WO2018001021A1 - 自行车用中置电机及电动助力自行车 - Google Patents

自行车用中置电机及电动助力自行车 Download PDF

Info

Publication number
WO2018001021A1
WO2018001021A1 PCT/CN2017/086194 CN2017086194W WO2018001021A1 WO 2018001021 A1 WO2018001021 A1 WO 2018001021A1 CN 2017086194 W CN2017086194 W CN 2017086194W WO 2018001021 A1 WO2018001021 A1 WO 2018001021A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
bicycle
planetary gear
gear mechanism
center
Prior art date
Application number
PCT/CN2017/086194
Other languages
English (en)
French (fr)
Inventor
梅良
陈俊
李辉
Original Assignee
武汉千斤智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉千斤智能科技有限公司 filed Critical 武汉千斤智能科技有限公司
Priority to EP17819018.7A priority Critical patent/EP3480102B1/en
Priority to BR112018077443-0A priority patent/BR112018077443B1/pt
Priority to JP2018569134A priority patent/JP6802861B2/ja
Priority to US16/310,345 priority patent/US10876602B2/en
Priority to AU2017287187A priority patent/AU2017287187B2/en
Priority to KR1020197002427A priority patent/KR102123299B1/ko
Priority to NZ749944A priority patent/NZ749944A/en
Publication of WO2018001021A1 publication Critical patent/WO2018001021A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/45Control or actuating devices therefor
    • B62M6/50Control or actuating devices therefor characterised by detectors or sensors, or arrangement thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/724Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously using external powered electric machines
    • F16H3/725Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously using external powered electric machines with means to change ratio in the mechanical gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M11/00Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels
    • B62M11/04Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio
    • B62M11/14Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio with planetary gears
    • B62M11/145Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio with planetary gears built in, or adjacent to, the bottom bracket
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M11/00Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels
    • B62M11/04Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio
    • B62M11/14Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio with planetary gears
    • B62M11/18Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio with planetary gears with a plurality of planetary gear units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/55Rider propelled cycles with auxiliary electric motor power-driven at crank shafts parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/187Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to inner stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/24Devices for sensing torque, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/003Couplings; Details of shafts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/083Structural association with bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/085Structural association with bearings radially supporting the rotary shaft at only one end of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/108Structural association with clutches, brakes, gears, pulleys or mechanical starters with friction clutches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H2059/147Transmission input torque, e.g. measured or estimated engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/2007Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with two sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand

Definitions

  • the invention relates to the technical field of electric assist bicycles, and in particular to a center-mounted motor for bicycles and an electric assist bicycle.
  • An electric assist bicycle is a personal vehicle that is equipped with a motor, a controller, and the like on the basis of an ordinary bicycle, and uses a battery as an auxiliary energy source.
  • the rider still rides in the manner of a conventional bicycle and is assisted by the motor, and the assist force of the motor can be automatically adjusted by the controller according to the rider's riding condition.
  • a torque sensing system is provided in the electric assist bicycle.
  • the torque sensing system of the existing central motor for electric assist bicycle has a complicated structure and has low measurement accuracy for the pedaling force.
  • the object of the present invention is to provide a center motor for bicycles, which solves the technical problem that the torque sensing system of the bicycle center motor has a complicated structure and low measurement precision.
  • Another object of the present invention is to provide an electric assist bicycle.
  • a central motor for bicycle comprises: a motor casing, wherein the inner stator frame is fixed with an inner stator of the motor; the inner stator frame is mounted with an outer rotor of the motor, and the outer rotor of the motor is integrated with the output shaft of the motor body; a first planetary gear mechanism is disposed inside the inner stator frame, and the first planetary gear mechanism can be used for outputting the output of the manual force after the speed increase; the outer ring gear of the first planetary gear mechanism is connected with the elastic body and the elastic body It is fixedly mounted in the inner stator frame; the elastic body is provided with a torque sensor, and the torque sensor can be used to detect the pedaling force provided by the rider to the bicycle.
  • the bicycle center motor further includes a connector; the elastic body is connected to the outer ring gear through the connector.
  • the elastic body is elongated; one end of the elastic body is fixedly connected to the inner stator frame, and the other end of the elastic body is connected with the connector; and the torque sensor is located between the two ends of the elastic body.
  • the elastic body is curved, and the elastic body is coaxial with the outer ring gear of the first planetary gear mechanism.
  • the inner stator frame is provided with an axial limiting portion; an end of the elastic body away from the connector is located between the axial limiting portion and the inner stator frame.
  • the axial limiting portion is a bolt threadedly connected to the inner stator frame; an end of the elastic body away from the connector is located between the inner stator frame and the head of the bolt.
  • one end of the elastic body away from the connector is pressed between the inner stator frame and the axial limiting portion.
  • the outer ring gear of the first planetary gear mechanism is provided with a fixing hole; the connector is embedded in the fixing hole to be connected with the outer ring gear of the first planetary gear mechanism.
  • a flange extending in the axial direction is provided at a radial edge of the outer ring gear of the first planetary gear mechanism; the fixing hole is a through hole penetrating the flange in the radial direction.
  • the connector penetrates the flange fixing hole; the connector is provided with a protrusion that abuts against the inner circumferential surface of the flange.
  • a second planetary gear mechanism is fixed in the motor casing, and the second planetary gear mechanism is connected to the output shaft of the motor body and coaxially disposed with the first planetary gear mechanism, and the second planetary gear mechanism can be used for the motor
  • the input is output after deceleration.
  • the motor body output shaft is disposed coaxially with the central axis of the bicycle, and the central shaft includes a first central axis and a second central axis that are sequentially connected.
  • the first planetary gear mechanism takes the form of a carrier input and a sun gear output as a speed increasing mechanism.
  • a first one-way device is disposed between the carrier of the first planetary gear mechanism and the first central shaft.
  • the outer ring gear of the second planetary gear mechanism is fixedly connected to the motor casing, and the second planetary gear mechanism adopts a form of a sun gear input and a carrier output as a speed reduction mechanism.
  • a second one-way device is disposed between the carrier of the second planetary gear mechanism and the output shaft of the center motor.
  • first central axis and the second central axis are sequentially connected by a shaft connector.
  • stator frame and the motor casing are fixedly connected by bolts.
  • outer rotor of the motor is mounted on the inner stator frame through bearings and is integrated with the output shaft of the motor body.
  • An electric assist bicycle includes any of the above-described bicycle center motors.
  • the bicycle center-mounted motor provided by the embodiment of the present invention includes: a motor casing, wherein the motor casing is fixed with an inner stator of the motor through an inner stator frame (not shown); wherein the inner stator frame is mounted An outer rotor of the motor, and the outer rotor of the motor is integrated with the output shaft of the motor body; specifically, the inner stator frame is internally provided with a first planetary gear mechanism, and the first planetary gear mechanism can be used for speeding up the input of the human power Further outputting; further, an elastic body is connected to the outer ring gear of the first planetary gear mechanism, and the elastic body is fixedly mounted in the inner stator frame; further, the elastic body is provided with a torque sensor, the torque sensor Can be used to detect the pedaling force provided by the rider to the bicycle.
  • the torque sensor is disposed on the elastic body at the outer ring gear of the first planetary gear mechanism, the torque sensor does not need to rotate with the rotation of the central shaft, and When the first planetary gear mechanism outputs power, the reverse torque is transmitted to the elastic body at the outer ring gear, and the pedaling force provided by the rider to the bicycle is accurately measured, and the wireless power supply and the wireless transmission mode are effectively avoided.
  • FIG. 1 is a schematic diagram of the working principle of a center-mounted motor for bicycles according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the internal structure of a center-mounted motor for bicycle according to an embodiment of the present invention.
  • Fig. 3 is a cross-sectional view taken along line III-III of Fig. 2;
  • 011-motor housing 012-motor inner stator; 013-motor outer rotor; 014-motor body output shaft;
  • 015-first planetary gear mechanism 0151-first sun gear; 0152-first planetary gear; 0153-first planet carrier; 0154-first outer ring gear; 0155-fixing hole; 0156-flange;
  • 016-second planetary gear mechanism 0162-second planetary gear; 0163-second planetary carrier; 0164-second outer ring gear;
  • 017-first one-way device 018-second one-way device; 019-center motor output shaft;
  • orientation or positional relationship of the terms “inner”, “outside”, etc. is based on The orientation or positional relationship shown in the drawings is merely for the convenience of the description of the present invention and the description of the invention, and is not intended to indicate or imply that the device or component referred to has a specific orientation, is constructed and operated in a specific orientation, and therefore cannot be understood. To limit the invention. Moreover, the terms “first”, “second”, etc. are used for descriptive purposes only and are not to be construed as indicating or implying relative importance.
  • connection should be understood broadly, and may be, for example, a fixed connection or a detachable connection, or Connected integrally; can be directly connected, or indirectly connected through an intermediate medium, which can be internal communication between two components.
  • intermediate medium which can be internal communication between two components.
  • FIG. 1 is a schematic diagram of the working principle of a center-mounted motor for bicycles according to an embodiment of the present invention.
  • a central motor for bicycles according to an embodiment of the present invention includes: a motor housing 011, wherein an inner stator 012 is fixed in an inner stator frame (not shown) in the motor housing 011; The motor outer rotor 013, and the motor outer rotor 013 is integrally connected with the motor body output shaft 014; the inner stator frame is internally provided with a first planetary gear mechanism 015, and the first planetary gear mechanism 015 can be used for speeding up the input of the human power After the outer gear ring of the first planetary gear mechanism 015 is connected with an elastic body 031, and the elastic body 031 is fixedly mounted in the inner stator frame; the elastic body 031 is provided with a torque sensor 032, and the torque sensor 032 can be used for detecting The pedaling force provided by the rider to the bicycle.
  • the motor housing 011 is fixed in the motor housing 011 by an inner stator frame (not shown).
  • the outer stator 013 is mounted on the inner stator frame, and the outer rotor 013 of the motor is integrated with the output shaft 014 of the motor body; specifically, the first planetary gear mechanism 015 is disposed inside the inner stator frame, the first planet The wheel mechanism 015 can be used for outputting the input of the manual force after the speed increase; further, the outer ring gear of the first planetary gear mechanism 015 is connected with the elastic body 031, and the elastic body 031 is fixedly mounted in the inner stator frame; Further, the elastic body 031 is provided with a torque sensor 032, which can be used to detect the pedaling force provided by the rider to the bicycle.
  • the torque sensor 032 since the torque sensor 032 is disposed on the elastic body 031 at the outer ring gear of the first planetary gear mechanism 015, the torque sensor 032 does not need to follow the central axis. Rotating and rotating, and being able to transmit the reverse torque to the elastic body 031 at the outer ring gear when the first planetary gear mechanism 015 outputs power, accurately measuring the pedaling force provided by the rider to the bicycle, and effectively avoiding
  • the use of wireless power and wireless transmission greatly simplifies the structural complexity, reduces system energy consumption, and production costs.
  • the first planetary gear mechanism 015 In order to facilitate the stable connection between the outer ring gear of the first planetary gear mechanism 015 and the elastic body 031, as shown in FIG. 1 , in the bicycle center motor provided by the embodiment of the present invention, the first planetary gear mechanism 015 The outer ring gear is coaxially connected to the elastic body 031 via a connector 033.
  • the bicycle center motor can be checked by the torque sensor (torque sensor). Measuring the force applied by the rider to the bicycle during riding, for the controller to determine the rider's riding intention, and controlling the output of the center motor according to the manpower output condition, so that the output of the manpower matches the output of the motor power, thereby The electric assist bicycle is driven in accordance with the output ratio desired by the rider.
  • torque sensor torque sensor
  • bicycle center-mounted motors usually use geared motors of motor acceleration and deceleration mechanisms, and can be divided into two types in structure: concentric shaft structure and parallel shaft structure; concentric shaft structure refers to motor shaft and bicycle center shaft.
  • concentric coaxial method is adopted; the parallel shaft structure means that the motor shaft is separately disposed at a position parallel to the central axis of the bicycle.
  • the center motor of the concentric shaft structure mostly adopts a planetary gear reduction mechanism, so that the overall structure of the motor is more compact.
  • the occupied space is also less; the center-mounted motor adopting the parallel shaft structure mostly adopts the cylindrical gear speed reduction mechanism, and can obtain a large reduction ratio by multi-stage gear reduction, so that the rotation speed of the motor is high.
  • the inventors of the present invention have found that the center-mounted motor of the concentric shaft structure is relatively low in speed reduction by the planetary gear reduction mechanism, so that the rotation speed of the motor is low and the power density is small, so that the performance of the motor cannot be fully exerted;
  • the center-mounted motor with parallel shaft structure is easy to cause the motor to be bulky and bulky due to the multi-stage cylindrical gear reduction mechanism.
  • the second planetary gear mechanism 016 is fixed in the motor housing 011, and the second planetary gear mechanism 016 and the motor body are fixed.
  • the output shaft 014 is coupled and disposed coaxially with the first planetary gear mechanism 015, and the second planetary gear mechanism 016 can be used to decelerate the input of the motor and output it. Since the inner stator stator 012 is fixed in the motor housing 011 through the inner stator frame, and the first planetary gear mechanism 015 is disposed inside the inner stator frame, and the outer rotor 013 is mounted on the inner stator frame, and the outer rotor 013 of the motor is mounted.
  • the motor body output shaft 014 is integrated, so that the structure of the center motor is compact, the volume is small, and the overall weight is light; in addition, the second planetary gear mechanism 016 is fixed in the motor casing 011, and the second The planetary gear mechanism 016 is coupled to the motor body output shaft 014 and coaxially disposed with the first planetary gear mechanism 015, and the first planetary gear mechanism 015 can be used for outputting the input of the human power after the speed increase, and the second planetary gear mechanism 016 It can be used to decelerate the input of the motor, so it can match the output speed of the manpower and the motor, and ensure that the center motor can maintain a high speed to maximize its performance.
  • the outer rotor 013 of the motor is mounted outside the stator 012 of the motor, the power density is high and the output torque is large, so that the performance of the center motor can be further obtained. fully use.
  • the motor body output shaft 014 is coaxially disposed with the center axis 020 of the bicycle, and
  • the center shaft 020 may include a first center shaft 021 and a second center shaft 022 that are sequentially connected, thereby setting the center shaft 020 to a segmented structure including the first center shaft 021 and the second center shaft 022 to make
  • the shaft diameter of the shaft 020 is small, and the motor body output shaft 014 and the center shaft 020 are coaxially arranged, which can effectively save the axial and radial space inside the center motor, thereby enabling Effectively reduce the size of the center motor and enable other components inside the center motor to achieve more functions.
  • the bicycle center motor provided by the embodiment of the present invention, as shown in FIG. 1 , the first planetary gear mechanism 015
  • the outer ring gear can be coaxially connected to the elastic body 031 through the connector 033, and the elastic body 031 can be fixedly mounted in the inner stator frame, and the first planetary gear mechanism 015 can adopt the planetary frame input and the sun gear output.
  • the form serves as a speed-up mechanism.
  • the carrier of the first planetary gear mechanism 015 and the first central axis 021 may be provided with a a one-way device 017, so that manpower can be input through the center shaft 020, and transmitted to the carrier of the first planetary gear mechanism 015 through the first one-way device 017, and then through the sun gear of the first planetary gear mechanism 015 The speed of human output.
  • the second planetary gear mechanism 016 can be used for decelerating the output of the motor
  • the second planetary gear mechanism 016 The outer ring gear can be fixedly connected to the motor housing 011, and the second planetary gear mechanism 016 can take the form of a sun gear input and a carrier output as a speed reduction mechanism, that is, the motor body output shaft 014 can be used as the second planetary gear mechanism 016.
  • the sun gear is used to achieve the input of power and is driven by the planet carrier of the second planetary gear mechanism 016 as a deceleration output.
  • the carrier of the second planetary gear mechanism 016 and the center motor output shaft 019 can be A second one-way device 018 is provided so that the power of the center motor can be output through the motor body output shaft 014, that is, through the sun gear input of the second planetary gear mechanism 016, and sequentially through the planet carrier of the second planetary gear mechanism 016. And the second one-way device 018 is transmitted to the center motor output shaft 019 to realize the deceleration output of the power.
  • the bicycle center motor provided in the embodiment of the present invention, as shown in FIG.
  • the central axis 021 and the second central axis 022 are both in-shaft hollow structures, and the first central axis 021 and the second central axis 022 can be sequentially connected by the shaft connector 023.
  • the inner stator frame and the motor housing 011 can be fixed by bolts. Connected to pass through the inner stator frame to secure the stator 012 in the motor.
  • the motor outer rotor 013 can be mounted on the inner stator machine through the bearing.
  • the frame is connected to the motor body output shaft 014.
  • FIG. 2 is a schematic diagram showing the internal structure of a center motor for a bicycle according to an embodiment of the present invention.
  • Figure 3 is the view of Figure 2 III-III cross-sectional view. Please refer to FIG. 2 and FIG. 3 together.
  • the bicycle center motor includes a motor housing 011, a motor inner stator 012, a motor outer rotor 013, a motor body output shaft 014, a first planetary gear mechanism 015, a center motor output shaft 019, and a middle motor.
  • the center shaft 020 rotatably penetrates the motor housing 011.
  • the middle shaft 020 and the motor housing 011 are connected by bearings to freely rotate the center shaft 020 relative to the motor housing 011.
  • the center shaft 020 is used to connect with the pedal of the electric assist bicycle to realize human input.
  • the motor body output shaft 014 is sleeved on the center shaft 020 and is rotatable relative to the center shaft 020.
  • an inner stator 012 is fixed by an inner stator frame 040 (shown in FIG. 3), and an outer rotor 013 of the motor is mounted on the inner stator frame 040.
  • the outer rotor 013 of the motor is penetrated by the center shaft 020.
  • the motor outer rotor 013 is coupled to the motor body output shaft 014.
  • the motor body output shaft 014 transmits the power generated when the outer rotor 013 of the motor rotates.
  • the motor outer rotor 013 is integrally connected to the motor body output shaft 014.
  • the center motor output shaft 019 is mounted on the center shaft 020 by bearings and is rotatable relative to the center shaft 020.
  • the center motor output shaft 019 and the motor housing 011 are also coupled to each other by a bearing to be freely rotatable relative to the motor housing 011.
  • the motor body output shaft 014 is drivingly coupled to the center motor output shaft 019 for outputting power to the electric assist bicycle.
  • the sun gear of the first planetary gear mechanism 015 is referred to as a first sun gear 0151
  • the planetary gear of the first planetary gear mechanism 015 is referred to as a first planetary gear 0152
  • first The planet carrier of the planetary gear mechanism 015 is referred to as a first planet carrier 0153
  • the outer ring gear of the first planetary gear mechanism 015 is referred to as a first outer ring gear 0154.
  • the first planetary gear mechanism 015 is sleeved on the motor body output shaft 014.
  • the first planetary gear mechanism 015 is input using the first planet carrier 0153, and the first sun gear 0151 is outputted.
  • the first planet gear 0152 is drivingly coupled to the center shaft 020, and the first sun gear 0151 is coupled to the center motor output shaft 019.
  • the human power is transmitted to the first planet carrier 0153 through the center shaft 020, and the first planet carrier 0153 drives the first sun gear 0151 to rotate through the first planetary gear 0152.
  • the first sun gear 0151 transmits power to the center motor output shaft 019 to realize power output.
  • the first sun gear 0151 is cylindrical and is sleeved on the central shaft 020.
  • the first sun gear 0151 is connected to the center motor output shaft 019 through a gap between the motor body output shaft 014 and the center shaft 020.
  • the elastic body 031 is fixedly mounted in the inner stator frame 040, and the elastic body 031 is coupled to the first outer ring gear 0154.
  • a torque sensor 032 is provided on the elastic body 031.
  • the torque sensor 032 can be used to detect the pedaling force provided by the rider to the bicycle.
  • the human-powered electric assist bicycle advances or the human power hybrid drives the electric assist bicycle to advance
  • the human power is delivered to the center shaft 020 through the pedal of the electric assist bicycle, and the center shaft 020 rotates.
  • the central shaft 020 drives the first planet carrier 0153 to rotate, and the first planet carrier 0153 passes
  • the first planet gear 0152 drives the first sun gear 0151 to rotate, and the first sun gear 0151 transmits power to the center motor output shaft 019.
  • the first outer ring gear 0154 is subjected to a torque. Since the first outer ring gear 0154 is connected to the inner stator frame 040 through the elastic body 031, the elastic body 031 prevents the first outer ring gear 0154 from rotating, and the torque received by the first outer ring gear 0154 is transmitted to the elastic body 031, and the elastic body 031 occurs. deformation.
  • the torque sensor 032 detects the torsion of the elastic body 031 according to the deformation of the elastic body 031, so that the pedaling force provided by the rider to the bicycle can be measured.
  • the torque sensor 032 directly detects the torque transmitted by the first outer ring gear 0154 to the elastic body 031 according to the deformation of the elastic body 031, the pedaling force provided by the rider to the bicycle can be accurately calculated.
  • the torque sensor 032 does not rotate with the center shaft 020, the power supply structure of the torque sensor 032 is simplified, and it is not necessary to provide a signal transmitting device such as a wireless signal transmitting and receiving device (or other non-contact signal transmitter), and it is not necessary to provide a signal amplifier.
  • Devices such as signal modulators, signal conditioners, etc., which ensure signal strength, greatly simplify the complexity of the structure, reduce the energy consumption of the system, and the production cost.
  • the bicycle center motor can detect the force applied by the rider to the bicycle when riding, by the torque sensor (torque sensor), for the controller to judge the rider's riding intention, and according to the manpower output.
  • the condition controls the output of the center motor to match the output of the manpower with the output of the motor power, thereby driving the electric assist bicycle to travel in accordance with the output ratio desired by the rider.
  • three elastic bodies 031 are provided, and the three elastic bodies 031 are evenly arranged around the axis of the first outer ring gear 0154. It can be understood that in other embodiments, the number of the elastic bodies 031 may not be limited.
  • the elastic body 031 is coupled to the first outer ring gear 0154 via the connector 033. This makes the connection between the elastic body 031 and the first outer ring gear 0154 more reliable. It can be understood that in other embodiments, the elastic body 031 can also be directly connected to the first outer ring gear 0154. Further, in the present embodiment, the elastic body 031 has an elongated shape. One end of the elastic body 031 is fixedly coupled to the inner stator frame 040, and the other end of the elastic body 031 is connected to the connector 033. The torque sensor 032 is located between both ends of the elastic body 031. Since the deformation of the elastic body 031 is mainly concentrated between its both ends.
  • the deformation of the elastic body 031 can be detected to a greater extent by the torque sensor 032, which improves the detection accuracy.
  • the elastic body 031 is curved, and the elastic body 031 is coaxial with the first outer ring gear 0154.
  • Such a structure enables the torque received by the first outer ring gear 0154 to be transmitted to the elastic body 031 as completely as possible, and the deformation of the elastic body 031 can be reflected to the greatest extent in the longitudinal direction thereof, thereby improving the accuracy of the torque sensor 032 detection. Sex.
  • the inner stator frame 040 is provided with an axial limiting portion 041 , and one end of the elastic body 031 away from the connector 033 is located at the axial limiting portion 041 and the inner stator frame 040 . between.
  • This can limit the axial displacement of the elastic body 031 relative to the first outer ring gear 0154, so that the elastic body 031 can be stabilized.
  • the axial limiting portion 041 is a bolt that is screwed to the inner stator frame 040, thereby achieving a detachable connection of the axial limiting portion 041 and the inner stator frame 040.
  • the bolt has a head and a stud, and the head of the bolt protrudes from the stud in the radial direction of the stud.
  • One end of the elastomer 031 away from the connector 033 is located between the head of the bolt and the inner stator frame 040, thereby limiting the axial displacement of the elastomer 031 relative to the first outer ring gear 0154.
  • one end of the elastic body 031 away from the connector 033 is pressed between the axial limiting portion 041 and the inner stator frame 040.
  • the end of the elastic body 031 away from the connector 033 is pressed at The head of the bolt is between the inner stator frame 040 and the inner stator frame 040 to better limit the axial displacement of the elastic body 031 relative to the first outer ring gear 0154.
  • the connector 033 is coupled to the first outer ring gear 0154 in the manner described below.
  • a fixing hole 0155 is defined in the first outer ring gear 0154.
  • the connector 033 is fitted into the fixing hole 0155 to be coupled to the first outer ring gear 0154.
  • the connection of the connector 033 to the first outer ring gear 0154 is realized by the connector 033 being embedded in the fixing hole 0155, which makes the assembly easier and reduces the assembly difficulty.
  • the radially outer edge of the first outer ring gear 0154 is provided with a flange 0156 extending in the axial direction, and the fixing hole 0155 is a through hole penetrating the flange 0156 in the radial direction.
  • the connector 033 penetrates the fixing hole 0155.
  • a projection 0331 is provided on the connector 033, and the projection 0331 abuts against the inner circumferential surface of the flange 0156.
  • the connector 033 can be prevented from being detached from the fixing hole 0155, and the operational reliability is improved.
  • bicycle center-mounted motors usually use geared motors of motor acceleration and deceleration mechanisms, and can be divided into two types in structure: concentric shaft structure and parallel shaft structure; concentric shaft structure refers to motor shaft and bicycle center shaft.
  • concentric coaxial method is adopted; the parallel shaft structure means that the motor shaft is separately disposed at a position parallel to the central axis of the bicycle.
  • the center motor of the concentric shaft structure mostly adopts a planetary gear reduction mechanism, so that the overall structure of the motor is more compact.
  • the occupied space is also less; the center-mounted motor adopting the parallel shaft structure mostly adopts the cylindrical gear speed reduction mechanism, and can obtain a large reduction ratio by multi-stage gear reduction, so that the rotation speed of the motor is high.
  • the inventors of the present invention have found that the center-mounted motor of the concentric shaft structure is relatively low in speed reduction by the planetary gear reduction mechanism, so that the rotation speed of the motor is low and the power density is small, so that the performance of the motor cannot be fully exerted;
  • the center-mounted motor with parallel shaft structure is easy to cause the motor to be bulky and bulky due to the multi-stage cylindrical gear reduction mechanism.
  • a second planetary gear mechanism 016 is also fixed in the motor housing 011.
  • the planet gear of the second planetary gear mechanism 016 is referred to as a second planet gear 0162
  • the planet carrier of the second planetary gear mechanism 016 is referred to as a second planet carrier 0163
  • the second planetary gear mechanism 016 is external
  • the ring gear is referred to as a second outer ring gear 0164.
  • the outer peripheral surface of the motor body output shaft 014 is provided with teeth and meshes with the second planetary gear 0162, and the motor body output shaft 014 is used as the second planetary gear mechanism 016. Yang round.
  • the second planetary gear mechanism 016 operates in the form of a solar input and a second planet carrier 0163 output.
  • the second outer ring gear 0164 is fixedly coupled to the motor housing 011.
  • the second planet carrier 0163 is drivingly coupled to the center motor output shaft 019.
  • the second planetary gear mechanism 016 can decelerate and output the input of the motor, and the first planetary gear mechanism 015 can increase the input of the human power and output it, thereby matching the output rate of the manpower and the motor, and ensuring the center motor. It is able to maintain a high speed so that its performance is fully utilized.
  • the outer rotor 013 of the motor is mounted outside the stator 012 of the motor, the power density is high and the output torque is large, so that the performance of the mid-mounted motor for the bicycle can be Further fully utilized.
  • the motor body output shaft 014 is coaxial with the bicycle center shaft 020.
  • the central axis 020 can include a first central axis 021 and a second central axis 022 that are sequentially connected.
  • the middle shaft 020 By setting the middle shaft 020 to a segmented structure including the first central axis 021 and the second central axis 022, the shaft diameter of the central shaft 020 is small, and the motor body output shaft 014 and the central shaft 020 are coaxially arranged.
  • the first central axis 021 and the second central axis 022 are both hollow structures in the shaft. And the first central axis 021 and the second central axis 022 can be sequentially connected by the shaft connector 023.
  • the inner stator frame 040 can be fixedly connected with the motor housing 011 by bolts in the motor housing 011, and the inner stator frame 040 can be fixedly connected with the motor housing 011.
  • the frame 040 is used to fix the stator 012 in the motor.
  • the outer rotor 013 of the motor can be mounted on the inner stator frame 040 through the bearing and connected to the output shaft 014 of the motor body. As one.
  • the first carrier of the first planetary gear mechanism 015 and the first central axis 021 may be disposed with the first one-way device. 017, so that manpower can be input through the center shaft 020, and transmitted to the carrier of the first planetary gear mechanism 015 through the first one-way device 017, and then through the sun gear of the first planetary gear mechanism 015 to achieve the speed of human power. Output.
  • the first outer ring gear 0154 is subjected to the torque in the A direction in FIG. 3, so that the first outer ring gear 0154 has a tendency to rotate in the A direction.
  • the carrier of the second planetary gear mechanism 016 and the center motor output shaft 019 may be provided with a second one-way device 018, thereby
  • the power of the center motor can be output through the motor body output shaft 014, that is, through the sun gear input of the second planetary gear mechanism 016, and sequentially transmitted to the middle carrier and the second one-way device 018 of the second planetary gear mechanism 016.
  • the motor output shaft 019 is placed to achieve a decelerating output of the power.
  • Embodiment 3 This embodiment An electric assist bicycle (not shown) including the bicycle center motor described in the first embodiment or the second embodiment is provided.
  • the torque sensor In the bicycle center motor provided by the embodiment of the present invention, since the torque sensor is disposed on the elastic body at the outer ring gear of the first planetary gear mechanism, the torque sensor does not need to rotate with the rotation of the central shaft. And can transmit the reverse torque to the elastic body at the outer ring gear when the first planetary gear mechanism outputs power, accurately measure the pedaling force provided by the rider to the bicycle, and effectively avoid the use of wireless power supply and wireless transmission.
  • the way which greatly simplifies the structural complexity, reduces the energy consumption of the system, and the production cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

一种自行车用中置电机及电动助力自行车,涉及电动助力自行车技术领域,以解决现有的自行车用中置电机中力矩传感器结构复杂,测量精度低的技术问题。自行车用中置电机包括:电机外壳(011),电机外壳(011)内通过内定子机架固定有电机内定子(012);内定子机架上安装有电机外转子(013),且电机外转子(013)与电机本体输出轴(014)连为一体;内定子机架内部设置有第一行星轮机构(015),第一行星轮机构(015)能够用于对人力的输入进行升速后输出;第一行星轮机构(015)的外齿圈处连接有弹性体(031)、且弹性体(031)固定安装在内定子机架内;弹性体(031)上设置有力矩传感器(032),力矩传感器(032)能够用于检测骑行者提供给自行车的踩踏力。

Description

自行车用中置电机及电动助力自行车
相关申请的交叉引用
本申请要求于2016年07月01日提交中国专利局的优先权号为201610514873.3、名称为“自行车用中置电机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电动助力自行车技术领域,尤其涉及一种自行车用中置电机及电动助力自行车。
背景技术
电动助力自行车是指在普通自行车的基础上,安装有电机、控制器等部件,并以电池作为辅助能源的个人交通工具。电动助力自行车在使用时,骑车者仍按传统自行车的方式骑车,并由电机提供助力,同时电机的助力大小可由控制器自动根据骑车者的骑行情况进行调整。为了测量出骑行者提供给自行车的踩踏力,在电动助力自行车中设置有力矩传感系统。现有的电动助力自行车用中置电机的力矩传感系统结构复杂,并且对踩踏力的测量精度低。
发明内容
本发明的目的在于提供一种自行车用中置电机,以解决自行车用中置电机中力矩传感系统结构复杂且测量精度低的技术问题。
本发明的另一个目的在于提供一种电动助力自行车。
本发明的实施例通过以下技术方案实现:
一种自行车用中置电机,包括:电机外壳,电机外壳内通过内定子机架固定有电机内定子;内定子机架上安装有电机外转子,且电机外转子与电机本体输出轴连为一体;内定子机架内部设置有第一行星轮机构,第一行星轮机构能够用于对人力的输入进行升速后输出;第一行星轮机构的外齿圈处连接有弹性体、且弹性体固定安装在内定子机架内;弹性体上设置有力矩传感器,力矩传感器能够用于检测骑行者提供给自行车的踩踏力。
进一步的,自行车用中置电机还包括连接器;弹性体通过连接器与外齿圈连接。
进一步的,弹性体为长条形;弹性体的一端与内定子机架固定连接,弹性体的另一端与连接器连接;力矩传感器位于弹性体的两端之间。
进一步的,弹性体为弧形,弹性体与第一行星轮机构的外齿圈同轴。
进一步的,内定子机架上设置有轴向限位部;弹性体远离连接器的一端位于轴向限位部与内定子机架之间。
进一步的,轴向限位部为与内定子机架螺纹连接的螺栓;弹性体远离连接器的一端位于内定子机架与螺栓的头部之间。
进一步的,弹性体远离连接器的一端被压紧在内定子机架与所述轴向限位部之间。
进一步的,第一行星轮机构的外齿圈上开设有固定孔;连接器嵌入固定孔中,以与第一行星轮机构的外齿圈连接。
进一步的,第一行星轮机构的外齿圈的径向边缘处设置有沿轴向延伸的凸缘;固定孔为在径向方向上贯穿凸缘的通孔。
进一步的,连接器贯穿凸缘固定孔;连接器上设置有凸起,凸起与凸缘的内周面抵靠。
进一步的,电机外壳内还固定有第二行星轮机构,且第二行星轮机构与电机本体输出轴连接、并与第一行星轮机构同轴设置,第二行星轮机构能够用于对电机的输入进行减速后输出。
进一步的,电机本体输出轴与自行车的中轴同轴设置,且中轴包括依次连接的第一中轴和第二中轴。
进一步的,第一行星轮机构采用行星架输入、太阳轮输出的形式以作为升速机构。
进一步地,第一行星轮机构的行星架与第一中轴之间设置有第一单向器。
进一步的,第二行星轮机构的外齿圈与电机外壳固定连接,且第二行星轮机构采用太阳轮输入、行星架输出的形式以作为减速机构。
进一步的,第二行星轮机构的行星架与中置电机输出轴之间设置有第二单向器。
进一步的,第一中轴与第二中轴通过轴连接器依次连接。
进一步的,内定子机架与电机外壳之间通过螺栓固定连接。
进一步的,电机外转子通过轴承安装在内定子机架上并与电机本体输出轴连为一体。
电动助力自行车,包括上述任意一种自行车用中置电机。
本发明的技术方案至少具有如下优点和有益效果:
本发明的实施例提供的自行车用中置电机中,包括:电机外壳,该电机外壳内通过内定子机架(图中未示出)固定有电机内定子;其中,内定子机架上安装有电机外转子,且该电机外转子与电机本体输出轴连为一体;具体地,内定子机架内部设置有第一行星轮机构,该第一行星轮机构能够用于对人力的输入进行升速后输出;进一步地,第一行星轮机构的外齿圈处连接有弹性体、且该弹性体固定安装在内定子机架内;更进一步地,上述弹性体上设置有力矩传感器,该力矩传感器能够用于检测骑行者提供给自行车的踩踏力。由 此分析可知,本发明提供的自行车用中置电机中,由于将力矩传感器设置于第一行星轮机构的外齿圈处的弹性体上,因此力矩传感器无需随中轴的旋转而转动,而且能够通过第一行星轮机构输出动力时传递至与外齿圈处弹性体上的反向力矩,准确测量出骑行者提供给自行车的踩踏力,同时还有效避免了使用无线供电和无线传输方式,从而极大地简化了结构复杂度、降低了系统的能耗、以及生产成本。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的自行车用中置电机的工作原理图。
图2为本发明实施例提供的自行车用中置电机的内部结构示意图。
图3为图2的III-III向剖视图。
附图标记:
011-电机外壳;012-电机内定子;013-电机外转子;014-电机本体输出轴;
015-第一行星轮机构;0151-第一太阳轮;0152-第一行星轮;0153-第一行星架;0154-第一外齿圈;0155-固定孔;0156-凸缘;
016-第二行星轮机构;0162-第二行星轮;0163-第二行星架;0164-第二外齿圈;
017-第一单向器;018-第二单向器;019-中置电机输出轴;
020-中轴;021-第一中轴;022-第二中轴;023-轴连接器;
031-弹性体;
032-力矩传感器;
033-连接器;0331-凸起;
040-内定子机架;041-轴向限位部。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“内”、“外”等指示的方位或位置关系为基 于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”等应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
实施例1:
图1为本发明实施例提供的自行车用中置电机的工作原理图。本发明实施例提供的一种自行车用中置电机,包括:电机外壳011,电机外壳011内通过内定子机架(图中未示出)固定有电机内定子012;内定子机架上安装有电机外转子013,且电机外转子013与电机本体输出轴014连为一体;内定子机架内部设置有第一行星轮机构015,第一行星轮机构015能够用于对人力的输入进行升速后输出;第一行星轮机构015的外齿圈处连接有弹性体031、且弹性体031固定安装在内定子机架内;弹性体031上设置有力矩传感器032,力矩传感器032能够用于检测骑行者提供给自行车的踩踏力。
本发明实施例提供的自行车用中置电机中,如图1所示,包括:电机外壳011,该电机外壳011内通过内定子机架(图中未示出)固定有电机内定子012;其中,内定子机架上安装有电机外转子013,且该电机外转子013与电机本体输出轴014连为一体;具体地,内定子机架内部设置有第一行星轮机构015,该第一行星轮机构015能够用于对人力的输入进行升速后输出;进一步地,第一行星轮机构015的外齿圈处连接有弹性体031、且该弹性体031固定安装在内定子机架内;更进一步地,上述弹性体031上设置有力矩传感器032,该力矩传感器032能够用于检测骑行者提供给自行车的踩踏力。由此分析可知,本发明实施例提供的自行车用中置电机中,由于将力矩传感器032设置于第一行星轮机构015的外齿圈处的弹性体031上,因此力矩传感器032无需随中轴的旋转而转动,而且能够通过第一行星轮机构015输出动力时传递至与外齿圈处弹性体031上的反向力矩,准确测量出骑行者提供给自行车的踩踏力,同时还有效避免了使用无线供电和无线传输方式,从而极大地简化了结构复杂度、降低了系统的能耗、以及生产成本。
其中,为了便于第一行星轮机构015的外齿圈处与弹性体031的稳固连接,如图1所示,本发明实施例提供的自行车用中置电机中,上述第一行星轮机构015的外齿圈处通过连接器033与弹性体031采用同轴方式连接。
此处需要补充说明的是,自行车用中置电机可以通过力矩传感器(扭力传感器)来检 测骑行时骑行者施加于自行车的力,以供控制器判断骑行者的骑行意图,并根据人力输出情况控制中置电机的输出,以达到人力的输出与电机动力的输出相匹配,从而按照骑行者所期望的输出比例共同驱动电动助力自行车行进。
发明人发现,自行车用中置电机通常采用的是电机加减速机构的减速电机,并且在结构上可以分为两类:同心轴结构和平行轴结构;同心轴结构是指电机轴和自行车中轴采用同心同轴的方式;平行轴结构是指电机轴单独设置在与自行车中轴平行的位置处。实际应用中,为了保证电动助力自行车的行进速度,通常需要通过中置电机对减速比进行合理配置,采用同心轴结构的中置电机多采用行星齿轮减速机构,以使电机的整体结构更加小巧,占用空间也更少;采用平行轴结构的中置电机多采用圆柱齿轮减速机构,可以通过多级齿轮减速获得较大的减速比,以使电机的转速较高。然而,本申请发明人发现,同心轴结构的中置电机由于受行星齿轮减速机构减速比较低的限制,因此容易导致电机的转速较低、功率密度较小,从而造成电机的性能无法充分发挥;平行轴结构的中置电机由于采用多级圆柱齿轮减速机构,因此容易导致电机的体积较大、整体较笨重。
为了解决上述的技术问题,本发明实施例提供的自行车用中置电机中,如图1所示,电机外壳011内还固定有第二行星轮机构016,且第二行星轮机构016与电机本体输出轴014连接、并与第一行星轮机构015同轴设置,第二行星轮机构016能够用于对电机的输入进行减速后输出。由于电机外壳011内通过内定子机架固定有电机内定子012,且内定子机架内部设置有第一行星轮机构015,同时内定子机架上安装有电机外转子013,且电机外转子013与电机本体输出轴014连为一体,因此能够使中置电机的结构较紧凑、体积较小巧、整体重量较轻;此外,由于电机外壳011内还固定有第二行星轮机构016,且第二行星轮机构016与电机本体输出轴014连接、并与第一行星轮机构015同轴设置,同时第一行星轮机构015能够用于对人力的输入进行升速后输出,第二行星轮机构016能够用于对电机的输入进行减速后输出,因此能够使人力和电机的输出速率相匹配,并保证中置电机能够保持较高的转速,以使其的性能得到充分发挥。
此外,本发明实施例提供的自行车用中置电机中,由于采用电机内定子012外安装电机外转子013,因此具有功率密度高和输出转矩大的特点,从而中置电机的性能能够进一步得到充分发挥。
实际应用时,为了有效减小中置电机的体积,本发明实施例提供的自行车用中置电机中,如图1所示,上述电机本体输出轴014与自行车的中轴020同轴设置,且该中轴020可以包括依次连接的第一中轴021和第二中轴022,从而通过将中轴020设置为包括第一中轴021和第二中轴022的分段式结构,以使中轴020的轴径较小,同时电机本体输出轴014与中轴020采用同轴设置,能够有效节省中置电机内部的轴向和径向空间,进而能够 有效减小中置电机的体积,并能够使中置电机内部的其它零部件得以实现更多的功能。
其中,为了保证第一行星轮机构015能够用于对人力的输入进行升速后输出,本发明实施例提供的自行车用中置电机中,如图1所示,上述第一行星轮机构015的外齿圈可以通过连接器033与弹性体031采用同轴方式连接,且该弹性体031可以固定安装在内定子机架内,同时第一行星轮机构015可以采用行星架输入、太阳轮输出的形式以作为升速机构。
具体地,为了便于人力的传输,本发明实施例提供的自行车用中置电机中,如图1所示,上述第一行星轮机构015的行星架可以与第一中轴021之间设置有第一单向器017,从而人力能够通过中轴020输入、并通过该第一单向器017传递至第一行星轮机构015的行星架,进而再通过第一行星轮机构015的太阳轮以实现人力的升速输出。
进一步地,为了保证第二行星轮机构016能够用于对电机的输入进行减速后输出,本发明实施例提供的自行车用中置电机中,如图1所示,上述第二行星轮机构016的外齿圈可以与电机外壳011固定连接,且第二行星轮机构016可以采用太阳轮输入、行星架输出的形式以作为减速机构,也即电机本体输出轴014可以作为第二行星轮机构016的太阳轮以实现动力的输入,并由第二行星轮机构016的行星架作为动力的减速输出。
更进一步地,为了便于上述动力的传输,本发明实施例提供的自行车用中置电机中,如图1所示,上述第二行星轮机构016的行星架可以与中置电机输出轴019之间设置有第二单向器018,从而中置电机的动力能够通过电机本体输出轴014输出、也即通过第二行星轮机构016的太阳轮输入,并依次通过第二行星轮机构016的行星架及第二单向器018传递至中置电机输出轴019以实现动力的减速输出。
实际应用时,为了便于中轴020中的第一中轴021与第二中轴022的同轴依次连接,本发明实施例提供的自行车用中置电机中,如图1所示,上述第一中轴021与第二中轴022均为轴内中空结构,并且第一中轴021与第二中轴022之间可以通过轴连接器023依次连接。
具体地,为了便于电机外壳011内能够通过内定子机架固定有电机内定子012,本发明实施例提供的自行车用中置电机中,上述内定子机架可以与电机外壳011之间通过螺栓固定连接,从而再通过内定子机架以固定电机内定子012。
进一步地,为了便于电机外转子013的装配,同时有效降低其在运动过程中的摩擦系数,本发明实施例提供的自行车用中置电机中,上述电机外转子013可以通过轴承安装在内定子机架上并与电机本体输出轴014连为一体。
实施例2:
图2本发明实施例提供的自行车用中置电机的内部结构示意图。图3为图2的 III-III向剖视图。请结合参照图2和图3。本发明实施例提供的一种自行车用中置电机,包括电机外壳011,电机内定子012、电机外转子013、电机本体输出轴014、第一行星轮机构015、中置电机输出轴019、中轴020、弹性体031、力矩传感器032和内定子机架040。
请继续参照图2,中轴020可转动地贯穿电机外壳011。在本实施例中,中轴020与电机外壳011之间通过轴承连接,以实现中轴020相对于电机外壳011自如地转动。中轴020用于与电动助力自行车的踏板连接,实现人力的输入。电机本体输出轴014空套在中轴020上,能够相对于中轴020转动。电机外壳011内通过内定子机架040(图3中示出)固定有电机内定子012,内定子机架040上安装有电机外转子013。电机外转子013被中轴020贯穿。电机外转子013与电机本体输出轴014连接。当电机外转子013转动时,电机本体输出轴014传递电机外转子013转动时产生的动力。在本实施例中,电机外转子013与电机本体输出轴014一体地连接。中置电机输出轴019通过轴承在中轴020上,能够相对于中轴020转动。中置电机输出轴019与电机外壳011之间通过也通过轴承连接,以相对于电机外壳011自如地转动。电机本体输出轴014与中置电机输出轴019传动连接,用于向电动助力自行车输出动力。
请继续参照图2,在本实施例中,第一行星轮机构015的太阳轮被称为第一太阳轮0151,第一行星轮机构015的行星轮被称为第一行星轮0152,第一行星轮机构015的行星架被称为第一行星架0153,第一行星轮机构015的外齿圈被称为第一外齿圈0154。第一行星轮机构015套设在电机本体输出轴014上。第一行星轮机构015采用第一行星架0153输入,第一太阳轮0151输出的形式进行工作。第一行星轮0152与中轴020传动连接,第一太阳轮0151与中置电机输出轴019连接。当需要人力驱动电动助力自行车前进或人力电力混合驱动电动助力自行车前进时,人力通过中轴020传递至第一行星架0153,第一行星架0153通过第一行星轮0152带动第一太阳轮0151转动,第一太阳轮0151将动力传递至中置电机输出轴019,实现动力的输出。进一步的,在本实施例中,第一太阳轮0151为筒状,其空套在中轴020上。第一太阳轮0151穿过电机本体输出轴014与中轴020之间的间隙与中置电机输出轴019连接。
请参照图3,弹性体031固定安装在内定子机架040内,且弹性体031与第一外齿圈0154连接。在弹性体031上设置有力矩传感器032。力矩传感器032能够用于检测骑行者提供给自行车的踩踏力。当人力驱动电动助力自行车前进或人力电力混合驱动电动助力自行车前进时,人力通过电动助力自行车的踏板输送至中轴020,中轴020转动。中轴020带动第一行星架0153转动,第一行星架0153通过 第一行星轮0152带动第一太阳轮0151转动,第一太阳轮0151将动力传递至中置电机输出轴019。此时,第一外齿圈0154受到扭力。由于第一外齿圈0154通过弹性体031与内定子机架040连接,弹性体031阻止第一外齿圈0154转动,第一外齿圈0154受到的扭力传递至弹性体031,弹性体031发生形变。力矩传感器032则根据弹性体031的形变检测弹性体031受到的扭力,这样即可测量出骑行者提供给自行车的踩踏力。由于力矩传感器032直接根据弹性体031的形变检测第一外齿圈0154传递至弹性体031受到的扭力,因此能够准确的计算出骑行者提供给自行车的踩踏力。另外,由于力矩传感器032不随中轴020转动,因而力矩传感器032的供电结构得以简化,无需设置无线信号发射与接收器(或其它非接触式信号传输器)等信号发射装置,也无需设置信号放大器、信号调制器、信号调解器等确保信号强度的装置,极大地简化了结构复杂度、降低了系统的能耗、以及生产成本。
此处需要补充说明的是,自行车用中置电机可以通过力矩传感器(扭力传感器)来检测骑行时骑行者施加于自行车的力,以供控制器判断骑行者的骑行意图,并根据人力输出情况控制中置电机的输出,以达到人力的输出与电机动力的输出相匹配,从而按照骑行者所期望的输出比例共同驱动电动助力自行车行进。
请继续参照图3,在本实施例中,设置有三个弹性体031,三个弹性体031围绕第一外齿圈0154的轴心均匀布置。可以理解的,在其他实施例中,弹性体031的数量可以不做限制。
请继续参照图3,在本实施例中,弹性体031通过连接器033与第一外齿圈0154连接。这样能够使弹性体031与第一外齿圈0154之间的连接更加可靠。可以理解的,在其他实施例中,弹性体031也可以直接与第一外齿圈0154连接。进一步的,在本实施例中,弹性体031为长条形。弹性体031的一端与内定子机架040固定连接,弹性体031的另一端与连接器033连接。力矩传感器032位于弹性体031的两端之间。由于弹性体031的形变主要集中在其两端之间。采用上述结构,使得弹性体031的形变能够更大程度上被力矩传感器032检测到,提高了检测精度。需要进一步说明的是,在本实施例中,弹性体031为弧形,弹性体031与第一外齿圈0154同轴。这样的结构,使得第一外齿圈0154受到的扭力能够尽量完全的传递至弹性体031,并且弹性体031的形变能够最大程度上反应在其长度方向上,从而提高了力矩传感器032检测的准确性。
请继续参照图3,在本实施例中,内定子机架040上设置有轴向限位部041,弹性体031远离连接器033的一端位于轴向限位部041与内定子机架040之间。这样能够限制弹性体031相对于第一外齿圈0154的轴向位移,使弹性体031能够稳定的工 作。在本实施例中,轴向限位部041是与内定子机架040螺纹连接的螺栓,从而实现了轴向限位部041与内定子机架040的可拆卸连接。该螺栓具有头部和螺柱,螺栓的头部在螺柱的径向方向上凸出于螺柱。弹性体031远离连接器033的一端位于螺栓的头部与内定子机架040之间,从而限制弹性体031相对于第一外齿圈0154的轴向位移。优选的,弹性体031远离连接器033的一端被压紧在轴向限位部041与内定子机架040之间,在本实施例中,弹性体031远离连接器033的一端被压紧在螺栓的头部与内定子机架040之间,从而更好的限制弹性体031相对于第一外齿圈0154的轴向位移。
请继续参照图3,在本实施例中,连接器033是采用下面描述的方式与第一外齿圈0154连接的。第一外齿圈0154上开设有固定孔0155。连接器033嵌入固定孔0155中,从而与第一外齿圈0154连接。通过连接器033嵌入固定孔0155的方式实现连接器033与第一外齿圈0154的连接,使得装配更加容易,降低了组装难度。进一步的,在本实施例中,第一外齿圈0154的径向边缘处设置有沿轴向延伸的凸缘0156,固定孔0155为在径向方向上贯穿凸缘0156的通孔。连接器033贯穿固定孔0155。在连接器033上设置有凸起0331,凸起0331与凸缘0156的内周面抵靠。这样,能够避免连接器033从固定孔0155中脱离,提高了工作可靠性。
发明人发现,自行车用中置电机通常采用的是电机加减速机构的减速电机,并且在结构上可以分为两类:同心轴结构和平行轴结构;同心轴结构是指电机轴和自行车中轴采用同心同轴的方式;平行轴结构是指电机轴单独设置在与自行车中轴平行的位置处。实际应用中,为了保证电动助力自行车的行进速度,通常需要通过中置电机对减速比进行合理配置,采用同心轴结构的中置电机多采用行星齿轮减速机构,以使电机的整体结构更加小巧,占用空间也更少;采用平行轴结构的中置电机多采用圆柱齿轮减速机构,可以通过多级齿轮减速获得较大的减速比,以使电机的转速较高。然而,本申请发明人发现,同心轴结构的中置电机由于受行星齿轮减速机构减速比较低的限制,因此容易导致电机的转速较低、功率密度较小,从而造成电机的性能无法充分发挥;平行轴结构的中置电机由于采用多级圆柱齿轮减速机构,因此容易导致电机的体积较大、整体较笨重。
为了解决上述技术问题,本发明实施例提供的自行车用中置电机中,如图2所示,电机外壳011内还固定有第二行星轮机构016。在本实施例中,第二行星轮机构016的行星轮被称为第二行星轮0162,第二行星轮机构016的行星架被称为第二行星架0163,第二行星轮机构016的外齿圈被称为第二外齿圈0164。电机本体输出轴014的外周面设置有齿,并与第二行星轮0162啮合,电机本体输出轴014作为第二行星轮机构016的太 阳轮。第二行星轮机构016采用太阳能输入,第二行星架0163输出的形式进行工作。第二外齿圈0164与电机外壳011固定连接。第二行星架0163与中置电机输出轴019传动连接。第二行星轮机构016能够对电机的输入进行减速后输出,第一行星轮机构015能够对人力的输入进行升速后输出,因此能够使人力和电机的输出速率相匹配,并保证中置电机能够保持较高的转速,以使其的性能得到充分发挥。
此外,本发明实施例提供的自行车用中置电机中,由于采用电机内定子012外安装电机外转子013,因此具有功率密度高和输出转矩大的特点,从而自行车用中置电机的性能能够进一步得到充分发挥。
请继续参照图2,为了有效减小自行车用中置电机的体积,本发明实施例提供的自行车用中置电机中,如图1所示,电机本体输出轴014与自行车的中轴020同轴设置,且该中轴020可以包括依次连接的第一中轴021和第二中轴022。通过将中轴020设置为包括第一中轴021和第二中轴022的分段式结构,以使中轴020的轴径较小,同时电机本体输出轴014与中轴020采用同轴设置,能够有效节省中置电机内部的轴向和径向空间,进而能够有效减小中置电机的体积,并能够使中置电机内部的其它零部件得以实现更多的功能。进一步的,为了便于中轴020中的第一中轴021与第二中轴022的同轴依次连接,在本实施例中第一中轴021与第二中轴022均为轴内中空结构,并且第一中轴021与第二中轴022之间可以通过轴连接器023依次连接。
为了便于电机外壳011内能够通过内定子机架040固定有电机内定子012,在本实施例中,上述内定子机架040可以与电机外壳011之间通过螺栓固定连接,从而再通过内定子机架040以固定电机内定子012。为了便于电机外转子013的装配,同时有效降低其在运动过程中的摩擦系数,在本实施例中,电机外转子013可以通过轴承安装在内定子机架040上并与电机本体输出轴014连为一体。
为了便于人力的传输,本发明实施例提供的自行车用中置电机中,如图2所示,第一行星轮机构015的行星架可以与第一中轴021之间设置有第一单向器017,从而人力能够通过中轴020输入、并通过该第一单向器017传递至第一行星轮机构015的行星架,进而再通过第一行星轮机构015的太阳轮以实现人力的升速输出。请参照图3,在第一单向器017的作用下,第一外齿圈0154受沿图3中的A方向的扭力,使得第一外齿圈0154具备沿A方向转动的趋势。为了便于电机动力的传输,在本实施例中,如图2所示,第二行星轮机构016的行星架可以与中置电机输出轴019之间设置有第二单向器018,从而自行车用中置电机的动力能够通过电机本体输出轴014输出,也即通过第二行星轮机构016的太阳轮输入,并依次通过第二行星轮机构016的行星架及第二单向器018传递至中置电机输出轴019以实现动力的减速输出。实施例3:本实施例 提供一种电动助力自行车(图未示出),该电动助力自行车具备实施例1或实施例2中记载的自行车用中置电机。
工业实用性:本发明的实施例提供的自行车用中置电机中,由于将力矩传感器设置于第一行星轮机构的外齿圈处的弹性体上,因此力矩传感器无需随中轴的旋转而转动,而且能够通过第一行星轮机构输出动力时传递至与外齿圈处弹性体上的反向力矩,准确测量出骑行者提供给自行车的踩踏力,同时还有效避免了使用无线供电和无线传输方式,从而极大地简化了结构复杂度、降低了系统的能耗、以及生产成本。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (20)

  1. 一种自行车用中置电机,其特征在于,包括:电机外壳,所述电机外壳内通过内定子机架固定有电机内定子;所述内定子机架上安装有电机外转子,且所述电机外转子与电机本体输出轴连为一体;
    所述内定子机架内部设置有第一行星轮机构,所述第一行星轮机构能够用于对人力的输入进行升速后输出;
    所述第一行星轮机构的外齿圈处连接有弹性体、且所述弹性体固定安装在所述内定子机架内;所述弹性体上设置有力矩传感器,所述力矩传感器能够用于检测骑行者提供给自行车的踩踏力。
  2. 根据权利要求1所述的一种自行车用中置电机,其特征在于,所述自行车用中置电机还包括连接器;所述弹性体通过所述连接器与所述外齿圈连接。
  3. 根据权利要求2所述的一种自行车用中置电机,其特征在于,所述弹性体为长条形;所述弹性体的一端与所述内定子机架固定连接,所述弹性体的另一端与所述连接器连接;所述力矩传感器位于所述弹性体的两端之间。
  4. 根据权利要求3所述的一种自行车用中置电机,其特征在于,所述弹性体为弧形,所述弹性体与所述第一行星轮机构的外齿圈同轴。
  5. 根据权利要求3所述的一种自行车用中置电机,其特征在于,所述内定子机架上设置有轴向限位部;所述弹性体远离所述连接器的一端位于所述轴向限位部与所述内定子机架之间。
  6. 根据权利要求5所述的一种自行车用中置电机,其特征在于,所述轴向限位部为与所述内定子机架螺纹连接的螺栓;所述弹性体远离所述连接器的一端位于所述内定子机架与所述螺栓的头部之间。
  7. 根据权利要求5所述的一种自行车用中置电机,其特征在于,所述弹性体远离所述连接器的一端被压紧在所述内定子机架与所述轴向限位部之间。
  8. 根据权利要求2所述的一种自行车用中置电机,其特征在于,所述第一行星轮机构的外齿圈上开设有固定孔;所述连接器嵌入所述固定孔中,以与所述第一行星轮机构的外齿圈连接。
  9. 根据权利要求8所述的一种自行车用中置电机,其特征在于,所述第一行星轮机构的外齿圈的径向边缘处设置有沿轴向延伸的凸缘;所述固定孔为在径向方向上贯穿所述凸缘的通孔。
  10. 根据权利要求9所述的一种自行车用中置电机,其特征在于,所述连接器贯 穿所述凸缘固定孔;所述连接器上设置有凸起,所述凸起与所述凸缘的内周面抵靠。
  11. 根据权利要求1所述的自行车用中置电机,其特征在于,所述电机外壳内还固定有第二行星轮机构,且所述第二行星轮机构与所述电机本体输出轴连接、并与所述第一行星轮机构同轴设置,所述第二行星轮机构能够用于对电机的输入进行减速后输出。
  12. 根据权利要求11所述的自行车用中置电机,其特征在于,所述电机本体输出轴与所述自行车的中轴同轴设置,且所述中轴包括依次连接的第一中轴和第二中轴。
  13. 根据权利要求12所述的自行车用中置电机,其特征在于,所述第一行星轮机构采用行星架输入、太阳轮输出的形式以作为升速机构。
  14. 根据权利要求13所述的自行车用中置电机,其特征在于,所述第一行星轮机构的所述行星架与所述第一中轴之间设置有第一单向器。
  15. 根据权利要求14所述的自行车用中置电机,其特征在于,所述第二行星轮机构的外齿圈与所述电机外壳固定连接,且所述第二行星轮机构采用太阳轮输入、行星架输出的形式以作为减速机构。
  16. 根据权利要求15所述的自行车用中置电机,其特征在于,所述第二行星轮机构的所述行星架与所述中置电机输出轴之间设置有第二单向器。
  17. 根据权利要求12所述的自行车用中置电机,其特征在于,所述第一中轴与所述第二中轴通过轴连接器依次连接。
  18. 根据权利要求1所述的自行车用中置电机,其特征在于,所述内定子机架与所述电机外壳之间通过螺栓固定连接。
  19. 根据权利要求1或18所述的自行车用中置电机,其特征在于,所述电机外转子通过轴承安装在所述内定子机架上并与所述电机本体输出轴连为一体。
  20. 电动助力自行车,其特征在于,所述电动助力自行车包括权利要求1-19中任意一项所述的自行车用中置电机。
PCT/CN2017/086194 2016-07-01 2017-05-26 自行车用中置电机及电动助力自行车 WO2018001021A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP17819018.7A EP3480102B1 (en) 2016-07-01 2017-05-26 Built-in motor for bicycle and electric powered bicycle
BR112018077443-0A BR112018077443B1 (pt) 2016-07-01 2017-05-26 Motor incorporado para uma bicicleta, e, bicicleta elétrica.
JP2018569134A JP6802861B2 (ja) 2016-07-01 2017-05-26 自転車用ミッドモーター及び電動アシスト自転車
US16/310,345 US10876602B2 (en) 2016-07-01 2017-05-26 Built-in motor for bicycle and electric powered bicycle
AU2017287187A AU2017287187B2 (en) 2016-07-01 2017-05-26 Built-in motor for bicycle and electric powered bicycle
KR1020197002427A KR102123299B1 (ko) 2016-07-01 2017-05-26 자전거용 미드 모터 및 전동 어시스트 자전거
NZ749944A NZ749944A (en) 2016-07-01 2017-05-26 Built-in motor for bicycle and electric powered bicycle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610514873.3 2016-07-01
CN201610514873.3A CN105966541B (zh) 2016-07-01 2016-07-01 自行车用中置电机

Publications (1)

Publication Number Publication Date
WO2018001021A1 true WO2018001021A1 (zh) 2018-01-04

Family

ID=56954429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/086194 WO2018001021A1 (zh) 2016-07-01 2017-05-26 自行车用中置电机及电动助力自行车

Country Status (9)

Country Link
US (1) US10876602B2 (zh)
EP (1) EP3480102B1 (zh)
JP (1) JP6802861B2 (zh)
KR (1) KR102123299B1 (zh)
CN (1) CN105966541B (zh)
AU (1) AU2017287187B2 (zh)
BR (1) BR112018077443B1 (zh)
NZ (1) NZ749944A (zh)
WO (1) WO2018001021A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11014627B2 (en) * 2016-05-04 2021-05-25 Farthing Technology Pty Ltd Pedal cycle drivetrain and a human powered vehicle
CN105966541B (zh) 2016-07-01 2021-08-17 武汉天腾动力科技有限公司 自行车用中置电机
DE102016218841A1 (de) * 2016-09-29 2018-03-29 Schaeffler Technologies AG & Co. KG Getriebe mit Drehmomentenmessvorrichtung
CN107571960B (zh) * 2017-10-09 2022-07-12 天津迪思科博科技发展有限公司 力矩检测传动装置及其应用该装置的电动自行车中置电机
CN110155242A (zh) * 2019-05-27 2019-08-23 鹤壁维达科巽电气有限公司 一种变速器及使用该变速器的助力自行车
CN111516795A (zh) * 2020-04-30 2020-08-11 常州洪记两轮智能交通工具有限公司 一种电助力车用中置电机
DE102021202984A1 (de) * 2021-03-26 2022-09-29 Zf Friedrichshafen Ag Elektrofahrzeuggetriebe
DE102021110725B4 (de) * 2021-04-27 2022-12-22 Porsche Ebike Performance Gmbh Antriebsvorrichtung für ein Elektrofahrrad und Elektrofahrrad
CN113310614B (zh) * 2021-05-26 2022-06-24 上海交通大学 一种船用低速机摩擦力测量系统及其测量方法
EP4102119B1 (de) 2021-06-11 2024-09-11 Sacharowitz, Axel Vorrichtung zum bedienen einer armatur in einer versorgungsleitung und anordnung
TWI802444B (zh) * 2022-06-17 2023-05-11 台達電子工業股份有限公司 電動助力自行車的動力模組
KR20240135237A (ko) * 2023-03-03 2024-09-10 에이치엘만도 주식회사 전기 페달 장치
CN116436254B (zh) * 2023-06-13 2023-09-12 成都理工大学 一种基于复合激励结构下的多级扭矩放大自减速电机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1754774A (zh) * 2004-09-27 2006-04-05 捷安特(中国)有限公司 电动自行车中置驱动同轴式动力组
CN103171732A (zh) * 2011-12-22 2013-06-26 罗伯特·博世有限公司 用于自行车的曲柄传动装置
CN104104184A (zh) * 2013-04-03 2014-10-15 新安乃达驱动技术(上海)有限公司 一种电动车用中置电机的结构
EP2799327A1 (en) * 2013-05-03 2014-11-05 Methode Electronics Malta Ltd. A freewheel hub comprising a magneto-elastic sensor and bicycle, pedelec, fast pedelec or e-bike comprising the freewheel hub
CN104802912A (zh) * 2015-05-05 2015-07-29 苏州捷诚科技有限公司 一种两轴三级减速的中置力矩传动系统
CN105966541A (zh) * 2016-07-01 2016-09-28 武汉千斤智能科技有限公司 自行车用中置电机
CN205916282U (zh) * 2016-07-01 2017-02-01 武汉千斤智能科技有限公司 自行车用中置电机

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07196071A (ja) * 1994-01-06 1995-08-01 Secoh Giken Inc 回転トルク検出装置及びこれを使用した電動自転車
JPH09309483A (ja) * 1996-05-22 1997-12-02 Hokuto Seisakusho:Kk 補助駆動力付き自転車
JPH10194186A (ja) * 1997-01-13 1998-07-28 Yamaha Motor Co Ltd 電動自転車
JP2000153795A (ja) * 1998-06-29 2000-06-06 Yamaha Motor Co Ltd 電動補助車両
JP2001199378A (ja) * 2000-01-19 2001-07-24 Honda Motor Co Ltd 電動補助自転車
JP2005335536A (ja) * 2004-05-27 2005-12-08 Sanyo Electric Co Ltd 電動車輪用ハブユニット及び該ハブユニットを具えた乗物
CN2767311Y (zh) * 2004-09-27 2006-03-29 捷安特(中国)有限公司 电动车中置驱动同轴动力组
US7357743B2 (en) * 2005-06-17 2008-04-15 Fengxiang Mao Hub motor
WO2009010943A2 (de) * 2007-07-18 2009-01-22 Clean Mobile Ag Aussenlaeufer-elektromotor mit planetengetriebe, kraftfahrzeug mit aussenlaeufer- elektromotor und verfahren zum betreiben eines solchen fahrzeugs
CN202379046U (zh) * 2011-12-29 2012-08-15 苏州博菲利电动科技有限公司 一种线圈感应力矩传感器中置电机传动系统
CN103723234B (zh) * 2012-10-12 2016-03-30 株式会社岛野 自行车的驱动单元
CN104052196B (zh) * 2013-03-13 2017-08-25 宁波兴隆巨创机电科技有限公司 一种用于助力自行车上的电机
DE102013206713A1 (de) * 2013-04-15 2014-10-16 Robert Bosch Gmbh Motorisch und mit Muskelkraft betreibbares Fahrzeug
CN103381875A (zh) * 2013-08-08 2013-11-06 苏州捷诚科技有限公司 中轴式力矩传感器
ITPR20130101A1 (it) * 2013-12-18 2015-06-19 Ms Rei Srl Sistema moto-riduttore per veicoli a due e tre ruote installabile coassialmente al movimento centrale del mezzo e veicolo comprendente detto sistema
DK3012181T3 (en) * 2014-10-21 2019-03-11 Wuxi Truckrun Motor Co Ltd CENTER ENGINE DRIVE SYSTEM FOR AN ELECTRIC BIKE
CN106197788A (zh) * 2016-07-01 2016-12-07 武汉千斤智能科技有限公司 力矩传感器系统、力矩信号测量方法、电动助力自行车

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1754774A (zh) * 2004-09-27 2006-04-05 捷安特(中国)有限公司 电动自行车中置驱动同轴式动力组
CN103171732A (zh) * 2011-12-22 2013-06-26 罗伯特·博世有限公司 用于自行车的曲柄传动装置
CN104104184A (zh) * 2013-04-03 2014-10-15 新安乃达驱动技术(上海)有限公司 一种电动车用中置电机的结构
EP2799327A1 (en) * 2013-05-03 2014-11-05 Methode Electronics Malta Ltd. A freewheel hub comprising a magneto-elastic sensor and bicycle, pedelec, fast pedelec or e-bike comprising the freewheel hub
CN104802912A (zh) * 2015-05-05 2015-07-29 苏州捷诚科技有限公司 一种两轴三级减速的中置力矩传动系统
CN105966541A (zh) * 2016-07-01 2016-09-28 武汉千斤智能科技有限公司 自行车用中置电机
CN205916282U (zh) * 2016-07-01 2017-02-01 武汉千斤智能科技有限公司 自行车用中置电机

Also Published As

Publication number Publication date
AU2017287187B2 (en) 2019-10-03
CN105966541A (zh) 2016-09-28
EP3480102A1 (en) 2019-05-08
BR112018077443B1 (pt) 2023-05-02
CN105966541B (zh) 2021-08-17
KR20190022743A (ko) 2019-03-06
BR112018077443A2 (pt) 2019-04-02
EP3480102A4 (en) 2019-07-24
EP3480102B1 (en) 2021-01-20
JP2019521902A (ja) 2019-08-08
US10876602B2 (en) 2020-12-29
JP6802861B2 (ja) 2020-12-23
NZ749944A (en) 2020-02-28
KR102123299B1 (ko) 2020-06-17
US20190331203A1 (en) 2019-10-31
AU2017287187A1 (en) 2019-02-07

Similar Documents

Publication Publication Date Title
WO2018001021A1 (zh) 自行车用中置电机及电动助力自行车
TWI615319B (zh) 用於人工驅動車輛的驅動組件及其控制方法、具有該驅動組件之車輛及其控制方法
TWI545055B (zh) A central control system for bicycles
JP6325430B2 (ja) 自転車用ドライブユニット
WO2016065501A1 (zh) 一种中置电机电动自行车的中轴力矩传感系统
WO2018000985A1 (zh) 力矩传感器系统、力矩信号测量方法、电动助力自行车
CN109866866A (zh) 电动助力车及传动装置
TWI541166B (zh) 自行車用驅動單元
WO2018039873A1 (zh) 一种电动自行车轮毂
CN111927935A (zh) 一种谐波传动系统及电动助力车
CN215323150U (zh) 应用于电动助力自行车的谐波传动装置及电动助力自行车
CN115042908B (zh) 中置电机及电动自行车
US20190308686A1 (en) Combined Torque, Direction, and Cadence Sensing System for Electric Bicycles
CN218085842U (zh) 力矩传感器、助力装置以及助力自行车
US20230099907A1 (en) Power module of electric assisted bicycle
CN212022891U (zh) 一种电动助力自行车中置驱动机构
JPH10318860A (ja) パワーアシスト自転車用駆動ユニット
GB2590746A (en) Golf cart with dual wheel being controlled at same speed
JP2003166563A (ja) 補助動力付車両用駆動装置
TWI813246B (zh) 電動助力自行車的動力模組
CN205916281U (zh) 中轴传感器系统以及电动助力自行车
TWI802444B (zh) 電動助力自行車的動力模組
CN211032916U (zh) 一种电动自行车驱动结构
CN220616080U (zh) 五通中置电机踏频传感器结构
CN106904243B (zh) 电动自行车传动装置和配置该装置的电动自行车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17819018

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018569134

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018077443

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197002427

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017819018

Country of ref document: EP

Effective date: 20190201

ENP Entry into the national phase

Ref document number: 2017287187

Country of ref document: AU

Date of ref document: 20170526

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112018077443

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20181228