RU2520542C1 - Композитная стеклопластиковая арматура (варианты) - Google Patents

Композитная стеклопластиковая арматура (варианты) Download PDF

Info

Publication number
RU2520542C1
RU2520542C1 RU2012157698/03A RU2012157698A RU2520542C1 RU 2520542 C1 RU2520542 C1 RU 2520542C1 RU 2012157698/03 A RU2012157698/03 A RU 2012157698/03A RU 2012157698 A RU2012157698 A RU 2012157698A RU 2520542 C1 RU2520542 C1 RU 2520542C1
Authority
RU
Russia
Prior art keywords
winding
fiberglass
supporting rod
rod
core
Prior art date
Application number
RU2012157698/03A
Other languages
English (en)
Other versions
RU2012157698A (ru
Inventor
Александр Николаевич Гетунов
Геннадий Гурьевич Петров
Сергей Николаевич Харьковский
Original Assignee
Александр Николаевич Гетунов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Николаевич Гетунов filed Critical Александр Николаевич Гетунов
Priority to RU2012157698/03A priority Critical patent/RU2520542C1/ru
Application granted granted Critical
Publication of RU2520542C1 publication Critical patent/RU2520542C1/ru
Publication of RU2012157698A publication Critical patent/RU2012157698A/ru

Links

Images

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Ropes Or Cables (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

Изобретение относится к строительству, а именно к композитной стеклопластиковой арматуре, которая применяется в строительных конструкциях: для армирования обычных и предварительно напряженных строительных конструкций. Техническим результатом изобретения является повышение прочности на разрыв и изгиб стержня. Композитная стеклопластиковая арматура из пропитанного полимерным связующим стекловолокна содержит несущий стержень и спиральную обмотку. При этом несущий стержень изготовлен из скрученного вокруг центральной оси пучка нитей стекловолоконного ровинга. 4 н. и 12 з.п. ф-лы, 1 табл., 10 ил.

Description

Область техники
Изобретение относится к строительству, а именно к композитной стеклопластиковой арматуре, которая применяется в строительных конструкциях: для армирования обычных и предварительно напряженных строительных конструкций при изготовлении монолитных бетонных и сборных зданий, термоизоляционных стеновых панелей, для использования в конструктивных элементах зданий в виде отдельных стержней; для армирования грунта оснований зданий и сооружений, в том числе оснований автомагистралей и дорог; для анкеровки в грунте подпорных стен и сооружений.
Уровень техники
Под термином «композитная арматура» (англ, fibre-reinforcedplasticrebar, FRPrebar) обычно понимаются неметаллические стержни из стеклянных, базальтовых, углеродных или арамидных волокон с выполненными на поверхности поперечными или спиральными ребрами, пропитанных термореактивным или термопластичным полимерным связующим и отверждённых.
Арматуру, изготовленную из стеклянных волокон, принято называть стеклопластиковой (ДСП), из базальтовых волокон - базальтопластиковой (АБП), из углеродных волокон - углепластиковой [1].
Стеклопластиковая арматура (АСП) - композитная арматура со спиралевидным поперечным рифлением, изготавливаемая из стекловолокна, придающего прочность и термореативных смол, выступающих в качестве связующего. Одним из основных преимуществ этого строительного материала являются легкий вес и высокая прочность.
Благодаря своим физико-механическим характеристикам и техническим преимуществам композитная арматура является значимой альтернативой арматуре из металла, как обладающую сочетанием высокой прочности и коррозионной стойкости. Композитная арматура также применяется в виде гибких связей для трёхслойных кирпичных и других штучных материалов, монолитных железобетонных стен с кирпичной облицовкой.
Композитная арматура применяется в промышленном и гражданском строительстве для возведения жилых, общественных и промышленных зданий, в малоэтажном и коттеджном строительстве для применения в бетонных конструкциях, для слоистой кладки стен с гибкими связями, для ремонта поверхностей железобетонных и кирпичных конструкций, а также при работах в зимнее время, когда в кладочный раствор вводятся ускорители твердения и противоморозные добавки, вызывающие коррозию стальной арматуры.
В дорожном строительстве применяется для сооружения насыпей, устройства покрытий, для элементов дорог, которые подвергаются агрессивному воздействию противогололёдных реагентов, для смешанных элементов дорог (типа «асфальтобетон - рельсы»).
Также применяется для укрепления откосов дорог, в строительстве мостов (проезжая часть, ездовое полотно пролётных строений, опоры диванного типа), для берегоукрепления.
Композитная стеклопластиковая арматура (АСП) из высокопрочного стекловолоконно-полимерного материала спиральной обмоткой используется в строительной технике уже много лет.
Еще в 50-х годах определились три основных способа армирования бетонных конструкций стеклянным волокном: дисперсное (распределение по всему сечению) армирование бетона стекловолокном с получением стекло цемента; создания сплошных стеклопластиковых обойм на поверхности бетонных конструкций (труб, круглых стоек и т.п.) и сосредоточенное армирование бетонных конструкций стеклопластиковой арматурой, которая представляет собой гетерогенную систему, состоящую из ориентированных стеклянных волокон и полимерного связующего [2].
Известен арматурный элемент, содержащий сформованный несколькими фильерами из сформованных из ленты и пропитанных связующим стекловолоконных нитей цилиндрический стержень и спиральную обмотку с шагом 2-4 мм крученой нитью из пропитанных связующим стекловолоконных волокон с вдавливанием нити в тело стержня [3].
Известна композитная базальтопластиковая арматура, содержащая несущий стержень из низкомодульных базальтовых волокон и обмотки с уступами, отличающаяся тем, что несущий стержень выполнен армированным высокомодульными волокнами с модулем упругости, превышающим модуль упругости стальной арматуры, при соотношении линейных плотностей низкомодульных волокон к высокомодульным от 1,5 до 5, при этом в качестве высокомодульных волокон используются углеродные волокна, борные волокна, кевларовые волокна или волокна из сверхвысокомолекулярных полимеров [4 RU 82245].
Известна композитная арматура «Астрофлекс» (варианты) применяется в строительных конструкциях для армирования термоизоляционных стеновых панелей, монолитных бетонных и сборных зданий, состоящая из внешнего слоя из нанокомпозитного углепластика, внутри которого размещен внутренний слой из легкого высокоподвижного бетона дополнительно содержащего водорастворимую эпоксидную смолу [5 RU 88372].
Известна арматура композиционная, содержащая несущий стержень из высокопрочного композиционного материала, например стеклопластика, и обмоточный жгут, в которой для насыщения выступами рельеф жгута и повышения степени сцепления композиционной арматуры с армируемыми материалами, обмоточный жгут намотан на стержень под углом свыше 70° до 90° [6 RU 94593].
Известна арматура композиционная, содержащая несущий стержень из высокопрочного композиционного материала, например стеклопластика, и обмоточный жгут, в которой для удешевлении технологии производства композиционной арматуры и сокращения расхода обмоточного жгута, обмоточный жгут намотан на стержень под углом от 20 до 30° [7 RU 9715 ].
Известна арматура композитная, содержащая несущий стержень из высокопрочного полимерного материала и обмотку с уступами, созданную спиральной намоткой жгутов и лент, отличающаяся тем, что арматура выполнена с повторяющимися по длине арматуры анкерными утолщениями, выполненными спиральной намоткой двух противоположных направлений навивки с повторяющимися по длине арматуры переменными шагами обмотки [8]
Известен арматурный элемент, предназначенный для армирования стеновых панелей, дорожных плит, монолитных и сборных бетонных конструкций, а также грунтов, содержащий пултрузионный стержень из композиционных материалов на основе полимерного, например, эпоксидного связующего, армированного высокопрочными, например, базальтовыми волокнами, в которой для увеличения адгезионного сцепления арматурного элемента с армируемым материалом (бетоном) стержень выполнен с аксиально расположенным сердечником из недорогого легкого материала, способного сохранять свою форму и целостность в процессе формования стержня, например из бумажного шпагата или в виде жгута из натуральных и/или полиамидных волокон. При этом расположенный снаружи сердечника несущий слой стержня выполнен на основе эпоксидного или полиуретанового связующего, армированного базальтовым волокном [9 RU 111560].
Известен арматурный профиль для армирования стеновых панелей, дорожных плит, монолитных и сборных бетонных конструкций, а также грунтов содержит трубчатый стержень, несущий слой которого выполнен из композиционного материала на основе эпоксидного или полиуретанового связующего, армированного продольно ориентированным базальтовым волокном. Для повышения сцепления арматурного профиля с армируемым материалом (бетоном) при сохранении его качества и несущей способности в канале стержня расположен трубчатый сердечник из полипропилена, на котором сформован несущий слой стержня [10 RU 111559].
Известен стержень для армирования бетона, который содержит три слоя из ровинга минерального волокна, скрепленного отвержденным полимерным связующим. Сердечник и наружный слой выполнены из арамидного или углеродного волокна, внутренний слой - из ровинга базальтового волокна [11 RU 2052606].
Недостатком данного стержня являются низкие прочностные свойства, проявляющиеся при увеличении диаметра изготавливаемых стержней, связанные с отсутствием уплотнения внутренних слоев продольных волокон, а также отсутствие необходимой рельефности для сцепления с бетоном.
Известна арматура стеклопластиковая, содержащая несущий стержень из высокопрочного полимерного материала и обмотку с уступами, которые выполнены в виде жгута нитей, пропитанных связующим и спирально нанесенных с натягом, равным 1/2-1/10 диаметра вдавливания жгута в поверхность несущего стержня, причем диаметр навивки жгута составляет до 2d, где d - диаметр несущего стержня, при этом стержень может быть снабжен вторым жгутом нитей с противоположным направлением навивки первому, а также может быть выполнен со спиральными канавками, чередующимися с уступами, выполненных в виде жгута нитей, пропитанных связующим и спирально нанесенных с натягом, равным 1/2~1/10 диаметра вдавливания жгута в поверхность несущего стержня, а также наличием на стержне чередующихся с уступами спиральных углублений в виде канавок. При этом диаметр навивки жгута составляет до 2d, где d - диаметр несущего стержня и стержень может быть обмотан вторым жгутом нитей с противоположным направлением навивки первому, причем диаметр навивки первого жгута составляет до 2d, где d - диаметр несущего стержня [12 RU 2194135].
Известна арматура композитная, содержащая несущий стержень из высокопрочного полимерного материала, в которой, для повышение качества изделия за счет повышения прочность на разрыв и изгиб, рельеф поверхности стержня создан обмоточным жгутом, причем соотношение площадей сечений несущего стержня и обмоточного жгута находится в пределах от 3 до 25, обмоточный жгут в сечении имеет форму эллипса, большая ось которого расположена вдоль несущего стержня, а угол навивки составляет 30-70°. Кроме этого рельеф поверхности стержня в данной арматуре образован от вдавливания съемного обмоточного жгута в несущий стержень, причем канавки в сечении имеют обратный профиль обмоточного жгута, а соотношение площадей сечений несущего стержня и съемного обмоточного жгута находится в пределах от 3 до 25, съемный обмоточный жгут в сечении имеет форму эллипса, большая ось которого расположена вдоль силового стержня, а угол навивки составляет 30-70°. Особенностью изготовления данной арматуры является регулирование натяжения ровингов несущего стержня и обмоточного жгута спиральной намотки, которая осуществляется с натягом для вдавливания жгута в «сырой» стержень. При обмотке жгут формирует стержень, одновременно вдавливаясь в него, и создает периодический профиль, причем жгут спиральной намотки за счет натяжения приобретает форму эллипса, большая ось которого расположена вдоль силового стержня, что увеличивает прочность сцепления с бетоном [13 RU 2287647].
Известна арматура композитная, содержащая несущий стержень из высокопрочного полимерного материала (стеклянных, базальтовых, углеродных и других волокон, пропитанных эпоксидным компаундом на основе смолы ЭД-20 с отвердителем), и обмотку жгутами и лентами нитей, рельеф поверхности, которого создан обмоткой противоположного направления, в которой рельеф поверхности стержня создан обмоточными жгутами и лентами нитей многозаходной навивки различных площадей сечений и шагов, причем шаг многозаходной навивки равен сумме шагов различных заходов навивки, а соотношение площадей сечений обмоточных жгутов и лент находится в пределах от 1,01 до 250 [14 RU 82246, RU 2384676].
Известна арматура композитная, содержащая несущий стержень из высокопрочного полимерного материала (стеклянных, базальтовых, углеродных и других волокон), пропитанного эпоксидным компаундом на основе смолы ЭД-20 с отвердителем и обмотку жгутами пропитанных полимерным связующим нитей, в которой рельеф поверхности стержня создан обмоточными жгутами противоположного направления навивки, причем соотношение площадей сечений первого обмоточного жгута и второго обмоточного жгута, навитого в противоположном направлении, находится в пределах от 1 до 150, а угол навивки второго обмоточного жгута составляет 92-150° или больше угла навивки первого обмоточного жгута [15 RU 77310, RU2384677].
Известна арматура композитная содержащая несущий стержень и обмотку из высокопрочного полимера, причем несущий стержень в сечении выполнен в виде плоской ленты, у которой соотношение ширины к толщине находится в пределах 1-(1,2:40). Предлагаемая конструкция арматуры композитной с выполнением несущего стержня в виде плоской ленты увеличивает сцепление с бетоном, что повышает несущую способность строительных конструкций [16 RU 2388878].
Известен стержень композитный из высокопрочного полимера для армирования связующих сред, включающий базальтопластиковые волокна, объединенные в жгуты, в который образован кручением жгутов, причем диаметр жгутов составляет 25-47% от диаметра стержня, а количество жгутов должно быть не менее 3-х, а число кручений жгутов на метр стержня находится в диапазоне 5-120. Повышенная адгезионная способность опытных стержней обеспечивается канавками (углублениями), образованными соседними скрученными жгутами [17 RU 2430220].
Известен композитный арматурный элемент для дисперсного армирования бетона из отрезка ровинга минерального волокна по первому варианту выполнен из одного скрученного ровинга, пропитанного полимерным или выполнен из двух ровингов, скрученных между собой и пропитанных полимерным связующим.
Композитный арматурный элемент может быть выполнен в диапазоне диаметров 0,1-2,0 мм, длиной не менее диаметра и может быть профилированным по всей длине или части длины, также может быть пропитан полимерным связующим в поверхностном слое [18 RU 2431026].
Известна арматура композитная, содержащая несущий стержень и обмоточный жгут, выполненные из волокнистого высокопрочного полимерного наполнителя, пропитанного связующим на основе эпоксидной смолы, содержащем углеродные медь-, или железо-, или никель-, или кобальтсодержащие наноструктуры, при этом обмоточный жгут имеет прямолинейный контур сопряжения в сечении вдоль несущего стержня, а угол навивки обмоточного жгута составляет 10-20° [19 RU 121841].
Известен стержень из композиционного волокнистого материала с периодическим тангенциально дискретным профилем боковой поверхности, рельеф которой из канавок и выступов образован в результате сдавливания стержня обжимающими жгутами или нитями, который включает несущий сердечник и продольно расположенные одну или несколько рельефообразующих лент, сформированных из волокон, пропитанных полимерным связующим, при этом рельефообразующие ленты сформированы из слоев продольных волокон, а рельеф из канавок и выступов образован гофрированием рельефообразующих лент путем их сдавливания и прижатия к сердечнику обжимающими жгутами или нитями, наложенными спиральной намоткой. При этом несущий сердечник сформирован либо из слоя продольных волокон, либо одного или нескольких коаксиальных продольных слоев, каждый из которых утянут слоем нити, нанесенным спиральной намоткой [20 RU 20676].
Известна арматура композитная металло-стеклопластиковая, содержащая несущий стержень, у которого рельеф поверхности создан обмоточным жгутом, отличающаяся тем, что несущий стержень выполнен в виде композитной матрицы, состоящей из стального сердечника и стеклопластиковых нитей, пропитанных связующим композитным веществом и нанесенных на стальной сердечник, обмоточный стеклопластиковый жгут при помощи многозаходной навивки навит на пропитанную эпоксидным компаундом внешнюю поверхность стержня [21 RU 120984].
Известна композитная арматура содержит несущий стержень из низкомодульных волокон и обмотки с уступами, причем несущий стержень выполнен армированным высокомодульными волокнами, собранными в пучки, равномерно расположенные в массиве низкомодульных волокон. Соотношение линейных плотностей низкомодульных волокон к высокомодульным составляет от 1,5 до 5. Высокомодульные волокна имеют модуль упругости, превышающий модуль упругости стальной арматуры, и выбраны из углеродных волокон, борных волокон, кевларовых волокон, волокон сверхвысокомолекулярных полимеров [22 RU 2405092]. В этой композитной арматуре несущий стержень выполнен армированным высокомодульными волокнами при отношении линейных плотностей низкомодульных волокон к высокомодульным от 1,5 до 5, причем высокомодульные волокна собраны в пучки, равномерно расположенные в массиве низкомодульных волокон.
Известна арматура композитная, которая содержит полый несущий стержень из высокопрочного полимерного материала (стеклянных, базальтовых, углеродных и других волокон, пропитанных эпоксидным компаундом на основе смолы ЭД-20 с отвердителем)и обмотку, причем площадь отверстия в несущем стержне не превышает величины 85% от расчетной площади арматуры, а отверстие выполнено в виде квадрата, шестигранника, круга или треугольника [23 RU 83526].
Известна композитная арматура, содержащая несущий стержень, который выполнен слоистым и содержит внутренний сердечник и последующие слои, причем каждый слой продольных волокон несущего стержня уплотнен внутренней поперечной спиральной обмоткой, выполненной из нитей или плоских лент с разными направлениями навивки причем внутренние спиральные обмотки выполнены из высокопрочных нитей или плоских лент с различным направлением навивки в каждой обмотке, причем спиральные обмотки образованы одно- или многозаходными навивками. Слои несущего стержня могут быть выполнены из высокопрочного материала с различными физико-механическими и химическими свойствами - сердечник и его обмотка выполнены из стеклянного волокна, второй слой и его обмотка выполнены из базальтового волокна, наружный слой выполнен из базальтового или смеси базальтового и углеродного волокна с наружной обмоткой с уступами из стеклянных или базальтовых волокон. Наружный слой несущего стержня или его часть могут быть выполнены другого цветового исполнения [24 RU 2436910 (прототип для независимых п. 1 и п. 13 формулы изобретения)].
Известен стержень для армирования бетона, который изготавливают из полимерного связующего и волокнистого наполнителя (мас.%) 49,8-69,13, в котором в качестве волокнистого наполнителя используют нити стеклянных, базальтовых волокон, а полимерное связующее содержит (мас.%): эпоксидную смолу ЭД-20 14,1-27,6, изометилтетрагидрофталевый ангидрид 13,6-22,1, продукт взаимодействия эпоксидной алифатической смолы ТЭГ-1 с уретановым каучуком 0,12-0,42, ускоритель УП-606/2 0,05-0,08. При изготовлении стержня как минимум из одной нити волокнистого наполнителя формируют как минимум один усиливающий жгут, причем массовая доля усиливающих жгутов не должна превышать 30% общей массы наполнителя. Нити и жгуты термообрабатывают, пропитывают полимерным связующим, отжимают и объединяют в единый стержень путем выполнения спиральной намотки обмоточным жгутом. Сформированный стержень протягивают через три термокамеры в режиме ступенчатого нагрева. Скорость протягивания 0,055-0,067 м/с. Способ и композиция обеспечивают получение арматурного стержня с высокими прочностными свойствами: деформация при растяжении достигает 5%, прочность на разрыв 1460 МПа [25 25. RU 2381905 (прототип для независимых п. 6 и п. 9 формулы)].
Общими недостатками известной композитной арматуры простой конструкции являются недостаточно высокое эксплуатационное качество - низкая степень сцепления с бетоном и недостаточно высокие прочностные свойства, а именно недостаточно высокая прочность на разрыв и изгиб.
Общими недостатками известной композитной арматуры сложной конструкции с удовлетворительным эксплуатационным качеством является чрезмерная сложность конструкции, трудоемкость технологии изготовления и обусловленные этим её высокая стоимость, ограничивающая широкое её использование.
Основной технический недостаток известных аналогов композитной арматуры, состоящей обычно несущий стержень из пучка параллельных нитей, обмотанных жгутом или лентой и пропитанной полимерным связующим, заключается в недостаточно плотной структуре несущего стержня, вследствие чего он уплотняется только в местах контакта со жгутом (лентой). Это обуславливает недостаточно высокие прочностные показатели известной композитной арматуры.
Задача и технический результат
Задачей и техническим результатом, получаемым от реализации изобретения, является повышение эксплуатационного качества композиционной арматуры, а именно повышение прочности на разрыв и изгиб.
Краткое описание чертежей
Показанные на чертежах варианты конструктивного исполнения патентуемой композитной арматуры содержат: несущий стержень 1, сердечник 2, обмоточный жгут преимущественно полукруглого сечения 3, обмоточная лента прямоугольного сечения 4, скрученный вокруг своей оси несущий стержень.
На фиг. 1 показан внешний вид композитной стеклопластиковой арматуры с обмоточным жгутом 3 из скрученного стекловолоконного ровинга и несущим стержнем, сформированным из параллельного центральной оси стекловолоконного ровинга.
На фиг. 2 - внешний вид композитной стеклопластиковой арматуры с обмоточным жгутом 3 из скрученного стекловолоконного ровинга, где показано её сечение по центральной оси, на котором показано полукруглая форма сечения обмоточного жгута 3 из стекловолоконного ровинга и плоская линия контакта обмоточного жгута 3 с поверхностью несущего стержня 1, сформированного из параллельного центральной оси стекловолоконного ровинга.
На фиг. 3 - внешний вид композитной стеклопластиковой арматуры с обмоточным жгутом 3 из скрученного стекловолоконного ровинга и несущим стержнем, сформированным из скрученного стекловолоконного ровинга 5.
На фиг. 4 - внешний вид композитной стеклопластиковой арматуры с обмоточным жгутом 3 из скрученного стекловолоконного ровинга и показано её сечение по центральной оси, на котором показано полукруглая форма сечения обмоточного жгута 3 из стекловолоконного ровинга и плоская линия контакта обмоточного жгута 3 с поверхностью несущего стержня 1, сформированного из скрученного стекловолоконного ровинга 5.
На фиг. 5 - внешний вид композитной стеклопластиковой арматуры с обмоточной лентой 4 из стекловолоконного ровинга и несущим стержнем, сформированным из параллельного центральной оси стекловолоконного ровинга.
На фиг. 6 - внешний вид композитной стеклопластиковой арматуры с обмоточной лентой 4 из стекловолоконного ровинга и несущим стержнем, сформированным из скрученного стекловолоконного ровинга.
На фиг. 7 - внешний вид композитной стеклопластиковой арматуры с обмоточной лентой 4 из стекловолоконного ровинга и показано её сечение по центральной оси, на котором показано плоская форма сечения обмоточной ленты 4 из стекловолоконного ровинга и плоская линия контакта обмоточной ленты 4 с поверхностью несущего стержня 1, сформированного из скрученного стекловолоконного ровинга.
На фиг. 8 - внешний вид композитной стеклопластиковой арматуры с обмоточным жгутом 3 из скрученного стекловолоконного ровинга, несущим стержнем 1, сформированным из параллельного центральной оси стекловолоконного ровинга с расположенным внутри несущего стержня сердечником 2, а также показано её сечение по центральной оси, на котором показаны полукруглая форма сечения обмоточного жгута 3 из стекловолоконного ровинга и плоская линия контакта обмоточного жгута 3 с поверхностью несущего стержня 1.
На фиг. 9 - внешний вид композитной стеклопластиковой арматуры с обмоточной лентой 4 из стекловолоконного ровинга, несущим стержнем 1, сформированным из параллельного центральной оси стекловолоконного ровинга с расположенным внутри несущего стержня сердечником 2, а также показано её сечение по центральной оси, на котором показаны плоская форма сечения обмоточной ленты 4 из стекловолоконного ровинга и плоская линия контакта обмоточной ленты 4 с поверхностью несущего стержня 1.
На фиг. 10 - внешний вид композитной стеклопластиковой арматуры с обмоточным жгутом 3 и обмоточной лентой 4 из стекловолоконного ровинга, несущим стержнем 1, сформированным из скрученного стекловолоконного ровинга 5 с расположенным внутри несущего стержня сердечником 2 из скрученного стекловолоконного ровинга, а также показано сечение по центральной оси, на котором показаны плоская линия контакта обмоточного жгута 3 и обмоточной ленты 4 с поверхностью несущего стержня 1.
Сущность изобретения
Основным отличительными признаками вариантов исполнения патентуемой композитной стеклопластиковой арматуры являются (фиг. 1-10):
выполнение несущего стержня из скрученного вокруг центральной оси стекловолоконного ровинга с правым или левым направлением скручивания, с числом кручений от 0,1 до 100 на 1 м длины несущего стержня, с диапазоном диаметров несущего стрежня от 2 до 24 мм, выполнение внутри несущего стержня несущего стержня сердечника из скрученного жгута стекловолоконного ровинга с числом кручений от 0,1 до 50 на 1 м длины, с диапазоном диаметров сердечника от 2 до 6 мм при диапазоне диаметров несущего стержня от 3 до 24 мм, с количеством скрученных жгутов стекловолоконного ровинга в сердечнике от 1 до 5 с правым или левым направлением скручивания жгутов стекловолоконного ровинга в сердечнике;
выполнение спиральной обмотки несущего стержня в виде жгута из скрученного стекловолоконного ровинга с преимущественно полукруглой и возможно полуовальной, полуэллипсовидной или полукаплевидной формой сечения наружной поверхности спиральной обмотки и плоской формой сечения в местах контакта обмоточного жгута с несущим стержнем, с отношением площади поверхности обмотки к площади поверхности несущего стержня от 1 до 80 %, шагом навивки от 3 до 20 мм и высотой навивки от поверхности несущего стержня от 0,5 до 5 мм;
выполнение спиральной обмотки несущего стержня в виде плоской ленты из стекловолоконного ровинга с преимущественно прямоугольным или квадратным сечение и плоской формы в местах контакта обмоточной ленты с несущим стержнем, с отношением площади поверхности обмотки по отношению к площади поверхности несущего стержня составляет я от 1 до 80 %, шагом навивки от 3 до 20 мм и высотой навивочной ленты от поверхности несущего стержня от 0,5 до 5 мм;
выполнение композитной арматуры в различных, показанных на чертежах, комбинациях отличительных признаков в различных вариантах патентуемой композитной стеклопластиковой арматуры.
Осуществление изобретения
В качестве исходного материала при изготовлении композиционной арматуры используют ровинг по ГОСТ 17139-79 или ГОСТ Р 52581-2006 или ГОСТ 17139-2000, представляющий собой материал в виде жгута из сплошных нитей стекловолокна, различающийся по линейной плотности определяемой в tex (веса 1 км элементарной нити), а также по количеству нитей, из которых состоит жгут. Ровинг поставляется в бобинах, упакованных в прозрачную пленку.
При изготовлении композиционной арматуры может быть использован ровинг 1200 tex, 2400 tex, 4800 tex, 9600 tex. Может использоваться как прямой ровинг (некрученная прядь из стеклянных элементарных нитей) с диметром элементарной нити 10-22 мкм с линейной плотностью 160-1600 tex, так и сложенный ровинг (из нескольких равномерно натянутых комплексных нитей) с диметром элементарной нити 10-24 мкм с линейной плотностью 960-9600 tex [http://tehnorma.ru/normativbase/7/7311/index.htm].
Цвет арматуры от светло-желтого до тёмно-желтого.
Арматура изготавливается любой длины по согласованию с заказчиком.
Преимущественные геометрические размеры композитной арматуры представлены в таблице 1.
Геометрические размеры композитной арматуры
Таблица 1.
№ профиля Наружный диаметр, мм Внутренний диаметр, мм
4 4±0,3 3±0,05
5 5±0,3 4±0,05
6 6±0,3 5±0,05
8 8±0,3 5,5±0,05
10 10±0,3 8±0,05
12 12±0,3 10±0,05
14 14±0,3 12±0,05
16 16±0,3 14±0,05
18 18±0,3 16±0,05
20 20±0,3 18±0,05
22 22±0,3 20±0,05
24 24±0,3 22±0,05
Патентуемую композитную арматуру изготавливаются на технологической установке в преимущественном варианте конструктивного исполнения включающей:
Шпулярник - стеллаж для размещения на нем катушек стеклоровинга. С лицевой стороны шпулярника находятся разделительные кольца, обеспечивающие равномерное сматывание нитей с катушек, причем через одно кольцо проходит только одна нить;
Прогревочный узел, в котором при протяжке нитей стеклоровинга происходит удаление излишней влаги;
Пропиточную ванну с отжимным устройством и подогревом, в которой нити ровинга пропитываются эпоксидным составом, а излишки смолы отжимаются и стекают обратно в ванну;
Разделительное устройство, в котором пропитанные смолой нити разделяются равномерные (или разных, в зависимости от выпускаемых диаметров) пучки, которые подаются через фильеры к узлу формовки.
Формовочный узел, включающий катушки с навивочным жгутом или лентой, которые, навиваясь на тело арматурного стержня, придают ему необходимую форму и рельефность;
Прогревочные камеры, в которых при повышенной температуре происходит полимеризация эпоксидной смолы и арматурный стержень становится твердым.
Охладитель, в котором происходит охлаждение арматурных стержней до температуры окружающей среды.
Тянущий узел, при помощи которого производится протяжка арматурных стержней через всю установку. Кроме этого в данном узле стержни сводятся на удобную для протяжки и последующей отрезки ширину;
Узел отрезки с электронным счетчиком, автоматической пнемвоотрезкой и пнемвосбрасывателем готовых изделий.
Патентуемая композитная арматура может также изготавливаться на технологической установке, дополнительно содержащей узел скручивания (подкручивания) несущего стержня и узел формирования скрученного сердечника.
Конструктивное исполнение патентуемой композитной арматуры находятся в причинно-следственной связи с техническим результатом и позволяют решить задачу повышения эксплуатационного качества композиционной арматуры, а именно повышение прочности на разрыв и изгиб.
Существенные отличительные признаки обеспечивают возможность достижение требуемого технического результата, а именно - существенное повышение прочности патентуемой композитной арматуры на разрыв и изгиб.
Скручивание пучка нитей ровинга в несущем стержне, а также использование плоской обмоточной ленты из стекловолоконного ровинга уплотняет структуру несущего стержня по всему его объёму, что позволяет точнее выдерживать заданный диаметр несущего стержня арматуры, а также позволяет, за счет его уплотнения, увеличить количество нитей ровинга в несущем стержне на тот же его диаметр, что существенно увеличивает прочность композитной арматуры на разрыв.
Выполнение внутри несущего стержня несущего стержня сердечника из скрученного жгута стекловолоконного ровинга также существенно увеличивает прочность композитной арматуры и на разрыв и на изгиб.
Выполнение спиральной обмотки несущего стержня в виде жгута из скрученного стекловолоконного ровинга с преимущественно полукруглой и возможно полуовальной, полуэлипсовидной или полукаплевидной формой сечения наружной поверхности и плоской формой сечения в местах контакта обмоточного жгута с несущим стержнем, также позволяет не только увеличить прочностные показатели композитной арматуры, но и увеличить площадь поверхности и показатели сцепляемости арматуры с бетоном.
Изготовление и испытания опытных партий композитной стеклопластиковой арматуры показали возможность её изготовления на обычном оборудовании и обычных материалов и её повышенная по сравнению с традиционной композитной арматурой прочность.
Указанные конструктивные параметры композитной арматуры определены опытным путем и являются оптимальными для обеспечения возможности повышения ее прочности и эксплуатационных качеств.
Для изготовления композитной стеклопластиковой арматуры могут быть использованы обычные и традиционные для производства композитной арматуры материалы и оборудование.
Таким образом, учитывая новизну совокупности существенных признаков, техническое решение поставленной задачи, изобретательский уровень и существенность всех общих и частных признаков изобретения, доказанных в разделе «Уровень техники» и «Раскрытие изобретения», доказанную в разделе «Осуществление и промышленная реализация изобретения», техническую осуществимость и промышленную применимость изобретения, достижение поставленных изобретательских задач и уверенное достижение требуемого технического результата при реализации и использовании изобретения, а заявленная группа изобретений удовлетворяет всем требованиям охраноспособности, предъявляемым к изобретениям.
Проведенный анализ показывает также, что все общие и частные признаки изобретения являются существенными, так как каждый из них необходим, а все вместе они не только достаточны для достижения цели изобретения, но и позволяют реализовать изобретение промышленным способом.
Кроме этого анализ совокупности существенных признаков изобретения и достигаемого при их использовании единого технического результата показывает наличие единого изобретательского замысла, тесную и неразрывную связь между вариантами изобретения, что позволяет объединить варианты изобретения в одной заявке.
Figure 00000001

Claims (16)

1. Композитная стеклопластиковая арматура из пропитанного полимерным связующим стекловолокна, содержащая несущий стержень и спиральную обмотку, отличающаяся тем, что несущий стержень изготовлен из скрученного вокруг центральной оси пучка нитей стекловолоконного ровинга.
2. Композитная стеклопластиковая арматура по п.1, отличающаяся тем, что несущий стержень изготовлен из скрученного вокруг центральной оси пучка нитей стекловолоконного ровинга с числом кручений от 0,1 до 100 на 1 м длины, с диапазоном диаметров от 2 до 24 мм, с правым или левым направлением скручивания.
3. Композитная стеклопластиковая арматура по любому из п.1 или 2, отличающаяся тем, что несущий стержень содержит центрально расположенный внутри него сердечник из скрученного жгута стекловолоконного ровинга с числом кручений от 0,1 до 50 на 1 м длины, с диапазоном диаметров сердечника от 2 до 6 мм при диапазоне диаметров несущего стержня от 3 до 24 мм, с количеством скрученных жгутов стекловолоконного ровинга в сердечнике от 1 до 5, с правым или левым направлением скручивания сердечника.
4. Композитная стеклопластиковая арматура по любому из п.1 или 2, отличающаяся тем, что спиральная обмотка выполнена в виде жгута из скрученного стекловолоконного ровинга и имеет в сечении полуовальную, полуэллипсовидную, полукаплевидную или преимущественно полукруглую форму наружной поверхности спиральной обмотки с плоским контактом с несущим стержнем, с соотношением площади поверхности спиральной обмотки по отношению к свободной от намотки площади поверхности несущего стержня от 1 до 80%, с шагом навивки от 3 до 20 мм, с высотой навивки от поверхности несущего стержня от 0,5 до 5 мм.
5. Композитная стеклопластиковая арматура по любому из п.1 или 2, отличающаяся тем, что спиральная обмотка выполнена в виде плоской ленты из стекловолоконного ровинга с прямоугольным или квадратным сечением, с плоским контактом с несущим стержнем, с соотношением площади поверхности обмотки по отношению к свободной площади поверхности несущего стержня от 1 до 80%, с шагом навивки от 3 до 20 мм и с высотой навивки от поверхности несущего стержня от 0,5 до 5 мм.
6. Композитная стеклопластиковая арматура из пропитанного полимерным связующим стекловолокна, содержащая несущий стержень с сердечником из жгута стекловолоконного ровинга и спиральную обмотку, отличающаяся тем, что несущий стержень содержит сердечник из скрученного жгута стекловолоконного ровинга с числом кручений от 0,1 до 50 на 1 м длины, в диапазоне диаметров сердечника от 2 до 6 мм при диапазоне диаметров несущего стержня от 3 до 24 мм, с количеством скрученных жгутов стекловолоконного ровинга в сердечнике от 1 до 5, с правым или левым направлением скручивания сердечника, а несущий стержень изготовлен из скрученного вокруг центральной оси пучка нитей стекловолоконного ровинга, с числом кручений от 0,1 до 100 на 1 м длины, в диапазоне диаметров от 2 до 24 мм, с правым или левым направлением скручивания.
7. Композитная стеклопластиковая арматура по п.6, отличающаяся тем, что спиральная обмотка выполнена в виде жгута из скрученного стекловолоконного ровинга и имеет в сечении полуовальную, полуэллипсовидную, полукаплевидную или преимущественно полукруглую форму наружной поверхности спиральной обмотки с плоским контактом с несущим стержнем, с соотношением площади поверхности спиральной обмотки по отношению к свободной от намотки площади поверхности несущего стержня от 1 до 80%, с шагом навивки от 3 до 20 мм, с высотой навивки от поверхности несущего стержня от 0,5 до 5 мм.
8. Композитная стеклопластиковая арматура по п.6, отличающаяся тем, что спиральная обмотка выполнена в виде плоской ленты из стекловолоконного ровинга с прямоугольным или квадратным сечением, с плоским контактом с несущим стержнем, с соотношением площади поверхности обмотки по отношению к свободной площади поверхности несущего стержня от 1 до 80%, с шагом навивки от 3 до 20 мм и с высотой навивки от поверхности несущего стержня от 0,5 до 5 мм.
9. Композитная стеклопластиковая арматура из пропитанного полимерным связующим стекловолокна, содержащая несущий стержень и спиральную обмотку, отличающаяся тем, что спиральная обмотка выполнена в виде жгута из скрученного стекловолоконного ровинга и имеет в сечении полуовальную, полуэллипсовидную, полукаплевидную или преимущественно полукруглую форму наружной поверхности спиральной обмотки с плоским контактом с несущим с соотношением площади поверхности спиральной обмотки по отношению к свободной от намотки площади поверхности несущего стержня от 1 до 80%, с шагом навивки от 3 до 20 мм, с высотой навивки от поверхности несущего стержня от 0,5 до 5 мм.
10. Композитная стеклопластиковая арматура по п.9, отличающаяся тем, что несущий стержень изготовлен из скрученного вокруг центральной оси пучка нитей стекловолоконного ровинга, с числом кручений от 0,1 до 100 на 1 м длины, с диапазоном диаметров от 2 до 24 мм, с правым или левым направлением скручивания.
11. Композитная стеклопластиковая арматура по п.9, отличающаяся тем, что несущий стержень содержит центрально расположенный внутри него сердечник из скрученного жгута стекловолоконного ровинга, с числом кручений от 0,1 до 50 на 1 м длины, с диапазоном диаметров сердечника от 2 до 6 мм при диапазоне диаметров несущего стержня от 3 до 24 мм, с количеством скрученных жгутов стекловолоконного ровинга в сердечнике от 1 до 5, с правым или левым направлением скручивания сердечника.
12. Композитная стеклопластиковая арматура по п.9, отличающаяся тем, что спиральная обмотка выполнена в виде плоской ленты из стекловолоконного ровинга с прямоугольным или квадратным сечением, с плоским контактом с несущим стержнем, с соотношением площади поверхности обмотки по отношению к свободной площади поверхности несущего стержня от 1 до 80%, с шагом навивки от 3 до 20 мм, с высотой навивки от поверхности несущего стержня от 0,5 до 5 мм.
13. Композитная стеклопластиковая арматура из пропитанного полимерным связующим стекловолокна, содержащая несущий стержень и спиральную обмотку в виде плоской ленты из стекловолоконного ровинга, отличающаяся тем, что спиральная обмотка выполнена в виде плоской ленты из стекловолоконного ровинга с преимущественно прямоугольным или квадратным сечением, с плоским контактом с несущим стержнем, с соотношением площади поверхности обмотки по отношению к свободной площади поверхности несущего стержня от 1 до 80%, с шагом навивки от 3 до 20 мм, с высотой навивки от поверхности несущего стержня от 0,5 до 5 мм.
14. Композитная стеклопластиковая арматура по п.13, отличающаяся тем, что несущий стержень изготовлен из скрученного вокруг центральной оси стекловолоконного ровинга, с числом кручений от 0,1 до 100 на 1 м длины, в диапазоне диаметров от 2 до 24 мм, с правым или левым направлением скручивания.
15. Композитная стеклопластиковая арматура по п.13, отличающаяся тем, что несущий стержень содержит центрально расположенный внутри него сердечник из скрученного жгута стекловолоконного ровинга с числом кручений от 0,1 до 50 на 1 м длины, с диапазоном диаметров сердечника от 2 до 6 мм при диапазоне диаметров несущего стержня от 3 до 24 мм, с количеством скрученных жгутов стекловолоконного ровинга в сердечнике от 1 до 5, с правым или левым направлением скручивания сердечника.
16. Композитная стеклопластиковая арматура по п.13, отличающаяся тем, что спиральная обмотка выполнена в виде жгута из скрученного стекловолоконного ровинга и имеет в сечении полуовальную, полуэллипсовидную, полукаплевидную или преимущественно полукруглую форму наружной поверхности спиральной обмотки с плоским контактом с несущим стержнем, с соотношением площади поверхности спиральной обмотки по отношению к свободной от намотки площади поверхности несущего стержня от 1 до 80%, с шагом навивки от 3 до 20 мм, с высотой навивки от поверхности несущего стержня от 0,5 до 5 мм.
RU2012157698/03A 2012-12-28 2012-12-28 Композитная стеклопластиковая арматура (варианты) RU2520542C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012157698/03A RU2520542C1 (ru) 2012-12-28 2012-12-28 Композитная стеклопластиковая арматура (варианты)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012157698/03A RU2520542C1 (ru) 2012-12-28 2012-12-28 Композитная стеклопластиковая арматура (варианты)

Publications (2)

Publication Number Publication Date
RU2520542C1 true RU2520542C1 (ru) 2014-06-27
RU2012157698A RU2012157698A (ru) 2014-07-10

Family

ID=51215569

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012157698/03A RU2520542C1 (ru) 2012-12-28 2012-12-28 Композитная стеклопластиковая арматура (варианты)

Country Status (1)

Country Link
RU (1) RU2520542C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2620508C1 (ru) * 2016-05-04 2017-05-26 Юлия Алексеевна Щепочкина Способ изготовления стеклопластиковой арматуры
WO2019162390A1 (en) * 2018-02-23 2019-08-29 Sireg Geotech S.R.L. Strand in glass and/or basalt fibers for prestressed concrete
RU197082U1 (ru) * 2020-01-19 2020-03-30 Владимир Васильевич Галайко Композитная арматура
RU2825906C1 (ru) * 2023-12-22 2024-09-02 Общество с ограниченной ответственностью "КОМПОЗИТ ГРУПП ЧЕЛЯБИНСК" Композитный стержень

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0199348A2 (en) * 1985-04-26 1986-10-29 Societe Nationale De L'amiante Structural rod for reinforcing concrete material
RU90470U1 (ru) * 2009-09-08 2010-01-10 Общество с ограниченной ответственностью "Меркурий-02" Технологическая линия для изготовления неметаллической арматуры
RU2381905C2 (ru) * 2008-04-25 2010-02-20 Елена Геннадьевна Проскурякова Стержень для армирования бетона и способ его изготовления
RU2436910C2 (ru) * 2010-02-01 2011-12-20 Общество с ограниченной ответственностью "Коммерческое научно-производственное объединение "Уральская армирующая компания" Арматура композитная
RU2455435C2 (ru) * 2009-10-07 2012-07-10 Общество с ограниченной ответственностью "Научно-производственное объединение "Вулкан" Способ изготовления базальтовой арматуры с периодическим профилем

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0199348A2 (en) * 1985-04-26 1986-10-29 Societe Nationale De L'amiante Structural rod for reinforcing concrete material
RU2381905C2 (ru) * 2008-04-25 2010-02-20 Елена Геннадьевна Проскурякова Стержень для армирования бетона и способ его изготовления
RU90470U1 (ru) * 2009-09-08 2010-01-10 Общество с ограниченной ответственностью "Меркурий-02" Технологическая линия для изготовления неметаллической арматуры
RU2455435C2 (ru) * 2009-10-07 2012-07-10 Общество с ограниченной ответственностью "Научно-производственное объединение "Вулкан" Способ изготовления базальтовой арматуры с периодическим профилем
RU2436910C2 (ru) * 2010-02-01 2011-12-20 Общество с ограниченной ответственностью "Коммерческое научно-производственное объединение "Уральская армирующая компания" Арматура композитная

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2620508C1 (ru) * 2016-05-04 2017-05-26 Юлия Алексеевна Щепочкина Способ изготовления стеклопластиковой арматуры
WO2019162390A1 (en) * 2018-02-23 2019-08-29 Sireg Geotech S.R.L. Strand in glass and/or basalt fibers for prestressed concrete
RU197082U1 (ru) * 2020-01-19 2020-03-30 Владимир Васильевич Галайко Композитная арматура
RU2825906C1 (ru) * 2023-12-22 2024-09-02 Общество с ограниченной ответственностью "КОМПОЗИТ ГРУПП ЧЕЛЯБИНСК" Композитный стержень

Also Published As

Publication number Publication date
RU2012157698A (ru) 2014-07-10

Similar Documents

Publication Publication Date Title
KR101936499B1 (ko) 나선형 리브를 가진 복합소재 리바의 제조방법
US5727357A (en) Composite reinforcement
US20040065044A1 (en) Reinforcing bar and method for the production thereof
WO2013032416A2 (ru) Способ производства композитной арматуры и устройство для его осуществления
CN102345236A (zh) 一种多芯绞合型纤维加强芯材湿法生产工艺
EP0149336B1 (en) Flexible tension members
RU2520542C1 (ru) Композитная стеклопластиковая арматура (варианты)
KR102112960B1 (ko) 콘크리트 보강용 frp메쉬
KR102060285B1 (ko) 콘크리트 보강용 frp메쉬의 제조방법
RU2620699C2 (ru) Стержень из непрерывных волокон
RU2405092C2 (ru) Композитная арматура
CN111535178A (zh) 一种可用于夹片锚固的预应力frp筋及其制备方法
RU2547036C2 (ru) Устройство спиральной обмотки композитной арматуры и технологическая линия для изготовления композитной арматуры с устройством спиральной обмотки композитной арматуры
RU134966U1 (ru) Композитная стеклопластиковая арматура (варианты)
RU2384676C1 (ru) Арматура композитная (варианты)
RU77310U1 (ru) Арматура композитная (варианты)
RU2534130C2 (ru) Устройство скрутки сердечника композитной арматуры и технологическая линия для изготовления композитной арматуры с устройством скрутки сердечника композитной арматуры
EP3755525A1 (en) Strand in glass and/or basalt fibers for prestressed concrete
EA018026B1 (ru) Стержень периодического профиля из композиционного волокнистого материала и способ его изготовления
RU2324797C1 (ru) Стержень переменного сечения из композиционного материала
RU82246U1 (ru) Арматура композитная (варианты)
RU2287431C1 (ru) Способ изготовления композитной арматуры
RU82464U1 (ru) Арматура из полимерного композиционного материала
RU2384677C2 (ru) Арматура композитная (варианты)
RU150463U1 (ru) Арматура композитная

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20151229