shape when viewed from the rotation axis direction.
- FIG. 2 for clarity of illustration, only four compression chambers 151, 152, 153, and 154 among the plurality of compression chambers are denoted by reference numerals, and the other compression chambers are not denoted by reference numerals.
- the plurality of compression chambers move from the outer periphery toward the revolution center while turning with the turning of the movable scroll 11. As the plurality of compression chambers move, the volume of the compression chambers decreases. Due to this volume reduction, the refrigerant in the plurality of compression chambers is compressed.
- the compression chamber 151 is at a position where the refrigerant pressure is highest.
- each of the compression chambers 152 and 153 is at a position where the refrigerant pressure becomes an intermediate pressure lower than that of the compression chamber 151.
- the compression chamber 154 is at a position where the pressure of the refrigerant is lower than that of the compression chambers 152 and 153.
- the discharge plate 18 is fixed to the bottom surface of the substrate unit 121.
- the suction port 1a, the discharge port 1b, the intermediate pressure inflow port 1c, and the oil return port 1d are fixed to the cylindrical member 31.
- the suction port 1a communicates with a compression chamber 154 positioned on the outermost peripheral side through a flow path formed in the substrate portion 121.
- the intermediate pressure inflow port 1c can communicate with the compression chambers 152 and 153 positioned at an intermediate position in the process of moving from the outermost peripheral side to the center side through a flow path formed in the substrate portion 121. Yes.
- the discharge port 1 b can communicate with the compression chamber 151 via a flow path formed in the substrate unit 121.
- FIG. 3 is a bottom view of the substrate part 121 as viewed from below with the lower lid member 33 and the discharge plate 18 removed from the compressor 1.
- the 20 or more small circles described in FIG. 3 are bolt holes, positioning holes, lubricating oil flow paths, and the like.
- a check valve chamber 51a is formed in the refrigerant passage from the intermediate pressure inflow port 1c to the compression chamber 152 at the intermediate position.
- a check valve chamber 51b is formed in the middle of the refrigerant passage from the intermediate pressure inflow port 1c to the compression chamber 153 at the intermediate position.
- the check valve chambers 51 a and 51 b are surrounded by a cylindrical recess formed in the substrate portion 121 and a recess formed in the discharge plate 18.
- Intermediate check valves 50a and 50b are disposed in the check valve chambers 51a and 51b, respectively.
- the intermediate injection valve 50a is a check valve that prevents the refrigerant from flowing backward from the compression chamber 152 to the intermediate pressure inflow port 1c.
- the intermediate injection valve 50b is a check valve that prevents the refrigerant from flowing backward from the compression chamber 153 to the intermediate pressure inflow port 1c.
- a main discharge hole 123a through which the refrigerant compressed in the compression chamber 151 is discharged is formed at the center of the substrate 121 on the fixed scroll 12 side.
- a discharge chamber 124 communicating with the main discharge hole 123a is formed below the main discharge hole 123a.
- the substrate part 121 has an opening 124a that guides the refrigerant from the discharge chamber 124 to the discharge port 1b.
- the discharge chamber 124 is provided with a discharge valve 17 and a stopper 16 that regulates the maximum opening of the discharge valve 17.
- the discharge valve 17 is a reed valve.
- the discharge valve 17 opens and closes a passage connecting the discharge port 1b and the compression chamber 151.
- a passage connecting the discharge port 1b and the compression chamber 151 includes a discharge chamber 124, and a main discharge hole 123a, a sub discharge hole 123b, and a sub discharge hole 123c described later.
- a passage connecting the discharge port 1b and the compression chamber 151 corresponds to a reference passage.
- One end of the stopper 16 and one end of the discharge valve 17 are fixed to the substrate part 121 by bolts 161.
- a part of the oil separated by the oil separator 7 is stored inside the oil separator 7, and the other part is stored in the housing 30 via the oil return port 1d. 25 and the sliding part between the bearing member 27, the sliding part between the drive shaft 25 bearing part 291 and the like.
- An oil storage chamber 35 in which lubricating oil is accumulated is formed at the bottom of the housing 30.
- FIG. 5 is an enlarged view of the discharge chamber 124 in a state where the stopper 16, the discharge valve 17, and the bolt 161 are removed from the compressor 1.
- a bolt hole 161 a, a main discharge hole 123 a, a sub discharge hole 123 b, a sub discharge hole 123 c, a main peripheral groove 124 x, and a sub periphery are formed on the surface of the substrate portion 121 on the discharge chamber 124 side. Grooves 124y and 124z are formed.
- the bolt hole 161a is a screw hole into which the bolt 161 is inserted.
- the main discharge hole 123a, the sub discharge hole 123b, and the sub discharge hole 123c all communicate with any one of a plurality of compression chambers formed between the movable scroll 11 and the fixed scroll 12.
- the discharge holes 123a, 123b, 123c are arranged in a line.
- the main discharge hole 123a at the center is closer to the rotation center line J than the sub discharge holes 123b and 123c in the plane perpendicular to the rotation center line J of the drive shaft 25. Therefore, when operating at a high compression ratio, the pressure in the main discharge hole 123a is different from the pressure in the sub discharge holes 123b and 123c.
- the minimum hydraulic diameter is the minimum diameter of the compression chamber side passage among the right cylindrical cylindrical discharge holes 123 a extending from the end on the discharge chamber 124 side to the end on the compression chamber 151 side.
- Let Did_m a value obtained by dividing the circumferential length of the outermost portion of the main discharge hole 123a at the end closest to the discharge valve 17 by the circumferential ratio is defined as a port opening diameter Dud_m. Since the end of the main discharge hole 123a on the discharge chamber 124 side has a tapered shape that widens toward the discharge chamber 124, the port opening diameter Dud_m is larger than the compression chamber side passage minimum diameter Did_m. In the present embodiment, since the main discharge hole 123a has a right circular column shape, the hydraulic diameter and the diameter have the same value.
- the smallest hydraulic diameter is set to the compression chamber side passage maximum.
- Small diameter Did_s is set to the compression chamber side passage maximum.
- the port opening diameter Dud_s is a value obtained by dividing the circumference of the outermost peripheral portion of the sub discharge hole 123c closest to the discharge valve 17 by the circumference ratio. Since the end of the sub discharge hole 123c on the discharge chamber 124 side has a tapered shape that widens toward the discharge chamber 124, the port opening diameter Dud_s is larger than the compression chamber side passage minimum diameter Did_s. In the present embodiment, since the sub-ejection hole 123c has a right circular column shape, the hydraulic diameter and the diameter have the same value.
- the shape of the sub discharge hole 123b is the same as the shape of the sub discharge hole 123c.
- the discharge valve 17 is disposed in the discharge chamber 124. Further, as shown in FIG. 3, the stopper 16 is disposed so as to overlap the discharge valve 17. The valve 17 is fixed to the substrate part 121.
- the discharge valve 17 is formed of a single metal flat plate having a uniform thickness, and includes a base portion 170, a main tongue portion 171, a sub tongue portion 172, and a sub tongue portion 173.
- the discharge valve 17 corresponds to a reference reed valve.
- the base part 170 is a fixed part fixed to the substrate part 121.
- An inner peripheral edge 170 a of the base portion 170 surrounds a bolt hole for allowing the bolt 161 to pass therethrough.
- the base part 170 corresponds to a reference fixing part.
- the main tongue portion 171 is a movable member connected to the base portion 170 and can be displaced with respect to the base portion 170.
- the main tongue 171 corresponds to the reference tongue.
- the main tongue 171 includes a connecting portion 171a and a main valve body 171b.
- the connecting portion 171a is an elongated plate-like member extending linearly, and one end is connected to the base portion 170 and the other end is connected to the main valve body 171b.
- the main valve body 171b is a substantially disk-shaped member, and is disposed so as to block the entire main discharge hole 123a and the entire main peripheral groove 124x in a state where the main valve body 171b is in contact with the substrate portion 121. Therefore, the main discharge hole 123a is an upstream flow path of the main valve body 171b.
- the maximum width of the connecting portion 171a in the direction parallel to the plate surface of the discharge valve 17 and perpendicular to the longitudinal direction of the connecting portion 171a is shorter than the maximum width of the main valve body 171b in the same direction.
- the sub tongue portion 172 is a movable member connected to the base portion 170 and can be displaced with respect to the base portion 170.
- the sub tongue 172 corresponds to the reference tongue.
- the sub tongue part 172 has a connecting part 172a and a sub valve body 172b.
- the shape of the connecting portion 172a and the sub-valve body 172b and the connection relationship with each other are the same as the shape of the connecting portion 171a and the main valve body 171b and the connection relationship with each other.
- One end of the connecting portion 172 a is connected to the base portion 170.
- the sub-valve element 172b is disposed so as to block the entire sub-discharge hole 123b and a part or the entire sub-periphery groove 124y when in contact with the substrate portion 121. Therefore, the sub discharge hole 123b is an upstream flow path of the sub valve body 172b.
- the sub tongue portion 173 is a movable member connected to the base portion 170 and can be displaced with respect to the base portion 170.
- the sub tongue 173 corresponds to the reference tongue.
- the sub tongue portion 173 has a connecting portion 173a and a sub valve body 173b.
- the shape of the connecting portion 173a and the sub-valve body 173b and the connection relationship with each other are the same as the shape of the connecting portion 171a and the main valve body 171b and the connection relationship with each other.
- One end of the connecting portion 173 a is connected to the base portion 170.
- the sub valve body 173b is disposed so as to block the entire sub discharge hole 123c and a part of or the entire sub peripheral groove 124z in a state where the sub valve body 173b is in contact with the substrate portion 121. Therefore, the sub discharge hole 123c is an upstream flow path of the sub valve body 173b.
- the longitudinal directions of the connecting portions 171a, 172a, 173a are substantially parallel to each other.
- the length of the main tongue portion 171 in the longitudinal direction is defined as a tongue length Ld_m
- the length of the sub tongue portions 172 and 173 in the longitudinal direction is defined as a tongue length Ld_s.
- the diameter of the main valve body 171b is larger than the diameters of the sub valve bodies 172b and 173b.
- the main valve body 171b is curvedly displaced with respect to the base portion 170 by the differential pressure between the refrigerant pressure on the main discharge hole 123a side and the refrigerant pressure in the discharge chamber 124. Thereby, the main valve body 171b opens and closes the opening of the main discharge hole 123a.
- the main valve body 171b is separated from the substrate portion 121 and the opening of the main discharge hole 123a is opened.
- the refrigerant flows out of the compressor 1 through the main discharge hole 123a, the discharge chamber 124, and the discharge port 1b.
- the maximum lift of 171b is realized, and the opening area between the main discharge hole 123a and the discharge chamber 124 is maximized.
- the main valve body 171b abuts on the substrate part 121, and the opening of the main discharge hole 123a is closed. Thereby, the backflow from the discharge chamber 124 to the main discharge hole 123a is prevented.
- the mechanism for opening / closing the sub discharge hole 123b by the sub valve body 172b and the mechanism for opening / closing the sub discharge hole 123c by the sub valve body 173b are the same as the mechanism for opening / closing the main discharge hole 123a by the main valve body 171b.
- FIG. 9 is an enlarged view of the IX portion of FIG.
- the plate thickness of the main tongue portion 171 is Td_m.
- the average value of the plate thickness at each position of the main tongue portion 171 is set as the plate thickness Td_m.
- valve reference lift amount Hd_m is the gap between the main valve body 171b and the stopper 16 on the central axis S1 of the main discharge hole 123a when the main valve body 171b closes the main discharge hole 123a. It may be a length.
- the plate thickness Td_s of the sub tongue portions 172 and 173 is the same as the plate thickness Td_m of the main tongue portion 171.
- the valve reference lift amount Hd_s of the sub valve bodies 172b and 173b is the same as the valve reference lift amount Hd_m of the main valve body 171b.
- the intermediate injection valve 50b and its peripheral structure are the same as the intermediate injection valve 50a and its peripheral structure, and the description thereof is omitted.
- a downstream passage 125 is formed in the substrate portion 121 of the fixed scroll 12. Accordingly, the fixed scroll 12 constitutes a downstream side passage forming member.
- the downstream passage 125 is a passage located downstream of the check valve chamber 51a in the refrigerant passage from the intermediate pressure inflow port 1c to the compression chamber 152 at the intermediate position.
- the check valve chamber 51 a can communicate with the downstream passage 125.
- the check valve chamber 51 a is a substantially cylindrical space, and is formed such that its central axis extends obliquely with respect to the drive shaft 25.
- the intermediate injection valve 50a accommodated in the check valve chamber 51a has a valve seat 61 and a reed valve 62.
- the valve seat 61 is formed in a cylindrical shape corresponding to the check valve chamber 51a.
- the internal space of the valve seat 61 constitutes an upstream side passage 61a. Accordingly, the valve seat 61 constitutes an upstream side passage forming member.
- the upstream side passage 61a is a passage located on the upstream side of the refrigerant flow from the reed valve 62 in the refrigerant passage from the intermediate pressure inflow port 1c to the compression chamber 152 at the intermediate position.
- the upstream passage 61 a is disposed on the central axis of the valve seat 61.
- a female thread is formed on the inner peripheral surface of the check valve chamber 51a.
- a male screw corresponding to the female screw is formed on the outer peripheral surface of the valve seat 61.
- the valve seat 61 is fixed to the substrate portion 121 by the male screw of the valve seat 61 being screwed into the female screw.
- the reed valve 62 is disposed between a portion of the base plate part 121 constituting the surface on the check valve chamber 51a side and the end surface of the valve seat 61 on the reed valve 62 side.
- the reed valve 62 is a single plate formed in a thin plate shape, for example, from hardened stainless steel.
- the material of the reed valve 62 may be the same as that of the discharge valve 17 or may be different.
- the reed valve 62 corresponds to the target reed valve.
- the reed valve 62 opens and closes a passage from the intermediate pressure inflow port 1c to the compression chamber 152. Accordingly, the reed valve 62 allows the refrigerant to flow from the intermediate pressure inflow port 1c into the compression chamber 152 in the passage, and suppresses the refrigerant from flowing backward from the compression chamber 152 to the intermediate pressure inflow port 1c in the passage. To do.
- the passage from the intermediate pressure inflow port 1c to the compression chamber 152 includes an upstream passage 61a and a downstream passage 125.
- the passage from the intermediate pressure inflow port 1c to the compression chamber 152 corresponds to the target passage.
- FIG. 11 is a view showing the arrangement of the reed valve 62 with respect to the substrate portion 121 when the substrate portion 121 is viewed from the check valve chamber 51a.
- the reed valve 62 is a metal flat plate having a uniform thickness, and includes an outer peripheral sheet portion 621 and a tongue portion 622.
- the outer peripheral sheet portion 621 has an annular shape in plan view.
- the outer peripheral seat portion 621 is a fixed portion that is sandwiched and fixed between a portion of the substrate portion 121 that is in contact with the upper end of the check valve chamber 51 a and the upper end surface of the valve seat 61. Therefore, the reed valve 62 is fixed without using a fixing member such as a bolt.
- the outer peripheral sheet portion 621 corresponds to the target fixing portion.
- the tongue portion 622 is a movable member connected to the inner peripheral edge of the reed valve 62 and can be displaced with respect to the outer peripheral seat portion 621.
- the tongue 622 corresponds to the target tongue.
- the tongue 622 has a connecting portion 622s and an opening / closing end 622t.
- the boundary line BL between the connecting portion 622s and the open / close end 622t is a line obtained by extending the circular outline of the open / close end 622t into the tongue 622 as shown in FIG. That is, the boundary line BL between the connecting portion 622s and the open / close end portion 622t is a line obtained by extending the outline of the open / close end portion 622t into the tongue portion 622.
- the connecting portion 622s is connected to the inner peripheral edge of the reed valve 62, and the other end is connected to the open / close end portion 622t.
- the open / close end portion 622t is a disk-shaped member, and is disposed inside the outer peripheral sheet portion 621 and coaxially with the outer peripheral sheet portion 621.
- a gap extending in an arc shape is formed in the plate surface of the reed valve 62 between the open / close end portion 622t and the outer peripheral seat portion 621.
- the opening / closing end 622t opens and closes the upstream passage 61a formed in the valve seat 61.
- the maximum width of the connecting portion 622s in the direction parallel to the plate surface of the reed valve 62 and perpendicular to the direction from the one end to the other end of the connecting portion 622s is shorter than the maximum width of the open / close end portion 622t in the same direction.
- the tongue portion 622 is curvedly displaced with respect to the outer peripheral sheet portion 621 by the differential pressure between the refrigerant pressure P1 on the upstream passage 61a side and the refrigerant pressure P2 on the downstream passage 125 side. As a result, the opening / closing end 622t opens and closes the opening of the upstream passage 61a.
- the open / close end 622t is separated from the valve seat 61, and the opening of the upstream passage 61a is opened.
- the refrigerant flows into the compression chamber 152 from the intermediate pressure inflow port 1c through the upstream side passage 61a and the downstream side passage 125.
- the open / close end 622t abuts on the substrate part 121.
- the maximum lift of the opening / closing end 622t is realized, and the opening area between the upstream passage 61a and the downstream passage 125 is maximized. Further, when the refrigerant pressure P1 is in a reverse pressure state smaller than the refrigerant pressure P2, the open / close end 622t comes into contact with the valve seat 61 and the opening of the upstream passage 61a is closed. Thereby, the backflow from the compression chamber 152 to the intermediate pressure inflow port 1c is prevented.
- the length of the tongue 622 in the longitudinal direction is defined as a tongue length Li.
- the length Li in the longitudinal direction of the tongue 622 is 1 ⁇ 2 or less with respect to any of the lengths Ld_m and Ld_s in the longitudinal direction of the tongues 171, 172, and 173 described above.
- the length Li in the longitudinal direction of the tongue 622 is short because the dead volume, which is the space from the reed valve to the compression chamber, including the annular groove in the valve seat of the intermediate pressure chamber is reduced. This is to suppress the performance degradation.
- the minimum hydraulic diameter in the upstream passage 61a is defined as the valve upstream diameter Dx.
- the minimum hydraulic diameter in the downstream passage 125 is defined as the compression chamber-side channel minimum diameter Dii.
- the port opening diameter Dui is a value obtained by dividing the circumference of the outer peripheral portion at the end closest to the opening / closing end 622t in the upstream passage 61a by the circumferential ratio. The end including the end of the upstream passage 61a has a tapered shape that widens toward the end. Therefore, the port opening diameter Dui is larger than the valve upstream diameter Dx.
- the compression chamber side passage minimum diameter Dii is smaller than the valve upstream diameter Dx. In the present embodiment, the compression chamber side passage minimum diameter Dii is the minimum hydraulic diameter in the passage from the intermediate pressure inflow port 1c to the compression chamber 152.
- the hydraulic diameter and the diameter have the same value.
- the plate thickness of the tongue 622 of the reed valve 62 is Ti.
- board thickness of each position of the tongue part 622 is set to plate
- valve reference lift amount Hi is a gap between the opening / closing end 622t and the substrate 121 on the central axis S2 of the upstream passage 61a in a state where the opening / closing end 622t closes the upstream passage 61a. May be the length.
- the opening of the downstream passage 125 is offset with respect to the opening of the upstream passage 61a on the downstream passage 125 side. That is, the opening of the downstream passage 125 is disposed at a position shifted from the opening of the upstream passage 61a when viewed from the axial direction of the check valve chamber 51a.
- An annular groove 61b is formed around the downstream side passage 125 side opening of the upstream side passage 61a in the end face of the valve seat 61 on the downstream side passage 125 side.
- the annular groove 61 b serves to prevent foreign matter from being caught between the end face of the valve seat 61 and the reed valve 62.
- the compression chamber side passage minimum diameter Did_m, Did_s, Dii port opening diameter Dud_m, Dud_s, Dui, plate thickness Td_m, Td_s, Ti, valve reference lift amount Hd_m, Hd_s, Hi, tongue length defined as described above.
- Ld_m, Ld_s, and Li A relationship among Ld_m, Ld_s, and Li will be described.
- FIG. 12 shows specific numerical values of the above amounts in four different Examples A, B, C, and D.
- the sizes of the discharge valve 17 and the flow paths before and after the discharge valve 17 are the same.
- the amount represented as the valve seat flow path diameter in FIG. 12 corresponds to the compression chamber side passage minimum diameter Did_m for the main tongue portion 171, and the compression chamber side passage minimum diameter Did_s for the sub tongue portions 172 and 173.
- the intermediate injection valves 50a and 50b correspond to the valve upstream diameter Dx.
- the compression chamber side flow path minimum diameter Di corresponds to the compression chamber side passage minimum diameter Did_m for the main tongue portion 171, and corresponds to the compression chamber side passage minimum diameter Did_s for the sub tongue portions 172 and 173.
- the valves 50a and 50b correspond to the compression chamber side passage minimum diameter Dii.
- the port opening diameter Du corresponds to the port opening diameter Dud_m for the main tongue 171, the port opening diameter Dud_s for the sub tongues 172 and 173, and the port opening diameter Dui for the intermediate injection valves 50 a and 50 b. It corresponds to. Further, the valve body plate thickness T corresponds to the plate thickness Td_m for the main tongue portion 171, corresponds to the plate thickness Td_s for the sub tongue portions 172 and 173, and corresponds to the plate thickness Ti for the intermediate injection valves 50a and 50b. To do.
- the reference lift amount H corresponds to the valve reference lift amount Hd_m for the main tongue 171, the valve reference lift amount Hd_s for the sub tongues 172 and 173, and the valve reference for the intermediate injection valves 50 a and 50 b. This corresponds to the lift amount Hi.
- the tongue length L corresponds to the tongue length Ld_m for the main tongue portion 171, corresponds to the tongue length Ld_s for the sub tongue portions 172 and 173, and the tongue length Li for the intermediate injection valves 50a and 50b. It corresponds to.
- the relational expression Dui / Ti ⁇ 2 ⁇ Dud / Td is established. This relational expression may be established only when the set of quantities Dud and Td is the set of quantities Dud_m and Td_m. Further, this relational expression may be established only when the set of quantities Dud and Td is the set of quantities Dud_s and Td_s. This relational expression may be established in both cases described above. The significance of establishing this relationship will be described below.
- the intermediate injection valves 50a and 50b are installed so as to be embedded in the substrate part 121 of the fixed scroll 12.
- the tongue length Li of the tongue 622 is shortened in order to reduce the dead volume that leads to performance degradation.
- the plate thickness of the reed valve 62 is set to the plate thickness Td_m, Td_s of the discharge valve 17. It was thinner.
- the open / close end portion 622t of the reed valve 62 is deformed by back pressure and the open / close end portion 622t is in contact with the valve seat 61 when the backflow of the refrigerant is prevented. It was found that the part slides slightly. Further, it has been found that wear occurs at the open / close end 622t and the valve seat 61 by this minute sliding.
- carbon dioxide is used as a refrigerant
- the pressure at the time of use is higher than that of a chlorofluorocarbon refrigerant, so that the back pressure generated in the valve is large and wear is increased.
- the reverse pressure applied to the open / close end 622t is twice or more larger than the reverse pressure applied to the main valve body 171b and the sub valve bodies 172b and 173b.
- the amount of Dui / Ti is an amount corresponding to the ease of deformation of the tongue 622.
- the amount Dud_m / Td_m is an amount corresponding to the ease of deformation of the main tongue 171.
- the amount Dud_s / Td_s is an amount corresponding to the ease of deformation of the sub tongue portions 172 and 173.
- Dud / Td ⁇ Dui / Ti is established. This relational expression may be established only when the set of quantities Dud and Td is the set of quantities Dud_m and Td_m. Further, this relational expression may be established only when the set of quantities Dud and Td is the set of quantities Dud_s and Td_s. This relational expression may be established in both cases described above. The significance of establishing this relationship will be described below.
- the following can be said for a heat pump type water heater using carbon dioxide as a refrigerant. That is, during the period in which the drive shaft 25 makes one rotation, the time during which the refrigerant can flow into the compression chambers 152 and 153 from the intermediate pressure inflow port 1c is open in the sub discharge holes 123b and 123c in the period. About half of the time. That is, the time during which the refrigerant can flow into the compression chambers 152 and 153 from the intermediate pressure inflow port 1c, that is, the injection time is not so long.
- the amount of refrigerant flowing is only about half or less of the total flow rate of the refrigerant in the heat pump cycle 100.
- the refrigerant flow rate flowing into the compression chambers 152 and 153 from the intermediate pressure inflow port 1c is not so large.
- the injection time becomes shorter as the differential pressure between the refrigerant pressure (ie, intermediate pressure) in the intermediate pressure refrigerant pipe INJ and the refrigerant pressure (ie, intake pressure) immediately before the intake port 1a becomes smaller. Therefore, it is desirable that 0.5 ⁇ Dud_s / Td_s ⁇ Dui / Ti for sufficient injection even when the differential pressure is small.
- This relational expression may be satisfied only when the set of the quantities Did, Dud, Ld, and Td is the set of the quantities Did_m, Dud_m, Ld_m, and Td_m.
- This relational expression may be established only when the set of the quantities Did, Dud, Ld, and Td is the set of the quantities Did_s, Dud_s, Ld_s, and Td_s.
- This relational expression may be established in both cases described above. In this way, the range of the plate thickness of the valve according to the length of the tongue can be set, and the flow rate at the time of injection can be ensured.
- ⁇ ⁇ Dii 2/4 corresponds to the minimum opening area of the downstream passage 125.
- ⁇ ⁇ Dui corresponds to the peripheral length of the port opening of the upstream side passage 61a.
- Li / Ti is an index indicating the ease of warping of the tongue 622 (that is, the ease of lifting).
- the downstream passage 125 is likely to be a bottleneck of the refrigerant flow path as compared with the upstream passage 61a. Therefore, the greater the value on the left side of the above two inequalities, the greater the contribution to the pressure loss of the reed valve 62 (ie, the bottleneck degree of the reed valve 62).
- the above two inequalities indicate that the contribution of the reed valve 62 to the pressure loss is lower than the contribution of the discharge valve 17 to the pressure loss.
- the numerator on the left side of this inequality corresponds to the minimum opening area of the downstream passage 125 as described above.
- the denominator on the left side of this inequality is the opening area between the opening / closing end 622t and the valve seat 61 when the opening / closing end 622t is fully lifted.
- the denominator of the left side of this inequality is the opening area of the passage vacated by the target tongue when the open / close end 622t is fully lifted. Therefore, the greater the left side of this inequality, the greater the contribution to the pressure loss of the reed valve 62 (that is, the bottleneck degree of the reed valve 62).
- the injection flow path cross-sectional area is not minimized at the intermediate injection valves 50a and 50b. Therefore, the refrigerant flow rate at the time of injection in which the refrigerant flows in from the intermediate pressure inflow port 1c increases, and the capacity of the compressor 1 is improved.
- This relational expression may be satisfied only when the set of the quantities Did, Dud, and Hd is the set of the quantities Did_m, Dud_m, and Hd_m. Further, this relational expression may be established only when the set of the quantities Did, Dud, and Hd is the set of the quantities Did_s, Dud_s, and Hd_s. This relational expression may be established in both cases described above. The significance of establishing this relationship will be described below.
- the left side of these two inequalities represents the contribution to the pressure loss of the reed valve 62 (that is, the bottleneck degree of the reed valve 62) as described above.
- the right side of these two inequalities represents the contribution to the pressure loss of the valve bodies 171b, 172b, and 173b of the discharge valve 17.
- the closing speed of the open / close end 622t is made equal to or higher than that of the discharge valve 17 by suppressing the contribution of the reed valve 62 to the pressure loss lower than the contribution of the discharge valve 17 to the pressure loss. Can do. As a result, the reliability of the reed valve 62 of the intermediate injection valves 50a and 50b can be ensured.
- the low-pressure refrigerant that has flowed out of the evaporator 6 flows into the compression chamber that is positioned on the outermost peripheral side and communicates with the suction port 1a through the suction port 1a.
- the compression chamber into which the low-pressure refrigerant has flowed moves to a position communicating with the intermediate pressure inflow port 1c while reducing its volume.
- each of the intermediate injection valves 50a and 50b is in the following state. Become. That is, the open / close end 622t of the reed valve 62 is displaced away from the valve seat 61 due to the pressure difference between the refrigerant pressure P1 on the intermediate pressure inflow port 1c side and the refrigerant pressure P2 on the compression chamber side.
- the upstream side passage 61a that is, the refrigerant passage for injection is opened, and the intermediate pressure gas phase refrigerant passing through the upstream side passage 61a from the intermediate pressure inflow port 1c flows through the downstream side passage 125 and is injected into the compression chamber.
- the upstream side passage 61a is closed, and the refrigerant is prevented from flowing back from the compression chamber side to the intermediate pressure inflow port 1c side. Accordingly, deterioration of the coefficient of performance (COP) of the heat pump cycle 100 due to the reverse flow of the refrigerant from the compression chamber side to the intermediate pressure inflow port 1c side is prevented.
- COP coefficient of performance
- the state in which backflow is prevented in this way is a back pressure state.
- the tongue portion 622 has the dimensions as described above, wear of the contact portion between the open / close end portion 622t and the valve seat 61 is suppressed.
- the heat pump cycle 100 of this embodiment is different from the heat pump cycle 100 of the first embodiment only in that the open / close end 622t of the reed valve 62 is replaced with an open / close end 622u.
- the open / close end 622u is an elliptical plate-like member, and is disposed on the inner side of the outer peripheral sheet 621 and coaxially with the outer peripheral sheet 621.
- a gap extending in an arc shape is formed in the plate surface of the reed valve 62 between the open / close end portion 622u and the outer peripheral seat portion 621.
- the open / close end 622u opens and closes an upstream passage 61a formed in the valve seat 61.
- the maximum length Wy in the valve tongue direction 201 of the open / close end 622u is shorter than the maximum length Wx in the valve width direction 202 of the open / close end 622u. More specifically, the major axis of the elliptical shape of the opening / closing end 622u and the valve width direction 202 coincide, and the minor axis of the opening / closing end 622u and the valve tongue direction 201 coincide.
- the valve tongue direction 201 is the longitudinal direction of the tongue portion 622.
- the valve width direction 202 is a direction parallel to the plate surface of the reed valve 62 and perpendicular to the valve tongue direction 201.
- the orthogonality includes not only the strict orthogonality but also an angle deviated from the strict orthogonality as long as the effect of the present embodiment is exhibited.
- the rigidity of the valve tongue direction 201 is increased with respect to the direction orthogonal to the valve tongue direction.
- the boundary line BLu between the connecting portion 622s and the open / close end 622u is a line obtained by extending the elliptical outline of the open / close end 622u into the tongue 622 as shown in FIG. 13A.
- an axis passing through the center of gravity C of the opening / closing end 622u and parallel to the valve tongue direction 201 is referred to as a Y-axis.
- An axis passing through the center of gravity C and parallel to the valve width direction 202 is referred to as an X axis.
- a direction passing through the center of gravity C and perpendicular to the plate surface of the reed valve 62 is referred to as a Z-axis.
- the center of gravity C of the open / close end 622u and the centroid substantially coincide.
- the sectional secondary moment Izx of the opening / closing end 622u with respect to the X axis represents the difficulty in deformation when the opening / closing end 622u is bent in the lift direction about the X axis. Amount.
- the secondary moment Izy of the open / close end 622u with respect to the Y axis is difficult to deform when the open / close end 622u is bent in the lift direction about the Y axis. Is an amount representing
- sectional secondary moment Izx is larger than the sectional secondary moment Izy. More specifically, the sectional secondary moment Izx is 1.01 times or more of the sectional secondary moment Izy, and more preferably, the sectional secondary moment Izx is two or more times the sectional secondary moment Izy. Yes.
- An axis passing through the center of gravity C of the open / close end 622u and parallel to the valve tongue direction 201 coincides with the center line of the connecting portion 622s.
- the rigidity of the open / close end 622u with respect to the force bending at the X axis is higher than the rigidity of the open / close end 622u with respect to the force bending at the Y axis. That is, the bending rigidity of the open / close end 622u with respect to the X axis is larger than the bending rigidity of the open / close end 622u with respect to the Y axis.
- the portion 61x on the distal end side of the tongue 622 out of the outer peripheral edge of the upstream passage 61a where the opening / closing end 622u opens / closes has the greatest wear due to back pressure.
- the opening / closing end 622u is not easily bent along the X axis as described above, the sliding of the opening / closing end 622u in the portion 61x can be reduced. As a result, wear of the opening / closing end 622u in the portion 61x can be reduced.
- the diameter of the open / close end 622u is not simply increased, but by increasing the diameter only in a specific direction of the open / close end 622u, Relatively lightweight. Therefore, the impact of the collision of the open / close end 622u with the valve seat 61 due to the inertial force can be suppressed.
- the angle formed by the long axis direction having the largest diameter of the opening / closing end 622u with respect to the center line of the connecting portion 622s is 45 ° or more and 135 ° or less. If there is, it is more prominent. Moreover, it is more desirable if this angle is 60 ° or more and 120 ° or less. In FIG. 13A, this angle is 90 °.
- the heat pump cycle 100 of this embodiment differs from the heat pump cycle 100 of the first embodiment only in that the open / close end 622t of the reed valve 62 is replaced with an open / close end 622v.
- the shape of the open / close end 622v projected onto a plane parallel to the plate surface of the reed valve 62 is a circle. That is, the open / close end 622v is a substantially disk-shaped member.
- the open / close end portion 622v is disposed coaxially with the outer peripheral sheet portion 621 inside the outer peripheral sheet portion 621.
- a gap extending in an arc shape is formed in the plate surface of the reed valve 62 between the open / close end portion 622v and the outer peripheral seat portion 621.
- the opening / closing end 622v opens and closes the upstream passage 61a formed in the valve seat 61.
- two reinforcing ribs 623 and 624 are formed on the open / close end 622v.
- the reinforcing ribs 623 and 624 are part of the open / close end 622v and are formed integrally with the other parts of the open / close end 622v.
- the reinforcing ribs 623 and 624 are formed by bending a plate that is a material of the opening / closing end 622v.
- bent portions 623a, 623b, 624a, and 624b that are valley-folded are formed in the opening / closing end portion 622v. Further, two bent portions 623c and 624c which are mountain-folded are formed on the opening / closing end portion 622v. A bent portion 623c is formed between the bent portions 623a and 623b, and a bent portion 624c is formed between the bent portions 624a and 624b.
- the part of the bent part 623b side (namely, one side) of the bent part 623a and the bent part 623a side (namely, one side) of the bent part 623b becomes the reinforcing rib 623.
- the bent portion 624a side (that is, one side) and the bent portion 624b side that is the bent portion 624a side (that is, one side) correspond to the reinforcing rib 624.
- the bent portions 623c and 624c are the apexes of the reinforcing ribs 623 and 624, respectively.
- the reinforcing ribs 623 and 624 have a shape bent into a convex shape.
- bent portions 623a, 623b, 623c, 624a, 624b, and 624c extend linearly in parallel to the Y axis. Accordingly, the convex vertices of the reinforcing ribs 623 and 624 extend linearly in parallel to the Y axis. Further, the ends of the reinforcing ribs 623 and 624 in the short direction extend linearly parallel to the Y axis.
- the reinforcing ribs 623 and 624 protrude in a direction perpendicular to the plate surface of the outer peripheral seat portion 621 of the reed valve 62 and away from the valve seat 61. Accordingly, the reinforcing ribs 623 and 624 protrude downstream of the refrigerant flow path.
- the opening / closing end 622v becomes relatively lighter than when the diameter of the opening / closing end is simply increased. Therefore, the impact of the collision of the open / close end 622v with the valve seat 61 due to inertial force can be reduced.
- the valve lift amount of the opening / closing end 622v can be limited. That is, the valve reference lift amount Hi of the opening / closing end 622v can be suppressed. Therefore, the reliability of the open / close end 622v as a valve is improved. Moreover, since the dead volume can be reduced, the efficiency of the compressor 1 when the refrigerant is not injected from the intermediate pressure inflow port 1c can be improved.
- the dead volume is a space upstream of the compression chamber 152 and downstream of the reed valve 62.
- the reinforcing ribs 623 and 624 extend in a direction intersecting the X axis. More specifically, the reinforcing ribs 623 and 624 extend linearly in parallel to the Y axis. In other words, the bent portions 623a, 623b, 623c, 624a, 624b, and 624c of the open / close end portion 622v that are bent to form the reinforcing ribs 623 and 624 extend linearly in parallel to the Y axis.
- the bent portions 623a, 623b, 623c, 624a, 624b, 624c that are bent to form the reinforcing ribs 623, 624 are the convex vertices of the reinforcing ribs 623, 624, and the reinforcing rib 623 of the open / close end 622v, This is a boundary between a portion other than 624 and the portions of the reinforcing ribs 623 and 624.
- the relationship between the cross-sectional secondary moments Izx and Izy is the same as that in the second embodiment. Therefore, also in this embodiment, the effect resulting from the relationship between the cross-sectional secondary moments Izx and Izy is realized as in the second embodiment. That is, the bending rigidity of the open / close end 622v with respect to the X axis is larger than the bending rigidity of the open / close end 622u with respect to the Y axis.
- the boundary line BL between the connecting portion 622s and the open / close end 622v is a line obtained by extending the circular outline of the open / close end 622v into the tongue 622 as shown in FIG.
- FIG. 16 The heat pump cycle 100 of the present embodiment differs from the heat pump cycle 100 of the third embodiment in the positions of the reinforcing ribs 623 and 624. Other configurations of the heat pump cycle 100 are the same as those of the third embodiment.
- the reinforcing ribs 623 and 624 extend in the direction intersecting the X axis, as in the third embodiment. More specifically, the reinforcing ribs 623 and 624 extend linearly in parallel to the Y axis.
- the outer peripheral edge of the end on the side close to the downstream passage 125 in the upstream passage 61 a is projected inside a figure 61 y projected onto a plane parallel to the outer peripheral sheet portion 621 of the reed valve 62.
- Part of the figure in which the reinforcing ribs 623 and 624 are projected onto a plane parallel to the outer peripheral sheet portion 621 is overlapped. This point is different from the third embodiment.
- the reinforcing ribs 623 and 624 are orthogonal to the plate surface of the outer peripheral seat portion 621 of the reed valve 62, away from the valve seat 61, and from the upstream passage 61a. It protrudes in the direction of leaving. Accordingly, the reinforcing ribs 623 and 624 protrude downstream of the refrigerant flow path.
- the surface opposite to the direction in which the reinforcing rib protrudes that is, the surface of the opening / closing end 622v that contacts the valve seat 61 when the valve is closed (hereinafter referred to as the back surface) is smooth. It is a surface. Specifically, on the back surface of the end portion 622v, the portion on the back surface side (that is, the anti-projection side) of the reinforcing ribs 623 and 624 and the surrounding portion form a flat surface without a step.
- seat part 621 among the back surfaces of the opening-and-closing end part 622v is a plane with no level difference ( That is, a smooth surface is formed.
- the boundary line BL between the connecting portion 622s and the open / close end 622v is a line obtained by extending the circular outline of the open / close end 622v into the tongue 622 as shown in FIG.
- the compressor 1 includes the discharge valve 17 and the intermediate injection valves 50a and 50b. However, the compressor 1 does not include the discharge valve 17 and may include a suction valve.
- the intake valve is a reed valve.
- the suction valve opens and closes a passage connecting the suction port 1a and the compression chamber 154. Thereby, the suction valve allows the refrigerant to flow from the suction port 1a to the compression chamber 154 in the passage, and suppresses the reverse flow of the refrigerant from the compression chamber 154 to the suction port 1a in the passage.
- the intake valve corresponds to the reference reed valve.
- a passage connecting the suction port 1a and the compression chamber 154 corresponds to a reference passage.
- the configuration and shape of the suction valve may be exactly the same as those of the discharge valve 17. That is, the intake valve may have the same base portion 170 as the discharge valve 17, the main tongue portion 171, and the sub tongue portions 172 and 173. Further, an equivalent to the stopper 16 may be disposed in the vicinity of the suction valve to define the lift amount at the time of maximum lift of the main tongue portion and the sub tongue portion of the discharge valve. Further, the shapes of the upstream and downstream passages of the intake valve may be the same as the shapes of the upstream and downstream passages of the discharge valve 17.
- the amounts Did_m, Did_s, Dud_m, Dud_s, Td_m, Td_s, Hd_m, Hd_s, Ld_m, and Ld_s related to the intake valve can be defined in the same manner as the discharge valve 17. Then, the value of the amount thus defined may be the same as that of the discharge valve 17. Therefore, in this case, the relationship between the discharge valve 17 and the reed valve 62 in the above embodiment is similarly established between the intake valve and the reed valve 62.
- the compressor 1 includes the two intermediate injection valves 50a and 50b. However, the compressor 1 may include only one intermediate injection valve 50a.
- the discharge valve 17 has the three tongue parts 171, 172, 173, and each opens and closes the discharge holes 123a, 123b, 123c.
- the discharge valve 17 may have only the main tongue 171 having the main discharge hole 123a. In that case, the sub-ejection holes 123b and 123c may not be formed.
- the open / close end 622u has an elliptical plate shape, but the open / close end 622u may have an oval plate shape.
- the reinforcing ribs 623 and 624 are formed integrally with the open / close end 622v, but may be formed as separate members from the open / close end 622v.
- the reinforcing ribs 623 and 624 may protrude in a direction orthogonal to the plate surface of the outer peripheral seat portion 621 of the reed valve 62 and in a direction approaching the valve seat 61. In this case, the reinforcing ribs 623 and 624 protrude upstream of the refrigerant flow path.
- the bending rigidity of the open / close end portions 622u and 622v with respect to the X axis is larger than the bending rigidity of the open / close end portion 622u with respect to the Y axis perpendicular to the X axis.
- this is not necessarily the case.
- the bending rigidity of the open / close end portions 622u and 622v with respect to the X axis intersects with the X axis at an angle other than 90 °, and the bending rigidity of the open / close end portions 622u with respect to the axis passing through the center of gravity of the open / close ends 622u and 622v. May be larger.
- crossing means crossing at an angle other than parallel.
- the bending rigidity of the opening / closing ends 622u and 622v with respect to the X axis is greater than the bending rigidity of the opening and closing ends 622u with respect to the axis that intersects the X axis and passes through the center of gravity of the opening and closing ends 622u and 622v. It may be smaller.
- the bending rigidity of the opening / closing end portions 622u and 622v with respect to the X axis may be different from the bending rigidity of the opening / closing end portion 622u with respect to the axis that intersects the X axis and passes through the center of gravity of the opening / closing ends 622u and 622v. .
- the compressor used in the gas injection cycle includes a plate thickness Td of the reference tongue, and a passage upstream of the reference tongue in the reference passage.
- the port opening diameter Dud at the end near the reference tongue, the plate thickness Ti of the target tongue, and the port opening diameter Dui at the end close to the target tongue in the passage upstream of the target tongue in the target passage is established.
- the minimum hydraulic diameter Dii of the target path, the lift amount Hi at the maximum lift of the target tongue, between the port opening diameter Dui, ( ⁇ ⁇ Dii 2/ 4) / ( ⁇ XHi xDui) ⁇ 1 is established.
- the numerator on the left side of this inequality corresponds to the minimum opening area of the target passage.
- the denominator on the left side of this inequality is the opening area of the passage opened by the target tongue when the target tongue is fully lifted. Therefore, the greater the left side of this inequality, the greater the contribution to the pressure loss of the target reed valve (ie, the bottleneck degree of the target reed valve).
- the cross-sectional area of the target passage is not minimized at the target reed valve. Therefore, the flow rate of the refrigerant flowing from the intermediate pressure inflow port increases, and the capacity of the compressor is improved.
- the minimum hydraulic diameter Did of the reference passage, the lift amount Hd at the maximum lift of the reference tongue, the minimum hydraulic diameter Dii of the target passage, the lift at the maximum lift of the target tongue Hi, between the port opening diameter Dui holds the relation ( ⁇ ⁇ Dii 2/4) / ( ⁇ ⁇ Hi ⁇ Dui) ⁇ ( ⁇ ⁇ Did 2/4) / ( ⁇ ⁇ Hd ⁇ Dud).
- the left side of this inequality represents the degree of contribution to the pressure loss of the target reed valve (that is, the bottleneck degree of the target reed valve).
- the right side of the inequality represents the contribution to the pressure loss of the reference reed valve.
- the closing speed of the target reed valve can be made equal or higher than that of the reference reed valve. it can. As a result, the reliability of the target reed valve can be ensured.
- the target tongue has a connecting portion and an opening / closing end
- the connecting portion has one end connected to the target fixing portion and the other end connected to the opening / closing end.
- the opening / closing end of the opening / closing end with respect to the X axis passing through the center of gravity of the opening / closing end intersects with the X axis. It differs from the bending rigidity of the open / close end with respect to the axis passing through the center of gravity of the open / close end.
- the rigidity of the open / close end with respect to the force bending at the X axis is different from the rigidity of the open / close end with respect to the force bending at the Y axis.
- the angle formed by the major axis direction having the largest diameter of the open / close end with respect to the center line of the target tongue is 45 ° or more and 135 ° or less.
- the reinforcing rib is formed at the opening / closing end.
- the opening / closing end becomes relatively light compared to a case where the diameter of the opening / closing end is simply increased. Therefore, the impact of the collision of the open / close end portion with other members due to the inertial force can be reduced.
- the open / close end portion is bent at the bent portion, the reinforcing rib is formed on one side of the bent portion, and the bent portion extends linearly.
- the outer periphery of the end on the side near the target tongue portion of the passage on the upstream side of the target tongue portion in the target passage is projected on the plane parallel to the target fixing portion, It does not overlap with the figure in which the reinforcing ribs are projected on the plane.
- the inside of the figure obtained by projecting the outer peripheral edge of the end near the target tongue portion on the upstream side of the target tongue portion in the target passage onto the plane parallel to the target fixing portion is The reinforcing rib is projected onto the plane and overlapped with the figure, and the reinforcing rib protrudes in a direction away from the passage on the upstream side of the target tongue.
- the refrigerant circulating in the gas injection cycle contains carbon dioxide.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Compressor (AREA)
- Rotary Pumps (AREA)
Abstract
ガスインジェクションサイクルに用いられる圧縮機は、吐出ポートおよび吸入ポートのうち一方と圧縮室を繋ぐ基準路において冷媒が逆流することを抑制する基準リードバルブ(17)と、冷媒が前記圧縮室から前記中間圧流入ポートに逆流することを抑制する対象リードバルブ(62)と、を備える。前記基準リードバルブは、基準固定部(170)と基準舌部(171、172、173)と、を有する。前記対象リードバルブは、対象固定部(621)と、前記対象固定部に対して変位可能な対象舌部(622)と、を有する。前記基準舌部の板厚Td、前記基準通路における前記基準舌部の上流側の通路のうち前記基準舌部に近い側の端のポート開口径Dud、前記対象舌部の板厚Ti、前記対象通路における前記対象舌部の上流側の通路のうち前記対象舌部に近い側の端のポート開口径Duiの間に、Dud/Td≦Dui/Ti≦2×Dud/Tdという関係が成立する。
Description
本出願は、2016年6月29日に出願された日本特許出願番号2016-129165号に基づくもので、ここにその記載内容が参照により組み入れられる。
本開示は、圧縮機に関するものである。
従来、ガスインジェクションサイクルに用いられる圧縮機が知られている。このような圧縮機においては、冷媒が中間圧流入ポートから圧縮室に流入する。特許文献1に記載の圧縮機1では、冷媒が圧縮室から中間圧流入ポートに逆流することを抑制するためにリードバルブが設けられている。
発明者の検討により、リードバルブの板厚を薄くすると、冷媒の逆流抑制時には、リードバルブが逆圧によって変形し、リードバルブが弁座との接触部分において微小摺動することがわかった。また、この微小摺動により、リードバルブおよび弁座に摩耗が発生することがわかった。しかしながら、摩耗を低減するために、リードバルブ板圧を厚くすると、インジェクション量が減少し、冷凍サイクル効率が低下するなどの背反が発生する。
本開示はガスインジェクションサイクルに用いられる圧縮機において、中間圧流入ポートから圧縮室に至る通路において冷媒の逆流を抑制するリードバルブの、磨耗を抑制と性能向上の両立することを、目的とする。
本開示の1つの観点によれば、ガスインジェクションサイクルに用いられる圧縮機は、圧縮室を形成し、吸入ポートから前記圧縮室内に低圧の冷媒を吸入して圧縮し、中間圧流入ポートから前記圧縮室内に前記低圧の冷媒よりも圧力の高い中間圧の冷媒を吸入して圧縮し、前記圧縮室において前記低圧の冷媒および前記中間圧の冷媒が圧縮された結果得られた高圧の冷媒を吐出ポートに吐出する圧縮機構部と、
前記吐出ポートおよび前記吸入ポートのうち一方と前記圧縮室を繋ぐ基準通路を開閉することで、前記通路において冷媒が逆流することを抑制する基準リードバルブと、前記中間圧流入ポートから前記圧縮室に至る対象通路を開閉することで、冷媒が前記圧縮室から前記中間圧流入ポートに逆流することを抑制する対象リードバルブと、を備え、
前記基準リードバルブは、基準固定部と、前記基準固定部に対して変位可能な基準舌部と、を有し、
前記対象リードバルブは、対象固定部と、前記対象固定部に対して変位可能な対象舌部と、を有し、
前記基準舌部の板厚Td、前記基準通路における前記基準舌部の上流側の通路のうち前記基準舌部に近い側の端のポート開口径Dud、前記対象舌部の板厚Ti、前記対象通路における前記対象舌部の上流側の通路のうち前記対象舌部に近い側の端のポート開口径Duiの間に、Dud/Td≦Dui/Ti≦2×Dud/Tdという関係が成立する圧縮機である。
前記吐出ポートおよび前記吸入ポートのうち一方と前記圧縮室を繋ぐ基準通路を開閉することで、前記通路において冷媒が逆流することを抑制する基準リードバルブと、前記中間圧流入ポートから前記圧縮室に至る対象通路を開閉することで、冷媒が前記圧縮室から前記中間圧流入ポートに逆流することを抑制する対象リードバルブと、を備え、
前記基準リードバルブは、基準固定部と、前記基準固定部に対して変位可能な基準舌部と、を有し、
前記対象リードバルブは、対象固定部と、前記対象固定部に対して変位可能な対象舌部と、を有し、
前記基準舌部の板厚Td、前記基準通路における前記基準舌部の上流側の通路のうち前記基準舌部に近い側の端のポート開口径Dud、前記対象舌部の板厚Ti、前記対象通路における前記対象舌部の上流側の通路のうち前記対象舌部に近い側の端のポート開口径Duiの間に、Dud/Td≦Dui/Ti≦2×Dud/Tdという関係が成立する圧縮機である。
発明者の検討によれば、基準舌部にかかる逆圧に対し、対象舌部にかかる逆圧の方が大きい。このようなことから、発明者は、対象舌部の板厚Tiを従来よりも大きくすることについて検討した。Dui/Ti≦2×Dud/Tdの関係が成立すれば、板厚Tiが従来よりも大きくなり、且つ、対象舌部の剛性が従来よりも高くなる。
また、Dud/Td≦Dui/Tiという関係が成立する。この関係が成立することの意義について以下説明する。
発明者の検討によれば、中間圧流入ポートから圧縮室に冷媒を流入させることが可能な時間が長くない場合がある。また、中間圧流入ポートから圧縮室に流入する冷媒流量が大きくない場合がある。
発明者は、この点について検討し、従来の対象リードバルブにおける対象舌部の板厚は、中間圧流入ポートから入る冷媒の流量を適切に確保するために必要な程度を超えて、薄くなっている場合があることに気づいた。
Dud/Td≦Dui/Tiであれば、中間圧流入ポートから入る冷媒の流量を適切に確保できる。つまり、対象舌部の剛性が基準舌部と同等かそれ以下でありさえすれば、中間圧流入ポートから入る適切な流量を確保することができる。
このように、Dud/Td≦Dui/Ti≦2×Dud/Tdが成立すれば、中間圧流入ポートから入る冷媒の流量を適切に確保した上で、対象リードバルブの信頼性および耐久性が確保される。
なお、請求の範囲における括弧内の符号は、請求の範囲に記載された用語と後述の実施形態に記載される当該用語を例示する具体物等との対応関係を示すものである。
(第1実施形態)
以下、第1実施形態について説明する。図1に示すヒートポンプサイクル100は、ヒートポンプ式給湯機の一部として用いられて、給湯水を加熱する。ヒートポンプサイクル100は、一例として圧縮機1の圧縮室にて昇圧過程の冷媒にサイクルの中間圧気相冷媒を合流させるガスインジェクションサイクルすなわちエコノマイザ式冷凍サイクルとして構成されている。
以下、第1実施形態について説明する。図1に示すヒートポンプサイクル100は、ヒートポンプ式給湯機の一部として用いられて、給湯水を加熱する。ヒートポンプサイクル100は、一例として圧縮機1の圧縮室にて昇圧過程の冷媒にサイクルの中間圧気相冷媒を合流させるガスインジェクションサイクルすなわちエコノマイザ式冷凍サイクルとして構成されている。
このヒートポンプサイクル100は、図1に示すように、圧縮機1、水-冷媒熱交換器2、第1膨張弁3、気液分離器4、第2膨張弁5、蒸発器6、および油分離器7を有している。
圧縮機1は、吸入ポート1aから冷媒を吸入して圧縮し、圧縮した冷媒を吐出ポート1bに吐出する対称スクロールコンプレッサである。圧縮機1が圧縮する流体、すなわちヒートポンプサイクル100で循環する冷媒は、具体的には二酸化炭素(すなわちCO2)である。より具体的には、この冷媒は、二酸化炭素を主として含む。なお、冷媒には、圧縮機1内部の各摺動部位を潤滑するオイルが混入されており、このオイルの一部は冷媒とともにサイクルを循環している。
水-冷媒熱交換器2は、給湯用の給湯水と圧縮機1から吐出された高圧の冷媒との熱交換を行うことでその給湯水を加熱する熱交換器である。第1膨張弁3は、水-冷媒熱交換器2から流出した冷媒を減圧する。
気液分離器4は、第1膨張弁3の冷媒流れ下流側且つ第2膨張弁5の上流側に配設される。気液分離器4には、第1膨張弁3によって減圧された中間圧の冷媒が流入する。気液分離器4は、その流入した中間圧の冷媒を気相冷媒と液相冷媒とに分離する。そして、気液分離器4は、一部の気相冷媒を、中間圧冷媒配管INJを通じて圧縮機1の中間圧流入ポート1cへ流す。その一方で気液分離器4は、残余の気液二相冷媒または残余の気相冷媒を第2膨張弁5へ流す。
第2膨張弁5は、水-冷媒熱交換器2によって気相冷媒から分離された液層冷媒を減圧させる。蒸発器6は、外気と第2膨張弁5によって減圧された冷媒とを熱交換することで、冷媒を蒸発させる熱交換器である。油分離器7は、圧縮機1から吐出された高圧の冷媒から潤滑油を分離し、分離された潤滑油を、オイル戻しポート1dから圧縮機1内の各部に戻す。
第1膨張弁3および第2膨張弁5は何れもモータを有する電動の膨張弁である。第1膨張弁3の弁開度および第2膨張弁5の弁開度はそれぞれ、不図示の制御装置から制御信号に応じて調節される。
図2は、圧縮機1の構成を表す模式的な断面図である。図2は、圧縮機1の特定の面を切った断面というわけではなく、圧縮機1の複数の異なる断面を寄せ集めて構成したものである。
図2の矢印DR1は圧縮機1の向きを示す。すなわち、図2の両端矢印DR1は上下方向DR1を示している。図2に示す圧縮機1は、スクロール式の電動圧縮機であり、冷媒を圧縮する圧縮機構部10と、圧縮機構部10を駆動する電動機部20とを上下方向(すなわち縦方向)に配置した縦置きタイプになっている。圧縮機1は、圧縮機構部10、電動機部20、ハウジング30等を備えている。
ヒートポンプサイクル100は、圧縮機1の吐出ポート1bから第1膨張弁3入口側へ至るサイクルの高圧側冷媒の圧力が臨界圧力以上となる超臨界冷凍サイクルを構成している。
ヒートポンプ式給湯機は、ヒートポンプサイクル100の他に、図示しない貯湯タンク、給湯水循環回路、水ポンプ等を有している。貯湯タンクは、水-冷媒熱交換器2にて加熱された給湯水を貯める。給湯水循環回路は、貯湯タンクと水-冷媒熱交換器2との間で給湯水を循環させる。水ポンプは、給湯水循環回路に配置されて給湯水を圧送する。
図2に示す圧縮機1は、スクロール式の電動圧縮機であり、圧縮機構部10、電動機部20、ハウジング30等を有している。図2中の矢印DR1は、圧縮機1をヒートポンプ式給湯機に搭載した状態における上下方向を示している。
圧縮機構部10は、圧縮対象流体である冷媒を吸入し、圧縮して吐出する。より具体的には、圧縮機構部10は、後述する圧縮室を形成し、吸入ポート1aから圧縮室内に低圧の冷媒を吸入して圧縮する。また圧縮機構部10は、中間圧流入ポート1cから圧縮室内に低圧の冷媒よりも圧力の高い中間圧の冷媒を吸入して圧縮する。また圧縮機構部10は、圧縮室において低圧の冷媒および中間圧の冷媒が圧縮された結果得られた高圧の冷媒を吐出ポート1bに吐出する。電動機部20は、圧縮機構部10を駆動する。ハウジング30は、圧縮機構部10および電動機部20を収容する。
圧縮機1は、電動機部20から圧縮機構部10へ回転駆動力を伝達する駆動軸25が上下方向DR1に延びて、圧縮機構部10と電動機部20が鉛直方向に配置された、いわゆる縦置きタイプに構成されている。より具体的には、本実施形態では、圧縮機構部10が電動機部20の下方側に配置されている。
ハウジング30は、中心軸が鉛直方向に延びる筒状部材31、筒状部材31の上端部を塞ぐ椀状の上蓋部材32および筒状部材31の下端部を塞ぐ椀状の下蓋部材33を有する。これら筒状部材31、上蓋部材32および下蓋部材33が一体に接合されることで、ハウジング30は、密閉容器構造となっている。筒状部材31、上蓋部材32および下蓋部材33は、いずれも鉄系金属で形成されており、互いに溶接にて接合されている。
ハウジング30は、そのハウジング30内に、圧縮機構部10および電動機部20を収容している。
電動機部20は、固定子をなすステータ21と、回転子をなすロータ22とを有している。ステータ21は、ステータコアとそのステータコアに巻き付けられたステータコイルとを有している。
ステータ21のステータコイルに対する電力の供給は給電端子23を介して行われる。給電端子23は、ハウジング30の上蓋部材32すなわちハウジング30の上端部に配置されている。ステータコイルに電力が供給されるとロータ22に回転磁界が与えられてロータ22に回転力が発生し、駆動軸25がロータ22と一体に回転する。
駆動軸25は円筒状に形成されており、その内部空間は、駆動軸25の摺動部(すなわち潤滑対象部位)に潤滑油を供給する給油通路251である。給油通路251は、駆動軸25の下端面にて開口しており、駆動軸25の上端面においては閉塞部材26で閉塞されている。
駆動軸25のうちロータ22よりも下方側に突出している部位には、上下方向DR1と平行な軸方向と直交する方向である水平方向へ突出する鍔部252が設けられ、その鍔部252にはバランスウェイト254が設けられている。ロータ22の上下方向両側にもバランスウェイト221、222が設けられている。駆動軸25は、軸受部材27とミドルハウジング29の軸受部291とにより支承されている。
ミドルハウジング29は、上方側から下方側に向かって階段状に外径および内径が拡大する円筒形状を有しており、その最外周面がハウジング30の筒状部材31に固定されている。ミドルハウジング29のうち上方側部位が軸受部291を構成している。
ミドルハウジング29のうち下方側部位には、圧縮機構部10の可動スクロール11が収容されている。可動スクロール11の下方側には、圧縮機構部10の固定スクロール12が配置されている。固定スクロール12は、ハウジング30に対して固定されて回転しない固定側部材である。可動スクロール11は、固定スクロール12に対して旋回する旋回側部材である。
可動スクロール11は円板状の基板部111を有し、固定スクロール12は基板部121を有している。基板部111、121は互いに上下方向DR1に対向するように配置されている。
可動スクロール11の基板部111の上面側の中心部には、駆動軸25の下端部が挿入される円筒状のボス部113が形成されている。駆動軸25の下端部は、駆動軸25の回転中心に対して偏心した偏心部253である。
可動スクロール11およびミドルハウジング29には、可動スクロール11が偏心部253周りに自転することを防止する自転防止機構11a、29aが設けられている。このため、駆動軸25が回転すると、可動スクロール11は偏心部253周りに自転することなく、駆動軸25の回転中心を公転中心として公転運動(すなわち旋回)する。
可動スクロール11は、基板部111から固定スクロール12側に向かって突出する歯部112を有している。その歯部112は、渦巻き状に形成されている。一方、固定スクロール12は、基板部121から可動スクロール11側に向かって突出する歯部122を有する。歯部122は、渦巻き状に形成されると共に可動スクロール11の歯部112に噛み合う。
そして、両スクロール11、12の歯部112、122同士が噛み合って複数箇所で接触することによって、回転軸方向から見たときに三日月形状に形成される複数個の圧縮室が形成される。図2では図示の明確化のため、複数個の圧縮室のうち4つの圧縮室151、152、153、154のみに符号を付しており、他の圧縮室については符号を省略している。これら複数の圧縮室は、可動スクロール11の旋回と共に旋回しながら外周から公転中心に向かって移動する。そしてこれら複数の圧縮室が移動すると共に、これら圧縮室の容積が減少する。この体積減少により、これら複数の圧縮室内の冷媒が圧縮される。
図2に示す時点において、圧縮室151は、冷媒の圧力が最も高くなる位置にある。また、圧縮室152、153の各々は、冷媒の圧力が圧縮室151よりも低い中間圧となる位置にある。また、圧縮室154は、冷媒の圧力が圧縮室152、153よりも低い低圧となる位置にある。基板部121の底面には、吐出プレート18が固定されている。
図2、図3に示すように、吸入ポート1a、吐出ポート1b、中間圧流入ポート1c、オイル戻しポート1dは、筒状部材31に固定される。そして、吸入ポート1aは、基板部121内に形成された流路を介して、最外周側に位置付けられる圧縮室154に連通している。また、中間圧流入ポート1cは、基板部121内に形成された流路を介して、最外周側から中心側へ移動する過程の中間位置に位置付けられる圧縮室152、153に連通可能となっている。吐出ポート1bは、基板部121内に形成された流路を介して、圧縮室151に連通可能となっている。
なお、図3は、圧縮機1から下蓋部材33および吐出プレート18を取り除いた状態で、基板部121を下方から見た底面図である。図3中に記載された20個以上の小さい円形は、ボルト穴、位置決め用の穴、潤滑油の流路等である。
中間圧流入ポート1cから中間位置の圧縮室152へ至る冷媒通路の途中には、逆止弁室51aが形成されている。また、中間圧流入ポート1cから中間位置の圧縮室153へ至る冷媒通路の途中には、逆止弁室51bが形成されている。逆止弁室51a、51bは、基板部121に形成された円筒状の窪みと吐出プレート18に形成された窪みによって囲まれている。
逆止弁室51a、51bには、それぞれ、中間インジェクション弁50a、50bが配置されている。
中間インジェクション弁50aは、圧縮室152から中間圧流入ポート1cへ冷媒が逆流することを防止する逆止弁である。中間インジェクション弁50bは、圧縮室153から中間圧流入ポート1cへ冷媒が逆流することを防止する逆止弁である。
図2、図4に示すように、固定スクロール12側の基板部121の中心部には、圧縮室151で圧縮された冷媒が吐出されるメイン吐出孔123aが形成されている。メイン吐出孔123aの下方側には、メイン吐出孔123aと連通する吐出室124が形成されている。図3に示すように、基板部121には、吐出室124から吐出ポート1bへ冷媒を導く開口124aが形成されている。
この吐出室124には、吐出弁17と、吐出弁17の最大開度を規制するストッパ16とが、配置されている。吐出弁17は、リードバルブである。吐出弁17は、吐出ポート1bと圧縮室151とを繋ぐ通路を開閉する。これにより吐出弁17は、当該通路において圧縮室151から吐出ポート1bへ冷媒が流れることを許容し、当該通路において吐出ポート1bから圧縮室151へ冷媒が逆流することを抑制する。吐出ポート1bと圧縮室151とを繋ぐ通路は、吐出室124、および、後述するメイン吐出孔123a、サブ吐出孔123b、サブ吐出孔123cを含む。吐出ポート1bと圧縮室151とを繋ぐ通路は、基準通路に対応する。
ストッパ16の一端および吐出弁17の一端は、ボルト161によって基板部121に固定されている。
油分離器7にて分離されたオイルは、一部が油分離器7の内部に蓄えられると共に、他の一部がオイル戻しポート1dを介してハウジング30内の、圧縮機構部10、駆動軸25と軸受部材27の間の摺動部、駆動軸25軸受部291の間の摺動部等へ、供給される。ハウジング30の底部には、潤滑油が溜まる貯油室35が形成されている。
ここで、吐出室124およびその近傍の構成についてより詳細に説明する。図5は、ストッパ16、吐出弁17、およびボルト161が圧縮機1から除去された状態における吐出室124の拡大図である。
図5に示すように、基板部121のうち、吐出室124側の面には、ボルト穴161a、、メイン吐出孔123a、サブ吐出孔123b、サブ吐出孔123c、メイン周囲溝124x、およびサブ周囲溝124y、124zが形成されている。
ボルト穴161aは、ボルト161が挿入されるねじ穴である。
メイン吐出孔123a、サブ吐出孔123b、サブ吐出孔123cは、いずれも、可動スクロール11と固定スクロール12の間に形成された複数の圧縮室のいずれかに連通する。図5に示すように、吐出孔123a、123b、123cは一列に並んでいる。そして、中央にあるメイン吐出孔123aは、駆動軸25の回転中心線Jに直交する面内の位置が、サブ吐出孔123b、123cよりも、当該回転中心線Jに近い。したがって、高圧縮比で動作する場合、メイン吐出孔123a内の圧力と、サブ吐出孔123b、123c内の圧力は異なる。
図6に示すように、基板部121を吐出室124側の端部から圧縮室151側の端部まで伸びる直円柱形状のメイン吐出孔123aのうち、最小の水力直径を圧縮室側通路最小径Did_mとする。また、メイン吐出孔123aのうち、最も吐出弁17側端の外周部の円周長を円周率で除算した値を、ポート開口径Dud_mとする。メイン吐出孔123aの吐出室124側の端部は、吐出室124側に向けて広がるテーパー形状となっているので、圧縮室側通路最小径Did_mよりもポート開口径Dud_mの方が大きい。なお、本実施形態では、メイン吐出孔123aは直円柱形状となっているので、水力直径と直径は同じ値になる。
また、図7に示すように、基板部121を吐出室124側の端部から圧力室側の端部まで伸びる直円柱形状のサブ吐出孔123cのうち、最小の水力直径を圧縮室側通路最小径Did_sとする。また、サブ吐出孔123cのうち、最も吐出弁17側の端の外周部の円周を円周率で除算した値をポート開口径Dud_sとする。サブ吐出孔123cの吐出室124側の端部は、吐出室124側に向けて広がるテーパー形状となっているので、圧縮室側通路最小径Did_sよりもポート開口径Dud_sの方が大きい。なお、本実施形態では、サブ吐出孔123cは直円柱形状となっているので、水力直径と直径は同じ値になる。サブ吐出孔123bの形状は、サブ吐出孔123cの形状と同じである。
この吐出室124に、図8に示すように、吐出弁17が配置され、更に、図3に示すように、吐出弁17に重ねてストッパ16が配置され、更に、ボルト161でストッパ16および吐出弁17が基板部121に固定される。
吐出弁17は、板厚が一様な1枚の金属平板で形成され、ベース部170、メイン舌部171、サブ舌部172、サブ舌部173を有している。吐出弁17は、基準リードバルブに対応する。
ベース部170は、基板部121に対して固定される固定部である。ベース部170の内周縁170aは、ボルト161を貫通させるためのボルト孔を囲んでいる。ベース部170は基準固定部に対応する。
メイン舌部171は、ベース部170に接続する可動部材であり、ベース部170に対して変位可能である。メイン舌部171は、基準舌部に対応する。メイン舌部171は、連結部171aとメイン弁体171bを有している。連結部171aは、直線状に伸びる細長い板形状の部材であり、一端がベース部170に接続され、他端がメイン弁体171bに接続されている。
メイン弁体171bは、略円盤形状の部材であり、基板部121に接触した状態において、メイン吐出孔123aの全体およびメイン周囲溝124xの全体を全部塞ぐように配置される。したがって、メイン吐出孔123aは、メイン弁体171bの上流側流路である。吐出弁17の板面に平行且つ連結部171aの長手方向に直交する方向における、連結部171aの最大幅は、同方向におけるメイン弁体171bの最大幅よりも短い。
サブ舌部172は、ベース部170に接続する可動部材であり、ベース部170に対して変位可能である。サブ舌部172は、基準舌部に対応する。サブ舌部172は、連結部172aとサブ弁体172bを有している。連結部172aとサブ弁体172bの形状および互いの接続関係は、連結部171aとメイン弁体171bの形状および互いの接続関係と、同じである。連結部172aの一端がベース部170に接続される。サブ弁体172bは、基板部121に接触した状態において、サブ吐出孔123bの全体とサブ周囲溝124yの一部または全体を全部塞ぐように配置される。したがって、サブ吐出孔123bは、サブ弁体172bの上流側流路である。
サブ舌部173は、ベース部170に接続する可動部材であり、ベース部170に対して変位可能である。サブ舌部173は、基準舌部に対応する。サブ舌部173は、連結部173aとサブ弁体173bを有している。連結部173aとサブ弁体173bの形状および互いの接続関係は、連結部171aとメイン弁体171bの形状および互いの接続関係と、同じである。連結部173aの一端がベース部170に接続される。サブ弁体173bは、基板部121に接触した状態において、サブ吐出孔123cの全体とサブ周囲溝124zの一部または全体を全部塞ぐように配置される。したがって、サブ吐出孔123cは、サブ弁体173bの上流側流路である。
連結部171a、172a、173aの長手方向は、互いに略平行である。図8に示すように、メイン舌部171の長手方向の長さを舌長さLd_mとし、サブ舌部172、173の長手方向の長さを舌長さLd_sとする。また、メイン弁体171bの径は、サブ弁体172b、173bの径よりも大きい。
メイン弁体171bは、メイン吐出孔123a側の冷媒圧力と吐出室124の冷媒圧力との差圧によって、ベース部170に対して湾曲変位する。これにより、メイン弁体171bがメイン吐出孔123aの開口部を開閉する。
具体的には、メイン吐出孔123a側の冷媒圧力が吐出室124の冷媒圧力よりも大きい場合、メイン弁体171bは、基板部121から離れ、メイン吐出孔123aの開口部が開く。このとき、メイン吐出孔123aと吐出室124が連通するので、冷媒が圧縮室からメイン吐出孔123a、吐出室124、吐出ポート1bを取って圧縮機1の外部に流出する。なお、メイン吐出孔123a側の冷媒圧力が吐出室124の冷媒圧力よりも十分大きい、メイン弁体171bはストッパ16に当接する。このとき、171bの最大リフトが実現し、メイン吐出孔123aと吐出室124の間の開口面積が最大になる。また、メイン吐出孔123a側の冷媒圧力が吐出室124の冷媒圧力よりも小さい逆圧状態の場合、メイン弁体171bは、基板部121に当接し、メイン吐出孔123aの開口部が閉じる。これにより、吐出室124からメイン吐出孔123aへの逆流が防止される。
サブ弁体172bによるサブ吐出孔123bの開閉の機構も、サブ弁体173bによるサブ吐出孔123cの開閉の機構も、メイン弁体171bによる上述のメイン吐出孔123aの開閉の機構と同様である。
図9は、図4のIX部分を拡大した図である。図9に示すように、メイン舌部171の板厚をTd_mとする。なお、板厚がメイン舌部171において一様でない場合は、メイン舌部171の各位置の板厚の平均値を板厚Td_mとする。
また、メイン弁体171bの最大リフト時における基板部121からのリフト量をバルブ基準リフト量Hd_mとする。このバルブ基準リフト量Hd_mは、具体的には、メイン弁体171bがメイン吐出孔123aを閉じた状態における、メイン吐出孔123aの中心軸S1上のメイン弁体171bとストッパ16の間の空隙の長さであってもよい。
また、サブ舌部172、173の板厚Td_sは、メイン舌部171の板厚Td_mと同じである。また、サブ弁体172b、173bのバルブ基準リフト量Hd_sは、メイン弁体171bのバルブ基準リフト量Hd_mと、同じである。
次に、中間インジェクション弁50aおよびその周辺の詳細構造について説明する。なお、中間インジェクション弁50bおよびその周辺の構造は、中間インジェクション弁50aおよびその周辺の構造と同じなので、説明を省略する。
図2および図10に示すように、固定スクロール12の基板部121には、下流側通路125が形成されている。したがって、固定スクロール12は、下流側通路形成部材を構成している。下流側通路125は、中間圧流入ポート1cから中間位置の圧縮室152へ至る冷媒通路のうち逆止弁室51aよりも冷媒流れ下流側に位置する通路である。逆止弁室51aは、下流側通路125と連通可能になっている。逆止弁室51aは、略円柱形状の空間であり、その中心軸が駆動軸25に対して斜めに延びるように形成されている。
逆止弁室51aに収容される中間インジェクション弁50aは、弁座61およびリードバルブ62を有している。
弁座61は、逆止弁室51aに対応する円筒状に形成されている。弁座61の内部空間は上流側通路61aを構成している。したがって、弁座61は、上流側通路形成部材を構成している。
上流側通路61aは、中間圧流入ポート1cから中間位置の圧縮室152へ至る冷媒通路のうちリードバルブ62よりも冷媒流れ上流側に位置する通路である。上流側通路61aは、弁座61の中心軸上に配置されている。
逆止弁室51aの内周面には雌ネジが形成されている。弁座61の外周面には、当該雌ネジに対応する雄ネジが形成されている。当該雌ネジに弁座61の雄ネジが螺合することによって、弁座61が基板部121に固定される。
リードバルブ62は、基板部121のうち逆止弁室51a側の面を構成する部位と、弁座61のリードバルブ62側端面との間に、配置されている。リードバルブ62は、例えば焼入ステンレス鋼にて薄板状に形成された1枚板である。リードバルブ62の材質は、吐出弁17の材質と同じであってもよいし、違っていてもよい。リードバルブ62は、対象リードバルブに対応する。
リードバルブ62は、中間圧流入ポート1cから圧縮室152に至る通路を開閉する。これにより、リードバルブ62は、当該通路において冷媒が中間圧流入ポート1cから圧縮室152に流入することを許容し、当該通路において冷媒が圧縮室152から中間圧流入ポート1cに逆流することを抑制する。中間圧流入ポート1cから圧縮室152に至る通路は、上流側通路61aおよび下流側通路125を含む。中間圧流入ポート1cから圧縮室152に至る通路は、対象通路に対応する。
図11は、逆止弁室51aから基板部121を見たときの、基板部121に対するリードバルブ62の配置を示す図である。図11に示すように、リードバルブ62は、厚みが一様な金属製の平板であり、外周シート部621および舌部622を有している。外周シート部621は、平面形状が円環状である。
外周シート部621は、基板部121のうち逆止弁室51aの上端に接する部位と弁座61の上端面との間に挟まれて固定されている固定部である。したがって、ボルト等の固定部材が用いられることなくリードバルブ62が固定されている。外周シート部621は、対象固定部に対応する。
舌部622は、リードバルブ62の内周縁に接続する可動部材であり、外周シート部621に対して変位可能となっている。舌部622は、対象舌部に対応する。舌部622は、連結部622sと開閉端部622tを有している。なお、連結部622sと開閉端部622tの境界線BLは、図11に示すように、開閉端部622tの円形の輪郭を舌部622の内部に延長した線となる。つまり、連結部622sと開閉端部622tの境界線BLは、開閉端部622tの輪郭を舌部622の内部に延長した線である。
連結部622sは、一端がリードバルブ62の内周縁に接続され、他端が開閉端部622tに接続されている。開閉端部622tは、円盤形状の部材であり、外周シート部621の内側に、外周シート部621と同軸状に配置されている。開閉端部622tと外周シート部621との間には、リードバルブ62の板面内において弧状に伸びる空隙が形成されている。開閉端部622tは、弁座61に形成された上流側通路61aを開閉する。
リードバルブ62の板面に平行且つ連結部622sの上記一端から上記他端への方向に直交する方向における、連結部622sの最大幅は、同方向における開閉端部622tの最大幅よりも短い。
舌部622は、上流側通路61a側の冷媒圧力P1と下流側通路125側の冷媒圧力P2との差圧によって、外周シート部621に対して湾曲変位する。これにより、開閉端部622tが上流側通路61aの開口部を開閉する。
具体的には、冷媒圧力P1が冷媒圧力P2よりも大きい場合、開閉端部622tは、弁座61から離れ、上流側通路61aの開口部が開く。このとき、上流側通路61aと下流側通路125が連通するので、冷媒が中間圧流入ポート1cから上流側通路61a、下流側通路125を通って圧縮室152に流入する。なお、冷媒圧力P1が冷媒圧力P2よりも十分大きい場合、開閉端部622tは基板部121に当接する。このとき、開閉端部622tの最大リフトが実現し、上流側通路61aと下流側通路125の間の開口面積が最大になる。また、冷媒圧力P1が冷媒圧力P2よりも小さい逆圧状態の場合、開閉端部622tは、弁座61に当接し、上流側通路61aの開口部が閉じる。これにより、圧縮室152から中間圧流入ポート1cへの逆流が防止される。
舌部622の長手方向の長さを舌長さLiとする。舌部622の長手方向の長さLiは、上述の舌部171、172、173の長手方向の長さLd_m、Ld_sのいずれに対しても、1/2以下である。このように舌部622の長手方向の長さをLiが短いのは、中間圧室の弁座の環状溝を含む、リード弁から圧縮室までの空間であるデッドボリュームを少なし、デッドボリュームによる性能低下を抑制するためである。
図10に示すように、上流側通路61aにおける最小の水力直径を弁上流径Dxとする。また、下流側通路125における最小の水力直径を圧縮室側流路最小径Diiとする。また、上流側通路61aのうち、最も開閉端部622tに近い側の端の外周部の円周を円周率で除算した値をポート開口径Duiとする。上流側通路61aの当該端を含む端部は、当該端に向けて広がるテーパー形状となっている。したがって、弁上流径Dxよりもポート開口径Duiの方が大きい。圧縮室側通路最小径Diiは、弁上流径Dxよりも小さい。なお、本実施形態では、圧縮室側通路最小径Diiは、中間圧流入ポート1cから圧縮室152に至る通路における最小の水力直径である。
なお、本実施形態では、上流側通路61a、下流側通路125は直円柱形状となっているので、水力直径と直径は同じ値になる。
また、図10に示すように、リードバルブ62の舌部622の板厚をTiとする。なお、板厚が舌部622において一様でない場合は、舌部622の各位置の板厚の平均値を板厚Tiとする。
また、開閉端部622tの最大リフト時における弁座61からのリフト量をバルブ基準リフト量Hiとする。このバルブ基準リフト量Hiは、具体的には、開閉端部622tが上流側通路61aを閉じた状態における、上流側通路61aの中心軸S2上の開閉端部622tと基板部121の間の空隙の長さであってもよい。
下流側通路125の開口部は、上流側通路61aの下流側通路125側開口部に対して、オフセットされている。つまり、下流側通路125の開口部は、逆止弁室51aの軸方向から見たときに、上流側通路61aの当該開口部に対して、ずれた位置に配置されている。
弁座61の下流側通路125側の端面のうち、上流側通路61aの下流側通路125側開口部の周囲部には、環状溝61bが形成されている。環状溝61bは、弁座61の端面とリードバルブ62との間に異物が挟まることを防止する役割を果たす。
ここで、上記の通り定義した圧縮室側通路最小径Did_m、Did_s、Dii、ポート開口径Dud_m、Dud_s、Dui、板厚Td_m、Td_s、Ti、バルブ基準リフト量Hd_m、Hd_s、Hi、舌長さLd_m、Ld_s、Liの間の関係について説明する。
図12に、4つの異なる実施例A、B、C、Dにおける、上記各量の具体的数値を示す。実施例A、B、C、Dのいずれにおいても、吐出弁17およびその前後における流路のサイズは同じである。
なお、図12中で弁座流路径として表されている量は、メイン舌部171に関しては圧縮室側通路最小径Did_mに相当し、サブ舌部172、173に関しては圧縮室側通路最小径Did_sに相当し、中間インジェクション弁50a、50bに関しては弁上流径Dxに相当する。また、圧縮室側流路最小径Diは、メイン舌部171に関しては圧縮室側通路最小径Did_mに相当し、サブ舌部172、173に関しては圧縮室側通路最小径Did_sに相当し、中間インジェクション弁50a、50bに関しては圧縮室側通路最小径Diiに相当する。また、ポート開口径Duは、メイン舌部171に関してはポート開口径Dud_mに相当し、サブ舌部172、173に関してはポート開口径Dud_sに相当し、中間インジェクション弁50a、50bに関してはポート開口径Duiに相当する。また、弁体板厚Tは、メイン舌部171に関しては板厚Td_mに相当し、サブ舌部172、173に関しては板厚Td_sに相当し、中間インジェクション弁50a、50bに関しては板厚Tiに相当する。また、基準リフト量Hは、メイン舌部171に関してはバルブ基準リフト量Hd_mに相当し、サブ舌部172、173に関してはバルブ基準リフト量Hd_sに相当し、中間インジェクション弁50a、50bに関してはバルブ基準リフト量Hiに相当する。また、舌長さLは、メイン舌部171に関しては舌長さLd_mに相当し、サブ舌部172、173に関しては舌長さLd_sに相当し、中間インジェクション弁50a、50bに関しては舌長さLiに相当する。
まず、Dui/Ti≦2×Dud/Tdという関係式が成立する。この関係式は、量Dud、Tdの組が量Dud_m、Td_mの組である場合にのみ成立してもよい。また、この関係式は、量Dud、Tdの組が量Dud_s、Td_sの組である場合にのみ成立してもよい。また、この関係式は、上記の両方の場合に成立してもよい。この関係が成立することの意義について以下説明する。
本実施形態では、固定スクロール12の基板部121内に埋め込むように中間インジェクション弁50a、50bが設置される。また、性能低下につながるデッドボリュームを小さくするために、舌部622の舌長さLiを短くしている。
そのような場合、中間圧冷媒配管INJから中間圧流入ポート1cにインジェクションされる中間圧冷媒の流量を確保するために、従来は、リードバルブ62の板厚を吐出弁17の板厚Td_m、Td_sよりも薄くしていた。
しかし、発明者の検討によって、リードバルブ62の板厚を薄くすると、冷媒の逆流防止時には、リードバルブ62の開閉端部622tが逆圧によって変形し、開閉端部622tが弁座61との接触部分において微小摺動することがわかった。また、この微小摺動により、開閉端部622tおよび弁座61に摩耗が発生することがわかった。特に二酸化炭素を冷媒として用いる場合、フロン系の冷媒と比較し、使用時の圧力が高い為、弁に発生する逆圧が大きく、磨耗が大きくなる。
このような磨耗が発生すると、冷媒漏れによる圧縮機1の性能低下、摩耗進行による中間インジェクション弁の割れ、冷凍サイクル内の異物量の増加の可能性が高くなる。
また、図11に示すように、下流側通路125がリードバルブ62の舌部622の伸びる方向の先端附近にあると、冷媒の流れによって開閉端部622tの先端部が震えて微小振動が発生することがわかった。また、この微小振動の結果、開閉端部622tと弁座61の接触部分(すなわちシール部)の摩耗が大きくなってしまうことがわかった。
特に、メイン弁体171b、サブ弁体172b、173bにかかる逆圧に対し、開閉端部622tにかかる逆圧の方が、2倍以上大きい。
このようなことから、発明者は、リードバルブ62の舌部622の板厚Tiを従来よりも大きくして開閉端部622tの剛性を高めることについて検討した。Dui/Ti≦2×Dud/Tdの関係にすれば、板厚Tiが従来よりも大きくなり、且つ、開閉端部622tの剛性が従来よりも高くなる。なお、Dui/Tiという量は、舌部622の変形し易さに相当する量である。また、Dud_m/Td_mという量は、メイン舌部171の変形し易さに相当する量である。また、Dud_s/Td_sという量は、サブ舌部172、173の変形し易さに相当する量である。
また、Dud/Td≦Dui/Tiという関係が成立する。この関係式は、量Dud、Tdの組が量Dud_m、Td_mの組である場合にのみ成立してもよい。また、この関係式は、量Dud、Tdの組が量Dud_s、Td_sの組である場合にのみ成立してもよい。また、この関係式は、上記の両方の場合に成立してもよい。この関係が成立することの意義について以下説明する。
二酸化炭素を冷媒として用いるヒートポンプ式給湯機においては、一般的に以下のことが言える。すなわち、駆動軸25が1回転する期間のうち、中間圧流入ポート1cから圧縮室152、153に冷媒を流入させることが可能な時間は、当該期間においてサブ吐出孔123b、123cが開口している時間の約半分である。つまり、中間圧流入ポート1cから圧縮室152、153に冷媒を流入させることが可能な時間、すなわち、インジェクション時間は、さほど長くない。
また、中間圧流入ポート1cから圧縮室152、153に冷媒が流入する期間においても、流入する冷媒量は、ヒートポンプサイクル100における冷媒の全体流量の半分以下程度に過ぎない。中間圧流入ポート1cから圧縮室152、153に流入する冷媒流量はさほど大きくない。
発明者は、この点について検討し、従来のリードバルブ62における舌部622の板厚は、中間圧流入ポート1cから入る冷媒の流量を適切に確保するために必要な程度を超えて、薄くなっていることに気づいた。Dud/Td≦Dui/Tiであれば、中間圧流入ポート1cから入る冷媒の流量を適切に確保できる。つまり、舌部622の剛性が舌部171、172、173と同等かそれ以下でありさえすれば、中間圧流入ポート1cから入る適切な流量を確保することができる。
このように、Dui/Ti≦2×Dud/Tdが成立し、且つ、Dud/Td≦Dui/Tiが成立すれば、圧縮機1について適切な性能を得られる。すなわち、中間圧流入ポート1cから入る冷媒の流量が適切に確保された上で、中間インジェクション弁50a、50bの信頼性および耐久性が確保される。
更に好ましくは、中間圧冷媒配管INJにおける冷媒圧力(すなわち中間圧)と吸入ポート1aの直前における冷媒圧力(すなわち吸入圧)との差圧が小さくなる程インジェクション時間が短くなる。そのため、差圧が小さい場合でも十分にインジェクションするためには、0.5×Dud_s/Td_s≦Dui/Tiであることが望ましい。
また、(π×Dii2/4)/(π×Dui×Li/Ti)<(π×Did2/4)/(π×Dud×Ld/Td)の関係が成立する。
この関係式は、量Did、Dud、Ld、Tdの組が量Did_m、Dud_m、Ld_m、Td_mの組である場合にのみ成立してもよい。また、この関係式は、量Did、Dud、Ld、Tdの組が量Did_s、Dud_s、Ld_s、Td_sの組である場合にのみ成立してもよい。また、この関係式は、上記の両方の場合に成立してもよい。このようになっていることで、舌の長さに応じた弁の板厚の範囲を設定し、インジェクション時の流量を確保することができる。
ここで、π×Dii2/4は、図10に示すように、下流側通路125の最小開口面積に相当する。また、π×Duiは、上流側通路61aのポート開口の周長に該当する。また、Li/Tiは、舌部622の反り易さ(すなわち、リフトし易さ)を示す指標である。下流側通路125は上流側通路61aと比べると冷媒流路のボトルネックになり易い。したがって、上記2つの不等式の左辺の値が大きいほど、リードバルブ62の圧力損失に対する寄与度(すなわちリードバルブ62のボトルネック度合い)が大きい。同様に、上記2つの不等式の右辺の値が大きい程、吐出弁17の圧力損失に対する寄与度(すなわち吐出弁17のボトルネック度合い)が大きい。したがって、上記2つの不等式は、リードバルブ62の圧力損失に対する寄与度が、吐出弁17の圧力損失に対する寄与度よりも低いことを示す。
また、(π×Dii2/4)/(π×Hi×Dui)≦1という関係が成立する。この関係が成立することの意義について以下説明する。
この不等式の左辺の分子は、既に説明した通り、下流側通路125の最小開口面積に相当する。また、この不等式の左辺の分母は、開閉端部622tの最大リフト時における開閉端部622tと弁座61の間の開口面積である。換言すれば、この不等式の左辺の分母は、開閉端部622tの最大リフト時において対象舌部によって空けられた通路の開口面積である。したがって、この不等式の左辺が大きくなるほど、リードバルブ62の圧力損失に対する寄与度(すなわちリードバルブ62のボトルネック度合い)が大きくなる。
上記のような不等式が成立することで、インジェクション流路断面積が、中間インジェクション弁50a、50bの部分で最小にならない。したがって、中間圧流入ポート1cから冷媒が流入するインジェクション時の冷媒流量が多くなり、ひいては圧縮機1の能力が向上する。
また、(π×Dii2/4)/(π×Hi×Dui)<(π×Did2/4)/(π×Hd×Dud)という関係が成立する。
この関係式は、量Did、Dud、Hdの組が量Did_m、Dud_m、Hd_mの組である場合にのみ成立してもよい。また、この関係式は、量Did、Dud、Hdの組が量Did_s、Dud_s、Hd_sの組である場合にのみ成立してもよい。また、この関係式は、上記の両方の場合に成立してもよい。この関係が成立することの意義について以下説明する。
これら2つの不等式の左辺は、上述の通り、リードバルブ62の圧力損失に対する寄与度(すなわちリードバルブ62のボトルネック度合い)を表している。また、これら2つの不等式の右辺は、吐出弁17の弁体171b、172b、173bの圧力損失に対する寄与度を表している。
このように、リードバルブ62の圧力損失に対する寄与度を吐出弁17の圧力損失に対する寄与度よりも低く抑えることで、開閉端部622tの閉じるスピードを、吐出弁17と比べて同等または高くすることができる。その結果、中間インジェクション弁50a、50bのリードバルブ62の信頼性を確保することができる。
次に、圧縮機1の作動を説明する。圧縮機1の電動機部20に電力が供給されてロータ22および駆動軸25が回転すると、可動スクロール11が駆動軸25に対して公転運動(すなわち旋回運動)する。これにより、可動スクロール11側の歯部112と固定スクロール12側の歯部122との間に形成された三日月状の複数個の圧縮室151~154が外周側から中心側へ旋回しながら移動していく。
最外周側に位置付けられて吸入ポート1aに連通する圧縮室には、蒸発器6から流出した低圧冷媒が吸入ポート1aを介して流入する。低圧冷媒が流入した圧縮室は、駆動軸25の回転に伴って、その容積を縮小させながら中間圧流入ポート1cに連通する位置へ移動する。
この際、中間圧流入ポート1c側の中間圧気相冷媒の圧力がこの圧縮室側の冷媒圧力P2よりも高くなっている状態では、中間インジェクション弁50a、50bの各々において、以下のような状態になる。すなわち、中間圧流入ポート1c側の冷媒圧力P1と当該圧縮室側の冷媒圧力P2との圧力差によって、リードバルブ62の開閉端部622tが弁座61から離れる側へ変位する。
これにより、上流側通路61aすなわちインジェクション用の冷媒通路が開き、中間圧流入ポート1cから上流側通路61aを通った中間圧気相冷媒が、下流側通路125を流れて当該圧縮室へインジェクションされる。
駆動軸25がさらに回転して圧縮室の容積が縮小し、圧縮室側の冷媒圧力P2が中間圧流入ポート1c側の中間圧気相冷媒の冷媒圧力P1を上回ると、圧縮室15側の冷媒圧力P2と中間圧流入ポート1c側の冷媒圧力P1との圧力差によって、リードバルブ62の開閉端部622tが弁座61側へ変位する。
これにより、上流側通路61aが閉じられ、当該圧縮室側から中間圧流入ポート1c側へ冷媒が逆流してしまうことが防止される。したがって、当該圧縮室側から中間圧流入ポート1c側へ冷媒が逆流することに起因するヒートポンプサイクル100の成績係数(COP)の悪化が防止される。
このように逆流が防止される状態が、逆圧状態である。このときに、舌部622が既に説明した通りの寸法となっているので、開閉端部622tと弁座61の接触部分の磨耗が抑制される。
駆動軸25がさらに回転して圧縮室が中心側へ移動して固定スクロール12のメイン吐出孔123aおよびサブ吐出孔123b、123cへ連通すると、当該圧縮室にて圧縮された高圧冷媒が吐出ポート1bから油分離器7を介して水-冷媒熱交換器2側へ流出する。
(第2実施形態)
次に、第2実施形態について、図13A、図13Bを用いて説明する。本実施形態のヒートポンプサイクル100が第1実施形態のヒートポンプサイクル100と異なるのは、リードバルブ62の開閉端部622tが開閉端部622uに置き換えられている点のみである。
次に、第2実施形態について、図13A、図13Bを用いて説明する。本実施形態のヒートポンプサイクル100が第1実施形態のヒートポンプサイクル100と異なるのは、リードバルブ62の開閉端部622tが開閉端部622uに置き換えられている点のみである。
図13A、図13Bに示すように、開閉端部622uは、楕円板形状の部材であり、外周シート部621の内側に、外周シート部621と同軸状に配置されている。開閉端部622uと外周シート部621との間には、リードバルブ62の板面内において弧状に伸びる空隙が形成されている。開閉端部622uは、弁座61に形成された上流側通路61aを開閉する。
図13Aに示すように、開閉端部622uの弁舌方向201の最大長さWyは、開閉端部622uの弁幅方向202の最大長さWxよりも短い。より具体的には、開閉端部622uの楕円形状の長軸と弁幅方向202とが一致し、開閉端部622uの短軸と弁舌方向201とが一致する。ここで、弁舌方向201は、舌部622の長手方向である。また、弁幅方向202は、リードバルブ62の板面に平行且つ弁舌方向201に直交する方向である。なお、ここでいう直交は、厳密な直交のみならず、本実施形態の効果が発揮される限りにおいて厳密な直交からずれた角度も包含する。こうすることで、弁舌方向201の剛性が弁舌方向に直交する方向に対して高くなる。連結部622sと開閉端部622uの境界線BLuは、図13Aに示すように、開閉端部622uの楕円形の輪郭を舌部622の内部に延長した線となる。
ここで、開閉端部622uの重心Cを通り且つ弁舌方向201に平行な軸をY軸という。また、当該重心Cを通り且つ弁幅方向202に平行な軸をX軸という。また、当該重心Cを通り且つリードバルブ62の板面に垂直な方向をZ軸という。なお、開閉端部622uの重心Cと図心は略一致する。
Z軸とX軸を含むX-Z断面における、X軸に関する開閉端部622uの断面2次モーメントIzxは、X軸を軸に開閉端部622uをリフト方向に曲げる場合の変形しにくさを表す量である。また、Z軸とY軸を含むY-Z断面における、Y軸に関する開閉端部622uの断面2次モーメントIzyは、Y軸を軸に開閉端部622uをリフト方向に曲げる場合の変形しにくさを表す量である。
そして、断面2次モーメントIzxは断面2次モーメントIzyよりも大きい。より具体的には、断面2次モーメントIzxが断面2次モーメントIzyの1.01倍以上となっており、より好ましくは、断面2次モーメントIzxが断面2次モーメントIzyの2倍以上となっている。なお、開閉端部622uの重心Cを通り且つ弁舌方向201に平行な軸は、連結部622sの中心線と一致する。
このようにIzx>Izyとなっていることで、X軸で折れ曲がる力に対する開閉端部622uの剛性の方が、Y軸で折れ曲がる力に対する開閉端部622uの剛性よりも、高くなる。つまり、X軸に関する開閉端部622uの曲げ剛性が、Y軸に関する開閉端部622uの曲げ剛性よりも大きくなっている。発明者の検討によれば、開閉端部622uが開閉する上流側通路61aの外周縁のうち、舌部622の先端側の部分61xが、逆圧による磨耗が最も大きい。しかし、上記のように開閉端部622uがX軸で折れ曲がり難くなっていれば、当該部分61xにおける開閉端部622uの摺動を低減することができる。その結果、当該部分61xにおける開閉端部622uの磨耗を低減できる。
また、開閉端部622uの剛性を上げるために単に円盤形状の開閉端部の径を増大させるのではなく、開閉端部622uの特定の方向にだけ径を大きくすることで、開閉端部622uが比較的軽量となる。そのため、慣性力による開閉端部622uの弁座61への衝突の衝撃を抑制することができる。
このような効果は、開閉端部622uの径が最も大きい長軸方向が、連結部622sの中心線(すなわち舌部622の長手方向)に対して成す角度が、45°以上且つ135°以下であれば、より顕著である。また、この角度が60°以上且つ120°以下であればより望ましい。図13Aでは、この角度は90°である。
(第3実施形態)
次に、第3実施形態について、図14、図15を用いて説明する。本実施形態のヒートポンプサイクル100が第1実施形態のヒートポンプサイクル100と異なるのは、リードバルブ62の開閉端部622tが開閉端部622vに置き換えられている点のみである。
次に、第3実施形態について、図14、図15を用いて説明する。本実施形態のヒートポンプサイクル100が第1実施形態のヒートポンプサイクル100と異なるのは、リードバルブ62の開閉端部622tが開閉端部622vに置き換えられている点のみである。
図14に示すように、開閉端部622vの、リードバルブ62の板面に平行な面に投影された形状は、円形である。すなわち、開閉端部622vは、略円盤形状の部材である。また、開閉端部622vは、外周シート部621の内側に、外周シート部621と同軸状に配置されている。開閉端部622vと外周シート部621との間には、リードバルブ62の板面内において弧状に伸びる空隙が形成されている。開閉端部622vは、弁座61に形成された上流側通路61aを開閉する。
図14、図15に示すように、開閉端部622vには、2つの補強リブ623、624が形成されている。補強リブ623、624は、開閉端部622vの一部であり、開閉端部622vの他の部分と一体に形成されている。具体的には、開閉端部622vの素材となる板を折り曲げることで補強リブ623、624が形成される。
具体的には、開閉端部622vには、谷折りされた4つの折れ曲がり部623a、623b、624a、624bが形成される。また開閉端部622vには、山折りされた2つの折れ曲がり部623c、624cが形成される。折れ曲がり部623cが折れ曲がり部623a、623bの間に形成され、折れ曲がり部624cが折れ曲がり部624a、624bの間に形成される。
そして、折れ曲がり部623aの折れ曲がり部623b側(すなわち一方側)かつ折れ曲がり部623bの折れ曲がり部623a側(すなわち一方側)の部分が、補強リブ623となる。また、折れ曲がり部624aの折れ曲がり部624b側(すなわち一方側)かつ折れ曲がり部624bの折れ曲がり部624a側(すなわち一方側)の部分が、補強リブ624に該当する。そして、折れ曲がり部623c、624cが、それぞれ、補強リブ623、624の頂点となる。その結果、補強リブ623、624は、凸形状に曲がった形状を有する。
また、これら折れ曲がり部623a、623b、623c、624a、624b、624cは、Y軸に平行に直線状に伸びている。したがって、補強リブ623、624の凸形状の頂点はY軸に平行に直線状に伸びている。また、補強リブ623、624の短手方向の端部はY軸に平行に直線状に伸びている。
なお、補強リブ623、624は、リードバルブ62の外周シート部621の板面に対して直交に、且つ、弁座61から離れる方向に、突出する。したがって、補強リブ623、624は、冷媒流路の下流側に突出する。
このような補強リブ623、624が形成されることで、単に開閉端部の径を大きくする場合に比べ、開閉端部622vが比較的軽量となる。そのため、慣性力による開閉端部622vの弁座61への衝突の衝撃を緩和することができる。
また、このようになっていることで、開閉端部622vの弁リフト量を制限できる。すなわち、開閉端部622vのバルブ基準リフト量Hiを抑制できる。したがって、開閉端部622vの弁としての信頼性が向上する。また、デッドボリュームを削減できるため、中間圧流入ポート1cから冷媒をインジェクションしないときの圧縮機1の効率を向上できる。なお、デッドボリュームは、圧縮室152の上流かつリードバルブ62の下流の空間である。
また、図14に示すように、この補強リブ623、624は、X軸に交差する方向に伸びている。より具体的には、補強リブ623、624は、Y軸に平行に直線状に伸びている。すなわち、開閉端部622vのうち補強リブ623、624を形成するために折れ曲がった折れ曲がり部623a、623b、623c、624a、624b、624cは、Y軸に平行に直線状に伸びている。補強リブ623、624を形成するために折れ曲がった折れ曲がり部623a、623b、623c、624a、624b、624cは、補強リブ623、624の凸形状の頂点、および、開閉端部622vのうち補強リブ623、624以外の部分と補強リブ623、624の部分との境界である。このように直線的に補強リブ623、624が形成されることで、開閉端部622vの加工が容易になる。
また、図14に示すように、上流側通路61aのうち、下流側通路125に近い側の端の外周縁を、リードバルブ62の外周シート部621に平行な平面に投影した図形61yの内部と、補強リブ623、624を外周シート部621に平行な平面に投影した図形とは、重ならない。
このようになっていることで、開閉端部622vによる上流側通路61aのシール性能を補強リブ623、624が悪化させる可能性が低減される。また、補強リブ623、624が弁座61に局所的に当たらないので、閉弁時において開閉端部622vが弁座61に及ぼす面圧が低い。その結果、開閉端部622vが摩耗し難い。
また、本実施形態では、断面2次モーメントIzx、Izy間の関係は、第2実施形態と同じである。したがって、本実施形態でも、断面2次モーメントIzx、Izy間の関係に起因する効果が、第2実施形態と同様に実現される。つまり、X軸に関する開閉端部622vの曲げ剛性が、Y軸に関する開閉端部622uの曲げ剛性よりも大きくなっている。
なお、連結部622sと開閉端部622vの境界線BLは、図14に示すように、開閉端部622vの円形の輪郭を舌部622の内部に延長した線となる。
(第4実施形態)
次に、第4実施形態について、図16、図17を用いて説明する。本実施形態のヒートポンプサイクル100は、第3実施形態のヒートポンプサイクル100に対して、補強リブ623、624の位置が異なっている。それ以外のヒートポンプサイクル100の構成は、第3実施形態と同じである。
次に、第4実施形態について、図16、図17を用いて説明する。本実施形態のヒートポンプサイクル100は、第3実施形態のヒートポンプサイクル100に対して、補強リブ623、624の位置が異なっている。それ以外のヒートポンプサイクル100の構成は、第3実施形態と同じである。
また、図16に示すように、この補強リブ623、624は、第3実施形態と同様、X軸に交差する方向に伸びている。より具体的には、補強リブ623、624は、Y軸に平行に直線状に伸びている。
また、図16に示すように、上流側通路61aのうち、下流側通路125に近い側の端の外周縁を、リードバルブ62の外周シート部621に平行な平面に投影した図形61yの内部に、補強リブ623、624を外周シート部621に平行な平面に投影した図形の一部が、重なる。この点が、第3実施形態と異なる。
また、第3実施形態と同様、補強リブ623、624は、リードバルブ62の外周シート部621の板面に対して直交に、且つ、弁座61から離れる方向に、且つ、上流側通路61aから離れる方向に、突出する。したがって、補強リブ623、624は、冷媒流路の下流側に突出する。
この場合、図17に示すように、補強リブが突出する方向と反対側の面、つまり、開閉端部622vのうち閉弁時に弁座61と接する部分の面(以下、裏面という)は、平滑面となっている。具体的には端部622vの裏面において、補強リブ623、624の裏面側(すなわち反突出側)にある部分、および、その周囲の部分は、段差の無い面一の平面を形成している。
また、別の観点によれば、開閉端部622vの裏面のうち、外周シート部621に平行な平面に投影したときに上述の図形61yの内部と重なる部分は、段差の無い面一の平面(すなわち、平滑面)を形成している。
このようになっていることで、第3実施形態と同様、開閉端部622vの弁としての信頼性が向上する。また、第3実施形態と同様、中間圧流入ポート1cから冷媒をインジェクションしないときの圧縮機1の効率を向上できる。
なお、連結部622sと開閉端部622vの境界線BLは、図16に示すように、開閉端部622vの円形の輪郭を舌部622の内部に延長した線となる。
(他の実施形態)
なお、本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。特に、ある量について複数個の値が例示されている場合、特に別記した場合および原理的に明らかに不可能な場合を除き、それら複数個の値の間の値を採用することも可能である。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。また、本開示は、上記各実施形態に対する以下のような変形例および均等範囲の変形例も許容される。なお、以下の変形例は、それぞれ独立に、上記実施形態に適用および不適用を選択できる。すなわち、以下の変形例のうち任意の組み合わせを、上記実施形態に適用することができる。
なお、本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。特に、ある量について複数個の値が例示されている場合、特に別記した場合および原理的に明らかに不可能な場合を除き、それら複数個の値の間の値を採用することも可能である。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。また、本開示は、上記各実施形態に対する以下のような変形例および均等範囲の変形例も許容される。なお、以下の変形例は、それぞれ独立に、上記実施形態に適用および不適用を選択できる。すなわち、以下の変形例のうち任意の組み合わせを、上記実施形態に適用することができる。
(変形例1)
上記実施形態では、圧縮機1は、吐出弁17と中間インジェクション弁50a、50bを有するが、圧縮機1は、吐出弁17を有さず吸入弁を有してもよい。吸入弁は、リードバルブである。吸入弁は、吸入ポート1aと圧縮室154とを繋ぐ通路を開閉する。これにより吸入弁は、当該通路において吸入ポート1aから圧縮室154へ冷媒が流れることを許容し、当該通路において圧縮室154から吸入ポート1aへ冷媒が逆流することを抑制する。この場合、吸入弁が基準リードバルブに対応する。また、吸入ポート1aと圧縮室154とを繋ぐ通路は、基準通路に対応する。
上記実施形態では、圧縮機1は、吐出弁17と中間インジェクション弁50a、50bを有するが、圧縮機1は、吐出弁17を有さず吸入弁を有してもよい。吸入弁は、リードバルブである。吸入弁は、吸入ポート1aと圧縮室154とを繋ぐ通路を開閉する。これにより吸入弁は、当該通路において吸入ポート1aから圧縮室154へ冷媒が流れることを許容し、当該通路において圧縮室154から吸入ポート1aへ冷媒が逆流することを抑制する。この場合、吸入弁が基準リードバルブに対応する。また、吸入ポート1aと圧縮室154とを繋ぐ通路は、基準通路に対応する。
この場合、吸入弁の構成および形状は、吐出弁17と全く同じになっていてもよい。すなわち、吸入弁は、吐出弁17と同じベース部170、メイン舌部171、およびサブ舌部172、173を有していてもよい。また、ストッパ16と同等のものが吸入弁の近傍に配置されて、吐出弁のメイン舌部およびサブ舌部の最大リフト時のリフト量を規定していてもよい。また、吸入弁の上流および下流の通路の形状も、吐出弁17の上流および下流の通路の形状と同じになっていてもよい。この場合、吸入弁に関する量Did_m、Did_s、Dud_m、Dud_s、Td_m、Td_s、Hd_m、Hd_s、Ld_m、Ld_sが、吐出弁17と同様に定義できる。そして、そのようにして定義された量の値は、吐出弁17と同じであってもよい。したがってこの場合、上記実施形態における吐出弁17とリードバルブ62との間の関係は、吸入弁とリードバルブ62の間において同様に成立する。
(変形例2)
上記実施形態では、冷媒として二酸化炭素が用いられているが、他の冷媒が用いられてもよい。
上記実施形態では、冷媒として二酸化炭素が用いられているが、他の冷媒が用いられてもよい。
(変形例3)
上記実施形態では、圧縮機1が2個の中間インジェクション弁50a、50bを有しているが、1個の中間インジェクション弁50aのみを有していてもよい。
上記実施形態では、圧縮機1が2個の中間インジェクション弁50a、50bを有しているが、1個の中間インジェクション弁50aのみを有していてもよい。
(変形例4)
上記実施形態では、吐出弁17が3つの舌部171、172、173を有し、それぞれが吐出孔123a、123b、123cを開閉する。しかし、吐出弁17は、メイン吐出孔123aを有するメイン舌部171のみを有していてもよい。その場合、サブ吐出孔123b、123cは形成されなくてもよい。
上記実施形態では、吐出弁17が3つの舌部171、172、173を有し、それぞれが吐出孔123a、123b、123cを開閉する。しかし、吐出弁17は、メイン吐出孔123aを有するメイン舌部171のみを有していてもよい。その場合、サブ吐出孔123b、123cは形成されなくてもよい。
(変形例5)
上記第2実施形態では、開閉端部622uが楕円板形状を有しているが、開閉端部622uの形状は長円形の板形状を有していてもよい。
上記第2実施形態では、開閉端部622uが楕円板形状を有しているが、開閉端部622uの形状は長円形の板形状を有していてもよい。
(変形例6)
上記第3、第4実施形態において、補強リブ623、624は開閉端部622vと一体に形成されているが、開閉端部622vとは別部材として形成されていてもよい。
上記第3、第4実施形態において、補強リブ623、624は開閉端部622vと一体に形成されているが、開閉端部622vとは別部材として形成されていてもよい。
(変形例7)
第3実施形態においては、補強リブ623、624は、リードバルブ62の外周シート部621の板面に対して直交に、且つ、弁座61に近付く方向に、突出してもよい。この場合、補強リブ623、624は、冷媒流路の上流側に突出する。
第3実施形態においては、補強リブ623、624は、リードバルブ62の外周シート部621の板面に対して直交に、且つ、弁座61に近付く方向に、突出してもよい。この場合、補強リブ623、624は、冷媒流路の上流側に突出する。
(変形例8)
上記第2、第3、第4実施形態では、X軸に関する開閉端部622u、622vの曲げ剛性は、当該X軸に直交するY軸に関する開閉端部622uの曲げ剛性よりも大きくなっている。しかし、必ずしもこのようになっておらずともよい。
上記第2、第3、第4実施形態では、X軸に関する開閉端部622u、622vの曲げ剛性は、当該X軸に直交するY軸に関する開閉端部622uの曲げ剛性よりも大きくなっている。しかし、必ずしもこのようになっておらずともよい。
例えば、X軸に関する開閉端部622u、622vの曲げ剛性は、当該X軸に対して90°以外の角度で交差すると共に開閉端部622u、622vの重心を通る軸に関する開閉端部622uの曲げ剛性よりも大きくなっていてもよい。ここで、交差するとは、平行以外の角度で交わることをいう。
更には、X軸に関する開閉端部622u、622vの曲げ剛性は、当該X軸に対して交差すると共に開閉端部622u、622vの重心を通る軸に関する開閉端部622uの曲げ剛性よりも、大きくではなく、小さくなっていてもよい。
つまり、X軸に関する開閉端部622u、622vの曲げ剛性は、当該X軸に対して交差すると共に開閉端部622u、622vの重心を通る軸に関する開閉端部622uの曲げ剛性と異なっていればよい。
(まとめ)
上記各実施形態の一部または全部で示された第1の観点によれば、ガスインジェクションサイクルに用いられる圧縮機は、基準舌部の板厚Td、基準通路における基準舌部の上流側の通路のうち基準舌部に近い側の端のポート開口径Dud、対象舌部の板厚Ti、対象通路における対象舌部の上流側の通路のうち対象舌部に近い側の端のポート開口径Duiの間に、Dud/Td≦Dui/Ti≦2×Dud/Tdという関係が成立する。
上記各実施形態の一部または全部で示された第1の観点によれば、ガスインジェクションサイクルに用いられる圧縮機は、基準舌部の板厚Td、基準通路における基準舌部の上流側の通路のうち基準舌部に近い側の端のポート開口径Dud、対象舌部の板厚Ti、対象通路における対象舌部の上流側の通路のうち対象舌部に近い側の端のポート開口径Duiの間に、Dud/Td≦Dui/Ti≦2×Dud/Tdという関係が成立する。
また、第2の観点によれば、対象通路の最小の水力直径Dii、対象舌部の最大リフト時におけるリフト量Hi、ポート開口径Duiの間に、(π×Dii2/4)/(π×Hi×Dui)≦1という関係が成立する。
この不等式の左辺の分子は、対象通路の最小開口面積に相当する。また、この不等式の左辺の分母は、対象舌部の最大リフト時において対象舌部によって空けられた通路の開口面積である。したがって、この不等式の左辺が大きくなるほど、対象リードバルブの圧力損失に対する寄与度(すなわち対象リードバルブのボトルネック度合い)が大きくなる。上記のような不等式が成立することで、対象通路の流路断面積が、対象リードバルブの部分で最小にならない。したがって、中間圧流入ポートから流入する冷媒の流量が多なり、圧縮機の能力が向上する。
また、第3の観点によれば、基準通路の最小の水力直径Did、基準舌部の最大リフト時におけるリフト量Hd、対象通路の最小の水力直径Dii、対象舌部の最大リフト時におけるリフト量Hi、ポート開口径Duiの間に、(π×Dii2/4)/(π×Hi×Dui)<(π×Did2/4)/(π×Hd×Dud)という関係が成立する。
この不等式の左辺は、上述の通り、対象リードバルブの圧力損失に対する寄与度(すなわち対象リードバルブのボトルネック度合い)を表している。また、この不等式の右辺は、基準リードバルブの圧力損失に対する寄与度を表している。
このように、対象リードバルブの圧力損失に対する寄与度を基準リードバルブの圧力損失に対する寄与度よりも低く抑えることで、対象リードバルブの閉じるスピードを、基準リードバルブと比べて同等または高くすることができる。その結果、対象リードバルブの信頼性を確保することができる。
また、第4の観点によれば、対象舌部は、連結部と開閉端部を有し、連結部は、一端が対象固定部に接続され、他端が開閉端部に接続され、開閉端部は、対象通路を開閉し、対象舌部の長手方向が弁舌方向であり、弁舌方向に平行且つ開閉端部の重心を通るX軸に関する開閉端部の曲げ剛性は、X軸に交差すると共に開閉端部の重心を通る軸に関する開閉端部の曲げ剛性と異なっている。
このようになっていることで、X軸で折れ曲がる力に対する開閉端部の剛性の方が、Y軸で折れ曲がる力に対する開閉端部の剛性と、異なる。
また、第5の観点によれば、開閉端部の径が最も大きい長軸方向が、対象舌部の中心線に対して成す角度が、45°以上且つ135°以下である。このようになっていることで、当該磨耗が大きい部分における開閉端部の磨耗を低減する効果がより顕著になる。
また、第6の観点によれば、開閉端部に補強リブが形成されている。このような補強リブが形成されることで、単に開閉端部の径を大きくする場合に比べ、開閉端部が比較的軽量となる。そのため、慣性力による開閉端部の他の部材への衝突の衝撃を緩和することができる。
また、第7の観点によれば、開閉端部は折れ曲がり部で折れ曲がっており、当該折れ曲がり部の一方側に補強リブが形成されており、当該折れ曲がり部は直線状に伸びている。このように直線的に折れ曲がり部が形成されることで、開閉端部の加工が容易になる。
また、第8の観点によれば、対象通路における対象舌部の上流側の通路のうち対象舌部に近い側の端の外周縁を、対象固定部に平行な平面に投影した図形の内部と、補強リブを平面に投影した図形とは、重ならない。
このようになっていることで、開閉端部による対象舌部の対象通路のシール性能を補強リブが悪化させる可能性が低減される。
また、第9の観点によれば、対象通路における対象舌部の上流側の通路のうち対象舌部に近い側の端の外周縁を、対象固定部に平行な平面に投影した図形の内部が、補強リブを平面に投影した図形と、重なり、また、補強リブは、対象舌部の上流側の通路から離れる方向に突出する。
このようになっていることで、対象舌部の最大リフト時におけるリフト量Hiを抑制できる。したがって、開閉端部の弁としての信頼性が向上する。
また、第10の観点によれば、ガスインジェクションサイクルで循環する冷媒は二酸化炭素を含む。
Claims (10)
- ガスインジェクションサイクルに用いられる圧縮機であって、
圧縮室(151~154)を形成し、吸入ポート(1a)から前記圧縮室内に低圧の冷媒を吸入して圧縮し、中間圧流入ポート(1c)から前記圧縮室内に前記低圧の冷媒よりも圧力の高い中間圧の冷媒を吸入して圧縮し、前記圧縮室において前記低圧の冷媒および前記中間圧の冷媒が圧縮された結果得られた高圧の冷媒を吐出ポート(1b)に吐出する圧縮機構部(10)と、
前記吐出ポートおよび前記吸入ポートのうち一方と前記圧縮室を繋ぐ基準通路(123a、123b、123c、124)を開閉することで、前記通路において冷媒が逆流することを抑制する基準リードバルブ(17)と、
前記中間圧流入ポートから前記圧縮室に至る対象通路(61a、125)を開閉することで、冷媒が前記圧縮室から前記中間圧流入ポートに逆流することを抑制する対象リードバルブ(62)と、を備え、
前記基準リードバルブは、基準固定部(170)と、前記基準固定部に対して変位可能な基準舌部(171、172、173)と、を有し、
前記対象リードバルブは、対象固定部(621)と、前記対象固定部に対して変位可能な対象舌部(622)と、を有し、
前記基準舌部の板厚Td、前記基準通路における前記基準舌部の上流側の通路のうち前記基準舌部に近い側の端のポート開口径Dud、前記対象舌部の板厚Ti、前記対象通路における前記対象舌部の上流側の通路のうち前記対象舌部に近い側の端のポート開口径Duiの間に、Dud/Td≦Dui/Ti≦2×Dud/Tdという関係が成立する圧縮機。 - 前記対象通路の最小の水力直径Dii、前記対象舌部の最大リフト時におけるリフト量Hi、前記ポート開口径Duiの間に、(π×Dii2/4)/(π×Hi×Dui)≦1という関係が成立する請求項1に記載の圧縮機。
- 前記基準通路の最小の水力直径Did、前記基準舌部の最大リフト時におけるリフト量Hd、前記対象通路の最小の水力直径Dii、前記対象舌部の最大リフト時におけるリフト量Hi、前記ポート開口径Duiの間に、(π×Dii2/4)/(π×Hi×Dui)<(π×Did2/4)/(π×Hd×Dud)という関係が成立する請求項1または2に記載の圧縮機。
- 前記対象舌部は、連結部(622s)と開閉端部(622t、622u、622v)を有し、
前記連結部は、一端が前記対象固定部に接続され、他端が前記開閉端部に接続され、
前記開閉端部は、前記対象通路を開閉し、
前記対象舌部の長手方向が弁舌方向(201)であり、
前記弁舌方向に平行且つ前記開閉端部の重心を通るX軸に関する前記開閉端部の曲げ剛性は、前記X軸に交差すると共に開閉端部の重心を通る軸に関する前記開閉端部の曲げ剛性と異なっている請求項1ないし3のいずれか1つに記載の圧縮機。 - 前記開閉端部の径が最も大きい長軸方向が、前記対象舌部の中心線に対して成す角度が、45°以上且つ135°以下である請求項4に記載の圧縮機。
- 前記開閉端部に補強リブ(623、624)が形成されている請求項4または5に記載の圧縮機。
- 前記開閉端部は折れ曲がり部(623a、623b、624a、624b)で折れ曲がっており、前記折れ曲がり部の一方側に前記補強リブが形成されており、前記折れ曲がり部は直線状に伸びている請求項6に記載の圧縮機。
- 前記対象通路における前記対象舌部の上流側の通路のうち前記対象舌部に近い側の端の外周縁を、前記対象固定部に平行な平面に投影した図形の内部と、前記補強リブを前記平面に投影した図形とは、重ならない請求項6または7に記載の圧縮機。
- 前記対象通路における前記対象舌部の上流側の通路のうち前記対象舌部に近い側の端の外周縁を、前記対象固定部に平行な平面に投影した図形の内部が、前記補強リブを前記平面に投影した図形と、重なり、
また、前記補強リブは、前記対象舌部の上流側の通路から離れる方向に突出する請求項5ないし7のいずれか1つに記載の圧縮機。 - 前記ガスインジェクションサイクルで循環する冷媒は二酸化炭素を含む請求項1ないし9のいずれか1つに記載の圧縮機。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018525044A JPWO2018003525A1 (ja) | 2016-06-29 | 2017-06-15 | 圧縮機 |
DE112017003270.9T DE112017003270T5 (de) | 2016-06-29 | 2017-06-15 | Kompressor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-129165 | 2016-06-29 | ||
JP2016129165 | 2016-06-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018003525A1 true WO2018003525A1 (ja) | 2018-01-04 |
Family
ID=60786317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/022190 WO2018003525A1 (ja) | 2016-06-29 | 2017-06-15 | 圧縮機 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2018003525A1 (ja) |
DE (1) | DE112017003270T5 (ja) |
WO (1) | WO2018003525A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021182749A1 (en) * | 2020-03-10 | 2021-09-16 | Hanon Systems | Vapor injection double reed valve |
JP2022536398A (ja) * | 2019-07-24 | 2022-08-15 | ハンオン システムズ | スクロール圧縮機 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5450206U (ja) * | 1977-09-14 | 1979-04-07 | ||
JP2003201965A (ja) * | 2001-12-27 | 2003-07-18 | Seiko Instruments Inc | 気体圧縮機 |
JP2005214068A (ja) * | 2004-01-29 | 2005-08-11 | Toshiba Kyaria Kk | 密閉型往復動圧縮機 |
JP2008291650A (ja) * | 2007-05-22 | 2008-12-04 | Hitachi Appliances Inc | ロータリ式2段圧縮機及び空気調和機 |
JP2014227883A (ja) * | 2013-05-21 | 2014-12-08 | ダイキン工業株式会社 | 圧縮機 |
JP2016075233A (ja) * | 2014-10-07 | 2016-05-12 | 株式会社デンソー | 冷凍サイクル用圧縮機 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012081327A (ja) | 2012-01-30 | 2012-04-26 | Kazuhiro Nagata | アタッチメント |
JP2016129165A (ja) | 2015-01-09 | 2016-07-14 | 株式会社ニューフレアテクノロジー | 荷電粒子ビーム描画装置 |
-
2017
- 2017-06-15 WO PCT/JP2017/022190 patent/WO2018003525A1/ja active Application Filing
- 2017-06-15 JP JP2018525044A patent/JPWO2018003525A1/ja active Pending
- 2017-06-15 DE DE112017003270.9T patent/DE112017003270T5/de not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5450206U (ja) * | 1977-09-14 | 1979-04-07 | ||
JP2003201965A (ja) * | 2001-12-27 | 2003-07-18 | Seiko Instruments Inc | 気体圧縮機 |
JP2005214068A (ja) * | 2004-01-29 | 2005-08-11 | Toshiba Kyaria Kk | 密閉型往復動圧縮機 |
JP2008291650A (ja) * | 2007-05-22 | 2008-12-04 | Hitachi Appliances Inc | ロータリ式2段圧縮機及び空気調和機 |
JP2014227883A (ja) * | 2013-05-21 | 2014-12-08 | ダイキン工業株式会社 | 圧縮機 |
JP2016075233A (ja) * | 2014-10-07 | 2016-05-12 | 株式会社デンソー | 冷凍サイクル用圧縮機 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022536398A (ja) * | 2019-07-24 | 2022-08-15 | ハンオン システムズ | スクロール圧縮機 |
WO2021182749A1 (en) * | 2020-03-10 | 2021-09-16 | Hanon Systems | Vapor injection double reed valve |
US11384759B2 (en) | 2020-03-10 | 2022-07-12 | Hanon Systems | Vapor injection double reed valve plate |
Also Published As
Publication number | Publication date |
---|---|
DE112017003270T5 (de) | 2019-04-25 |
JPWO2018003525A1 (ja) | 2018-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2295720B1 (en) | Two-stage rotary expander, expander-integrated compressor, and refrigeration cycle device | |
US20190203709A1 (en) | Motor-operated compressor | |
JP5745450B2 (ja) | 圧縮機のインジェクション装置 | |
TW200401080A (en) | Dual volume-ratio scroll machine | |
US20130171018A1 (en) | Screw compressor | |
JP5760836B2 (ja) | ロータリ圧縮機 | |
WO2015064759A1 (ja) | 圧縮機 | |
WO2018003525A1 (ja) | 圧縮機 | |
JP6130771B2 (ja) | 圧縮機および冷凍サイクル装置 | |
CN114286893A (zh) | 旋转式压缩机 | |
US10753359B2 (en) | Scroll compressor shaft | |
JP6059452B2 (ja) | 圧縮機の逆流防止構造 | |
JP2018127903A (ja) | 圧縮機 | |
JP7356044B2 (ja) | スクリュー圧縮機、および冷凍装置 | |
JP4121783B2 (ja) | スクロール型圧縮機 | |
KR20220165507A (ko) | 스크롤 압축기 | |
WO2015033550A1 (ja) | 圧縮機 | |
JP4798142B2 (ja) | 圧縮機 | |
WO2024185038A1 (ja) | スクロール圧縮機およびそれを備えた冷凍サイクル装置 | |
WO2021038738A1 (ja) | スクロール圧縮機 | |
JP6093676B2 (ja) | 圧縮機 | |
KR102674755B1 (ko) | 스크롤 압축기 | |
JP6996267B2 (ja) | スクロール圧縮機 | |
KR20240111230A (ko) | 스크롤 압축기 | |
JP2017082841A (ja) | 軸受構造、及びスクロール型圧縮機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018525044 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17819885 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17819885 Country of ref document: EP Kind code of ref document: A1 |