WO2018003350A1 - コンポジット膜、コンポジット膜の製造方法および電池 - Google Patents

コンポジット膜、コンポジット膜の製造方法および電池 Download PDF

Info

Publication number
WO2018003350A1
WO2018003350A1 PCT/JP2017/019270 JP2017019270W WO2018003350A1 WO 2018003350 A1 WO2018003350 A1 WO 2018003350A1 JP 2017019270 W JP2017019270 W JP 2017019270W WO 2018003350 A1 WO2018003350 A1 WO 2018003350A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite film
conductive particles
composite
particles
conductive
Prior art date
Application number
PCT/JP2017/019270
Other languages
English (en)
French (fr)
Inventor
望月 正孝
春俊 萩野
ライ トーマス ファン
正和 大橋
裕哲 ▲高▼口
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to JP2018524957A priority Critical patent/JPWO2018003350A1/ja
Publication of WO2018003350A1 publication Critical patent/WO2018003350A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a composite film, a method for manufacturing the composite film, and a battery.
  • This application claims priority based on Japanese Patent Application No. 2016-126693 filed in Japan on June 27, 2016, the contents of which are incorporated herein by reference.
  • a PTC element including a PTC film having a PTC characteristic may be used (for example, see Patent Document 1).
  • the PTC characteristic is a characteristic that limits the current by increasing the volume resistivity when the temperature rises. For example, in order to prevent thermal runaway in a lithium ion battery mounted on an electric vehicle, a hybrid vehicle, etc., it is effective to cut off the current and suppress the battery reaction.
  • the temperature of the electrolytic solution exceeds 55 ° C., the rate of the battery reaction increases, and the thermal decomposition reaction of the electrolytic solution easily occurs.
  • the temperature of the electrolytic solution is preferably 130 ° C. or lower in consideration of safety (ignition prevention, etc.).
  • a protection circuit, a protection element, or the like using a PTC element can limit a short-circuit current or an excessive current and protect a battery.
  • the PTC film used for the PTC element includes, for example, conductive particles and a polymer material.
  • the PTC film exhibits high conductivity because the conductive particles form a conductive path at a low temperature, but at a high temperature, the conductive path is cut due to thermal expansion of the polymer material, resulting in a decrease in conductivity. Therefore, the current is limited at a high temperature, and abnormal heat generation can be prevented.
  • the temperature characteristics of the PTC film may be determined in consideration of the temperatures (55 ° C. and 130 ° C.) that serve as the reference for the temperature management described above.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a composite film having a characteristic of low electrical resistance at low temperatures and high electrical resistance at high temperatures, a method for manufacturing the composite film, and a battery. .
  • a first aspect of the present invention is a composite film having a plurality of conductive particles and an insulating polymer material and having PTC characteristics.
  • the conductive particles include conductive magnetic particles and a carbon material coating that covers the magnetic particles.
  • the average particle diameter of the plurality of conductive particles is smaller than the thickness of the composite film.
  • at least some of the plurality of conductive particles are arranged in a row from one surface of the composite film to the other surface.
  • the magnetic body constituting the magnetic particles is Ni or a Ni alloy.
  • the carbon material constituting the carbon material coating includes graphene.
  • the plurality of conductive particles are arranged on the one surface in a cross section along the thickness direction of the composite film. A striped pattern extending from to the other surface is formed.
  • a compressive strain is applied to the conductive particles in the thickness direction of the composite film.
  • the composite film of this embodiment it is a graph which shows the relationship between the compressive strain and temperature when the initial compressive strain of electroconductive particle is 0.9%, and the relationship between an electrical resistance and temperature.
  • it is a graph which shows the relationship between the electrical resistance and temperature in the initial stage compressive strain 0.3, 0.6, 0.9% of electroconductive particle.
  • it is a graph which shows the relationship between the initial stage compressive strain of electroconductive particle, and switching temperature.
  • it is a graph which shows the relationship between the electrical resistance and temperature in content rate 10,30,50 mass% of electroconductive particle. It is a figure which shows typically the lithium ion battery using the composite film of this embodiment.
  • the magnetic particle 4 has a shape having a plurality of protrusions 6 on the outer surface (for example, a particle body 7 and a plurality of protrusions 6 protruding from the outer surface 7a of the particle body 7).
  • Shape It is preferable that the protrusion 6 has a tapered shape, that is, a shape (for example, a pyramid shape such as a polygonal cone shape or a cone shape) whose width (outside dimension, for example, an outside diameter) becomes narrower as the distance from the outer surface 7a increases.
  • the protrusion 6 is integrated with the particle body 7, for example. Since the magnetic particles 4 have the protrusions 6, the number of contact points when the plurality of conductive particles 1 come into contact with each other increases, and the conductivity is improved. Particles having sharply tapered protrusions are called “spike-like particles”.
  • the average particle diameter can be measured by, for example, a particle size distribution measuring apparatus based on a laser diffraction scattering method.
  • As the average particle size for example, 50% cumulative particle size (mass basis or volume basis), mode particle size, etc. can be adopted.
  • As the average particle diameter an average value of measured values for a sufficient number (for example, 100 or more) of particles based on an image obtained by observing the particles may be employed.
  • the image of the particles is an observation image obtained using, for example, an optical microscope or an electron microscope.
  • the particle diameter of the non-spherical particles for example, an average value of the longest diameter and the shortest diameter in the observation image may be adopted.
  • the carbon material coating 5 has a function of protecting the magnetic particles 4. Therefore, as will be described later, when the composite film 10 is applied to a battery, the magnetic particles 4 can be protected from the electrolytic solution.
  • the carbon material coating 5 also has a function of increasing the contact area between the conductive particles 1 and reducing the electrical resistance of the composite film 10.
  • the average particle diameter of the conductive particles 1 is, for example, 0.2 to 10 ⁇ m (preferably 1 to 3 ⁇ m).
  • the average particle diameter of the conductive particles 1 is smaller than the thickness of the composite film 10.
  • the maximum particle size of the plurality of conductive particles 1 is smaller than the thickness of the composite film 10.
  • compressive strain may be applied to the conductive particles 1 in the thickness direction of the composite film 10.
  • the polymer material 2 shown in FIG. 1 is an insulating material, and examples of this material include silicone, polyolefin resin, and polyamide resin.
  • silicone include silicone rubber and silicone resin.
  • the polyolefin resin include polyethylenes such as high density polyethylene, medium density polyethylene, low density polyethylene, ethylene propylene diene copolymer (EPDM), and ethylene / vinyl acetate copolymer (EVA); isotactic polypropylene, Shinji Polypropylenes such as tactic polypropylene; polybutene and the like can be mentioned.
  • Examples of the polyamide-based resin include nylon 6, nylon 8, nylon 11, nylon 66, nylon 610, and the like.
  • the addition ratio of the conductive particles 1 and the polymer material 2 is selected so that a necessary resistance value can be obtained.
  • the content of the conductive particles 1 in the composite film 10 can be, for example, 10 to 50% by mass. That is, the mass of the plurality of conductive particles 1 included in the composite film 10 may be 10 to 50% of the mass of the composite film 10.
  • the thickness of the composite film 10 can be set to 20 to 100 ⁇ m, for example.
  • the plurality of conductive particles 1 form a line from one surface of the composite film 10 to the other surface means that the plurality of conductive particles 1 are, for example, at room temperature (for example, 20 ° C.).
  • the one end 11a and the other end 11b of the row 11 are arranged so as to form one or a plurality of rows 11, respectively, and one surface (for example, the first surface 10a) and the other surface (for example, the second surface 10b) of the composite film 10, respectively. It means that it has reached.
  • the conductive particles 1 reaching one surface (for example, the first surface 10 a) of the composite film 10 are exposed to the outside of the composite film 10 on this one surface, and are electrically connected to the outside of the composite film 10. Can be conducted.
  • the conductive particles 1 reaching the other surface (for example, the second surface 10b) of the composite film 10 are exposed to the outside of the composite film 10 on the other surface, and to the outside of the composite film 10 Electrical conduction is possible.
  • the adjacent conductive particles 1, 1 are in contact with each other and are electrically connected.
  • the column 11 may be branched on the way.
  • FIG. 9 is an enlarged photograph of the conductive particle phase 8 of the composite film 10.
  • FIG. 10 is a photograph showing a part of the row of the conductive particles 1 in the conductive particle phase 8 of FIG. 9 with white lines.
  • FIG. 11 is a photograph in which the conductive particle phase 8 of FIG. 9 is further enlarged.
  • FIG. 12 is a photograph further enlarging the conductive particle phase 8 of FIG.
  • the row 11 (see FIG. 4) composed of the conductive particles 1 may be formed by aggregating a large number of conductive particles 1. Further, the extending directions of the plurality of rows 11 need not be the same.
  • the polymer material 2 exists between the plurality of rows 11 in the conductive particle phase 8.
  • a plurality of second magnets 24 having a polarity different from that of the first magnet 23 of the first calendar roll 21 are provided on the outer peripheral surface 22 b of the second calendar roll 22. That is, when the first magnet 23 is one of the S pole and the N pole, the second magnet 24 is the other pole.
  • the plurality of second magnets 24 are arranged on the outer peripheral surface 22b of the second calendar roll 22 at intervals in the circumferential direction (direction around the central axis 22a).
  • the second magnet 24 may be formed so as to be exposed on the outer peripheral surface 22 b of the second calendar roll 22.
  • the plurality of second magnets 24 may be arranged not only in the circumferential direction but also in the central axis 22a direction (depth direction in FIG. 13), for example, in a matrix.
  • the arrangement of the second magnets 24 on the outer peripheral surface 22b is determined so that the first magnet rolls 21 and the second calendar rolls 22 can be arranged to face the first magnets 23 at the closest position (closest position P1). .
  • the calendar rolls 21 and 22 operate so that the first magnet 23 and the second magnet 24 face each other at the closest position P1. Therefore, the sheet 20 is pressed by the calendar rolls 21 and 22 to form a film, and at that time, a magnetic field is applied by the first magnet 23 and the second magnet 24 as shown in FIG.
  • Reference numeral 25 in FIG. 14 is a line of magnetic force generated between the first magnet 23 and the second magnet 24.
  • At least a part of the conductive particles 1 is arranged in a row from one surface of the composite film 10 to the other surface by the magnetic field.
  • the sheet 20 is formed into a film by being compressed in the thickness direction by the calendar rolls 21 and 22, and the obtained film is cured to obtain the composite film 10 shown in FIG. 1 (film forming process).
  • FIG. 15 is a diagram schematically showing a manufacturing apparatus 40 which is a second example of an apparatus for manufacturing the composite film 10.
  • the manufacturing apparatus 40 is first in a point where the magnets are not provided on the calendar rolls 41 and 42, and in the front stage of the calendar rolls 41 and 42 (position on the upstream side in the feeding direction of the sheet 20).
  • the manufacturing apparatus 30 shown in FIG. 13 is different in that a magnet 33 and a second magnet 34 are provided.
  • Reference numerals 41 a and 42 a are the central axes of the calendar rolls 41 and 42.
  • the first magnet 33 and the second magnet 34 have different polarities. That is, when the first magnet 33 is one of the S pole and the N pole, the second magnet 34 is the other pole.
  • the first magnet 33 and the second magnet 34 are arranged facing each other.
  • a permanent magnet (neodymium magnet etc.) and an electromagnet can be used, for example.
  • the sheet 20 made of the uncured composite material 3 ⁇ / b> A is introduced between the first magnet 33 and the second magnet 34.
  • the introduction direction of the sheet 20 is, for example, a direction orthogonal (or intersecting) to the arrangement direction of the first magnet 33 and the second magnet 34.
  • a magnetic field is applied to the sheet 20 by the first magnet 33 and the second magnet 34. Due to the magnetic field, at least some of the conductive particles 1 are arranged in a row from one surface of the sheet 20 to the other surface.
  • the sheet 20 is introduced between the first calendar roll 41 and the second calendar roll 42, and a force for compressing the sheet 20 in the thickness direction by the calendar rolls 41 and 42 is applied. That is, a compressive force is applied to the sheet 20 (composite material 3A) by the calendar rolls 41 and 42 along the direction in which the magnetic field is applied by the first magnet 33 and the second magnet 34.
  • the sheet 20 is pressed into a film by the calender rolls 41 and 42 while the conductive particles 1 are arranged in rows.
  • the composite film 10 shown in FIG. 1 and the like is obtained by curing the obtained film (film forming step).
  • a magnetic field can be applied prior to forming the composite material 3A into a film. That is, since it is possible to apply a magnetic field to the composite material 3A while the curing of the composite material 3A is not progressing so much in the early stage of the manufacturing process, the conductive particles 1 are easily displaced in the magnetic field. 1 can be reliably placed as described above.
  • the CTE of the polymer material 2 is 2.6 ⁇ 10 ⁇ 4 (1 / K), and ⁇ is 1 ⁇ 10 14 ( ⁇ m).
  • the content of the conductive particles 1 in the composite film 10 was 10% by mass in Calculation Example 1, 30% by mass in Calculation Example 2, and 50% by mass in Calculation Example 3.
  • the thickness of the composite film 10 was 20 ⁇ m. In Calculation Examples 1 to 3, the compressive strain applied to the conductive particles 1 is 0%.
  • FIG. 17 is a graph showing the relationship between resistance and temperature and the relationship between current and temperature in the composite film 10 of Calculation Examples 1 to 3. As shown in FIG. 17, when the initial compressive strain applied to the conductive particles 1 is 0%, the electrical resistance of the composite film 10 increases as the temperature rises, and the current rapidly decreases. Since the electrical resistance and current change abruptly with a slight temperature rise, it may be difficult to apply the composite film 10 to a device or the like depending on the use mode.
  • FIG. 21 is a graph showing the relationship between electrical resistance and temperature in Calculation Examples 4-6.
  • the electrical resistance can be very low (for example, 1 ⁇ 10 ⁇ 10 ⁇ ) at a low temperature despite the low content of the conductive particles 1 (10 mass%).
  • the electrical resistance at high temperatures can be sufficiently increased. Therefore, it is possible to obtain the composite film 10 having a characteristic that the electrical resistance is low at a low temperature and the electrical resistance is high at a high temperature.
  • content of the electroconductive particle 1 can be decreased, cost reduction can be achieved.
  • FIG. 22 is a graph showing the relationship between the initial compressive strain and the switching temperature in the composite film 10.
  • the calculation example 7 the result of the composite film 10 which is the same as the calculation example 4 except that the initial compressive strain of 1.2% is given to the conductive particles 1 is also shown.
  • the switching temperature increases in proportion to the magnitude of the initial compressive strain.
  • An initial compressive strain of 0.3% corresponds to a switching temperature of about 10 ° C.
  • FIG. 23 is a graph showing the relationship between electrical resistance and temperature when the initial compressive strain applied to the conductive particles 1 is 0.9%.
  • the content of the conductive particles 1 in the composite film 10 was 10 mass% in Calculation Example 8, 30 mass% in Calculation Example 9, and 50 mass% in Calculation Example 10. As shown in FIG. 23, the content rate of the conductive particles 1 hardly affects the switching temperature.
  • FIG. 24 is a diagram schematically showing a lithium ion battery 50 using the composite film 10.
  • the lithium ion battery 50 includes a positive electrode plate 51, a negative electrode plate 52, a separator 53, and an electrolyte solution 54 filled between the positive electrode plate 51 and the negative electrode plate 52.
  • the positive electrode plate 51 includes a positive electrode current collector plate 56, a composite film 10 (positive electrode composite film 10 ⁇ / b> A), and a positive electrode active material layer 57.
  • the positive electrode current collector plate 56 is made of, for example, an aluminum foil.
  • the positive electrode active material layer 57 includes a positive electrode active material such as a lithium-based material.
  • the positive electrode composite film 10 ⁇ / b> A is interposed between the positive electrode current collector plate 56 and the positive electrode active material layer 57, and separates the positive electrode current collector plate 56 and the positive electrode active material layer 57.
  • the negative electrode plate 52 includes a negative electrode current collector plate 58, a composite film 10 (negative electrode composite film 10B), and a negative electrode active material layer 59.
  • the negative electrode current collector plate 58 is made of, for example, copper foil.
  • the negative electrode active material layer 59 includes a negative electrode active material such as a carbon-based material.
  • the negative electrode composite film 10 ⁇ / b> B is interposed between the negative electrode current collector plate 58 and the negative electrode active material layer 59 and separates the negative electrode current collector plate 58 and the negative electrode active material layer 59.
  • the electrolytic solution 54 for example, propylene carbonate (PC), diethyl carbonate (DEC), ethylene carbonate (EC), or the like can be used.
  • a composite film 10 shown in FIG. 1 and the like was produced as follows.
  • Ni particles manufactured by New Metals End Chemical Corporation, average particle diameter of 1 to 2 ⁇ m
  • the conductive particles have a plurality of (usually 10 to 500) sharp protrusions (for example, protrusions 6 shown in FIG. 2) on the surface of one spherical particle body (for example, particle body 7 shown in FIG. 2).
  • the height of the protrusion is approximately 1/3 to 1/500 of the particle size of the particle body.
  • the conductive particles were obtained according to a reaction of Ni (CO) 4 ⁇ Ni + 4CO using carbonyl metal powder (nickel carbonyl having a purity of 99.99%) as a raw material (see Japanese Patent Application Laid-Open No. 5-47503).
  • a silicone resin manufactured by Shin-Etsu Silicone, KE-109E-A / B was used as the polymer material.
  • Conductive particles and a polymer material were kneaded to obtain a sheet 20 (see FIG. 25) having a thickness of 200 ⁇ m composed of an uncured composite material.
  • the content (volume basis) of the conductive particles 1 in the composite material is 20 Vol. %.
  • FIG. 25 shows a cross-sectional view of the manufacturing apparatus 31 in the thickness direction of the sheet 20 (up and down direction in FIG. 25).
  • first magnet 33 and the second magnet 34 neodymium magnets having an attractive force of 35N (magnetic flux density of 0.42T) were used.
  • a sheet 20 was introduced between the first magnet 33 and the second magnet 34.
  • a Teflon (registered trademark) plate 45 was provided between the first magnet 33 and the sheet 20, and a Teflon plate 46 was provided between the second magnet 34 and the sheet 20. That is, the sheet 20 is disposed between the plate surfaces of the Teflon plates 45 and 46.
  • the thickness of each of the Teflon plates 45 and 46 is 1 mm.
  • Spacers 60 made of polyimide and having a film thickness of 200 ⁇ m (that is, a thickness in the opposing direction of the Teflon plates 45 and 46) are provided on both sides of the sheet 20 (both sides in the left-right direction in FIG. 25).
  • the pair of spacers 60 are sandwiched between Teflon plates 45 and 46.
  • These spacers 60 are provided so that both Teflon plates 45 and 46 are parallel to each other, the distance between the first magnet 33 and the second magnet 34 is constant, and the magnetic field applied in the sheet 20 is constant. It has been.
  • a magnetic field was applied to the sheet 20 by the first magnet 33 and the second magnet 34 at a temperature of 120 ° C. for 10 minutes, and then gradually cooled to room temperature while applying the magnetic field to obtain a composite film (thickness: about 200 ⁇ m).
  • FIG. 26 shows an SEM photograph of a cross section of the composite film 10.
  • the thickness direction T of the composite film 10 is indicated by an arrow.
  • Some of the plurality of conductive particles 1 of the composite film 10 are arranged in a row from one surface to the other surface.
  • Test Example 2 A composite film was produced in the same manner as in Test Example 1 except that no magnetic field was applied.
  • FIG. 27 shows an SEM photograph of a cross section of the composite film.
  • the conductive particles 1A are randomly arranged in the polymer material 2A.
  • This composite film had a resistivity of several M ⁇ ⁇ cm or more and was not conductive.
  • FIG. 30 is an SEM photograph of a cross section of the composite film 10 of Test Example 4 (the content of conductive particles 1 is 30 Vol.%).
  • FIG. 31 is an SEM photograph of a cross section of the composite film 10 of Test Example 5 (the content of conductive particles 1 is 40 Vol.%).
  • some of the plurality of conductive particles 1 are arranged in a line from one surface of the composite film 10 to the other surface. When the content of the conductive particles 1 is low, the rows of the conductive particles 1 become long, and when the content is high, the long rows of the conductive particles 1 tend to decrease.
  • FIG. 32 is a graph showing the temperature dependence of the electrical resistivity of the composite film for Test Examples 1 and 3 to 5.
  • the horizontal axis is temperature, and the vertical axis is electrical resistivity.
  • the electrical resistivity was measured using a two-terminal method. The temperature of the sample was measured with a thermocouple by placing the sample on a hot plate.
  • PTC characteristics characteristics in which the electric resistance is low at a low temperature but the electric resistance greatly increases as the temperature rises
  • the content rate of the electroconductive particle 1 is 10 Vol. %
  • the electrical resistivity at 50 ° C. was about 100 ⁇ ⁇ cm.
  • the electrical resistivity at 120 ° C. was about 4.0 ⁇ 10 6 ⁇ ⁇ cm.
  • the electrical resistivity increased by 4 digits due to the temperature change from 50 ° C to 120 ° C.
  • the content of the conductive particles 1 is 20 Vol. %
  • the electrical resistivity at 50 ° C. was about 10 ⁇ ⁇ cm, and the electrical resistivity at 120 ° C.
  • the electrical resistivity increased by 5 digits due to the temperature change from 50 ° C to 120 ° C.
  • the content of the conductive particles 1 is 30 Vol. %
  • the electrical resistivity at 50 ° C. was about 10 ⁇ ⁇ cm
  • the electrical resistivity at 120 ° C. was about 4.0 ⁇ 10 3 ⁇ ⁇ cm.
  • the electrical resistivity increased by two orders of magnitude as the temperature changed from 50 ° C to 120 ° C.
  • the content rate of the electroconductive particle 1 is 40 Vol. %
  • the electrical resistivity at 50 ° C. was about 2 ⁇ ⁇ cm
  • the electrical resistivity at 120 ° C. was about 5.0 ⁇ 10 1 ⁇ ⁇ cm.
  • the electrical resistivity increased by an order of magnitude due to the temperature change from 50 ° C to 120 ° C.
  • the content of the conductive particles 1 is 10 to 20 Vol. %,
  • the electrical resistivity at 50 ° C. is less than 10 3 ⁇ ⁇ cm, the electrical resistivity at 120 ° C. is 10 6 ⁇ ⁇ cm or more, and the electrical resistance is 4 digits or more. Since the rate was increased, the PTC characteristics were good.
  • the content of the conductive particles 1 is 20 Vol. %,
  • the electrical resistivity at 50 ° C. is less than 10 2 ⁇ ⁇ cm, the electrical resistivity at 120 ° C. is 10 6 ⁇ ⁇ cm or more, and the electrical resistivity increases by 5 digits. Therefore, the PTC characteristics were excellent.
  • the expression temperature of the PTC characteristic tended to be lower as the content of the conductive particles 1 was lower. At low temperatures (for example, 50 ° C.), the electrical resistivity decreased as the content of the conductive particles 1 increased. Even at a high temperature (for example, 120 ° C.), the higher the content of the conductive particles 1, the lower the electrical resistivity.
  • the expression temperature of the PTC characteristic becomes lower as the content of the conductive particles 1 is lower, the following estimation can be made. If the content rate of the conductive particles 1 is low, the conductive path 1 is not sufficiently developed because the conductive particles 1 in the polymer material 2 are small, and the conductive path is formed only by a slight thermal expansion of the polymer material 2. It becomes easy to be cut. On the other hand, when the content of the conductive particles 1 is high, the conductive path is sufficiently developed so that the PTC characteristics are hardly expressed, and the electrical resistivity does not increase unless the temperature is high.
  • FIG. 24 An in-vehicle lithium ion battery (cell effective area 0.101 m 2 , cell electric resistance 0.00149 ⁇ ) (see FIG. 24) is assumed.
  • the electric resistance in the low temperature region is 0.00149 ⁇ , but when the composite film (thickness 20 ⁇ m) is provided on the negative electrode plate, the electric resistance in the low temperature region is It becomes 0.00154 ⁇ , and the rate of increase in electrical resistance is about 3%.
  • FIG. 33 shows the assumed PTC characteristic of the composite film. When the temperature of the composite film changes from a state lower than a predetermined PTC expression temperature to a higher state, the resistivity increases from 23 ⁇ ⁇ cm to 2.3 ⁇ 10 6 ⁇ ⁇ cm.
  • the resistance of the cell becomes 4.6 ⁇ .
  • a current of 28.5 A is discharged.
  • the current value in the low temperature region is 27.6 A. If the electric resistance becomes 4.6 ⁇ due to the temperature rise, the current becomes 9.2 mA.
  • the current value is significantly reduced and heat generation is suppressed.
  • Test Examples 6 to 9 The composite film 10 was produced using the manufacturing apparatus 31 (refer FIG. 25) which has the 1st magnet 33 and the 2nd magnet 34 of adsorption force 47N (magnetic flux density 0.28T).
  • the content of the conductive particles 1 in Test Examples 6 to 9 was 10 Vol. % (Test Example 6), 20 Vol. % (Test Example 7), 30 Vol. % (Test Example 8), 40 Vol. % (Test Example 9). Other conditions were determined according to Test Example 1.
  • FIG. 34 is a diagram showing the temperature dependence of the electrical resistivity for Test Examples 6 to 9. As shown in FIG. The horizontal axis is temperature, and the vertical axis is electrical resistivity. As shown in FIG. 34, in Test Examples 6 to 9, the electrical resistivity at a low temperature is similar to that in Test Examples 1 and 3 to 5, but the temperature at which the electrical resistivity suddenly rises is higher. It shifted to the high temperature side. The following can be guessed about this. When the attractive force of the first magnet 33 and the second magnet 34 (see FIG. 25) is large, the conductive particles easily move in the polymer material, and a conductive path develops. For this reason, the conductive path is difficult to cut, and the electrical resistivity does not increase unless the temperature is raised.
  • the content of conductive particles in the composite film is Vol. % And mass%, but from the mass and density of the conductive particles and the polymer material contained in the composite film, the following formula 1 is used.
  • % Can be calculated, and mass% can be calculated from the volume and density of the conductive particles and polymer material contained in the composite film using the following formula 2.
  • Vol. % And mass% can be converted into each other using the following formulas 1 and 2.
  • V particle shows a volume of the conductive particles contained in the composite film (cm 3)
  • V polymer represents the volume of polymeric material contained in the composite film (cm 3)
  • W particle is a composite film
  • W polymer represents the mass (g) of the polymer material contained in the composite film
  • ⁇ particle represents the density (g / cm 3 ) of the conductive particles.
  • ⁇ polymer indicates the density (g / cm 3 ) of the polymer material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Ceramic Engineering (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Thermistors And Varistors (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

このコンポジット膜は、複数の導電性粒子と絶縁性の高分子材料とを含み、PTC特性を有する。導電性粒子は、導電性の磁性体粒子と、磁性体粒子を覆う炭素材被覆とを有する。複数の導電性粒子の平均粒径は、コンポジット膜の厚みより小さい。また、複数の導電性粒子の少なくとも一部が、コンポジット膜の一方の面から他方の面にかけて列をなすように配置されている。

Description

コンポジット膜、コンポジット膜の製造方法および電池
 本発明は、コンポジット膜、コンポジット膜の製造方法および電池に関する。
 本願は、2016年6月27日に日本に出願された特願2016-126693号に基づき優先権を主張し、その内容をここに援用する。
 電池、電子機器などには、PTC特性(Positive Temperature Coefficient:正の抵抗温度係数)を有するPTC膜を備えたPTC素子が用いられることがある(例えば、特許文献1を参照)。PTC特性とは、温度が上昇した場合、体積電気抵抗率が上昇して電流を制限する特性である。
 例えば、電気自動車、ハイブリット車等に搭載されるリチウムイオン電池において熱暴走を防ぐには、電流を遮断して電池反応を抑制することが有効である。電解液の温度は、55℃を超えると、電池反応の速度が増すとともに、電解液の熱分解反応が起こりやすくなる。また、電解液の温度は、安全面の配慮(発火防止等)から130℃以下とするのが好ましい。そのため、リチウムイオン電池では、55℃と130℃を基準に温度管理が行われている場合が多い。JIS C8712においても、55℃における短絡の有無、および130℃における発火の有無によって安全性を確かめるよう規定されている。また、正極板もしくは負極板で金属粒子のコンタミネーションが起きると、短絡電流、過充電といった異常な充放電が起こり、ジュール発熱で電池の温度が上昇して電池反応が速くなり、更なる異常な充放電が生じる可能性がある。
 異常な温度上昇および充放電を防ぐ手段として、PTC特性を持つPTC素子(例えばPTCサーミスタ)が用いられている。PTC素子が用いられた保護回路、保護素子等は、短絡電流や過大電流を制限し、電池を保護することができる。
 PTC素子に用いられるPTC膜は、例えば導電性粒子と高分子材料を含む。PTC膜は、低温時には導電性粒子が導電性経路を形成するため高い導電性を示すが、高温時には高分子材料の熱膨張により導電性経路が切断され、導電性が低下する。そのため、高温時において電流が制限され、異常発熱を防ぐことができる。PTC膜の温度特性は、前述の温度管理の基準となる温度(55℃と130℃)を考慮に入れて定められることがある。
日本国特開平5-47503号公報
 従来のPTC膜では、低温時の電気抵抗を低くするために導電性粒子の含有量を増やすと、温度が上昇したときの電気抵抗変化が小さくなり、電流制限効果が小さくなる場合がある。そのため、低温時には電気抵抗が低く、かつ高温時には電気抵抗が高い特性を有するPTC膜が求められている。
 本発明は、上記課題に鑑みなされたものであって、低温時には電気抵抗が低く、かつ高温時には電気抵抗が高い特性を有するコンポジット膜、コンポジット膜の製造方法および電池を提供することを目的とする。
 上記課題を解決するため、本発明の第1の態様は、複数の導電性粒子と絶縁性の高分子材料とを含み、PTC特性を有するコンポジット膜である。前記導電性粒子は、導電性の磁性体粒子と、前記磁性体粒子を覆う炭素材被覆とを有する。前記複数の導電性粒子の平均粒径は、前記コンポジット膜の厚みより小さい。また、前記複数の導電性粒子の少なくとも一部が、前記コンポジット膜の一方の面から他方の面にかけて列をなすように配置されている。
 本発明の第2の態様は、前記第1の態様のコンポジット膜において、前記磁性体粒子を構成する磁性体は、NiまたはNi合金である。
 本発明の第3の態様は、前記第1または第2の態様のコンポジット膜において、前記炭素材被覆を構成する炭素材は、グラフェンを含む。
 本発明の第4の態様は、前記第1から第3のいずれか1つの態様のコンポジット膜において、前記複数の導電性粒子は、前記コンポジット膜の厚さ方向に沿う断面において、前記一方の面から前記他方の面にかけて延びる縞状のパターンを形成している。
 本発明の第5の態様は、前記第1から第3のいずれか1つの態様のコンポジット膜において、前記導電性粒子に、前記コンポジット膜の厚さ方向に圧縮歪みが加えられている。
 本発明の第6の態様は、複数の導電性粒子と絶縁性の高分子材料とを含み、PTC特性を有するコンポジット膜を製造する方法であって、導電性の磁性体粒子と前記磁性体粒子を覆う炭素材被覆とを有し、平均粒径が前記コンポジット膜の厚みより小さい前記複数の導電性粒子を前記高分子材料に含ませた複合材料に圧縮力を加えて膜状とすることによって前記コンポジット膜を得る膜化工程を有する。また、前記膜化工程において、または前記膜化工程に先だって、前記複合材料に磁場を印加することによって、前記複数の導電性粒子の少なくとも一部を、前記コンポジット膜の一方の面から他方の面にかけて列をなすように配置する。
 本発明の第7の態様は、前記第6の態様のコンポジット膜を製造する方法において、前記膜化工程において、ロールによって前記複合材料に前記圧縮力を加える。
 本発明の第8の態様は、前記第7の態様のコンポジット膜を製造する方法において、前記膜化工程において、前記ロールに設けた磁石によって前記複合材料に磁場をかける。
 本発明の第9の態様は、前記第7の態様のコンポジット膜を製造する方法において、前記磁場は、前記膜化工程に先だって前記複合材料に印加される。また、前記膜化工程において、前記磁場が印加された方向に沿って前記ロールによって前記複合材料に圧縮力を加える。
 本発明の第10の態様は、正極板と、負極板と、前記正極板と前記負極板との間に充てんされた電解液と、を備える電池である。前記正極板は、正極集電板と、正極活物質層とを有する。前記負極板は、負極集電板と、負極活物質層とを有する。また、前記正極集電板と前記正極活物質層との間、および前記負極集電板と前記負極活物質層との間に介在して、前記コンポジット膜がそれぞれ設けられている。
 本発明の一態様によれば、複数の導電性粒子の一部がコンポジット膜の一方の面から他方の面にかけて列をなすように配置されるため、導電性粒子がランダムに配置されたコンポジット膜に比べ、コンポジット膜中の導電性粒子の含有量が少ない場合でも、前記一方の面から前記他方の面に至る導電性経路を確保でき、低温時におけるコンポジット膜の電気抵抗を低くできる。また、導電性粒子の含有量を少なくできるため、高温時においては高分子材料の熱膨張により導電性経路を適切に切断でき、よって電気抵抗を十分に高くできる。したがって、低温時には電気抵抗が低く、かつ高温時には電気抵抗が高い特性を有するコンポジット膜が得られる。
一実施形態のコンポジット膜の構造を示す模式図であり、厚さ方向に沿うコンポジット膜の断面を示す図である。 導電性粒子の断面を模式的に示す図である。 磁性体粒子の一例の写真である。 複数の導電性粒子を模式的に示す断面図であり、コンポジット膜の厚さ方向に沿う断面を示す図である。 本実施形態のコンポジット膜の断面の写真である。 本実施形態のコンポジット膜の断面を拡大した写真である。 図6のコンポジット膜の断面において導電性粒子相を黒で示し、高分子材料相を白で示す図である。 図6のコンポジット膜の断面を拡大した写真である。 コンポジット膜の導電性粒子相を拡大した写真である。 図9の導電性粒子相において導電性粒子の列の一部を白線で示した写真である。 図9の導電性粒子相をさらに拡大した写真である。 図11の導電性粒子相をさらに拡大した写真である。 本実施形態のコンポジット膜を製造する装置の第1の例を模式的に示す図である。 図13の製造装置における磁石の作用を説明する図である。 本実施形態のコンポジット膜を製造する装置の第2の例を模式的に示す図である。 本実施形態のコンポジット膜の温度による形態の変化を模式的に示す図である。 本実施形態のコンポジット膜において、導電性粒子の初期圧縮歪みが0%であるときの電気抵抗と温度との関係、および電流と温度との関係を示すグラフである。 本実施形態のコンポジット膜において、導電性粒子の初期圧縮歪みが0.3%であるときの圧縮歪みと温度との関係、および電気抵抗と温度との関係を示すグラフである。 本実施形態のコンポジット膜において、導電性粒子の初期圧縮歪みが0.6%であるときの圧縮歪みと温度との関係、および電気抵抗と温度との関係を示すグラフである。 本実施形態のコンポジット膜において、導電性粒子の初期圧縮歪みが0.9%であるときの圧縮歪みと温度との関係、および電気抵抗と温度との関係を示すグラフである。 本実施形態のコンポジット膜において、導電性粒子の初期圧縮歪み0.3,0.6,0.9%における電気抵抗と温度との関係を示すグラフである。 本実施形態のコンポジット膜において、導電性粒子の初期圧縮歪みとスイッチング温度との関係を示すグラフである。 本実施形態のコンポジット膜において、導電性粒子の含有率10,30,50質量%における電気抵抗と温度との関係を示すグラフである。 本実施形態のコンポジット膜を用いたリチウムイオン電池を模式的に示す図である。 本実施形態のコンポジット膜を製造する装置の第3の例を模式的に示す図である。 試験例のコンポジット膜の断面のSEM写真である。 試験例のコンポジット膜の断面のSEM写真である。 試験例のコンポジット膜の断面のSEM写真である。 試験例のコンポジット膜の断面のSEM写真である。 試験例のコンポジット膜の断面のSEM写真である。 試験例のコンポジット膜の断面のSEM写真である。 試験例のコンポジット膜について、電気抵抗率の温度依存性を示す図である。 仮定されたコンポジット膜のPTC特性を示す図である。 試験例のコンポジット膜について、電気抵抗率の温度依存性を示す図である。
 以下、一実施形態のコンポジット膜について図面に基づいて説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際とは異なる場合がある。また、本発明は以下の実施形態に限定されない。
<コンポジット膜>
 図1は本実施形態のコンポジット膜10(複合膜)の構造を示す模式図である。図1は厚さ方向に沿うコンポジット膜10の断面を示す図である。なお、厚さ方向とはコンポジット膜10の表面に垂直な方向である。図2は導電性粒子1の断面を模式的に示す図である。図3は磁性体粒子の一例の写真である。図4は複数の導電性粒子1を模式的に示す断面図であり、コンポジット膜10の厚さ方向に沿う断面を示す図である。
 図1に示すように、コンポジット膜10は、複数の導電性粒子1と高分子材料2とを含む複合材料3から構成されている。
 図2に示すように、導電性粒子1は、導電性の磁性体粒子4と、磁性体粒子4を覆う炭素材被覆5とを有する。
 磁性体粒子4は、例えばニッケル(Ni),コバルト(Co),鉄(Fe)のうち1または2以上を含む磁性材料から構成されている。磁性材料は金属であることが好ましい。磁性体粒子4は、導電性および耐食性に優れた金属である、NiまたはNi合金から構成されていることが好ましい。すなわち、磁性体粒子4を構成する磁性体は、NiまたはNi合金であってもよい。
 図2および図3に示すように、磁性体粒子4は、外表面に複数の突起6を有する形状(例えば粒子本体7と、粒子本体7の外表面7aから突出する複数の突起6とを有する形状)であってよい。突起6は先細り形状、すなわち外表面7aから離れるほど幅(外形寸法、例えば外径)が狭くなる形状(例えば多角錐状、円錐状などの錐状)であることが好ましい。突起6は、例えば粒子本体7と一体とされている。磁性体粒子4が突起6を有するため、複数の導電性粒子1が互いに接触する際の接触点が多くなり、導電性が高められる。鋭利な先細り形状の突起を有する粒子を「スパイク状粒子」という。
 磁性体粒子4の平均粒径は、例えば0.2~10μm(好ましくは1~3μm)である。磁性体粒子4は粒径が小さすぎれば、製造工程において、磁場をかけても例えば導電性粒子1に生じる力が小さいことで導電性粒子1が移動しにくくなるが、磁性体粒子4の平均粒径が前記範囲であれば、導電性粒子1は磁場中で移動しやすくなり、後述のように、列をなす配置をとりやすくなる。また、磁性体粒子4は粒径が大きすぎると、製造工程において、例えば液状の高分子材料2内での導電性粒子1が受ける抗力が高くなることで磁場をかけても導電性粒子1が移動しにくくなるが、磁性体粒子4の平均粒径が前記範囲であれば、導電性粒子1は磁場中で移動しやすくなり、列をなす配置をとりやすくなる。
 平均粒径は、例えばレーザー回折散乱法に基づく粒度分布測定装置によって測定することができる。平均粒径としては、例えば50%累積粒子径(質量基準または体積基準)、最頻粒子径などを採用できる。平均粒径は、粒子を観察した画像に基づく十分な数(例えば100以上)の粒子についての測定値の平均値を採用してもよい。粒子の画像は、例えば光学顕微鏡、電子顕微鏡などを用いて得られた観察画像である。非球形の粒子の粒径としては、例えば観察画像における最長径と最短径の平均値を採用してよい。
 図2に示すように、炭素材被覆5は炭素材から構成されている。炭素材としては、グラフェン、カーボンナノチューブ、カーボンブラックなどが挙げられる。炭素材としては、導電性および耐久性に優れた材料であるグラフェンが好ましい。炭素材被覆5は、磁性体粒子4の外表面を覆って形成されている。炭素材被覆5の厚さは、例えば1~100nm(好ましくは10~20nm)である。
 炭素材被覆5は、磁性体粒子4を保護する機能を有する。そのため、後述のように、コンポジット膜10を電池に適用した場合に、電解液から磁性体粒子4を保護することができる。炭素材被覆5には、導電性粒子1どうしの接触面積を大きくし、コンポジット膜10の電気抵抗を小さくする機能もある。
 上述したように、導電性粒子1の平均粒径は、例えば0.2~10μm(好ましくは1~3μm)である。導電性粒子1の平均粒径は、コンポジット膜10の厚さより小さい。なお 、複数の導電性粒子1における最大粒径は、コンポジット膜10の厚さより小さい。
 また、導電性粒子1に、コンポジット膜10の厚さ方向に圧縮歪みが加えられていてもよい。
 図1に示す高分子材料2は、絶縁性材料であり、この材料としては、例えばシリコーン、ポリオレフィン樹脂、ポリアミド系樹脂等を挙げることができる。
 シリコーンとしては、シリコーンゴム、シリコーン樹脂等を挙げることができる。ポリオレフィン樹脂としては、例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、エチレンプロピレンジエン共重合体(EPDM)、エチレン・酢酸ビニル共重合体(EVA)等のポリエチレン類;アイソタクチックポリプロピレン、シンジオタクチックポリプロピレン等のポリプロピレン類;ポリブテン等を挙げることができる。ポリアミド系樹脂としては、例えば、ナイロン6、ナイロン8、ナイロン11、ナイロン66、ナイロン610等を挙げることができる。高分子材料2としては、そのほか、ポリアセタール樹脂、ポリエステル樹脂、フッ素樹脂等を挙げることができる。高分子材料2は、これらのうち1つを単独で用いてもよいし、2つ以上を混合して用いてもよい。高分子材料2は、液状硬化性の材料(例えば熱硬化性または熱可塑性の材料)であることが好ましい。
 導電性粒子1と高分子材料2との添加比率は、必要となる抵抗値が得られるように選択される。コンポジット膜10における導電性粒子1の含有率は、例えば10~50質量%とすることができる。すなわち、コンポジット膜10に含まれる複数の導電性粒子1の質量は、コンポジット膜10の質量の10~50%であってよい。コンポジット膜10の厚さは、例えば20~100μmとすることができる。
 図1に示すように、厚さ方向に沿う断面において、コンポジット膜10は、1または複数の導電性粒子相8と、高分子材料相9とを有する。図1においては、導電性粒子相8は複数設けられている。導電性粒子相8は、複数の導電性粒子1と高分子材料2とを含む。図1において、「T」はコンポジット膜10の厚さ方向を示し、「t1」は、厚さ方向Tのうちコンポジット膜10の第1面10aから第2面10bに向かう第1方向である。「t2」は、厚さ方向Tのうち第2面10bから第1面10aに向かう第2方向である。第2方向t2は、第1方向t1の反対の方向である。
 少なくとも一部の導電性粒子相8は、コンポジット膜10の一方の面(例えば第1面10a)から他方の面(例えば第2面10b)に向けて延びている。図1に示す導電性粒子相8,8(8A,8B)は、各一端が第1面10aに達し、各他端が第2面10bに達して形成されている。
 導電性粒子相8では、複数の導電性粒子1のうち少なくとも一部は、コンポジット膜10の一方の面(例えば第1面10a)から他方の面(例えば第2面10b)にかけて列をなすように配置されている。すなわち、コンポジット膜10に含まれる複数の導電性粒子1のうち、少なくとも一部である複数の導電性粒子1が、コンポジット膜10の一方の面(例えば第1面10a)から他方の面(例えば第2面10b)まで列をなすように配置されている。図4に示すように、「複数の導電性粒子1がコンポジット膜10の一方の面から他方の面にかけて列をなす」とは、例えば常温(例えば20℃)において、複数の導電性粒子1が、1または複数の列11を形成するように並び、列11の一端11aおよび他端11bがそれぞれコンポジット膜10の一方の面(例えば第1面10a)と他方の面(例えば第2面10b)に達していることをいう。コンポジット膜10の一方の面(例えば第1面10a)に達している導電性粒子1は、この一方の面においてコンポジット膜10の外部に露出されており、コンポジット膜10の外部に対して電気的に導通可能となっている。また、コンポジット膜10の他方の面(例えば第2面10b)に達している導電性粒子1は、この他方の面においてコンポジット膜10の外部に露出されており、コンポジット膜10の外部に対して電気的に導通可能となっている。
 列11を構成する複数の導電性粒子1のうち隣り合う導電性粒子1,1は互いに当接し、電気的に接続されている。列11は、途中で枝分かれしていてもよい。
 図1に示すように、導電性粒子相8は、幅が一定でなくてもよい。図1に示す例えば導電性粒子相8,8(第1の導電性粒子相8Aおよび第2の導電性粒子相8B)は、厚さ方向Tの位置によって幅が変化している。すなわち、図1に示す導電性粒子相8は、異なる幅を有している。導電性粒子相8は分岐していてもよい。図1では、第2の導電性粒子相8Bは二股に分岐している。
 図1に示すように、高分子材料相9(9A,9B,9C)は高分子材料2を含む。高分子材料相9には導電性粒子1はほとんど含まれない。すなわち、高分子材料相9に含まれる導電性粒子1の量は、導電性粒子相8に含まれる導電性粒子1の量よりも少ない。複数の高分子材料相9のうち少なくとも一部は、コンポジット膜10の一方の面(例えば第1面10a)から他方の面(例えば第2面10b)にかけて形成されていることが好ましい。
 図1および図5に示すように、導電性粒子相8と高分子材料相9とは、コンポジット膜10の一方の面(例えば第1面10a)から他方の面(例えば第2面10b)にかけて延びる縞状のパターンを形成していてもよい。すなわち、複数の導電性粒子1がコンポジット膜10の一方の面(例えば第1面10a)から他方の面(例えば第2面10b)まで配置されてなる列が、コンポジット膜10の表面と平行な方向に間隔をあけて複数設けられてもよい。例えば図1では、第1~第3の高分子材料相9A,9B,9Cは、それぞれコンポジット膜10の第1面10aから第2面10bにかけて、概略、帯状に形成されている。第1および第2導電性粒子相8A,8Bも、それぞれコンポジット膜10の第1面10aから第2面10bにかけて、概略、帯状に形成されている。
 導電性粒子相8A,8Bと高分子材料相9A,9B,9Cとは、呈する色の明度が異なる。例えば導電性粒子相8A,8Bは、高分子材料相9A,9B,9Cより暗い色を呈する。導電性粒子相8A,8Bおよび高分子材料相9A,9B,9Cは、図1において左から右に、第1の高分子材料相9A(明色)、第1の導電性粒子相8A(暗色)、第2の高分子材料相9B(明色)、第2の導電性粒子相8B(暗色)、第3の高分子材料相9C(明色)の順に並んでおり、明色の帯状領域と暗色の帯状領域とがコンポジット膜10の表面と平行な方向に交互に配置された縞状のパターンを形成している。
 列11(図4参照)を構成する導電性粒子1は、コンポジット膜10の厚さ方向に沿う断面において、コンポジット膜10の一方の面(例えば第1面10a)から他方の面(例えば第2面10b)にかけて、後戻りせずに配列していることが好ましい。図4に示すように、「後戻りせずに配列する」とは、例えば、列11における導電性粒子1の並び方向を、一端11a(第1面10a)から他端11b(第2面10b)に向かう方向としたとき、列11を構成する導電性粒子1のうち、隣り合う導電性粒子1,1の重心1a,1aを結ぶ直線1bが、第2方向t2(図1における上方)の成分を含まないことである。
 図6は、コンポジット膜10の断面を拡大した写真である。図7は、図6において導電性粒子相8を黒で示し、高分子材料相9を白で示す図である。図8は、図6のコンポジット膜10の断面を拡大した写真である。図6および図7に示すように、コンポジット膜10では、複数の導電性粒子相8のすべてがコンポジット膜10の一方の面(例えば第1面10a)から他方の面(例えば第2面10b)にかけて連続して形成されている必要はない。例えば、導電性粒子相8(8C)と導電性粒子相8(8D)との間に段切れ13が生じていてもよい。また、導電性粒子相8は分岐していてもよい。図6および図7では、導電性粒子相8(8E)は、分岐部14において、導電性粒子相8(8F)と導電性粒子相8(8G)とに分岐している。
 図9は、コンポジット膜10の導電性粒子相8を拡大した写真である。図10は、図9の導電性粒子相8において導電性粒子1の列の一部を白線で示した写真である。図11は、図9の導電性粒子相8をさらに拡大した写真である。図12は、図11の導電性粒子相8をさらに拡大した写真である。図9~図12に示すように、導電性粒子1から構成された列11(図4参照)は、多数の導電性粒子1が凝集して形成されていてもよい。また、複数の列11の延在方向は互いに同一でなくてもよい。図9に示すように、導電性粒子相8においては、高分子材料2は複数の列11の間に存在する。
 コンポジット膜10は、温度が低いときには、導電性粒子1どうしの接触により導電性経路が形成され、コンポジット膜10の電気抵抗(第1面10aと第2面10bとの間の電気抵抗)は低く保たれる。導電性粒子1は、コンポジット膜10の一方の面から他方の面にかけて列をなすように配置されているため、コンポジット膜10中の導電性粒子1の含有量が少ない場合でも、コンポジット膜10の一方の面から他方の面に至る導電性経路が確保され、コンポジット膜10の電気抵抗は低くなる。コンポジット膜10の温度が上昇すると、高分子材料2は膨張し、それに伴って一部の接触していた導電性粒子1が互いに離間する。そのため、導電性経路の一部が切れて、コンポジット膜10の電気抵抗が高くなる。その結果、コンポジット膜10に流れる電流が小さくなる。温度上昇によって電気抵抗が高くなるため、コンポジット膜10は、PTC(Positive Temperature Coefficient:正の抵抗温度係数)特性を有する。
<コンポジット膜の製造方法>(第1実施形態)
 次に、第1実施形態のコンポジット膜の製造方法について説明する。
(導電性粒子の作製)
 図2に示すように、磁性体粒子4の表面に、例えばCVD等の気相蒸着法、アルコール液相法、液相放電法等の液相成長法などにより炭素材被覆5を形成する。これによって、導電性粒子1を得る。
(複合材料の調製)
 導電性粒子1と高分子材料2とを混練し、複合材料3Aを得る(図13参照)。例えば高分子材料2から構成された粒子と導電性粒子1とを混合し、加熱により高分子材料2を溶融させ、混練することによって複合材料3Aを得ることができる。押し出し機等により複合材料3Aを未硬化のままシート状に成形する(シート20という)。この時点では、複合材料3Aの導電性粒子1は、例えば高分子材料2に均一に分散されている。
(複合材料の膜化)
 図13は、コンポジット膜10を製造する装置の第1の例である製造装置30を模式的に示す図である。図13に示すように、製造装置30は、一対のカレンダーロール21,22(第1カレンダーロール21および第2カレンダーロール22)を備えている。第1カレンダーロール21と第2カレンダーロール22は、例えば同じ外径を有する。カレンダーロール21,22は、一定の間隔をおいて並行配置されている。図13では、第1カレンダーロール21は第2カレンダーロール22の上方に位置している。
 第1カレンダーロール21の外周面21bには、複数の第1磁石23が設けられている。複数の第1磁石23は、第1カレンダーロール21の外周面21bに、周方向(中心軸21a周りの方向)に間隔をおいて配置されている。第1磁石23は、第1カレンダーロール21の外周面21bに露出して形成してもよい。複数の第1磁石23は、周方向だけでなく、中心軸21a方向(図13の奥行き方向)に並ぶ配置、例えばマトリクス状に並ぶ配置としてもよい。
 第2カレンダーロール22の外周面22bには、第1カレンダーロール21の第1磁石23とは異なる極性を有する複数の第2磁石24が設けられている。すなわち、第1磁石23をS極とN極の一方とすると、第2磁石24は他方の極である。複数の第2磁石24は、第2カレンダーロール22の外周面22bに、周方向(中心軸22a周りの方向)に間隔をおいて配置されている。第2磁石24は、第2カレンダーロール22の外周面22bに露出して形成してもよい。複数の第2磁石24は、周方向だけでなく、中心軸22a方向(図13の奥行き方向)に並ぶ配置、例えばマトリクス状に並ぶ配置としてもよい。外周面22bにおける第2磁石24の配置は、第1カレンダーロール21と第2カレンダーロール22とが最も近づく位置(最近接位置P1)において、第1磁石23と対向して配置できるように定められる。
 第1磁石23および第2磁石24としては、例えば永久磁石、電磁石を用いることができる。永久磁石としては、例えばネオジム磁石、フェライト磁石、サマリウムコバルト磁石などが使用できる。
 図13に示すように、未硬化の複合材料3Aから構成されたシート20を、第1カレンダーロール21と第2カレンダーロール22との間に導入し、カレンダーロール21,22によって厚さ方向(シート20の厚さ方向)に圧縮する力を加える。カレンダーロール21,22は、シート20を下流方向(図13の右方向)に送り出す方向に回転する。図13では、第1カレンダーロール21は中心軸21a周りに左回りに回転し、第2カレンダーロール22は中心軸22a周りに右回りに回転する。
 カレンダーロール21,22は、最近接位置P1において第1磁石23と第2磁石24とが対向するように動作する。そのため、シート20は、カレンダーロール21,22によって押圧されて膜化し、その際、図14に示すように、第1磁石23と第2磁石24とによって磁場がかけられる。図14における符号25は、第1磁石23と第2磁石24との間に生成した磁力線である。
 図13および図14に示すように、前記磁場によって、少なくとも一部の導電性粒子1は、コンポジット膜10の一方の面から他方の面にかけて列をなすように配置される。カレンダーロール21,22によって厚さ方向に圧縮されることによってシート20は膜化され、得られた膜を硬化させることによって、図1等に示すコンポジット膜10を得る(膜化工程)。
 コンポジット膜10は、導電性粒子1の一部がコンポジット膜10の一方の面から他方の面にかけて列をなすように配置されるため、導電性粒子がランダムに配置されたコンポジット膜に比べ、コンポジット膜10の導電性粒子1の含有量が少ない場合でも、コンポジット膜10の一方の面から他方の面に至る導電性経路が確保され、低温時におけるコンポジット膜10の電気抵抗は低くなる。また、導電性粒子1の含有量を少なくできるため、高温時においては高分子材料2の熱膨張により導電性経路を適切に切断でき、よって電気抵抗を十分に高くできる。したがって、低温時には電気抵抗が低く、かつ高温時には電気抵抗が高い特性を有するコンポジット膜10が得られる。
 第1実施形態の製造方法では、複合材料3Aに磁場を印加することによって、導電性粒子1を、容易に列をなす配置とすることができる。本実施形態の製造方法は、複合材料3Aを膜化するとともに磁場をかけることができるため、最近接位置P1において複合材料3に強い磁力を作用させ、導電性粒子1を、確実に前述のように配置させることができる。この製造方法では、複合材料3Aを膜化すると同時に磁場をかけるため、シート20の変形に伴う導電性粒子1の配列乱れが起こりにくい。
<コンポジット膜の製造方法>(第2実施形態)
 次に、第2実施形態のコンポジット膜の製造方法について説明する。
 本実施形態の製造方法では、第1実施形態の製造方法と同様にして得た複合材料3Aを使用できる。
(磁場の印加)
 図15は、コンポジット膜10を製造する装置の第2の例である製造装置40を模式的に示す図である。図15に示すように、製造装置40は、カレンダーロール41,42に磁石が設けられていない点、および、カレンダーロール41,42の前段(シート20の送り方向の上流側の位置)に第1磁石33および第2磁石34が設けられている点で、図13に示す製造装置30と異なる。符号41a,42aはカレンダーロール41,42の中心軸である。第1磁石33と第2磁石34は異なる極性を有する。すなわち、第1磁石33をS極とN極の一方とすると、第2磁石34は他方の極である。第1磁石33と第2磁石34とは向い合せて配置されている。第1磁石33および第2磁石34としては、例えば永久磁石(ネオジム磁石等)、電磁石を用いることができる。
 図15に示すように、未硬化の複合材料3Aから構成されたシート20を、第1磁石33と第2磁石34との間に導入する。シート20の導入方向は、例えば第1磁石33と第2磁石34の並び方向に対して直交(または交差)する方向である。シート20には、第1磁石33と第2磁石34とによって磁場がかけられる。前記磁場によって、少なくとも一部の導電性粒子1は、シート20の一方の面から他方の面にかけて列をなすように配置される。
(複合材料の膜化)
 シート20を、第1カレンダーロール41と第2カレンダーロール42との間に導入し、カレンダーロール41,42によって厚さ方向に圧縮する力を加える。すなわち、第1磁石33と第2磁石34とによって磁場が印加された方向に沿って、カレンダーロール41,42によってシート20(複合材料3A)に圧縮力を加える。シート20は、導電性粒子1が列をなす配置となったままでカレンダーロール41,42によって押圧されて膜化する。得られた膜を硬化させることによって、図1等に示すコンポジット膜10を得る(膜化工程)。
 第2実施形態の製造方法では、第1実施形態の製造方法とは異なり、磁力により導電性粒子1を整列させる際に導電性粒子1に他の力が加えられないため、導電性粒子1を正確に配列させることができる。また、シート20を成形する際には既に導電性粒子1が整列しているため、カレンダーロール41,42による導電性粒子1の圧縮歪み(後述)の調整を精度よく行うことができる。よって、優れたPTC特性(すなわち低温時に電気抵抗が低く、高温時に電気抵抗が高い特性)を有するコンポジット膜10を容易に作製できる。
 この製造方法では、カレンダーロール41,42とは別に設けられた磁石33,34を用いるため、カレンダーロール21,22に設けた磁石23,24を用いる第1実施形態の製造方法に比べて、磁石33,34に関する装置上の制約が少ない。そのため、例えば大型の磁石33,34を用いれば、シート20の送り方向の広い範囲でシート20に磁場をかけることができる。よって、磁力が弱い磁石33,34を用いた場合でも導電性粒子1を確実に前述のように配列させることができる。また、複合材料3Aの粘度が低い低温条件においても導電性粒子1を精度よく配列させることができる。したがって、製造の容易性およびコストの点で有利となる。
 第2実施形態の製造方法では、複合材料3Aの膜化に先だって磁場をかけることができる。すなわち、製造工程の早期において複合材料3Aの硬化がそれほど進行していないうちに複合材料3Aに磁場をかけることができるため、磁場中で導電性粒子1が変位しやすくなることから、導電性粒子1を、確実に前述のように配置させることができる。
 次に、コンポジット膜10の抵抗の温度特性を調整する手法について説明する。
 図16(A)~図16(C)は、温度によるコンポジット膜10の形態の変化を模式的に示す図である。
 図16(A)は、厚さ方向Tに圧縮されることによって導電性粒子1に圧縮歪みが加えられたコンポジット膜10を示す。比較的低温のとき、導電性粒子1どうしの接触により導電性経路が形成され、コンポジット膜10の電気抵抗は低くなる。図16(B)に示すように、温度が高くなると、高分子材料2は膨張し、導電性粒子1の圧縮歪みが解消されるとともに、コンポジット膜10の電気抵抗は高くなる。図16(C)に示すように、温度がさらに高くなると、高分子材料2は膨張し、導電性粒子1が互いに離間し、コンポジット膜10の電気抵抗はさらに高くなる。
 図16(A)に示すように、導電性粒子1に圧縮歪みが加えられていると、比較的高い温度まで導電性粒子1の接触は解消されず、コンポジット膜10の電気抵抗は低く維持される。そのため、導電性粒子1に加えられた初期圧縮歪みによって、コンポジット膜10の抵抗の温度特性を調整することができる。
 導電性粒子1の圧縮歪みは、例えば、図13に示す製造装置30、または図15に示す製造装置40において、カレンダーロール21,22を用いて複合材料3Aに圧縮方向の力(圧縮力)を加えることによって与えることができる。圧縮歪みの大きさは、カレンダーロール21,22による圧縮方向の力(圧縮力)によって調整することができる。
 以下、計算結果に基づいて、コンポジット膜10の抵抗の温度特性を調整する手法について説明する。
(計算例1~3)
 計算例1~3に用いた導電性粒子1は、Niから構成された磁性体粒子4(平均粒径2μm)と、磁性体粒子4を覆うグラフェンから構成された炭素材被覆5(平均厚さ20nm)とを有する。高分子材料2はシリコーンゴムである。
 導電性粒子1のCTE(熱膨張係数:Coefficient of Thermal Expansion)は1.28×10-5(1/K)であり、ρ(体積抵抗率)は6.93×10-8(Ωm)である。高分子材料2のCTEは2.6×10-4(1/K)であり、ρは1×1014(Ωm)である。コンポジット膜10における導電性粒子1の含有率は、計算例1では10質量%、計算例2では30質量%、計算例3では50質量%とした。コンポジット膜10の厚さは20μmとした。計算例1~3では、導電性粒子1に加えられた圧縮歪みは0%である。
 図17は、計算例1~3のコンポジット膜10における抵抗と温度との関係、および電流と温度との関係を示すグラフである。図17に示すように、導電性粒子1に加えられた初期圧縮歪みは0%であるときには、温度が上昇するとコンポジット膜10の電気抵抗は大きくなり、電流は急激に低下する。わずかな温度上昇で電気抵抗および電流が急激に変化するため、使用態様によっては、コンポジット膜10を機器等に適用しにくくなることが考えられる。
(計算例4)
 図13に示す製造装置30、または図15に示す製造装置40において、カレンダーロール21,22を用いて複合材料3Aに圧縮方向の力(圧縮力)を加えることによって、導電性粒子1に0.3%の初期圧縮歪みを与えること以外は計算例1と同様としたコンポジット膜10について、圧縮歪みと温度との関係、および電気抵抗と温度との関係を調べた。結果を図18に示す。
 図18に示すように、導電性粒子1に加えられた初期圧縮歪みが0.3%であるときには、圧縮歪みが解消され、電気抵抗が上昇し始めるまでの温度上昇幅W1は12℃である。電気抵抗が上昇し始める温度(スイッチング温度)は42℃である。
(計算例5)
 導電性粒子1に0.6%の初期圧縮歪みを与えること以外は計算例4と同様としたコンポジット膜10について、圧縮歪みと温度との関係、および電気抵抗と温度との関係を調べた。結果を図19に示す。
 図19に示すように、導電性粒子1に加えられた初期圧縮歪みが0.6%であるときには、圧縮歪みが解消され、電気抵抗が上昇し始めるまでの温度上昇幅W2は24℃である。電気抵抗が上昇し始める温度(スイッチング温度)は54℃である。
(計算例6)
 導電性粒子1に0.9%の初期圧縮歪みを与えること以外は計算例4と同様としたコンポジット膜10について、圧縮歪みと温度との関係、および電気抵抗と温度との関係を調べた。結果を図20に示す。
 図20に示すように、導電性粒子1に加えられた初期圧縮歪みが0.9%であるときには、圧縮歪みが解消され、電気抵抗が上昇し始めるまでの温度上昇幅W3は36℃である。電気抵抗が上昇し始める温度(スイッチング温度)は66℃である。
 図21は、計算例4~6における電気抵抗と温度との関係を示すグラフである。
 図21に示すように、コンポジット膜10では、導電性粒子1の含有率が低い(10質量%)にもかかわらず、低温時において電気抵抗を非常に低くできる(例えば1×10-10Ω)。また、高温時における電気抵抗を十分に高くできる。よって、低温時には電気抵抗が低く、かつ高温時には電気抵抗が高い特性を有するコンポジット膜10が得られる。また、導電性粒子1の含有量を少なくできるため、低コスト化を図ることができる。
 図22は、コンポジット膜10における初期圧縮歪みとスイッチング温度との関係を示すグラフである。ここでは、計算例7として、導電性粒子1に1.2%の初期圧縮歪みを与えること以外は計算例4と同様としたコンポジット膜10の結果も併せて示す。
 図22に示すように、スイッチング温度は初期圧縮歪みの大きさに比例して上昇する。0.3%の初期圧縮歪みは、スイッチング温度約10℃に相当する。
(計算例8~10)
 図23は、導電性粒子1に加えられた初期圧縮歪みが0.9%であるときの電気抵抗と温度との関係を示すグラフである。コンポジット膜10における導電性粒子1の含有率は、計算例8では10質量%、計算例9では30質量%、計算例10では50質量%とした。
 図23に示すように、導電性粒子1の含有率は、スイッチング温度にはほとんど影響しない。
 図24は、コンポジット膜10を用いたリチウムイオン電池50を模式的に示す図である。リチウムイオン電池50は、正極板51と、負極板52と、セパレータ53と、正極板51と負極板52との間に充てんされた電解液54と、を備えている。
 正極板51は、正極集電板56と、コンポジット膜10(正極コンポジット膜10A)と、正極活物質層57とを備えている。正極集電板56は、例えばアルミニウム箔などから構成されている。正極活物質層57は、リチウム系材料などの正極活物質を含む。正極コンポジット膜10Aは、正極集電板56と正極活物質層57との間に介在し、正極集電板56と正極活物質層57とを隔てている。
 負極板52は、負極集電板58と、コンポジット膜10(負極コンポジット膜10B)と、負極活物質層59とを備えている。負極集電板58は、例えば銅箔などから構成されている。負極活物質層59は、カーボン系材料などの負極活物質を含む。負極コンポジット膜10Bは、負極集電板58と負極活物質層59との間に介在し、負極集電板58と負極活物質層59とを隔てている。電解液54としては、例えばプロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、エチレンカーボネート(EC)などが使用できる。
 リチウムイオン電池50では、正極板51および負極板52にコンポジット膜10(10A,10B)が用いられているため、高温時において電流を制限し、異常発熱を防ぐことができる。図2に示すように、コンポジット膜10の導電性粒子1は炭素材被覆5を有するため、電解液54に触れた場合でも磁性体粒子4が溶出するのを妨げることができる。
 なお、このリチウムイオン電池50では、正極板51および負極板52がコンポジット膜10をそれぞれ備えているが、このような構成に限定されるものではなく、コンポジット膜10が正極板51および負極板52の一方に設けられ、他方には設けられない構成でもよい。
 以上、本発明の実施形態を説明したが、実施形態における構成は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能である。
 例えば、図2等に示す導電性粒子1の磁性体粒子4は、突起6を有する形状であるが、磁性体粒子4の形状はこれに限らず、突起6がない形状であってもよい。なお、PTC特性とは、所定の温度範囲において、温度上昇とともに電気抵抗が高くなる特性である。
(試験例1)
 図1等に示すコンポジット膜10を、次のようにして作製した。
 導電性粒子としては、スパイク状粒子であるNi粒子(ニューメタルス エンド ケミカルス コーポレーション社製、平均粒径1~2μm)を用いた。導電性粒子は、1個の球形の粒子本体(例えば図2に示す粒子本体7)の表面に、鋭利な突起(例えば図2に示す突起6)を複数個(通常は10個~500個)有する。突起の高さは、粒子本体の粒径に対して概ね1/3~1/500である。導電性粒子は、カルボニル金属粉(純度99.99%のニッケルカルボニル)を原料として、Ni(CO)→Ni+4COという反応に従って得られた(日本国特開平5-47503号公報を参照)。
 高分子材料としては、シリコーン樹脂(信越シリコーン製、KE-109E-A/B)を使用した。
 導電性粒子と高分子材料とを混練し、未硬化の複合材料から構成された厚さ200μmのシート20(図25参照)を得た。前記複合材料における導電性粒子1の含有率(体積基準)は20Vol.%である。
 図25に示す製造装置31を用意した。なお、図25は、シート20の厚さ方向(図25の紙面上下方向)における製造装置31の断面図を示している。第1磁石33および第2磁石34としては、吸着力35N(磁束密度0.42T)のネオジム磁石を用いた。第1磁石33および第2磁石34との間にシート20 を導入した。第1磁石33とシート20との間にテフロン(登録商標)板45を設け、第2磁石34とシート20との間にテフロン板46を設けた。すなわち、テフロン板45、46の板面の間にシート20が配置されている。テフロン板45、46のそれぞれの厚さは1mmである。シート20の両側(図25の紙面左右方向における両側)には、ポリイミド製で膜厚200μm(すなわちテフロン板45、46の対向方向における厚さが200μm)のスペーサー60をそれぞれ設けた。一対のスペーサー60は、テフロン板45、46によって挟持されている。これらのスペーサー60は、両テフロン板45、46を互いに並行にし、第1磁石33および第2磁石34の間の距離を一定とし、シート20内に印加されている磁界を一定にするために設けられている。温度120℃において10分間第1磁石33および第2磁石34によってシート20に磁場をかけて、その後磁場をかけつつ室温まで徐冷してコンポジット膜(厚さ約200μm)を得た。
 図26に、コンポジット膜10の断面のSEM写真を示す。コンポジット膜10の厚さ方向Tを矢印で示す。コンポジット膜10の複数の導電性粒子1のうち一部は、一方の面から他方の面にかけて列をなすように配置されている。
(試験例2)
 磁場をかけないこと以外は試験例1と同様にしてコンポジット膜を作製した。
 図27に、コンポジット膜の断面のSEM写真を示す。このコンポジット膜では、導電性粒子1Aは高分子材料2A中にランダムに配置されている。このコンポジット膜は抵抗率は数MΩ・cm以上と導電性を有していなかった。
(試験例3~5)
 導電性粒子1の含有率を10Vol.%(試験例3)、30Vol.%(試験例4)、40Vol.%(試験例5)としてコンポジット膜10を作製した。導電性粒子1の含有率(導電性粒子1の添加量)以外の条件は試験例1に準じて定めた。
 図28は、試験例3(導電性粒子1の含有率10Vol.%)のコンポジット膜10の断面のSEM写真である。図29は、試験例1(導電性粒子1の含有率20Vol.%)のコンポジット膜10の断面のSEM写真である。図30は、試験例4(導電性粒子1の含有率30Vol.%)のコンポジット膜10の断面のSEM写真である。図31は、試験例5(導電性粒子1の含有率40Vol.%)のコンポジット膜10の断面のSEM写真である。
 図28~図31に示すように、複数の導電性粒子1の一部は、コンポジット膜10の一方の面から他方の面にかけて列をなすように配置されている。導電性粒子1の含有率が低いと導電性粒子1の列が長くなり、含有率が高いと導電性粒子1の長い列が少なくなる傾向があった。
 図32は、試験例1,3~5について、コンポジット膜の電気抵抗率の温度依存性を示す図である。横軸は温度であり、縦軸は電気抵抗率である。電気抵抗率は2端子法を用いて測定した。試料の温度は、試料をホットプレート上に置いて熱電対により測定した。
 図32に示すように、試験例1,3~5では、PTC特性(低温時に電気抵抗が低いが、温度上昇により電気抵抗が大きく上昇する特性)が発現した。
 導電性粒子1の含有率が10Vol.%である試験例3では、50℃における電気抵抗率は約100Ω・cmであった。120℃における電気抵抗率は約4.0×10Ω・cmであった。50℃から120℃への温度変化によって電気抵抗率は4桁上昇した。
 導電性粒子1の含有率が20Vol.%である試験例1では、50℃における電気抵抗率は約10Ω・cmであり、120℃における電気抵抗率は約3.0×10Ω・cmであった。50℃から120℃への温度変化によって電気抵抗率は5桁上昇した。
 導電性粒子1の含有率が30Vol.%である試験例4では、50℃における電気抵抗率は約10Ω・cmであり、120℃における電気抵抗率は約4.0×10Ω・cmであった。50℃から120℃への温度変化によって電気抵抗率は2桁上昇した。
 導電性粒子1の含有率が40Vol.%である試験例5では、50℃における電気抵抗率は約2Ω・cmであり、120℃における電気抵抗率は約5.0×10Ω・cmであった。50℃から120℃への温度変化によって電気抵抗率は1桁上昇した。
 導電性粒子1の含有率が10~20Vol.%である試験例1,3では、50℃における電気抵抗率は10Ω・cm未満であり、かつ120℃における電気抵抗率が10Ω・cm以上であって、4桁以上の電気抵抗率の上昇があったため、PTC特性は良好であった。特に、導電性粒子1の含有率が20Vol.%である試験例1では、50℃における電気抵抗率が10Ω・cm未満であり、かつ120℃における電気抵抗率が10Ω・cm以上であって、5桁の電気抵抗率の上昇があったため、PTC特性は優れていた。
 PTC特性の発現温度は、導電性粒子1の含有率が低いほど低くなる傾向があった。低温(例えば50℃)では、導電性粒子1の含有率が高いほど電気抵抗率が低くなった。高温(例えば120℃)においても、導電性粒子1の含有率が高いほど電気抵抗率が低くなった。
 導電性粒子1の含有率が低いほどPTC特性の発現温度が低くなった理由としては次の推測が可能である。導電性粒子1の含有率が低いと、高分子材料2中の導電性粒子1が少ないため導電性経路十分発達しておらず、高分子材料2がわずかに熱膨張するだけで導電性経路が切断されやすくなる。一方、導電性粒子1の含有率が高いと、導電性経路が十分に発達するためPTC特性が発現しにくく、高温にならないと電気抵抗率が上昇しない。
 車載用のリチウムイオン電池(セルの有効面積0.101m、セルの電気抵抗0.00149Ω)(図24参照)を想定する。このリチウムイオン電池は、PTC特性を有するコンポジット膜がない場合、低温域の電気抵抗は0.00149Ωであるが、負極板にコンポジット膜(厚さ20μm)を設けた場合、低温域の電気抵抗は0.00154Ωとなり、電気抵抗の上昇率は約3%となる。なお、仮定されたコンポジット膜のPTC特性を、図33に示す。このコンポジット膜は、その温度が所定のPTC発現温度より低い状態から高い状態に変化すると、その抵抗率が23Ω・cmから2.3×10Ω・cmに上昇する。
 温度上昇により、コンポジット膜の電気抵抗率が2.3×10Ω・cmとなった場合には、セルの抵抗は4.6Ωとなる。車載用のリチウムイオン電池では28.5Aの電流が放電される。コンポジット膜によりわずかに電気抵抗が増加するが、低温域での電流値は27.6Aとなる。温度上昇により電気抵抗が4.6Ωとなれば電流は9.2mAとなる。このように、PTC特性を有するコンポジット膜を用いることにより、電流値が大幅に小さくなり発熱が抑制される。
 車載用のリチウムイオン電池では、低温時(例えば50℃)に数10~数100Ω・cmまたはそれ以下の電気抵抗率を有し、高温時(PTC特性発現後)(例えば120℃)に10Ω・cmオーダー以上の電気抵抗率を有するPTC素子は、通常時には放電特性に影響を与えず、高温時には電流を遮断して発熱を抑制することができる。
 この特性を満たすのは、試験例1,3~5のうち、試験例1および試験例3(導電性粒子1の含有率10,20Vol.%)であった。試験例1,3では、いずれも60~90℃において電気抵抗率が急激に変化しており、リチウムイオン電池の安全性の基準となる温度である130℃になる前に電流を遮断することが可能である。
(試験例6~9)
 吸着力47N(磁束密度0.28T)の第1磁石33および第2磁石34を有する製造装置31(図25参照)を用いてコンポジット膜10を作製した。試験例6~9の導電性粒子1の含有率は、それぞれ10Vol.%(試験例6)、20Vol.%(試験例7)、30Vol.%(試験例8)、40Vol.%(試験例9)である。その他の条件は試験例1に準じて定めた。
 図34は、試験例6~9について、電気抵抗率の温度依存性を示す図である。横軸は温度であり、縦軸は電気抵抗率である。
 図34に示すように、試験例6~9は、試験例1,3~5に比べて、低温における電気抵抗率は同程度の値を示すが、電気抵抗率の急な上昇が起きる温度が高温側に移行した。
 これについては次のような推測ができる。第1磁石33および第2磁石34(図25参照)の吸着力が大きいと、導電性粒子が高分子材料中で移動しやすく、導電性経路が発達する。そのため、導電性経路が切断されにくく、高温にならないと電気抵抗率が上昇しない。
 なお、コンポジット膜における導電性粒子の含有率は、Vol.%や質量%で表すことができるが、コンポジット膜に含まれる導電性粒子や高分子材料の質量および密度から下記数式1を用いてVol.%を算出でき、また、コンポジット膜に含まれる導電性粒子や高分子材料の体積および密度から下記数式2を用いて質量%を算出できる。すなわち、コンポジット膜における導電性粒子の含有率を表すVol.%および質量%は、下記数式1、2を用いて互いに換算できる。
Figure JPOXMLDOC01-appb-M000001
 
Figure JPOXMLDOC01-appb-M000002
 
 なお、Vparticleは、コンポジット膜に含まれる導電性粒子の体積(cm)を示し、Vpolymerは、コンポジット膜に含まれる高分子材料の体積(cm)を示し、Wparticleは、コンポジット膜に含まれる導電性粒子の質量(g)を示し、Wpolymerは、コンポジット膜に含まれる高分子材料の質量(g)を示し、ρparticleは、導電性粒子の密度(g/cm)を示し、ρpolymerは、高分子材料の密度(g/cm)を示す。
1 導電性粒子
2 高分子材料
4 磁性体粒子
5 炭素材被覆
10 コンポジット膜
10A 正極コンポジット膜
10B 負極コンポジット膜
11 列
21 第1カレンダーロール
22 第2カレンダーロール
23,33 第1磁石
24,34 第2磁石
30,40 製造装置
50 リチウムイオン電池(電池)
51 正極板
52 負極板
54 電解液
56 正極集電板
57 正極活物質層
58 負極集電板
59 負極活物質層

Claims (10)

  1.  複数の導電性粒子と絶縁性の高分子材料とを含み、PTC特性を有するコンポジット膜であって、
     前記導電性粒子は、導電性の磁性体粒子と、前記磁性体粒子を覆う炭素材被覆とを有し、
     前記複数の導電性粒子の平均粒径は、前記コンポジット膜の厚みより小さく、
     前記複数の導電性粒子の少なくとも一部が、前記コンポジット膜の一方の面から他方の面にかけて列をなすように配置されている、コンポジット膜。
  2.  前記磁性体粒子を構成する磁性体は、NiまたはNi合金である、請求項1に記載のコンポジット膜。
  3.  前記炭素材被覆を構成する炭素材は、グラフェンを含む、請求項1または2に記載のコンポジット膜。
  4.  前記複数の導電性粒子は、前記コンポジット膜の厚さ方向に沿う断面において、前記一方の面から前記他方の面にかけて延びる縞状のパターンを形成している、請求項1~3のうちいずれか1項に記載のコンポジット膜。
  5.  前記導電性粒子に、前記コンポジット膜の厚さ方向に圧縮歪みが加えられている、請求項1~3のうちいずれか1項に記載のコンポジット膜。
  6.  複数の導電性粒子と絶縁性の高分子材料とを含み、PTC特性を有するコンポジット膜を製造する方法であって、
     導電性の磁性体粒子と前記磁性体粒子を覆う炭素材被覆とを有し、平均粒径が前記コンポジット膜の厚みより小さい前記複数の導電性粒子を前記高分子材料に含ませた複合材料に圧縮力を加えて膜状とすることによって前記コンポジット膜を得る膜化工程を有し、
     前記膜化工程において、または前記膜化工程に先だって、前記複合材料に磁場を印加することによって、前記複数の導電性粒子の少なくとも一部を、前記コンポジット膜の一方の面から他方の面にかけて列をなすように配置する、コンポジット膜の製造方法。
  7.  前記膜化工程において、ロールによって前記複合材料に前記圧縮力を加える、請求項6に記載のコンポジット膜の製造方法。
  8.  前記膜化工程において、前記ロールに設けた磁石によって前記複合材料に磁場をかける、請求項7に記載のコンポジット膜の製造方法。
  9.  前記磁場は、前記膜化工程に先だって前記複合材料に印加され、
     前記膜化工程において、前記磁場が印加された方向に沿って前記ロールによって前記複合材料に圧縮力を加える、請求項7に記載のコンポジット膜の製造方法。
  10.  正極板と、負極板と、前記正極板と前記負極板との間に充てんされた電解液と、を備え、
     前記正極板は、正極集電板と、正極活物質層とを有し、
     前記負極板は、負極集電板と、負極活物質層とを有し、
     前記正極集電板と前記正極活物質層との間、および前記負極集電板と前記負極活物質層との間に介在して、請求項1~5のうちいずれか1項に記載のコンポジット膜がそれぞれ設けられている、電池。
PCT/JP2017/019270 2016-06-27 2017-05-23 コンポジット膜、コンポジット膜の製造方法および電池 WO2018003350A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018524957A JPWO2018003350A1 (ja) 2016-06-27 2017-05-23 コンポジット膜、コンポジット膜の製造方法および電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-126693 2016-06-27
JP2016126693 2016-06-27

Publications (1)

Publication Number Publication Date
WO2018003350A1 true WO2018003350A1 (ja) 2018-01-04

Family

ID=60787175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019270 WO2018003350A1 (ja) 2016-06-27 2017-05-23 コンポジット膜、コンポジット膜の製造方法および電池

Country Status (2)

Country Link
JP (1) JPWO2018003350A1 (ja)
WO (1) WO2018003350A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019201182A (ja) * 2018-05-18 2019-11-21 株式会社フジクラ コンポジット膜
WO2021230360A1 (ja) * 2020-05-14 2021-11-18 Apb株式会社 リチウムイオン電池
WO2022162940A1 (ja) * 2021-02-01 2022-08-04 エリーパワー株式会社 サーミスタ層、電池用電極、電池及びサーミスタ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4740083A (ja) * 1971-03-31 1972-12-09
JP2000501884A (ja) * 1995-12-07 2000-02-15 レイケム・コーポレイション 電気素子
JP2006121049A (ja) * 2004-09-03 2006-05-11 Tyco Electronics Corp 酸素バリアコーティングを有する電気デバイス
JP2013116927A (ja) * 2011-10-31 2013-06-13 Kohjin Holdings Co Ltd 活性エネルギー線硬化性コーティング組成物及びコーティング剤

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4740083A (ja) * 1971-03-31 1972-12-09
JP2000501884A (ja) * 1995-12-07 2000-02-15 レイケム・コーポレイション 電気素子
JP2006121049A (ja) * 2004-09-03 2006-05-11 Tyco Electronics Corp 酸素バリアコーティングを有する電気デバイス
JP2013116927A (ja) * 2011-10-31 2013-06-13 Kohjin Holdings Co Ltd 活性エネルギー線硬化性コーティング組成物及びコーティング剤

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019201182A (ja) * 2018-05-18 2019-11-21 株式会社フジクラ コンポジット膜
WO2021230360A1 (ja) * 2020-05-14 2021-11-18 Apb株式会社 リチウムイオン電池
WO2022162940A1 (ja) * 2021-02-01 2022-08-04 エリーパワー株式会社 サーミスタ層、電池用電極、電池及びサーミスタ

Also Published As

Publication number Publication date
JPWO2018003350A1 (ja) 2019-05-30

Similar Documents

Publication Publication Date Title
US10991947B2 (en) Battery
CN106797033B (zh) 电连接结构
US9912014B2 (en) Solid state battery fabrication
WO2018003350A1 (ja) コンポジット膜、コンポジット膜の製造方法および電池
US11001695B2 (en) Fast and reversible thermoresponsive polymer switching materials
EP2922123A1 (en) Collector, electrode, secondary cell, and capacitor
KR102258676B1 (ko) 고체 전지용 전극 및 고체 전지
JP7147330B2 (ja) 固体電池用電極及び固体電池
US20190123355A1 (en) All-solid-state battery
CN110783521B (zh) 固体电池用电极和固体电池
JP6962286B2 (ja) 固体電池用電極及び固体電池
US10651446B2 (en) Battery and manufacturing method of the same
WO2020137388A1 (ja) 全固体電池及び全固体電池の製造方法
WO2019198453A1 (ja) 電池の製造方法
JP2016126901A (ja) 二次電池
JP2010092606A (ja) 双極型二次電池用集電体
JP6349442B1 (ja) コンポジット膜および電池
WO2019198454A1 (ja) 電池の製造方法
JP2004088079A (ja) Ptcサーミスタ素体及びptcサーミスタ並びにptcサーミスタ素体の製造方法及びptcサーミスタの製造方法
US20200035989A1 (en) Method for producing electrode for solid-state batteries
JP7052740B2 (ja) 集電体
JP7029258B2 (ja) リチウムイオン二次電池用集電部材、それを用いたリチウムイオン二次電池用集電体及びリチウムイオン二次電池用強電タブ、並びに、リチウムイオン二次電池用集電部材の製造方法
CN113039679B (zh) 用于储能装置的电阻性聚合物膜
JP6940378B2 (ja) 電池の製造方法及び電池
CN117397078A (zh) 包含电流限制器的电极组合件、具有此类电极组合件的二次电池和测试方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17819717

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018524957

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17819717

Country of ref document: EP

Kind code of ref document: A1