WO2017222043A1 - 3-ヒドロキシイソ吉草酸アミノ酸塩の結晶及びその製造方法 - Google Patents

3-ヒドロキシイソ吉草酸アミノ酸塩の結晶及びその製造方法 Download PDF

Info

Publication number
WO2017222043A1
WO2017222043A1 PCT/JP2017/023174 JP2017023174W WO2017222043A1 WO 2017222043 A1 WO2017222043 A1 WO 2017222043A1 JP 2017023174 W JP2017023174 W JP 2017023174W WO 2017222043 A1 WO2017222043 A1 WO 2017222043A1
Authority
WO
WIPO (PCT)
Prior art keywords
hmb
crystal
amino acid
salt
acid salt
Prior art date
Application number
PCT/JP2017/023174
Other languages
English (en)
French (fr)
Inventor
友哉 横井
宏 長野
隆雪 清水
Original Assignee
協和発酵バイオ株式会社
株式会社大塚製薬工場
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to SG11201811493UA priority Critical patent/SG11201811493UA/en
Priority to CN201780038774.5A priority patent/CN109476578A/zh
Priority to CA3028608A priority patent/CA3028608A1/en
Priority to RU2018145506A priority patent/RU2018145506A/ru
Priority to EP17815508.1A priority patent/EP3476825A4/en
Priority to JP2018524179A priority patent/JP7144320B2/ja
Application filed by 協和発酵バイオ株式会社, 株式会社大塚製薬工場 filed Critical 協和発酵バイオ株式会社
Priority to US16/311,061 priority patent/US11098007B2/en
Priority to AU2017282515A priority patent/AU2017282515A1/en
Priority to KR1020197001526A priority patent/KR20190028441A/ko
Publication of WO2017222043A1 publication Critical patent/WO2017222043A1/ja
Priority to PH12018502693A priority patent/PH12018502693A1/en
Priority to US17/190,981 priority patent/US20210261493A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/38Separation; Purification; Stabilisation; Use of additives
    • C07C227/40Separation; Purification
    • C07C227/42Crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/04Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C229/26Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having more than one amino group bound to the carbon skeleton, e.g. lysine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C277/00Preparation of guanidine or its derivatives, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups
    • C07C277/06Purification or separation of guanidine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C279/00Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups
    • C07C279/04Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of guanidine groups bound to acyclic carbon atoms of a carbon skeleton
    • C07C279/14Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of guanidine groups bound to acyclic carbon atoms of a carbon skeleton being further substituted by carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • C07C51/412Preparation of salts of carboxylic acids by conversion of the acids, their salts, esters or anhydrides with the same carboxylic acid part
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/01Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the present invention relates to an amino acid salt of 3-hydroxyisovaleric acid (hereinafter referred to as HMB), which is useful as, for example, a product, raw material or intermediate for health foods, pharmaceuticals, cosmetics and the like.
  • HMB 3-hydroxyisovaleric acid
  • the present invention relates to a crystal and a method for producing the crystal.
  • HMB is useful as, for example, products such as health foods, pharmaceuticals, and cosmetics, raw materials, or intermediates.
  • HMB is an organic acid obtained by leucine metabolism in the body, and is said to be effective in strengthening muscles and suppressing degradation (Non-patent Documents 1 and 2).
  • Patent Document 3 describes that an arginine salt crystal has been obtained, but does not describe the nature of the obtained crystal.
  • Non-patent Document 4 Calcium is an important mineral that plays a role in bone formation, nerve function and muscle movement in the body. Recently, however, it has been reported that an excessive intake of calcium increases the risk of death due to cardiovascular disease or ischemic heart disease (Non-patent Document 4).
  • Patent Documents 1-3, Patent Document 1, and Patent Document 4 production of HMB calcium salt (Patent Document 1-3), HMB magnesium salt (Patent Document 1), and HMB arginine salt (Patent Document 4), respectively.
  • HMB calcium salt Patent Document 1-3
  • HMB magnesium salt Patent Document 1
  • HMB arginine salt Patent Document 4
  • An object of the present invention is to provide HMB amino acid salt crystals that are excellent in solubility and easy to handle, and to provide a method for producing the same.
  • the present invention relates to the following (1) to (25).
  • (1) Crystal of amino acid salt of 3-hydroxyisovaleric acid hereinafter referred to as HMB.
  • the crystal according to (1) above, wherein the HMB amino acid salt is an HMB basic amino acid salt.
  • the crystal according to (2) above, wherein the HMB basic amino acid salt is an HMB arginine salt.
  • the crystal according to (2) above, wherein the HMB basic amino acid salt is an HMB lysine salt.
  • the crystal according to (2) above, wherein the HMB basic amino acid salt is an HMB ornithine salt.
  • the diffraction angle (2 ⁇ ) is 7.5 ⁇ 0.2 °, 14.5 ⁇ 0.2 °, 15.1 ⁇ 0.2 °, 19.2 ⁇ 0.2.
  • the diffraction angle (2 ⁇ ) is further 11.6 ⁇ 0.2 °, 12.7 ⁇ 0.2 °, 17.9 ⁇ 0.2 °, 21.5 ⁇ 0.
  • the diffraction angle (2 ⁇ ) is further 19.6 ⁇ 0.2 °, 21.9 ⁇ 0.2 °, 25.2 ⁇ 0.2 °, 25.5 ⁇ 0.
  • the diffraction angle (2 ⁇ ) is 8.5 ⁇ 0.2 °, 17.0 ⁇ 0.2 °, 18.1 ⁇ 0.2 °, 18.5 ⁇ 0.2.
  • the diffraction angle (2 ⁇ ) is further 22.2 ⁇ 0.2 °, 25.5 ⁇ 0.2 °, 25.8 ⁇ 0.2 °, 26.6 ⁇ 0.
  • the diffraction angle (2 ⁇ ) is 4.8 ⁇ 0.2 °, 20.4 ⁇ 0.2 °, 31.0 ⁇ 0.2 °, 33.8 ⁇ 0.
  • diffraction angles (2 ⁇ ) are 5.1 ⁇ 0.2 °, 14.0 ⁇ 0.2 °, 15.3 ⁇ 0.2 °, 20.4 ⁇ 0.2.
  • the diffraction angle (2 ⁇ ) is further 16.4 ⁇ 0.2 °, 16.8 ⁇ 0.2 °, 19.4 ⁇ 0.2 °, 21.4 ⁇ 0.
  • the crystal according to (12) above having peaks at 2 ° and 25.5 ⁇ 0.2 °.
  • a step of precipitating HMB amino acid salt crystals by concentrating an aqueous solution of HMB containing an amino acid-containing compound having a pH of 2.5 to 11.0, and collecting HMB amino acid salt crystals from the aqueous solution
  • a process for producing a crystal of an HMB amino acid salt comprising a step.
  • the step of precipitating HMB amino acid salt crystals further comprises adding or dropping at least one solvent selected from the group consisting of alcohols, nitriles and ketones.
  • Production method (18) The production method according to the above (15) or (17), wherein the alcohol is at least one alcohol selected from the group consisting of C1-C6 alcohols. (19) The production method according to the above (17) or (18), wherein the nitrile is acetonitrile.
  • ketone is at least one ketone selected from the group consisting of acetone, methyl ethyl ketone, methyl isobutyl ketone and diethyl ketone.
  • HMB amino acid salt is an HMB basic amino acid salt.
  • HMB basic amino acid salt is HMB arginine salt, HMB lysine salt, or HMB ornithine salt.
  • the diffraction angle (2 ⁇ ) is 4.9 ⁇ 0.2 °, 5.2 ⁇ 0.2 °, 5.5 ⁇ 0.2 °, 10.9 ⁇ 0.2
  • the diffraction angle (2 ⁇ ) is further 15.9 ⁇ 0.2 °, 16.4 ⁇ 0.2 °, 17.4 ⁇ 0.2 °, 19.2 ⁇ 0.
  • the diffraction angle (2 ⁇ ) is further 20.8 ⁇ 0.2 °, 21.3 ⁇ 0.2 °, 21.8 ⁇ 0.2 °, 22.2 ⁇ 0.
  • the present invention provides a crystal of an HMB amino acid salt that is easy to handle and a method for producing the same.
  • the crystal of the HMB amino acid salt of the present invention is a superior salt crystal that exhibits higher solubility than the HMB calcium salt, does not form an insoluble salt, and does not induce electrolyte abnormality.
  • the HMB amino acid salt crystals of the present invention are more soluble than the HMB calcium salt and are excellent in the effect of improving the flavor.
  • FIG. 1 shows the result of powder X-ray diffraction of the seed crystal of HMB arginine salt / anhydride obtained in Example 2.
  • FIG. 2 shows the result of powder X-ray diffraction of the crystals of HMB arginine salt / anhydride obtained in Example 3.
  • FIG. 3 shows the result of infrared spectroscopic (IR) analysis of the crystals of HMB arginine salt / anhydride obtained in Example 3.
  • FIG. 4 shows the result of powder X-ray diffraction of the crystals of HMB lysine salt / anhydride obtained in Example 4.
  • FIG. 5 shows the result of infrared spectroscopic (IR) analysis of the crystals of HMB lysine salt / anhydride obtained in Example 4.
  • FIG. 6 shows the result of powder X-ray diffraction of crystals of HMB ornithine salt / anhydride obtained in Example 6.
  • FIG. 7 shows the results of infrared spectroscopic (IR) analysis of the crystals of HMB ornithine salt / anhydride obtained in Example 6.
  • FIG. 8 shows the result of powder X-ray diffraction of the crystals of HMB ornithine salt / anhydride obtained in Example 7.
  • the crystal of the present invention is a crystal of an HMB amino acid salt (hereinafter also referred to as “crystal of the present invention”).
  • the crystal of HMB amino acid salt is preferably HMB basic amino acid salt crystal, more preferably HMB arginine salt crystal, HMB lysine salt crystal, HMB histidine salt crystal and HMB ornithine salt crystal.
  • Preferred examples include HMB arginine salt crystals, HMB lysine salt crystals, and HMB ornithine salt crystals.
  • the crystal of the present invention is an HMB crystal can be confirmed by a method using HPLC described in an analysis example described later.
  • the amino acid in the crystal of the present invention may be either L-form or D-form, but L-form is preferred.
  • the crystal of the present invention is a crystal of an amino acid salt
  • the fact that the crystal of the present invention is a crystal of an amino acid salt can be confirmed by measuring the content of amino acid contained in the crystal using HPLC described in an analysis example described later.
  • the crystal of the present invention is a crystal of one arginine salt
  • the arginine content in the crystal is usually 59.6 ⁇ 5.0% by weight, preferably 59.6 ⁇ 4.0% by weight, most preferably Is 59.6 ⁇ 3.0% by weight.
  • the fact that the crystal of the present invention is a monolysine salt crystal indicates that the lysine content in the crystal is usually 55.3 ⁇ 5.0% by weight, preferably 55.3 ⁇ 4.0% by weight, Most preferably, it can be confirmed by 55.3 ⁇ 3.0% by weight.
  • the crystal of the present invention is a crystal of 1 ornithine salt means that the ornithine content in the crystal is usually 52.8 ⁇ 5.0% by weight, preferably 52.8 ⁇ 4.0% by weight, Most preferably, it can be confirmed by being 52.8 ⁇ 3.0% by weight.
  • the crystal of the present invention is an anhydrous crystal
  • the water content measured using the Karl Fischer method described in the analysis examples described later is usually 2.5% by weight or less, preferably 2.3% by weight or less. Most preferably, it can confirm by being 2.0 weight% or less.
  • the powder X-ray diffraction pattern using CuK ⁇ as the X-ray source is defined by the values shown in FIGS. 1 and 2 and Tables 1 and 2, and HMB arginine salt / anhydride Can be mentioned.
  • 1 and Table 1 and FIGS. 2 and 2 correspond to the diffraction results of the crystals of HMB arginine salt / anhydride, respectively.
  • FIG. 2 As the crystals of HMB arginine salt / anhydride whose powder X-ray diffraction pattern is defined by the values shown in FIG. 2 and Table 2, when subjected to the infrared (IR) analysis described in the following analysis example, FIG.
  • the crystal of HMB arginine salt / anhydride is HMB arginine salt having a peak at the diffraction angle (2 ⁇ ) described in (i) below in powder X-ray diffraction using CuK ⁇ as an X-ray source.
  • Anhydrous crystals are preferred, and HMB arginine salt / anhydride crystals having a peak at the diffraction angle (2 ⁇ ) described in (ii) below in addition to the diffraction angle (2 ⁇ ) described in (i) below are more preferred.
  • crystals of HMB arginine salt / anhydride having a peak at the diffraction angle (2 ⁇ ) described in (iii) below are more preferable.
  • HMB lysine salt / anhydride crystals examples include HMB lysine salt / anhydride crystals whose powder X-ray diffraction pattern using CuK ⁇ as an X-ray source is defined by the values shown in FIG. 4 and Table 4. Can do.
  • HMB lysine salt / anhydride whose powder X-ray diffraction pattern is defined by the values shown in FIG. 4 and Table 4, when subjected to infrared spectroscopic (IR) analysis described in an analysis example described later, HMB lysine salt / anhydride crystals showing the infrared absorption spectrum shown in FIG.
  • the HMB lysine salt / anhydride crystal has an HMB lysine salt having a peak at the diffraction angle (2 ⁇ ) described in (i) below in powder X-ray diffraction using CuK ⁇ as an X-ray source.
  • Anhydrous crystals are preferred, and HMB lysine salt / anhydride crystals having a peak at the diffraction angle (2 ⁇ ) described in (ii) below in addition to the diffraction angle (2 ⁇ ) described in (i) below are more preferred.
  • HMB ornithine salt / anhydride As the crystal of HMB ornithine salt / anhydride, the powder X-ray diffraction pattern using CuK ⁇ as the X-ray source is shown in FIG. And HMB ornithine salt / anhydride crystals defined by the values shown in Table 9. In addition, FIG. 6 and Table 6, and FIG. 8 and Table 9 respond
  • the crystal of HMB ornithine salt / anhydride is HMB ornithine salt having a peak at the diffraction angle (2 ⁇ ) described in (i) below in powder X-ray diffraction using CuK ⁇ as an X-ray source.
  • Anhydrous crystals are preferred, and HMB ornithine salt / anhydride crystals having a peak at the diffraction angle (2 ⁇ ) described in (ii) below in addition to the diffraction angle (2 ⁇ ) described in (i) below are more preferred.
  • crystals of HMB ornithine salt / anhydride having a peak at the diffraction angle (2 ⁇ ) described in (iii) below are more preferable.
  • the HMB ornithine salt / anhydride crystal specifically includes HMB ornithine having a peak at the diffraction angle (2 ⁇ ) described in (i) below in powder X-ray diffraction using CuK ⁇ as an X-ray source.
  • Salt / anhydride crystals are preferred, and in addition to the diffraction angle (2 ⁇ ) described in the following (i), the HMB ornithine salt / anhydride crystals having a peak at the diffraction angle (2 ⁇ ) described in the following (ii) More preferably, crystals of HMB ornithine salt / anhydride having a peak at the diffraction angle (2 ⁇ ) described in the following (iii) in addition to the diffraction angle (2 ⁇ ) described in the following (i) and (ii) are further preferable. .
  • Production method of crystal of the present invention is the production method described in the following (1) or (2) (hereinafter also referred to as “the production method of the crystal of the present invention”).
  • Crystal production method of the present invention-1 The method for producing a crystal of the present invention includes a step of dissolving an amorphous HMB amino acid salt in a solvent containing alcohols, a step of allowing the solvent to stand or stir to precipitate a crystal of the HMB amino acid salt, and the solvent.
  • a method for producing HMB amino acid salt crystals which comprises the step of collecting HMB amino acid salt crystals.
  • amino acids basic amino acids are preferable, arginine, ornithine, lysine and histidine are more preferable, arginine, ornithine and lysine are more preferable, and arginine is most preferable.
  • amino acid either L-form or D-form can be used, but L-form is preferred.
  • the alcohol is preferably at least one alcohol selected from the group consisting of C1 to C6 alcohols, more preferably at least one alcohol selected from the group consisting of C1 to C3 alcohols, still more preferably. Mention at least one alcohol selected from the group consisting of methanol, ethanol, n-propanol and isopropyl alcohol, still more preferably at least one alcohol selected from the group consisting of methanol and ethanol, most preferably ethanol. Can do.
  • the alcohols can be used as a mixture of one or more.
  • the solvent containing the above alcohols may contain water.
  • the water content of the solvent containing alcohols is usually 40% by weight or less, preferably 20% by weight or less, more preferably 10% by weight or less, and most preferably 5% by weight or less.
  • a method of dissolving the amorphous HMB amino acid salt in a solvent containing alcohols a method of suspending the amorphous HMB amino acid salt in the solvent and then heating to obtain a solution, or filtering the solvent and filtering the solution.
  • the method of obtaining can be mentioned.
  • the heating temperature is usually 0 to 80 ° C., preferably 20 to 70 ° C., most preferably 40 to 60 ° C. Can be mentioned.
  • the heating time is usually 10 minutes to 6 hours, preferably 20 minutes to 4 hours, and most preferably 30 minutes to 2 hours.
  • the amorphous HMB amino acid salt can be obtained by the method described in Example 1 described later. Crystals of the HMB amino acid salt can be precipitated by allowing the solvent obtained by dissolving the amorphous HMB amino acid salt to stand or stir.
  • the amorphous concentration of the HMB amino acid salt dissolved in the solvent containing alcohols is preferably 50 g / L or more, more preferably 100 g / L or more, and further preferably 150 g / L or more.
  • the HMB amino acid salt crystals may be precipitated by adding the HMB amino acid salt crystals as seed crystals to a solvent containing alcohol in which the amorphous HMB amino acid salt is dissolved, and then allowing the solvent to stand or stir. Good.
  • the precipitation rate can be increased by adding the seed crystal to the solvent.
  • the concentration of the seed crystals in the solvent is usually 0.05 to 15% by weight, preferably 0.5 to 10% by weight, and most preferably 2 to 7% by weight. Crystals of HMB amino acid salts can be obtained by the method described in Example 2, 4, or 5 described later.
  • the temperature at which the solvent is allowed to stand or stir is usually 0 to 80 ° C., preferably 5 to 50 ° C., and most preferably 10 to 30 ° C.
  • the time for standing or stirring is usually 1 to 100 hours, preferably 3 to 48 hours, and most preferably 5 to 24 hours.
  • the method for collecting HMB amino acid salt crystals from the solvent is not particularly limited, and examples thereof include filtration, pressure filtration, suction filtration, and centrifugation. Furthermore, the crystals can be washed as appropriate in order to reduce the adhesion of the mother liquor and improve the quality of the crystals.
  • the solution used for washing the crystal is not particularly limited, but a solution obtained by mixing one or more kinds selected from water, methanol, ethanol, acetone, n-propanol and isopropyl alcohol at an arbitrary ratio can be used.
  • HMB amino acid salt crystals can be obtained by drying the wet crystals thus obtained.
  • the drying conditions may be any method as long as the HMB amino acid salt crystal form can be maintained, and vacuum drying, vacuum drying, fluidized bed drying, ventilation drying, or the like can be applied.
  • the drying temperature may be any as long as it can remove adhering moisture and solvent, but preferably 80 ° C. or lower, more preferably 60 ° C. or lower.
  • high purity HMB amino acid salt crystals can be obtained.
  • the purity of the crystal can be 95% or more, preferably 96% or more, more preferably 97% or more, and most preferably 97.5% or more.
  • HMB amino acid salt crystal that can be produced by the above production method, for example, a powder X-ray diffraction pattern using CuK ⁇ as an X-ray source is defined by the values shown in FIGS. 1 and 2 and Tables 1 and 2. And HMB arginine salt / anhydride crystals.
  • the method for producing a crystal of the present invention includes a step of concentrating an aqueous solution of HMB having an amino acid-containing compound and having a pH of 2.5 to 11.0 to precipitate HMB amino acid salt crystals in the aqueous solution, and the aqueous solution.
  • a method for producing HMB amino acid salt crystals comprising the step of collecting HMB amino acid salt crystals from
  • the HMB contained in the aqueous solution of HMB may be produced by any production method such as a fermentation method, an enzyme method, an extraction method from a natural product, or a chemical synthesis method.
  • the solid matter that hinders crystallization When the solid solution that hinders crystallization is contained in the aqueous solution of HMB, the solid matter can be removed using centrifugation, filtration, or a ceramic filter.
  • the HMB aqueous solution contains water-soluble impurities and salts that hinder crystallization
  • the water-soluble impurities or salts are removed by passing through a column packed with an ion exchange resin or the like. be able to.
  • the hydrophobic impurities may be removed by passing through a column filled with synthetic adsorption resin or activated carbon. It can.
  • the aqueous solution can be prepared so that the concentration of HMB is usually 500 g / L or more, preferably 600 g / L or more, more preferably 700 g / L or more, and most preferably 800 g / L or more.
  • amino acid-containing compounds preferably basic amino acid-containing compounds, more preferably arginine-containing compounds, lysine-containing compounds, ornithine-containing compounds and histidine-containing compounds, most preferably arginine-containing compounds, lysine-containing compounds and ornithine-containing compounds.
  • a compound can be mentioned.
  • amino acid in the amino acid-containing compound either L-form or D-form can be used, but L-form is preferred.
  • the arginine-containing compound examples include free arginine and arginine hydrochloride.
  • the pH is usually 2.5 to 11.0, preferably 2.8 to 10.5, by adjusting the pH of the aqueous HMB solution using arginine.
  • An aqueous solution of HMB containing an arginine-containing compound that is most preferably from 3.0 to 10.0 can be obtained.
  • lysine-containing compounds include free lysine and lysine hydrochloride.
  • the pH is usually 2.5 to 11.0, preferably 2.8 to 10.5 by adjusting the pH of the aqueous solution of HMB using lysine.
  • An aqueous solution of HMB containing a lysine-containing compound that is most preferably from 3.0 to 10.0 can be obtained.
  • ornithine-containing compounds include free ornithine and ornithine hydrochloride.
  • the pH is usually 2.5 to 11.0, preferably 2.8 to 10.5, by adjusting the pH of the aqueous solution of HMB using ornithine.
  • An aqueous solution of HMB containing an ornithine-containing compound that is most preferably from 3.0 to 10.0 can be obtained.
  • Examples of a method for concentrating an aqueous solution of HMB and precipitating HMB amino acid salt crystals in the aqueous solution include a method of concentrating the aqueous solution under reduced pressure.
  • the temperature of the aqueous solution is usually 0 to 100 ° C., preferably 10 to 90 ° C., and most preferably 20 to 60 ° C.
  • the reduced pressure time is usually 1 to 120 hours, preferably 2 to 60 hours, and most preferably 3 to 50 hours.
  • HMB amino acid salt crystals may be added as seed crystals to the HMB aqueous solution.
  • concentration of seed crystals in the aqueous solution is usually 0.05 to 15% by weight, preferably 0.5 to 10% by weight, and most preferably 2 to 7% by weight.
  • crystallization of a HMB amino acid salt can be specifically acquired by the method as described in Example 2, 4 or 5 mentioned later, for example.
  • At least one solvent selected from the group consisting of alcohols, nitriles and ketones is added or dropped into the aqueous solution of HMB, thereby Crystals may be precipitated.
  • Alcohols, nitriles and ketones may be used alone or in combination of two or more.
  • the seed crystal when the solvent is added or added dropwise, the seed crystal may be added before the HMB amino acid salt crystals are precipitated.
  • the time for adding the seed crystal is usually 0 to 5 hours, preferably 0 to 4 hours, and most preferably 0 to 3 hours from the start of dropping or addition of the solvent.
  • the seed crystal may be added before the solvent is added or dropped into the aqueous solution of HMB.
  • Nitriles are preferably acetonitrile.
  • the ketones are preferably at least one ketone selected from the group consisting of acetone, methyl ethyl ketone, methyl isobutyl ketone and diethyl ketone, more preferably at least one ketone selected from the group consisting of acetone and methyl ethyl ketone. Most preferably, acetone can be mentioned.
  • the temperature of the aqueous solution when the solvent is added or added dropwise to the aqueous solution of HMB may be any temperature as long as HMB does not decompose, but the solubility is lowered to crystallize HMB amino acid salt / anhydride crystals. In order to improve the rate, it is usually 80 ° C. or lower, preferably 70 ° C. or lower, more preferably 60 ° C. or lower, and most preferably 50 ° C. or lower. As a lower limit of temperature, 0 degreeC or more normally, Preferably 10 degreeC or more can be mentioned.
  • the amount of the solvent added to or dropped into the aqueous solution of HMB is usually 0.5 to 30 times, preferably 0.5 to 25 times, most preferably 0.5 to 10 times the amount of the aqueous solution. Can do.
  • the time for adding or dropping the solvent to the aqueous solution of HMB is usually 30 minutes to 48 hours, preferably 2 to 30 hours, and most preferably 3 to 20 hours.
  • the precipitated crystals can be aged usually for 1 to 48 hours, preferably 1 to 24 hours, and most preferably 1 to 12 hours. Aging means that the step of precipitating HMB amino acid salt / anhydride crystals is temporarily stopped to grow the crystals. After ripening the crystals, the step of precipitating HMB amino acid salt crystals may be resumed.
  • the method for collecting HMB amino acid salt crystals is not particularly limited, and examples thereof include filtration, pressure filtration, suction filtration, and centrifugation. Furthermore, the crystals can be washed as appropriate in order to reduce the adhesion of the mother liquor and improve the quality of the crystals.
  • the solution used for washing the crystal is not particularly limited, but one or more kinds selected from water, methanol, ethanol, acetone, n-propanol, isopropyl alcohol, acetonitrile, acetone, methyl ethyl ketone, methyl isobutyl ketone and diethyl ketone are arbitrarily selected. What was mixed in the ratio of can be used.
  • HMB amino acid salt crystals can be obtained by drying the wet crystals thus obtained.
  • drying conditions vacuum drying, vacuum drying, fluidized bed drying or ventilation drying can be applied.
  • the drying temperature may be any as long as it can remove adhering moisture and solvent, but preferably 80 ° C. or lower, more preferably 60 ° C. or lower.
  • the purity of the HMB amino acid salt crystals is usually 93% or more, preferably 94% or more, more preferably 95% or more, and most preferably 96% or more.
  • Example 1 Acquisition of amorphous amorphous form of HMB arginine salt To 200 mL of the HMB free body aqueous solution obtained in Reference Example 1, 160 mL of a 128 g / L L-arginine aqueous solution was added to adjust the pH to 7.05. The resulting aqueous solution was subjected to the next step.
  • Example 2 Acquisition of seed crystal of HMB arginine salt / anhydride To 150 mg of amorphous amorphous HMB arginine salt obtained in Reference Example 1, 1.5 mL of 100% -EtOH was added and heated to 50 ° C. to be completely dissolved. .
  • the crystals were spontaneously crystallized by stirring the aqueous solution at 25 ° C. for 12 hours.
  • the crystal slurry was further aged for 12 hours, and then the crystals were collected by filtration and dried by ventilation at 25 ° C. for 12 hours to obtain 60 mg of crystals.
  • Example 3 Obtaining Crystals of HMB Arginine Salt / Anhydride To 27.8 g of the amorphous amorphous HMB arginine salt obtained in Reference Example 1, 160 mL of 100% -EtOH was added and heated to 50 ° C. to completely dissolve.
  • HMB arginine salt seed crystal obtained according to Example 2 was added to crystallize the crystal.
  • the crystal slurry was stirred at 25 ° C. for 12 hours and aged, and then the crystals were collected by filtration and dried by ventilation at 25 ° C. to obtain 23.6 g of crystals.
  • FIG. 2 and Table 2 show the results of powder X-ray diffraction of the crystals
  • FIG. 3 shows the results of infrared spectroscopy (IR) analysis.
  • IR infrared spectroscopy
  • 2 ⁇ indicates a diffraction angle (2 ⁇ °)
  • relative intensity indicates a relative intensity ratio (I / I 0 ). The relative intensity ratio is 5 or more.
  • Example 4 Acquisition of HMB lysine salt / anhydride crystals To 200 mL of the HMB free body aqueous solution obtained in Reference Example 1, 94 mL of 200 g / L L-lysine aqueous solution was added to adjust the pH to 6.03. The resulting aqueous solution was subjected to the next step. When the aqueous solution was concentrated under the conditions of 50 ° C. and 15 mbar until the weight of the concentrated solution became 33.4 g, the crystals spontaneously crystallized and a white slurry was obtained. 20 mL of acetonitrile was added to the slurry, and the mixture was aged by stirring at 50 ° C. for 1 hour, and then the crystals were collected by filtration.
  • the obtained crystals were washed with 20 mL of acetonitrile and then dried at 40 ° C. under reduced pressure (15 mbar) for 24 hours to obtain 5.0 g of crystals. Purity measurement by HPLC was able to obtain 97.4% (area%) or more of HMB lysine salt / anhydride crystals.
  • FIG. 4 and Table 4 show the results of powder X-ray diffraction of the crystals
  • FIG. 5 shows the results of infrared spectroscopy (IR) analysis.
  • “2 ⁇ ” indicates a diffraction angle (2 ⁇ °)
  • “relative intensity” indicates a relative intensity ratio (I / I 0 ). The relative intensity ratio is 2 or more.
  • Example 5 Acquisition of HMB Ornithine Salt / Anhydride Seed Crystal To 20 mL of the HMB free body aqueous solution obtained in Reference Example 1, 510 g / L L-ornithine aqueous solution was added to adjust the pH to 7.80. The resulting aqueous solution was subjected to the next step. When the aqueous solution was concentrated under the conditions of 50 ° C. and 15 mbar, 2.8 g of a white precipitate was obtained. When the powder was observed with a polarizing microscope, it showed polarized light, indicating that the powder was a crystal.
  • Example 6 Acquisition of crystals of HMB ornithine salt / anhydride-1 To 20 mL of the HMB free body aqueous solution obtained in Reference Example 1, 2.1 mL of 510 g / L L-ornithine aqueous solution was added to adjust the pH to 7.08. The resulting aqueous solution was subjected to the next step. The aqueous solution was concentrated under conditions of 50 ° C. and 15 mbar until the weight of the concentrate became 3.9 g, and 0.1 g of HMB ornithine salt / anhydride seed crystal obtained according to Example 5 was added. % -Ethanol was added dropwise over 30 minutes to precipitate crystals.
  • the crystal slurry was aged for 12 hours, and then the crystals were collected by filtration, washed with 100% aqueous ethanol solution, dried by ventilation at 25 ° C., and further dried at room temperature under reduced pressure (15 mbar) for 24 hours. Crystal was obtained.
  • FIG. 6 and Table 6 show the results of powder X-ray diffraction of the crystals
  • FIG. 7 shows the results of infrared spectroscopy (IR) analysis.
  • “2 ⁇ ” indicates a diffraction angle (2 ⁇ °)
  • “relative intensity” indicates a relative intensity ratio (I / I 0 ). The relative intensity ratio is 1 or more.
  • Example 7 Acquisition of crystals of HMB ornithine salt / anhydride-2 From the same method as in Reference Example 1, 4.6 L of an aqueous solution containing 280.3 g of HMB free material was obtained. 615 mL of 510 g / L ornithine aqueous solution was added to the obtained aqueous solution, and pH was adjusted to 6.2. The aqueous solution was concentrated under the conditions of 50 ° C. and 15 mbar until the weight of the concentrated solution became 696 g. While maintaining the solution at room temperature, 1.8 g of seed crystals of HMB ornithine salt / anhydride obtained according to Example 5 were added to precipitate crystals.
  • the crystal slurry is aged at room temperature for 24 hours, and then the crystals are centrifuged to collect the crystals.
  • the crystals are further vacuum-dried under conditions of 30 hPa and 40 ° C. for 24 hours to obtain 180 g of crystals. Got.
  • FIG. 8 which is the chart of the crystal obtained in Example 7 was compared with FIG. 6 which was the chart of the crystal obtained in Example 6, these did not match. Therefore, it was confirmed that the crystal had a different crystal form from the crystal obtained in Example 6.
  • Example 8 Measurement of Solubility HMB arginine salt / anhydride crystals obtained in Example 3 and HMB calcium salt / hydrate (manufactured by Tokyo Chemical Industry Co., Ltd.) were added to each other until remaining undissolved in water at room temperature. After stirring and holding, a supernatant not containing crystals was collected and the HMB concentration was measured using HPLC. The results are shown in Table 10.
  • the obtained HMB arginine salt / anhydride crystals were found to have significantly improved solubility in water as compared to the existing HMB calcium salt.
  • Example 9 HMB arginine salt crystals, HMB lysine salt crystals and phosphate buffer mixed HMB arginine salt / anhydride crystals obtained in Example 3, HMB lysine salt / anhydride crystals obtained in Example 4 HMB calcium salt and hydrate (manufactured by Tokyo Chemical Industry Co., Ltd.) were each converted into a 100 g / L solution in terms of free form and mixed with 0.2 M phosphate buffer (pH 6.80) at an arbitrary mixing ratio. The light transmittance (660 nm) of the liquid after mixing was measured to evaluate whether or not an insoluble salt was formed. The results are shown in Table 11.
  • Example 10 Mixing of HMB Arginine Salt Crystals and Sugar Amino Acid Electrolyte Infusion Preparation The final concentrations of HMB arginine salt / anhydride and HMB calcium salt / hydrate (manufactured by Tokyo Chemical Industry Co., Ltd.) obtained in Example 3 were converted to free forms.
  • Example 11 Effect on in-vivo electrolyte during administration of sugar electrolyte infusion preparation containing crystals of HMB arginine salt HMB arginine salt / anhydride and HMB calcium salt / hydrate (manufactured by Tokyo Chemical Industry Co., Ltd.) obtained in Example 3 It is mixed with a sugar electrolyte infusion preparation [Product name: Solita T3 Infusion (AY Pharma Co., Ltd.)] that does not contain phosphate ions so that the final concentration is 0 and 0.42 wt / vol% in terms of free body. Rats subjected to surgical invasion by intestinal scraping were continuously administered at a standard dose (240 mL / kg / day) for 3 days. The urine subjected to 24 hours of animal urine was collected on the final administration day, and the urinary electrolyte concentration was measured. The results are shown in Table 13 and Table 14.
  • the existing HMB calcium salt induces an increase in urinary calcium and a decrease in urinary phosphorus excretion in the mixed administration with Solita T3 infusion solution, whereas the obtained HMB arginine It has been found that crystals of salt / anhydride do not induce the above electrolyte abnormality.
  • Example 12 Sensory evaluation test-1 [Preparation of beverage (1)] 200 g of water, 6 g of HMB ornithine salt / anhydride obtained in Example 7, 4 g of maltitol (manufactured by Mitsubishi Corporation Foodtech), 120 ⁇ L of apple fragrance (manufactured by Takada Fragrance), 120 ⁇ L of sugar flavor (manufactured by Ogawa Fragrance), 200 mg of aspartame (manufactured by Ajinomoto Co.) was added and dissolved.
  • citric acid manufactured by Mitsubishi Food Specialties
  • 100 mL each was dispensed into a glass bottle, and an aluminum cap was applied.
  • the glass bottle was heated at 90 ° C. for 5 minutes and then allowed to cool at room temperature to prepare a beverage (1).
  • precipitation and turbidity were not confirmed.
  • Comparative beverage (1) was prepared in the same manner as beverage (1) except that HMB calcium salt (HMB Kyowa, manufactured by Kyowa Hakko Bio) was used instead of HMB ornithine salt / anhydride. Immediately after standing at room temperature, the presence or absence of precipitation and turbidity was visually confirmed. As a result, a large amount of white precipitate was confirmed.
  • HMB calcium salt HMB Kyowa, manufactured by Kyowa Hakko Bio
  • Comparative beverage (2) was prepared in the same manner as beverage (2) except that HMB calcium salt (HMB Kyowa, manufactured by Kyowa Hakko Bio) was used instead of HMB arginine salt / anhydride. Immediately after standing at room temperature, the presence or absence of precipitation and turbidity was visually confirmed. As a result, the same white precipitate as before heating was confirmed.
  • HMB calcium salt HMB Kyowa, manufactured by Kyowa Hakko Bio
  • crystals of HMB amino acid salt / anhydride useful as products, raw materials or intermediates for health foods, pharmaceuticals, cosmetics and the like, and a method for producing the same are provided.

Abstract

本発明は、取り扱いしやすく、溶解度の高い、HMBアミノ酸塩の結晶を提供すること、およびその製造方法を提供することを目的とする。本発明によれば、アルコール類を含む溶媒にHMBアミノ酸塩のアモルファスを溶解させ、該溶媒を静置または撹拌することにより、HMBアミノ酸塩の結晶を析出させることができる。また、pH2.5~11.0であるHMBアミノ酸塩の水溶液を濃縮することにより、HMBアミノ酸塩の結晶を析出させることができる。

Description

3-ヒドロキシイソ吉草酸アミノ酸塩の結晶及びその製造方法
 本発明は、例えば、健康食品、医薬品、化粧品等の製品、原料または中間体等として有用である3-ヒドロキシイソ吉草酸(β-hydroxy-β-methylbutyrate)(以下、HMBという)のアミノ酸塩の結晶、および該結晶の製造方法に関する。
 HMBは、例えば、健康食品、医薬品、化粧品等の製品、原料または中間体等として有用である。HMBは、体内でのロイシン代謝により得られる有機酸であり、筋肉の増強効果や分解抑制に効果があるとされている(非特許文献1および2)。
 商業上HMBは、遊離カルボン酸体またはカルシウム塩のいずれかの形態でのみ市場に流通している。特にサプリメント・健康食品用途としては、カルシウム塩がハンドリングに優れた粉末であることからカルシウム塩が使用されることがほとんどである(非特許文献3)。特許文献4には、アルギニン塩の結晶が取得されたとの記載はあるが、取得された結晶の性質に関する記載はない。
 カルシウムは体内で骨の形成、神経の働き、筋肉運動等を担う重要なミネラルである。しかしながら最近、カルシウムの過剰摂取によって、心臓血管疾患や虚血性心疾患による死亡リスクが増加することが報告されている(非特許文献4)。
国際公開第2014/166273号公報 米国特許第6,248,922号明細書 国際公開第2013/025775号公報 米国特許出願公開第2004/0176449号明細書
Journal of Applied Physiology, Vol. 81, p2095, 1996 Nutrition & Metabolism, Vol. 5, p1, 2008 Journal of the International Society of Sports Nutrition Vol. 10, p6, 2013 The BMJ., Vol. 346, p228, 2013
 調剤分野では、カルシウム塩由来のカルシウムがリン酸などの他の成分と結合して不溶性塩を作りやすく、高濃度の溶液を調製できないなどの課題がある。特許文献1-3、特許文献1、および特許文献4には、それぞれ、HMBカルシウム塩(特許文献1-3)、HMBマグネシウム塩(特許文献1)、およびHMBアルギニン塩(特許文献4)の製造方法が記載されているが、いずれの方法においても、結晶を取得することはできない。すなわち、いずれの塩形態についても結晶は知られておらず、産業上有用なHMB塩の結晶および製造方法が求められている。
 本発明の課題は、溶解性に優れ、取り扱いしやすいHMBアミノ酸塩の結晶を提供すること、およびその製造方法を提供することにある。
 本発明は、以下の(1)~(25)に関する。
(1)3-ヒドロキシイソ吉草酸(以下、HMBという)のアミノ酸塩の結晶。
(2)HMBアミノ酸塩が、HMB塩基性アミノ酸塩である、上記(1)に記載の結晶。
(3)HMB塩基性アミノ酸塩が、HMBアルギニン塩である、上記(2)に記載の結晶。
(4)HMB塩基性アミノ酸塩が、HMBリジン塩である、上記(2)に記載の結晶。
(5)HMB塩基性アミノ酸塩が、HMBオルニチン塩である、上記(2)に記載の結晶。
(6)粉末X線回折において、回折角(2θ)が、7.5±0.2°、14.5±0.2°、15.1±0.2°、19.2±0.2°および20.2±0.2°にピークを有する、上記(3)に記載の結晶。
(7)粉末X線回折において、回折角(2θ)が、さらに、11.6±0.2°、12.7±0.2°、17.9±0.2°、21.5±0.2°および23.3±0.2°にピークを有する、上記(6)に記載の結晶。
(8)粉末X線回折において、回折角(2θ)が、さらに、19.6±0.2°、21.9±0.2°、25.2±0.2°、25.5±0.2°および33.6±0.2°にピークを有する、上記(7)に記載の結晶。
(9)粉末X線回折において、回折角(2θ)が、8.5±0.2°、17.0±0.2°、18.1±0.2°、18.5±0.2°および19.5±0.2°にピークを有する、上記(4)に記載の結晶。
(10)粉末X線回折において、回折角(2θ)が、さらに、22.2±0.2°、25.5±0.2°、25.8±0.2°、26.6±0.2°および34.4±0.2°にピークを有する、上記(9)に記載の結晶。
(11)粉末X線回折において、回折角(2θ)が、さらに、4.8±0.2°、20.4±0.2°、31.0±0.2°、33.8±0.2°および36.5±0.2°にピークを有する、上記(10)に記載の結晶。
(12)粉末X線回折において、回折角(2θ)が、5.1±0.2°、14.0±0.2°、15.3±0.2°、20.4±0.2°および21.9±0.2°にピークを有する、上記(5)に記載の結晶。
(13)粉末X線回折において、回折角(2θ)が、さらに、16.4±0.2°、16.8±0.2°、19.4±0.2°、21.4±0.2°および25.5±0.2°にピークを有する、上記(12)に記載の結晶。
(14)粉末X線回折において、回折角(2θ)が、さらに、10.9±0.2°にピークを有する、上記(13)に記載の結晶。
(15)アルコール類を含む溶媒にHMBアミノ酸塩のアモルファスを溶解させる工程、該溶媒を静置または撹拌することにより、HMBアミノ酸塩の結晶を析出させる工程、および該溶媒からHMBアミノ酸塩の結晶を採取する工程、を含むHMBアミノ酸塩の結晶の製造方法。
(16)pHが2.5~11.0であるアミノ酸含有化合物を含むHMBの水溶液を濃縮することにより、HMBアミノ酸塩の結晶を析出させる工程、および該水溶液からHMBアミノ酸塩の結晶を採取する工程、を含むHMBアミノ酸塩の結晶の製造方法。
(17)HMBアミノ酸塩の結晶を析出させる工程において、さらに、アルコール類、ニトリル類およびケトン類からなる群より選ばれる少なくとも1の溶媒を添加または滴下する工程を含む、上記(16)に記載の製造方法。
(18)アルコール類が、C1~C6のアルコールからなる群より選ばれる少なくとも1のアルコール類である、上記(15)または(17)に記載の製造方法。
(19)ニトリル類が、アセトニトリルである上記(17)または(18)に記載の製造方法。
(20)ケトン類が、アセトン、メチルエチルケトン、メチルイソブチルケトンおよびジエチルケトンからなる群より選ばれる少なくとも1のケトン類である、上記(17)~(19)のいずれか1つに記載の製造方法。
(21)HMBアミノ酸塩が、HMB塩基性アミノ酸塩である、上記(15)~(20)のいずれか1つに記載の製造方法。
(22)HMB塩基性アミノ酸塩が、HMBアルギニン塩、HMBリジン塩、またはHMBオルニチン塩である、上記(21)に記載の製造方法。
(23)粉末X線回折において、回折角(2θ)が、4.9±0.2°、5.2±0.2°、5.5±0.2°、10.9±0.2°および15.5±0.2°にピークを有する、上記(5)に記載の結晶。
(24)粉末X線回折において、回折角(2θ)が、さらに、15.9±0.2°、16.4±0.2°、17.4±0.2°、19.2±0.2°および20.4±0.2°にピークを有する、上記(23)に記載の結晶。
(25)粉末X線回折において、回折角(2θ)が、さらに、20.8±0.2°、21.3±0.2°、21.8±0.2°、22.2±0.2°および22.8±0.2°にピークを有する、上記(24)に記載の結晶。
 本発明により、取り扱いしやすいHMBアミノ酸塩の結晶およびその製造方法が提供される。本発明のHMBアミノ酸塩の結晶は、HMBカルシウム塩と比較して高い溶解度を示し、不溶性の塩を作らず、電解質異常を誘発しないなど、優位性のある塩結晶である。また、本発明のHMBアミノ酸塩の結晶は、HMBカルシウム塩と比較して溶解性が高く、風味を改善する効果において優れている。
図1は、実施例2で得られた、HMBアルギニン塩・無水物の種結晶の粉末X線回折の結果を表わす。 図2は、実施例3で得られた、HMBアルギニン塩・無水物の結晶の粉末X線回折の結果を表わす。 図3は、実施例3で得られた、HMBアルギニン塩・無水物の結晶の赤外分光(IR)分析の結果を表わす。 図4は、実施例4で得られた、HMBリジン塩・無水物の結晶の粉末X線回折の結果を表わす。 図5は、実施例4で得られた、HMBリジン塩・無水物の結晶の赤外分光(IR)分析の結果を表わす。 図6は、実施例6で得られた、HMBオルニチン塩・無水物の結晶の粉末X線回折の結果を表わす。 図7は、実施例6で得られた、HMBオルニチン塩・無水物の結晶の赤外分光(IR)分析の結果を表わす。 図8は、実施例7で得られた、HMBオルニチン塩・無水物の結晶の粉末X線回折の結果を表わす。
1.本発明の結晶
 本発明の結晶は、HMBアミノ酸塩の結晶(以下、「本発明の結晶」ともいう。)である。HMBアミノ酸塩の結晶としては、好ましくはHMBの塩基性アミノ酸塩の結晶を、より好ましくは、HMBアルギニン塩の結晶、HMBリジン塩の結晶、HMBヒスチジン塩の結晶およびHMBオルニチン塩の結晶を、最も好ましくは、HMBアルギニン塩の結晶、HMBリジン塩の結晶およびHMBオルニチン塩の結晶を挙げることができる。
 本発明の結晶がHMBの結晶であることは、後述の分析例に記載のHPLCを用いた方法により確認することができる。本発明の結晶中のアミノ酸としては、L体、D体のいずれでもよいが、L体が好ましい。
 本発明の結晶がアミノ酸塩の結晶であることは、当該結晶中に含まれるアミノ酸の含量を、後述の分析例に記載のHPLCを用いて測定することにより確認することができる。
 例えば、本発明の結晶が1アルギニン塩の結晶であることは、該結晶中のアルギニン含量が、通常59.6±5.0重量%、好ましくは59.6±4.0重量%、最も好ましくは59.6±3.0重量%であることにより確認することができる。
 また、例えば、本発明の結晶が1リジン塩の結晶であることは、該結晶中のリジン含量が、通常55.3±5.0重量%、好ましくは55.3±4.0重量%、最も好ましくは55.3±3.0重量%であることにより確認することができる。
 また、例えば、本発明の結晶が1オルニチン塩の結晶であることは、該結晶中のオルニチン含量が、通常52.8±5.0重量%、好ましくは52.8±4.0重量%、最も好ましくは52.8±3.0重量%であることにより確認することができる。
 本発明の結晶が無水物の結晶であることは、後述の分析例に記載のカールフィッシャー法を用いて測定した水分含量が、通常2.5重量%以下、好ましくは2.3重量%以下、最も好ましくは2.0重量%以下であることにより確認することができる。
 HMBアルギニン塩・無水物の結晶としては、X線源としてCuKαを用いた粉末X線回折パターンが、図1および2、並びに表1および2に示す値で規定される、HMBアルギニン塩・無水物の結晶を挙げることができる。なお、図1および表1、並びに図2および表2はそれぞれのHMBアルギニン塩・無水物の結晶の回折結果に対応する。
 前記粉末X線回折パターンが図2および表2に示す値で規定されるHMBアルギニン塩・無水物の結晶としては、後述の分析例に記載の赤外(IR)分析に供した場合、図3に示す赤外吸収スペクトルを示すHMBアルギニン塩・無水物の結晶を挙げることができる。
 HMBアルギニン塩・無水物の結晶としては、具体的には、X線源としてCuKαを用いた粉末X線回折において、下記(i)に記載の回折角(2θ)にピークを有するHMBアルギニン塩・無水物の結晶が好ましく、下記(i)に記載の回折角(2θ)に加えてさらに下記(ii)に記載の回折角(2θ)にピークを有するHMBアルギニン塩・無水物の結晶がより好ましく、下記(i)および(ii)に記載の回折角(2θ)に加えてさらに下記(iii)に記載の回折角(2θ)にピークを有するHMBアルギニン塩・無水物の結晶がさらに好ましい。
(i)7.5±0.2°、好ましくは7.5±0.1°、14.5±0.2°、好ましくは14.5±0.1°、15.1±0.2°、好ましくは15.1±0.1°、19.2±0.2°、好ましくは19.2±0.1°、および20.2±0.2°、好ましくは20.2±0.1°
(ii)11.6±0.2°、好ましくは11.6±0.1°、12.7±0.2°、好ましくは12.7±0.1°、17.9±0.2°、好ましくは17.9±0.1°、21.5±0.2°、好ましくは21.5±0.1°、および23.3±0.2°、好ましくは23.3±0.1°
(iii)19.6±0.2°、好ましくは19.6±0.1°、21.9±0.2°、好ましくは21.9±0.1°、25.2±0.2°、好ましくは25.2±0.1°、25.5±0.2°、好ましくは25.5±0.1°、および33.6±0.2°、好ましくは33.6±0.1°
 HMBリジン塩・無水物の結晶としては、X線源としてCuKαを用いた粉末X線回折パターンが、図4および表4に示す値で規定される、HMBリジン塩・無水物の結晶を挙げることができる。
 前記粉末X線回折パターンが図4および表4に示す値で規定されるHMBリジン塩・無水物の結晶としては、後述の分析例に記載の赤外分光(IR)分析に供した場合、図5に示す赤外吸収スペクトルを示すHMBリジン塩・無水物の結晶を挙げることができる。
 HMBリジン塩・無水物の結晶としては、具体的には、X線源としてCuKαを用いた粉末X線回折において、下記(i)に記載の回折角(2θ)にピークを有するHMBリジン塩・無水物の結晶が好ましく、下記(i)に記載の回折角(2θ)に加えてさらに下記(ii)に記載の回折角(2θ)にピークを有するHMBリジン塩・無水物の結晶がより好ましく、下記(i)および(ii)に記載の回折角(2θ)に加えてさらに下記(iii)に記載の回折角(2θ)にピークを有するHMBリジン塩・無水物の結晶がさらに好ましい。
(i)8.5±0.2°、好ましくは8.5±0.1°、17.0±0.2°、好ましくは17.0±0.1°、18.1±0.2°、好ましくは18.1±0.1°、18.5±0.2°、好ましくは18.5±0.1°、および19.5±0.2°、好ましくは19.5±0.1°
(ii)22.2±0.2°、好ましくは22.2±0.1°、25.5±0.2°、好ましくは25.5±0.1°、25.8±0.2°、好ましくは25.8±0.1°、26.6±0.2°、好ましくは26.6±0.1°、および34.4±0.2°、好ましくは34.4±0.1°
(iii)4.8±0.2°、好ましくは4.8±0.1°、20.4±0.2°、好ましくは20.4±0.1°、31.0±0.2°、好ましくは31.0±0.1°、33.8±0.2°、好ましくは33.8±0.1°、および36.5±0.2°、好ましくは36.5±0.1°
 HMBオルニチン塩・無水物の結晶としては、X線源としてCuKαを用いた粉末X線回折パターンが、図6および表6に示す値で規定されるHMBオルニチン塩・無水物の結晶、並びに図8および表9に示す値で規定されるHMBオルニチン塩・無水物の結晶を挙げることができる。なお、図6および表6、並びに図8および表9はそれぞれのHMBオルニチン塩・無水物の結晶の回折結果に対応する。
 前記粉末X線回折パターンが図6および表6に示す値で規定されるHMBオルニチン塩・無水物の結晶としては、後述の分析例に記載の赤外分光(IR)分析に供した場合、図7に示す赤外吸収スペクトルを示すHMBオルニチン塩・無水物の結晶を挙げることができる。
 HMBオルニチン塩・無水物の結晶としては、具体的には、X線源としてCuKαを用いた粉末X線回折において、下記(i)に記載の回折角(2θ)にピークを有するHMBオルニチン塩・無水物の結晶が好ましく、下記(i)に記載の回折角(2θ)に加えてさらに下記(ii)に記載の回折角(2θ)にピークを有するHMBオルニチン塩・無水物の結晶がより好ましく、下記(i)および(ii)に記載の回折角(2θ)に加えてさらに下記(iii)に記載の回折角(2θ)にピークを有するHMBオルニチン塩・無水物の結晶がさらに好ましい。
(i)5.1±0.2°、好ましくは5.1±0.1°、14.0±0.2°、好ましくは14.0±0.1°、15.3±0.2°、好ましくは15.3±0.1°、20.4±0.2°、好ましくは20.4±0.1°、および21.9±0.2°、好ましくは21.9±0.1°
(ii)16.4±0.2°、好ましくは16.4±0.1°、16.8±0.2°、好ましくは16.8±0.1°、19.4±0.2°、好ましくは19.4±0.1°、21.4±0.2°、好ましくは21.4±0.1°、および25.5±0.2°、好ましくは25.5±0.1°
(iii)0.9±0.2°、好ましくは0.9±0.1°
 また、HMBオルニチン塩・無水物の結晶としては、具体的には、X線源としてCuKαを用いた粉末X線回折において、下記(i)に記載の回折角(2θ)にピークを有するHMBオルニチン塩・無水物の結晶が好ましく、下記(i)に記載の回折角(2θ)に加えてさらに下記(ii)に記載の回折角(2θ)にピークを有するHMBオルニチン塩・無水物の結晶がより好ましく、下記(i)および(ii)に記載の回折角(2θ)に加えてさらに下記(iii)に記載の回折角(2θ)にピークを有するHMBオルニチン塩・無水物の結晶がさらに好ましい。
(i)4.9±0.2°、好ましくは4.9±0.1°、5.2±0.2°、好ましくは5.2±0.1°、5.5±0.2°、好ましくは5.5±0.1°、10.9±0.2°好ましくは10.9±0.1°、および15.5±0.2°、好ましくは15.5±0.1°
(ii)15.9±0.2°、好ましくは15.9±0.1°、16.4±0.2°、好ましくは16.4±0.1°、17.4±0.2°、好ましくは17.4±0.1°、19.2±0.2°好ましくは19.2±0.1°、および20.4±0.2°、好ましくは20.4±0.1°
(iii)20.8±0.2°、好ましくは20.8±0.1°、21.3±0.2°、好ましくは21.3±0.1°、21.8±0.2°、好ましくは21.8±0.1°、22.2±0.2°好ましくは22.2±0.1°、および22.8±0.2°、好ましくは22.8±0.1°
2.本発明の結晶の製造方法
 本発明の結晶の製造方法は、以下の(1)または(2)に記載の製造方法(以下、「本発明の結晶の製造方法」ともいう。)である。
(1)本発明の結晶の製造方法-1
 本発明の結晶の製造方法としてはアルコール類を含む溶媒にHMBアミノ酸塩のアモルファスを溶解させる工程、該溶媒を静置または撹拌することにより、HMBアミノ酸塩の結晶を析出させる工程、および該溶媒からHMBアミノ酸塩の結晶を採取する工程、を含むHMBアミノ酸塩の結晶の製造方法を挙げることができる。
 アミノ酸としては、好ましくは塩基性アミノ酸を、より好ましくは、アルギニン、オルニチン、リジンおよびヒスチジンを、さらに好ましくは、アルギニン、オルニチンおよびリジンを、最も好ましくはアルギニンを挙げることができる。アミノ酸は、L体、D体のいずれも用いることができるが、L体が好ましい。
 アルコール類としては、好ましくはC1~C6のアルコールからなる群から選ばれる少なくとも1のアルコール類を、より好ましくはC1~C3のアルコール類からなる群から選ばれる少なくとも1のアルコール類を、さらに好ましくはメタノール、エタノール、n-プロパノールおよびイソプロピルアルコールからなる群より選ばれる少なくとも1のアルコール類を、よりさらに好ましくはメタノールおよびエタノールからなる群より選ばれる少なくとも1のアルコール類を、最も好ましくはエタノールを挙げることができる。
 前記アルコール類は、1種以上を混合して用いることができる。また、上記のアルコール類を含む溶媒には水が含有されていてもよい。アルコール類を含む溶媒の含水量としては、通常40重量%以下、好ましくは20重量%以下、さらに好ましくは10重量%以下、最も好ましくは5重量%以下を挙げることができる。
 アルコール類を含む溶媒にHMBアミノ酸塩のアモルファスを溶解させる方法としては、HMBアミノ酸塩のアモルファスを該溶媒に懸濁させた後、加熱して溶解液を得る方法、または該溶媒を濾過して濾液を得る方法を挙げることができる。
 HMBアミノ酸塩のアモルファスを前記溶媒に懸濁させた後、加熱して溶解液を得る方法における、加熱温度としては、通常0~80℃、好ましくは20~70℃、最も好ましくは40~60℃を挙げることができる。加熱時間としては、通常10分~6時間、好ましくは20分~4時間、最も好ましくは30分~2時間を挙げることができる。
 HMBアミノ酸塩のアモルファスは、後述する実施例1に記載の方法によって取得することができる。HMBアミノ酸塩のアモルファスを溶解させて得られた前記溶媒を、静置または撹拌することにより、HMBアミノ酸塩の結晶を析出させることができる。
 アルコール類を含む溶媒に溶解させるHMBアミノ酸塩のアモルファスの濃度としては、好ましくは50g/L以上、より好ましくは100g/L以上、さらに好ましくは150g/L以上を挙げることができる。
 HMBアミノ酸塩のアモルファスを溶解させたアルコール類を含む溶媒に、種晶としてHMBアミノ酸塩の結晶を添加した後に、該溶媒を静置または撹拌することにより、HMBアミノ酸塩の結晶を析出させてもよい。該種晶を該溶媒に添加することにより、析出速度を速めることができる。該種晶の該溶媒中の濃度は通常0.05~15重量%、好ましくは0.5~10重量%、最も好ましくは2~7重量%となるように添加する。
 HMBアミノ酸塩の結晶は、後述する実施例2、4、または5に記載の方法によって取得することができる。
 前記溶媒を静置または撹拌する温度としては、通常0~80℃、好ましくは5~50℃、最も好ましくは10~30℃を挙げることができる。静置または撹拌する時間としては、通常1~100時間、好ましくは3~48時間、最も好ましくは5~24時間を挙げることができる。
 前記溶媒からHMBアミノ酸塩の結晶を採取する方法としては、特に限定されないが、濾取、加圧濾過、吸引濾過または遠心分離等を挙げることができる。さらに母液の付着を低減し、結晶の品質を向上させるために、適宜、結晶を洗浄することができる。
 結晶の洗浄に用いる溶液に特に制限はないが、水、メタノール、エタノール、アセトン、n-プロパノールおよびイソプロピルアルコールから選ばれる1種類または複数種類を任意の割合で混合したものを用いることができる。
 このようにして得られた湿晶を乾燥させることにより、HMBアミノ酸塩の結晶を取得することができる。乾燥条件としては、HMBアミノ酸塩の結晶の形態を保持できる方法ならばいずれでもよく、減圧乾燥、真空乾燥、流動層乾燥または通風乾燥等を適用することができる。乾燥温度としては、付着水分や溶媒を除去できる範囲ならばいずれでもよいが、好ましくは80℃以下、より好ましくは60℃以下を挙げることができる。
 上記の晶析条件によって、高純度のHMBアミノ酸塩の結晶を取得することができる。当該結晶の純度としては、通常95%以上、好ましくは96%以上、より好ましくは97%以上、最も好ましくは97.5%以上を挙げることができる。
 上記の製造方法によって製造することができるHMBアミノ酸塩の結晶としては、例えば、X線源としてCuKαを用いた粉末X線回折パターンが、図1および2、並びに表1および2に示す値で規定されるHMBアルギニン塩・無水物の結晶を挙げることができる。
(2)本発明の結晶の製造方法-2
 本発明の結晶の製造方法としては、アミノ酸含有化合物を含むpHが2.5~11.0であるHMBの水溶液を濃縮して、HMBアミノ酸塩の結晶を該水溶液に析出させる工程、並びに該水溶液からHMBアミノ酸塩の結晶を採取する工程、を含むHMBアミノ酸塩の結晶の製造方法を挙げることができる。
 HMBの水溶液に含有されるHMBは、発酵法、酵素法、天然物からの抽出法または化学合成法等のいずれの製造方法によって製造されたものであってもよい。
 HMBの水溶液に、結晶化の障害となる固形物が含まれる場合には、遠心分離、濾過またはセラミックフィルタ等を用いて固形物を除去することができる。また、HMBの水溶液に、結晶化の障害となる水溶性の不純物や塩が含まれる場合には、イオン交換樹脂等を充填したカラムに通塔する等により、水溶性の不純物または塩を除去することができる。
 また、HMBの水溶液に、結晶化の障害となる疎水性の不純物が含まれる場合には、合成吸着樹脂または活性炭等を充填したカラムに通塔する等により、疎水性の不純物を除去することができる。該水溶液は、HMBの濃度が通常500g/L以上、好ましくは600g/L以上、より好ましくは700g/L以上、最も好ましくは800g/L以上となるように調製することができる。
 アミノ酸含有化合物としては、好ましくは塩基性アミノ酸含有化合物を、より好ましくは、アルギニン含有化合物、リジン含有化合物、オルニチン含有化合物およびヒスチジン含有化合物を、最も好ましくは、アルギニン含有化合物、リジン含有化合物およびオルニチン含有化合物を挙げることができる。アミノ酸含有化合物中のアミノ酸は、L体、D体のいずれも用いることができるが、L体が好ましい。
 アルギニン含有化合物としては、例えば、フリー体のアルギニンおよびアルギニン塩酸塩を挙げることができる。アルギニン含有化合物として、フリー体のアルギニンを用いる場合、アルギニンを使用してHMBの水溶液のpHを調整することにより、pHが通常2.5~11.0、好ましくは2.8~10.5、最も好ましくは3.0~10.0であるアルギニン含有化合物を含むHMBの水溶液を取得することができる。
 リジン含有化合物としては、例えば、フリー体のリジンおよびリジン塩酸塩を挙げることができる。リジン含有化合物として、フリー体のリジンを用いる場合、リジンを使用してHMBの水溶液のpHを調整することにより、pHが通常2.5~11.0、好ましくは2.8~10.5、最も好ましくは3.0~10.0であるリジン含有化合物を含むHMBの水溶液を取得することができる。
 オルニチン含有化合物としては、例えば、フリー体のオルニチンおよびオルニチン塩酸塩を挙げることができる。オルニチン含有化合物として、フリー体のオルニチンを用いる場合、オルニチンを使用してHMBの水溶液のpHを調整することにより、pHが通常2.5~11.0、好ましくは2.8~10.5、最も好ましくは3.0~10.0であるオルニチン含有化合物を含むHMBの水溶液を取得することができる。
 HMBの水溶液を濃縮して、該水溶液中に、HMBアミノ酸塩の結晶を析出させる方法としては、該水溶液を減圧濃縮する方法等を挙げることができる。
 HMBの水溶液を減圧濃縮する方法における、該水溶液の温度としては、通常0~100℃、好ましくは10~90℃、最も好ましくは20~60℃を挙げることができる。該水溶液を減圧濃縮する方法における、減圧時間としては、通常1~120時間、好ましくは2~60時間、最も好ましくは3~50時間を挙げることができる。
 HMBアミノ酸塩の結晶を該水溶液に析出させる工程においては、HMBの水溶液中にHMBアミノ酸塩の結晶を種晶として添加してもよい。種晶の水溶液中の濃度は、通常0.05~15重量%、好ましくは0.5~10重量%、最も好ましくは2~7重量%となるように添加する。HMBアミノ酸塩の結晶は、具体的には例えば、後述する実施例2、4または5に記載の方法によって取得することができる。
 HMBアミノ酸塩の結晶を該水溶液に析出させる工程においては、HMBの水溶液中にアルコール類、ニトリル類およびケトン類からなる群より選ばれる少なくとも1の溶媒を添加または滴下することにより、HMBアミノ酸塩の結晶を析出させてもよい。アルコール類、ニトリル類およびケトン類は1種類を単独で用いてもよいし、複数種を組み合わせて用いてもよい。
 さらに、前記溶媒を添加または滴下する際、HMBアミノ酸塩の結晶が析出する前に、前記種晶を添加してもよい。前記種晶を添加する時間としては該溶媒の滴下または添加を開始してから、通常0~5時間以内、好ましくは0~4時間以内、最も好ましくは0~3時間以内を挙げることができる。また、HMBの水溶液中に該溶媒を添加または滴下する前に、前記種晶を添加してもよい。
 アルコール類としては、上記2.(1)に記載と同じ例を挙げることができる。ニトリル類としては、好ましくはアセトニトリルを挙げることができる。ケトン類としては、好ましくはアセトン、メチルエチルケトン、メチルイソブチルケトンおよびジエチルケトンからなる群より選ばれる少なくとも1のケトン類を、より好ましくは、アセトンおよびメチルエチルケトンからなる群より選ばれる少なくとも1のケトン類を、最も好ましくはアセトンを挙げることができる。
 HMBの水溶液に前記溶媒を添加または滴下するときの該水溶液の温度としては、HMBが分解しない温度であればいずれの温度でもよいが、溶解度を下げてHMBアミノ酸塩・無水物の結晶の結晶化率を向上させるために、通常80℃以下、好ましくは70℃以下、より好ましくは60℃以下、最も好ましくは50℃以下を挙げることができる。温度の下限値としては、通常0℃以上、好ましくは10℃以上を挙げることができる。
 HMBの水溶液に前記溶媒を添加または滴下する量としては、該水溶液の通常0.5~30倍量、好ましくは0.5~25倍量、最も好ましくは0.5~10倍量を挙げることができる。
 HMBの水溶液に前記溶媒を添加または滴下する時間としては、通常30分~48時間、好ましくは2~30時間、最も好ましくは3~20時間を挙げることができる。
 上記のようにしてHMBアミノ酸塩の結晶を析出させた後、さらに析出した結晶を通常1~48時間、好ましくは1~24時間、最も好ましくは1~12時間熟成させることができる。熟成させるとは、HMBアミノ酸塩・無水物の結晶を析出させる工程を一旦停止して、結晶を成長させることをいう。結晶を熟成させた後は、HMBアミノ酸塩の結晶を析出させる工程を再開してもよい。
 HMBアミノ酸塩の結晶を採取する方法としては、特に限定されないが、例えば、濾取、加圧濾過、吸引濾過および遠心分離等を挙げることができる。さらに母液の付着を低減し、結晶の品質を向上させるために、適宜、結晶を洗浄することができる。
 結晶の洗浄に用いる溶液に特に制限はないが、水、メタノール、エタノール、アセトン、n-プロパノール、イソプロピルアルコール、アセトニトリル、アセトン、メチルエチルケトン、メチルイソブチルケトンおよびジエチルケトンから選ばれる1種類または複数種類を任意の割合で混合したものを用いることができる。
 このようにして得られた湿晶を乾燥させることにより、HMBアミノ酸塩の結晶を取得することができる。乾燥条件としては、減圧乾燥、真空乾燥、流動層乾燥または通風乾燥を適用することができる。乾燥温度としては、付着水分や溶媒を除去できる範囲ならばいずれでもよいが、好ましくは80℃以下、より好ましくは60℃以下を挙げることができる。
 上記の晶析条件によって、高純度のHMBアミノ酸塩の結晶を取得することができる。HMBアミノ酸塩の結晶の純度としては、通常93%以上、好ましくは94%以上、より好ましくは95%以上、最も好ましくは96%以上を挙げることができる。
 上記の製造方法によって製造することができるHMBアミノ酸塩の結晶としては、例えば、X線源としてCuKαを用いた粉末X線回折パターンが、図4および表4に示す値で規定されるHMBリジン塩・無水物の結晶、図6および表6に示す値で規定されるHMBオルニチン塩・無水物の結晶、並びに図8および表9に示す値で規定されるHMBオルニチン塩・無水物の結晶を挙げることができる。
[分析例]
(1)粉末X線回折
 粉末X線回折装置(XRD)Ultima IV(リガク社製)を用い、測定は使用説明書に従って行った。
(2)濃度・純度測定
 以下のHPLC分析条件を用いてHMB濃度および各種塩の純度を測定した。
ガードカラムShodex SUGAR SH-G φ6.0×50mm
カラム:SUGAR SH1011 φ8.0×300mm×2本直列
カラム温度:60℃
緩衝液:0.005mol/Lの硫酸水溶液
流速:0.6mL/min
検出器:UV検出器(波長210nm)
(3)カールフィッシャー法による結晶の水分含量の測定
 自動水分測定装置AQV-2200(平沼産業社製)を用い、使用説明書に従って、結晶の水分含量を測定した。
(4)結晶のアミノ酸含量の測定
 蛍光検出器を有するHPLCを用いてアミノ酸含量をフタルアルデヒド(OPA)法で測定した。
(5)融点の測定
 Melting Point M-565(BUCHI社製)を用い、使用説明書に従って、以下の条件を用いて融点を測定した。
100℃~250℃、2℃/min
(6)赤外分光(IR)分析
 FTIR-8400型(島津製作所製)を用い、使用説明書に従って行った。
[参考例1]
HMBフリー体溶液の作製
 フリー体換算で76.5gの試薬HMBカルシウム塩を850mLの水に溶解させた。該水溶液を、640mLの強カチオン性交換樹脂XUS-40232.01(H)(ダウケミカル社製)に通液して脱Caを行い、HMBフリー体76.4gを含有する溶液1.25Lを取得した。
[参考例2]
HMBアルギニン塩の結晶化検討
 米国特許出願公開第2004/0176449号明細書の記載を参考にHMBアルギニン塩の結晶化を試みた。参考例1と同様の手法からHMBフリー体2.31gを含有する水溶液48mLを取得した。得られた水溶液を濃縮して12mLとした後、イソブタノール24mLを添加し、さらにアルギニンフリー体2.41gを添加して室温下で1時間撹拌したところ、白色透明の溶液が二相で得られた。水相のみを取得して水相を50℃、15mbar条件下で20時間濃縮したところ、白色の析出物が6.5g得られた。当該粉末を偏光顕微鏡で観察したところ、偏光を示さない無定形のアメ状固体であることが確認され、非結晶性アモルファスであることがわかった(融点:98~126℃、10℃/min)。以上より、米国特許出願公開第2004/0176449号明細書記載の方法ではHMBアルギニン塩の結晶は得られなかった。
 以下に実施例を示すが、本発明は下記実施例に限定されるものではない。
[実施例1]
HMBアルギニン塩の非結晶アモルファスの取得
 参考例1で得られたHMBフリー体水溶液200mLに、128g/LのL-アルギニン水溶液を160mL加え、pHを7.05に調整した。得られた水溶液を次の工程に供した。
 当該水溶液360mLを50℃、15mbar下で減圧濃縮し、溶媒を除去することによって31.1gの白色の粉末を得た。当該粉末を偏光顕微鏡で観察したところ、偏光を示さなかったことから、当該粉末は非結晶性アモルファスであるであることがわかった。
[実施例2]
HMBアルギニン塩・無水物の種結晶の取得
 参考例1で得られたHMBアルギニン塩の非結晶性アモルファス150mgに、100%-EtOHを1.5mL加え、50℃に加熱して完全に溶解させた。
 当該水溶液を25℃にて12時間撹拌することによって、結晶を自然起晶させた。当該結晶スラリーをさらに12時間熟成させた後に当該結晶を濾取し、25℃にて12時間通風乾燥させることにより、60mgの結晶を得た。
 当該結晶の粉末X線回折の結果を図1および表1に示す。表中、「2θ」は回折角(2θ°)を、「相対強度」は、相対強度比(I/I)を示す。また、相対強度比は1以上を表示する。
Figure JPOXMLDOC01-appb-T000001
[実施例3]
HMBアルギニン塩・無水物の結晶の取得
 参考例1で得られたHMBアルギニン塩の非結晶性アモルファス27.8gに、100%-EtOHを160mL加え、50℃に加熱して完全に溶解させた。
 当該水溶液に、実施例2に従って得られるHMBアルギニン塩の種結晶を0.1g添加し、結晶を起晶させた。当該結晶スラリーを25℃にて12時間撹拌し、熟成させた後に当該結晶を濾取し、25℃にて通風乾燥させることにより23.6gの結晶を得た。
 得られた結晶のうち11.6gをさらに減圧(15mbar)下、40℃にて24時間乾燥させることにより、9.0gの結晶を得た。HPLCによる純度測定では97.8%(面積%)以上のHMBアルギニン塩・無水物の結晶を取得することができた。
 当該結晶の粉末X線回折の結果を図2および表2に、赤外分光(IR)分析の結果を図3に示す。表中、「2θ」は回折角(2θ°)を、「相対強度」は、相対強度比(I/I)を示す。また、相対強度比は5以上を表示する。
Figure JPOXMLDOC01-appb-T000002
 当該結晶のL-アルギニン含量をHPLCにより測定した結果、61.7重量%であり、1アルギニン塩の理論値(59.6重量%)とほぼ一致した。また、当該結晶に含まれる水分量をカールフィッシャー法により測定した結果、0.5重量%であった。
 以上から、当該結晶はHMBアルギニン塩・無水物の結晶であることがわかった。実施例3で取得した結晶の各種物性を表3に示す。
Figure JPOXMLDOC01-appb-T000003
[実施例4]
HMBリジン塩・無水物の結晶の取得
 参考例1で得られたHMBフリー体水溶液200mLに、200g/LのL-リジン水溶液を94mL加え、pHを6.03に調整した。得られた水溶液を次の工程に供した。当該水溶液を50℃、15mbar条件下で濃縮液重量が33.4gとなるまで濃縮したところ、結晶が自然起晶し、白色のスラリーが得られた。該スラリーにアセトニトリル20mLを加え、50℃にて1時間撹拌して熟成させた後に、当該結晶を濾取した。
 得られた結晶をアセトニトリル20mLで洗浄した後、減圧(15mbar)下、40℃にて24時間乾燥させることにより、5.0gの結晶を得た。HPLCによる純度測定では97.4%(面積%)以上のHMBリジン塩・無水物の結晶を取得することができた。
 当該結晶の粉末X線回折の結果を図4および表4に、赤外分光(IR)分析の結果を図5に示す。表中、「2θ」は回折角(2θ°)を、「相対強度」は、相対強度比(I/I)を示す。また、相対強度比は2以上を表示する。
Figure JPOXMLDOC01-appb-T000004
 当該結晶のL-リジン含量をHPLCにより測定した結果、54.8重量%であり、1リジン塩の理論値(55.3重量%)とほぼ一致した。また、当該結晶に含まれる水分量をカールフィッシャー法により測定した結果、0.1重量%であった。
 以上から、当該結晶はHMBリジン塩・無水物の結晶であることがわかった。実施例4で取得した結晶の各種物性を表5に示す。
Figure JPOXMLDOC01-appb-T000005
[実施例5]
HMBオルニチン塩・無水物の種結晶の取得
 参考例1で得られたHMBフリー体水溶液20mLに、510g/LのL-オルニチン水溶液を加え、pHを7.80に調整した。得られた水溶液を次の工程に供した。当該水溶液を50℃、15mbar条件下で濃縮したところ、白色の析出物が2.8g得られた。当該粉末を偏光顕微鏡で観察したところ、偏光を示したことから、当該粉末は結晶であることがわかった。
[実施例6]
HMBオルニチン塩・無水物の結晶の取得-1
 参考例1で得られたHMBフリー体水溶液20mLに、510g/LのL-オルニチン水溶液を2.1mL加え、pHを7.08に調整した。得られた水溶液を次の工程に供した。当該水溶液を50℃、15mbar条件下で濃縮液重量が3.9gとなるまで濃縮した後、実施例5に従って得られるHMBオルニチン塩・無水物の種結晶を0.1g添加した後、9mLの100%-エタノールを30分間かけて滴下添加し、結晶を析出させた。
 結晶スラリーを12時間熟成させた後に当該結晶を濾取し、100%エタノール水溶液で洗浄した後、25℃にて通風乾燥させ、さらに減圧(15mbar)下、室温で24時間乾燥させることにより、250mgの結晶を得た。
 HPLCによる純度測定では96.3%(面積%)以上のHMBオルニチン塩・無水物の結晶を取得することができた。当該結晶の粉末X線回折の結果を図6および表6に、赤外分光(IR)分析の結果を図7に示す。表中、「2θ」は回折角(2θ°)を、「相対強度」は、相対強度比(I/I)を示す。また、相対強度比は1以上を表示する。
Figure JPOXMLDOC01-appb-T000006
 当該結晶のL-オルニチン含量をHPLCにより測定した結果、53.6重量%であり、1オルニチン塩の理論値(52.8重量%)とほぼ一致した。また、当該結晶に含まれる水分量をカールフィッシャー法により測定した結果、2.0重量%であった。
 以上から、当該結晶はHMBオルニチン塩・無水物の結晶であることがわかった。実施例6で取得した結晶の各種物性を表7に示す。
Figure JPOXMLDOC01-appb-T000007
[実施例7]
HMBオルニチン塩・無水物の結晶の取得-2
 参考例1と同様の手法からHMBフリー体280.3gを含有する水溶液4.6Lを取得した。得られた水溶液を510g/Lのオルニチン水溶液を615mL加え、pHを6.2に調整した。当該水溶液を50℃、15mbar条件下で濃縮液重量が696gとなるまで濃縮した。当該溶液を室温下に維持しつつ、実施例5に従って得られるHMBオルニチン塩・無水物の種結晶1.8gを添加し、結晶を析出させた。結晶スラリーを室温下で24時間熟成させた後に当該結晶を遠心分離することにより結晶を濾取し、さらに当該結晶を30hPa、40℃の条件下にて24時間真空乾燥させることにより、180gの結晶を得た。
 当該結晶のオルニチン含量をHPLCにより測定した結果、51.6重量%であり、1オルニチン塩の理論値(52.8重量%)とほぼ一致した。また、当該結晶に含まれる水分量をカールフィッシャー法により測定した結果、0.5重量%であった。
 以上から、当該結晶はHMBオルニチン塩・無水物の結晶であることがわかった。実施例7で取得した結晶の各種物性を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 当該結晶の粉末X線回折の結果を図8および表9に示す。表中、「2θ」は回折角(2θ°)を、「相対強度」は、相対強度比(I/I)を示す。また、相対強度比は2以上を表示する。
Figure JPOXMLDOC01-appb-T000009
 実施例7で取得した結晶のチャート図である図8と実施例6で取得した結晶のチャート図である図6とを比較したところ、これらは一致しなかった。よって、当該結晶は、実施例6で取得した結晶と異なる結晶形であることが確認された。
[実施例8]
溶解度の測定
 実施例3で得られたHMBアルギニン塩・無水物の結晶、HMBカルシウム塩・水和物(東京化成工業社製)を室温下で水に溶け残るまでそれぞれ添加し、十分な時間、撹拌保持した後、結晶を含まない上澄み液を採取し、HPLCを用いてHMB濃度を測定した。その結果を表10に示す。
Figure JPOXMLDOC01-appb-T000010
 表10に示すように、取得したHMBアルギニン塩・無水物の結晶は、既存のHMBカルシウム塩と比較して水に対する溶解度が大幅に向上することがわかった。
[実施例9]
HMBアルギニン塩の結晶、HMBリジン塩の結晶とリン酸緩衝液との混合
 実施例3で得られたHMBアルギニン塩・無水物の結晶、実施例4で得られたHMBリジン塩・無水物の結晶、HMBカルシウム塩・水和物(東京化成工業社製)をそれぞれフリー体換算で100g/L溶液とし、0.2Mのリン酸緩衝液(pH6.80)と任意の混合比率で混合した。混合した後の液の光透過率(660nm)を測定し、不溶性塩の形成有無を評価した。その結果を表11に示す。
Figure JPOXMLDOC01-appb-T000011
 表11に示すように、リン酸緩衝液との混合において、既存のHMBカルシウム塩は不溶性の塩を生成するのに対して、取得したHMBアルギニン塩・無水物およびHMBリジン塩・無水物の結晶は、不溶性塩を形成しないことがわかった。
[実施例10]
HMBアルギニン塩の結晶と糖アミノ酸電解質輸液製剤との混合
 実施例3で得られたHMBアルギニン塩・無水物、HMBカルシウム塩・水和物(東京化成工業社製)をそれぞれフリー体換算で終濃度0、0.11、0.21および0.42重量/体積%となるよう、末梢静脈栄養用糖アミノ酸電解質輸液製剤[pH約6.7、製品名:アミノフリード輸液(株式会社大塚製薬工場)]に混合した直後及び室温放置24時間後の光透過率T%(660nm)を紫外可視分光光度計により測定し、不溶性塩の形成の有無を評価した。その結果を表12に示す。
Figure JPOXMLDOC01-appb-T000012
 表12に示すように、アミノフリード輸液との混合において、既存のHMBカルシウム塩では不溶性塩を形成するのに対して、取得したHMBアルギニン塩・無水物は、不溶性塩を形成しないことがわかった。
[実施例11]
HMBアルギニン塩の結晶を含有する糖電解質輸液製剤投与時の体内電解質への影響
 実施例3で得られたHMBアルギニン塩・無水物、HMBカルシウム塩・水和物(東京化成工業社製)をそれぞれフリー体換算で終濃度0および0.42重量/体積%となるよう、リン酸イオンを含まない、糖電解質輸液製剤[製品名:ソリタT3号輸液(エイワイファーマ株式会社)]に混合し、腸管擦過術により手術侵襲を加えたラットに対して標準的用量(240mL/kg/日)で3日間持続投与した。最終投与日に24時間の畜尿を行った尿を採取し、尿中電解質濃度を測定した。その結果を表13および表14に示す。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 表13および表14に示すように、ソリタT3号輸液との混合投与において、既存のHMBカルシウム塩は尿中カルシウムの上昇及び尿中リン排泄の減少を誘発するのに対して、取得したHMBアルギニン塩・無水物の結晶は、上記の電解質異常を誘発しないことが分かった。
[実施例12]
官能評価試験-1
〔飲料(1)の調製〕
 水200mLに実施例7で得られたHMBオルニチン塩・無水物6g、マルチトール(三菱商事フードテック社製)4g、りんご香料(高田香料社製)120μL、シュガーフレーバー(小川香料社製)120μL、アスパルテーム(味の素社製)200mgを加えて溶解させた。その溶液に、クエン酸(三菱フードスペシャリティーズ社製)を適量加えてpH3.70に調整後、100mLずつガラス瓶に分注し、アルミキャップを施した。該ガラス瓶を90℃にて5分間加熱した後、室温放置にて冷却し、飲料(1)を作製した。室温放置した直後に沈殿及び濁りの有無を目視で確認した結果、沈殿及び濁りは確認されなかった。
〔比較飲料(1)の調製〕
 HMBオルニチン塩・無水物の代わりにHMBカルシウム塩(HMB協和、協和発酵バイオ社製)を用いた以外は、飲料(1)と同様にして比較飲料(1)を調製した。室温放置した直後に沈殿及び濁りの有無を目視で確認した。その結果、大量の白色沈殿が確認された。
 上記飲料(1)および比較飲料(1)の風味のどちらが好ましいかを、8名のパネリストが二点識別法にて評価した。その結果、8名中8名が、飲料(1)の方が比較飲料(1)よりも明らかに風味が好ましいと評価した。この結果から、取得したHMBオルニチン塩は、HMBカルシウム塩と比較して、溶解性および風味を改善する効果において優れていることがわかった。
[実施例13]
官能評価試験-2
〔飲料(2)の調製〕
 水200mLに実施例3で得られたHMBアルギニン塩・無水物6g、マルチトール(三菱商事フードテック社製)4g、カシス香料(小川香料社製)120μL、糖蜜フレーバー(三井製糖社製)60mg、ステビア(物産フードサイエンス社製)200mgを加えて溶解させた。その溶液に、75%リン酸(大洋化学工業社製)を適量加えてpH3.70に調整後、100mLずつガラス瓶に分注し、アルミキャップを施した。該ガラス瓶を90℃にて5分間加熱した後、室温放置にて冷却し、直後に沈殿及び濁りの有無を目視で確認した。その結果、沈殿及び濁りは確認されなかった。
〔比較飲料(2)の調製〕
 HMBアルギニン塩・無水物の代わりにHMBカルシウム塩(HMB協和、協和発酵バイオ社製)を用いた以外は、飲料(2)と同様にして比較飲料(2)を調製した。室温放置した直後に沈殿及び濁りの有無を目視で確認した。その結果、加熱前と同様の白色沈殿が確認された。
 飲料(2)と比較飲料(2)の風味のどちらが好ましいかを、8名のパネリストが二点識別法にて評価した。その結果、8名中8名が、飲料(2)の方が比較飲料(2)よりも明らかに風味が好ましいと評価した。この結果から、取得したHMBアルギニン塩は、HMBカルシウム塩と比較して、溶解性および風味を改善する効果において優れていることがわかった。
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。なお、本出願は、2016年6月24日付けで出願された日本特許出願(特願2016-125280)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
 本発明により、例えば、健康食品、医薬品、化粧品等の製品、原料または中間体等として有用であるHMBアミノ酸塩・無水物の結晶、およびその製造方法が提供される。

Claims (25)

  1.  3-ヒドロキシイソ吉草酸(以下、HMBという)のアミノ酸塩の結晶。
  2.  HMBアミノ酸塩が、HMB塩基性アミノ酸塩である、請求項1に記載の結晶。
  3.  HMB塩基性アミノ酸塩が、HMBアルギニン塩である、請求項2に記載の結晶。
  4.  HMB塩基性アミノ酸塩が、HMBリジン塩である、請求項2に記載の結晶。
  5.  HMB塩基性アミノ酸塩が、HMBオルニチン塩である、請求項2に記載の結晶。
  6.  粉末X線回折において、回折角(2θ)が、7.5±0.2°、14.5±0.2°、15.1±0.2°、19.2±0.2°および20.2±0.2°にピークを有する、請求項3に記載の結晶。
  7.  粉末X線回折において、回折角(2θ)が、さらに、11.6±0.2°、12.7±0.2°、17.9±0.2°、21.5±0.2°および23.3±0.2°にピークを有する、請求項6に記載の結晶。
  8.  粉末X線回折において、回折角(2θ)が、さらに、19.6±0.2°、21.9±0.2°、25.2±0.2°、25.5±0.2°および33.6±0.2°にピークを有する、請求項7に記載の結晶。
  9.  粉末X線回折において、回折角(2θ)が、8.5±0.2°、17.0±0.2°、18.1±0.2°、18.5±0.2°および19.5±0.2°にピークを有する、請求項4に記載の結晶。
  10.  粉末X線回折において、回折角(2θ)が、さらに、22.2±0.2°、25.5±0.2°、25.8±0.2°、26.6±0.2°および34.4±0.2°にピークを有する、請求項9に記載の結晶。
  11.  粉末X線回折において、回折角(2θ)が、さらに、4.8±0.2°、20.4±0.2°、31.0±0.2°、33.8±0.2°および36.5±0.2°にピークを有する、請求項10に記載の結晶。
  12.  粉末X線回折において、回折角(2θ)が、5.1±0.2°、14.0±0.2°、15.3±0.2°、20.4±0.2°および21.9±0.2°にピークを有する、請求項5に記載の結晶。
  13.  粉末X線回折において、回折角(2θ)が、さらに、16.4±0.2°、16.8±0.2°、19.4±0.2°、21.4±0.2°および25.5±0.2°にピークを有する、請求項12に記載の結晶。
  14.  粉末X線回折において、回折角(2θ)が、さらに、10.9±0.2°にピークを有する、請求項13に記載の結晶。
  15.  アルコール類を含む溶媒にHMBアミノ酸塩のアモルファスを溶解させる工程、該溶媒を静置または撹拌することにより、HMBアミノ酸塩の結晶を析出させる工程、および該溶媒からHMBアミノ酸塩の結晶を採取する工程、を含むHMBアミノ酸塩の結晶の製造方法。
  16.  pHが2.5~11.0であるアミノ酸含有化合物を含むHMBの水溶液を濃縮することにより、HMBアミノ酸塩の結晶を析出させる工程、および該水溶液からHMBアミノ酸塩の結晶を採取する工程、を含むHMBアミノ酸塩の結晶の製造方法。
  17.  HMBアミノ酸塩の結晶を析出させる工程において、さらに、アルコール類、ニトリル類およびケトン類からなる群より選ばれる少なくとも1の溶媒を添加または滴下する工程を含む、請求項16に記載の製造方法。
  18.  アルコール類が、C1~C6のアルコールからなる群より選ばれる少なくとも1のアルコール類である、請求項15または17に記載の製造方法。
  19.  ニトリル類が、アセトニトリルである請求項17または18に記載の製造方法。
  20.  ケトン類が、アセトン、メチルエチルケトン、メチルイソブチルケトンおよびジエチルケトンからなる群より選ばれる少なくとも1のケトン類である、請求項17~19のいずれか1項に記載の製造方法。
  21.  HMBアミノ酸塩が、HMB塩基性アミノ酸塩である、請求項15~20のいずれか1項に記載の製造方法。
  22.  HMB塩基性アミノ酸塩が、HMBアルギニン塩、HMBリジン塩、またはHMBオルニチン塩である、請求項21に記載の製造方法。
  23.  粉末X線回折において、回折角(2θ)が、4.9±0.2°、5.2±0.2°、5.5±0.2°、10.9±0.2°および15.5±0.2°にピークを有する、請求項5に記載の結晶。
  24.  粉末X線回折において、回折角(2θ)が、さらに、15.9±0.2°、16.4±0.2°、17.4±0.2°、19.2±0.2°および20.4±0.2°にピークを有する、請求項23に記載の結晶。
  25.  粉末X線回折において、回折角(2θ)が、さらに、20.8±0.2°、21.3±0.2°、21.8±0.2°、22.2±0.2°および22.8±0.2°にピークを有する、請求項24に記載の結晶。
PCT/JP2017/023174 2016-06-24 2017-06-23 3-ヒドロキシイソ吉草酸アミノ酸塩の結晶及びその製造方法 WO2017222043A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
CN201780038774.5A CN109476578A (zh) 2016-06-24 2017-06-23 3-羟基异戊酸氨基酸盐的晶体及其制造方法
CA3028608A CA3028608A1 (en) 2016-06-24 2017-06-23 Crystal of amino acid salt of 3-hydroxyisovaleric acid and production method thereof
RU2018145506A RU2018145506A (ru) 2016-06-24 2017-06-23 Кристаллическая аминокислотная соль 3-гидроксиизовалериановой кислоты и способ ее получения
EP17815508.1A EP3476825A4 (en) 2016-06-24 2017-06-23 BETA-HYDROXY BETA-METHYLBUTYRIC ACID AMINO ACID SALT CRYSTAL AND METHOD FOR PRODUCING THE SAME
JP2018524179A JP7144320B2 (ja) 2016-06-24 2017-06-23 3-ヒドロキシイソ吉草酸アミノ酸塩の結晶及びその製造方法
SG11201811493UA SG11201811493UA (en) 2016-06-24 2017-06-23 Crystal of amino acid salt of 3-hydroxyisovaleric acid and production method thereof
US16/311,061 US11098007B2 (en) 2016-06-24 2017-06-23 Crystal of amino acid salt of 3-hydroxyisovaleric acid and production method thereof
AU2017282515A AU2017282515A1 (en) 2016-06-24 2017-06-23 Crystal of β-hydroxy β-methylbutyric acid amino acid salt and production method therefor
KR1020197001526A KR20190028441A (ko) 2016-06-24 2017-06-23 3-히드록시이소발레르산의 아미노산염의 결정 및 그 제조 방법
PH12018502693A PH12018502693A1 (en) 2016-06-24 2018-12-19 Crystal of amino acid salt of 3-hydroxyisovaleric acid and production method thereof
US17/190,981 US20210261493A1 (en) 2016-06-24 2021-03-03 Crystal of amino acid salt of 3-hydroxyisovaleric acid and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016125280 2016-06-24
JP2016-125280 2016-06-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/311,061 A-371-Of-International US11098007B2 (en) 2016-06-24 2017-06-23 Crystal of amino acid salt of 3-hydroxyisovaleric acid and production method thereof
US17/190,981 Continuation US20210261493A1 (en) 2016-06-24 2021-03-03 Crystal of amino acid salt of 3-hydroxyisovaleric acid and production method thereof

Publications (1)

Publication Number Publication Date
WO2017222043A1 true WO2017222043A1 (ja) 2017-12-28

Family

ID=60784321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023174 WO2017222043A1 (ja) 2016-06-24 2017-06-23 3-ヒドロキシイソ吉草酸アミノ酸塩の結晶及びその製造方法

Country Status (11)

Country Link
US (2) US11098007B2 (ja)
EP (1) EP3476825A4 (ja)
JP (1) JP7144320B2 (ja)
KR (1) KR20190028441A (ja)
CN (1) CN109476578A (ja)
AU (1) AU2017282515A1 (ja)
CA (1) CA3028608A1 (ja)
PH (1) PH12018502693A1 (ja)
RU (1) RU2018145506A (ja)
SG (1) SG11201811493UA (ja)
WO (1) WO2017222043A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108558707A (zh) * 2018-04-13 2018-09-21 太仓运通新材料科技有限公司 一种三肌酸hmb盐的制备方法
US10647653B2 (en) 2015-11-19 2020-05-12 Kyowa Hakko Bio Co., Ltd. Crystal of monovalent cation salt of 3-hydroxyisovaleric acid and process for producing the crystal

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57128653A (en) * 1981-02-03 1982-08-10 Mitsubishi Gas Chem Co Inc Preparation of alpha-oxyisobutyric acid
JPS58201746A (ja) * 1982-02-23 1983-11-24 ソルヴエイ・エ・コムパニ− 3−ヒドロキシブタン酸またはこの酸から誘導された塩を含有する薬剤組成物、および3−ヒドロキシブタン酸から誘導され、医薬として使用できる化合物
US6248922B1 (en) 1996-07-19 2001-06-19 Met-Rx Usa Inc. Process for manufacturing 3-hydroxy-3-Methylbutanoic acid
CN1434025A (zh) * 2003-02-21 2003-08-06 华东师范大学 3-羟基-3-甲基丁酸(hmb)氨基酸盐制备方法
US20040176449A1 (en) 2003-03-04 2004-09-09 Sal Abraham Process for preparing a 3-hydroxy-3-methylbutyrate amino acid salt and method of use.
WO2013025775A1 (en) 2011-08-15 2013-02-21 Abbott Laboratories Process for manufacturing hmb and salts thereof
WO2014166273A1 (zh) 2013-04-12 2014-10-16 技源科技(中国)有限公司 一种β−羟基−β−甲基丁酸的纯化方法
JP2016125280A (ja) 2015-01-06 2016-07-11 日精株式会社 循環式駐車装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ256300A (en) 1992-09-16 1997-06-24 Univ Iowa State Res Found Inc Administration of beta-hydroxy-beta-methyl butyric acid, or its convertible forms, to lower cholesterol levels
US6031000A (en) 1998-06-23 2000-02-29 Iowa State University Research Foundation, Inc. Composition comprising β-hydroxy-β-methylbutyric acid and at least one amino acid and methods of use
DE10032017A1 (de) 2000-07-01 2002-01-10 Clariant Gmbh Verfahren zur Herstellung hochreiner Formylphenylboronsäuren
AU2002338953B2 (en) 2001-05-18 2006-06-29 Lonza Ag Method for the production of solid formulations of sodium 3-hydroxy-3-methylbutyrate
ES2804540T3 (es) 2011-02-14 2021-02-08 Concert Pharmaceuticals Inc Análogos deuterados de ácido 4–hidroxibutírico
JP2015028006A (ja) 2013-06-27 2015-02-12 日産化学工業株式会社 イソキサゾリン化合物の結晶性多形体およびその製造方法
CN108473411B (zh) 2015-11-19 2022-08-12 协和发酵生化株式会社 3-羟基异戊酸的一价阳离子盐的晶体及该晶体的制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57128653A (en) * 1981-02-03 1982-08-10 Mitsubishi Gas Chem Co Inc Preparation of alpha-oxyisobutyric acid
JPS58201746A (ja) * 1982-02-23 1983-11-24 ソルヴエイ・エ・コムパニ− 3−ヒドロキシブタン酸またはこの酸から誘導された塩を含有する薬剤組成物、および3−ヒドロキシブタン酸から誘導され、医薬として使用できる化合物
US6248922B1 (en) 1996-07-19 2001-06-19 Met-Rx Usa Inc. Process for manufacturing 3-hydroxy-3-Methylbutanoic acid
CN1434025A (zh) * 2003-02-21 2003-08-06 华东师范大学 3-羟基-3-甲基丁酸(hmb)氨基酸盐制备方法
US20040176449A1 (en) 2003-03-04 2004-09-09 Sal Abraham Process for preparing a 3-hydroxy-3-methylbutyrate amino acid salt and method of use.
WO2013025775A1 (en) 2011-08-15 2013-02-21 Abbott Laboratories Process for manufacturing hmb and salts thereof
WO2014166273A1 (zh) 2013-04-12 2014-10-16 技源科技(中国)有限公司 一种β−羟基−β−甲基丁酸的纯化方法
JP2016125280A (ja) 2015-01-06 2016-07-11 日精株式会社 循環式駐車装置

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BMJ., vol. 346, 2013, pages 228
JOURNAL OF APPLIED PHYSIOLOGY, vol. 81, 1996, pages 2095
JOURNAL OF THE INTERNATIONAL SOCIETY OF SPORTS NUTRITION, vol. 10, no. 6, 2013
NUTRITION & METABOLISM, vol. 5, 2008, pages 1
See also references of EP3476825A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10647653B2 (en) 2015-11-19 2020-05-12 Kyowa Hakko Bio Co., Ltd. Crystal of monovalent cation salt of 3-hydroxyisovaleric acid and process for producing the crystal
CN108558707A (zh) * 2018-04-13 2018-09-21 太仓运通新材料科技有限公司 一种三肌酸hmb盐的制备方法

Also Published As

Publication number Publication date
AU2017282515A1 (en) 2019-01-17
CA3028608A1 (en) 2017-12-28
PH12018502693A1 (en) 2019-10-14
US20190210958A1 (en) 2019-07-11
EP3476825A4 (en) 2020-02-26
JP7144320B2 (ja) 2022-09-29
US11098007B2 (en) 2021-08-24
JPWO2017222043A1 (ja) 2019-06-20
EP3476825A1 (en) 2019-05-01
KR20190028441A (ko) 2019-03-18
US20210261493A1 (en) 2021-08-26
RU2018145506A (ru) 2020-07-27
SG11201811493UA (en) 2019-01-30
CN109476578A (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
CN109134459B (zh) 吡咯喹啉醌二钠盐晶体及其制备方法
US20210261493A1 (en) Crystal of amino acid salt of 3-hydroxyisovaleric acid and production method thereof
JP4796493B2 (ja) L−リジン・クエン酸塩結晶
WO2010050168A1 (ja) バリン、イソロイシン、ロイシン固溶体およびその製造方法
JP2022069548A (ja) 6’-シアリルラクトースナトリウム塩の結晶およびその製造方法
KR20170105522A (ko) N-아세틸노이라민산암모늄염·무수화물의 결정 및 그 제조 방법
KR102299521B1 (ko) 구연산 유도체의 부분입체 이성질체의 제조 방법
JP7116207B2 (ja) 3-ヒドロキシイソ吉草酸の一価カチオン塩の結晶および該結晶の製造方法
TW201908275A (zh) 3-羥基異戊酸胺基酸鹽之結晶及其製造方法
JP2011219388A (ja) 吸湿性の低いピロロキノリンキノン固体
AU2015297470B2 (en) Crystal of alkali metal N-acetylneuraminate anhydrate, and process for producing same
JP2008156282A (ja) α−リポ酸L−オルニチン塩およびその製造法
JP6918790B2 (ja) 3’−シアリルラクトースナトリウム塩・n水和物の結晶及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815508

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3028608

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2018524179

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197001526

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017282515

Country of ref document: AU

Date of ref document: 20170623

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017815508

Country of ref document: EP

Effective date: 20190124