WO2017221735A1 - 組電池回路、容量係数検出方法、および容量係数検出プログラム - Google Patents

組電池回路、容量係数検出方法、および容量係数検出プログラム Download PDF

Info

Publication number
WO2017221735A1
WO2017221735A1 PCT/JP2017/021382 JP2017021382W WO2017221735A1 WO 2017221735 A1 WO2017221735 A1 WO 2017221735A1 JP 2017021382 W JP2017021382 W JP 2017021382W WO 2017221735 A1 WO2017221735 A1 WO 2017221735A1
Authority
WO
WIPO (PCT)
Prior art keywords
standard cell
capacity
cell
potential difference
standard
Prior art date
Application number
PCT/JP2017/021382
Other languages
English (en)
French (fr)
Inventor
孝典 佐野
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Priority to JP2018523860A priority Critical patent/JP6566136B2/ja
Priority to CN201780038426.8A priority patent/CN109313235B/zh
Publication of WO2017221735A1 publication Critical patent/WO2017221735A1/ja
Priority to US16/124,436 priority patent/US10845419B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an assembled battery circuit, and more particularly to an assembled battery circuit that controls charging / discharging of an assembled battery formed by a standard cell having a standard capacity and a specific cell having a capacity exceeding the standard capacity.
  • the present invention also relates to a capacity coefficient detection method and a capacity coefficient detection program for detecting a capacity coefficient of a standard cell constituting such an assembled battery circuit.
  • Patent Document 1 a charge depth detection lithium ion secondary battery (detection cell) and a non-charge depth detection lithium ion secondary battery (normal cell) having different initial battery capacities are connected in series. Thus, an assembled battery is configured. This makes it possible to accurately evaluate the charging depth without requiring a complicated determination circuit even during charging / discharging with a large current.
  • a main object of the present invention is to provide an assembled battery circuit capable of detecting a capacity coefficient easily and with high accuracy even in a potential plateau region.
  • An assembled battery circuit according to the present invention (10: reference numeral corresponding to the embodiment; the same applies hereinafter) is configured by a standard cell (20st) having a standard capacity and a specific cell (20tw) having a capacity exceeding the standard capacity.
  • Potential difference / capacitance coefficient characteristic curve (CVdf) indicating the relationship with the standard cell capacity coefficient representing the capacity is obtained from the memory (16m).
  • Potential difference detection means for detecting the potential difference of the current, and the current standard cell by comparing the potential difference detected by the potential difference detection means with the potential difference / capacitance coefficient characteristic curve acquired by the potential difference / capacitance coefficient characteristic curve acquisition means Check the capacity coefficient value.
  • a standard cell capacity coefficient value detecting means S21, S39).
  • the standard cell has a standard capacity
  • the specific cell has a capacity exceeding the standard capacity. Therefore, even in the capacity coefficient region (potential plateau region) where the voltage fluctuation of the standard cell is small, the potential difference is not shown on the potential difference / capacitance coefficient characteristic curve. Can vary greatly. By referring to such a potential difference / capacitance coefficient characteristic curve, the capacity coefficient of the standard cell can be detected easily and with high accuracy even in the potential plateau region.
  • the standard cell voltage / capacitance coefficient characteristic curve (CVst) showing the relationship between the standard cell voltage and the standard cell capacity factor and / or the current voltage based on the specific cell voltage and the full charge capacity of the specific cell before deterioration.
  • CVtw specific cell voltage / capacitance coefficient characteristic curve
  • Standard cell capacity coefficient value selection means (S23, S25, S41, S43) is further provided.
  • the standard cell voltage / capacitance coefficient characteristic curve and / or the specific cell voltage / capacitance coefficient characteristic curve can reduce the concern that the capacity coefficient value of the standard cell is erroneously detected.
  • standard cell capacity coefficient value output means for outputting the value of the standard cell capacity coefficient detected by the standard cell capacity coefficient value detection means is further provided. Thereby, the capacity coefficient value of the standard cell can be easily confirmed.
  • the number of standard cells is plural, and each of the potential difference detection means and the standard cell capacity coefficient value detection means executes a detection process for each standard cell, and the standard cell capacity detected by the standard cell capacity coefficient value detection means.
  • Balance adjustment means (S49 to S63) for adjusting the charge balance between the standard cells based on the coefficient value is further provided.
  • the charge balance between standard cells can be adjusted even in the potential plateau region.
  • the specific cell is connected in series with the standard cell so that the voltage of the specific cell and the voltage of the standard cell coincide with each other at a position where each value of the standard cell capacity coefficient and the specific cell capacity coefficient indicates zero. . This eliminates the need for balance adjustment between the specific cell and the standard cell.
  • the capacity coefficient detection method includes an assembled battery that controls charging / discharging of an assembled battery (20) composed of a standard cell (20st) having a standard capacity and a specific cell (20tw) having a capacity exceeding the standard capacity.
  • Potential difference / capacitance coefficient characteristic curve (CVdf) showing the relationship with the capacity coefficient is obtained from the memory (16m). Step of obtaining the potential difference / capacitance coefficient characteristic curve (S1, S31), detecting the potential difference between the standard cell and the specific cell.
  • the current standard cell by comparing the potential difference detected in the potential difference detection step (S19, S37) and the potential difference / capacitance coefficient characteristic curve acquisition step with the potential difference / capacitance coefficient characteristic curve acquisition step A standard cell capacity coefficient value detecting step (S21, S39) for detecting a capacity coefficient value is provided.
  • the capacity coefficient detection program according to the present invention is an assembled battery that controls charging / discharging of an assembled battery (20) composed of a standard cell (20st) having a standard capacity and a specific cell (20tw) having a capacity exceeding the standard capacity.
  • the potential difference / capacitance showing the relationship between the potential difference between the standard cell and the specific cell and the standard cell capacity coefficient representing the current standard cell capacity based on the full charge capacity of the standard cell before deterioration.
  • Potential difference / capacitance coefficient characteristic curve acquisition step (S1, S31) for acquiring the coefficient characteristic curve (CVdf) from the memory (16m), potential difference detection step (S19, S37) for detecting the potential difference between the standard cell and the specific cell, and Standard cell capacity that detects the current standard cell capacity coefficient value by comparing the potential difference detected in the potential difference detection step with the potential difference / capacitance coefficient characteristic curve acquired in the potential difference / capacitance coefficient characteristic curve acquisition step
  • This is a capacity coefficient detection program for executing the coefficient value detection step (S21, S39).
  • the capacitance coefficient can be detected easily and with high accuracy even in the potential plateau region.
  • FIG. 10 is a flowchart showing yet another portion of the operation of the system control circuit shown in FIG. 1. It is a flowchart which shows a part of other operation
  • movement of the system control circuit shown in FIG. It is a graph which shows an example of the relationship between the open circuit voltage and SOC of a double cell or a standard cell at the time of 90A load. It is a graph which shows an example of the relationship between the open circuit voltage of an assembled battery, and SOC. It is a flowchart which shows a part of operation
  • the assembled battery circuit 10 of this embodiment includes a system control circuit 16 that controls charging / discharging of the assembled battery 20 through the charging / discharging circuit 18.
  • the charge / discharge circuit 18 charges the assembled battery 20 with the electric power supplied from the system power supply 12 or discharges the electric power of the assembled battery 20 to the load 14 under the control of the system control circuit 16.
  • the assembled battery 20 is formed by connecting Kmax standard cells 20st and a single double cell (specific cell) 20tw in series.
  • the standard cell 20st and the double cell 20tw are formed by laminating a positive electrode and a negative electrode via a separator, storing them in a laminate, and charging and sealing the electrolyte.
  • the constant Kmax is an integer equal to or greater than 2, for example, “7”.
  • the standard cell 20st has a standard capacity
  • the double cell 20tw has a capacity twice as large as the standard capacity.
  • the standard cell 20st is configured in detail as shown in FIG. According to FIG. 2, one end of the switch SWst is connected to the positive electrode of the cell Est, and the other end of the switch SWst is connected to one end of the external short-circuit resistor Rst. The other end of the external short-circuit resistor Rst is connected to the negative electrode of the cell Est.
  • the value of the current discharged from the cell Est when the switch SWst is turned on is defined by the terminal voltage value of the cell Est and the value of the external short-circuit resistance Rst.
  • SOC State ⁇ ⁇ ⁇ ⁇ ⁇ Of Charge
  • SOC State ⁇ ⁇ ⁇ ⁇ ⁇ Of Charge
  • the SOC of the standard cell 20st is referred to as “standard cell 20st before deterioration”.
  • SOC of the double cell 20tw is defined as “the current double cell 20tw based on the full charge capacity of the double cell 20tw before deterioration”. Defined as “charging capacity”.
  • the positive electrode and the negative electrode are made of olivine-type lithium iron phosphate (LFP) and graphite (Gr), respectively, and the AC ratio (opposite charge capacity ratio between the positive electrode and the negative electrode) is “1.75”.
  • a region where the SOC gradient of the positive electrode is 2 [mV / SOC%] or less is 30% or more of the cell effective SOC, and a region where the SOC gradient of the negative electrode is 2.5 [mV / SOC%] is the cell effective SOC. 30% or more.
  • the capacity of the double cell 20tw is 9.0Ah, whereas the capacity of the standard cell 20st is 4.5Ah. That is, the material and design of the double cell 20tw are the same as the material and design of the standard cell 20st, and only the capacity is different between the double cell 20tw and the standard cell 20st.
  • curve CVst is a curve showing the relationship between the open circuit voltage (OCV) of standard cell 20st and the SOC of standard cell 20st
  • curve CVtw is the open circuit voltage of double cell 20tw and the double cell. It is a curve which shows the relationship with 20tw SOC.
  • the curve CVst is defined as a “standard cell voltage / SOC characteristic curve”
  • the curve CVtw is defined as a “double cell voltage / SOC characteristic curve”.
  • the double cell voltage / SOC characteristic curve CVtw is double the standard cell voltage / SOC characteristic curve CVst in the horizontal axis direction. It overlaps with the curved line.
  • both the double cell voltage / SOC characteristic curve CVtw and the standard cell voltage / SOC characteristic curve CVst have a potential plateau region (an SOC region in which voltage fluctuation is small), between the double cell 20tw and the standard cell 20st Therefore, the position of the potential plateau region is different between the double cell voltage / SOC characteristic curve CVtw and the standard cell voltage / SOC characteristic curve CVst.
  • the assembled battery 20 is provided with Kmax standard cells 20st and there are individual differences between the standard cells 20st, the relationship between the open circuit voltage of the standard cell 20st and the SOC of the standard cell 20st is as follows. Slightly different for each.
  • the relationship between the open circuit voltage of the standard cell 20st and the SOC of the standard cell 20st varies depending on the operating environment of the battery pack circuit 10 (aside from charging / discharging, the temperature of the battery pack 20).
  • the relationship with the SOC of the double cell 20tw also varies depending on the operating environment of the battery pack circuit 10.
  • the standard cell voltage / SOC characteristic curve CVst equal to the number Kmax ⁇ the number of operating environments and the double cell voltage / SOC characteristic curve CVtw equal to the number of operating environments are stored in advance in the memory 16m.
  • the potential difference between the double cell 20tw and the standard cell 20st reflects the difference between the double cell voltage / SOC characteristic curve CVtw and the standard cell voltage / SOC characteristic curve CVst, and varies drastically over the entire SOC region. That is, the curve CVdf has a plurality of extreme values, and the plateau region does not appear in the curve CVdf.
  • such a curve CVdf is defined as a “potential difference / SOC characteristic curve”.
  • the number of standard cell voltage / SOC characteristic curves CVst is equal to Kmax ⁇ the number of operating environments
  • the number of double cell voltage / SOC characteristic curves CVtw is equal to the number of operating environments. Accordingly, the memory 16m stores in advance a potential difference / SOC characteristic curve CVdf equal to Kmax ⁇ the number of operating environments.
  • the double cell 20tw and the standard cell 20st adopting a common material and design cause aging deterioration in the same manner.
  • the double cell voltage / SOC characteristic curve CVtw and the standard cell voltage / SOC characteristic curve CVst draw a locus shown in FIG. That is, the standard cell voltage / SOC characteristic curve CVst and the double cell voltage / SOC characteristic curve CVtw are compressed at a common compression rate in a region other than the low SOC region.
  • Each of the double cell voltage / SOC characteristic curve CVtw and the standard cell voltage / SOC characteristic curve CVst shown in FIG. 5 deteriorated in the order of 100%, 97%, 90%, 83%, and 73%. The trajectory is shown.
  • the system control circuit (processor) 26 repeatedly detects the SOC of the standard cell 20st according to the flowcharts shown in FIGS. 6 to 7, and the charge balance of the standard cell 20st and the double cell 20tw according to the flowcharts shown in FIGS. Adjust repeatedly.
  • a control program corresponding to these flowcharts is also stored in the memory 16m.
  • step S1 double cell voltage / SOC characteristic curve CVtw, standard cell voltage / SOC characteristic curve CVst, and potential difference / SOC characteristic curve CVdf corresponding to the current operating environment are acquired from memory 16m.
  • a curve indicating the relationship between the potential difference between the double cell 20tw and the reference standard cell 20st and the SOC of the reference standard cell 20st is acquired.
  • step S3 the current open circuit voltage of the double cell 20tw is detected.
  • step S5 it is determined whether or not the SOC value corresponding to the detected open circuit voltage belongs to the potential plateau region on the double cell voltage / SOC characteristic curve CVtw obtained in step S1. If the determination result is NO, the process proceeds to step S7, and if the determination result is YES, the process proceeds to step S11.
  • step S7 the open circuit voltage detected in step S3 is collated with the double cell voltage / SOC characteristic curve CVtw obtained in step S1, and the current SOC value of the double cell 20tw is detected.
  • step S9 a value 1 ⁇ 2 of the detected SOC value is output from the monitor (not shown) as the current SOC value of the standard cell 20st, and then the current SOC detection process is terminated.
  • step S11 the current open circuit voltage of the reference standard cell 20st is detected.
  • step S13 it is determined whether or not the SOC value corresponding to the detected open circuit voltage belongs to the potential plateau region on the standard cell voltage / SOC characteristic curve CVst acquired in step S1. If the determination result is NO, the process proceeds to step S15, and if the determination result is YES, the process proceeds to step S19.
  • step S15 the open circuit voltage detected in step S11 is collated with the standard cell voltage / SOC characteristic curve CVst acquired in step S1, and the current SOC value of the reference standard cell 20st is detected.
  • step S17 the detected SOC value is output from the monitor as the current SOC value of the standard cell 20st, and then the current SOC detection process is terminated.
  • step S19 shown in FIG. 7 the current potential difference between the double cell 20tw and the reference standard cell 20st is calculated.
  • step S21 one or more SOC values corresponding to the calculated potential difference are acquired in step S1. It is detected on the potential difference / SOC characteristic curve CVdf.
  • step S21 If the potential difference / SOC characteristic curve CVdf acquired in step S1 draws a curve shown in FIG. 4 and the potential difference calculated in step S21 is 0.05 V, five SOC values are detected in step S21.
  • step S23 it is determined whether or not the number of detected SOC values is 2 or more. If the determination result is NO, the process proceeds to step S27 as it is. If the determination result is YES, the following processing is performed in step S25. After execution, the process proceeds to step S27.
  • step S25 referring to at least one of the standard cell voltage / SOC characteristic curve CVst and the double cell voltage / SOC characteristic curve CVtw obtained in step S1, the only SOC corresponding to the open circuit voltage of the reference standard cell 20st is obtained.
  • Select a value As can be seen from FIGS. 3 and 4, when the open circuit voltage of the reference standard cell 20st is 3.35V and the open circuit voltage of the double cell 20tw is 3.3V, “70%” is the only SOC value in step S25. Selected as
  • step S27 the only SOC value thus detected or selected is output from the monitor, and then the current SOC detection process is terminated.
  • step S31 double cell voltage / SOC characteristic curve CVtw, Kmax standard cell voltage / SOC characteristic curve CVst, Kmax potential difference / SOC characteristic curve CVdf corresponding to the current operating environment are obtained. Obtained from the memory 16m.
  • step S33 the current open circuit voltage of each of the double cell 20tw and the Kmax standard cells 20st is detected.
  • the variable K is set to “1”
  • step S37 the current potential difference between the double cell 20tw and the Kth standard cell 20st is calculated.
  • step S39 one or more SOC values corresponding to the calculated potential difference are detected on the Kth potential difference / SOC characteristic curve CVdf acquired in step S31.
  • step S41 it is determined whether or not the number of detected SOC values is 2 or more. If the determination result is NO, the process proceeds to step S45 as it is. If the determination result is YES, the following processing is performed in step S43. After execution, the process proceeds to step S45.
  • step S43 the open circuit voltage of the Kth standard cell 20st is obtained by referring to at least one of the Kth standard cell voltage / SOC characteristic curve CVst and the double cell voltage / SOC characteristic curve CVtw obtained in step S31. Select the corresponding unique SOC value.
  • step S45 the variable K is incremented, and in step S47, it is determined whether or not the variable K exceeds a constant Kmax. If a determination result is NO, it will return to Step S37, and if a determination result is YES, it will progress to Step S49.
  • step S49 the standard cell 20st having the minimum SOC value is detected from the Kmax standard cells 20st.
  • step S51 the identification number of the detected standard cell 20st is set to the variable L.
  • step S53 the variable K is set to “1”.
  • step S55 it is determined whether or not the variable K is equal to the variable L. If the determination result is YES, the process proceeds directly to step S63, while if the determination result is NO, the following processing is executed in steps S57 to S61, and then the process proceeds to step S63.
  • step S59 for the Kth standard cell 20st, the switch SWst is turned on, the balance current value is calculated from the value of the external short-circuit resistance Rst and the characteristics of the cell Est, and the calculated balance current value Based on the difference calculated in step S57, the discharge time of the Kth standard cell 20st is calculated.
  • the calculated discharge time is a time until the SOC value of the Kth standard cell 20st falls below the minimum SOC value.
  • step S61 the variable K is incremented, and in step S63, it is determined whether or not the variable K exceeds a constant Kmax. If a determination result is NO, it will return to Step S55, and if a determination result is YES, it will progress to Step S65.
  • step S65 the switch SWst is turned on for the standard cells 20st other than the Lth standard cell 20st. As a result, discharge is started.
  • step S67 the variable K is set to “1”.
  • step S69 it is determined whether or not the variable K is equal to the variable L.
  • step S75 it is determined whether or not the variable K has reached a constant Kmax.
  • step S79 it is determined whether or not all the discharge operations of the Kmax standard cells 20st have been completed. If the decision result in the step S75 is NO, the variable K is incremented in a step S77, and thereafter, the process returns to the step S69.
  • step S75 If the determination result of step S75 is YES, if the determination result of step S79 is NO, the process returns to step S67. If both the determination result in step S75 and the determination result in step S79 are YES, the current balance adjustment process is terminated.
  • the assembled battery 20 is composed of Kmax standard cells 20st each having a standard capacity and a single double cell 20tw having a capacity twice the standard capacity.
  • the system control circuit 16 determines the potential difference between the reference standard cell 20st and the double cell 20tw.
  • a potential difference / SOC characteristic curve CVdf showing the relationship with the SOC of the reference standard cell 20st is obtained from the memory 16m (S1), a potential difference between the reference standard cell 20st and the double cell 20tw is detected (S19), and detection The obtained potential difference is collated with the potential difference / SOC characteristic curve CVdf to detect the SOC value of the reference standard cell 20st (S21).
  • the system control circuit 16 acquires Kmax potential difference / SOC characteristic curves CVdf corresponding to the Mmax standard cells 20st from the memory 16m (S31). ), A potential difference between each of the Kth (K: 1 to Kmax) standard cells 20st and the double cell 20tw is detected (S37), and the detected potential difference is expressed as a Kth potential difference / SOC characteristic curve CVdf.
  • the SOC value of the Kth standard cell 20st is detected by collation (S39).
  • the double cell 20tw has a capacity that exceeds the standard capacity. Therefore, even in the SOC region (potential plateau region) where the voltage variation of the standard cell 20st is small, the potential difference / SOC characteristic curve CVdf Then, the potential difference can vary greatly.
  • the SOC value of the standard cell 20st can be detected easily and with high accuracy even in the potential plateau region, and the standard cell based on the detected SOC value.
  • the charging balance for 20 st can be adjusted.
  • the material and design of the double cell 20tw are the same as the material and design of the standard cell 20st, the same rate characteristics and life characteristics can be obtained. As a result, it is possible to suppress the work load required to rebalance the double cell 20tw and the standard cell 20st.
  • the open circuit voltage of the double cell 20tw is low, the internal resistance of the double cell 20tw is relatively low because the double cell 20tw has a high capacity. As a result, the amount of decrease in the open circuit voltage at the high rate is suppressed (the output voltage is less likely to decrease).
  • the open circuit voltage of the assembled battery constituted by the eight standard cells 20st changes along the rhombus ( ⁇ ) shown in FIG. 12
  • the open circuit voltage of the assembled battery 20 of this embodiment is the square shown in FIG. It changes along ( ⁇ ). That is, the OCV-SOC characteristic of the assembled battery 20 substantially matches the OCV-SOC characteristic of the assembled battery configured by only the standard cell 20st.
  • the number of double cells 20tw provided in the assembled battery 20 is one, but two or more double cells 20tw may be provided in the assembled battery 20.
  • the assembled battery circuit 10 is provided with a single assembled battery 20, but a plurality of assembled batteries 20 are connected in parallel or in series, and the processing shown in FIGS. It may be executed for each battery 20.
  • the SOC value of the standard cell 20st is detected.
  • the SOH value of the standard cell 20st may be detected.
  • the SOH of the standard cell 20st can be defined as “the current full charge capacity of the standard cell 20st based on the full charge capacity of the standard cell 20st before degradation”, and the SOH of the double cell 20tw can be defined as “before degradation.
  • a double cell voltage / SOH characteristic curve CVtw ′ indicating the relationship between the open circuit voltage of the double cell 20tw and the SOH of the double cell 20tw is stored in the memory 16m (stored curve CVtw ′).
  • CVtw ′ The number of operating environments), it is necessary to execute the processing shown in FIG. 13 instead of the processing shown in FIGS. Note that balance adjustment as shown in FIGS. 8 to 10 is not necessary due to the nature of SOH.
  • step S81 a double cell voltage / SOH characteristic curve CVtw ′ corresponding to the current operating environment is acquired from memory 16m.
  • step S83 the variable K is set to “1”, and in step S85, it is determined whether or not the Kth standard cell 20st is fully charged.
  • step S87 the process proceeds to step S87, and the current open circuit voltage of the double cell 20tw is detected.
  • step S89 the open circuit voltage detected in step S87 is collated with the double cell voltage / SOH characteristic curve CVtw ′ acquired in step S81, and the current SOH value of the double cell 20tw is detected.
  • step S91 a half value of the detected SOH value is output from the monitor as the current SOH value of the Kth standard cell 20st. When the output is completed, the process proceeds to step S95.
  • step S85 If the decision result in the step S85 is NO, the process proceeds to a step S93, and the SOH value detected by the process of the previous step S91 for the Kth standard cell is outputted from the monitor. When the output is completed, the process proceeds to step S95.
  • step S95 the variable K is incremented, and in step S97, it is determined whether or not the variable K exceeds a constant Kmax. If the determination result is NO, the process returns to step S85, while if the determination result is YES, the current SOH detection process is terminated.

Abstract

組電池20は、各々が標準容量を有する複数の標準セル20stと、標準容量の2倍の容量を有する単一の2倍セル20twとによって構成される。参照標準セル20st(=複数の標準セル20stの中から予め指定された標準セル20st)のSOCを検出する際、システム制御回路16は、参照標準セル20stおよび2倍セル20twの間の電位差と参照標準セル20stのSOCとの関係を示す電位差・SOC特性曲線をメモリ16mから取得し、参照標準セル20stと2倍セル20twとの間の電位差を検出し、そして検出された電位差を電位差・SOC特性曲線と照合して参照標準セル20stのSOC値を検出する。

Description

組電池回路、容量係数検出方法、および容量係数検出プログラム
 この発明は、組電池回路に関し、特に標準容量を有する標準セルと標準容量を上回る容量を有する特定セルとによって形成された組電池の充放電を制御する、組電池回路に関する。この発明はまた、このような組電池回路を構成する標準セルの容量係数を検出する、容量係数検出方法、および容量係数検出プログラムに関する。
 電池のSOC(State Of Charge:電池の容量係数であり、具体的には充電深度)を検知する場合、通常は、電圧-SOCテーブルが準備され、電池を測定して得られた電圧が電圧-SOCテーブルと照合される。
 しかし、正極LFP-負極Gr系電池などの電位プラトー領域の大きい電池については、電位プラトー領域でSOCを検知するのは容易ではない。つまり、実際には、電位プラトー領域以外の領域で検知したSOCとその後の電流量の積算値とに基づいて、電位プラトー領域におけるSOCを検知することになる。このような方法では、SOCの検知精度に限界がある。
 SOH(State Of Health:電池の容量係数であり、具体的には劣化度)についても、一般的な電池では、劣化に伴ってΔ容量/ΔV(=電位の変動幅に対する容量の変動幅の割合)が小さくなることを検知して、電池の劣化状態を判定することができる。しかし、正極LFP-負極Gr系電池では、劣化に伴って電位プラトー領域のみが縮退するのみであり、Δ容量/ΔVが変化することはないため、電池の劣化状態を判定することは不可能である。つまり、電位プラトー領域の大きい電池では電流値を積算してSOHを定量化するため、SOHの検知精度に限界がある。
 これを踏まえて、特許文献1では、初期電池容量が互いに異なる充電深度検知用リチウムイオン二次電池(検知用セル)と非充電深度検知用リチウムイオン二次電池(通常セル)とを直列接続して、組電池が構成される。これによって、大電流による充放電中でも、複雑な判定回路を必要とせず、充電深度を精度良く評価できる。
特開2013-89522号公報
 特許文献1のような組電池を長期にわたって安定的に利用するためには、検知用セルの劣化状態に基づく電圧-SOCテーブルと、通常セルの劣化状態に基づく電圧-SOCテーブルとを個別に準備し、各セルの劣化状態を監視してSOCをリセットする(セル間でSOCを揃える)必要がある。
 ただし、性能や劣化特性の異なる2種類のセルを対象とする監視・リセットは、煩雑さを増大させる。また、低抵抗で大電流を流すパワータイプの電池においては、材料系の異なる2種類のセルを設計すること自体が困難である。さらに、従来の巻回缶タイプの電池においては、缶に自由度がなく、容量アップなどの異種設計を行うことは容易ではない。したがって、特許文献1のような組電池は、実用性に欠ける。
 それゆえに、この発明の主たる目的は、電位プラトー領域においても簡単かつ高精度で容量係数を検知することができる、組電池回路を提供することである。
 この発明に係る組電池回路(10:実施例で相当する参照符号。以下同じ)は、標準容量を有する標準セル(20st)と標準容量を上回る容量を有する特定セル(20tw)とによって構成された組電池(20)の充放電を制御する組電池回路(10)であって、標準セルおよび特定セルの間の電位差と、劣化前の標準セルの満充電容量を基準とする現時点の標準セルの容量を表す標準セル容量係数との関係を示す電位差・容量係数特性曲線(CVdf)をメモリ(16m)から取得する電位差・容量係数特性曲線取得手段(S1, S31)、標準セルおよび特定セルの間の電位差を検出する電位差検出手段(S19, S37)、および電位差検出手段によって検出された電位差を電位差・容量係数特性曲線取得手段によって取得された電位差・容量係数特性曲線と照合して現時点の標準セル容量係数の値を検出する標準セル容量係数値検出手段(S21, S39)を備える。
 標準セルは標準容量を有する一方、特定セルは標準容量を上回る容量を有するため、標準セルの電圧の変動が少ない容量係数領域(電位プラトー領域)においても、電位差・容量係数特性曲線上では電位差が大きく変動し得る。このような電位差・容量係数特性曲線を参照することで、電位プラトー領域においても簡単かつ高精度で標準セルの容量係数を検出することができる。
 好ましくは、標準セルの電圧と標準セル容量係数との関係を示す標準セル電圧・容量係数特性曲線(CVst)および/または特定セルの電圧と劣化前の特定セルの満充電容量を基準とする現時点の特定セルの容量を表す特定セル容量係数との関係を示す特定セル電圧・容量係数特性曲線(CVtw)をメモリから取得するセル電圧・容量係数特性曲線取得手段(S1, S33)、および標準セル容量係数値検出手段によって検出された標準セル容量係数の値の数が2以上のときセル電圧・容量係数特性曲線取得手段によって取得された特性曲線に基づいて標準セル容量係数の唯一の値を選定する標準セル容量係数値選定手段(S23, S25, S41, S43)がさらに備えられる。
 標準セル電圧・容量係数特性曲線および/または特定セル電圧・容量係数特性曲線を参照することで、標準セルの容量係数値が誤検出される懸念を軽減することができる。
 好ましくは、標準セル容量係数値検出手段によって検出された標準セル容量係数の値を出力する標準セル容量係数値出力手段(S27)がさらに備えられる。これによって、標準セルの容量係数値を容易に確認することができる。
 好ましくは、標準セルの数は複数であり、電位差検出手段および標準セル容量係数値検出手段の各々は標準セル毎に検出処理を実行し、標準セル容量係数値検出手段によって検出された標準セル容量係数の値に基づいて標準セル間の充電バランスを調整するバランス調整手段(S49~S63)がさらに備えられる。
 電位差・容量係数特性曲線を参照することで、電位プラトー領域においても標準セル間の充電バランスを調整することができる。
 好ましくは、特定セルは、標準セル容量係数および特定セル容量係数の各々の値がゼロを示す位置で特定セルの電圧と標準セルの電圧とが互いに一致するように、標準セルと直列接続される。これによって、特定セル・標準セル間のバランス調整が不要となる。
 この発明に係る容量係数検出方法は、標準容量を有する標準セル(20st)と標準容量を上回る容量を有する特定セル(20tw)とによって構成された組電池(20)の充放電を制御する組電池回路(10)によって実行される容量係数検出方法であって、標準セルおよび特定セルの間の電位差と、劣化前の標準セルの満充電容量を基準とする現時点の標準セルの容量を表す標準セル容量係数との関係を示す電位差・容量係数特性曲線(CVdf)をメモリ(16m)から取得する電位差・容量係数特性曲線取得ステップ(S1, S31)、標準セルおよび特定セルの間の電位差を検出する電位差検出ステップ(S19, S37)、および電位差検出ステップによって検出された電位差を電位差・容量係数特性曲線取得ステップによって取得された電位差・容量係数特性曲線と照合して現時点の標準セル容量係数の値を検出する標準セル容量係数値検出ステップ(S21, S39)を備える。
 この発明に係る容量係数検出プログラムは、標準容量を有する標準セル(20st)と標準容量を上回る容量を有する特定セル(20tw)とによって構成された組電池(20)の充放電を制御する組電池回路(10)に、標準セルおよび特定セルの間の電位差と、劣化前の標準セルの満充電容量を基準とする現時点の標準セルの容量を表す標準セル容量係数との関係を示す電位差・容量係数特性曲線(CVdf)をメモリ(16m)から取得する電位差・容量係数特性曲線取得ステップ(S1, S31)、標準セルおよび特定セルの間の電位差を検出する電位差検出ステップ(S19, S37)、および電位差検出ステップによって検出された電位差を電位差・容量係数特性曲線取得ステップによって取得された電位差・容量係数特性曲線と照合して現時点の標準セル容量係数の値を検出する標準セル容量係数値検出ステップ(S21, S39)を実行させるための、容量係数検出プログラムである。
 この発明によれば、電位プラトー領域においても簡単かつ高精度で容量係数を検知することができる。
 この発明の上述の目的,その他の目的,特徴および利点は、図面を参照して行う以下の実施例の詳細な説明から一層明らかとなろう。
この実施例の組電池回路とその周辺の構成を示すブロック図である。 標準セルの構成の一例を示す回路図である。 2倍セルまたは標準セルの開路電圧とSOCとの関係の一例を示すグラフである。 2倍セル・標準セル間の電位差とSOCとの関係の一例を示すグラフである。 2倍セルまたは標準セルの開路電圧とSOCとの関係の他の一例を示すグラフである。 図1に示すシステム制御回路の動作の一部を示すフロー図である。 図1に示すシステム制御回路の動作の他の一部を示すフロー図である。 図1に示すシステム制御回路の動作のその他の一部を示すフロー図である。 図1に示すシステム制御回路の動作のさらにその他の一部を示すフロー図である。 図1に示すシステム制御回路の動作の他の一部を示すフロー図である。 90A負荷時の2倍セルまたは標準セルの開路電圧とSOCとの関係の一例を示すグラフである。 組電池の開路電圧とSOCとの関係の一例を示すグラフである。 他の実施例におけるシステム制御回路の動作の一部を示すフロー図である。
 図1を参照して、この実施例の組電池回路10は、充放電回路18を通して組電池20の充放電を制御するシステム制御回路16を含む。充放電回路18は、システム制御回路16の制御の下で、系統電源12から供給された電力を組電池20に充電し、或いは組電池20の電力を負荷14に対して放電する。
 組電池20は、Kmax個の標準セル20stと単一の2倍セル(特定セル)20twとを直列接続してなる。標準セル20stと2倍セル20twは正極と負極とをセパレータを介して積層し、ラミネートに収納し、電解液を充電して封止してなる。ここで、定数Kmaxは2以上の整数であり、たとえば“7”である。また、標準セル20stは標準容量を有し、2倍セル20twは標準容量の2倍の容量を有する。
 標準セル20stは、詳しくは図2に示すように構成される。図2によれば、スイッチSWstの一方端はセルEstの正極に接続され、スイッチSWstの他方端は外部短絡抵抗Rstの一方端に接続される。また、外部短絡抵抗Rstの他方端はセルEstの負極に接続される。スイッチSWstをオンしたときにセルEstから放電される電流の値は、セルEstの端子電圧値と外部短絡抵抗Rstの値とによって規定される。
 なお、標準セル20stおよび2倍セル20twの各々の状態を表すパラメータの1つとしてSOC(State Of Charge)があるが、この実施例では特に、標準セル20stのSOCを“劣化前の標準セル20stの満充電容量を基準とする現時点の標準セル20stの充電容量”と定義し、2倍セル20twのSOCを“劣化前の2倍セル20twの満充電容量を基準とする現時点の2倍セル20twの充電容量”と定義する。
 2倍セル20twおよび標準セル20stのいずれについても、正極および負極はそれぞれ、オリビン型リン酸鉄リチウム(LFP)およびグラファイト(Gr)を材料とし、AC比(正極と負極の対向充電容量比)は“1.75”である。また、正極のSOC勾配が2[mV/SOC%]以下の領域はセル実効SOCの30%以上であり、かつ、負極のSOC勾配が2.5[mV/SOC%]の領域はセル実効SOCの30%以上である。
 ただし、2倍セル20twの容量は9.0Ahであるのに対して、標準セル20stの容量は4.5Ahである。つまり、2倍セル20twの材料および設計は、標準セル20stの材料および設計と同一であり、容量のみが2倍セル20twおよび標準セル20stの間で相違する。
 図3を参照して、曲線CVstは、標準セル20stの開路電圧(OCV)と標準セル20stのSOCとの関係を示す曲線であり、曲線CVtwは、2倍セル20twの開路電圧と2倍セル20twのSOCとの関係を示す曲線である。以下では、曲線CVstを“標準セル電圧・SOC特性曲線”と定義し、曲線CVtwを“2倍セル電圧・SOC特性曲線”と定義する。
 図3によれば、2倍セル20twの開路電圧値は、SOC=0%に対応する位置で各標準セル20stの開路電圧値と一致する。換言すれば、2倍セル20twおよびKmax個の標準セル20stは、SOC=0%に対応する位置での各セルの開路電圧値が互いに一致するように直列接続される。
 また、2倍セル20twの材料および設計は標準セル20stの材料および設計と同一であるため、2倍セル電圧・SOC特性曲線CVtwは、標準セル電圧・SOC特性曲線CVstを横軸方向に2倍に引き伸ばした曲線と重なる。
 つまり、2倍セル電圧・SOC特性曲線CVtwおよび標準セル電圧・SOC特性曲線CVstのいずれも電位プラトー領域(電圧の変動が少ないSOC領域)を有するものの、2倍セル20twと標準セル20stとの間で容量が相違するため、電位プラトー領域の位置は2倍セル電圧・SOC特性曲線CVtwおよび標準セル電圧・SOC特性曲線CVstの間で相違する。
 なお、組電池20にはKmax個の標準セル20stが設けられ、かつ標準セル20st間には個体差があるため、標準セル20stの開路電圧と標準セル20stのSOCとの関係は、標準セル20st毎に僅かに異なる。
 また、標準セル20stの開路電圧と標準セル20stのSOCとの関係は組電池回路10の動作環境(充電/放電の別,組電池20の温度)によって変動し、2倍セル20twの開路電圧と2倍セル20twのSOCとの関係もまた組電池回路10の動作環境によって変動する。
 これを踏まえて、メモリ16mには、Kmax×動作環境数に等しい数の標準セル電圧・SOC特性曲線CVstと、動作環境数に等しい数の2倍セル電圧・SOC特性曲線CVtwとが予め記憶される。
 図4を参照して、曲線CVdfは、2倍セル20twおよび標準セル20stの間の開路電圧の差(=電位差)と標準セル20stのSOCとの関係を示す曲線である。2倍セル20twおよび標準セル20stの間の電位差は、2倍セル電圧・SOC特性曲線CVtwおよび標準セル電圧・SOC特性曲線CVstの相違を反映し、全SOC領域にわたって激しく変動する。つまり、曲線CVdfは複数の極値を有し、プラトー領域が曲線CVdfに現れることはない。以下では、このような曲線CVdfを“電位差・SOC特性曲線”と定義する。
 上述のように、標準セル電圧・SOC特性曲線CVstの数はKmax×動作環境数に等しく、2倍セル電圧・SOC特性曲線CVtwの数は動作環境数に等しい。したがって、メモリ16mには、Kmax×動作環境数に等しい数の電位差・SOC特性曲線CVdfが予め記憶される。
 ただし、共通の材料および設計を採用する2倍セル20twおよび標準セル20stは、互いに同じ要領で経年劣化を起こす。たとえば出力特性が73%まで徐々に劣化したとき、2倍セル電圧・SOC特性曲線CVtwおよび標準セル電圧・SOC特性曲線CVstは、図5に示す軌跡を描く。つまり、標準セル電圧・SOC特性曲線CVstおよび2倍セル電圧・SOC特性曲線CVtwは、低SOC領域以外の領域において、共通の圧縮率で圧縮される。
 なお、図5に示す2倍セル電圧・SOC特性曲線CVtwおよび標準セル電圧・SOC特性曲線CVstの各々は、出力特性が100%,97%,90%,83%,73%の順で劣化したときの軌跡を示す。
 システム制御回路(プロセッサ)26は、図6~図7に示すフロー図に従って標準セル20stのSOCを繰り返し検知し、図8~図10に示すフロー図に従って標準セル20stおよび2倍セル20twの充電バランスを繰り返し調整する。なお、これらのフロー図に対応する制御プログラムもまた、メモリ16mに記憶される。
 図6を参照して、ステップS1では、現時点の動作環境に対応する2倍セル電圧・SOC特性曲線CVtw,標準セル電圧・SOC特性曲線CVst,電位差・SOC特性曲線CVdfをメモリ16mから取得する。
 標準セル電圧・SOC特性曲線CVstについては、参照標準セル(=Kmax個の標準セル20stのうち予め指定された標準セル20st)の開路電圧と参照標準セル20stのSOCとの関係を示す曲線が取得される。また、電位差・SOC特性曲線CVdfについては、2倍セル20twおよび参照標準セル20stの間の電位差と参照標準セル20stのSOCとの関係を示す曲線が取得される。
 ステップS3では、2倍セル20twの現時点の開路電圧を検出する。ステップS5では、検出された開路電圧に対応するSOC値がステップS1で取得した2倍セル電圧・SOC特性曲線CVtw上の電位プラトー領域に属するか否かを判別する。判別結果がNOであればステップS7に進み、判別結果がYESであればステップS11に進む。
 ステップS7では、ステップS3で検出された開路電圧をステップS1で取得した2倍セル電圧・SOC特性曲線CVtwと照合して、2倍セル20twの現時点のSOC値を検出する。ステップS9では、検出されたSOC値の1/2の値を標準セル20stの現時点のSOC値としてモニタ(図示せず)から出力し、その後に今回のSOC検知処理を終了する。
 ステップS11では、参照標準セル20stの現時点の開路電圧を検出する。ステップS13では、検出された開路電圧に対応するSOC値がステップS1で取得した標準セル電圧・SOC特性曲線CVst上の電位プラトー領域に属するか否かを判別する。判別結果がNOであればステップS15に進み、判別結果がYESであればステップS19に進む。
 ステップS15では、ステップS11で検出された開路電圧をステップS1で取得した標準セル電圧・SOC特性曲線CVstと照合して、参照標準セル20stの現時点のSOC値を検出する。ステップS17では、検出されたSOC値を標準セル20stの現時点のSOC値としてモニタから出力し、その後に今回のSOC検知処理を終了する。
 図7に示すステップS19では、2倍セル20twと参照標準セル20stとの間の現時点の電位差を算出し、ステップS21では算出した電位差に対応する1または2以上のSOC値をステップS1で取得した電位差・SOC特性曲線CVdf上で検出する。
 ステップS1で取得した電位差・SOC特性曲線CVdfが図4に示す曲線を描き、ステップS21で算出した電位差が0.05Vであれば、ステップS21では5つのSOC値が検出される。
 ステップS23では検出されたSOC値の数が2以上であるか否かを判別し、判別結果がNOであればそのままステップS27に進む一方、判別結果がYESであればステップS25で以下の処理を実行してからステップS27に進む。
 つまり、ステップS25では、ステップS1で取得した標準セル電圧・SOC特性曲線CVstおよび2倍セル電圧・SOC特性曲線CVtwの少なくとも一方を参照して、参照標準セル20stの開路電圧に対応する唯一のSOC値を選定する。図3および図4から分かるように、参照標準セル20stの開路電圧が3.35Vでかつ2倍セル20twの開路電圧が3.3Vである場合、ステップS25では“70%”が唯一のSOC値として選定される。
 ステップS27では、こうして検出ないし選定された唯一のSOC値をモニタから出力し、その後に今回のSOC検知処理を終了する。
 図8を参照して、ステップS31では、現時点の動作環境に対応する2倍セル電圧・SOC特性曲線CVtw,Kmax個の標準セル電圧・SOC特性曲線CVst,Kmax個の電位差・SOC特性曲線CVdfをメモリ16mから取得する。
 ステップS33では、2倍セル20twおよびKmax個の標準セル20stの各々の現時点の開路電圧を検出する。ステップS35では変数Kを“1”に設定し、ステップS37では2倍セル20twとK番目の標準セル20stとの間の現時点の電位差を算出する。ステップS39では、算出した電位差に対応する1または2以上のSOC値を、ステップS31で取得したK番目の電位差・SOC特性曲線CVdf上で検出する。
 ステップS41では検出されたSOC値の数が2以上であるか否かを判別し、判別結果がNOであればそのままステップS45に進む一方、判別結果がYESであればステップS43で以下の処理を実行してからステップS45に進む。
 つまり、ステップS43では、ステップS31で取得したK番目の標準セル電圧・SOC特性曲線CVstおよび2倍セル電圧・SOC特性曲線CVtwの少なくとも一方を参照して、K番目の標準セル20stの開路電圧に対応する唯一のSOC値を選定する。
 ステップS45では変数Kをインクリメントし、ステップS47では変数Kが定数Kmaxを上回るか否かを判別する。判別結果がNOであればステップS37に戻り、判別結果がYESであればステップS49に進む。
 ステップS49では、SOC値が最小値を示す標準セル20stをKmax個の標準セル20stの中から検出する。ステップS51では、検出した標準セル20stの識別番号を変数Lに設定する。ステップS53では変数Kを“1”に設定し、ステップS55では変数Kが変数Lに等しいか否かを判別する。判別結果がYESであればそのままステップS63に進む一方、判別結果がNOであればステップS57~S61で以下の処理を実行してからステップS63に進む。
 ステップS57では、K番目の標準セル20stのSOC値と最小SOC値(=L番目の標準セル20stのSOC値)との差分を算出する。
 ステップS59では、K番目の標準セル20stを対象として、スイッチSWstをオン状態にした上で、外部短絡抵抗Rstの値とセルEstの特性からバランス電流値を算出し、算出されたバランス電流値とステップS57で算出された差分とに基づいて、K番目の標準セル20stの放電時間を算出する。算出される放電時間は、K番目の標準セル20stのSOC値が最小SOC値を下回るまでの時間である。
 ステップS61では変数Kをインクリメントし、ステップS63では変数Kが定数Kmaxを上回るか否かを判別する。判別結果がNOであればステップS55に戻り、判別結果がYESであればステップS65に進む。ステップS65では、L番目の標準セル20st以外の標準セル20stについて、スイッチSWstをオンする。これによって、放電が開始される。
 ステップS67では変数Kを“1”に設定し、ステップS69では変数Kが変数Lに等しいか否かを判別し、ステップS71ではK番目の標準セル20stについて設定された放電時間が経過したか否かを判別する。ステップS69の判別結果がYESであるか或いはステップS71の判別結果がNOであればそのままステップS75に進み、ステップS69の判別結果がNOでかつステップS71の判別結果がYESであればステップS73でK番目の標準セル20stの放電動作を終了(=K番目の標準セル20stに設けられたスイッチSWstをオフ)してからステップS75に進む。
 ステップS75では変数Kが定数Kmaxに達したか否かを判別し、ステップS79ではKmax個の標準セル20stの全ての放電動作が終了したか否かを判別する。ステップS75の判別結果がNOであれば、ステップS77で変数Kをインクリメントし、その後にステップS69に戻る。
 ステップS75の判別結果がYESである一方、ステップS79の判別結果がNOであれば、ステップS67に戻る。ステップS75の判別結果およびステップS79の判別結果のいずれもがYESであれば、今回のバランス調整処理を終了する。
 以上の説明から分かるように、組電池20は、各々が標準容量を有するKmax個の標準セル20stと、標準容量の2倍の容量を有する単一の2倍セル20twとによって構成される。参照標準セル20st(=Kmax個の標準セル20stの中から予め指定された標準セル20st)のSOCを検出する際、システム制御回路16は、参照標準セル20stおよび2倍セル20twの間の電位差と参照標準セル20stのSOCとの関係を示す電位差・SOC特性曲線CVdfをメモリ16mから取得し(S1)、参照標準セル20stと2倍セル20twとの間の電位差を検出し(S19)、そして検出された電位差を電位差・SOC特性曲線CVdfと照合して参照標準セル20stのSOC値を検出する(S21)。
 システム制御回路16はまた、Kmax個の標準セル20stの間の充電バランスを調整する際、Mmax個の標準セル20stにそれぞれ対応するKmax個の電位差・SOC特性曲線CVdfをメモリ16mから取得し(S31)、K番目(K:1~Kmax)の標準セル20stの各々と2倍セル20twとの間の電位差を検出し(S37)、そして検出された電位差をK番目の電位差・SOC特性曲線CVdfと照合してK番目の標準セル20stのSOC値を検出する(S39)。
 標準セル20stは標準容量を有する一方、2倍セル20twは標準容量を上回る容量を有するため、標準セル20stの電圧の変動が少ないSOC領域(電位プラトー領域)においても、電位差・SOC特性曲線CVdf上では電位差が大きく変動し得る。このような電位差・SOC特性曲線CVdfを参照することで、電位プラトー領域においても簡単かつ高精度で標準セル20stのSOC値を検出することができ、さらには検出されたSOC値に基づいて標準セル20st間の充電バランスを調整することができる。
 また、2倍セル20twの材料および設計は、標準セル20stの材料および設計と同一であるため、同一のレート特性および寿命特性が得られる。これによって、2倍セル20twと標準セル20stとのリバランスに掛かる作業負担を抑制することができる。
 さらに、2倍セル20twの開路電圧は低くなるものの、2倍セル20twが高容量であることから、2倍セル20twの内部抵抗は相対的に低くなる。この結果、高レート時の開路電圧の低下量が抑制される(出力電圧の低下が生じ難くなる)。
 参考までに、90A負荷を掛けたときの出力特性を図11に示す。これより、大容量(=低抵抗)の2倍セル20twを導入することにより、特に高負荷(大電流)時の電圧降下が抑制され、高い電力が得られることが分かる。
 さらにまた、8個の標準セル20stによって構成された組電池の開路電圧が図12に示す菱形(◇)に沿って変化する場合、この実施例の組電池20の開路電圧は図12に示す四角形(□)に沿って変化する。つまり、組電池20のOCV-SOC特性は、標準セル20stのみによって構成された組電池のOCV-SOC特性と略一致する。
 これは、2倍セル20twの開路電圧が広範囲にわたって平坦であり、かつ組電池20に設けられる2倍セル20twの数も1つであるからである。これによって、組電池単位での充放電制御は、単一の標準セル20stを2倍セル20stによって置換するか否かに関係なく、共通化できる。
 なお、この実施例では、組電池20に設けられた2倍セル20twの数は1つであるが、2以上の2倍セル20twを組電池20に設けるようにしてもよい。また、この実施例では、標準容量の2倍の容量を有する高容量セル(=2倍セル20tw)を組電池20に設けるようにしているが、高容量セルの容量は標準容量の1.2倍から3.0倍までの範囲で適宜変更してもよい。
 さらに、この実施例では、組電池回路10には単一の組電池20を設けるようにしているが、複数の組電池20を並列接続または直列接続し、図6~図10に示す処理を組電池20毎に実行するようにしてもよい。
 また、この実施例では、標準セル20stのSOC値を検出するようにしている。しかし、標準セル20stのSOH値を検出するようにしてもよい。
 なお、標準セル20stのSOHは“劣化前の標準セル20stの満充電容量を基準とする現時点の標準セル20stの満充電容量”と定義することができ、2倍セル20twのSOHは“劣化前の2倍セル20twの満充電容量を基準とする現時点の2倍セル20twの満充電容量”と定義することができる。
 このようなパラメータを検出する場合、2倍セル20twの開路電圧と2倍セル20twのSOHとの関係を示す2倍セル電圧・SOH特性曲線CVtw´をメモリ16mに記憶し(記憶する曲線CVtw´の数=動作環境数)、図6~図7の処理に代えて図13に示す処理を実行する必要がある。なお、SOHの性質上、図8~図10に示すようなバランス調整は不要である。
 図13を参照して、ステップS81では、現時点の動作環境に対応する2倍セル電圧・SOH特性曲線CVtw´をメモリ16mから取得する。ステップS83では変数Kを“1”に設定し、ステップS85ではK番目の標準セル20stが満充電状態であるか否かを判別する。
 判別結果がYESであればステップS87に進み、2倍セル20twの現時点の開路電圧を検出する。ステップS89では、ステップS87で検出された開路電圧をステップS81で取得した2倍セル電圧・SOH特性曲線CVtw´と照合して、2倍セル20twの現時点のSOH値を検出する。ステップS91では、検出されたSOH値の1/2の値をK番目の標準セル20stの現時点のSOH値としてモニタから出力する。出力が完了すると、ステップS95に進む。
 ステップS85の判別結果がNOであればステップS93に進み、K番目の標準セルを対象とする前回のステップS91の処理によって検出されたSOH値をモニタから出力する。出力が完了すると、ステップS95に進む。
 ステップS95では変数Kをインクリメントし、ステップS97では変数Kが定数Kmaxを上回るか否かを判別する。判別結果がNOであればステップS85に戻る一方、判別結果がYESであれば今回のSOH検知処理を終了する。
 10 …組電池回路
 12 …系統電源
 14 …負荷
 16 …システム制御回路
 18 …充放電回路
 20 …組電池
 20tw …2倍セル
 20st …標準セル

 

Claims (7)

  1.  標準容量を有する標準セルと前記標準容量を上回る容量を有する特定セルとによって構成された組電池の充放電を制御する組電池回路であって、
     前記標準セルおよび前記特定セルの間の電位差と、劣化前の前記標準セルの満充電容量を基準とする現時点の前記標準セルの容量を表す標準セル容量係数との関係を示す電位差・容量係数特性曲線をメモリから取得する電位差・容量係数特性曲線取得手段、
     前記標準セルおよび前記特定セルの間の電位差を検出する電位差検出手段、および
     前記電位差検出手段によって検出された電位差を前記電位差・容量係数特性曲線取得手段によって取得された電位差・容量係数特性曲線と照合して現時点の前記標準セル容量係数の値を検出する標準セル容量係数値検出手段を備える、組電池回路。
  2.  前記標準セルの電圧と前記標準セル容量係数との関係を示す標準セル電圧・容量係数特性曲線および/または前記特定セルの電圧と劣化前の前記特定セルの満充電容量を基準とする現時点の前記特定セルの容量を表す特定セル容量係数との関係を示す特定セル電圧・容量係数特性曲線を前記メモリから取得するセル電圧・容量係数特性曲線取得手段、および
     前記標準セル容量係数値検出手段によって検出された前記標準セル容量係数の値の数が2以上のとき前記セル電圧・容量係数特性曲線取得手段によって取得された特性曲線に基づいて前記標準セル容量係数の唯一の値を選定する標準セル容量係数値選定手段をさらに備える、請求項1記載の組電池回路。
  3.  前記標準セル容量係数値検出手段によって検出された前記標準セル容量係数の値を出力する標準セル容量係数値出力手段をさらに備える、請求項1または2記載の組電池回路。
  4.  前記標準セルの数は複数であり、
     前記電位差検出手段および前記標準セル容量係数値検出手段の各々は前記標準セル毎に検出処理を実行し、
     前記標準セル容量係数値検出手段によって検出された前記標準セル容量係数の値に基づいて前記標準セル間の充電バランスを調整するバランス調整手段をさらに備える、請求項1ないし4のいずれかに記載の組電池回路。
  5.  前記特定セルは、前記標準セル容量係数および前記特定セル容量係数の各々の値がゼロを示す位置で前記特定セルの電圧と前記標準セルの電圧とが互いに一致するように、前記標準セルと直列接続される、請求項1ないし4のいずれかに記載の組電池回路。
  6.  標準容量を有する標準セルと前記標準容量を上回る容量を有する特定セルとによって構成された組電池の充放電を制御する組電池回路によって実行される容量係数検出方法であって、
     前記標準セルおよび前記特定セルの間の電位差と、劣化前の前記標準セルの満充電容量を基準とする現時点の前記標準セルの容量を表す標準セル容量係数との関係を示す電位差・容量係数特性曲線をメモリから取得する電位差・容量係数特性曲線取得ステップ、
     前記標準セルおよび前記特定セルの間の電位差を検出する電位差検出ステップ、および
     前記電位差検出ステップによって検出された電位差を前記電位差・容量係数特性曲線取得ステップによって取得された電位差・容量係数特性曲線と照合して現時点の前記標準セル容量係数の値を検出する標準セル容量係数値検出ステップを備える、容量係数検出方法。
  7.  標準容量を有する標準セルと前記標準容量を上回る容量を有する特定セルとによって構成された組電池の充放電を制御する組電池回路に、
     前記標準セルおよび前記特定セルの間の電位差と、劣化前の前記標準セルの満充電容量を基準とする現時点の前記標準セルの容量を表す標準セル容量係数との関係を示す電位差・容量係数特性曲線をメモリから取得する電位差・容量係数特性曲線取得ステップ、
     前記標準セルおよび前記特定セルの間の電位差を検出する電位差検出ステップ、および
     前記電位差検出ステップによって検出された電位差を前記電位差・容量係数特性曲線取得ステップによって取得された電位差・容量係数特性曲線と照合して現時点の前記標準セル容量係数の値を検出する標準セル容量係数値検出ステップを実行させるための、容量係数検出プログラム。
PCT/JP2017/021382 2016-06-22 2017-06-08 組電池回路、容量係数検出方法、および容量係数検出プログラム WO2017221735A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018523860A JP6566136B2 (ja) 2016-06-22 2017-06-08 組電池回路、容量係数検出方法、および容量係数検出プログラム
CN201780038426.8A CN109313235B (zh) 2016-06-22 2017-06-08 组电池电路、容量系数检测方法
US16/124,436 US10845419B2 (en) 2016-06-22 2018-09-07 Assembled battery circuit, capacitance coefficient detection method, and capacitance coefficient detection program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-123247 2016-06-22
JP2016123247 2016-06-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/124,436 Continuation US10845419B2 (en) 2016-06-22 2018-09-07 Assembled battery circuit, capacitance coefficient detection method, and capacitance coefficient detection program

Publications (1)

Publication Number Publication Date
WO2017221735A1 true WO2017221735A1 (ja) 2017-12-28

Family

ID=60784472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021382 WO2017221735A1 (ja) 2016-06-22 2017-06-08 組電池回路、容量係数検出方法、および容量係数検出プログラム

Country Status (4)

Country Link
US (1) US10845419B2 (ja)
JP (1) JP6566136B2 (ja)
CN (1) CN109313235B (ja)
WO (1) WO2017221735A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110031771A (zh) * 2019-04-29 2019-07-19 上海玫克生储能科技有限公司 一种描述电池一致性的方法
CN112526363A (zh) * 2020-11-25 2021-03-19 深圳易马达科技有限公司 设备工作时间的检测方法、检测装置、终端及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018012364A1 (ja) * 2016-07-13 2018-01-18 株式会社 村田製作所 組電池回路、容量係数検出方法、および容量係数検出プログラム
JP2020187951A (ja) * 2019-05-16 2020-11-19 トヨタ自動車株式会社 電池の検査方法、電池の検査装置および電池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004032871A (ja) * 2002-06-25 2004-01-29 Shin Kobe Electric Mach Co Ltd 走行車両用電源システム
JP2012173048A (ja) * 2011-02-18 2012-09-10 Denso Corp 組電池装置
JP2013003115A (ja) * 2011-06-21 2013-01-07 Gs Yuasa Corp 電池寿命劣化推定装置、電池寿命劣化推定方法及び蓄電システム
WO2013179810A1 (ja) * 2012-05-29 2013-12-05 株式会社 日立製作所 組電池の制御装置、電源装置、組電池の制御方法
WO2015059746A1 (ja) * 2013-10-21 2015-04-30 トヨタ自動車株式会社 電池システム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55150567A (en) * 1979-05-11 1980-11-22 Matsushita Electric Ind Co Ltd Actuation of nickel-iron battery group
JP2004311308A (ja) 2003-04-09 2004-11-04 Nissan Motor Co Ltd 容量検知用単電池を備えた二次電池、組電池、組電池ユニットおよびこの組電池、組電池ユニットを搭載した電気自動車
CN100576624C (zh) * 2006-01-18 2009-12-30 松下电器产业株式会社 组合电池、电源系统及组合电池的制造方法
JP5154076B2 (ja) 2006-12-27 2013-02-27 パナソニック株式会社 組電池ならびにそれを用いる電池モジュールおよびハイブリッド自動車
EP2171791A4 (en) * 2007-07-12 2014-09-10 A123 Systems Inc MULTIFUNCTIONAL MIXED METAL OLIVES FOR LITHIUM ION BATTERIES
JP2011150876A (ja) * 2010-01-21 2011-08-04 Sony Corp 組電池および組電池の制御方法
CN102918704B (zh) * 2010-04-13 2016-02-17 流体公司 具有高能量效率模式的金属空气电化学电池
JP5786324B2 (ja) * 2010-11-17 2015-09-30 日産自動車株式会社 組電池の制御装置
JP6056125B2 (ja) 2011-10-20 2017-01-11 Tdk株式会社 組電池及び蓄電装置
DE102012205144A1 (de) * 2012-03-29 2013-10-02 Robert Bosch Gmbh Verfahren zum Verschalten von Batteriezellen in einer Batterie, Batterie und Überwachungseinrichtung
JP5994521B2 (ja) * 2012-09-21 2016-09-21 株式会社Gsユアサ 状態推定装置、開放電圧特性生成方法
CN105629172B (zh) * 2014-10-27 2018-12-07 中国移动通信集团甘肃有限公司 一种混合蓄电池故障检测的方法及装置
CN104360284B (zh) * 2014-12-02 2018-08-07 上海航天电源技术有限责任公司 一种磷酸铁锂系动力锂离子电池自放电特性的检测新方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004032871A (ja) * 2002-06-25 2004-01-29 Shin Kobe Electric Mach Co Ltd 走行車両用電源システム
JP2012173048A (ja) * 2011-02-18 2012-09-10 Denso Corp 組電池装置
JP2013003115A (ja) * 2011-06-21 2013-01-07 Gs Yuasa Corp 電池寿命劣化推定装置、電池寿命劣化推定方法及び蓄電システム
WO2013179810A1 (ja) * 2012-05-29 2013-12-05 株式会社 日立製作所 組電池の制御装置、電源装置、組電池の制御方法
WO2015059746A1 (ja) * 2013-10-21 2015-04-30 トヨタ自動車株式会社 電池システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110031771A (zh) * 2019-04-29 2019-07-19 上海玫克生储能科技有限公司 一种描述电池一致性的方法
CN112526363A (zh) * 2020-11-25 2021-03-19 深圳易马达科技有限公司 设备工作时间的检测方法、检测装置、终端及存储介质

Also Published As

Publication number Publication date
JP6566136B2 (ja) 2019-08-28
JPWO2017221735A1 (ja) 2018-10-25
CN109313235A (zh) 2019-02-05
US10845419B2 (en) 2020-11-24
CN109313235B (zh) 2021-07-06
US20190004121A1 (en) 2019-01-03

Similar Documents

Publication Publication Date Title
JP6566136B2 (ja) 組電池回路、容量係数検出方法、および容量係数検出プログラム
US8581547B2 (en) Method for detecting cell state-of-charge and state-of-discharge divergence of a series string of batteries or capacitors
KR101256079B1 (ko) 배터리 팩의 밸런싱 방법 및 밸런싱 시스템
JP6056730B2 (ja) 蓄電システム
CN108196190B (zh) 一种电池组在线故障诊断方法
CN106461732A (zh) 用于估计电池的健康状态的方法
KR102167428B1 (ko) 듀티 제어를 통한 효과적인 배터리 셀 밸런싱 방법 및 시스템
US9018912B2 (en) System and method for managing parallel-connected battery cells
JP7147809B2 (ja) 二次電池の劣化度判定装置及び組電池
CN103138026A (zh) 电池组的控制装置
KR101720960B1 (ko) 밸런싱 전류 가변 배터리 팩 균등 충전 장치 및 방법
EP3340426A1 (en) Battery cell balancing method and system
EP3961233A1 (en) Battery cell diagnosis device and method
US20160178684A1 (en) Storage battery monitoring device
JP5942882B2 (ja) 電池システム
CN113533981B (zh) 锂离子电池自放电检测方法、设备及计算机可读存储介质
TWI388871B (zh) 偵測能量儲存單元容量之電池容量偵測器、系統及其偵測方法
KR102431931B1 (ko) 직렬 배터리 충방전 장치
JP6607316B2 (ja) 組電池回路、容量係数検出方法、および容量係数検出プログラム
KR20210031336A (ko) 배터리 진단 장치 및 방법
KR102158259B1 (ko) 시스템과 배터리 결합 시 배터리 팩의 불량 분석 방법 및 시스템
JP6787220B2 (ja) 蓄電システム
CN115825774A (zh) 电池的检测方法、装置、设备、存储介质和程序产品
KR101776507B1 (ko) 배터리 충전 방법 및 시스템
KR20180130821A (ko) 멀티 셀 충전 시스템

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018523860

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815204

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17815204

Country of ref document: EP

Kind code of ref document: A1