WO2017217370A1 - ニッケル含有水酸化物の製造方法 - Google Patents

ニッケル含有水酸化物の製造方法 Download PDF

Info

Publication number
WO2017217370A1
WO2017217370A1 PCT/JP2017/021650 JP2017021650W WO2017217370A1 WO 2017217370 A1 WO2017217370 A1 WO 2017217370A1 JP 2017021650 W JP2017021650 W JP 2017021650W WO 2017217370 A1 WO2017217370 A1 WO 2017217370A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
aqueous solution
reaction
hydroxide
stirring
Prior art date
Application number
PCT/JP2017/021650
Other languages
English (en)
French (fr)
Inventor
修平 中倉
和彦 土岡
槙 孝一郎
元彬 猿渡
一臣 漁師
慶彦 中尾
吉田 昌史
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to US16/302,834 priority Critical patent/US10689262B2/en
Priority to EP17813266.8A priority patent/EP3470377A4/en
Priority to KR1020187034691A priority patent/KR102389074B1/ko
Priority to JP2018523896A priority patent/JP7024710B2/ja
Priority to CN201780033415.0A priority patent/CN109195919B/zh
Publication of WO2017217370A1 publication Critical patent/WO2017217370A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0036Crystallisation on to a bed of product crystals; Seeding
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D2009/0086Processes or apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a nickel-containing hydroxide used as a precursor of a positive electrode active material of a lithium ion secondary battery.
  • a lithium ion secondary battery as a non-aqueous electrolyte secondary battery that satisfies such requirements.
  • a lithium ion secondary battery includes a negative electrode, a positive electrode, an electrolytic solution, and the like, and a material capable of desorbing and inserting lithium is used as an active material for the negative electrode and the positive electrode.
  • a lithium ion secondary battery using a lithium composite oxide, particularly a lithium cobalt composite oxide that is relatively easy to synthesize as a positive electrode material, is expected as a battery having a high energy density because a high voltage of 4V class is obtained. Practical use is progressing.
  • a battery using a lithium cobalt composite oxide has been developed so far to obtain excellent initial capacity characteristics and cycle characteristics, and various results have already been obtained.
  • lithium cobalt composite oxide uses an expensive cobalt compound as a raw material
  • the unit price per capacity of a battery using this lithium cobalt composite oxide is significantly higher than that of a nickel metal hydride battery. Limited. Therefore, not only for small secondary batteries for portable devices, but also for large-sized secondary batteries for power storage and electric vehicles, it is possible to reduce the cost of positive electrode materials and manufacture cheaper lithium ion secondary batteries There is great expectation for this, and it can be said that its realization has great industrial significance.
  • a lithium nickel composite oxide using nickel which is cheaper than cobalt can be given. Since this lithium nickel composite oxide exhibits a lower electrochemical potential than lithium cobalt composite oxide, decomposition due to oxidation of the electrolytic solution is less likely to be a problem, and higher capacity can be expected. Therefore, development is actively conducted.
  • a lithium-ion secondary battery is produced using a lithium-nickel composite oxide synthesized solely with nickel as a positive electrode material, the cycle characteristics are inferior to those of a cobalt-based battery, and the battery is relatively easy to use and store in a high-temperature environment. It has the disadvantage that performance is easily impaired. Therefore, a lithium nickel composite oxide in which a part of nickel is substituted with cobalt or aluminum is generally known.
  • a general method for producing a positive electrode active material is as follows: (1) First, a nickel composite hydroxide, which is a precursor of a lithium nickel composite oxide, is prepared by neutralization crystallization, and (2) the precursor is converted into a lithium compound. A method of mixing and baking is known. Among these, as a method for producing particles by the neutralization crystallization method of (1), a typical embodiment is a process using a stirring tank.
  • Patent Document 1 describes that the shearing force generated by stirring affects the growth of nickel hydroxide particles, and the average particle size decreases as the shearing force increases, so that a stirring blade that suppresses the shearing force is necessary. Has been.
  • agglomeration of particles that have grown in a spherical shape may cause the spherical properties of the particles obtained upon completion of neutralization crystallization to be disrupted, and the disruption of the spherical properties adversely affects the characteristics of the lithium ion secondary battery. There was a thing.
  • the present invention has been made in view of the above problems, and is a nickel-containing water that can suppress the collapse of the spherical shape of particles obtained at the completion of neutralization crystallization universally in chemical reactors of various structures.
  • the main purpose is to provide a method for producing an oxide.
  • a method for producing a nickel-containing hydroxide wherein a value obtained by averaging the maximum acceleration of the flow on each stream line of the aqueous solution is larger than 600 m / s 2 .
  • a method for producing a nickel-containing hydroxide that can suppress the collapse of the spherical shape of particles obtained at the completion of neutralization crystallization universally in chemical reactors having various structures. Is done.
  • FIG. 5 is a cross-sectional view of the chemical reaction device taken along line VV in FIG. 4.
  • FIG. 4 is a SEM photograph of nickel composite hydroxide particles obtained in Comparative Example 1.
  • FIG. 1 is a flowchart of a method for producing a nickel-containing hydroxide according to an embodiment.
  • the method for producing a nickel-containing hydroxide is to obtain nickel-containing hydroxide particles by neutralization crystallization, and a nucleation step S11 for generating nuclei of the particles; And a particle growth step S12 for growth.
  • the nickel containing hydroxide obtained is demonstrated before that.
  • the nickel-containing hydroxide is used as a precursor of the positive electrode active material of the lithium ion secondary battery.
  • Y (however, 0 ⁇ x ⁇ 0.3, 0.005 ⁇ y ⁇ 0.15) or a nickel composite hydroxide containing (2) nickel (Ni) and cobalt (Co) And manganese (Mn) and M (M is one or more additive elements selected from Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W) in a mass ratio (mol ratio)
  • the amount of hydroxide ions contained in the nickel-containing hydroxide according to one embodiment usually has a stoichiometric ratio, but may be excessive or deficient to the extent that this embodiment is not affected. .
  • a part of the hydroxide ions may be replaced with anions (for example, carbonate ions or sulfate ions) to the extent that this embodiment is not affected.
  • the contained hydroxide according to one embodiment may be a single phase of a nickel-containing hydroxide (or a main component is a nickel-containing hydroxide) by X-ray diffraction (XRD) measurement.
  • XRD X-ray diffraction
  • Nickel-containing hydroxide contains nickel, preferably further contains a metal other than nickel.
  • a hydroxide further containing a metal other than nickel is referred to as a nickel composite hydroxide.
  • the metal composition ratio (for example, Ni: Co: Mn: M) of the nickel composite hydroxide is also maintained in the obtained positive electrode active material, so that it matches the metal composition ratio required for the positive electrode active material. Adjusted to
  • the method for producing the nickel-containing hydroxide includes the nucleation step S11 and the particle growth step S12.
  • the nucleation step S11 and the particle growth step S12 are performed separately by controlling the pH value of the aqueous solution in the stirring tank using a batch type stirring tank.
  • nucleation step S11 nucleation occurs prior to particle growth, and particle growth hardly occurs.
  • grain growth step S12 grain growth takes precedence over nucleation and almost no new nuclei are produced.
  • the aqueous solution in the stirring vessel in the nucleation step S11 and the aqueous solution in the stirring vessel in the particle growth step S12 have different pH value ranges, but the ammonia concentration range and temperature range may be substantially the same. .
  • a batch-type stirring tank is used, but a continuous stirring tank may be used.
  • the nucleation step S11 and the particle growth step S12 are performed simultaneously.
  • the range of the pH value of the aqueous solution in the stirring tank is naturally the same, and may be set in the vicinity of 12.0, for example.
  • a raw material liquid is prepared.
  • the raw material liquid contains at least a nickel salt, and preferably further contains a metal salt other than the nickel salt.
  • a metal salt As the metal salt, nitrate, sulfate, hydrochloride and the like are used.
  • nickel sulfate, manganese sulfate, cobalt sulfate, aluminum sulfate, titanium sulfate, ammonium peroxotitanate, potassium potassium oxalate, vanadium sulfate, ammonium vanadate, chromium sulfate, potassium chromate, zirconium sulfate, Zirconium nitrate, niobium oxalate, ammonium molybdate, hafnium sulfate, sodium tantalate, sodium tungstate, ammonium tungstate, etc. are used.
  • composition ratio of the metal in the raw material liquid for example, Ni: Co: Mn: M
  • the composition ratio required for the nickel composite hydroxide it should match the composition ratio required for the nickel composite hydroxide. Adjusted.
  • the aqueous solution mixed by supplying alkaline aqueous solution, aqueous ammonia solution, and water is stored in the stirring tank.
  • the mixed aqueous solution is hereinafter referred to as “pre-reaction aqueous solution”.
  • the pH value of the aqueous solution before the reaction is adjusted within the range of 12.0 to 14.0, preferably 12.3 to 13.5 on the basis of the liquid temperature of 25 ° C.
  • the concentration of ammonia in the pre-reaction aqueous solution is preferably adjusted within the range of 3 to 25 g / L, more preferably 5 to 20 g / L, and still more preferably 5 to 15 g / L.
  • the temperature of the pre-reaction aqueous solution is preferably adjusted within the range of 20 to 60 ° C., more preferably 35 to 60 ° C.
  • alkaline aqueous solution for example, a solution containing an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is used.
  • the alkali metal hydroxide may be supplied as a solid, but is preferably supplied as an aqueous solution.
  • ammonia supplier for example, ammonia, ammonium sulfate, ammonium chloride, ammonium carbonate, or ammonium fluoride can be used.
  • an ammonia supplier is used as the non-reducing complexing agent, but ethylenediaminetetraacetic acid, nitritotriacetic acid, uracil diacetic acid, glycine, or the like may be used. Any non-reducing complexing agent may be used as long as it can form a complex by binding nickel ions or the like in an aqueous solution in a stirring tank.
  • the raw material solution After adjusting the pH, ammonia concentration, temperature, etc. of the pre-reaction aqueous solution, the raw material solution is supplied into the stirring tank while stirring the pre-reaction aqueous solution. As a result, a reaction aqueous solution in which the pre-reaction aqueous solution and the raw material liquid are mixed is formed in the stirring tank, nuclei are generated by neutralization crystallization, and the nucleation step S11 is started.
  • the nucleation step S11 if the pH value of the reaction aqueous solution is 12.0 or more, nucleation becomes more dominant than particle growth. In addition, in the nucleation step S11, if the pH value of the reaction aqueous solution is 14.0 or less, it is possible to prevent the nuclei from becoming too fine and to prevent the reaction aqueous solution from gelling. In the nucleation step S11, the fluctuation range (maximum value and minimum value range) of the pH value of the aqueous reaction solution is preferably 0.4 or less.
  • the solubility of metal ions can be kept constant, and nuclei having a uniform shape and particle size are easily generated.
  • the ammonia concentration in the reaction aqueous solution is 25 g / L or less, metal ions remaining in the liquid without being precipitated are reduced, and the production efficiency is improved.
  • the fluctuation range (maximum value and minimum value) of the pH value of the aqueous reaction solution is preferably 5 g / L or less.
  • the temperature of the reaction aqueous solution is 20 ° C. or higher, the solubility of the nickel-containing hydroxide is high, so that nucleation occurs slowly and nucleation control is easy.
  • the temperature of the reaction aqueous solution is 60 ° C. or lower, the volatilization of ammonia can be suppressed, so that the amount of ammonia water used can be reduced and the production cost can be reduced.
  • nucleation step S11 in addition to the raw material liquid, an alkaline aqueous solution and an aqueous ammonia solution are supplied into the stirring tank so that the pH value, ammonia concentration, and temperature of the reaction aqueous solution are maintained within the above ranges. Thereby, the production
  • the pH value of the reaction aqueous solution in the stirring tank is 10.5 to 12.0, preferably 11.0 to 12 based on the liquid temperature of 25 ° C. 0.0 and lower than the pH value in the nucleation step S11.
  • the pH value is adjusted by stopping the supply of the alkaline aqueous solution into the stirring tank and supplying an inorganic acid (for example, sulfuric acid in the case of sulfate) in which the metal of the metal salt is replaced with hydrogen into the stirring tank. It can be adjusted with.
  • the raw material liquid After adjusting the pH, ammonia concentration, temperature, etc. of the reaction aqueous solution, the raw material liquid is supplied into the stirring tank while stirring the reaction aqueous solution. Thereby, the growth of the nucleus (particle growth) starts by neutralization crystallization, and the particle growth step S12 is started.
  • the nucleation step S11 and the particle growth step S12 are performed in the same stirring tank, but may be performed in different stirring tanks.
  • the particle growth step S12 if the pH value of the aqueous reaction solution is 12.0 or less and lower than the pH value in the nucleation step S11, new nuclei are hardly generated, and particle growth is more preferable than nucleation. Preferentially occurs.
  • the priority order changes depending on the presence or absence of nuclei present in the reaction aqueous solution. For example, if the pH value of the nucleation step S11 is higher than 12.0 to cause a large amount of nucleation, and then the pH value is set to 12.0 in the particle growth step S12, a large amount of nuclei exist in the reaction aqueous solution. , Grain growth is a priority. On the other hand, when no nuclei exist in the reaction aqueous solution, that is, when the pH value is set to 12.0 in the nucleation step S11, nucleation takes precedence because there are no growing nuclei.
  • the pH value of the particle growth step is preferably 0.5 or more lower than the pH value of the nucleation step, more preferably 1.0 or more.
  • the solubility by ammonia is low, so that metal ions remaining in the liquid without being precipitated are reduced, and the production efficiency is improved.
  • an alkaline aqueous solution and an aqueous ammonia solution are supplied into the stirring tank so that the pH value, ammonia concentration, and temperature of the aqueous reaction solution are maintained within the above ranges. Thereby, particle growth is continued in the reaction aqueous solution.
  • the particle growth step S12 can be divided into a first half and a second half by switching the atmosphere in the stirring tank.
  • the first half atmosphere is an oxidizing atmosphere as in the nucleation step S11.
  • the oxygen concentration in the oxidizing atmosphere is 1% by volume or more, preferably 2% by volume or more, more preferably 10% by volume or more.
  • the oxidizing atmosphere may be an easily controlled air atmosphere (oxygen concentration: 21% by volume).
  • the upper limit of the oxygen concentration in the oxidizing atmosphere is not particularly limited, but is 30% by volume or less.
  • the latter atmosphere is a non-oxidizing atmosphere.
  • the oxygen concentration in the non-oxidizing atmosphere is 1% by volume or less, preferably 0.5% by volume or less, more preferably 0.3% by volume or less.
  • the oxygen concentration in the non-oxidizing atmosphere is controlled by mixing oxygen gas or air with an inert gas.
  • FIG. 2 is a cross-sectional view schematically showing aggregates formed in the first half of the particle growth step according to an embodiment.
  • FIG. 3 is a cross-sectional view schematically showing an outer shell formed in the latter half of the particle growth process according to an embodiment.
  • the seed crystal particles 2 are formed by the growth of the nuclei, and when the seed crystal particles 2 become large to some extent, the seed crystal particles 2 collide with each other. Aggregates 4 are formed. On the other hand, a dense outer shell 6 is formed around the aggregate 4 in the latter half of the particle growth step S12. As a result, particles composed of the aggregate 4 and the outer shell 6 are obtained.
  • the structure of the nickel-containing hydroxide particles is not limited to the structure shown in FIG.
  • the structure of the particles obtained upon completion of neutralization crystallization is a structure different from the structure shown in FIG.
  • the structure corresponding to the seed crystal particle 2 and the structure corresponding to the outer shell 6 are mixed, and the boundary is not easily understood.
  • the particle growth step S12 is terminated.
  • the particle size can be estimated from the supply amount of the metal salt in each of the nucleation step S11 and the particle growth step S12.
  • FIG. 4 is a top view showing a chemical reaction apparatus used in a method for producing a nickel-containing hydroxide according to an embodiment.
  • FIG. 5 is a cross-sectional view of the chemical reaction device taken along line VV in FIG.
  • the chemical reaction apparatus 10 includes a stirring tank 20, a stirring blade 30, a stirring shaft 40, and a baffle 50.
  • the stirring tank 20 contains the reaction aqueous solution in a cylindrical internal space.
  • the stirring blade 30 stirs the reaction aqueous solution in the stirring tank 20.
  • the stirring blade 30 is attached to the lower end of the stirring shaft 40.
  • the stirring blade 30 is rotated by rotating the stirring shaft 40 by a motor or the like.
  • the center line of the stirring tank 20, the center line of the stirring blade 30, and the center line of the stirring shaft 40 may coincide with each other and may be vertical.
  • the baffle 50 is also called a baffle plate.
  • the baffle 50 protrudes from the inner peripheral surface of the agitation tank 20, and generates an upward flow or a downward flow by obstructing the rotational flow, thereby improving the efficiency of stirring the aqueous reaction solution.
  • the chemical reaction apparatus 10 includes a raw material liquid supply pipe 60, an alkaline aqueous solution supply pipe 62, and an ammonia water supply pipe 64.
  • the raw material liquid supply pipe 60 supplies the raw material liquid into the stirring tank 20.
  • the alkaline aqueous solution supply pipe 62 supplies the alkaline aqueous solution into the stirring tank 20.
  • the ammonia water supply pipe 64 supplies ammonia water into the stirring tank 20.
  • the inventor has studied the conditions that can universally suppress the collapse of the spherical shape of the particles obtained at the completion of neutralization crystallization using chemical reactors of various structures, and in the particle growth step S12 We focused on the acceleration of the reaction aqueous solution.
  • FIG. 6 is a diagram showing a circular horizontal plane set immediately above the stirring blade according to an embodiment and streamlines passing through the horizontal plane.
  • streamline velocity vectors are indicated by arrows.
  • the streamline velocity vector also has a component perpendicular to the paper surface.
  • the particles are dispersed throughout the reaction aqueous solution, move along a streamline passing through a circular horizontal plane 32 set immediately above the stirring blade 30, and repeatedly pass through the horizontal plane 32.
  • the horizontal surface 32 has a center on the center line of the stirring blade 30 and has the same diameter as the blade diameter of the stirring blade 30. The particles are accelerated by passing through the stirring blade 30 and are given a force.
  • the average maximum acceleration of the flow When the value obtained by averaging the maximum acceleration (> 0) of the flow on each streamline (hereinafter referred to as the average maximum acceleration of the flow) is greater than 600 m / s 2 , the coupling between particles grown in a spherical shape can be suppressed. . It is estimated that the force applied to each particle overcomes the binding force.
  • the average maximum acceleration of the flow is obtained by obtaining the maximum value of the magnitude of acceleration for each stream line and averaging each maximum value.
  • the average maximum acceleration of the flow is preferably 700 m / s 2 or more, more preferably 1000 m / s 2 or more, and further preferably 1200 m / s 2 or more.
  • the average maximum acceleration of the flow is preferably 7500 m / s 2 or less because it is restricted by the capacity of the rotary motor that rotates the stirring blade 30.
  • the particle size of the aggregate 4 can be controlled by controlling the average maximum acceleration of the flow. The larger the average maximum acceleration of the flow, the smaller the particle size of the aggregate 4.
  • the average maximum acceleration of the flow can be obtained by simulation using general-purpose fluid analysis software.
  • the surface density of streamlines passing through the horizontal plane 32 is set to 3000 lines / m 2 or more. If the surface density of the streamlines is 3000 lines / m 2 or more, highly reliable data can be obtained.
  • ⁇ Coordinate system> -Of the region where fluid analysis is performed (hereinafter also referred to as "analysis region"), the area around the stirring shaft and stirring blade is handled by a rotating coordinate system that rotates together with the stirring shaft and stirring blade.
  • the area handled in the rotating coordinate system is cylindrical, and its center line is overlapped with the center line of the stirring shaft and stirring blade, its diameter is set to 115% of the blade diameter of the stirring blade, and the vertical range is stirred. From the inner bottom of the tank to the liquid level.
  • Other analysis areas are handled in the stationary coordinate system.
  • the rotating coordinate system and stationary coordinate system are connected using the interface function of the fluid analysis software. As an interface function, the optional “Frozen Rotor” is used.
  • the flow in the stirring tank is not laminar but turbulent.
  • an SST (Shear Stress Transport) model is used as the turbulence model.
  • the total mass fraction of the five components is 1 at an arbitrary position in the analysis region and at an arbitrary time point. Therefore, the mass fraction of each of the four components excluding water among the above five components is a value obtained by solving the transport equation using CFX, and the mass fraction of water is from 1 to the total mass fraction of the above four components. The value obtained by subtracting.
  • aqueous solution A an aqueous solution containing the reaction component A
  • aqueous solution B an aqueous solution containing the reaction component B
  • the inflow rate of the aqueous solution A, the ratio of the reaction component A in the aqueous solution A, and the inflow rate of the aqueous solution B and the ratio of the reaction component B in the aqueous solution B are constant.
  • the inflow flow rate of the aqueous solution B is set so that the pH of the aqueous solution in the stirring tank is maintained at a predetermined value (for example, 12.0).
  • Outflow boundary (boundary where fluid flows out) An outflow boundary through which the fluid in the agitation tank exits is provided on a part of the inner peripheral surface of the agitation tank.
  • the liquid that flows out contains product components C and D, unreacted reaction components A and B, and water.
  • the outflow amount is set so that the pressure difference between the analysis region and the outside of the system becomes zero. In the case of an overflow type continuous type, the liquid level is the outflow boundary.
  • ⁇ Thermal conditions> The temperature of the fluid in the stirring tank is constant at 25 ° C. It is assumed that there is no heat generation due to chemical reaction and no heat inflow or outflow at the inflow boundary or outflow boundary.
  • the fluid in the agitation tank is homogeneous in the initial state, and includes only two components of the reaction component B and water among the above five components. Specifically, among the fluid in the stirring tank, the initial mass fraction of reaction component A, the initial mass fraction of product component C, the initial mass fraction of product component D is zero, and the initial mass fraction of reaction component B Is set so that the pH of the aqueous solution in the agitation tank becomes the predetermined value.
  • the initial mass fraction of the generation component C and the initial mass fraction of the generation component D are set to zero here, but in order to reduce the number of iterations (that is, calculation time) for obtaining a steady solution, You may set to the average value in the whole analysis area
  • the average value in the entire analysis region is the quantitative expression represented by the chemical reaction equation, the inflow rate of the aqueous solution A, the ratio of the reaction component A in the aqueous solution A, the inflow rate of the aqueous solution B and the ratio of the reaction component B in the aqueous solution B. It can be calculated based on the relationship.
  • the analysis conditions for obtaining nickel hydroxide are shown, but the analysis conditions for obtaining nickel composite hydroxide can also be set similarly.
  • the fluid analysis handles a single-phase multi-component fluid containing the following seven components.
  • Reaction component A1 NiSO 4
  • Reaction component A2 MnSO 4
  • Reaction component B NaOH
  • Product component C1 Ni (OH) 2
  • Product component C2 Mn (OH) 2
  • Product component D Na 2 SO 4 7)
  • the reaction component A1 and the reaction component A2 are supplied from the same inflow boundary in a state of being uniformly dissolved in water. That is, the aqueous solution A containing both the reaction component A1 and the reaction component A2 is supplied from the inflow boundary.
  • the fluid analysis handles a single-phase multi-component fluid containing the following nine components.
  • Reaction component A1 NiSO 4
  • Reaction component A2 CoSO 4
  • Reaction component A3 Al 2 (SO 4 ) 3
  • Reaction component B NaOH
  • Product component C1 Ni (OH) 2
  • Product component C2 Co (OH) 2
  • Product component C3 Al (OH) 3 8)
  • Product component D Na 2 SO 4 9)
  • three chemical reactions of “A1 + 2B ⁇ C1 + D”, “A2 + 2B ⁇ C2 + D”, and “1 / 2A3 + 3B ⁇ C3 + 3 / 2D” occur in the stirring tank, and vortex dissipation corresponding to each chemical reaction occurs.
  • the model is used as a reaction model.
  • the reaction component A1, the reaction component A2, and the reaction component A3 are supplied from the same inflow boundary in a state of being uniformly dissolved in water. That is, the aqueous solution A containing the reaction component A1, the reaction component A2, and the reaction component A3 is supplied from the inflow boundary.
  • the model is used as a reaction model.
  • the reaction component A1, the reaction component A2, and the reaction component A3 are supplied from the same inflow boundary in a state of being uniformly dissolved in water. That is, the aqueous solution A containing the reaction component A1, the reaction component A2, and the reaction component A3 is supplied from the inflow boundary.
  • the number of inflow boundaries of the aqueous solution A may be plural.
  • the method for producing a nickel-containing hydroxide may include a step of confirming by simulation that the average maximum acceleration of the flow of the aqueous solution in the stirring tank is larger than 600 m / s 2 in the particle growth step.
  • This confirmation may be performed every time the manufacturing conditions are changed.
  • This change in manufacturing conditions includes, for example, the capacity and shape of the agitation tank, the number, shape, dimensions, or location of the agitation blades, the rotation speed of the agitation blades, the flow rate and concentration of the raw material liquid, or the nozzle that supplies the raw material liquid. Examples include shape, number, or arrangement.
  • the confirmation only needs to be performed once while the manufacturing conditions are the same, and the confirmation is not required each time.
  • reaction aqueous solution contains ammonia as a chemical component.
  • ammonia does not directly participate in the precipitation reaction of solid particles, and its concentration is smaller than the concentration of nickel hydroxide. Therefore, it is considered that the influence of ammonia on the volume of the highly supersaturated region of nickel hydroxide is small. Therefore, ammonia in the chemical component to be solved by the simulation model is handled as water.
  • Example 1 In Example 1, a nucleation step for generating nuclei of nickel composite hydroxide particles and a particle growth step for growing particles are performed simultaneously by neutralization crystallization using an overflow-type continuous stirring tank. It was.
  • the volume of the stirring tank is 5L
  • the type of the stirring blade is a disc turbine blade
  • the number of blades of the stirring blade is 6
  • the blade diameter of the stirring blade is 80 mm
  • the vertical distance between the stirring blade and the inner bottom surface of the stirring tank is The rotation speed of 5 mm and the stirring blade was 850 rpm.
  • the amount of the reaction aqueous solution in the stirring tank was 5 L, the pH value of the reaction aqueous solution was 11.3, the ammonia concentration of the reaction aqueous solution was 10 g / L, and the temperature of the reaction aqueous solution was maintained at 50 ° C.
  • the ambient atmosphere of the reaction aqueous solution was a nitrogen atmosphere.
  • the raw material liquid was prepared so that Ni 0.82 Co 0.15 Al 0.03 (OH) 2 was obtained as a nickel composite hydroxide.
  • the number of raw material liquid supply pipes was 1, and the supply amount from one raw material liquid supply pipe was 400 ml / min.
  • the aqueous solution of sodium hydroxide and aqueous ammonia were supplied into the stirring tank in addition to the raw material solution to maintain the pH value of the reaction aqueous solution and the ammonia concentration of the reaction aqueous solution.
  • the average maximum acceleration of the flow was 1395 m / s 2 as calculated by simulation.
  • the analysis conditions were set similarly to the above analysis conditions.
  • FIG. 7 shows an SEM photograph of the nickel composite hydroxide particles obtained in Example 1. As shown in FIG. 7, highly spherical particles were obtained.
  • Example 2 nickel composite hydroxide particles were produced in the same manner as in Example 1 except that the number of revolutions of the stirring blade was 600 rpm.
  • the SEM photograph of the nickel composite hydroxide particles obtained was the same as the nickel composite hydroxide obtained in Example 1, and particles with high sphericity were obtained.
  • Example 3 nickel composite hydroxide particles were produced in the same manner as in Example 1 except that the blade diameter of the stirring blade was 60 mm and the rotation speed was 1000 rpm.
  • the SEM photograph of the nickel composite hydroxide particles obtained was the same as the nickel composite hydroxide obtained in Example 1, and particles with high sphericity were obtained.
  • Example 4 In Example 4, the type of the stirring blade is 45 ° pitched paddle blade, the number of blades of the stirring blade is 4, the blade diameter of the stirring blade is 80 mm, and the vertical distance between the stirring blade and the inner bottom surface of the stirring tank is 5 mm. Nickel composite hydroxide particles were produced in the same manner as in Example 1 except that the rotation speed of the stirring blade was 850 rpm.
  • the SEM photograph of the nickel composite hydroxide particles obtained was the same as the nickel composite hydroxide obtained in Example 1, and particles with high sphericity were obtained.
  • Example 5 In Example 5, the volume of the stirring tank is 50 L, the type of the stirring blade is a disc turbine blade, the number of blades of the stirring blade is 6, the blade diameter of the stirring blade is 160 mm, and the space between the stirring blade and the inner bottom surface of the stirring tank The vertical distance was 5 mm, and the rotation speed of the stirring blade was 500 rpm. The supply amount of the raw material liquid was 4000 ml / min. Otherwise, nickel composite hydroxide particles were produced in the same manner as in Example 1.
  • the SEM photograph of the nickel composite hydroxide particles obtained was the same as the nickel composite hydroxide obtained in Example 1, and particles with high sphericity were obtained.
  • Example 6 the nickel composite water was prepared in the same manner as in Example 1 except that the raw material liquid was prepared so that Ni 0.88 Co 0.09 Al 0.03 (OH) 2 was obtained as the nickel composite hydroxide. Oxide particles were produced.
  • the SEM photograph of the nickel composite hydroxide particles obtained was the same as the nickel composite hydroxide obtained in Example 1, and particles with high sphericity were obtained.
  • Example 7 the nickel composite water was prepared in the same manner as in Example 1 except that the raw material liquid was prepared to obtain Ni 0.34 Co 0.33 Mn 0.33 (OH) 2 as the nickel composite hydroxide. Oxide particles were produced.
  • the SEM photograph of the nickel composite hydroxide particles obtained was the same as the nickel composite hydroxide obtained in Example 1, and particles with high sphericity were obtained.
  • Example 8 nickel composite water was prepared in the same manner as in Example 1 except that the raw material liquid was adjusted to obtain Ni 0.60 Co 0.20 Mn 0.20 (OH) 2 as a nickel composite hydroxide. Oxide particles were produced.
  • the SEM photograph of the nickel composite hydroxide particles obtained was the same as the nickel composite hydroxide obtained in Example 1, and particles with high sphericity were obtained.
  • Example 9 In Example 9, the type of the stirring blade is 45 ° pitched paddle blade, the number of blades of the stirring blade is 4, the blade diameter of the stirring blade is 80 mm, and the vertical distance between the stirring blade and the inner bottom surface of the stirring tank is 5 mm. The rotation speed of the stirring blade was 850 rpm.
  • the composition of the raw material liquid was prepared so that Ni 0.34 Co 0.33 Mn 0.33 (OH) 2 was obtained as the nickel composite hydroxide. Otherwise, nickel composite hydroxide particles were produced in the same manner as in Example 1.
  • the SEM photograph of the nickel composite hydroxide particles obtained was the same as the nickel composite hydroxide obtained in Example 1, and particles with high sphericity were obtained.
  • Example 10 In Example 10, the volume of the stirring vessel is 50 L, the type of the stirring blade is a disc turbine blade, the number of blades of the stirring blade is 6, the blade diameter of the stirring blade is 160 mm, and between the stirring blade and the inner bottom surface of the stirring vessel The vertical distance was 5 mm, and the rotation speed of the stirring blade was 500 rpm.
  • the supply amount of the raw material liquid was 4000 ml / min.
  • the composition of the raw material liquid was prepared so that Ni 0.34 Co 0.33 Mn 0.33 (OH) 2 was obtained as the nickel composite hydroxide. Otherwise, nickel composite hydroxide particles were produced in the same manner as in Example 1.
  • the SEM photograph of the nickel composite hydroxide particles obtained was the same as the nickel composite hydroxide obtained in Example 1, and particles with high sphericity were obtained.
  • Comparative Example 1 nickel composite hydroxide particles were produced in the same manner as in Example 1 except that the rotation speed of the stirring blade was 500 rpm.
  • FIG. 8 shows an SEM photograph of the nickel composite hydroxide particles obtained in Comparative Example 1. As shown in FIG. 8, particles with low sphericity were recognized as particles surrounded by a thick black line.
  • Comparative Example 2 In Comparative Example 2, the rotation speed of the stirring blade was 500 rpm. The composition of the raw material liquid was prepared so that Ni 0.34 Co 0.33 Mn 0.33 (OH) 2 was obtained as the nickel composite hydroxide. Otherwise, nickel composite hydroxide particles were produced in the same manner as in Example 1.
  • the SEM photograph of the nickel composite hydroxide particles obtained in Comparative Example 2 was the same as the particles obtained in Comparative Example 1, and particles with low sphericity were observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

撹拌槽内の水溶液の中で中和晶析によってニッケル含有水酸化物の粒子を成長させる粒子成長工程を有し、前記粒子成長工程において、前記水溶液の各流線上の流れの最大加速度を平均化した値が600m/sよりも大きい、ニッケル含有水酸化物の製造方法。

Description

ニッケル含有水酸化物の製造方法
 本発明は、リチウムイオン二次電池の正極活物質の前駆体として用いられる、ニッケル含有水酸化物の製造方法に関する。
 近年、携帯電話、ノート型パーソナルコンピュータなどの携帯電子機器の普及に伴い、高いエネルギー密度を有する小型で軽量な二次電池の開発が要求されている。また、ハイブリット自動車を始めとする電気自動車用の電池として、高出力の二次電池の開発も要求されている。このような要求を満たす非水系電解質二次電池として、リチウムイオン二次電池がある。リチウムイオン二次電池は、負極、正極、電解液などで構成され、負極および正極の活物質には、リチウムを脱離および挿入することが可能な材料が用いられている。
 リチウム複合酸化物、特に合成が比較的容易なリチウムコバルト複合酸化物を正極材料に用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高エネルギー密度を有する電池として期待され、実用化が進んでいる。リチウムコバルト複合酸化物を用いた電池では、優れた初期容量特性やサイクル特性を得るための開発はこれまで数多く行われてきており、すでにさまざまな成果が得られている。
 しかしながら、リチウムコバルト複合酸化物は、原料に高価なコバルト化合物を用いるため、このリチウムコバルト複合酸化物を用いる電池の容量あたりの単価は、ニッケル水素電池より大幅に高くなり、適用可能な用途はかなり限定されている。したがって、携帯機器用の小型二次電池についてだけではなく、電力貯蔵用や電気自動車用などの大型二次電池についても、正極材料のコストを下げ、より安価なリチウムイオン二次電池の製造を可能とすることに対する期待は大きく、その実現は、工業的に大きな意義があるといえる。
 リチウムイオン二次電池用活物質の新たなる材料としては、コバルトよりも安価なニッケルを用いたリチウムニッケル複合酸化物を挙げることができる。このリチウムニッケル複合酸化物は、リチウムコバルト複合酸化物よりも低い電気化学ポテンシャルを示すため、電解液の酸化による分解が問題になりにくく、より高容量が期待でき、コバルト系と同様に高い電池電圧を示すことから、開発が盛んに行われている。しかし、純粋にニッケルのみで合成したリチウムニッケル複合酸化物を正極材料としてリチウムイオン二次電池を作製した場合、コバルト系に比ベサイクル特性が劣り、また、高温環境下で使用や保存により比較的電池性能を損ないやすいという欠点を有している。そのため、ニッケルの一部をコバルトやアルミニウムで置換したリチウムニッケル複合酸化物が一般的に知られている。
 正極活物質の一般的な製造方法は、(1)まず、中和晶析法によりリチウムニッケル複合酸化物の前駆体であるニッケル複合水酸化物を作製し、(2)その前駆体をリチウム化合物と混合して焼成する方法が知られている。このうち、(1)の中和晶析法によって粒子を製造する方法として、代表的な実施の形態は、撹拌槽を用いたプロセスである。
 特許文献1には、撹拌によって生じる剪断力は水酸化ニッケル粒子の成長に影響し、剪断力が強いほど平均粒径が低下する関係があるので、剪断力を抑える撹拌翼が必要であると記載されている。
日本国特開2003-2665号公報
 従来から、所望の特性のニッケル含有水酸化物の粒子を得るため、様々な検討がなされている。
 しかしながら、撹拌翼のタイプや翼径、撹拌槽の容積などの装置構造が変わると、その都度、条件出しが必要であった。
 また、球状に成長した粒子同士が凝集することで、中和晶析の完了時に得られる粒子の球状性が崩れることが有り、その球状性の崩れがリチウムイオン二次電池の特性に悪影響を及ぼすことがあった。
 本発明は、上記課題に鑑みてなされたものであって、様々な構造の化学反応装置で普遍的に、中和晶析の完了時に得られる粒子の球状性の崩れを抑制できる、ニッケル含有水酸化物の製造方法の提供を主な目的とする。
 上記課題を解決するため、本発明の一態様によれば、
 撹拌槽内の水溶液の中で中和晶析によってニッケル含有水酸化物の粒子を成長させる粒子成長工程を有し、
 前記粒子成長工程において、前記水溶液の各流線上の流れの最大加速度を平均化した値が600m/sよりも大きい、ニッケル含有水酸化物の製造方法が提供される。
 本発明の一態様によれば、様々な構造の化学反応装置で普遍的に、中和晶析の完了時に得られる粒子の球状性の崩れを抑制できる、ニッケル含有水酸化物の製造方法が提供される。
一実施形態によるニッケル含有水酸化物の製造方法のフローチャートである。 一実施形態による粒子成長工程の前半で形成される凝集体を模式化した断面図である。 一実施形態による粒子成長工程の後半で形成される外殻を模式化した断面図である。 一実施形態によるニッケル含有水酸化物の製造方法に用いられる化学反応装置を示す上面図である。 図4のV-V線に沿った化学反応装置の断面図である。 一実施形態による撹拌翼の直上に設定される円形の水平面、および当該水平面を上から下に通過する流線を示す断面図である 実施例1で得られたニッケル複合水酸化物の粒子のSEM写真である。 比較例1で得られたニッケル複合水酸化物の粒子のSEM写真である。
 以下、本発明を実施するための形態について図面を参照して説明するが、各図面において、同一の又は対応する構成については同一の又は対応する符号を付して説明を省略する。
 図1は、一実施形態によるニッケル含有水酸化物の製造方法のフローチャートである。図1に示すように、ニッケル含有水酸化物の製造方法は、中和晶析によりニッケル含有水酸化物の粒子を得るものであって、粒子の核を生成させる核生成工程S11と、粒子を成長させる粒子成長工程S12とを有する。以下、各工程について説明するが、その前に、得られるニッケル含有水酸化物について説明する。
 (ニッケル含有水酸化物)
 ニッケル含有水酸化物は、リチウムイオン二次電池の正極活物質の前駆体として用いられるものである。ニッケル含有水酸化物は、例えば、(1)ニッケル(Ni)とコバルト(Co)とアルミニウム(Al)とを、物質量比(mol比)がNi:Co:Al=1-x-y:x:y(ただし、0≦x≦0.3、0.005≦y≦0.15)となるように含むニッケル複合水酸化物であるか、または(2)ニッケル(Ni)とコバルト(Co)とマンガン(Mn)とM(Mは、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、およびWから選択される1種以上の添加元素)とを物質量比(mol比)がNi:Co:Mn:M=x:y:z:t(ただし、x+y+z+t=1、0.1≦x≦0.7、0.1≦y≦0.5、0.1≦z≦0.8、0≦t≦0.02)となるように含むニッケルコバルトマンガン複合水酸化物である。
 一実施形態によるニッケル含有水酸化物に含まれる水酸化物イオンの量は、通常、化学量論比を持つが、本実施形態に影響のない程度で過剰であったり、欠損していてもよい。また、本実施形態に影響のない程度で水酸化物イオンの一部がアニオン(例えば、炭酸イオンや硫酸イオンなど)に置き換わっていてもよい。
 一実施形態による含有水酸化物はX線回折(XRD)測定によって、ニッケル含有水酸化物の単相(または、主成分がニッケル含有水酸化物)であればよい。
 ニッケル含有水酸化物は、ニッケルを含有し、好ましくはニッケル以外の金属をさらに含有する。ニッケル以外の金属をさらに含有する水酸化物を、ニッケル複合水酸化物と呼ぶ。ニッケル複合水酸化物の金属の組成比(例えば、Ni:Co:Mn:M)は、得られる正極活物質においても維持されるので、正極活物質に要求される金属の組成比と一致するように調整される。
 (ニッケル含有水酸化物の製造方法)
 ニッケル含有水酸化物の製造方法は、上述の如く、核生成工程S11と、粒子成長工程S12とを有する。本実施形態では、バッチ式の撹拌槽を用いて、撹拌槽内の水溶液のpH値などを制御することで、核生成工程S11と、粒子成長工程S12とを分けて実施する。
 核生成工程S11では、核生成が粒子成長よりも優先して起こり、粒子成長はほとんど生じない。一方、粒子成長工程S12では、粒子成長が核生成よりも優先して起こり新しい核はほとんど生成されない。核生成工程S11と粒子成長工程S12とを分けて実施することで、粒度分布の範囲が狭く均質な核が形成でき、その後に、核を均質に成長させることができる。
 以下、核生成工程S11および粒子成長工程S12について説明する。核生成工程S11における撹拌槽内の水溶液と、粒子成長工程S12における撹拌槽内の水溶液とでは、pH値の範囲が異なるが、アンモニア濃度の範囲や温度の範囲は実質的に同じであってよい。
 尚、本実施形態では、バッチ式の撹拌槽を用いるが、連続式の撹拌槽を用いてもよい。後者の場合、核生成工程S11と粒子成長工程S12とは、同時に実施される。この場合、撹拌槽内の水溶液のpH値の範囲は当然に同じになり、例えば、12.0の近傍に設定されてよい。
 (核生成工程)
 先ず、原料液を調製しておく。原料液は、少なくともニッケル塩を含み、好ましくはニッケル塩以外の金属塩をさらに含有する。金属塩としては、硝酸塩、硫酸塩、塩酸塩などが用いられる。より具体的には、例えば、硫酸ニッケル、硫酸マンガン、硫酸コバルト、硫酸アルミニウム、硫酸チタン、ペルオキソチタン酸アンモニウム、シュウ酸チタンカリウム、硫酸バナジウム、バナジン酸アンモニウム、硫酸クロム、クロム酸カリウム、硫酸ジルコニウム、硝酸ジルコニウム、シュウ酸ニオブ、モリブデン酸アンモニウム、硫酸ハフニウム、タンタル酸ナトリウム、タングステン酸ナトリウム、タングステン酸アンモニウムなどが用いられる。
 原料液の金属の組成比(例えば、Ni:Co:Mn:M)は、得られるニッケル複合水酸化物においても維持されるので、ニッケル複合水酸化物に要求される組成比と一致するように調整される。
 また、撹拌槽内に、アルカリ水溶液、アンモニア水溶液、および水を供給して混合した水溶液を貯める。混合した水溶液を、以下、「反応前水溶液」と呼ぶ。反応前水溶液のpH値は、液温25℃基準で、12.0~14.0、好ましくは12.3~13.5の範囲内に調節しておく。また、反応前水溶液中のアンモニアの濃度は、好ましくは3~25g/L、より好ましくは5~20g/L、さらに好ましくは5~15g/Lの範囲内に調節しておく。さらに、反応前水溶液の温度は、好ましくは20~60℃、より好ましくは35~60℃の範囲内に調節しておく。
 アルカリ水溶液としては、例えば、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物を含むものが用いられる。アルカリ金属水酸化物は、固体として供給してもよいが、水溶液として供給することが好ましい。
 アンモニア水溶液としては、アンモニア供給体を含むものが用いられる。アンモニア供給体としては、例えば、アンモニア、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、またはフッ化アンモニウムなどが使用できる。
 尚、本実施形態では、非還元性錯化剤として、アンモニア供給体が用いられるが、エチレンジアミン四酢酸、ニトリト三酢酸、ウラシル二酢酸、またはグリシンなどが用いられてもよい。非還元性錯化剤は、撹拌槽内の水溶液中でニッケルイオンなど結合して錯体を形成可能なものであればよい。
 反応前水溶液のpH、アンモニア濃度、温度などの調節後、反応前水溶液を撹拌しながら原料液を撹拌槽内に供給する。これにより、撹拌槽内には、反応前水溶液と原料液とが混合した反応水溶液が形成され、中和晶析によって核が生成され、核生成工程S11が開始される。
 核生成工程S11において、反応水溶液のpH値が12.0以上であれば、核生成が粒子成長よりも支配的になる。また、核生成工程S11において、反応水溶液のpH値が14.0以下であれば、核が微細化し過ぎることを防止でき、反応水溶液のゲル化を防止できる。核生成工程S11において、反応水溶液のpH値の変動幅(最大値と最小値の幅)は、好ましくは0.4以下である。
 また、核生成工程S11において、反応水溶液中のアンモニア濃度が3g/L以上であると、金属イオンの溶解度を一定に保持でき、形状および粒径が整った核が生成しやすい。また、核生成工程S11において、反応水溶液中のアンモニア濃度が25g/L以下であると、析出せずに液中に残る金属イオンが減り、生産効率が向上する。核生成工程S11において、反応水溶液のpH値の変動幅(最大値と最小値の幅)は、好ましくは5g/L以下である。
 また、核生成工程S11において、反応水溶液の温度が20℃以上であれば、ニッケル含有水酸化物の溶解度が大きいため、核発生が緩やかに生じ、核発生の制御が容易である。一方、反応水溶液の温度が60℃以下であれば、アンモニアの揮発が抑制できるため、アンモニア水の使用量が削減でき、製造コストが低減できる。
 核生成工程S11では、反応水溶液のpH値やアンモニア濃度、温度が上記範囲内に維持されるように、撹拌槽内に、原料液の他に、アルカリ水溶液、アンモニア水溶液を供給する。これにより、反応水溶液中で、核の生成が継続される。そして、所定の量の核が生成されると、核生成工程S11を終了する。所定量の核が生成したか否かは、金属塩の供給量によって推定できる。
 (粒子成長工程)
 核生成工程S11の終了後、粒子成長工程S12の開始前に、撹拌槽内の反応水溶液のpH値を、液温25℃基準で、10.5~12.0、好ましくは11.0~12.0、かつ、核生成工程S11におけるpH値よりも低く調整する。このpH値の調整は、撹拌槽内へのアルカリ水溶液の供給を停止すること、金属塩の金属を水素と置換した無機酸(例えば、硫酸塩の場合、硫酸)を撹拌槽内へ供給することなどで調整できる。
 反応水溶液のpH、アンモニア濃度、温度などの調節後、反応水溶液を撹拌しながら原料液を撹拌槽内に供給する。これにより、中和晶析によって核の成長(粒子成長)が始まり、粒子成長工程S12が開始される。尚、本実施形態では、核生成工程S11と粒子成長工程S12とを、同一の撹拌槽で行うが、異なる撹拌槽で行ってもよい。
 粒子成長工程S12において、反応水溶液のpH値が12.0以下であってかつ核生成工程S11におけるpH値よりも低ければ、新たな核はほとんど生成せず、核生成よりも粒子成長の方が優先して生じる。
 尚、pH値が12.0の場合は、核生成と粒子成長の境界条件であるため、反応水溶液中に存在する核の有無により、優先順位が変わる。例えば、核生成工程S11のpH値を12.0より高くして多量に核生成させた後、粒子成長工程S12でpH値を12.0とすると、反応水溶液中に多量の核が存在するため、粒子成長が優先する。一方、反応水溶液中に核が存在しない状態、すなわち、核生成工程S11においてpH値を12.0とした場合、成長する核が存在しないため、核生成が優先する。その後、粒子成長工程S12においてpH値を12.0より小さくすれば、生成した核が成長する。核生成と粒子成長を明確に分離するためには、粒子成長工程のpH値を核生成工程のpH値より0.5以上低くすることが好ましく、1.0以上低くすることがより好ましい。
 また、粒子成長工程S12において、反応水溶液のpH値が10.5以上であれば、アンモニアによる溶解度が低いため、析出せずに液中に残る金属イオンが減り、生産効率が向上する。
 粒子成長工程S12では、反応水溶液のpH値やアンモニア濃度、温度が上記範囲内に維持されるように、撹拌槽内に、原料液の他に、アルカリ水溶液、アンモニア水溶液を供給する。これにより、反応水溶液中で、粒子成長が継続される。
 粒子成長工程S12は、撹拌槽内の雰囲気を切り換えることで前半と後半とに分けることができる。前半の雰囲気は、核生成工程S11と同様に酸化性雰囲気とされる。酸化性雰囲気の酸素濃度は、1容量%以上、好ましくは2容量%以上、より好ましくは10容量%以上である。酸化性雰囲気は、制御が容易な大気雰囲気(酸素濃度:21容量%)であってよい。酸化性雰囲気の酸素濃度の上限は、特に限定されるものではないが、30容量%以下である。一方、後半の雰囲気は、非酸化性雰囲気とされる。非酸化性雰囲気の酸素濃度は、1容量%以下、好ましくは0.5容量%以下、より好ましくは0.3容量%以下である。非酸化性雰囲気の酸素濃度は、酸素ガスまたは大気と、不活性ガスとを混合することにより制御する。
 図2は、一実施形態による粒子成長工程の前半で形成される凝集体を模式化した断面図である。図3は、一実施形態による粒子成長工程の後半で形成される外殻を模式化した断面図である。
 粒子成長工程S12の前半では、核が成長することで種晶粒子2が形成され、種晶粒子2がある程度大きくなると、種晶粒子2同士が衝突するようになり、複数の種晶粒子2からなる凝集体4が形成される。一方、粒子成長工程S12の後半では、凝集体4の周りに緻密な外殻6が形成される。その結果、凝集体4と外殻6とで構成される粒子が得られる。
 尚、ニッケル含有水酸化物の粒子の構造は、図3に示す構造に限定されない。例えば、核生成工程S11と粒子成長工程S12とが同時に実施される場合、中和晶析の完了時に得られる粒子の構造は、図3に示す構造とは別の構造である。その構造は、例えば、種晶粒子2に相当するものと外殻6に相当するものとが混じり合い、容易にその境界が分からない一様な構造となる。
 ニッケル含有水酸化物の粒子が所定の粒径まで成長した時点で、粒子成長工程S12を終了させる。その粒径は、核生成工程S11と粒子成長工程S12のそれぞれにおける金属塩の供給量から推測できる。
 尚、核生成工程S11の終了後、粒子成長工程S12の途中で、原料液などの供給を停止すると共に反応水溶液の撹拌を停止し、粒子を沈降させ、上澄み液を排出してもよい。これにより、中和晶析によって減少した反応水溶液中の金属イオン濃度を、高めることができる。
 図4は、一実施形態によるニッケル含有水酸化物の製造方法に用いられる化学反応装置を示す上面図である。図5は、図4のV-V線に沿った化学反応装置の断面図である。
 化学反応装置10は、撹拌槽20と、撹拌翼30と、撹拌軸40と、バッフル50とを有する。撹拌槽20は、円柱状の内部空間に反応水溶液を収容する。撹拌翼30は、撹拌槽20内の反応水溶液を撹拌させる。撹拌翼30は、撹拌軸40の下端に取付けられる。モータなどが撹拌軸40を回転させることで、撹拌翼30が回転される。撹拌槽20の中心線、撹拌翼30の中心線、および撹拌軸40の中心線は、一致してよく、鉛直とされてよい。バッフル50は、邪魔板とも呼ばれる。バッフル50は、撹拌槽20の内周面から突き出しており、回転流を邪魔することで上昇流や下降流を生じさせ、反応水溶液の撹拌効率を向上させる。
 また、化学反応装置10は、原料液供給管60と、アルカリ水溶液供給管62と、アンモニア水供給管64とを有する。原料液供給管60は、撹拌槽20内に原料液を供給する。アルカリ水溶液供給管62は、撹拌槽20内にアルカリ水溶液を供給する。アンモニア水供給管64は、撹拌槽20内にアンモニア水を供給する。
 本発明者は、様々な構造の化学反応装置で、普遍的に、中和晶析の完了時に得られる粒子の球状性の崩れを抑制できる条件を検討し、粒子成長工程S12において撹拌槽20内の反応水溶液の加速度に着目した。
 図6は、一実施形態による撹拌翼の直上に設定される円形の水平面、および当該水平面を通過する流線を示す図である。図6において、流線の速度ベクトルを矢印で示す。尚、流線の速度ベクトルは、紙面垂直方向の成分も有する。
 粒子成長工程S12において、粒子は、反応水溶液全体に分散しており、撹拌翼30の直上に設定される円形の水平面32を通過する流線に沿って移動し、水平面32を繰り返し通過する。水平面32は、撹拌翼30の中心線上に中心を有し、且つ、撹拌翼30の翼径と同じ直径を有する。粒子は、撹拌翼30を通過することで加速され、力を付与される。
 各流線上の流れの最大加速度(>0)を平均化した値(以下、流れの平均最大加速度と呼ぶ。)が600m/sよりも大きいと、球状に成長した粒子同士の結合を抑制できる。各粒子に付与される力が、結合力に打ち勝つようになるためと推定される。流れの平均最大加速度は、流線ごとに加速度の大きさの最大値を求め、各最大値を平均化することで求める。
 中和晶析の完了時に得られる粒子の球状性の崩れを抑制する観点からは、流れの平均最大加速度が大きいほど好ましい。流れの平均最大加速度は、好ましくは700m/s以上、より好ましくは1000m/s以上、さらに好ましくは1200m/s以上である。但し、流れの平均最大加速度は、撹拌翼30を回転させる回転モータの容量などの制約を受けるので、好ましくは7500m/s以下である。
 尚、粒子成長工程S12の前半において、流れの平均最大加速度を制御することで凝集体4の粒径を制御することも可能である。流れの平均最大加速度が大きいほど、凝集体4の粒径が小さくなる。
 流れの平均最大加速度は、汎用の流体解析ソフトを用いたシミュレーションによって求めることができる。シミュレーションにおいて、水平面32を通過する流線の面密度は、3000本/m以上とする。流線の面密度が3000本/m以上であれば、信頼性の高いデータが得られる。
 以下、連続式の撹拌槽内で、硫酸ニッケルと水酸化ナトリウムとを反応させて、水酸化ニッケルを製造する場合の定常状態の流体解析について主に説明する。流体解析ソフトとしては、ANSYS社製のANSYS CFX Ver15.0(商品名)を用いる。解析条件などを以下に示す。
 <座標系>
・流体解析を行う領域(以下、「解析領域」とも呼ぶ。)のうち、撹拌軸や撹拌翼の周りは、撹拌軸や撹拌翼と共に回転する回転座標系で扱う。回転座標系で扱う領域は、円柱状であって、その中心線を撹拌軸や撹拌翼の中心線に重ね、その直径を撹拌翼の翼径の115%に設定し、上下方向の範囲を撹拌槽の内底面から液面までとする。
・解析領域のうち、その他の領域は、静止座標系で扱う。
・回転座標系と静止座標系とは、流体解析ソフトのインターフェース機能を使用して接続する。インターフェース機能としては、オプションの「Frozen Rotor」を用いる。
 <乱流モデル>
・撹拌槽内の流れは、層流ではなく、乱流である。その乱流モデルとしては、SST(Shear Stress Transport)モデルを用いる。
 <化学反応>
・撹拌槽内で生じる化学反応の式を下記に示す。
NiSO+2NaOH→Ni(OH)+NaSO
・流体解析では、以下の5成分が含まれる単相多成分の流体を扱う。
1)反応成分A:NiSO
2)反応成分B:NaOH
3)生成成分C:Ni(OH)
4)生成成分D:NaSO
5)水
・化学反応の速度の大きさは、渦消散モデルにより計算する。渦消散モデルは、乱流分散によって反応成分Aと反応成分Bとが分子レベルまで混合すると、上記化学反応が生じると仮定した反応モデルである。渦消散モデルの設定は、流体解析ソフトのデフォルトの設定のままとする。
 <各成分の質量分率の計算方法>
・解析領域内の任意の位置および任意の時点で、上記5成分の合計の質量分率は1である。そこで、上記5成分のうち水を除く4成分のそれぞれの質量分率は、CFXによって輸送方程式を解いて求める値とし、水の質量分率は、1から、上記4成分の合計の質量分率を引いて得られる値とする。
 <境界条件>
・壁境界(流体の出入りのない境界)
 撹拌槽や撹拌軸、撹拌翼、バッフルなどの固体との境界では、滑り無しとする。一方、外気との境界(液面)では、滑り有りとする。尚、液面は、撹拌によって変形しないものとし、高さが一定の平面とする。
・流入境界(流体が入ってくる境界)
 撹拌槽内の流体中に、反応成分Aを含む水溶液(以下、「水溶液A」と呼ぶ。)が流入する流入境界と、反応成分Bを含む水溶液(以下、「水溶液B」と呼ぶ。)が流入する流入境界とを別々に設ける。
 水溶液Aの流入流量や水溶液Aに占める反応成分Aの割合、水溶液Bの流入流量や水溶液Bに占める反応成分Bの割合は一定とする。水溶液Bの流入流量は、撹拌槽内の水溶液のpHが所定値(例えば、12.0)に維持されるように、設定する。
・流出境界(流体が出ていく境界)
 撹拌槽の内周面の一部に、撹拌槽内の流体が出ていく流出境界を設ける。流出する液体は、生成成分CおよびD、未反応の反応成分AおよびB、並びに水を含むものである。その流出量は、解析領域と系外との圧力差がゼロになるように設定する。
 尚、オーバーフロー型の連続式の場合、液面が流出境界である。
 <熱条件>
・撹拌槽内の流体の温度は、25℃で一定とする。化学反応による熱の生成、流入境界や流出境界での熱の出入りは、無いものと仮定する。
 <初期条件>
・撹拌槽内の流体は、初期状態において、均質なものとし、上記5成分のうち反応成分Bと水の2成分のみを含むものとする。具体的には、撹拌槽内の流体のうち、反応成分Aの初期質量分率や生成成分Cの初期質量分率、生成成分Dの初期質量分率はゼロ、反応成分Bの初期質量分率は撹拌槽内の水溶液のpHが上記所定値になるように設定する。
 尚、生成成分Cの初期質量分率や生成成分Dの初期質量分率は、ここではゼロに設定するが、定常解を求めるための反復計算の回数(つまり、計算時間)を減らすため、定常状態において到達すると予測される、解析領域全体での平均値に設定してもよい。解析領域全体での平均値は、水溶液Aの流入流量や水溶液Aに占める反応成分Aの割合、水溶液Bの流入流量や水溶液Bに占める反応成分Bの割合、化学反応式で表される量的関係などを基に算出できる。
 <収束判定>
・定常解を求めるための反復計算は、解析領域内の任意の位置で、流れの流速成分(m/s)や圧力(Pa)、上記4成分のそれぞれの質量分率の、それぞれの二乗平均平方根の残差が10-4以下となるまで行う。
 尚、上記説明では、水酸化ニッケルを得る場合の解析条件を示したが、ニッケル複合水酸化物を得る場合の解析条件も同様に設定できる。例えば、硫酸ニッケルや硫酸マンガンと水酸化ナトリウムとを反応させてニッケルマンガン複合水酸化物を得る場合、流体解析では、以下の7成分が含まれる単相多成分の流体を扱う。
1)反応成分A1:NiSO
2)反応成分A2:MnSO
3)反応成分B:NaOH
4)生成成分C1:Ni(OH)
5)生成成分C2:Mn(OH)
6)生成成分D:NaSO
7)水
 ここでは、撹拌槽内で「A1+2B→C1+D」および「A2+2B→C2+D」の2つの化学反応が生じるとし、それぞれの化学反応に対応する渦消散モデルが反応モデルとして用いられる。反応成分A1と反応成分A2とは、均一に水に溶けた状態で、同一の流入境界から供給される。つまり、反応成分A1と反応成分A2の両方を含む水溶液Aが流入境界から供給される。
 また、硫酸ニッケル、硫酸コバルトおよび硫酸アルミニウムを用いて、ニッケル、コバルトおよびアルミニウムを含むニッケル複合水酸化物を得る場合、流体解析では、以下の9成分が含まれる単相多成分の流体を扱う。
1)反応成分A1:NiSO
2)反応成分A2:CoSO
3)反応成分A3:Al(SO
4)反応成分B:NaOH
5)生成成分C1:Ni(OH)
6)生成成分C2:Co(OH)
7)生成成分C3:Al(OH)
8)生成成分D:NaSO
9)水
 ここでは、撹拌槽内で「A1+2B→C1+D」、「A2+2B→C2+D」、および「1/2A3+3B→C3+3/2D」の3つの化学反応が生じるとし、それぞれの化学反応に対応する渦消散モデルが反応モデルとして用いられる。反応成分A1、反応成分A2および反応成分A3は、均一に水に溶けた状態で、同一の流入境界から供給される。つまり、反応成分A1、反応成分A2および反応成分A3を含む水溶液Aが流入境界から供給される。
 さらに、硫酸ニッケル、硫酸マンガン、および硫酸コバルトを用いてニッケルコバルトマンガン複合水酸化物を得る場合、流体解析では、以下の9成分が含まれる単相多成分の流体を扱う。
1)反応成分A1:NiSO
2)反応成分A2:MnSO
3)反応成分A3:CoSO
4)反応成分B:NaOH
5)生成成分C1:Ni(OH)
6)生成成分C2:Mn(OH)
7)生成成分C3:Co(OH)
8)生成成分D:NaSO
9)水
 ここでは、撹拌槽内で「A1+2B→C1+D」、「A2+2B→C2+D」、および「1/2A3+3B→C3+3/2D」の3つの化学反応が生じるとし、それぞれの化学反応に対応する渦消散モデルが反応モデルとして用いられる。反応成分A1、反応成分A2および反応成分A3は、均一に水に溶けた状態で、同一の流入境界から供給される。つまり、反応成分A1、反応成分A2および反応成分A3を含む水溶液Aが流入境界から供給される。
 水溶液Aの流入境界の数は複数でもよい。
 ニッケル含有水酸化物の製造方法は、粒子成長工程において撹拌槽内の水溶液の流れの平均最大加速度が600m/sよりも大きいことを、シミュレーションにより確認する工程を有してよい。この確認は、製造条件の変更の度に行われてよい。この製造条件の変更とは、例えば、撹拌槽の容量や形状、撹拌翼の個数、形状、寸法もしくは設置場所、撹拌翼の回転数、原料液の流量や濃度、または原料液を供給するノズルの形状、本数もしくは配置などが挙げられる。例えば、撹拌槽がバッチ式の場合、製造条件が同じ間、確認は一度行われればよく、毎回の確認は不要である。
 なお、実際の反応水溶液には、化学成分としてアンモニアも含まれる。しかし、アンモニアは、固体粒子の析出反応には直接関与せず、その濃度もニッケル水酸化物の濃度に比べて小さい。そのため、アンモニアが水酸化ニッケルの高過飽和領域の体積に与える影響は小さいと考える。よって、シミュレーションモデルで解くべき化学成分中のアンモニアは、水として取り扱う。
 [実施例1]
 実施例1では、オーバーフロー型の連続式の撹拌槽を用い、中和晶析によって、ニッケル複合水酸化物の粒子の核を生成させる核生成工程と、粒子を成長させる粒子成長工程とを同時に行った。
 撹拌槽の容積は5L、撹拌翼のタイプはディスクタービン翼、撹拌翼の羽根の枚数は6枚、撹拌翼の翼径は80mm、撹拌翼と撹拌槽の内底面との間の上下方向距離は5mm、撹拌翼の回転数は850rpmとした。
 撹拌槽内の反応水溶液の液量は5L、反応水溶液のpH値は11.3、反応水溶液のアンモニア濃度は10g/L、反応水溶液の温度は50℃に維持した。反応水溶液の周辺雰囲気は窒素雰囲気とした。
 原料液は、ニッケル複合水酸化物としてNi0.82Co0.15Al0.03(OH)が得られるように調製した。原料液供給管の本数は1本、1本の原料液供給管からの供給量は400ml/分であった。
 核生成工程や粒子成長工程の間、撹拌槽内に、原料液の他に水酸化ナトリウム水溶液およびアンモニア水を供給して、反応水溶液のpH値や反応水溶液のアンモニア濃度を維持した。
 流れの平均最大加速度は、シミュレーションにより算出したところ、1395m/sであった。尚、解析条件は、上述の解析条件と同様に設定した。
 図7に実施例1で得られたニッケル複合水酸化物の粒子のSEM写真を示す。図7に示すように、球状性の高い粒子が得られた。
 [実施例2]
 実施例2では、撹拌翼の回転数を600rpmとしたこと以外、実施例1と同様にニッケル複合水酸化物の粒子を製造した。
 流れの平均最大加速度は、実施例1と同様にシミュレーションにより算出したところ、720m/sであった。尚、解析条件は、上述の解析条件と同様に設定した。
 得られたニッケル複合水酸化物の粒子のSEM写真は、実施例1で得られたニッケル複合水酸化物と同様であり、球状性の高い粒子が得られた。
 [実施例3]
 実施例3では、撹拌翼の翼径を60mm、回転数を1000rpmとしたこと以外、実施例1と同様にニッケル複合水酸化物の粒子を製造した。
 流れの平均最大加速度は、実施例1と同様にシミュレーションにより算出したところ、1040m/sであった。尚、解析条件は、上述の解析条件と同様に設定した。
 得られたニッケル複合水酸化物の粒子のSEM写真は、実施例1で得られたニッケル複合水酸化物と同様であり、球状性の高い粒子が得られた。
 [実施例4]
 実施例4では、撹拌翼のタイプを45°ピッチドパドル翼、撹拌翼の羽根の枚数は4枚、撹拌翼の翼径は80mm、撹拌翼と撹拌槽の内底面との間の上下方向距離は5mm、撹拌翼の回転数は850rpmとしたこと以外、実施例1と同様にニッケル複合水酸化物の粒子を製造した。
 流れの平均最大加速度は、実施例1と同様にシミュレーションにより算出したところ、900m/sであった。尚、解析条件は、上述の解析条件と同様に設定した。
 得られたニッケル複合水酸化物の粒子のSEM写真は、実施例1で得られたニッケル複合水酸化物と同様であり、球状性の高い粒子が得られた。
 [実施例5]
 実施例5では、撹拌槽の容積を50L、撹拌翼のタイプはディスクタービン翼、撹拌翼の羽根の枚数は6枚、撹拌翼の翼径は160mm、撹拌翼と撹拌槽の内底面との間の上下方向距離は5mm、撹拌翼の回転数は500rpmとした。また、原料液の供給量は4000ml/分とした。その他は実施例1と同様にニッケル複合水酸化物の粒子を製造した。
 流れの平均最大加速度は、実施例1と同様にシミュレーションにより算出したところ、1340m/sであった。尚、解析条件は、上述の解析条件と同様に設定した。
 得られたニッケル複合水酸化物の粒子のSEM写真は、実施例1で得られたニッケル複合水酸化物と同様であり、球状性の高い粒子が得られた。
 [実施例6]
 実施例6では、原料液を、ニッケル複合水酸化物としてNi0.88Co0.09Al0.03(OH)が得られるように調製したこと以外、実施例1と同様にニッケル複合水酸化物の粒子を製造した。
 流れの平均最大加速度は、実施例1と同様にシミュレーションにより算出したところ、1395m/sであった。尚、解析条件は、上述の解析条件と同様に設定した。
 得られたニッケル複合水酸化物の粒子のSEM写真は、実施例1で得られたニッケル複合水酸化物と同様であり、球状性の高い粒子が得られた。
 [実施例7]
 実施例7では、原料液を、ニッケル複合水酸化物としてNi0.34Co0.33Mn0.33(OH)が得られるように調製したこと以外、実施例1と同様にニッケル複合水酸化物の粒子を製造した。
 流れの平均最大加速度は、実施例1と同様にシミュレーションにより算出したところ、1395m/sであった。尚、解析条件は、上述の解析条件と同様に設定した。
 得られたニッケル複合水酸化物の粒子のSEM写真は、実施例1で得られたニッケル複合水酸化物と同様であり、球状性の高い粒子が得られた。
 [実施例8]
 実施例8では、原料液を、ニッケル複合水酸化物としてNi0.60Co0.20Mn0.20(OH)が得られるように調整したこと以外、実施例1と同様にニッケル複合水酸化物の粒子を製造した。
 流れの平均最大加速度は、実施例1と同様にシミュレーションにより算出したところ、1395m/sであった。尚、解析条件は、上述の解析条件と同様に設定した。
 得られたニッケル複合水酸化物の粒子のSEM写真は、実施例1で得られたニッケル複合水酸化物と同様であり、球状性の高い粒子が得られた。
 [実施例9]
 実施例9では、撹拌翼のタイプを45°ピッチドパドル翼、撹拌翼の羽根の枚数は4枚、撹拌翼の翼径は80mm、撹拌翼と撹拌槽の内底面との間の上下方向距離は5mm、撹拌翼の回転数は850rpmとした。原料液の組成は、ニッケル複合水酸化物としてNi0.34Co0.33Mn0.33(OH)が得られるように調製した。それ以外は実施例1と同様にニッケル複合水酸化物の粒子を製造した。
 流れの平均最大加速度は、実施例1と同様にシミュレーションにより算出したところ、900m/sであった。尚、解析条件は、上述の解析条件と同様に設定した。
 得られたニッケル複合水酸化物の粒子のSEM写真は、実施例1で得られたニッケル複合水酸化物と同様であり、球状性の高い粒子が得られた。
 [実施例10]
 実施例10では、撹拌槽の容積を50L、撹拌翼のタイプはディスクタービン翼、撹拌翼の羽根の枚数は6枚、撹拌翼の翼径は160mm、撹拌翼と撹拌槽の内底面との間の上下方向距離は5mm、撹拌翼の回転数は500rpmとした。また、原料液の供給量は4000ml/分とした。原料液の組成は、ニッケル複合水酸化物としてNi0.34Co0.33Mn0.33(OH)が得られるように調製した。その他は実施例1と同様にニッケル複合水酸化物の粒子を製造した。
 流れの平均最大加速度は、実施例1と同様にシミュレーションにより算出したところ、1340m/sであった。尚、解析条件は、上述の解析条件と同様に設定した。
 得られたニッケル複合水酸化物の粒子のSEM写真は、実施例1で得られたニッケル複合水酸化物と同様であり、球状性の高い粒子が得られた。
 [比較例1]
 比較例1では、撹拌翼の回転数を500rpmとしたこと以外、実施例1と同様にニッケル複合水酸化物の粒子を製造した。
 流れの平均最大加速度は、実施例1と同様にシミュレーションにより算出したところ、600m/sであった。
 図8に比較例1で得られたニッケル複合水酸化物の粒子のSEM写真を示す。図8に黒い太線で囲んだ粒子のように、球状性の低い粒子が認められた。
 [比較例2]
 比較例2では、撹拌翼の回転数を500rpmとした。原料液の組成は、ニッケル複合水酸化物としてNi0.34Co0.33Mn0.33(OH)が得られるように調製した。その他は実施例1と同様にニッケル複合水酸化物の粒子を製造した。
 流れの平均最大加速度は、実施例1と同様にシミュレーションにより算出したところ、600m/sであった。
 比較例2で得られたニッケル複合水酸化物の粒子のSEM写真は、比較例1で得られた粒子と同様であり、球状性の低い粒子が認められた。
 [まとめ]
 実施例1~10と、比較例1および2とから、流れの平均最大加速度が600m/sよりも大きければ、撹拌翼のタイプや翼径、撹拌槽の容積が変わっても、中和晶析の完了時に得られる粒子の球状性の崩れを抑制できることがわかる。
 以上、ニッケル含有水酸化物の製造方法の実施形態等について説明したが、本発明は上記実施形態等に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、改良が可能である。
 本出願は、2016年6月14日に日本国特許庁に出願した特願2016-118367号に基づく優先権を主張するものであり、特願2016-118367号の全内容を本出願に援用する。
2  種晶粒子
4  凝集体
6  外殻
10 化学反応装置
20 撹拌槽
30 撹拌翼
32 水平面
40 撹拌軸
50 バッフル
60 原料液供給管
62 アルカリ水溶液供給管
64 アンモニア水供給管

Claims (3)

  1.  撹拌槽内の水溶液の中で中和晶析によってニッケル含有水酸化物の粒子を成長させる粒子成長工程を有し、
     前記粒子成長工程において、前記水溶液の各流線上の流れの最大加速度を平均化した値が600m/sよりも大きい、ニッケル含有水酸化物の製造方法。
  2.  前記ニッケル含有水酸化物が、NiとCoとAlとを、物質量比がNi:Co:Al=1-x-y:x:y(ただし、0≦x≦0.3、0.005≦y≦0.15)となるように含む、請求項1に記載のニッケル含有水酸化物の製造方法。
  3.  前記ニッケル含有水酸化物が、NiとCoとMnとM(Mは、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、およびWから選択される1種以上の添加元素)とを、物質量比がNi:Co:Mn:M=x:y:z:t(ただし、x+y+z+t=1、0.1≦x≦0.7、0.1≦y≦0.5、0.1≦z≦0.8、0≦t≦0.02)となるように含む、請求項1に記載のニッケル含有水酸化物の製造方法。
PCT/JP2017/021650 2016-06-14 2017-06-12 ニッケル含有水酸化物の製造方法 WO2017217370A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/302,834 US10689262B2 (en) 2016-06-14 2017-06-12 Method for producing nickel-containing hydroxide
EP17813266.8A EP3470377A4 (en) 2016-06-14 2017-06-12 PROCESS FOR PRODUCING HYDROXIDE CONTAINING NICKEL
KR1020187034691A KR102389074B1 (ko) 2016-06-14 2017-06-12 니켈 함유 수산화물 제조방법
JP2018523896A JP7024710B2 (ja) 2016-06-14 2017-06-12 ニッケル含有水酸化物の製造方法
CN201780033415.0A CN109195919B (zh) 2016-06-14 2017-06-12 含镍氢氧化物的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016118367 2016-06-14
JP2016-118367 2016-06-14

Publications (1)

Publication Number Publication Date
WO2017217370A1 true WO2017217370A1 (ja) 2017-12-21

Family

ID=60664355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021650 WO2017217370A1 (ja) 2016-06-14 2017-06-12 ニッケル含有水酸化物の製造方法

Country Status (6)

Country Link
US (1) US10689262B2 (ja)
EP (1) EP3470377A4 (ja)
JP (1) JP7024710B2 (ja)
KR (1) KR102389074B1 (ja)
CN (1) CN109195919B (ja)
WO (1) WO2017217370A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019117027A1 (ja) * 2017-12-13 2019-06-20 住友金属鉱山株式会社 ニッケル含有水酸化物およびその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06340427A (ja) * 1993-05-28 1994-12-13 Sumitomo Metal Mining Co Ltd 非焼結式アルカリ蓄電池用水酸化ニッケルの製造方法
WO2012169274A1 (ja) * 2011-06-07 2012-12-13 住友金属鉱山株式会社 ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および、非水系電解質二次電池
JP2014144894A (ja) * 2013-01-30 2014-08-14 Sumitomo Metal Mining Co Ltd ニッケルコバルト複合水酸化物及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002665A (ja) 2001-06-21 2003-01-08 Ise Chemicals Corp 球状高密度水酸化ニッケルの製造方法およびアルカリ二次電池正極活物質用球状高密度水酸化ニッケル粉末
JP5614334B2 (ja) * 2010-03-02 2014-10-29 住友金属鉱山株式会社 ニッケルコバルト複合水酸化物およびその製造方法、ならびに該複合水酸化物を用いて得られる非水系電解質二次電池用正極活物質
KR101920485B1 (ko) * 2011-09-26 2018-11-21 전자부품연구원 리튬 이차전지용 양극 활물질의 전구체, 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차전지

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06340427A (ja) * 1993-05-28 1994-12-13 Sumitomo Metal Mining Co Ltd 非焼結式アルカリ蓄電池用水酸化ニッケルの製造方法
WO2012169274A1 (ja) * 2011-06-07 2012-12-13 住友金属鉱山株式会社 ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および、非水系電解質二次電池
JP2014144894A (ja) * 2013-01-30 2014-08-14 Sumitomo Metal Mining Co Ltd ニッケルコバルト複合水酸化物及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3470377A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019117027A1 (ja) * 2017-12-13 2019-06-20 住友金属鉱山株式会社 ニッケル含有水酸化物およびその製造方法
JPWO2019117027A1 (ja) * 2017-12-13 2020-12-17 住友金属鉱山株式会社 ニッケル含有水酸化物およびその製造方法
JP7220849B2 (ja) 2017-12-13 2023-02-13 住友金属鉱山株式会社 ニッケル含有水酸化物およびその製造方法

Also Published As

Publication number Publication date
KR102389074B1 (ko) 2022-04-22
US20190292068A1 (en) 2019-09-26
EP3470377A1 (en) 2019-04-17
EP3470377A4 (en) 2019-06-26
JP7024710B2 (ja) 2022-02-24
KR20190017760A (ko) 2019-02-20
CN109195919A (zh) 2019-01-11
US10689262B2 (en) 2020-06-23
CN109195919B (zh) 2021-05-25
JPWO2017217370A1 (ja) 2019-04-04

Similar Documents

Publication Publication Date Title
JP6911853B2 (ja) 化学反応装置、および、化学反応装置を用いた粒子の製造方法
JP7088007B2 (ja) ニッケル含有水酸化物の製造方法
JP7088006B2 (ja) ニッケル含有水酸化物の製造方法
JP2018034137A (ja) 化学反応装置、および、化学反応装置を用いた粒子の製造方法
JP7024710B2 (ja) ニッケル含有水酸化物の製造方法
JP6965719B2 (ja) ニッケル含有水酸化物の製造方法
JP6852316B2 (ja) 化学反応装置、および、化学反応装置を用いた粒子の製造方法
JP6965718B2 (ja) ニッケル含有水酸化物の製造方法
JP7035497B2 (ja) ニッケル含有水酸化物の製造方法
JP6958315B2 (ja) ニッケル含有水酸化物の製造方法
JP6939499B2 (ja) ニッケル含有水酸化物の製造方法
JP6690485B2 (ja) 化学反応装置、および、化学反応装置を用いた粒子の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018523896

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813266

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187034691

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017813266

Country of ref document: EP

Effective date: 20190114