WO2017221374A1 - 多層樹脂シート及び成形容器 - Google Patents

多層樹脂シート及び成形容器 Download PDF

Info

Publication number
WO2017221374A1
WO2017221374A1 PCT/JP2016/068680 JP2016068680W WO2017221374A1 WO 2017221374 A1 WO2017221374 A1 WO 2017221374A1 JP 2016068680 W JP2016068680 W JP 2016068680W WO 2017221374 A1 WO2017221374 A1 WO 2017221374A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
water vapor
resin
resin sheet
multilayer
Prior art date
Application number
PCT/JP2016/068680
Other languages
English (en)
French (fr)
Inventor
徳永 久次
喬梓 村岡
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2018523230A priority Critical patent/JP6800971B2/ja
Priority to PCT/JP2016/068680 priority patent/WO2017221374A1/ja
Publication of WO2017221374A1 publication Critical patent/WO2017221374A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins

Definitions

  • the present invention relates to a high-barrier multilayer resin sheet and a molded container formed by molding the same.
  • polystyrene resins having excellent thermoformability and rigidity have been used as containers for soft drinks, fruit juice drinks, and favorite foods and drinks.
  • an ethylene-vinyl alcohol copolymer resin layer is provided through an adhesive layer such as a modified olefin resin in the middle of the polystyrene resin layer as an outermost layer to provide an oxygen barrier property, and by oxidation of the contents
  • Multilayer resin sheets that suppress deterioration in quality and multilayer containers comprising the same have become widespread (see Patent Document 1).
  • a gas barrier material containing a silicon-containing polymer and a thermoplastic resin is used, the glass transition temperature of the thermoplastic resin is set to a value of 100 ° C. or higher, and plasma ion implantation is performed for the gas barrier material.
  • the silicon-containing polymer is a polysilazane compound
  • the thermoplastic resin is at least one selected from the group consisting of a polycarbonate resin, a cycloolefin resin, and a polysulfone resin.
  • Patent Document 3 Furthermore, an optical resin sheet having barrier properties and solvent resistance against gases such as oxygen and water vapor and moisture has been proposed (see Patent Document 3).
  • the thickness is determined by performing heat curing treatment on the coating film.
  • a gas barrier layer having a thickness of 0.02 to 5 ⁇ m is provided.
  • a transport system in which a large number of containers are stacked and protected or temperature controlled is applied. Moreover, it is often stored in the same form in a warehouse that is temporarily stored after transportation. However, it is rare that a packaging form or a transportation method that has been applied up to humidity management is applied.
  • the resin used as the oxygen barrier layer provided in the container structure in order to suppress the quality deterioration due to the oxidation of the contents tends to decrease the barrier property due to moisture absorption by the oxygen barrier layer resin due to the influence of humidity. It is known that there is. Similarly, due to moisture absorption of the oxygen barrier layer resin, foaming due to moisture absorbed during heat molding to the container occurs, and the molded container has a poor appearance such as a granular pattern, as well as perforations. It can lead to serious problems.
  • the barrier sheet described in Patent Documents 1 and 2 is not configured in consideration of the humidity effect during the transportation and storage described above, and the container formed using the sheet has a high humidity.
  • the inherent barrier property cannot be maintained, and the deterioration of quality due to oxidation of the contents cannot be suppressed, or the above-mentioned appearance defect may occur.
  • the barrier sheet described in Patent Document 3 is provided with a coating film having a barrier property against gas and moisture on both surfaces of the resin sheet, whereby an oxygen barrier due to the influence of humidity from one surface of the resin sheet. It is considered that a decrease in barrier properties due to moisture absorption of the layer resin can be prevented.
  • the present invention has been made in view of the above circumstances, and by forming a water vapor barrier resin layer on both surfaces of the oxygen barrier resin layer, it has excellent oxygen barrier properties, water vapor barrier properties, and in a high humidity environment.
  • Another object of the present invention is to provide a high-barrier multilayer resin sheet that maintains a high oxygen barrier property and a molded container having excellent moldability formed by molding the same.
  • a layer composed of an olefin resin as a water vapor barrier resin layer is laminated on both surfaces of an oxygen barrier resin layer via an adhesive layer, and one side water vapor barrier resin
  • the multilayer resin sheet configured as described above maintains a difference in oxygen permeability of 1.0 cc / m 2 ⁇ day or less before and after being put in a high-temperature and high-humidity environment.
  • the multilayer resin sheet configured as described above maintains an oxygen permeability of 5.0 cc / m 2 ⁇ day or less and a water vapor permeability of 3.0 g / m 2 ⁇ day or less. .
  • the multilayer resin sheet configured as described above has excellent oxygen barrier properties and water vapor barrier properties, and can maintain high oxygen barrier properties even in a high humidity environment.
  • the thickness of the oxygen barrier resin layer is set to 10 to 50 ⁇ m.
  • the oxygen barrier performance is guaranteed to suppress the deterioration in quality due to oxidation of the contents of the molded container resulting from the oxygen barrier resin layer being too thin, Moreover, since the oxygen barrier resin layer is too thick, it is possible to prevent the occurrence of resin whisker when the molded container is punched.
  • the thickness of each adhesive layer is set to 10 to 50 ⁇ m. According to this, it is possible to prevent a sufficient interlayer adhesive strength resulting from the adhesive layer being too thin from being obtained, and to generate resin whiskers when the molded container is punched due to the adhesive layer being too thick. Can be prevented.
  • the styrenic resin layer is formed of a styrenic resin containing 4 to 8% by mass of a butadiene rubber component.
  • the thickness of the multilayer resin sheet is 500 to 1200 ⁇ m.
  • the thickness of the multilayer resin sheet is prevented from being too thin to prevent insufficient strength of the container obtained by thermoforming. It is possible to prevent the formation of defective molding, because heat is not easily transmitted in the thickness direction of the sheet during thermoforming due to the thickness of the multilayer resin sheet being too thick. An increase in manufacturing cost can be prevented.
  • the present invention also provides a molded container formed by molding the multilayer resin sheet configured as described above.
  • a molded container has excellent oxygen barrier properties and water vapor barrier properties, and maintains high oxygen barrier properties even in a high humidity environment, thereby preventing deterioration in quality due to oxidation of the contents of the molded container.
  • the moldability of the molded container is also excellent.
  • the multilayer resin sheet of the present invention has a water vapor barrier resin layer 10a as an outermost layer and a water vapor as an intermediate layer on both surfaces of an oxygen barrier resin layer 12 through adhesive layers 11a and 11b, respectively. It is a multilayer resin sheet in which a barrier resin layer 10b is laminated, and a styrene resin layer 13 as a base material layer is laminated on the water vapor barrier resin layer 10b via an adhesive layer 11c.
  • the total thickness of the water vapor barrier resin layers 10a and 10b of the outermost layer and the intermediate layer is set to 50 to 300 ⁇ m, and the thickness of the styrene resin layer 13 of the base material layer is set to 200 to 900 ⁇ m. .
  • Examples of the olefin resin used in the water vapor barrier resin layers 10a and 10b include homopolymers of olefins having about 2 to 8 carbon atoms such as ethylene, propylene, and butene-1, but are not limited thereto. It is not something.
  • the water vapor barrier resin layers 10a and 10b are formed on the outermost layer and the intermediate layer of the multilayer resin sheet, and are not particularly limited, but unless otherwise noted, the contents touch the outermost layer. To do.
  • the thickness of the water vapor barrier resin layer 10a as the outermost layer is set to be equal to the thickness of the water vapor barrier resin layer 10b as the intermediate layer or thicker than the thickness of the water vapor barrier resin layer 10b as the intermediate layer. Further, the thickness of the water vapor barrier resin layer 10b of the intermediate layer is set to 20 ⁇ m or more, and the total thickness of the water vapor barrier resin layers 10a and 10b of the outermost layer and the intermediate layer is 50 to 300 ⁇ m (preferably 70 to 200 ⁇ m). Is set.
  • the total thickness of the water vapor barrier resin layers 10a and 10b is less than 50 ⁇ m, there is a possibility that a sufficient water vapor barrier property may not be exhibited by forming a thin portion by molding, and the water vapor barrier resin layer 10a.
  • the total thickness of 10b exceeds 300 ⁇ m, there is a possibility that the optimum temperature range during thermoforming becomes narrow and stable molding cannot be performed.
  • the resin constituting the adhesive layers 11a, 11b, and 11c is preferably a modified olefin polymer.
  • modified olefin polymers constituting the adhesive layers 11a, 11b, and 11c include homopolymers of olefins having about 2 to 8 carbon atoms such as ethylene, propylene, and butene-1, and these olefins and ethylene, propylene, and butenes.
  • olefins having about 2 to 20 carbon atoms such as 1,3-methylbutene-1, pentene-1, 4-methylpentene-1, hexene-1, octene-1, decene-1, etc., vinyl acetate, vinyl chloride, acrylic Olefin resins such as acid, methacrylic acid, acrylic acid ester, methacrylic acid ester, copolymers with vinyl compounds such as styrene, ethylene-propylene copolymer, ethylene-propylene-diene copolymer, ethylene-butene- Olefin rubber such as 1 copolymer, propylene-butene-1 copolymer, etc.
  • acrylic Olefin resins such as acid, methacrylic acid, acrylic acid ester, methacrylic acid ester
  • copolymers with vinyl compounds such as styrene, ethylene-propylene copolymer, ethylene-propylene-diene copolymer, ethylene-but
  • an ethylene resin, a propylene resin, or an ethylene-propylene or butene-1 copolymer rubber modified with an unsaturated dicarboxylic acid or an anhydride thereof, particularly maleic acid or an anhydride thereof is preferable. It is.
  • the thicknesses of the adhesive layers 11a, 11b, and 11c made of the modified olefin polymer are set to 10 to 50 ⁇ m (preferably 20 to 40 ⁇ m), respectively. If the thickness is less than 10 ⁇ m, sufficient interlayer adhesion strength may not be obtained. If the thickness exceeds 50 ⁇ m, resin whiskers may occur when the thermoformed container is punched.
  • oxygen barrier resin constituting the oxygen barrier resin layer 12 examples include, but are not limited to, ethylene-vinyl alcohol copolymer resin and polyamide resin. Among these, ethylene-vinyl alcohol copolymer resin is preferable in terms of processability and moldability.
  • the ethylene-vinyl alcohol copolymer resin is usually obtained by saponifying an ethylene-vinyl acetate copolymer, and has an ethylene content of 10 to 10 in order to provide oxygen barrier properties, workability, and moldability. It is preferably 65 mol% (preferably 20 to 50 mol%) and a saponification degree of 90% or more (preferably 95% or more).
  • polyamide resin examples include lactam polymers such as caprolactam and laurolactam, polymers of aminocarboxylic acids such as 6-aminocaproic acid, 11-aminoundecanoic acid and 12-aminododecanoic acid, hexamethylenediamine, decamethylenediamine, Aliphatic diamines such as dodecamethylenediamine, 2,2,4- or 2,4,4-trimethylhexamethylenediamine, 1,3- or 1,4-bis (aminomethyl) cyclohexane, bis (p-aminocyclohexylmethane) ), Alicyclic diamines such as m- or p-xylylenediamine, diamine units such as aromatic diamines, aliphatic dicarboxylic acids such as adipic acid, suberic acid and sebacic acid, and alicyclics such as cyclohexanedicarboxylic acid Aromatic dicarboxylic acid, terephthalate
  • polyamide resin examples include nylon 6, nylon 9, nylon 11, nylon 12, nylon 66, nylon 610, nylon 611, nylon 612, nylon 6T, nylon 6I, nylon MXD6, nylon 6/66, nylon 6 / 610, nylon 6 / 6T, nylon 6I / 6T, etc., among which nylon 6 and nylon MXD6 are preferred.
  • the thickness of the oxygen barrier resin layer 12 is set to 10 to 50 ⁇ m (preferably 20 to 40 ⁇ m). If the thickness is less than 10 ⁇ m, there is a possibility that the oxygen barrier performance to the extent that quality deterioration due to oxidation of the contents of the molded container is suppressed may not be obtained, and if the thickness exceeds 50 ⁇ m, the thermoformed container is punched out. Sometimes resin whiskers may occur.
  • styrene resin constituting the styrene resin layer 13 as the base material layer examples include styrene monomers such as styrene, ⁇ -methylstyrene, p-methylstyrene, dimethylstyrene, pt-butylstyrene, and chlorostyrene.
  • styrene-acrylonitrile copolymers such as styrene-acrylonitrile copolymers (hereinafter referred to as AS resins), or other polymers such as styrenic monomers, for example, Graft polymers grafted in the presence of diene rubbery polymers such as polybutadiene, styrene-butadiene copolymer, polyisoprene, polychloroprene, such as high impact polystyrene (hereinafter referred to as HIPS resin), styrene-acrylonitrile graft Polymer (hereinafter ABS resin) Say), and the like.
  • HIPS resin high impact polystyrene
  • ABS resin styrene-acrylonitrile graft Polymer
  • polystyrene resins polystyrene (hereinafter referred to as GPPS resin) and HIPS resin are preferable from the viewpoints of rigidity and moldability of the molded container.
  • the styrene resin preferably contains 4 to 8% by mass of a butadiene rubber component.
  • the butadiene rubber component content is a simple method to adjust by blending GPPS resin and HIPS resin, but it may be adjusted at the manufacturing stage of HIPS resin. If it is less than 4% by mass, there is a possibility that practically sufficient container strength may not be obtained, and if it exceeds 8% by mass, there is a possibility of causing problems such as adhesion of a hot plate, particularly during thermoforming using a hot platen. .
  • the styrene resin layer 13 may be a pigment, a colorant such as a dye, a release agent such as silicon oil or an alkyl ester, or a fiber such as glass fiber, as long as the effects of the present invention are not impaired.
  • Additives such as reinforcing agents, granular lubricants such as talc, clay, silica, salt compounds of sulfonic acid and alkali metals, antistatic agents such as polyalkylene glycol, UV absorbers, and antibacterial agents can be added .
  • the scrap resin generated in the production process of the multilayer resin sheet or molded container of the present invention can be mixed and used.
  • the thickness of the styrene resin layer 13 is set to 200 to 900 ⁇ m (preferably 300 to 700 ⁇ m). If the thickness is less than 200 ⁇ m, excellent thermoformability may not be exhibited, such as the thickness of each part of the container after molding is not even, and if the thickness exceeds 900 ⁇ m, In addition, heat may not be sufficiently transmitted in the thickness direction of the sheet, and molding defects may occur.
  • the layer structure of the multilayer resin sheet according to one embodiment of the present invention is, as described above, the water vapor barrier resin layer / adhesive layer / oxygen barrier resin layer / adhesive layer / water vapor barrier resin layer / adhesive layer / styrene. It is a system resin layer, and is simply expressed as outermost layer / adhesive layer / oxygen barrier layer / adhesive layer / intermediate layer / adhesive layer / base material layer. Further, for example, the base material layer may have a configuration in which a layer in which scrap resin generated in the manufacturing process of the multilayer resin sheet or molded container of the present invention is mixed and a layer containing only a styrene resin are laminated.
  • the thickness of the multilayer resin sheet of the present invention is set to 500 to 1200 ⁇ m (preferably 700 to 1000 ⁇ m). If the thickness is less than 500 ⁇ m, the strength of the container obtained by thermoforming may be insufficient. If the thickness exceeds 1200 ⁇ m, the container is sufficiently heated in the thickness direction of the sheet during thermoforming. May become difficult to transmit, and molding defects may occur. Moreover, the manufacturing cost of a container may become high.
  • the method for molding the multilayer resin sheet of the present invention is not particularly limited, and a general resin lamination method can be used.
  • each raw resin is melt-extruded using four or more single-screw extruders, and a multilayer resin sheet is obtained using a feed block and a T die, or a multilayer resin sheet is obtained using a multi-manifold die Is mentioned.
  • the molded container 20 is formed by thermoforming the multilayer resin sheet of the present invention as shown in FIG.
  • Thermoforming methods include general vacuum forming, pressure forming, and plug assist method in which plugs are formed by contacting a plug on one side of the sheet, and male and female molds that form a pair on both sides of the sheet. Examples of the method include so-called match mold molding, which is performed by bringing them into contact with each other, but is not limited thereto.
  • a known sheet heating method such as radiant heating by an infrared heater or the like which is non-contact heating, or hot plate heating to soften the sheet by directly touching the heated hot plate is applied. can do.
  • the molding temperature at the time of thermoforming is appropriately set in consideration of the melting point of the resin, etc., but if the sheet heating temperature is too low, the molded state of the container after the thermoforming is insufficient. If the sheet heating temperature is too high, there is a risk that defects such as fusing to the hot platen may occur, so it is preferable to set the temperature appropriately.
  • the resin raw materials used in the examples are as follows.
  • HDPE resin High-density polyethylene resin
  • MI 6.0 g / 10 min.
  • the multilayer resin sheet was heat-molded on the following conditions, and the yogurt molding container 20 shown in FIG. 3 was obtained.
  • Equipment used Asano Laboratory Co., Ltd. Vacuum / Pneumatic Molding Machine
  • Heating heater Non-contact far infrared heater
  • Sheet surface temperature Adjust the sheet surface temperature appropriately depending on the sheet configuration
  • the water vapor permeability of the sheet was measured by the following method. [Measurement method] GB / T 1037 compliant Equipment used: W3 / 031 manufactured by LabThink Measurement conditions: 40 ° C. ⁇ 90% R.D. H. Moreover, the water vapor transmission rate was evaluated according to the following criteria. If the water vapor transmission rate is 3.0 g / m 2 ⁇ day or less, the water vapor barrier property of the multilayer resin sheet is acceptable, and if the water vapor transmission rate is greater than 3.0 g / m 2 ⁇ day, the water vapor barrier property of the multilayer resin sheet Is rejected.
  • the difference in oxygen permeability before and after the introduction of high temperature and high humidity environment was also evaluated according to the following criteria. If the difference in oxygen permeability before and after introduction of the high temperature and high humidity environment is 1.0 cc / m 2 ⁇ day or less, the oxygen barrier property of the multilayer resin sheet is acceptable, and the difference in oxygen permeability before and after introduction of the high temperature and high humidity environment is If it is greater than 1.0 cc / m 2 ⁇ day, the oxygen barrier property of the multilayer resin sheet is considered to be unacceptable.
  • the water vapor transmission rate of the multilayer resin sheet obtained as described above As a result of measuring the water vapor transmission rate of the multilayer resin sheet obtained as described above, as shown in Table 1, the water vapor transmission rate is 0.8 g / m 2 ⁇ day.
  • the oxygen transmission rate before introduction of the high-temperature and high-humidity environment was 0.12 cc / m 2 ⁇ day.
  • the permeability is 0.32 cc / m 2 ⁇ day
  • the difference in oxygen permeability before and after the high temperature and high humidity environment is introduced is 0.20 cc / m 2 ⁇ day.
  • the moldability of a container molded using the multilayer resin sheet was evaluated, the moldability was evaluated as A rank.
  • the water vapor transmission rate of the multilayer resin sheet obtained as described above is 1.1 g / m 2 ⁇ day.
  • the oxygen transmission rate before introduction of the high-temperature and high-humidity environment was 0.21 cc / m 2 ⁇ day.
  • the permeability is 0.35 cc / m 2 ⁇ day, and the difference in oxygen permeability before and after the high temperature and high humidity environment is introduced is 0.14 cc / m 2 ⁇ day.
  • the moldability of a container molded using the multilayer resin sheet was evaluated, the moldability was evaluated as A rank.
  • the water vapor transmission rate of the multilayer resin sheet obtained as described above is 1.1 g / m 2 ⁇ day.
  • the oxygen transmission rate before introduction of the high-temperature and high-humidity environment was 0.22 cc / m 2 ⁇ day.
  • the permeability is 0.52 cc / m 2 ⁇ day, and the difference in oxygen permeability before and after the introduction of the high temperature and high humidity environment is 0.30 cc / m 2 ⁇ day.
  • the moldability of a container molded using the multilayer resin sheet was evaluated, the moldability was evaluated as A rank.
  • the water vapor transmission rate of the multilayer resin sheet obtained as described above is 1.0 g / m 2 ⁇ day.
  • the oxygen transmission rate before introduction of the high-temperature and high-humidity environment was 0.18 cc / m 2 ⁇ day.
  • the permeability is 0.30 cc / m 2 ⁇ day, and the difference in oxygen permeability before and after the high temperature and high humidity environment is introduced is 0.12 cc / m 2 ⁇ day.
  • the moldability of a container molded using the multilayer resin sheet was evaluated, the moldability was evaluated as A rank.
  • the water vapor transmission rate of the multilayer resin sheet obtained as described above As a result of measuring the water vapor transmission rate of the multilayer resin sheet obtained as described above, as shown in Table 1, the water vapor transmission rate is 1.5 g / m 2 ⁇ day.
  • the oxygen transmission rate before introduction of the high-temperature and high-humidity environment was 0.22 cc / m 2 ⁇ day.
  • the permeability is 0.58 cc / m 2 ⁇ day
  • the difference in oxygen permeability before and after the introduction of the high temperature and high humidity environment is 0.36 cc / m 2 ⁇ day.
  • the moldability of a container molded using the multilayer resin sheet was evaluated, the moldability was evaluated as A rank.
  • the water vapor transmission rate of the multilayer resin sheet obtained as described above As a result of measuring the water vapor transmission rate of the multilayer resin sheet obtained as described above, as shown in Table 1, the water vapor transmission rate is 0.8 g / m 2 ⁇ day.
  • the oxygen transmission rate before introduction of the high-temperature and high-humidity environment was 0.11 cc / m 2 ⁇ day
  • the oxygen transmission rate after introduction of the high-temperature and high-humidity environment was The permeability is 0.23 cc / m 2 ⁇ day
  • the difference in oxygen permeability before and after the introduction of the high temperature and high humidity environment is 0.12 cc / m 2 ⁇ day.
  • the moldability of a container molded using the multilayer resin sheet was evaluated, the moldability was evaluated as A rank.
  • a PP resin: “HJ730L” was used as the olefin resin, and a multilayer resin sheet having the same method and layer structure as in Example 1 was obtained.
  • the water vapor transmission rate of the multilayer resin sheet obtained as described above is 0.6 g / m 2 ⁇ day.
  • the oxygen transmission rate before introduction of the high-temperature and high-humidity environment was 0.15 cc / m 2 ⁇ day.
  • the permeability is 0.18 cc / m 2 ⁇ day, and the difference in oxygen permeability before and after the high temperature and high humidity environment is supplied is 0.03 cc / m 2 ⁇ day.
  • the moldability of a container molded using the multilayer resin sheet was evaluated, the moldability was evaluated as A rank.
  • Example 1 Compared with Example 1, the total thickness of the water vapor barrier resin layer, the thickness of the styrene resin layer serving as the base material layer, or the like is reduced, or the water vapor barrier resin layer is formed of the styrene resin layer.
  • the modified example was evaluated as follows for each performance as a comparative example. ⁇ Comparative Example 1>
  • a multilayer resin sheet is formed in the same manner as in Example 1 except that the layer structure is 975 ⁇ m and the thickness is 1100 ⁇ m (total thickness of the water vapor barrier resin layer is 40 ⁇ m). Obtained.
  • the feature of this comparative example was that the total thickness of the water vapor barrier resin layer was reduced.
  • the water vapor transmission rate is 0.8 g / m 2 ⁇ day.
  • the oxygen permeability before the high temperature and high humidity environment was introduced was 0.26 cc / m 2 ⁇ day, and the oxygen permeability after the high temperature and high humidity environment was introduced.
  • the permeability is 1.68 cc / m 2 ⁇ day, and the difference in oxygen permeability before and after the introduction of the high temperature and high humidity environment is 1.42 cc / m 2 ⁇ day.
  • the moldability was evaluated as A rank.
  • the multilayer resin sheet is formed by the same method as in Example 1 except that the layer structure is 180 ⁇ m and the thickness is 400 ⁇ m (total thickness of the water vapor barrier resin layer is 135 ⁇ m). Obtained.
  • Example 2 Compared to Example 1, the feature of this comparative example was that the thickness of the styrene resin layer serving as the base material layer was reduced.
  • the water vapor transmission rate of the multilayer resin sheet obtained from the comparative example as shown in Table 2, the water vapor transmission rate is 1.1 g / m 2 ⁇ day.
  • the oxygen transmission rate before introduction of the high temperature and high humidity environment was 0.25 cc / m 2 ⁇ day.
  • the permeability is 0.43 cc / m 2 ⁇ day, and the difference in oxygen permeability before and after the high temperature and high humidity environment is introduced is 0.18 cc / m 2 ⁇ day.
  • the moldability was evaluated as B rank.
  • the resin layer (13) had a layer structure of 740 ⁇ m and had a thickness of 900 ⁇ m.
  • the feature of this comparative example was that the water vapor barrier resin layer was formed of a styrene resin layer.
  • the water vapor transmission rate of the multilayer resin sheet obtained from the comparative example is 4.5 g / m 2 ⁇ day.
  • the oxygen permeability measurement as shown in Table 2, the oxygen permeability before the high temperature and high humidity environment was introduced was 0.22 cc / m 2 ⁇ day, and the oxygen permeability after the high temperature and high humidity environment was introduced.
  • the permeability is 2.56 cc / m 2 ⁇ day, and the difference in oxygen permeability before and after the high temperature and high humidity environment is supplied is 2.34 cc / m 2 ⁇ day.
  • the moldability of a container molded using the multilayer resin sheet was evaluated, the moldability was evaluated as A rank.
  • a multilayer resin sheet was obtained in the same manner as in Example 1 except that the layer configuration was 900 ⁇ m (total thickness of the water vapor barrier resin layer was 90 ⁇ m).
  • Example 1 Compared with Example 1, the feature of this comparative example is that a layer composed of an olefin-based resin as a water vapor barrier resin layer is laminated only on the outermost layer which is one side of the oxygen barrier resin layer via an adhesive layer. Yes.
  • the water vapor transmission rate of the multilayer resin sheet obtained from the comparative example is 1.2 g / m 2 ⁇ day.
  • the oxygen transmission rate before introduction of the high-temperature and high-humidity environment was 0.19 cc / m 2 ⁇ day.
  • the permeability is 1.45 cc / m 2 ⁇ day, and the difference in oxygen permeability before and after introduction of the high-temperature and high-humidity environment is 1.26 cc / m 2 ⁇ day.
  • the moldability of a container molded using the multilayer resin sheet was evaluated, the moldability was evaluated as A rank.
  • a resin sheet was obtained in the same manner as in Example 1 except that the thickness was 900 ⁇ m with a single layer of only a styrene-based resin layer.
  • the characteristic of this comparative example is that the resin sheet is composed of a single layer composed of only a styrene resin layer.
  • the water vapor transmission rate of the single layer resin sheet obtained from the comparative example is 6.5 g / m 2 ⁇ day.
  • the oxygen permeability before the high temperature and high humidity environment was introduced was 335 cc / m 2 ⁇ day, and the oxygen permeability after the high temperature and high humidity environment was introduced. Is 357 cc / m 2 ⁇ day, and the difference in oxygen permeability before and after introduction of the high-temperature and high-humidity environment is 22 cc / m 2 ⁇ day.
  • the moldability of a container molded using the multilayer resin sheet was evaluated, the moldability was evaluated as A rank.
  • the water vapor transmission rate is larger than 3.0 g / m 2 ⁇ day
  • the oxygen transmission rate is much larger than 5.0 cc / m 2 ⁇ day
  • the oxygen transmission rate before and after the high temperature and high humidity environment is charged. This is a failure because the difference is much larger than 1.0 cc / m 2 ⁇ day. That is, it is not only adaptable to a high temperature and high humidity environment, but also has almost no barrier property against water vapor and oxygen even in a general environment.
  • a water vapor barrier resin layer composed of an olefin resin is laminated on both sides of the oxygen barrier resin layer via an adhesive layer.
  • a total of the thicknesses of the water vapor barrier resin layers laminated on both surfaces of the oxygen barrier resin layer is 50 to 300 ⁇ m, and
  • the multilayer resin sheet having a configuration in which the thickness of the styrenic resin layer is 200 to 900 ⁇ m has a high barrier property against water vapor and oxygen, and a molding container is molded using such a multilayer resin sheet. The moldability at the time is also excellent.
  • the multilayer resin sheet having the above-described configuration maintains a difference in oxygen permeability of 1.0 cc / m 2 ⁇ day or less before and after being charged in a high-temperature and high-humidity environment.
  • the multilayer resin sheet having the above structure maintains its oxygen permeability at 5.0 cc / m 2 ⁇ day or less and its water vapor permeability at 3.0 g / m 2 ⁇ day or less.
  • the multilayer resin sheet configured as described above has excellent oxygen barrier properties and water vapor barrier properties, and can maintain high oxygen barrier properties even in a high humidity environment.
  • the thickness of the oxygen barrier resin layer is set to 10 to 50 ⁇ m.
  • the oxygen barrier performance is guaranteed to suppress the deterioration in quality due to oxidation of the contents of the molded container resulting from the oxygen barrier resin layer being too thin, Moreover, since the oxygen barrier resin layer is too thick, it is possible to prevent the occurrence of resin whisker when the molded container is punched.
  • the thickness of each adhesive layer is set to 10 to 50 ⁇ m. According to this, it is possible to prevent a sufficient interlayer adhesive strength resulting from the adhesive layer being too thin from being obtained, and to generate resin whiskers when the molded container is punched due to the adhesive layer being too thick. Can be prevented.
  • the styrenic resin layer is formed of a styrenic resin containing 4 to 8% by mass of a butadiene rubber component.
  • the thickness of the multilayer resin sheet is 500 to 1200 ⁇ m.
  • the thickness of the multilayer resin sheet is prevented from being too thin to prevent insufficient strength of the container obtained by thermoforming. It is possible to prevent the formation of defective molding, because heat is not easily transmitted in the thickness direction of the sheet during thermoforming due to the thickness of the multilayer resin sheet being too thick. An increase in manufacturing cost can be prevented.

Landscapes

  • Laminated Bodies (AREA)

Abstract

優れた熱成形性、酸素バリア性、水蒸気バリア性を具備し、且つ、酸素バリア性樹脂層の両面に水蒸気バリア性樹脂層を構成することで、高湿環境下においても高い酸素バリア性を維持する多層樹脂シート、及びそれを成形してなる成形容器を提供する。 酸素バリア性樹脂層の両面に、接着層を介して水蒸気バリア性樹脂層としてのオレフィン系樹脂から構成された層が積層されてなり、一方側の水蒸気バリア性樹脂層に、接着層を介してスチレン系樹脂からなる層が積層されてなる多層樹脂シートであって、前記水蒸気バリア性樹脂層の厚さの合計が50~300μm、前記スチレン系樹脂層の厚さが200~900μであり、高温高湿環境下に投入する前と投入した後の酸素透過率の差異が1.0cc/m2・day以下を維持する積層構成とすることを特徴とする多層樹脂シートとする。

Description

多層樹脂シート及び成形容器
 本発明は、ハイバリア性の多層樹脂シート、及びそれを成形してなる成形容器に関する。
 従来から、清涼飲料水や果汁飲料、嗜好飲食品等の容器としては、熱成形性、剛性に優れたポリスチレン系樹脂が用いられてきた。しかし、近年、ポリスチレン系樹脂層を最外層としてその中間に変性オレフィン系樹脂等の接着層を介してエチレン-ビニルアルコール共重合体樹脂層を設けて酸素バリア性を付与し、内容物の酸化による品質低下を抑えた多層樹脂シート及びそれからなる多層容器が普及している(特許文献1参照)。
 また、特許文献2には、ケイ素含有高分子と、熱可塑性樹脂と、を含むガスバリア材料を用い、熱可塑性樹脂のガラス転移温度を100℃以上の値とするととともに、ガスバリア材料につき、プラズマイオン注入処理してあることを特徴とし、当該ケイ素含有高分子がポリシラザン化合物であり、熱可塑性樹脂が、ポリカーボネート樹脂、シクロオレフィン樹脂、およびポリサルフォン樹脂からなる群から選択される少なくとも一つであるにガスバリアシートが提案されている。
 更に、酸素及び水蒸気などのガスや湿気に対するバリア性及び耐溶剤性を有する光学樹脂シートが提案されている(特許文献3参照)。
 より具体的には、光学的に透明な樹脂シートの少なくとも一方の表面に、ポリシラザン系無機重合体を主成分とする塗布膜を形成した後、それに対して加熱硬化処理を行うことによって、厚さ0.02~5μmのガスバリア層を備えることを特徴としている。
 一般に、食品等が収納された容器を運搬する場合、運搬中の振動や外部の温度環境から容器そのものの破損を防ぐためや容器内の食品の品質低下を抑制する目的として、梱包材の中に多数の容器を積層して保護する、もしくは温度管理された運搬方式が適用される。また、運搬後に一時的に保管される倉庫においても同様な形態で保管されることが多い。しかしながら、湿度管理までなされた梱包形態や運搬方式が適用されることは稀である。
 一方で、内容物の酸化による品質低下を抑えるために容器の構成に設けられた酸素バリア層として用いられる樹脂は、湿度の影響によって酸素バリア層樹脂が吸湿することでバリア性が低下する傾向にあることが知られている。また、同様に酸素バリア層樹脂の吸湿により、容器への加熱成形時に吸湿された水分を起因とする発泡が発生し、成形後の容器に粒状の模様等の外観不良、更には穴開き等の重大な問題へと繋がる可能性がある。
 従って、特許文献1~2に記載されたバリア性シートは、上記の運搬や保管の際の湿度影響まで考慮された構成とされておらず、該シートを用いて成形された容器が湿度の高い環境下に長時間置かれた場合、本来の持つバリア性を維持できずに内容物の酸化による品質低下を抑制しきれない、若しくは上述の外観不良が発生するといった可能性があった。
 一方、特許文献3に記載されたバリア性シートは、樹脂シートの両方表面に、ガスや湿気に対するバリア性のある塗布膜が設けられることによって、樹脂シートの表面片方からの湿度の影響による酸素バリア層樹脂の吸湿に起因したバリア性の低下が防げると考えられる。
 しかしながら、このような薄い塗布膜を有する樹脂シートを用いて食品または飲料用の容器を成形する場合、通常、深絞り形状の成形を行う必要があるため、深絞り形状にするための熱成形によりその塗布膜にクラック(開口部)が発生してしまう恐れがある。このように成形された容器には前記のクラック(開口部)が存在することによって、クラック(開口部)から侵入した酸素または湿気によってバリア性が低下してしまう恐れがある。
特開平11-58619号公報 WO2013175911A1公報 特開平8-169078号公報
 本発明は上記事情に鑑みてなされたもので、酸素バリア性樹脂層の両面に水蒸気バリア性樹脂層を構成することで、優れた酸素バリア性、水蒸気バリア性を具備し、高湿環境下においても高い酸素バリア性を維持するハイバリア性の多層樹脂シート、及びそれを成形してなる優れた成形性を有する成形容器を提供することを目的とする。
 本発明の多層樹脂シートは、酸素バリア性樹脂層の両面に、接着層を介して水蒸気バリア性樹脂層としてのオレフィン系樹脂から構成された層が積層されてなり、一方側の水蒸気バリア性樹脂層にスチレン系樹脂からなる層が積層されてなる多層樹脂シートであって、前記水蒸気バリア性樹脂層の厚さの合計が50~300μmであり、且つ前記スチレン系樹脂層の厚さが200~900μである。
 また、上記のように構成された多層樹脂シートは、高温高湿環境下に投入する前と投入した後の酸素透過率の差異が1.0cc/m2・day以下を維持している。
 さらに、上記のように構成された多層樹脂シートは、その酸素透過率が5.0cc/m2・day以下を維持し、且つその水蒸気透過率が3.0g/m2・day以下を維持している。
 従って、上記のように構成された多層樹脂シートによれば、優れた酸素バリア性、水蒸気バリア性を具備し、高湿環境下においても高い酸素バリア性を維持することができる。
 また、上記のように構成された多層樹脂シートでは、前記酸素バリア性樹脂層の厚みが10~50μmに設定されている。このように構成された多層樹脂シートを用いて成形容器を成形した場合、酸素バリア性樹脂層が薄すぎることから起因する成形容器の内容物の酸化による品質低下を抑える酸素バリア性能が保証され、また、酸素バリア性樹脂層が厚すぎることから起因する成形容器の打ち抜き時に樹脂ヒゲが発生することを防ぐことができる。
 また、上記のように構成された多層樹脂シートでは、各接着層の厚みは、それぞれ10~50μmに設定されている。これによれば接着層が薄すぎることから起因する十分な層間接着強度が得られなくなることを防ぐことができ、また、接着層が厚すぎることから起因する成形容器の打ち抜き時に樹脂ヒゲが発生することを防ぐことができる。
 また、上記のように構成された多層樹脂シートでは、前記スチレン系樹脂層は、ブタジエンゴム成分を4~8質量%含有するスチレン系樹脂から形成されている。このように構成された多層樹脂シートを用いて成形容器を成形した場合、ブタジエンゴム成分の含有量が少なすぎることから起因する実用上十分な容器強度が得られなくなることを防ぐことができ、また、ブタジエンゴム成分の含有量が多すぎることから起因する特に熱盤を用いた熱成形時に熱盤付着等の不具合を引き起こすことを防ぐことができる。
 さらに、上記のように構成された多層樹脂シートでは、当該多層樹脂シートの厚みが500~1200μmを有する。このように構成された多層樹脂シートを用いて成形容器を成形した場合、当該多層樹脂シートの厚みが薄すぎることから起因する熱成形して得られた容器の強度が不十分となることを防ぐことができ、当該多層樹脂シートの厚みが厚すぎることから起因する熱成形の際にシートの厚み方向に十分に熱が伝わりにくくなり、成形不良が発生することを防ぐことができるとともに、容器の製造コストが高くなることを防ぐことができる。
 本発明は上記のように構成された多層樹脂シートを成形してなる成形容器も提供している。このような成形容器は、優れた酸素バリア性、水蒸気バリア性を具備し、高湿環境下においても高い酸素バリア性を維持することで、成形容器の内容物の酸化による品質低下を防ぐことができ、成形容器の成形性も優れている。
本発明の一実施形態に係る多層樹脂シートの積層構造を示す概略縦側断面図である。 本発明とは異なる形態に係る多層樹脂シートの積層構造の比較例を示す概略縦側断面図である。 本発明の成形容器の一例を示す概略斜視図である。
 以下、本発明の一実施形態に係る多層樹脂シートの構成及びその多層樹脂シートを成形して作製される成形容器を詳細に説明する。
 本発明の多層樹脂シートは、図1に示すように、酸素バリア性樹脂層12の両面に、それぞれ接着層11a,11bを介して最表層としての水蒸気バリア性樹脂層10aおよび中間層としての水蒸気バリア性樹脂層10bが積層され、水蒸気バリア性樹脂層10bに接着層11cを介して基材層としてのスチレン系樹脂層13が積層されてなる多層樹脂シートである。最表層と中間層の水蒸気バリア性樹脂層10a,10bの厚さの合計が50~300μmに設定され、かつ、基材層のスチレン系樹脂層13の厚さが200~900μmに設定されている。
 前記水蒸気バリア性樹脂層10a,10bに使われているオレフィン系樹脂としては、エチレン、プロピレン、ブテン-1等の炭素数2~8程度のオレフィンの単独重合体が挙げられるが、これに限定されるものではない。水蒸気バリア性樹脂層10a,10bは多層樹脂シートの最表層と中間層に形成されるものであり、特に限定されるものではないが、断りの無い限りは、最表層に内容物が触れるものとする。
 最表層としての水蒸気バリア性樹脂層10aはその厚みが、中間層としての水蒸気バリア性樹脂層10bの厚みと同じ、または中間層としての水蒸気バリア性樹脂層10bの厚みより厚く設定されている。また、中間層の水蒸気バリア性樹脂層10bの厚みが20μm以上に設定され、最表層と中間層の水蒸気バリア性樹脂層10a,10bの厚みの合計が50~300μm(好ましくは70~200μm)に設定されている。水蒸気バリア性樹脂層10a,10bの厚みの合計が50μm未満であると、特に成形により厚みが薄い箇所ができることで十分な水蒸気バリア性が発現されない可能性があり、また、水蒸気バリア性樹脂層10a,10bの厚みの合計が300μmを超えると、熱成形時の最適な温度範囲が狭くなり安定した成形ができない可能性がある。
 前記接着層11a,11b,11cを構成する樹脂としては、変性オレフィン系重合体が好ましい。接着層11a,11b,11cを構成する変性オレフィン系重合体としては、エチレン、プロピレン、ブテン-1等の炭素数2~8程度のオレフィンの単独重合体、それらのオレフィンとエチレン、プロピレン、ブテン-1、3-メチルブテン-1、ペンテン-1、4-メチルペンテン-1、ヘキセン-1、オクテン-1、デセン-1等の炭素数2~20程度の他のオレフィンや酢酸ビニル、塩化ビニル、アクリル酸、メタクリル酸、アクリル酸エステル、メタクリル酸エステル、スチレン等のビニル化合物との共重合体等のオレフィン系樹脂や、エチレン-プロピレン共重合体、エチレン-プロピレン-ジエン共重合体、エチレン-ブテン-1共重合体、プロピレン-ブテン-1共重合体等のオレフィン系ゴムを、アクリル酸、メタクリル酸、クロトン酸、イソクロトン酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸、テトラヒドロフタル酸等の不飽和カルボン酸、または、その酸ハライド、アミド、イミド、無水物、エステル等の誘導体、具体的には、塩化マレニル、マレイミド、無水マレイン酸、無水シトラコン酸、マレイン酸モノメチル、マレイン酸ジメチル、マレイン酸グリシジル等でグラフト反応条件下に変性したものが代表的なものとして挙げられる。
 変性オレフィン系重合体として、中でも、不飽和ジカルボン酸またはその無水物、特にマレイン酸またはその無水物で変性したエチレン系樹脂、プロピレン系樹脂、またはエチレン-プロピレンまたはブテン-1共重合体ゴムが好適である。
 変性オレフィン系重合体より構成される接着層11a,11b,11cの厚みは、それぞれ10~50μm(好ましくは20~40μm)に設定されている。その厚みが10μm未満であると、十分な層間接着強度が得られなくなる可能性があり、また、その厚みが50μmを超えると、熱成形容器の打ち抜き時に樹脂ヒゲが発生する可能性がある。
 前記酸素バリア性樹脂層12を構成する酸素バリア性樹脂としては、例えば、エチレン-ビニルアルコール共重合体樹脂、ポリアミド樹脂等が代表的なものとして挙げられるがこれらに限定されるものではない。その中でも、加工性、成形性の面でエチレン-ビニルアルコール共重合体樹脂が好ましい。
 エチレン-ビニルアルコール共重合体樹脂は、通常、エチレン-酢酸ビニル共重合体を鹸化して得られるものであり、酸素バリア性、加工性、成形性を具備させる為に、エチレン含有量が10~65モル%(好ましくは20~50モル%)で、鹸化度が90%以上(好ましくは95%以上)のものが好ましい。
 また、ポリアミド樹脂としては、カプロラクタム、ラウロラクタム等のラクタム重合体、6-アミノカプロン酸、11-アミノウンデカン酸、12-アミノドデカン酸等のアミノカルボン酸の重合体、ヘキサメチレンジアミン、デカメチレンジアミン、ドデカメチレンジアミン、2,2,4-または2,4,4-トリメチルヘキサメチレンジアミン等の脂肪族ジアミン、1,3-または1,4-ビス(アミノメチル)シクロヘキサン、ビス(p-アミノシクロヘキシルメタン)等の脂環式ジアミン、m-またはp-キシリレンジアミン等の芳香族ジアミン等のジアミン単位と、アジピン酸、スベリン酸、セバシン酸等の脂肪族ジカルボン酸、シクロヘキサンジカルボン酸等の脂環式ジカルボン酸、テレフタル酸、イソフタル酸等の芳香族ジカルボン酸等のジカルボン酸単位との重縮合体、並びにこれらの共重合体等が挙げられる。
 ポリアミド樹脂として、具体的には、ナイロン6、ナイロン9、ナイロン11、ナイロン12、ナイロン66、ナイロン610、ナイロン611、ナイロン612、ナイロン6T、ナイロン6I、ナイロンMXD6、ナイロン6/66、ナイロン6/610、ナイロン6/6T、ナイロン6I/6T等があり、中でもナイロン6、ナイロンMXD6が好適である。
 前記酸素バリア性樹脂層12の厚みは、10~50μm(好ましくは20~40μm)に設定されている。その厚みが10μm未満であると、成形容器の内容物の酸化による品質低下を抑える程度の酸素バリア性能が得られない可能性があり、また、その厚みが50μmを超えると、熱成形容器の打ち抜き時に樹脂ヒゲが発生する可能性がある。
 前記基材層としてのスチレン系樹脂層13を構成するスチレン系樹脂としては、スチレン、α-メチルスチレン、p-メチルスチレン、ジメチルスチレン、p-t-ブチルスチレン、クロロスチレン等のスチレン系モノマーの単独または共重合体、それらスチレン系モノマーと他のモノマーとの共重合体、例えばスチレン-アクリルニトリル共重合体(以下、AS樹脂という)、または、前記スチレン系モノマーとさらに他のポリマー、例えば、ポリブタジエン、スチレン-ブタジエン共重合体、ポリイソプレン、ポリクロロプレン等のジエン系ゴム質重合体の存在下にグラフト重合したグラフト重合体、例えばハイインパクトポリスチレン(以下、HIPS樹脂という)、スチレンーアクリルニトリルグラフト重合体(以下、ABS樹脂という)等が挙げられる。
 スチレン系樹脂として、中でもポリスチレン(以下、GPPS樹脂という)、HIPS樹脂が成形容器の剛性、成形性の観点から好ましい。
 スチレン系樹脂は、ブタジエンゴム成分を4~8質量%含有することが好ましい。ブタジエンゴム成分含有量は、GPPS樹脂とHIPS樹脂のブレンドにより調整するのが簡便な方法であるが、HIPS樹脂の製造段階で調整しても構わない。4質量%未満であると実用上十分な容器強度が得られなくなる可能性があり、8質量%を超えると、特に熱盤を用いた熱成形時に熱盤付着等の不具合を引き起こす可能性がある。
 前記スチレン系樹脂層13には、必要に応じて、本発明の効果を阻害しない範囲で、顔料、染料などの着色剤、シリコンオイルやアルキルエステル系等の離型剤、ガラス繊維等の繊維状強化剤、タルク、クレー、シリカなどの粒状滑剤、スルホン酸とアルカリ金属などとの塩化合物やポリアルキレングリコール等の帯電防止剤及び紫外線吸収剤、抗菌剤のような添加剤を添加することができる。また、本発明の多層樹脂シートや成形容器の製造工程で発生したスクラップ樹脂を混合して用いることもできる。
 前記スチレン系樹脂層13の厚みは、200~900μm(好ましくは300~700μm)に設定されている。その厚みが200μm未満であると、成形後の容器各部の厚みがより均等にならない等、優れた熱成形性が発現されない可能性があり、また、その厚みが900μmを超えると、熱成形の際にシートの厚み方向に十分に熱が伝わりにくくなり、成形不良が発生する可能性がある。
 従って、本発明の一実施形態に係る多層樹脂シートの層構成は、前述の通り、水蒸気バリア性樹脂層/接着層/酸素バリア性樹脂層/接着層/水蒸気バリア性樹脂層/接着層/スチレン系樹脂層であり、簡素的には最表層/接着層/酸素バリア層/接着層/中間層/接着層/基材層との表記とする。また、例えば、その基材層は、本発明の多層樹脂シートや成形容器の製造工程で発生したスクラップ樹脂を配合した層とスチレン系樹脂のみの層とを積層した構成としてもよい。
 本発明の多層樹脂シートの厚みは、500~1200μm(好ましくは700~1000μm)に設定されている。その厚みが500μm未満であると、熱成形して得られた容器の強度が不十分となる可能性があり、その厚みが1200μmを超えると、熱成形の際にシートの厚み方向に十分に熱が伝わりにくくなり、成形不良が発生する可能性がある。また、容器の製造コストが高くなる可能性がある。
 本発明の多層樹脂シートを成形する方法は、特に限定されず、一般的な樹脂積層の方法を用いることができる。例えば、4台もしくはそれ以上の単軸押出機を用いて各々の原料樹脂を溶融押出し、フィードブロックとTダイによって多層樹脂シートを得る方法や、マルチマニホールドダイを使用して多層樹脂シートを得る方法が挙げられる。
 本発明の一実施形態に係る成形容器20は、図3に示すように、本発明の多層樹脂シートを熱成形してなる。熱成形方法としては、一般的な真空成形、圧空成形や、これらの応用として、シートの片面にプラグを接触させて成形を行うプラグアシスト法、また、シートの両面に一対をなす雄雌型を接触させて成形を行う、いわゆるマッチモールド成形と称される方法等が挙げられるが、これらに限定されるものではない。また、成形前にシートを加熱軟化させる方法として非接触加熱である赤外線ヒーター等による輻射加熱やシートを加熱された熱盤に直接触れさせて軟化させる熱盤加熱等、公知のシート加熱方法を適用することができる。
 また、熱成形の際の成形温度は、樹脂の融点等を考慮して適切に設定されるが、シート加熱温度が低すぎると加熱成形後の容器の賦型状態が不十分であり、逆にシート加熱温度が高すぎると熱盤への融着等の不具合を起こす等の不良が発生する恐れがあるため、適宜の温度に設定することが好ましい。
 以下、本発明の具体的な実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明は実施例等の内容に何ら限定されるものではない。
 実施例で用いた樹脂原料は以下の通りである。
(1)水蒸気バリア性樹脂層
 高密度ポリエチレン樹脂(以下、HDPE樹脂という):「8050」(台塑公司社製、MI:6.0g/10min.(190℃、2.16kgf))
 ポリプロピレン樹脂(以下、PP樹脂という):「HJ730L」(SAMSUNG TOTAL社製、MI:5.0g/10min(190℃、2.16kgf)、IsotacticHomoPP)
(2)酸素バリア性樹脂層
 エチレン-ビニルアルコール共重合体(以下、EVOHという): 「エバールJ171B」(クラレ(株)製、MI:1.7g/10min(190℃、2.16kgf)、 エチレン含量32mol%)
(3)接着層
 変性オレフィン系重合体(以下、変性POという) :「モディックF502C」(三菱化学社製、MI:1.3g/10min(190℃、2.16kgf)))
(4)スチレン系樹脂層
 HIPS樹脂:「4241」(Total Petrochemicals社製、MI:4.0g/10min.(200℃、5.0kgf))
 また、実施例では多層樹脂シートを下記条件にて加熱成形を行い、図3に示すヨーグルト用の成形容器20を得た。
(1)使用機器:浅野研究所社製 真空圧空成形機
(2)加熱ヒーター:非接触式遠赤外線ヒーター
(3)シート表面温度:シート構成により適宜シート表面温度を調整
 得られた多層樹脂シート及び成形容器の各種評価を下記の方法で行った。結果を表1および表2に示す。
(1)水蒸気透過率測定
 シートの水蒸気透過率を、以下の方法にて測定した。
[測定方法] GB/T 1037準拠
  使用機器:LabThink社製 W3/031
  測定条件:40℃×90%R.H.
  また、水蒸気透過率を以下の基準で評価した。
  水蒸気透過率が3.0g/m2・day以下であれば、多層樹脂シートの水蒸気バリア性が合格であり、水蒸気透過率が3.0g/m2・dayより大きい場合、多層樹脂シートの水蒸気バリア性が不合格であるとしている。
(2)酸素透過率測定
 シートの酸素透過率を、以下の方法にて測定した。酸素透過率測定は、以下の高温高湿環境下への投入前後で測定を行った。
[測定方法] GB/T 1038準拠
  使用機器:LabThink社製 VAC-V1
  測定条件:23℃×65%R.H.
  サンプルセット:基本的に、容器成形後の実用性を鑑みて、シートサンプルの基材層側から酸素が透過するような向きにサンプルをセットする。
[高温高湿環境投入]
 シートの端部からの水蒸気浸透の影響を排除する目的として、シートの端部にアルミ製粘着テープを貼付し、端部が高温高湿環境下に触れない状態で40℃×90%R.H.環境下にシートを6時間投入した。環境投入前後の酸素透過率を測定した。
 また、酸素透過率を以下の基準で評価した。
 酸素透過率が5.0cc/m2・day以下であれば、多層樹脂シートの酸素バリア性が合格であり、酸素透過率が5.0cc/m2・dayより大きい場合、多層樹脂シートの酸素バリア性が不合格であるとしている。
 さらに、高温高湿環境投入前後の酸素透過率の差に対しても以下の基準で評価した。
 高温高湿環境投入前後の酸素透過率の差異が1.0cc/m2・day以下であれば、多層樹脂シートの酸素バリア性が合格であり、高温高湿環境投入前後の酸素透過率の差異が1.0cc/m2・dayより大きい場合、多層樹脂シートの酸素バリア性が不合格であるとしている。
(3)成形性
 容器用の成形金型を用いて、図3に示す成形容器を熱成形する際の成形性を、以下の基準で評価した。
  A:成形性良好
  B:成形後の容器の一部に厚みの薄い箇所が見られる
  C:成形金型通りの賦形性が得られていない。若しくは成形外観不良が見られる。
<実施例1>
 3台の45mm単軸押出機、1台の65mm単軸押出機、1台の105mm単軸押出機を使用し、フィードブロック法により、オレフィン系樹脂にHDPE樹脂:「8050」を用い、水蒸気バリア性樹脂層(10a)100μm/接着層(11a)15μm/酸素バリア性樹脂層(12)40μm/接着層(11b)15μm/水蒸気バリア性樹脂層(10b)35μm/接着層(11c)15μm/スチレン系樹脂層(13)880μmという層構成を有し、厚み1100μm(水蒸気バリア性樹脂層の合計厚み135μm)の多層樹脂シートを得た。
 上記のように得た多層樹脂シートに対し、その水蒸気透過率測定を行った結果、表1に示すように、その水蒸気透過率が0.8g/m2・dayとなっている。また、その酸素透過率測定を行った結果、表1に示すように、その高温高湿環境投入前の酸素透過率が0.12cc/m2・dayであり、その高温高湿環境投入後の酸素透過率が0.32cc/m2・dayであり、高温高湿環境投入前後の酸素透過率の差異が0.20cc/m2・dayになっている。さらに、当該多層樹脂シートを用いて成形される容器の成形性を評価したところ、成形性がAランクと評価された。
<実施例2>
 水蒸気バリア性樹脂層(10a)80μm/接着層(11a)15μm/酸素バリア性樹脂層(12)40μm/接着層(11b)15μm/水蒸気バリア性樹脂層(10b)35μm/接着層(11c)15μm/スチレン系樹脂層(13)900μmという層構成を有し、厚み1100μm(水蒸気バリア性樹脂層の合計厚み115μm)で、他の方法は実施例1と同様の方法で多層樹脂シートを得た。
 上記のように得た多層樹脂シートに対し、その水蒸気透過率測定を行った結果、表1に示すように、その水蒸気透過率が1.1g/m2・dayとなっている。また、その酸素透過率測定を行った結果、表1に示すように、その高温高湿環境投入前の酸素透過率が0.21cc/m2・dayであり、その高温高湿環境投入後の酸素透過率が0.35cc/m2・dayであり、高温高湿環境投入前後の酸素透過率の差異が0.14cc/m2・dayになっている。さらに、当該多層樹脂シートを用いて成形される容器の成形性を評価したところ、成形性がAランクと評価された。
<実施例3>
 水蒸気バリア性樹脂層(10a)65μm/接着層(11a)15μm/酸素バリア性樹脂層(12)30μm/接着層(11b)15μm/水蒸気バリア性樹脂層(10b)20μm/接着層(11c)15μm/スチレン系樹脂層(13)740μmという層構成を有し、厚み900μm(水蒸気バリア性樹脂層の合計厚み85μm)で、他の方法は実施例1と同様の方法で多層樹脂シートを得た。
 上記のように得た多層樹脂シートに対し、その水蒸気透過率測定を行った結果、表1に示すように、その水蒸気透過率が1.1g/m2・dayとなっている。また、その酸素透過率測定を行った結果、表1に示すように、その高温高湿環境投入前の酸素透過率が0.22cc/m2・dayであり、その高温高湿環境投入後の酸素透過率が0.52cc/m2・dayであり、高温高湿環境投入前後の酸素透過率の差異が0.30cc/m2・dayになっている。さらに、当該多層樹脂シートを用いて成形される容器の成形性を評価したところ、成形性がAランクと評価された。
<実施例4>
 水蒸気バリア性樹脂層(10a)80μm/接着層(11a)15μm/酸素バリア性樹脂層(12)40μm/接着層(11b)15μm/水蒸気バリア性樹脂層(10b)35μm/接着層(11c)15μm/スチレン系樹脂層(13)200μmという層構成を有し、厚み400μm(水蒸気バリア性樹脂層の合計厚み115μm)で、他の方法は実施例1と同様の方法で多層樹脂シートを得た。
 上記のように得た多層樹脂シートに対し、その水蒸気透過率測定を行った結果、表1に示すように、その水蒸気透過率が1.0g/m2・dayとなっている。また、その酸素透過率測定を行った結果、表1に示すように、その高温高湿環境投入前の酸素透過率が0.18cc/m2・dayであり、その高温高湿環境投入後の酸素透過率が0.30cc/m2・dayであり、高温高湿環境投入前後の酸素透過率の差異が0.12cc/m2・dayになっている。さらに、当該多層樹脂シートを用いて成形される容器の成形性を評価したところ、成形性がAランクと評価された。
<実施例5>
 水蒸気バリア性樹脂層(10a)30μm/接着層(11a)15μm/酸素バリア性樹脂層(12)30μm/接着層(11b)15μm/水蒸気バリア性樹脂層(10b)20μm/接着層(11c)15μm/スチレン系樹脂層(13)775μmという層構成を有し、厚み900μm(水蒸気バリア性樹脂層の合計厚み50μm)で、他の方法は実施例1と同様の方法で多層樹脂シートを得た。
 上記のように得た多層樹脂シートに対し、その水蒸気透過率測定を行った結果、表1に示すように、その水蒸気透過率が1.5g/m2・dayとなっている。また、その酸素透過率測定を行った結果、表1に示すように、その高温高湿環境投入前の酸素透過率が0.22cc/m2・dayであり、その高温高湿環境投入後の酸素透過率が0.58cc/m2・dayであり、高温高湿環境投入前後の酸素透過率の差異が0.36cc/m2・dayになっている。さらに、当該多層樹脂シートを用いて成形される容器の成形性を評価したところ、成形性がAランクと評価された。
<実施例6>
 水蒸気バリア性樹脂層(10a)200μm/接着層(11a)15μm/酸素バリア性樹脂層(12)40μm/接着層(11b)15μm/水蒸気バリア性樹脂層(10b)100μm/接着層(11c)15μm/スチレン系樹脂層(13)715μmという層構成を有し、厚み1100μm(水蒸気バリア性樹脂層の合計厚み300μm)で、他の方法は実施例1と同様の方法で多層樹脂シートを得た。
 上記のように得た多層樹脂シートに対し、その水蒸気透過率測定を行った結果、表1に示すように、その水蒸気透過率が0.8g/m2・dayとなっている。また、その酸素透過率測定を行った結果、表1に示すように、その高温高湿環境投入前の酸素透過率が0.11cc/m2・dayであり、その高温高湿環境投入後の酸素透過率が0.23cc/m2・dayであり、高温高湿環境投入前後の酸素透過率の差異が0.12cc/m2・dayになっている。さらに、当該多層樹脂シートを用いて成形される容器の成形性を評価したところ、成形性がAランクと評価された。
<実施例7>
 オレフィン系樹脂にPP樹脂:「HJ730L」を用い、他の方法および層構成は実施例1と同様である多層樹脂シートを得た。
 上記のように得た多層樹脂シートに対し、その水蒸気透過率測定を行った結果、表1に示すように、その水蒸気透過率が0.6g/m2・dayとなっている。また、その酸素透過率測定を行った結果、表1に示すように、その高温高湿環境投入前の酸素透過率が0.15cc/m2・dayであり、その高温高湿環境投入後の酸素透過率が0.18cc/m2・dayであり、高温高湿環境投入前後の酸素透過率の差異が0.03cc/m2・dayになっている。さらに、当該多層樹脂シートを用いて成形される容器の成形性を評価したところ、成形性がAランクと評価された。
 一方、実施例1に比べ、水蒸気バリア性樹脂層の合計厚みや基材層となるスチレン系樹脂層の厚みなどを小さくさせたり、水蒸気バリア性樹脂層をスチレン系樹脂層にて形成させたりする変更例を比較例としてそれぞれの性能について以下のように評価した。
<比較例1>
 水蒸気バリア性樹脂層(10a)30μm/接着層(11a)15μm/酸素バリア性樹脂層(12)40μm/接着層(11b)15μm/水蒸気バリア性樹脂層(10b)100μm/接着層(11c)15μm/スチレン系樹脂層(13)975μmという層構成を有し、厚み1100μm(水蒸気バリア性樹脂層の合計厚み40μm)とした以外は、他の方法は実施例1と同様の方法で多層樹脂シートを得た。実施例1に比べ、本比較例の特徴は水蒸気バリア性樹脂層の合計厚みを薄くさせた。
 当該比較例から得た多層樹脂シートに対し、その水蒸気透過率測定を行った結果、表2に示すように、その水蒸気透過率が0.8g/m2・dayとなっている。また、その酸素透過率測定を行った結果、表2に示すように、その高温高湿環境投入前の酸素透過率が0.26cc/m2・dayであり、その高温高湿環境投入後の酸素透過率が1.68cc/m2・dayであり、高温高湿環境投入前後の酸素透過率の差異が1.42cc/m2・dayになっている。さらに、当該多層樹脂シートを用いて成形される容器の成形性を評価したところ、成形性がAランクと評価された。
 それぞれの評価基準に照らしたところ、高温高湿環境投入前後の酸素透過率の差異が1.0cc/m2・dayより大きいため、不合格である。つまり、高温高湿環境に適応できない。
<比較例2>
 水蒸気バリア性樹脂層(10a)100μm/接着層(11a)15μm/酸素バリア性樹脂層(12)40μm/接着層(11b)15μm/水蒸気バリア性樹脂層(10b)35μm/接着層(11c)15μm/スチレン系樹脂層(13)180μmという層構成を有し、厚み400μm(水蒸気バリア性樹脂層の合計厚み135μm)とした以外は、他の方法は実施例1と同様の方法で多層樹脂シートを得た。
 実施例1に比べ、本比較例の特徴は基材層となるスチレン系樹脂層の厚みを薄くさせた。
 当該比較例から得た多層樹脂シートに対し、その水蒸気透過率測定を行った結果、表2に示すように、その水蒸気透過率が1.1g/m2・dayとなっている。また、その酸素透過率測定を行った結果、表2に示すように、その高温高湿環境投入前の酸素透過率が0.25cc/m2・dayであり、その高温高湿環境投入後の酸素透過率が0.43cc/m2・dayであり、高温高湿環境投入前後の酸素透過率の差異が0.18cc/m2・dayになっている。さらに、当該多層樹脂シートを用いて成形される容器の成形性を評価したところ、成形性がBランクと評価された。
 それぞれの評価基準に照らしたところ、成形性がBランクと評価されたため、使用中において、成形後の容器における厚みの薄い箇所が破れて、水蒸気または酸素の侵入によってバリア性が低下してしまう恐れがある。
<比較例3>
 スチレン系樹脂層(10a)65μm/接着層(11a)15μm/酸素バリア性樹脂層(12)30μm/接着層(11b)15μm/スチレン系樹脂層(10b)20μm/接着層(11c)15μm/スチレン系樹脂層(13)740μmという層構成を有し、厚み900μmとした以外は、他の方法は実施例1と同様の方法で多層樹脂シートを得た。実施例1に比べ、本比較例の特徴は水蒸気バリア性樹脂層をスチレン系樹脂層にて形成ささせた。
 当該比較例から得た多層樹脂シートに対し、その水蒸気透過率測定を行った結果、表2に示すように、その水蒸気透過率が4.5g/m2・dayとなっている。また、その酸素透過率測定を行った結果、表2に示すように、その高温高湿環境投入前の酸素透過率が0.22cc/m2・dayであり、その高温高湿環境投入後の酸素透過率が2.56cc/m2・dayであり、高温高湿環境投入前後の酸素透過率の差異が2.34cc/m2・dayになっている。さらに、当該多層樹脂シートを用いて成形される容器の成形性を評価したところ、成形性がAランクと評価された。
 それぞれの評価基準に照らしたところ、水蒸気透過率が3.0g/m2・dayより大きいとともに、高温高湿環境投入前後の酸素透過率の差異が1.0cc/m2・dayより大きいため、不合格である。つまり、高温高湿環境に適応できない。
<比較例4>
 図2に示すような、水蒸気バリア性樹脂層(10a)90μm/接着層(11a)15μm/酸素バリア性樹脂層(12)30μm/接着層(11b)15μm/スチレン系樹脂層(13)750μmという層構成を有し、厚み900μm(水蒸気バリア性樹脂層の合計厚み90μm)とした以外は、他の方法は実施例1と同様の方法で多層樹脂シートを得た。
 実施例1に比べ、本比較例の特徴は酸素バリア性樹脂層の片面である最表層だけに、接着層を介して水蒸気バリア性樹脂層としてのオレフィン系樹脂から構成された層が積層されている。
 当該比較例から得た多層樹脂シートに対し、その水蒸気透過率測定を行った結果、表2に示すように、その水蒸気透過率が1.2g/m2・dayとなっている。また、その酸素透過率測定を行った結果、表2に示すように、その高温高湿環境投入前の酸素透過率が0.19cc/m2・dayであり、その高温高湿環境投入後の酸素透過率が1.45cc/m2・dayであり、高温高湿環境投入前後の酸素透過率の差異が1.26cc/m2・dayになっている。さらに、当該多層樹脂シートを用いて成形される容器の成形性を評価したところ、成形性がAランクと評価された。
 それぞれの評価基準に照らしたところ、高温高湿環境投入前後の酸素透過率の差異が1.0cc/m2・dayより大きいため、不合格である。つまり、高温高湿環境に適応できない。
<比較例5>
 スチレン系樹脂層のみの単層で厚み900μmとした以外は、他の方法は実施例1と同様の方法で樹脂シートを得た。実施例1に比べ、本比較例の特徴は樹脂シートがスチレン系樹脂層のみの単層で構成されている。
 当該比較例から得た単層樹脂シートに対し、その水蒸気透過率測定を行った結果、表2に示すように、その水蒸気透過率が6.5g/m2・dayとなっている。また、その酸素透過率測定を行った結果、表2に示すように、その高温高湿環境投入前の酸素透過率が335cc/m2・dayであり、その高温高湿環境投入後の酸素透過率が357cc/m2・dayであり、高温高湿環境投入前後の酸素透過率の差異が22cc/m2・dayになっている。さらに、当該多層樹脂シートを用いて成形される容器の成形性を評価したところ、成形性がAランクと評価された。
 それぞれの評価基準に照らしたところ、水蒸気透過率が3.0g/m2・dayより大きく、酸素透過率が5.0cc/m2・dayより遥かに大きいとともに、高温高湿環境投入前後の酸素透過率の差異が1.0cc/m2・dayよりも遥かに大きいため、不合格である。つまり、高温高湿環境に適応できないだけではなく、一般の環境においても水蒸気及び酸素に対するバリア性が殆ど無い。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 上記実施例1~7及び比較例1~5の結果によれば、酸素バリア性樹脂層の両面に、接着層を介してオレフィン系樹脂から構成された水蒸気バリア性樹脂層が積層され、一方側の水蒸気バリア性樹脂層に、スチレン系樹脂層が積層されてなるとともに、その酸素バリア性樹脂層の両面に積層された水蒸気バリア性樹脂層の厚さの合計が50~300μmであり、且つ、前記スチレン系樹脂層の厚さが200~900μmであるといった構成を有する多層樹脂シートは、水蒸気及び酸素に対するバリア性を高く持っているとともに、このような多層樹脂シートを用いて成形容器を成形する際の成形性も優れている。
 また、上記の構成を有する多層樹脂シートはその高温高湿環境下に投入する前と投入した後の酸素透過率の差異が1.0cc/m2・day以下を維持している。
 さらに、上記の構成を有する多層樹脂シートはその酸素透過率が5.0cc/m2・day以下を維持し、且つその水蒸気透過率が3.0g/m2・day以下を維持している。
 従って、上記のように構成された多層樹脂シートによれば、優れた酸素バリア性、水蒸気バリア性を具備し、高湿環境下においても高い酸素バリア性を維持することができる。
 また、上記のように構成された多層樹脂シートでは、前記酸素バリア性樹脂層の厚みが10~50μmに設定されている。このように構成された多層樹脂シートを用いて成形容器を成形した場合、酸素バリア性樹脂層が薄すぎることから起因する成形容器の内容物の酸化による品質低下を抑える酸素バリア性能が保証され、また、酸素バリア性樹脂層が厚すぎることから起因する成形容器の打ち抜き時に樹脂ヒゲが発生することを防ぐことができる。
 また、上記のように構成された多層樹脂シートでは、各接着層の厚みは、それぞれ10~50μmに設定されている。これによれば接着層が薄すぎることから起因する十分な層間接着強度が得られなくなることを防ぐことができ、また、接着層が厚すぎることから起因する成形容器の打ち抜き時に樹脂ヒゲが発生することを防ぐことができる。
 また、上記のように構成された多層樹脂シートでは、前記スチレン系樹脂層は、ブタジエンゴム成分を4~8質量%含有するスチレン系樹脂から形成されている。このように構成された多層樹脂シートを用いて成形容器を成形した場合、ブタジエンゴム成分の含有量が少なすぎることから起因する実用上十分な容器強度が得られなくなることを防ぐことができ、また、ブタジエンゴム成分の含有量が多すぎることから起因する特に熱盤を用いた熱成形時に熱盤付着等の不具合を引き起こすことを防ぐことができる。
 さらに、上記のように構成された多層樹脂シートでは、当該多層樹脂シートの厚みが500~1200μmを有する。このように構成された多層樹脂シートを用いて成形容器を成形した場合、当該多層樹脂シートの厚みが薄すぎることから起因する熱成形して得られた容器の強度が不十分となることを防ぐことができ、当該多層樹脂シートの厚みが厚すぎることから起因する熱成形の際にシートの厚み方向に十分に熱が伝わりにくくなり、成形不良が発生することを防ぐことができるとともに、容器の製造コストが高くなることを防ぐことができる。

Claims (8)

  1.  酸素バリア性樹脂層の両面に、接着層を介して水蒸気バリア性樹脂層が積層され、一方側の水蒸気バリア性樹脂層に、スチレン系樹脂層が積層されてなる多層樹脂シートにおいて、
     前記水蒸気バリア性樹脂層はオレフィン系樹脂から構成された層であり、その酸素バリア性樹脂層の両面に積層された水蒸気バリア性樹脂層の厚さの合計が50~300μmであり、前記スチレン系樹脂層の厚さが200~900μmであることを特徴とする多層樹脂シート。
  2.  前記多層樹脂シートはその高温高湿環境下に投入する前と投入した後の酸素透過率の差異が1.0cc/m2・day以下を維持していることを特徴とする請求項1に記載の多層樹脂シート。
  3.  前記多層樹脂シートはその酸素透過率が5.0cc/m2・day以下を維持し、且つその水蒸気透過率が3.0g/m2・day以下を維持していることを特徴とする請求項1または2に記載の多層樹脂シート。
  4.  前記酸素バリア性樹脂層の厚みは10~50μmに設定されていることを特徴とする請求項1または2に記載の多層樹脂シート。
  5.  前記各接着層の厚みは、それぞれ10~50μmに設定されていることを特徴とする請求項1または2に記載の多層樹脂シート。
  6.  前記スチレン系樹脂層は、ブタジエンゴム成分を4~8質量%含有するスチレン系樹脂から形成されていることを特徴とする請求項1または2に記載の多層樹脂シート。
  7.  多層樹脂シートの厚みが500~1200μmを有することを特徴とする請求項1または2に記載の多層樹脂シート。
  8.  請求項1から7のいずれか一項に記載の多層樹脂シートを用いて成形してなる成形容器。
PCT/JP2016/068680 2016-06-23 2016-06-23 多層樹脂シート及び成形容器 WO2017221374A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018523230A JP6800971B2 (ja) 2016-06-23 2016-06-23 多層樹脂シート及び成形容器
PCT/JP2016/068680 WO2017221374A1 (ja) 2016-06-23 2016-06-23 多層樹脂シート及び成形容器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/068680 WO2017221374A1 (ja) 2016-06-23 2016-06-23 多層樹脂シート及び成形容器

Publications (1)

Publication Number Publication Date
WO2017221374A1 true WO2017221374A1 (ja) 2017-12-28

Family

ID=60784446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068680 WO2017221374A1 (ja) 2016-06-23 2016-06-23 多層樹脂シート及び成形容器

Country Status (2)

Country Link
JP (1) JP6800971B2 (ja)
WO (1) WO2017221374A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022131246A1 (ja) * 2020-12-18 2022-06-23 デンカ株式会社 多層樹脂シート、及びそれを成形してなる成形容器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1158619A (ja) * 1997-08-21 1999-03-02 Mitsubishi Chem Corp 熱可塑性樹脂多層積層シートおよびそれからなる多層積層容器
JP2003025522A (ja) * 2001-07-11 2003-01-29 Dainippon Ink & Chem Inc 共押出積層フィルムおよび積層シート
JP2003112392A (ja) * 2001-10-04 2003-04-15 Daicel Pack Systems Ltd 容器用積層シート
WO2014087696A1 (ja) * 2012-12-07 2014-06-12 電気化学工業株式会社 撥水性を備えた熱可塑性樹脂シート及び成形品
WO2014129344A1 (ja) * 2013-02-22 2014-08-28 電気化学工業株式会社 深絞り成形用多層樹脂シート及び成形容器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1158619A (ja) * 1997-08-21 1999-03-02 Mitsubishi Chem Corp 熱可塑性樹脂多層積層シートおよびそれからなる多層積層容器
JP2003025522A (ja) * 2001-07-11 2003-01-29 Dainippon Ink & Chem Inc 共押出積層フィルムおよび積層シート
JP2003112392A (ja) * 2001-10-04 2003-04-15 Daicel Pack Systems Ltd 容器用積層シート
WO2014087696A1 (ja) * 2012-12-07 2014-06-12 電気化学工業株式会社 撥水性を備えた熱可塑性樹脂シート及び成形品
WO2014129344A1 (ja) * 2013-02-22 2014-08-28 電気化学工業株式会社 深絞り成形用多層樹脂シート及び成形容器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022131246A1 (ja) * 2020-12-18 2022-06-23 デンカ株式会社 多層樹脂シート、及びそれを成形してなる成形容器

Also Published As

Publication number Publication date
JP6800971B2 (ja) 2020-12-16
JPWO2017221374A1 (ja) 2019-04-11

Similar Documents

Publication Publication Date Title
KR102116593B1 (ko) 발수성을 구비한 열가소성 수지 시트 및 성형품
JP4758926B2 (ja) 熱可塑性多層樹脂シート及び成形容器
JPS63288748A (ja) マイクロ波処理可能な容器の製造に適したポリマー多層シートおよび該シートから製造した容器
CN111469497A (zh) 深拉深成型用多层树脂片材及成型容器
WO2017221374A1 (ja) 多層樹脂シート及び成形容器
JP6800972B2 (ja) 多層樹脂シート及び成形容器
EP1642707A1 (en) Packaging laminates containing anti-block particles
KR102244432B1 (ko) 심교 성형용 다층 수지 시트 및 성형 용기
JP5604021B1 (ja) 成形体及びその製造方法
WO2021111815A1 (ja) 多層樹脂シート及び成形容器
TWI736536B (zh) 多層樹脂薄膜以及成型容器
JP7069876B2 (ja) 熱可塑性樹脂組成物及び樹脂成形体
JP6966274B2 (ja) 熱成形用多層シート及び成形品
TWI712501B (zh) 多層樹脂薄膜以及成型容器
WO2022054567A1 (ja) 多層樹脂シート及び成形容器
JP6864497B2 (ja) 接着性樹脂組成物及びマスターバッチ、並びに、これらを用いた積層フィルム、延伸フィルム、及び多層成形体
WO2023042753A1 (ja) 樹脂シート及び成形容器
JP3149586B2 (ja) 積層構造体
JP2023086539A (ja) 樹脂シート及び成形容器
WO2022131246A1 (ja) 多層樹脂シート、及びそれを成形してなる成形容器
KR101578320B1 (ko) 성형체 및 그 제조 방법
JP2023132929A (ja) 樹脂積層体
JP2004098600A (ja) 深絞り成形用複合シート
CN106273953A (zh) 多层树脂薄膜以及成型容器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16906291

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018523230

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16906291

Country of ref document: EP

Kind code of ref document: A1