WO2018001003A1 - 一种聚酯功能性纤维的加工工艺 - Google Patents

一种聚酯功能性纤维的加工工艺 Download PDF

Info

Publication number
WO2018001003A1
WO2018001003A1 PCT/CN2017/085613 CN2017085613W WO2018001003A1 WO 2018001003 A1 WO2018001003 A1 WO 2018001003A1 CN 2017085613 W CN2017085613 W CN 2017085613W WO 2018001003 A1 WO2018001003 A1 WO 2018001003A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
polyester
functional
functional powder
silicone oil
Prior art date
Application number
PCT/CN2017/085613
Other languages
English (en)
French (fr)
Inventor
何勇
Original Assignee
江苏田园新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏田园新材料股份有限公司 filed Critical 江苏田园新材料股份有限公司
Priority to US15/704,462 priority Critical patent/US20180005004A1/en
Publication of WO2018001003A1 publication Critical patent/WO2018001003A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/92Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • D01F1/103Agents inhibiting growth of microorganisms
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • D01F1/106Radiation shielding agents, e.g. absorbing, reflecting agents
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing

Definitions

  • the invention relates to a process for processing polyester functional fibers.
  • the antibacterial agent is generally added to the fabric by means of finishing the antibacterial material, or the antibacterial material is directly mixed with the synthetic fiber slice and then spun, so that the fiber has certain antibacterial properties, but due to the antibacterial agent Generally, it is inorganic, and these antibacterial agents have low binding strength to organic fibers, are easily peeled off during use and washing of the fabric, and the antibacterial ability of the fabric is kept short.
  • the object of the present invention is to provide a process for processing a polyester functional fiber, and the antibacterial function of the polyester fiber produced by the processing process can be continued for a longer period.
  • the processing process is to share the functional powder with the polyester chip.
  • Mixed processing, polyester functional fiber is produced by a conventional spinning process, wherein the preparation process of the functional powder is:
  • the ratio of functional powder to polyester cut is: based on the quality of the polyester functional fiber, the functional powder accounts for 10-15%.
  • the stirring speed is 600-800 rpm.
  • the nano zinc oxide has a particle diameter of 15 to 50 nm.
  • the vinyl silicone oil is a terminal vinyl polydimethylsiloxane.
  • the surfactant is sodium octadecylbenzenesulfonate or sodium dodecylbenzenesulfonate.
  • the titanium dioxide has a particle diameter of 15 to 35 nm and a specific surface area of 150 to 180 m 2 /g.
  • the silicone oil forms a network structure film on the surface of the nano zinc oxide and the titanium white powder, and the film can form a link with the molecules of the polyester fiber, enhancing the nano zinc oxide and the titanium white powder in the polymerization.
  • the binding force in the ester fiber keeps the antibacterial ability of the polyester fiber longer.
  • the antibacterial property of the fabric can still reach 99.95% or more after washing 50 times.
  • titanium dioxide is also added. Since titanium dioxide has a function of resisting ultraviolet rays, it also has a certain antibacterial function, and the added titanium dioxide enhances the antibacterial property of the fiber.
  • the parts by mass 10 parts of nano zinc oxide, 5 parts of titanium dioxide, 3 parts of amino silicone oil, 5 parts of polyether modified silicone oil, 1 part of vinyl silicone oil, 0.1 part of silane coupling agent, 1 part of surfactant, and mixed Uniform, after reacting at 50-55 ° C for 5 hours, cooling, filtering, washing and drying to obtain a functional powder, stirring was maintained during the reaction, the stirring speed was 600 rpm; the particle size of the nano zinc oxide was 15 -20nm, vinyl silicone oil is terminal vinyl polydimethylsiloxane, surfactant is sodium octadecylbenzene sulfonate, titanium dioxide has particle size of 15-20nm, specific surface area is 170-180m 2 /g .
  • the above polyester functional fiber was made into a fabric, and an antibacterial test was carried out. According to the SGS JIF Z2801 standard, after 50 washings, the killing effect against Staphylococcus aureus and Candida albicans was maintained at 99.95%.
  • the parts by mass 30 parts of nano zinc oxide, 10 parts of titanium dioxide, 4 parts of amino silicone oil, 10 parts of polyether modified silicone oil, 2 parts of vinyl silicone oil, 0.3 parts of silane coupling agent, 2 parts of surfactant, and mixed Uniform, after reacting at 55-60 ° C for 3 hours, cooling, filtering, washing and drying to obtain a functional powder, stirring is maintained during the reaction, the stirring speed is 800 rpm; the particle size of the nano zinc oxide is 35 -50nm, vinyl silicone oil is terminal vinyl polydimethylsiloxane, surfactant is sodium dodecylbenzene sulfonate, titanium dioxide has a particle size of 20-35nm, and specific surface area is 150-160m 2 /g
  • the above polyester functional fiber was made into a fabric, and an antibacterial test was carried out. According to the SGS JIF Z2801 standard, the killing effect against S. aureus and Candida albicans was maintained at 99.98% after 50 washings.
  • the parts by mass 20 parts of nano zinc oxide, 8 parts of titanium dioxide, 3 parts of amino silicone oil, 8 parts of polyether modified silicone oil, 1 part of vinyl silicone oil, 0.2 parts of silane coupling agent, 2 parts of surfactant, and mixed Uniform, after reacting at 50 ° C for 5 hours, cooling, filtering, washing and drying to obtain a functional powder, stirring is maintained during the reaction, the stirring speed is 700 rpm; the particle size of the nano zinc oxide is 20-30 nm
  • the vinyl silicone oil is a terminal vinyl polydimethylsiloxane
  • the surfactant is sodium octadecylbenzenesulfonate
  • the titanium dioxide has a particle diameter of 20-25 nm
  • the specific surface area is 160-170 m 2 /g.
  • the above polyester functional fiber was made into a fabric, and an antibacterial test was carried out. According to the SGS JIF Z2801 standard, after 50 washings, the killing effect of 99.77% was maintained against Staphylococcus aureus and Candida albicans.

Abstract

本发明公开了一种聚酯功能性纤维的加工工艺,该加工工艺是将功能性粉末与聚酯切片共混加工,通过常规的纺丝工艺制成聚酯功能性纤维,其中功能性粉末的制备过程为:将纳米氧化锌10-30份、钛白粉5-10份、氨基硅油3-4份、聚醚改性硅油5-10份、乙烯基硅油1-2份、硅烷偶联剂0.1-0.3份、表面活性剂1-2份,混合均匀,在50-60℃下反应3-5小时后,冷却、过滤、洗涤和干燥后得到功能性粉末,在反应过程中保持搅拌,上述份数为质量份数;功能性粉末与聚酯切的配比为:以聚酯功能性纤维的质量为基础,功能性粉末占10-15%。采用该加工工艺所制成的聚酯纤维的抗菌功能可以持续的更长。

Description

一种聚酯功能性纤维的加工工艺 技术领域
本发明涉及一种聚酯功能性纤维的加工工艺。
背景技术
在现代社会的生活中,人们对生活质量的要求越来较高,功能性纤维和纺织品在目前收到更多人群的的关注和喜爱,处理要求纤维的防水、防油和防污等三防功能外,还要求具有一定的保健功能,尤其是抗菌功能。
目前抗菌剂的添加方式一般是将抗菌材料采用后整理的方式涂覆到织物上,或者将抗菌材料直接与合成纤维的切片混合后进行纺丝,使纤维具有一定的抗菌性能,但是由于抗菌剂一般为无机质,这些抗菌剂与有机的纤维的结合力均较低,在织物的使用和洗涤过程中易于被剥离,使织物的抗菌能力的持续了较短。
发明内容
本发明的目的是提供一种聚酯功能性纤维的加工工艺,采用该加工工艺所制成的聚酯纤维的抗菌功能可以持续的更长,该加工工艺是将功能性粉末与聚酯切片共混加工,通过常规的纺丝工艺制成聚酯功能性纤维,其中功能性粉末的制备过程为:
将纳米氧化锌10-30份、钛白粉5-10份、氨基硅油3-4份、聚醚改性硅油5-10份、乙烯基硅油1-2份、硅烷偶联剂0.1-0.3份、表面活性剂1-2份,混合均匀,在50-60℃下反应3-5小时后,冷却、过滤、洗涤和干燥后得到功能性粉末,在反应过程中保持搅拌,上述份数为质量份数;
功能性粉末与聚酯切的配比为:以聚酯功能性纤维的质量为基础,功能性粉末占10-15%。
进一步,功能性粉末的制备过程中,搅拌速度为600-800转/分钟。
进一步,纳米氧化锌的的粒径为15-50nm。
进一步,乙烯基硅油为端乙烯基聚二甲基硅氧烷。
进一步,所述表面活性剂为十八烷基苯磺酸钠或十二烷基苯磺酸钠。
进一步,钛白粉的粒径为15-35nm,比表面积为150-180m2/g。
在本发明中,硅油会在纳米氧化锌和钛白粉的表面形成一种网状结构的膜,这种膜可以和聚酯纤维的分子之间形成链接,增强了纳米氧化锌以及钛白粉在聚酯纤维内的结合力,使聚酯纤维的抗菌能力保持的更久,采用本发明所生产的聚酯纤维制成织物后,织物的抗菌性能在洗涤50次后,仍能达到99.95%以上。另外,在本发明中,还添加了钛白粉,由于二氧化钛除具有抗紫外的功能外,还具有一定的抗菌功能,添加的钛白粉,增强了纤维的抗菌性能。
具体实施方式
实施例1
按质量份数,取纳米氧化锌10份、钛白粉5份、氨基硅油3份、聚醚改性硅油5份、乙烯基硅油1份、硅烷偶联剂0.1份、表面活性剂1份,混合均匀,在50-55℃下反应5小时后,冷却、过滤、洗涤和干燥后得到功能性粉末,在反应过程中保持搅拌,搅拌速度为600转/分钟;纳米氧化锌的的粒径为15-20nm,乙烯基硅油为端乙烯基聚二甲基硅氧烷,表面活性剂为十八烷基苯磺酸钠,钛白粉的粒径为15-20nm,比表面积为170-180m2/g。
取上述功能性粉末10份,聚酯切片90份共混纺丝,将功能性粉末与聚酯切片用螺杆挤压机生产,熔融体经喷丝头后形成初生纤维,然后经集束、上油、卷绕成筒后制成聚酯功能性纤维。
将上述聚酯功能性纤维制成织物,进行抗菌试验,依照SGS JIF Z2801标准,在50次洗涤后,对金黄色葡萄球菌、白色念珠菌仍能保持99.95%的杀灭效果。
实施例2
按质量份数,取纳米氧化锌30份、钛白粉10份、氨基硅油4份、聚醚改性硅油10份、乙烯基硅油2份、硅烷偶联剂0.3份、表面活性剂2份,混合均匀,在55-60℃下反应3小时后,冷却、过滤、洗涤和干燥后得到功能性粉末,在反应过程中保持搅拌,搅拌速度为800转/分钟;纳米氧化锌的的粒径为35-50nm,乙烯基硅油为端乙烯基聚二甲基硅氧烷,表面活性剂为十二烷基苯磺酸钠,钛白粉的粒径为20-35nm,比表面积为150-160m2/g
取上述功能性粉末15份,聚酯切片85份共混纺丝,将功能性粉末与聚酯切片用螺杆挤压机生产,熔融体经喷丝头后形成初生纤维,然后经集束、上油、卷绕成筒后制成聚酯功能性纤维。
将上述聚酯功能性纤维制成织物,进行抗菌试验,依照SGS JIF Z2801标准,在50次洗涤后,对金黄色葡萄球菌、白色念珠菌仍能保持99.98%的杀灭效果。
实施例3
按质量份数,取纳米氧化锌20份、钛白粉8份、氨基硅油3份、聚醚改性硅油8份、乙烯基硅油1份、硅烷偶联剂0.2份、表面活性剂2份,混合均匀,在50℃下反应5小时后,冷却、过滤、洗涤和干燥后得到功能性粉末,在反应过程中保持搅拌,搅拌速度为700转/分钟;纳米氧化锌的的粒径为20-30nm,乙烯基硅油为端乙烯基聚二甲基硅氧烷,表面活性剂为十八烷基苯磺酸钠,钛白粉的粒径为20-25nm,比表面积为160-170m2/g
取上述功能性粉末12份,聚酯切片88份,共混纺丝,将功能性粉末与聚酯切片用螺杆挤压机生产,熔融体经喷丝头后形成初生纤维,然后经集束、上油、卷绕成筒后制成聚酯功能性纤维。
将上述聚酯功能性纤维制成织物,进行抗菌试验,依照SGS JIF Z2801标准,在50次洗涤后,对金黄色葡萄球菌、白色念珠菌仍能保持99.97%的杀灭效果。

Claims (6)

  1. 一种聚酯功能性纤维的加工工艺,将功能性粉末与聚酯切片共混加工,通过常规的纺丝工艺制成聚酯功能性纤维,其特征在于:功能性粉末的制备过程为:
    将纳米氧化锌10-30份、钛白粉5-10份、氨基硅油3-4份、聚醚改性硅油5-10份、乙烯基硅油1-2份、硅烷偶联剂0.1-0.3份、表面活性剂1-2份,混合均匀,在50-60℃下反应3-5小时后,冷却、过滤、洗涤和干燥后得到功能性粉末,在反应过程中保持搅拌,上述份数为质量份数;
    功能性粉末与聚酯切的配比为:以聚酯功能性纤维的质量为基础,功能性粉末占10-15%。
  2. 根据权利要求1所述的加工工艺,其特征在于:功能性粉末的制备过程中,搅拌速度为600-800转/分钟。
  3. 根据权利要求1所述的加工工艺,其特征在于:纳米氧化锌的的粒径为15-50nm。
  4. 根据权利要求1所述的加工工艺,其特征在于:乙烯基硅油为端乙烯基聚二甲基硅氧烷。
  5. 根据权利要求1所述的加工工艺,其特征在于:所述表面活性剂为十八烷基苯磺酸钠或十二烷基苯磺酸钠。
  6. 根据权利要求1所述的加工工艺,其特征在于:钛白粉的粒径为15-35nm,比表面积为150-180m2/g。
PCT/CN2017/085613 2016-06-27 2017-05-24 一种聚酯功能性纤维的加工工艺 WO2018001003A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/704,462 US20180005004A1 (en) 2016-06-27 2017-09-14 Touch detection circuit, fingerprint module and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610477090.2 2016-06-27
CN201610477090.2A CN105970339A (zh) 2016-06-27 2016-06-27 一种聚酯功能性纤维的加工工艺

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/704,462 Continuation US20180005004A1 (en) 2016-06-27 2017-09-14 Touch detection circuit, fingerprint module and control method thereof

Publications (1)

Publication Number Publication Date
WO2018001003A1 true WO2018001003A1 (zh) 2018-01-04

Family

ID=57019548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085613 WO2018001003A1 (zh) 2016-06-27 2017-05-24 一种聚酯功能性纤维的加工工艺

Country Status (3)

Country Link
US (1) US20180005004A1 (zh)
CN (1) CN105970339A (zh)
WO (1) WO2018001003A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105970339A (zh) * 2016-06-27 2016-09-28 江苏田园新材料股份有限公司 一种聚酯功能性纤维的加工工艺
KR20180015025A (ko) * 2016-08-02 2018-02-12 삼성전자주식회사 화면 내장형 지문 센서의 출력 신호들을 리드아웃하는 아날로그 프론트 엔드와 이를 포함하는 장치
CN106978664B (zh) * 2017-02-26 2018-12-11 浙江峰赫纺织有限公司 一种耐磨性良好的沙发面料
KR102445512B1 (ko) * 2018-03-30 2022-09-21 삼성디스플레이 주식회사 지문 센서 패키지 및 이를 포함하는 표시 장치
CN109393611B (zh) * 2018-10-25 2020-12-18 江阴市伊芙特制衣有限公司 一种耐污纳米服装面料及其制备方法
WO2020093251A1 (zh) * 2018-11-06 2020-05-14 深圳市汇顶科技股份有限公司 基于双感应区的识别指纹方法、指纹识别系统和电子设备
CN109189274A (zh) * 2018-11-20 2019-01-11 深圳芯邦科技股份有限公司 一种应用于触控技术的检测装置、指纹识别系统
CN111752410B (zh) 2020-06-10 2021-08-24 武汉华星光电半导体显示技术有限公司 显示屏和显示装置
CN114678683A (zh) * 2022-03-28 2022-06-28 深圳市锐尔觅移动通信有限公司 电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007191608A (ja) * 2006-01-20 2007-08-02 Toyo Ink Mfg Co Ltd 着色樹脂組成物
CN101187079A (zh) * 2007-12-10 2008-05-28 刘燕平 抗菌抗紫外线复合功能健康纤维
CN104727151A (zh) * 2015-04-01 2015-06-24 丹东优耐特纺织品有限公司 纺织品用防水、透气、抗菌、抗紫外线、补强涂层胶及制备方法
CN104788917A (zh) * 2015-04-21 2015-07-22 广东顺德顺炎新材料有限公司 一种高耐磨自润滑聚对苯二甲酸乙二醇酯及其制备方法
CN104831398A (zh) * 2015-05-13 2015-08-12 吴江市震宇缝制设备有限公司 一种抑菌纺织缝纫纤维及其制备方法
CN105694438A (zh) * 2016-02-18 2016-06-22 惠州市环美盛新材料有限公司 一种纳米无机抗菌纤维母粒及其制备方法
CN105970339A (zh) * 2016-06-27 2016-09-28 江苏田园新材料股份有限公司 一种聚酯功能性纤维的加工工艺

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101701365A (zh) * 2009-09-14 2010-05-05 吴江鹰翔万信化纤有限公司 一种抗紫外线辐射聚对苯二甲酸1,2-丙二醇酯纤维
CN103361765B (zh) * 2012-03-30 2015-04-29 浙江恒逸高新材料有限公司 一种抗静电改性涤纶短纤及其制备方法
CN103290523B (zh) * 2013-05-24 2015-07-08 宁波三邦超细纤维有限公司 透气性涤锦复合超细纤维及生产方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007191608A (ja) * 2006-01-20 2007-08-02 Toyo Ink Mfg Co Ltd 着色樹脂組成物
CN101187079A (zh) * 2007-12-10 2008-05-28 刘燕平 抗菌抗紫外线复合功能健康纤维
CN104727151A (zh) * 2015-04-01 2015-06-24 丹东优耐特纺织品有限公司 纺织品用防水、透气、抗菌、抗紫外线、补强涂层胶及制备方法
CN104788917A (zh) * 2015-04-21 2015-07-22 广东顺德顺炎新材料有限公司 一种高耐磨自润滑聚对苯二甲酸乙二醇酯及其制备方法
CN104831398A (zh) * 2015-05-13 2015-08-12 吴江市震宇缝制设备有限公司 一种抑菌纺织缝纫纤维及其制备方法
CN105694438A (zh) * 2016-02-18 2016-06-22 惠州市环美盛新材料有限公司 一种纳米无机抗菌纤维母粒及其制备方法
CN105970339A (zh) * 2016-06-27 2016-09-28 江苏田园新材料股份有限公司 一种聚酯功能性纤维的加工工艺

Also Published As

Publication number Publication date
CN105970339A (zh) 2016-09-28
US20180005004A1 (en) 2018-01-04

Similar Documents

Publication Publication Date Title
WO2018001003A1 (zh) 一种聚酯功能性纤维的加工工艺
CN103437146B (zh) 纳米织物整理剂及其制备方法和应用
CN102691129B (zh) 一种抗菌涤纶纤维及其生产方法与它的用途
CN105694438B (zh) 一种纳米无机抗菌纤维母粒及其制备方法
CN106977751B (zh) 一种复合抗菌除臭功能母粒、纤维的制备方法
CN101525777B (zh) 具有薄荷抗菌功能的粘胶纤维及其制备方法
JP4659821B2 (ja) 着色ポリアミド繊維およびその製造方法
CN104775173A (zh) 一种含艾草提取物的粘胶纤维的制备方法
CN102618962B (zh) 一种抗菌氨纶纤维及其制备方法
CN103147157A (zh) 渔用聚酰胺耐磨单丝制备方法
CN104805520B (zh) 一种含罗布麻提取物的粘胶纤维的制备方法
CN101802277A (zh) 莱塞尔纤维
CN106954636A (zh) 一种石墨烯‑纳米银复合材料及其制备方法和应用
CN110904522A (zh) 一种富勒烯亲肤复合纤维及其制备方法
CN105696106A (zh) 一种抗菌聚乳酸纤维的制备方法
CN101876090A (zh) 具有抗菌功能的粘胶纤维及其制备方法
Zhu et al. Preparation of antimicrobial fabric using magnesium-based PET masterbatch
CN109183181A (zh) 一种具有抗菌功效的石墨烯导电聚酯纤维
TWI626943B (zh) 抗菌粉體、抗菌母粒及抗菌結構
TW201843362A (zh) 纖維母粒的製造方法及纖維
CN202064053U (zh) 一种复合多功能共聚酯纤维
TWI606157B (zh) 纖維、纖維母粒及其製造方法以及紡織品及其製造方法
US20130122294A1 (en) Fiber for artificial hair with antibacterial and antifungal properties and methods of preparing the same
CN103668519B (zh) 一种多功能纤维素纤维及其制备方法
KR101647284B1 (ko) 찢김 방지기능을 구비하는 친환경 섬유 제품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17819000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17819000

Country of ref document: EP

Kind code of ref document: A1