WO2018003030A1 - 合成繊維ケーブル - Google Patents

合成繊維ケーブル Download PDF

Info

Publication number
WO2018003030A1
WO2018003030A1 PCT/JP2016/069283 JP2016069283W WO2018003030A1 WO 2018003030 A1 WO2018003030 A1 WO 2018003030A1 JP 2016069283 W JP2016069283 W JP 2016069283W WO 2018003030 A1 WO2018003030 A1 WO 2018003030A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber cable
core wire
contact
wire
carbon fiber
Prior art date
Application number
PCT/JP2016/069283
Other languages
English (en)
French (fr)
Inventor
俊次 蜂須賀
徳明 古瀬
Original Assignee
東京製綱株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京製綱株式会社 filed Critical 東京製綱株式会社
Priority to BR112018076669-0A priority Critical patent/BR112018076669B1/pt
Priority to PCT/JP2016/069283 priority patent/WO2018003030A1/ja
Priority to JP2018524633A priority patent/JP6393444B2/ja
Priority to MYPI2018002414A priority patent/MY184869A/en
Priority to MX2018013849A priority patent/MX2018013849A/es
Priority to EA201892428A priority patent/EA201892428A1/ru
Priority to EP16907263.4A priority patent/EP3480357B1/en
Priority to CA3029606A priority patent/CA3029606C/en
Publication of WO2018003030A1 publication Critical patent/WO2018003030A1/ja
Priority to ZA2018/08482A priority patent/ZA201808482B/en
Priority to US16/234,704 priority patent/US20190153671A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/02Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/02Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics
    • D07B1/04Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics with a core of fibres or filaments arranged parallel to the centre line
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/16Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B5/00Making ropes or cables from special materials or of particular form
    • D07B5/005Making ropes or cables from special materials or of particular form characterised by their outer shape or surface properties
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/02Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics
    • D07B1/025Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics comprising high modulus, or high tenacity, polymer filaments or fibres, e.g. liquid-crystal polymers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/14Ropes or cables with incorporated auxiliary elements, e.g. for marking, extending throughout the length of the rope or cable
    • D07B1/147Ropes or cables with incorporated auxiliary elements, e.g. for marking, extending throughout the length of the rope or cable comprising electric conductors or elements for information transfer
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/10Rope or cable structures
    • D07B2201/1012Rope or cable structures characterised by their internal structure
    • D07B2201/102Rope or cable structures characterised by their internal structure including a core
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/10Rope or cable structures
    • D07B2201/1028Rope or cable structures characterised by the number of strands
    • D07B2201/1032Rope or cable structures characterised by the number of strands three to eight strands respectively forming a single layer
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/10Rope or cable structures
    • D07B2201/104Rope or cable structures twisted
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2001Wires or filaments
    • D07B2201/2007Wires or filaments characterised by their longitudinal shape
    • D07B2201/2008Wires or filaments characterised by their longitudinal shape wavy or undulated
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2001Wires or filaments
    • D07B2201/2014Compound wires or compound filaments
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2021Strands characterised by their longitudinal shape
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2046Strands comprising fillers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/2003Thermoplastics
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/2007Duroplastics
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/201Polyolefins
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/2046Polyamides, e.g. nylons
    • D07B2205/205Aramides
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/2096Poly-p-phenylenebenzo-bisoxazole [PBO]
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3003Glass
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3007Carbon
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2401/00Aspects related to the problem to be solved or advantage
    • D07B2401/20Aspects related to the problem to be solved or advantage related to ropes or cables
    • D07B2401/206Improving radial flexibility
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2401/00Aspects related to the problem to be solved or advantage
    • D07B2401/20Aspects related to the problem to be solved or advantage related to ropes or cables
    • D07B2401/208Enabling filler penetration
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2501/00Application field
    • D07B2501/20Application field related to ropes or cables
    • D07B2501/2015Construction industries
    • D07B2501/2023Concrete enforcements
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B7/00Details of, or auxiliary devices incorporated in, rope- or cable-making machines; Auxiliary apparatus associated with such machines
    • D07B7/02Machine details; Auxiliary devices
    • D07B7/025Preforming the wires or strands prior to closing

Definitions

  • This invention relates to a synthetic fiber cable.
  • Patent Document 1 describes that a rod-shaped body made of carbon fiber or aramid fiber is inserted into a concrete structure to improve the strength.
  • An object of the present invention is to provide a synthetic fiber cable that can increase the contact efficiency with concrete or the like by allowing concrete or the like to enter the inside of the cable, thereby increasing the fixing efficiency.
  • Another object of the present invention is to provide a synthetic fiber cable excellent in handling that generates an appropriate amount of bending when bending is applied.
  • the synthetic fiber cable according to the present invention has a plurality of synthetic fibers impregnated with a resin, each of which includes a core wire bundled into a bundle, and a plurality of synthetic fibers impregnated with a resin, A plurality of side lines each of which is bundled together, and the resin is in a cured state, and each of the plurality of side lines is molded using the curing property of the resin, Each of the plurality of side wires is in a state of being twisted around the core wire.
  • the core wire and the side wire composed of a plurality of synthetic fibers impregnated with resin maintain the shape when the resin is cured by curing the resin. If the resin is a thermosetting resin, the resin is cured by applying heat, and if the resin is a thermoplastic resin, the resin is cured. When the resin is cured in a state where a predetermined shape is applied, the core wire and the side wire can continue to maintain the shape after that.
  • Synthetic fibers fibers made from chemically synthesized polymers, not natural fibers such as cotton and silk
  • fibers made from chemically synthesized polymers, not natural fibers such as cotton and silk are carbon fibers, glass fibers, boron fibers, aramid fibers, polyethylene fibers, Includes PBO (polyp-phenylenebenzobisoxazole) fiber and other fibers. These fibers are very thin and can be impregnated with resin by bundling a large number of synthetic fibers.
  • the synthetic fiber cable is constructed by making each of the plurality of side wires pre-molded by using the curability of the resin twisted around the core wire.
  • the side wires are molded in advance by using the curing property of the resin, and specifically, the inside of the synthetic fiber cable, specifically, between the core wire and the surrounding side wires, and between adjacent side wires.
  • an appropriate space or gap can be secured without impairing the substantially twisted state.
  • the core wire constituting the synthetic fiber cable and the surrounding side wires are in a state in which the resin is cured in each, the core wire, the surrounding side wires, and adjacent side wires slip (displacement). Is acceptable.
  • This provides a synthetic fiber cable that is easy to moderately bend when bent and is excellent in handling.
  • a long synthetic fiber cable can be wound around a small-diameter reel to make it compact and easy to handle at the work site.
  • the synthetic fiber cable according to the present invention is suitable for use as, for example, an electric wire (power transmission line), an optical fiber cable, a submarine cable, or other relatively long members or a reinforcing material for equipment.
  • both a contact portion where the side wire is in contact with the core wire and a non-contact portion where the side wire is not in contact with the core wire In the longitudinal direction (exists in the longitudinal direction). That is, the plurality of side lines around the core wire do not continue to contact the core wire over the entire length in the longitudinal direction, and have a portion that is not in contact (the side line is floating from the core wire).
  • the contact portion prevents the synthetic fiber cable from being deformed. Since the non-contact part is a space between the core wire and the side wire, it contributes to improving the cable bendability and also helps to penetrate concrete, mortar and other coagulants or coagulants.
  • the synthetic fiber cable according to the present invention is also suitable for use as a reinforcing material for concrete structures, for example.
  • each of the plurality of side lines has both a contact part in contact with the adjacent side line and a non-contact part not in contact with the adjacent side line in the longitudinal direction. That is, the plurality of side lines around the core wire do not continue to contact adjacent side lines over the entire length in the longitudinal direction, and have a non-contact portion (there is a gap between the side lines). The contact portion prevents the synthetic fiber cable from being deformed.
  • the non-contact part contributes to the cable bendability and is useful for the penetration of concrete, mortar and other coagulants or coagulants into the interior of the synthetic fiber cable.
  • the contact part and the non-contact part are repeated in the longitudinal direction for both the contact part and the non-contact part between the core wire and the side line, and the contact part and the non-contact part between adjacent side lines.
  • a cable that is easy to bend over its entire length is provided.
  • FIG. 3 is an enlarged sectional view taken along line III-III in FIG. 1.
  • FIG. 4 is an enlarged sectional view taken along line IV-IV in FIG. 1.
  • FIG. 5 is an enlarged sectional view taken along line VV in FIG. 1. It is a graph which shows the result of a concrete drawing test.
  • FIG. 1 shows the appearance of the carbon fiber cable.
  • FIG. 2 is an exploded perspective view of the carbon fiber cable.
  • 3 to 5 show enlarged sectional views of the carbon fiber cable taken along lines III-III, IV-IV, and VV in FIG. 1, respectively.
  • the carbon fiber cable 1 is composed of one core wire 2 and six side wires 3 (3a to 3f) twisted around the core wire (1 ⁇ 7 structure). As seen from the cross section, the carbon fiber cable 1, the core wire 2 and the side wire 3 all have a substantially circular shape. Further, as viewed from the cross section, the carbon fiber cable 1 has a core wire 2 disposed at the center thereof, and six side wires 3 are positioned so as to surround the core wire 2.
  • the carbon fiber cable 1 has a diameter of about 5 mm to 20 mm, for example.
  • Each of the core wire 2 and the side wire 3 is formed by bundling a large number of, for example, tens of thousands of long carbon fibers 4 impregnated with a thermosetting resin (for example, epoxy resin) 5 into a circular cross section. As a whole, about several hundred thousand carbon fibers 4 are included. Each of the carbon fibers 4 is very thin and has a diameter of 5 ⁇ m to 7 ⁇ m, for example.
  • the core wire 2 and the side wire 3 may be formed by bundling a plurality of carbon fibers 4 impregnated with the thermosetting resin 5 and twisting a plurality of bundles of the carbon fibers. It can be said that the core wire 2 and the side wires 3 are made of carbon fiber composite material (CFRP) (Carbon Fiber Reinforced plastics).
  • CFRP Carbon Fiber Reinforced plastics
  • the core wire 2 and the side wire 3 have the same thickness (cross-sectional area) in this embodiment. However, a side line 3 that is thinner or thicker than the core 2 may be used. Depending on the number of the carbon fibers 4, the thicknesses of the core wire 2 and the side wire 3 can be arbitrarily adjusted.
  • the core wire 2 and the side wire 3 constituting the carbon fiber cable 1 are both in a state in which heat is applied to the thermosetting resin 5 and cured in advance. That is, the side line 3 in a state of being cured using the thermosetting property of the thermosetting resin 5 is disposed around the core wire 2 in a state of being cured using the thermosetting property of the thermosetting resin 5.
  • the carbon fiber cable 1 is made by being twisted. Since the thermosetting resin 5 of each of the core wire 2 and the side wire 3 is cured, an appropriate slip is allowed between the core wire 2 and the surrounding side wires 3 and 3.
  • all of the six side wires 3 twisted around the core wire 2 are preliminarily shaped in a spiral shape, while the core wire 2 does not have a spiral shape.
  • the spiral shape of the side wires 3 is formed before thermosetting the thermosetting resin 5.
  • the pitch of the spiral molding of each side wire 3 is substantially the same, and the inner diameter of the spiral of each side wire 3 is substantially equal to the diameter of the core wire 2.
  • each of the side lines 3 has a portion (hereinafter referred to as a bulging portion) that is partly shaped to bulge slightly outward.
  • a bulging portion a portion that is partly shaped to bulge slightly outward.
  • four bulging portions 3A to 3D are shown with some emphasis.
  • both the core wire 2 and the side wire 3 are circular in cross section, the portions that do not necessarily contact between the core wire 2 and the side wire 3 (for example, the core wire 2, the side wire 3c, and the side line 3d in FIG. 3).
  • the internal space 11 referred to in this specification does not mean the cross-sectional triangular space 20, and is defined with respect to the side line 3. This means a space between the core wire 2 and the side wire 3 secured by pre-molding. By securing the internal space 11, the space 20 having two generally triangular cross sections is connected.
  • the side line 3a is in contact with one side line 3f of the two side lines 3b and 3f located on both sides thereof, but is not in contact with the other side line 3b and is away from the side line 3b. (The side line 3a is pre-typed so that this position shift occurs). Since the side line 3a is separated from the side line 3b, a gap 12 is secured between the side line 3a and the side line 3b.
  • two of the six side lines 3a to 3f (side lines 3e and 3f) around the core wire 2 are connected to the core wire 2. There is no contact, and an internal space 11 is secured between the core wire 2 and the side wires 3e and 3f. Since the side lines 3e and 3f are adjacent to each other, the two internal spaces 11 are continuous, and as a result, a wide internal space is formed.
  • the other side line 3c is in contact with the core wire 2, but is located away from both of the two side lines 3b and 3d located on both sides of the side line 3c, and a gap is formed between each side of the side line 3c. 12 is secured.
  • the internal space 11 is shown as a closed space, but the internal space 11 is not a space that is completely blocked from the outside, but an open space that leads to the outside. That is, the internal space 11 secured between the core wire 2 and the side wire 3 is secured by separating the two adjacent side wires 3 at different locations in the longitudinal direction of the carbon fiber cable 1 as described above. It continues to the gap 12. The internal space 11 communicates with the outside through the gap 12.
  • the location and number of the internal space 11 and the gap 12 differ depending on the location of the cross section.
  • the internal space 11 and the gap 12 may not appear at all, and conversely, the six side wires 3 may not be in contact with the entire circumference of the core wire 2.
  • the sizes of the internal space 11 and the gap 12 appearing in the cross section are various. This means that the degree of the plurality of bulge portions 3A to 3D varies. Note that extremely large bulging portions (internal space 11 and gap 12) do not exist in carbon fiber cable 1, and the substantially twisted state is not impaired.
  • the bulging portion described above is repeatedly formed in the longitudinal direction of the carbon fiber cable 1. That is, for each of the core wire 2 and the plurality of side wires 3, the side wire 3 is in contact with the core wire 2 (the portion without the internal space 11), and the side wire 3 is in contact with the core wire 2. Non-contact parts (parts with the internal space 11) that are not repeated appear repeatedly in the longitudinal direction. Similarly, a contact portion (a portion without the gap 12) and a non-contact portion (a portion with the gap 12) appear repeatedly in the longitudinal direction between the adjacent side lines 3.
  • the bulging portions may be provided at predetermined intervals in the longitudinal direction of the side lines 3 or may be provided randomly. Although all the side lines 3 may be provided with bulging portions at the same interval in the longitudinal direction, the bulging portions may have different intervals in the longitudinal direction for each side line 3.
  • the bulging portions are provided in a distributed manner in the carbon fiber cable 1, and the internal space 11 and the gaps 12 are present in the longitudinal direction of the carbon fiber cable 1.
  • the carbon fiber cable 1 is allowed to slip between the core wire 2, the side wire 3, and the side wire 3, and further, Since the space 11 and the gap 12 are provided, moderate bending occurs when bending is applied, and the handling becomes excellent. It can be wound around a small-diameter reel to make it compact, making it easier to handle at the work site.
  • the carbon fiber cable 1 is suitable for use as a core material of a long object such as a power transmission line.
  • the carbon fiber cable 1 can also be used as a reinforcing material for concrete structures, for example.
  • the concrete When the carbon fiber cable 1 is embedded in the concrete (fresh concrete) before setting, the concrete enters the carbon fiber cable 1 with the gap 12 between the adjacent side wires 3 as an entrance.
  • the concrete that has entered the carbon fiber cable 1 through the gap 12 enters the internal space 11 secured between the core wire 2 and the side wire 3, and as a result, the contact area between the carbon fiber cable 1 and the concrete is increased.
  • the concrete may not completely fill the internal space 11, but the concrete is not present on the outer peripheral surface (surface) of the carbon fiber cable 1.
  • Concrete structures include bridge girders, piers, bridge railings, protective walls, etc.
  • FIG. 6 is a graph showing the results of a concrete drawing test in which the horizontal axis is slip displacement (mm) and the vertical axis is the degree of adhesion stress (N / mm 2 ).
  • the solid line in the graph indicates the test result of the carbon fiber cable 1 described above, and the broken line indicates the test result of the carbon fiber cable without the internal space 11 and the gap 12.
  • the diameter, number and structure of the core and side wires that make up the cable, and the embedded length (adhesion length) in the concrete were measured under the same conditions.
  • the concrete pull-out test was performed according to the Japan Society of Civil Engineers "Test method for bond strength between continuous fiber reinforcement and concrete by pull-out test".
  • a concrete block is created in which the middle part is embedded with both ends of the carbon fiber cable exposed.
  • a tensile load is applied to the carbon fiber cable going out from one end of the concrete block at a predetermined loading speed using a tensile tester, and the displacement of the carbon fiber cable going out from the other end of the concrete block (Slip displacement) is measured using a displacement meter.
  • the degree of adhesion stress ⁇ (N / mm 2 ) is calculated using the following mathematical formula.
  • Adhesion stress ⁇ P / u ⁇ L
  • P represents the tensile load (kN)
  • u represents the nominal circumference (mm) of the carbon fiber cable
  • L represents the adhesion length (mm) to the concrete block.
  • the degree of molding of the side wire 3 in the carbon fiber cable 1 (the degree of restraint by the side wire 3) is determined by using the diameter D of the cable 1, the diameter ⁇ 1 of the core wire 2 constituting the cable 1, and the diameter ⁇ 2 of the side wire 3.
  • D / ( ⁇ 1 + 2 ⁇ 2 ) ⁇ 100 (%) (hereinafter, referred to as a molding rate). If the molding rate is about 100.1 to 105 (%), the carbon fiber cable 1 will be moderately bent when bent, and the concrete fixing efficiency will be improved. However, if the concrete fixing efficiency is emphasized and the concrete fixing efficiency is further improved, a plurality of side lines 3 may be molded so as to have a larger molding rate of, for example, about 110%.
  • thermosetting resin 5 for example, polyamide
  • thermosetting resin 5 a thermoplastic resin (for example, polyamide)
  • other synthetic fibers such as glass fiber, boron fiber, aramid fiber, polyethylene fiber, PBO (polyp-phenylenebenzobisoxazole) fiber, etc. can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Ropes Or Cables (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Moulding By Coating Moulds (AREA)
  • Insulated Conductors (AREA)

Abstract

炭素繊維ケーブル(1)は,熱硬化性樹脂(5)が含浸された複数本の炭素繊維(4)を束にまとめた心線(2)と,それぞれが,熱硬化性樹脂(5)が含浸された複数本の炭素繊維(4)を束にまとめた複数本の側線(3)とを備えている。上記熱硬化性樹脂(5)が硬化状態にあり,上記複数本の側線(3)のそれぞれは樹脂硬化性を利用して型付けられている。型付けられた複数本の側線(3)のそれぞれが上記心線(2)の周囲に撚り合わされた状態となっている。

Description

合成繊維ケーブル
 この発明は合成繊維ケーブルに関する。
 特許文献1は,炭素繊維製またはアラミド繊維製の棒状体をコンクリート構造物に挿入し,強度向上を図るものを記載する。
特開2000-110365号公報
 鉄筋コンクリート柱に長孔が穿孔され,上記長孔に炭素繊維製棒状体が打ち込まれる。その後長孔内の残部空隙に流動状硬化性樹脂が充填されることで,炭素繊維製棒状体はコンクリート中に定着される。炭素繊維製棒状体は,その表面に接触する流動状硬化性樹脂によってコンクリート中に定着されるにすぎない。
 この発明は,コンクリート等をケーブル内部に侵入させてコンクリート等との接触面積を大きくし,これによって定着効率を高めることができる合成繊維ケーブルの提供を目的とする。
 この発明はまた,曲げが加えられたときに適度な撓みを生じる,取り扱いに優れた合成繊維ケーブルの提供を目的とする。
 この発明による合成繊維ケーブルは,樹脂が含浸された複数本の合成繊維を有し,これらが束にまとめられた心線と,それぞれが,樹脂が含浸された複数本の合成繊維を有し,これらがそれぞれ束にまとめられた複数本の側線と,を備え,上記樹脂が硬化状態にあり,上記複数本の側線のそれぞれが上記樹脂の硬化性を利用して型付けられており,型付けられた複数本の側線のそれぞれが,上記心線の周囲に撚り合わされた状態となっていることを特徴とする。
 樹脂が含浸された複数本の合成繊維によって構成される心線および側線は,上記樹脂を硬化させることで樹脂が硬化したときの形状を保つ。熱硬化性の樹脂であれば熱を加えることによって,熱可塑性の樹脂であれば冷却することによって,上記樹脂は硬化する。所定形状を付与した状態で上記樹脂を硬化させると,心線および側線は,その形状をその後においても継続して維持することができる。
 心線および側線を構成する合成繊維(木綿や絹などの天然繊維ではなく,化学的に合成された高分子からつくられる繊維)は,炭素繊維,ガラス繊維,ボロン繊維,アラミド繊維,ポリエチレン繊維,PBO(polyp-phenylenebenzobisoxazole)繊維,その他の繊維を含む。これらの繊維は非常に細く,多数本の合成繊維を束ねることで樹脂を含浸させることができる。
 上記樹脂の硬化性を利用してあらかじめ型付けられた複数本の側線のそれぞれを心線の周囲において撚り合わされた状態にすることで合成繊維ケーブルは構成される。この発明によると,あらかじめ行われる上記樹脂の硬化性を利用した側線の型付けによって,合成繊維ケーブルの内部に,具体的には,心線とその周囲の側線の間,および隣り合う側線同士の間に,実質的に撚った状態を損なわずに適宜の空間ないし隙間を確保することができる。
 合成繊維ケーブルを構成する心線およびその周囲の側線は,それぞれにおいて樹脂が硬化している状態のものであるから,心線とその周囲の側線,および隣り合う側線同士にはすべり(位置ずれ)が許容される。これにより曲げが加えられたときに適度な撓みを生じやすく,取り扱いに優れた合成繊維ケーブルが提供される。たとえば,長尺の合成繊維ケーブルを小径のリールに巻き付けてコンパクトにまとめることができ,作業現場における取扱いも楽になる。この発明による合成繊維ケーブルは,たとえば電線(送電線),光ファイバーケーブル,海底ケーブルその他の比較的長尺の部材または設備の補強材としての利用に適している。
 一実施態様では,上記心線と上記複数本の側線のそれぞれについて,上記側線が上記心線に接触している接触部分と,上記側線が上記心線に接触していない非接触部分との両方を,長手方向に有している(長手方向に存在している)。すなわち,心線の周囲の複数本の側線は,長手方向の全長にわたって心線に接触し続けることなく,接触していない(側線が心線から浮いている)部分を持つ。接触部分により合成繊維ケーブルの型崩れが防止される。非接触部分は心線と側線との間の空間となるから,ケーブルの曲げやすさの向上に寄与し,またコンクリート,モルタルその他の凝固剤または凝結剤の浸透にも役立つ。たとえばコンクリート中に合成繊維ケーブルを埋込むと,コンクリートが合成繊維ケーブル内に浸透し,合成繊維ケーブルはコンクリート中にしっかりと定着する。この発明による合成繊維ケーブルはたとえばコンクリート構造物の補強材としての利用にも適している。
 他の実施態様では,上記複数本の側線のそれぞれについて,隣り合う側線に接触している接触部分と,隣り合う側線に接触していない非接触部分の両方を,長手方向に有している。すなわち,心線の周囲の複数本の側線は,長手方向の全長にわたって隣り合う側線に接触し続けることなく,接触していない部分(側線と側線との間に隙間がある)を持つ。接触部分により合成繊維ケーブルの型崩れが防止される。非接触部分はケーブルの曲げやすさの向上に寄与し,合成繊維ケーブルの内部へのコンクリート,モルタルその他の凝固剤または凝結剤の侵入にも役立つ。
 好ましくは,上記心線と上記側線との間の接触部分および非接触部分,ならびに隣り合う側線同士の接触部分および非接触部分のいずれについても,上記接触部分および上記非接触部分が長手方向に繰り返し存在する。全長にわたって曲げやすいケーブルが提供される。この合成繊維ケーブルをコンクリート構造物に用いる場合には,合成繊維ケーブルの長手方向にコンクリートの浸透を許容する内部空間を分散して確保することができ,かつ外部から内部へのコンクリートの侵入を許容する入口を分散して確保することができる。
炭素繊維ケーブルの正面図である。 炭素繊維ケーブルの分解斜視図である。 図1のIII-III線に沿う拡大断面図である。 図1のIV-IV線に沿う拡大断面図である。 図1のV-V線に沿う拡大断面図である。 コンクリート引抜き試験の結果を示すグラフである。
 図1は炭素繊維ケーブルの外観を示している。図2は炭素繊維ケーブルの分解斜視図である。図3から図5は,それぞれ図1のIII-III線,IV-IV線,V-V線に沿う炭素繊維ケーブルの拡大断面図を示している。
 炭素繊維ケーブル1は,1本の心線2と,その周囲に撚り合わされた状態にされた6本の側線3(3a~3f)とから構成されている(1×7構造)。断面からみて,炭素繊維ケーブル1,心線2および側線3は,いずれもほぼ円形の形状を持つ。また,断面からみて,炭素繊維ケーブル1はその中心に心線2が配置され,心線2を取り囲むように6本の側線3が位置する。炭素繊維ケーブル1はたとえば5mm~20mm程度の直径を持つ。
 心線2および側線3は,いずれも熱硬化性樹脂(たとえばエポキシ樹脂)5を含浸させた多数本たとえば数万本の長尺の炭素繊維4を断面円形に束ねたもので,炭素繊維ケーブル1の全体で数十万本程度の炭素繊維4が含まれる。炭素繊維4のそれぞれは非常に細く,たとえば5μm~7μmの直径を持つ。熱硬化性樹脂5が含浸された多数本の炭素繊維4を束にし,この炭素繊維の束を複数本撚り合わせることによって,心線2および側線3をそれぞれ形成してもよい。心線2および側線3は炭素繊維複合材料(CFRP)(Carbon Fiber Reinforced plastics)製のものと言うこともできる。
 心線2および側線3は,この実施例では同じ太さ(断面積)のものが用いられている。もっとも,心線2よりも細い,または太い側線3を用いてもよい。炭素繊維4の本数によって,心線2および側線3のそれぞれの太さは任意に調整することができる。
 炭素繊維ケーブル1を構成する心線2および側線3は,いずれも熱硬化性樹脂5にあらかじめ熱を加えて硬化させた状態のものが用いられる。すなわち,熱硬化性樹脂5の熱硬化性を利用して硬化した状態の心線2の周囲に,同じく熱硬化性樹脂5の熱硬化性を利用して硬化した状態の側線3を配置して撚り合わされた状態とすることによって炭素繊維ケーブル1はつくられる。心線2および側線3のそれぞれの熱硬化性樹脂5が硬化しているので,心線2とその周囲の側線3,および側線3同士には適度なすべりが許容される。
 図2を参照して,心線2の周囲に撚り合わされた状態とされる6本の側線3はいずれもあらかじめらせん状に型付けられており,他方心線2はらせん状の型付けを持たない。側線3のらせん形は熱硬化性樹脂5を熱硬化する前に型付けられるのは言うまでもない。各側線3のらせん状の型付けのピッチはほぼ同じであり,また各側線3のらせん内径は心線2の直径にほぼ等しい。
 ここで側線3のそれぞれには,部分的に外向きにわずかに膨らむように型付けられた部分(以下,膨らみ部分という)を有している。図1に示す炭素繊維ケーブル1には,4箇所の膨らみ部分3A~3Dが,それぞれやや強調して示されている。
 図3を参照して,膨らみ部分3Aを有する部分を断面でみると,心線2の周囲の6本の側線3a~3fのうちの1本(側線3a)が心線2に接触していず,心線2から離れて外方に位置ずれしている。この位置ずれが生じるように,側線3aに対するあらかじめの型付けが行われる。側線3aが心線2から離れることで,心線2と側線3aとの間には内部空間(非接触部分)11が確保される。
 心線2および側線3がいずれも断面円形であるので,心線2と側線3との間には必然的に接触しない部分(たとえば,図3において,心線2と,側線3cと,側線3dとによって形成される,断面において概略三角形の空間)(符号20で示す)が存在するが,この明細書で言う内部空間11は,この断面概略三角形の空間20を意味せず,側線3に対してあらかじめ行われる型付けによって確保される心線2と側線3との間の空間を意味する。内部空間11が確保されることによって,2つの断面概略三角形の空間20がつながることになる。
 図3において,側線3aは,その両隣に位置する2本の側線3b,3fのうち,一方の側線3fとは接しているが,他方の側線3bには接触していず,側線3bから離れる向きに位置ずれしている(この位置ずれが生じるように,側線3aに対するあらかじめの型付けが行われる)。側線3aが側線3bから離れることで,側線3aと側線3bとの間には隙間12が確保されている。
 図4を参照して,別の膨らみ部分3Bを有する部分を断面で見ると,心線2の周囲の6本の側線3a~3fのうちの2本(側線3e,3f)が心線2に接触していず,心線2と側線3e,3fとの間に内部空間11が確保されている。側線3e,3fは隣り合っているので,2つの内部空間11が連続し,その結果広い内部空間が形成されている。また,別の側線3cは,心線2には接触しているものの,その両隣に位置する2本の側線3b,3dの両方と離れて位置しており,側線3cの両側方のそれぞれに隙間12が確保されている。
 図4において,内部空間11は閉空間のように示されているが,内部空間11は外と完全に遮断された空間ではなく,外に通じる開空間である。すなわち,心線2と側線3との間に確保される内部空間11は,炭素繊維ケーブル1の長手方向の別の場所において隣り合う2本の側線3が離れていることで確保される上述した隙間12に連続している。隙間12を通じて内部空間11は外部と連通する。
 図5を参照して,膨らみ部分3C,3Dを有する部分を断面で見ると,心線2の周囲の6本の側線3のうちの4本(側線3b,3c,3e,3f)が心線2に接触していず,内部空間11が確保されている。また,側線3aと3bの間,3cと3dの間,3eと3fの間,3fと3aの間に隙間12が確保されている。
 このように炭素繊維ケーブル1は,断面とする場所によって内部空間11および隙間12の場所および数が異なる。もっとも,断面とする場所によっては内部空間11,隙間12が一切現れないこともあるし,これとは逆に,心線2の全周において6本の側線3が接触していないこともあり得る。また,図3~図5に示すように,断面に現れる内部空間11および隙間12の大きさ(心線2と側線3との距離,隣り合う側線3間の距離)は様々である。これは,複数の膨らみ部分3A~3Dの程度が様々であることを意味する。なお,極端に大きな膨らみ部分(内部空間11および隙間12)は炭素繊維ケーブル1には存在せず,実質的に撚った状態が損なわれることはない。
 上述した膨らみ部分は炭素繊維ケーブル1の長手方向に繰り返し形成される。すなわち,心線2と複数本の側線3のそれぞれについて,上記側線3が上記心線2に接触している接触部分(内部空間11がない部分)と,上記側線3が上記心線2に接触していない非接触部分(内部空間11がある部分)とが長手方向に繰り返し現れる。同様にして,隣り合う側線3同士についても接触部分(隙間12がない部分)と非接触部分(隙間12がある部分)とが長手方向に繰り返し現れる。
 膨らみ部分は各側線3の長手方向に所定間隔ごとに設けてもよいし,ランダムに設けてもよい。全ての側線3について長手方向に同じ間隔で膨らみ部分を設けてもよいが,側線3ごとに,膨らみ部分の長手方向の間隔を異ならせるとよい。膨らみ部分が炭素繊維ケーブル1に分散して設けられ,炭素繊維ケーブル1の長手方向に内部空間11および隙間12が分散して存在することになる。
 炭素繊維ケーブル1は,上述したように,心線2および側線3のそれぞれの熱硬化性樹脂5が硬化しているので,心線2と側線3,側線3同士にすべりが許容され,さらに内部空間11および隙間12を有するので,曲げが加えられたときに適度な撓みを生じ,取り扱いに優れるものとなる。小径のリールに巻き付けてコンパクトにすることができ,作業現場における取り扱いも楽になる。炭素繊維ケーブル1は,たとえば送電線等の長尺物の心材としての利用に適している。
 また炭素繊維ケーブル1は,たとえばコンクリート構造物の補強材としても用いることができる。炭素繊維ケーブル1を凝結前のコンクリート(フレッシュ・コンクリート)中に埋設すると,隣接する側線3同士の間の隙間12を入り口にしてコンクリートが炭素繊維ケーブル1内に入る。隙間12から炭素繊維ケーブル1の内部に入ったコンクリートは,心線2と側線3との間に確保された内部空間11に入り,結果的に炭素繊維ケーブル1とコンクリートとの接触面積が広くなる。もっとも,フレッシュ・コンクリートの粘度,内部空間11,隙間12の大きさ等によってはコンクリートが内部空間11を完全には満たさないこともあり得るが,炭素繊維ケーブル1の外周面(表面)にコンクリートが接触するのに加えて,炭素繊維ケーブル1の内部においてもコンクリートとの接触が生じるから,コンクリートと炭素繊維ケーブル1との接触面積の増大は達成される。このため,たとえば鉄筋と比較して付着応力度を大幅に向上することができ,高い定着効率で炭素繊維ケーブル1をコンクリート中に定着させることができる。コンクリート構造物は,橋桁,橋脚,橋壁高欄,防護壁等を含む。
 図6は,横軸をすべり変位(mm),縦軸を付着応力度(N/mm)とするコンクリート引抜き試験結果を示すグラフである。グラフ中の実線は上述した炭素繊維ケーブル1の試験結果を,破線は内部空間11および隙間12を持たない炭素繊維ケーブルの試験結果を,それぞれ示している。ケーブルを構成する心線および側線の直径,本数および構造,ならびにコンクリート中の埋込長さ(付着長さ)は同じ条件で計測した。
 コンクリート引抜き試験は,土木学会「引抜き試験による連続繊維補強材とコンクリートとの付着強度試験方法」に準じて行った。この試験では,炭素繊維ケーブルの両端部を外に出した状態で中間部分が埋め込まれたコンクリートブロックが作成される。コンクリートブロックの一端部から外に出ている炭素繊維ケーブルに引張試験機を用いて所定の載荷速度で引張荷重が加えられ,コンクリートブロックの他端部から外に出ている炭素繊維ケーブルの変位量(すべり変位)が変位計を用いて計測される。
 付着応力度τ(N/mm)は,以下の数式を用いて算出したものである。
 付着応力度τ=P/u・L
 ここでPは引張荷重(kN)を,uは炭素繊維ケーブルの公称周長(mm)を,Lはコンクリートブロックに対する付着長さ(mm)を,それぞれ表す。
 コンクリート引抜き試験の結果,内部空間11および隙間12を持たない炭素繊維ケーブルの付着応力度(破線)に比べて,上述した炭素繊維ケーブル1の付着応力度(実線)は大きく向上しており,コンクリート定着効率が高いことが確認される。
 炭素繊維ケーブル1における側線3の型付けの程度(側線3による拘束の程度)は,ケーブル1の直径D,ケーブル1を構成する心線2の直径σおよび側線3の直径σを用いて,D/(σ+2σ)×100(%)(以下,型付率という)によって表すことができる。100.1~105(%)程度の型付率があれば炭素繊維ケーブル1は曲げが加えられたときに適度な撓みを生じるものになり,コンクリート定着効率も向上する。もっとも,コンクリート定着効率を重視して,コンクリート定着効率をより向上させる場合であれば,より大きな,たとえば110%程度の型付率を持つように複数本の側線3を型付けてもよい。
 上述した実施例では,複数本の炭素繊維4の束に熱硬化性樹脂5を含浸させ,これに熱を加えることによって硬化させた心線2および側線3から炭素繊維ケーブル1を構成する例を説明したが,熱硬化性樹脂5に代えて熱可塑性樹脂(たとえばポリアミド)を用いてもよい。また,炭素繊維に代えて,ガラス繊維,ボロン繊維,アラミド繊維,ポリエチレン繊維,PBO(polyp-phenylenebenzobisoxazole)繊維等,その他の合成繊維を用いることもできる。
 1 炭素繊維ケーブル
 2 心線
 3,3a,3b,3c,3d,3e,3f 側線
 3A,3B,3C,3D 膨らみ部分
 4 炭素繊維
 5 熱硬化性樹脂
 11 内部空間
 12 隙間

Claims (6)

  1.  樹脂が含浸された複数本の合成繊維を有し,これらが束にまとめられた心線と,
     それぞれが,樹脂が含浸された複数本の合成繊維を有し,これらがそれぞれ束にまとめられた複数本の側線と,を備え,
     上記樹脂が硬化状態にあり,上記複数本の側線のそれぞれが上記樹脂の硬化性を利用して型付けられており,
     型付けられた複数本の側線のそれぞれが,上記心線の周囲に撚り合わされた状態になっている,
     合成繊維ケーブル。
  2.  上記心線と上記複数本の側線のそれぞれについて,上記側線が上記心線に接触している接触部分と,上記側線が上記心線に接触していない非接触部分との両方を,長手方向に有している,
     請求項1に記載の合成繊維ケーブル。
  3.  上記複数本の側線のそれぞれが,隣り合う側線に接触している接触部分と,隣り合う側線に接触していない非接触部分との両方を,長手方向に有している,
     請求項1または2に記載の合成繊維ケーブル。
  4.  上記接触部分および上記非接触部分が,長手方向に繰り返し存在する,
     請求項2または3に記載の合成繊維ケーブル。
  5.  請求項1から4のいずれか一項に記載の合成繊維ケーブルがコンクリート中に埋め込まれている,コンクリート構造物。
  6.  請求項1から4のいずれ一項に記載の合成繊維ケーブルが補強材として用いられている,長尺物。
PCT/JP2016/069283 2016-06-29 2016-06-29 合成繊維ケーブル WO2018003030A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
BR112018076669-0A BR112018076669B1 (pt) 2016-06-29 2016-06-29 Cabo de fibra sintética e estrutura de concreto
PCT/JP2016/069283 WO2018003030A1 (ja) 2016-06-29 2016-06-29 合成繊維ケーブル
JP2018524633A JP6393444B2 (ja) 2016-06-29 2016-06-29 合成繊維ケーブル
MYPI2018002414A MY184869A (en) 2016-06-29 2016-06-29 Synthetic fiber cable
MX2018013849A MX2018013849A (es) 2016-06-29 2016-06-29 Cable de fibra sintetica.
EA201892428A EA201892428A1 (ru) 2016-06-29 2016-06-29 Канат из синтетического волокна
EP16907263.4A EP3480357B1 (en) 2016-06-29 2016-06-29 Synthetic fiber cable
CA3029606A CA3029606C (en) 2016-06-29 2016-06-29 Synthetic fiber cable
ZA2018/08482A ZA201808482B (en) 2016-06-29 2018-12-14 Synthetic fiber cable
US16/234,704 US20190153671A1 (en) 2016-06-29 2018-12-28 Synthetic fiber cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/069283 WO2018003030A1 (ja) 2016-06-29 2016-06-29 合成繊維ケーブル

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/234,704 Continuation US20190153671A1 (en) 2016-06-29 2018-12-28 Synthetic fiber cable

Publications (1)

Publication Number Publication Date
WO2018003030A1 true WO2018003030A1 (ja) 2018-01-04

Family

ID=60786124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069283 WO2018003030A1 (ja) 2016-06-29 2016-06-29 合成繊維ケーブル

Country Status (10)

Country Link
US (1) US20190153671A1 (ja)
EP (1) EP3480357B1 (ja)
JP (1) JP6393444B2 (ja)
BR (1) BR112018076669B1 (ja)
CA (1) CA3029606C (ja)
EA (1) EA201892428A1 (ja)
MX (1) MX2018013849A (ja)
MY (1) MY184869A (ja)
WO (1) WO2018003030A1 (ja)
ZA (1) ZA201808482B (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09111679A (ja) * 1995-10-11 1997-04-28 Tokyo Seiko Co Ltd 高柔軟性補強用ワイヤロープ及びロープ補強複合体

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63219723A (ja) * 1987-03-10 1988-09-13 Taisei Corp ア−スアンカ−などに使用する引張材の加工装置
JPH08176980A (ja) * 1994-12-26 1996-07-09 Bridgestone Corp スチールコード及び空気入りラジアルタイヤ
US5768847A (en) * 1995-05-15 1998-06-23 Policelli; Frederick J. Concrete reinforcing devices, concrete reinforced structures, and method of and apparatus for producing such devices and structures
EP0834612A1 (en) * 1996-10-03 1998-04-08 N.V. Bekaert S.A. Steel cord with a core and a layer
JP3967957B2 (ja) * 2002-04-26 2007-08-29 日鉄コンポジット株式会社 繊維強化樹脂製撚線の製造法
JP3538649B2 (ja) * 2002-06-17 2004-06-14 株式会社タイムスエンジニアリング カーボン繊維ストランド及びその製造方法
FR3009225B1 (fr) * 2013-08-01 2015-07-31 Michelin & Cie Monobrin en cvr (composite verre-resine) ameliore

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09111679A (ja) * 1995-10-11 1997-04-28 Tokyo Seiko Co Ltd 高柔軟性補強用ワイヤロープ及びロープ補強複合体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3480357A4 *

Also Published As

Publication number Publication date
BR112018076669B1 (pt) 2023-02-23
ZA201808482B (en) 2019-07-31
EA201892428A1 (ru) 2019-07-31
BR112018076669A2 (pt) 2019-04-02
EP3480357B1 (en) 2024-01-24
JPWO2018003030A1 (ja) 2018-10-18
EP3480357A4 (en) 2020-02-26
MX2018013849A (es) 2019-02-28
US20190153671A1 (en) 2019-05-23
JP6393444B2 (ja) 2018-09-19
EP3480357A1 (en) 2019-05-08
MY184869A (en) 2021-04-28
CA3029606C (en) 2020-09-01
CA3029606A1 (en) 2018-01-04
EP3480357C0 (en) 2024-01-24

Similar Documents

Publication Publication Date Title
WO2016111290A1 (ja) 被覆pc鋼より線
JPH0481162B2 (ja)
CA1248774A (en) Flexible tension members
JP2012127134A (ja) コンクリート柱体の補強材および補強方法
JPH03119188A (ja) 繊維強化プラスチック複合材
JP6393444B2 (ja) 合成繊維ケーブル
KR102060285B1 (ko) 콘크리트 보강용 frp메쉬의 제조방법
JP6830763B2 (ja) 耐震補強材
CN113039332B (zh) 复合钢筋
CN107541973B (zh) 合成纤维绳索以及含有其的混凝土构造物和长形物体
RU2520542C1 (ru) Композитная стеклопластиковая арматура (варианты)
RU2620699C2 (ru) Стержень из непрерывных волокон
CN105672579A (zh) 一种智能钢绞线锚固结构及其锚固方法
US20110023696A1 (en) Apparatus for Absorbing Blast and Ballistic Energy and Method for Making Same
JPWO2016117384A1 (ja) 構造物の製造方法、継手、継手付き棒材及び建設部材
DE102016120717B4 (de) Armierungsstab aus einem Faserverbund, sowie Schiebekabel zur Übertragung digitaler Signale mit einem Gelege derartiger Armierungsstäbe
CN205975168U (zh) 合成纤维绳索以及含有其的混凝土构造物和长形物体
JP4344337B2 (ja) 光ファイバ分岐コードとその製造方法
JP2020180444A (ja) 繊維ロッド結束具及び繊維ロッド結束方法
EA040276B1 (ru) Канат из синтетического волокна
JP6969973B2 (ja) 損傷検知機能付繊維強化プラスチック線状体
JP7478683B2 (ja) 定着構造、及び定着構造の形成方法
DE19624967C2 (de) Optische Ader
JP2849619B2 (ja) 多層繊維複合ケーブル製緊張材の端末定着構造
DE102014014793A1 (de) Kabel hoher Steifigkeit

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018524633

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16907263

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3029606

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018076669

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2016907263

Country of ref document: EP

Effective date: 20190129

ENP Entry into the national phase

Ref document number: 112018076669

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20181220