JP6911853B2 - 化学反応装置、および、化学反応装置を用いた粒子の製造方法 - Google Patents

化学反応装置、および、化学反応装置を用いた粒子の製造方法 Download PDF

Info

Publication number
JP6911853B2
JP6911853B2 JP2018523897A JP2018523897A JP6911853B2 JP 6911853 B2 JP6911853 B2 JP 6911853B2 JP 2018523897 A JP2018523897 A JP 2018523897A JP 2018523897 A JP2018523897 A JP 2018523897A JP 6911853 B2 JP6911853 B2 JP 6911853B2
Authority
JP
Japan
Prior art keywords
aqueous solution
solution
particles
raw material
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018523897A
Other languages
English (en)
Other versions
JPWO2017217371A1 (ja
Inventor
修平 中倉
修平 中倉
和彦 土岡
和彦 土岡
槙 孝一郎
孝一郎 槙
元彬 猿渡
元彬 猿渡
一臣 漁師
一臣 漁師
吉田 昌史
昌史 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Publication of JPWO2017217371A1 publication Critical patent/JPWO2017217371A1/ja
Application granted granted Critical
Publication of JP6911853B2 publication Critical patent/JP6911853B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/005Selection of auxiliary, e.g. for control of crystallisation nuclei, of crystal growth, of adherence to walls; Arrangements for introduction thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/113Propeller-shaped stirrers for producing an axial flow, e.g. shaped like a ship or aircraft propeller
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0059General arrangements of crystallisation plant, e.g. flow sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/111Centrifugal stirrers, i.e. stirrers with radial outlets; Stirrers of the turbine type, e.g. with means to guide the flow
    • B01F27/1111Centrifugal stirrers, i.e. stirrers with radial outlets; Stirrers of the turbine type, e.g. with means to guide the flow with a flat disc or with a disc-like element equipped with blades, e.g. Rushton turbine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/808Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with stirrers driven from the bottom of the receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/86Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis co-operating with deflectors or baffles fixed to the receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/91Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/50Mixing receptacles
    • B01F35/53Mixing receptacles characterised by the configuration of the interior, e.g. baffles for facilitating the mixing of components
    • B01F35/531Mixing receptacles characterised by the configuration of the interior, e.g. baffles for facilitating the mixing of components with baffles, plates or bars on the wall or the bottom
    • B01F35/5311Mixing receptacles characterised by the configuration of the interior, e.g. baffles for facilitating the mixing of components with baffles, plates or bars on the wall or the bottom with horizontal baffles mounted on the walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/712Feed mechanisms for feeding fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/006Baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0066Stirrers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D2009/0086Processes or apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0036Crystallisation on to a bed of product crystals; Seeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00479Means for mixing reactants or products in the reaction vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00765Baffles attached to the reactor wall
    • B01J2219/00768Baffles attached to the reactor wall vertical
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、化学反応装置、および、化学反応装置を用いた粒子の製造方法に関する。
近年、携帯電話、ノート型パーソナルコンピュータなどの携帯電子機器の普及に伴い、高いエネルギー密度を有する小型で軽量な二次電池の開発が要求されている。また、ハイブリット自動車を始めとする電気自動車用の電池として、高出力の二次電池の開発も要求されている。このような要求を満たす非水系電解質二次電池として、リチウムイオン二次電池がある。リチウムイオン二次電池は、負極、正極、電解液などで構成され、負極および正極の活物質には、リチウムを脱離および挿入することが可能な材料が用いられている。
リチウム複合酸化物、特に合成が比較的容易なリチウムコバルト複合酸化物を正極材料に用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高エネルギー密度を有する電池として期待され、実用化が進んでいる。リチウムコバルト複合酸化物を用いた電池では、優れた初期容量特性やサイクル特性を得るための開発はこれまで数多く行われてきており、すでにさまざまな成果が得られている。
しかしながら、リチウムコバルト複合酸化物は、原料に高価なコバルト化合物を用いるため、このリチウムコバルト複合酸化物を用いる電池の容量あたりの単価は、ニッケル水素電池より大幅に高くなり、適用可能な用途はかなり限定されている。したがって、携帯機器用の小型二次電池についてだけではなく、電力貯蔵用や電気自動車用などの大型二次電池についても、正極材料のコストを下げ、より安価なリチウムイオン二次電池の製造を可能とすることに対する期待は大きく、その実現は、工業的に大きな意義があるといえる。
リチウムイオン二次電池用活物質の新たなる材料としては、コバルトよりも安価なニッケルを用いたリチウムニッケル複合酸化物を挙げることができる。このリチウムニッケル複合酸化物は、リチウムコバルト複合酸化物よりも低い電気化学ポテンシャルを示すため、電解液の酸化による分解が問題になりにくく、より高容量が期待でき、コバルト系と同様に高い電池電圧を示すことから、開発が盛んに行われている。しかし、純粋にニッケルのみで合成したリチウムニッケル複合酸化物を正極材料としてリチウムイオン二次電池を作製した場合、コバルト系に比ベサイクル特性が劣り、また、高温環境下で使用や保存により比較的電池性能を損ないやすいという欠点を有しているため、ニッケルの一部をコバルトやアルミニウムで置換したリチウムニッケル複合酸化物が一般的に知られている。
正極活物質の一般的な製造方法は、(1)まず、中和晶析法によりリチウムニッケル複合酸化物の前駆体であるニッケル複合水酸化物を作製し、(2)その前駆体をリチウム化合物と混合して焼成する方法が知られている。このうち、(1)の中和晶析法によって粒子を製造する方法として、代表的な実施の形態は、撹拌槽を用いたプロセスである。
特許文献1では、撹拌槽内に、ニッケル塩およびコバルト塩を含む混合水溶液と、アンモニウムイオン供給体を含む水溶液と、苛性アルカリ水溶液とを供給して反応させ、ニッケルコバルト複合水酸化物の粒子を析出させている。混合水溶液の供給口当たりの反応水溶液量に対する供給量の割合を0.04体積%/分以下とすることで、粒径が大きく、結晶性が高く、形状が略球状の粒子が得られると記載されている。
日本国特開2011−201764号公報
従来から、撹拌槽を用いて所望の特性の粒子を得るため、様々な検討がなされている。
しかしながら、撹拌翼のタイプや翼径、撹拌槽の容積などの装置構造が変わると、その都度、条件出しが必要であった。
本発明者は、様々な構造の化学反応装置で、普遍的に、粒子の品質を向上できる条件を検討し、撹拌槽内の溶液に占める高過飽和領域の体積割合に着目した。
ここで、高過飽和領域とは、溶液中に溶けている粒子成分の濃度が所定値以上の領域を意味する。高過飽和領域では、粒子成分の濃度が溶解度よりも十分に高いので、粒子成分の析出が有意な速さで進む。
本発明者は、撹拌槽内の溶液に占める高過飽和領域の体積割合が小さいほど、粒子成分の析出が緩やかに進むので、粒子の品質を向上できることを見出した。
ところで、高過飽和領域は、溶液中に原料液を吐出する吐出口付近に形成される。高過飽和領域の体積の低減には、粒子成分の速やかな拡散が求められ、撹拌翼の回転数の増加が有効である。
しかしながら、撹拌翼の回転数を増大させると、消費エネルギーが大きくなってしまう。
本発明は、上記課題に鑑みてなされたものであって、効率的に粒子の品質を向上できる、化学反応装置の提供を主な目的とする。
上記課題を解決するため、本発明の一態様によれば、
溶液の中に原料液を供給しながら、前記溶液の中で粒子を析出させる、化学反応装置であって、
前記溶液を収容する撹拌槽と、前記溶液を撹拌する撹拌翼と、前記撹拌槽の内周面から突出するバッフルとを有し、
前記溶液の中に前記原料液を吐出する吐出部を複数有し、
上方視で、複数の前記吐出部は、前記バッフルよりも径方向内側に配設され、
前記溶液は水溶液であって、前記原料液はニッケル塩を含み、前記粒子はニッケル含有水酸化物であり、
前記吐出部の付近には、前記水溶液に占める前記水溶液に溶けている前記ニッケル含有水酸化物のモル濃度が5.0mol/m 以上である第1高過飽和領域が形成され、
前記第1高過飽和領域は、前記水溶液に占める前記第1高過飽和領域の第1体積割合が0.100%未満となるように形成される、化学反応装置が提供される。
また、本発明の他の態様によれば、
溶液の中に原料液を供給しながら、前記溶液の中で粒子を析出させる、化学反応装置であって、
前記溶液を収容する撹拌槽と、前記溶液を撹拌する撹拌翼と、前記撹拌槽の内周面から突出するバッフルとを有し、
前記溶液の中に前記原料液を吐出する吐出部を複数有し、
上方視で、複数の前記吐出部は、前記バッフルよりも径方向内側に配設され、
前記溶液は水溶液であって、前記原料液はニッケル塩を含み、前記粒子はニッケル含有水酸化物であって、
前記吐出部の付近には、前記水溶液に占める前記水溶液に溶けている前記ニッケル含有水酸化物のモル濃度が1.7mol/m 以上である第2高過飽和領域が形成され、
前記第2高過飽和領域は、前記水溶液に占める前記第2高過飽和領域の第2体積割合が0.624%未満となるように形成される化学反応装置が提供される。
本発明の一態様によれば、効率的に粒子の品質を向上できる、化学反応装置が提供される。
一実施形態による化学反応装置を示す上面図である。 図1のII−II線に沿った断面図である。 一実施形態による撹拌槽内の流れ場のUKの分布をシミュレーションにより算出した図である。 一実施形態によるニッケル含有水酸化物の製造方法のフローチャートである。 一実施形態による粒子成長工程の前半で形成される凝集体を模式化した断面図である。 一実施形態による粒子成長工程の後半で形成される外殻を模式化した断面図である。 一実施形態による核生成工程における反応水溶液中の第1高過飽和領域を示す図である。 連続式の撹拌槽内の反応水溶液に占める第1高過飽和領域の体積割合が0.025%である場合に得られた粒子の一例のSEM写真である。 連続式の撹拌槽内の反応水溶液に占める第1高過飽和領域の体積割合が0.100%である場合に得られた粒子の一例のSEM写真である。 一実施形態による粒子成長工程における反応水溶液中の第2高過飽和領域を示す図である。 連続式の撹拌槽内の反応水溶液に占める第2高過飽和領域の体積割合が0.379%である場合に得られた粒子の断面の一例のSEM写真である。 連続式の撹拌槽内の反応水溶液に占める第2高過飽和領域の体積割合が0.624%である場合に得られた粒子の断面の一例のSEM写真である。
以下、本発明を実施するための形態について図面を参照して説明するが、各図面において、同一の又は対応する構成については同一の又は対応する符号を付して説明を省略する。
図1は、一実施形態による化学反応装置を示す上面図である。図2は、図1のII−II線に沿った断面図である。
化学反応装置10は、溶液の中に原料液を供給しながら、溶液の中で粒子を析出させる。例えば、溶液は金属塩と塩基とを含み、原料液は金属塩を含み、粒子は中和晶析によって析出する。金属塩がニッケル塩を含む場合、粒子はニッケル含有水酸化物である。尚、粒子の種類は、ニッケル含有水酸化物には限定されない。
化学反応装置10は、例えば、撹拌槽20と、撹拌翼30と、撹拌軸40と、バッフル50とを有する。撹拌槽20は、円柱状の内部空間に溶液を収容する。撹拌翼30は、撹拌槽20内の溶液を撹拌させる。撹拌翼30は、撹拌軸40の下端に取付けられる。モータなどが撹拌軸40を回転させることで、撹拌翼30が回転される。撹拌槽20の中心線、撹拌翼30の中心線、および撹拌軸40の中心線は、一致してよく、鉛直とされてよい。バッフル50は、邪魔板とも呼ばれる。バッフル50は、撹拌槽20の内周面から突き出しており、回転流を邪魔することで上昇流や下降流を生じさせ、溶液の撹拌効率を向上させる。
本発明者は、様々な構造の化学反応装置で、普遍的に、粒子の品質を向上できる条件を検討し、撹拌槽20内の溶液に占める高過飽和領域の体積割合に着目した。
高過飽和領域とは、溶液中に溶けている粒子成分の濃度が所定値以上の領域を意味する。高過飽和領域では、粒子成分の濃度が溶解度よりも十分に高いので、粒子成分の析出が有意な速さで進む。
撹拌槽20内の溶液に占める高過飽和領域の体積割合が小さいほど、粒子成分の析出が緩やかに進むので、粒子の品質を向上できる。ここで、高過飽和領域の数が複数の場合、高過飽和領域の体積とは合計の体積を意味する。
高過飽和領域は、原料液の吐出口付近に形成される。その吐出口は溶液の流れ場に設置されているため、高過飽和領域の体積などは流れ場の影響を受ける。流れ場は、撹拌翼30の回転数の他、撹拌翼30のタイプや翼径、撹拌槽20の容積などの条件により変化する。以下、撹拌槽20内の流れ場に影響を与える条件を撹拌条件と呼ぶ。
撹拌槽20内の流れ場や高過飽和領域の体積は、シミュレーションにより確認できる。
以下、連続式の撹拌槽内で、硫酸ニッケルと水酸化ナトリウムとを反応させて、水酸化ニッケルを製造する場合の定常状態の流体解析について主に説明する。流体解析ソフトとしては、ANSYS社製のANSYS CFX Ver15.0(商品名)を用いる。解析条件などを以下に示す。
<座標系>
・流体解析を行う領域(以下、「解析領域」とも呼ぶ。)のうち、撹拌軸や撹拌翼の周りは、撹拌軸や撹拌翼と共に回転する回転座標系で扱う。回転座標系で扱う領域は、円柱状であって、その中心線を撹拌軸や撹拌翼の中心線に重ね、その直径を撹拌翼の翼径の115%に設定し、上下方向の範囲を撹拌槽の内底面から液面までとする。
・解析領域のうち、その他の領域は、静止座標系で扱う。
・回転座標系と静止座標系とは、流体解析ソフトのインターフェース機能を使用して接続する。インターフェース機能としては、オプションの「Frozen Rotor」を用いる。
<乱流モデル>
・撹拌槽内の流れは、層流ではなく、乱流である。その乱流モデルとしては、SST(Shear Stress Transport)モデルを用いる。
<化学反応>
・撹拌槽内で生じる化学反応の式を下記に示す。
NiSO+2NaOH→Ni(OH)+NaSO
・流体解析では、以下の5成分が含まれる単相多成分の流体を扱う。
1)反応成分A:NiSO
2)反応成分B:NaOH
3)生成成分C:Ni(OH)
4)生成成分D:NaSO
5)水
・化学反応の速度の大きさは、渦消散モデルにより計算する。渦消散モデルは、乱流分散によって反応成分Aと反応成分Bとが分子レベルまで混合すると、上記化学反応が生じると仮定した反応モデルである。渦消散モデルの設定は、流体解析ソフトのデフォルトの設定のままとする。
<各成分の質量分率の計算方法>
・解析領域内の任意の位置および任意の時点で、上記5成分の合計の質量分率は1である。そこで、上記5成分のうち水を除く4成分のそれぞれの質量分率は、CFXによって輸送方程式を解いて求める値とし、水の質量分率は、1から、上記4成分の合計の質量分率を引いて得られる値とする。
<境界条件>
・壁境界(流体の出入りのない境界)
撹拌槽や撹拌軸、撹拌翼、バッフルなどの固体との境界では、滑り無しとする。一方、外気との境界(液面)では、滑り有りとする。尚、液面は、撹拌によって変形しないものとし、高さが一定の平面とする。
・流入境界(流体が入ってくる境界)
撹拌槽内の流体中に、反応成分Aを含む水溶液(以下、「水溶液A」と呼ぶ。)が流入する流入境界と、反応成分Bを含む水溶液(以下、「水溶液B」と呼ぶ。)が流入する流入境界とを別々に設ける。
水溶液Aの流入流量や水溶液Aに占める反応成分Aの割合、水溶液Bの流入流量や水溶液Bに占める反応成分Bの割合は一定とする。水溶液Bの流入流量は、撹拌槽内の水溶液のpHが所定値(例えば、12.0)に維持されるように、設定する。
・流出境界(流体が出ていく境界)
撹拌槽の内周面の一部に、撹拌槽内の流体が出ていく流出境界を設ける。流出する液体は、生成成分CおよびD、未反応の反応成分AおよびB、並びに水を含むものである。その流出量は、解析領域と系外との圧力差がゼロになるように設定する。
尚、オーバーフロー型の連続式の場合、液面が流出境界である。
<熱条件>
・撹拌槽内の流体の温度は、25℃一定とする。化学反応による熱の生成、流入境界や流出境界での熱の出入りは、無いものと仮定する。
<初期条件>
・撹拌槽内の流体は、初期状態において、均質なものとし、上記5成分のうち反応成分Bと水の2成分のみを含むものとする。具体的には、撹拌槽内の流体のうち、反応成分Aの初期質量分率や生成成分Cの初期質量分率、生成成分Dの初期質量分率はゼロ、反応成分Bの初期質量分率は撹拌槽内の水溶液のpHが上記所定値になるように設定する。
尚、生成成分Cの初期質量分率や生成成分Dの初期質量分率は、ここではゼロに設定するが、定常解を求めるための反復計算の回数(つまり、計算時間)を減らすため、定常状態において到達すると予測される、解析領域全体での平均値に設定してもよい。解析領域全体での平均値は、水溶液Aの流入流量や水溶液Aに占める反応成分Aの割合、水溶液Bの流入流量や水溶液Bに占める反応成分Bの割合、化学反応式で表される量的関係などを基に算出できる。
<収束判定>
・定常解を求めるための反復計算は、解析領域内の任意の位置で、流れの流速成分(m/s)や圧力(Pa)、上記4成分のそれぞれの質量分率の、それぞれの二乗平均平方根の残差が10−4以下となるまで行う。
<高過飽和領域の体積の計算方法>
・高過飽和領域とは、撹拌槽内の水溶液中に溶けている生成成分Cの濃度が所定値以上の領域である。上記所定値は、詳しくは後述するが、核生成工程では5.0mol/m、粒子成長工程では1.7mol/mとする。以下、核生成工程で設定する高過飽和領域を「第1高過飽和領域」、粒子成長工程で設定する高過飽和領域を「第2高過飽和領域」とも呼ぶ。第1高過飽和領域の濃度の下限値が第2高過飽和領域の濃度の下限値よりも高い理由は、核生成が生じる下限濃度は粒子成長が生じる下限濃度よりも高いためである。高過飽和領域は、水溶液Aの流入境界の周囲に形成される。
・ところで、流体解析では、上述の如く、上記5成分を単相多成分の流体として扱うため、生成成分Cの全てを液体として扱う。一方、実際には、生成成分Cの大部分は析出して固体となり、生成成分Cの残りの一部のみが液体として水溶液中に溶けている。
・そこで、高過飽和領域の体積は、上記流体解析により得た生成成分Cの濃度分布を補正することで算出する。その補正では、水溶液Aの流入境界から十分に離れた流出境界において生成成分Cの濃度が溶解度相当になるように、撹拌槽内の流体の全体において一律に生成成分Cの濃度を所定値下げる。
・尚、撹拌槽が連続式ではなくバッチ式の場合、流出境界が存在しない。この場合、濃度分布の補正では、撹拌槽内の水溶液の液面において生成成分Cの濃度が溶解度相当になるように、撹拌槽内の流体の全体において一律に生成成分Cの濃度を所定値下げればよい。ちなみに、オーバーフロー型の連続式の場合、液面が流出境界である。
尚、上記説明では、水酸化ニッケルを得る場合の解析条件を示したが、ニッケル複合水酸化物を得る場合の解析条件も同様に設定できる。例えば、硫酸ニッケルや硫酸マンガンと水酸化ナトリウムとを反応させてニッケルマンガン複合水酸化物を得る場合、流体解析では、以下の7成分が含まれる単相多成分の流体を扱う。
1)反応成分A1:NiSO
2)反応成分A2:MnSO
3)反応成分B:NaOH
4)生成成分C1:Ni(OH)
5)生成成分C2:Mn(OH)
6)生成成分D:NaSO
7)水
ここでは、撹拌槽内で「A1+2B→C1+D」および「A2+2B→C2+D」の2つの化学反応が生じるとし、それぞれの化学反応に対応する渦消散モデルが反応モデルとして用いられる。反応成分A1と反応成分A2とは、均一に水に溶けた状態で、同一の流入境界から供給される。つまり、反応成分A1と反応成分A2の両方を含む水溶液Aが流入境界から供給される。水溶液Aの流入境界の周囲に、高過飽和領域が形成される。高過飽和領域とは、撹拌槽内の水溶液中に溶けている生成成分のうち全ての金属水酸化物(ここでは生成成分C1と生成成分C2)の合計のモル濃度が上記所定値以上の領域のことである。
ここで、生成成分のうち全ての金属水酸化物のモル濃度を合計する理由について、以下、説明する。先ず、上述の如く、反応成分A1と反応成分A2とは、均一に水に溶けた状態で、同一の流入境界から流入する。このとき、反応成分A1および反応成分A2は、反応成分Bと速やかに反応して、生成成分C1および生成成分C2を生じる。よって、生成成分C1と生成成分C2とは、生成した時点で、充分に混ざった状態で存在する。その結果、生成成分C1と生成成分C2とは、個別の水酸化物として析出するのではなく、それぞれの成分が複合した水酸化物の固溶体として析出する。
また、硫酸ニッケル、硫酸コバルトおよび硫酸アルミニウムを用いて、ニッケル、コバルトおよびアルミニウムを含むニッケル複合水酸化物を得る場合、流体解析では、以下の9成分が含まれる単相多成分の流体を扱う。
1)反応成分A1:NiSO
2)反応成分A2:CoSO
3)反応成分A3:Al(SO
4)反応成分B:NaOH
5)生成成分C1:Ni(OH)
6)生成成分C2:Co(OH)
7)生成成分C3:Al(OH)
8)生成成分D:NaSO
9)水
ここでは、撹拌槽内で「A1+2B→C1+D」、「A2+2B→C2+D」、および「1/2A3+3B→C3+3/2D」の3つの化学反応が生じるとし、それぞれの化学反応に対応する渦消散モデルが反応モデルとして用いられる。反応成分A1、反応成分A2および反応成分A3は、均一に水に溶けた状態で、同一の流入境界から供給される。つまり、反応成分A1、反応成分A2および反応成分A3を含む水溶液Aが流入境界から供給される。水溶液Aの流入境界の周囲に、高過飽和領域が形成される。高過飽和領域とは、撹拌槽内の水溶液中に溶けている生成成分のうち全ての金属水酸化物(ここでは、生成成分C1、生成成分C2および生成成分C3)の合計のモル濃度が上記所定値以上の領域のことである。
生成成分のうち全ての金属水酸化物のモル濃度を合計する理由について、以下、説明する。先ず、上述の如く、反応成分A1、反応成分A2および反応成分A3は、均一に水に溶けた状態で、同一の流入境界から流入する。このとき、反応成分A1、反応成分A2および反応成分A3は、反応成分Bと速やかに反応して、生成成分C1、生成成分C2および生成成分C3を生じる。よって、生成成分C1、生成成分C2および生成成分C3は、生成した時点で、充分に混ざった状態で存在する。その結果、生成成分C1、生成成分C2および生成成分C3は、個別の水酸化物として析出するのではなく、それぞれの成分が複合した水酸化物が固溶体として析出する。
さらに、硫酸ニッケル、硫酸マンガン、および硫酸コバルトを用いてニッケルコバルトマンガン複合水酸化物を得る場合、流体解析では、以下の9成分が含まれる単相多成分の流体を扱う。
1)反応成分A1:NiSO
2)反応成分A2:MnSO
3)反応成分A3:CoSO
4)反応成分B:NaOH
5)生成成分C1:Ni(OH)
6)生成成分C2:Mn(OH)
7)生成成分C3:Co(OH)
8)生成成分D:NaSO
9)水
ここでは、撹拌槽内で「A1+2B→C1+D」、「A2+2B→C2+D」、および「1/2A3+3B→C3+3/2D」の3つの化学反応が生じるとし、それぞれの化学反応に対応する渦消散モデルが反応モデルとして用いられる。反応成分A1、反応成分A2および反応成分A3は、均一に水に溶けた状態で、同一の流入境界から供給される。つまり、反応成分A1、反応成分A2および反応成分A3を含む水溶液Aが流入境界から供給される。水溶液Aの流入境界の周囲に、高過飽和領域が形成される。高過飽和領域とは、撹拌槽内の水溶液中に溶けている生成成分のうち全ての金属水酸化物(ここでは、生成成分C1と生成成分C2と生成成分C3)の合計のモル濃度が上記所定値以上の領域のことである。
生成成分のうち全ての金属水酸化物のモル濃度を合計する理由については、上述のニッケル、コバルトおよびアルミニウムを含むニッケル複合水酸化物を得る場合において、生成成分のうち全ての金属水酸化物のモル濃度を合計する場合と同様であるため、説明は省略する。
水溶液Aの流入境界の数は複数でもよく、高過飽和領域の数は複数でもよい。高過飽和領域の数が複数である場合、高過飽和領域の体積とは合計の体積を意味する。
ニッケル含有水酸化物の製造方法は、撹拌槽内の水溶液に占める高過飽和領域の体積割合を、シミュレーションにより確認する工程を有してよい。この確認は、製造条件の変更の度に行われてよい。この製造条件の変更とは、例えば、撹拌槽の容量や形状、撹拌翼の個数、形状、寸法もしくは設置場所、撹拌翼の回転数、原料液の流量や濃度、または原料液を供給するノズルの形状、本数もしくは配置などが挙げられる。例えば、撹拌槽がバッチ式の場合、製造条件が同じ間、確認は一度行われればよく、毎回の確認は不要である。
なお、実際の反応水溶液には、化学成分としてアンモニアも含まれる。しかし、アンモニアは、固体粒子の析出反応には直接関与せず、その濃度もニッケル水酸化物の濃度に比べて小さい。そのため、アンモニアが水酸化ニッケルの高過飽和領域の体積に与える影響は小さいと考える。よって、シミュレーションモデルで解くべき化学成分中のアンモニアは、水として取り扱う。
本発明者は、撹拌条件が同一であって且つ撹拌槽20内への原料液の供給流量が同一である場合に高過飽和領域の体積を小さくできる手段を、シミュレーションによって検討した。その結果、高過飽和領域の体積は、主に(1)原料液の吐出口の数N、および(2)原料液の吐出口付近でのUK(詳しくは後述する。)に依存することを見出した。UKとは、流れの速さU(m/s)と、乱流拡散係数K(m/s)との積のことである。UKは、撹拌条件が同一であっても、撹拌槽20内の場所によって異なる。
表1は、撹拌条件が同一であって且つ撹拌槽20内への原料液の供給流量が同一である場合の、原料液の吐出口の数Nと、高過飽和領域の体積V1、V2との関係を示す。Nが複数の場合の各吐出口からの供給流量は、Nが1の場合の吐出口からの供給流量の1/Nとした。供給流量とは、単位時間当たりの供給量のことである。また、Nが複数の場合の各吐出口付近でのUKは、Nが1の場合の吐出口付近でのUKと略同一とした。また、Nが複数の場合の吐出口同士の間隔は、高過飽和領域同士が重ならないように設定した。
表1において、V1は第1高過飽和領域の体積を、V2は第2高過飽和領域の体積をそれぞれ表す。また、V1はNが1の場合のV1の値を、V2はNが1の場合のV2の値をそれぞれ表す。Nが複数の場合、V1はN個の第1高過飽和領域の合計の体積を意味し、V2はN個の第2高過飽和領域の合計の体積を意味する。
Figure 0006911853


表1から明らかなように、原料液の吐出口の数Nが多いほど、高過飽和領域の体積V1、V2が小さくなる傾向が見られた。この傾向は、撹拌条件を変更しても同様に見られた。また、この傾向は、撹拌槽内への原料液の供給流量を変更しても同様に見られた。本発明者は、原料液を分けて複数の吐出口から撹拌槽内に供給することで、高過飽和領域の体積V1、V2を小さくできることを見出した。
本実施形態の化学反応装置は、図1に示すように、撹拌槽20内の溶液中に原料液を吐出する吐出部22を複数有する。各吐出部22には吐出口が1つずつ形成される。原料液を分けて複数の吐出部22から撹拌槽20内に供給することで、撹拌槽20内の溶液に占める高過飽和領域の体積V1、V2を小さくできる。高過飽和領域の体積割合が小さいほど、粒子成分の析出は緩やかに進む。そのため、得られる粒子の品質を向上できる。
この効果を十分に得るためには、高過飽和領域同士が重ならないように吐出部22同士の間隔が設定されることが好ましい。高過飽和領域同士が重なる程度に吐出部22同士が近いと、吐出部22の数を複数にする意義が薄れる。高過飽和領域同士が重なるか否かは、上記シミュレーションによって判定できる。
核生成工程において第1高過飽和領域同士が重ならないためには、吐出部22の中心同士の間隔は、例えば、75mm以上である。また、粒子成長工程において第2高過飽和領域同士が重ならないためには、吐出部22の中心同士の間隔は、例えば、120mm以上である。
(A)核生成工程において第1高過飽和領域同士が重ならないこと、および、(B)粒子成長工程において第2高過飽和領域同士が重ならないことの一方のみが成立してもよいが、両方が成立するように、吐出部22同士の間隔が設定されてよい。
吐出部22同士の間隔は、核生成工程と粒子成長工程とで同じでもよいが、核生成工程と粒子成長工程とが別々に行われる場合、工程に合わせて変更されてもよい。
図3は、一実施形態による撹拌槽内の流れ場のUKの分布を示す。図3において、ひし形網状のハッチングを施した領域は、UKが3.0×10−3/s以上の領域である。図3に示す分布は、シミュレーションより求めた。このシミュレーションでは、撹拌槽20の容積は2L、撹拌翼30のタイプはディスクタービン翼、撹拌翼30の羽根の枚数は6枚、撹拌翼30の翼径は80mm、撹拌翼30と撹拌槽20の底部との間の上下方向距離は5mm、撹拌翼30の回転数は850rpmとした。
図3に示すように、撹拌槽内のUKは、場所により異なり、撹拌槽20の底部21の近傍において特に大きくなる傾向にある。尚、撹拌翼30のタイプや翼径、撹拌槽20の容積などの撹拌条件を変更しても、同様の傾向が見られた。
表2は、図3の位置P1〜P3のいずれか1つに吐出口を設けた場合の、吐出口付近のUKと、高過飽和領域の体積V1、V2との関係を示す。吐出口の位置に関係なく、吐出口からの供給流量は同じとした。
表2において、V1´は第1高過飽和領域の体積を、V2´は第2高過飽和領域の体積をそれぞれ表す。また、UKは吐出口の位置がP1である場合のUKの値を、V1´は吐出口の位置がP1である場合のV1´の値を、V2´は吐出口の位置がP1である場合のV2´の値をそれぞれ表す。
Figure 0006911853

表2から明らかなように、吐出口付近のUKが大きいほど、高過飽和領域の体積V1´、V2´が小さくなる傾向が見られた。この傾向は、撹拌条件を変更しても同様に見られた。また、この傾向は、撹拌槽内への原料液の供給流量を変更しても同様に見られた。
本発明者は、原料液の吐出口を撹拌槽内のUKが大きい位置に設置することで、高過飽和領域の体積V1´、V2´を小さくできることを見出した。Kが大きいほど、原料液が拡散しやすいので、V1´やV2´が小さくなる。また、Uが大きいほど、原料液と溶液との合流地点で溶液の量が相対的に増えるので、原料液が拡散しやすく、V1´やV2´が小さくなる。
そこで、複数の吐出部22は、例えば、図1および図2に示すように、撹拌槽20の底部21に間隔をおいて設けられ、上に向けて原料液を吐出してもよい。各吐出部22には吐出口が形成されており、各吐出口から上に向けて原料液が吐出される。撹拌槽20の底部21の近傍ではUKが比較的大きいので、効率的に高過飽和領域の体積を小さくできる。高過飽和領域の体積割合が小さいほど、粒子成分の析出は緩やかに進む。そのため、粒子の品質を向上できる。
複数の吐出部22は、図1に示すように、上方視で、撹拌翼30よりも径方向外側に設けられてよい。撹拌翼30は回転によって径方向外方に向かう流れを形成するので、撹拌翼30よりも径方向外側においてUKが特に大きく、より効率的に高過飽和領域12の体積を小さくできる。尚、撹拌翼30よりも径方向外側においてUKが特に大きいことは、図3からも明らかである。
複数の吐出部22は、図1に示すように、上方視で、バッフル50よりも径方向内側に設けられてよい。バッフル50は流れを邪魔し流れの速さを減じるので、バッフル50よりも径方向内側においてUKが特に大きく、より効率的に高過飽和領域12の体積を小さくできる。尚、バッフル50よりも径方向内側においてUKが特に大きいことは、図3からも明らかである。
尚、複数の吐出部22は、図2では撹拌槽20の底部21から上に突出しているが、突出していなくてもよい。また、複数の吐出部22は、図2では撹拌槽20の底部21に形成されているが、例えば、上方視でドーナツ状の板に形成され、撹拌槽20の底部21に設置されてもよい。
図4は、一実施形態による化学反応装置を用いたニッケル含有水酸化物の製造方法のフローチャートである。図4に示すように、ニッケル含有水酸化物の製造方法は、中和晶析によりニッケル含有水酸化物の粒子を得るものであって、粒子の核を生成させる核生成工程S11と、粒子を成長させる粒子成長工程S12とを有する。以下、各工程について説明するが、その前に、得られるニッケル含有水酸化物について説明する。
(ニッケル含有水酸化物)
ニッケル含有水酸化物は、リチウムイオン二次電池の正極活物質の前駆体として用いられるものである。ニッケル含有水酸化物は、例えば、(1)ニッケル(Ni)とコバルト(Co)とアルミニウム(Al)とを、物質量比(mol比)がNi:Co:Al=1−x−y:x:y(ただし、0≦x≦0.3、0.005≦y≦0.15)となるように含むニッケル複合水酸化物であるか、または(2)ニッケル(Ni)とコバルト(Co)とマンガン(Mn)とM(Mは、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、およびWから選択される1種以上の添加元素)とを、物質量比(mol比)がNi:Co:Mn:M=x:y:z:t(ただし、x+y+z+t=1、0.1≦x≦0.7、0.1≦y≦0.5、0.1≦z≦0.8、0≦t≦0.02)となるように含むニッケルコバルトマンガン複合水酸化物である。
ニッケル含有水酸化物に含まれる水酸化物イオンの量は、通常、化学量論比を持つが、本実施形態に影響のない程度で過剰であったり、欠損していてもよい。また、本実施形態に影響のない程度で水酸化物イオンの一部はアニオン(例えば、炭酸イオンや硫酸イオンなど)に置き換わっていてもよい。
なお、ニッケル含有水酸化物は、X線回折(XRD)測定によって、ニッケル含有水酸化物の単相(または、主成分がニッケル含有水酸化物)であればよい。
ニッケル含有水酸化物は、ニッケルを含有し、好ましくはニッケル以外の金属をさらに含有する。ニッケル以外の金属をさらに含有する水酸化物を、ニッケル複合水酸化物と呼ぶ。ニッケル複合水酸化物の金属の組成比(例えば、Ni:Co:Mn:M)は、得られる正極活物質においても維持されるので、正極活物質に要求される金属の組成比と一致するように調整される。
(ニッケル含有水酸化物の製造方法)
ニッケル含有水酸化物の製造方法は、上述の如く、核生成工程S11と、粒子成長工程S12とを有する。本実施形態では、バッチ式の撹拌槽を用いて、撹拌槽内の水溶液のpH値などを制御することで、核生成工程S11と、粒子成長工程S12とを分けて実施する。
核生成工程S11では、核生成が粒子成長よりも優先して起こり、粒子成長はほとんど生じない。一方、粒子成長工程S12では、粒子成長が核生成よりも優先して起こり新しい核はほとんど生成されない。核生成工程S11と粒子成長工程S12とを分けて実施することで、粒度分布の範囲が狭く均質な核が形成でき、その後に、核を均質に成長させることができる。
以下、核生成工程S11および粒子成長工程S12について説明する。核生成工程S11における撹拌槽内の水溶液と、粒子成長工程S12における撹拌槽内の水溶液とでは、pH値の範囲が異なるが、アンモニア濃度の範囲や温度の範囲は実質的に同じであってよい。
尚、本実施形態では、バッチ式の撹拌槽を用いるが、連続式の撹拌槽を用いてもよい。後者の場合、核生成工程S11と粒子成長工程S12とは、同時に実施される。この場合、撹拌槽内の水溶液のpH値の範囲は当然に同じになり、例えば、12.0の近傍に設定されてよい。
(核生成工程)
先ず、原料液を調製しておく。原料液は、少なくともニッケル塩を含み、好ましくはニッケル塩以外の金属塩をさらに含有する。金属塩としては、硝酸塩、硫酸塩、塩酸塩などが用いられる。より具体的には、例えば、硫酸ニッケル、硫酸マンガン、硫酸コバルト、硫酸アルミニウム、硫酸チタン、ペルオキソチタン酸アンモニウム、シュウ酸チタンカリウム、硫酸バナジウム、バナジン酸アンモニウム、硫酸クロム、クロム酸カリウム、硫酸ジルコニウム、硝酸ジルコニウム、シュウ酸ニオブ、モリブデン酸アンモニウム、硫酸ハフニウム、タンタル酸ナトリウム、タングステン酸ナトリウム、タングステン酸アンモニウムなどが用いられる。
原料液の金属の組成比(例えば、Ni:Co:Mn:M)は、得られるニッケル複合水酸化物においても維持されるので、ニッケル複合水酸化物に要求される組成比と一致するように調整される。
また、撹拌槽内に、アルカリ水溶液、アンモニア水溶液、および水を供給して混合した水溶液を貯める。混合した水溶液を、以下、「反応前水溶液」と呼ぶ。反応前水溶液のpH値は、液温25℃基準で、12.0〜14.0、好ましくは12.3〜13.5の範囲内に調節しておく。また、反応前水溶液中のアンモニアの濃度は、好ましくは3〜25g/L、より好ましくは5〜20g/L、さらに好ましくは5〜15g/Lの範囲内に調節しておく。さらに、反応前水溶液の温度は、好ましくは20〜60℃、より好ましくは35〜60℃の範囲内に調節しておく。
アルカリ水溶液としては、例えば、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物を含むものが用いられる。アルカリ金属水酸化物は、固体として供給してもよいが、水溶液として供給することが好ましい。
アンモニア水溶液としては、アンモニア供給体を含むものが用いられる。アンモニア供給体としては、例えば、アンモニア、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、またはフッ化アンモニウムなどが使用できる。
尚、本実施形態では、非還元性錯化剤として、アンモニア供給体が用いられるが、エチレンジアミン四酢酸、ニトリト三酢酸、ウラシル二酢酸、またはグリシンなどが用いられてもよい。非還元性錯化剤は、撹拌槽内の水溶液中でニッケルイオンなど結合して錯体を形成可能なものであればよい。
反応前水溶液のpH、アンモニア濃度、温度などの調節後、反応前水溶液を撹拌しながら原料液を撹拌槽内に供給する。これにより、撹拌槽内には、反応前水溶液と原料液とが混合した反応水溶液が形成され、中和晶析によって核が生成され、核生成工程S11が開始される。
核生成工程S11において、反応水溶液のpH値が12.0以上であれば、核生成が粒子成長よりも支配的になる。また、核生成工程S11において、反応水溶液のpH値が14.0以下であれば、核が微細化し過ぎることを防止でき、反応水溶液のゲル化を防止できる。核生成工程S11において、反応水溶液のpH値の変動幅(最大値と最小値の幅)は、好ましくは0.4以下である。
また、核生成工程S11において、反応水溶液中のアンモニア濃度が3g/L以上であると、金属イオンの溶解度を一定に保持でき、形状および粒径が整った核が生成しやすい。また、核生成工程S11において、反応水溶液中のアンモニア濃度が25g/L以下であると、析出せずに液中に残る金属イオンが減り、生産効率が向上する。核生成工程S11において、反応水溶液のpH値の変動幅(最大値と最小値の幅)は、好ましくは5g/L以下である。
また、核生成工程S11において、反応水溶液の温度が20℃以上であれば、ニッケル含有水酸化物の溶解度が大きいため、核発生が緩やかに生じ、核発生の制御が容易である。一方、反応水溶液の温度が60℃以下であれば、アンモニアの揮発が抑制できるため、アンモニア水の使用量が削減でき、製造コストが低減できる。
核生成工程S11では、反応水溶液のpH値やアンモニア濃度、温度が上記範囲内に維持されるように、撹拌槽内に、原料液の他に、アルカリ水溶液、アンモニア水溶液を供給する。これにより、反応水溶液中で、核の生成が継続される。そして、所定の量の核が生成されると、核生成工程S11を終了する。所定量の核が生成したか否かは、金属塩の供給量によって推定できる。
(粒子成長工程)
核生成工程S11の終了後、粒子成長工程S12の開始前に、撹拌槽内の反応水溶液のpH値を、液温25℃基準で、10.5〜12.0、好ましくは11.0〜12.0、かつ、核生成工程S11におけるpH値よりも低く調整する。このpH値の調整は、撹拌槽内へのアルカリ水溶液の供給を停止すること、金属塩の金属を水素と置換した無機酸(例えば、硫酸塩の場合、硫酸)を撹拌槽内へ供給することなどで調整できる。
反応水溶液のpH、アンモニア濃度、温度などの調節後、反応水溶液を撹拌しながら原料液を撹拌槽内に供給する。これにより、中和晶析によって核の成長(粒子成長)が始まり、粒子成長工程S12が開始される。尚、本実施形態では、核生成工程S11と粒子成長工程S12とを、同一の撹拌槽で行うが、異なる撹拌槽で行ってもよい。
粒子成長工程S12において、反応水溶液のpH値が12.0以下であってかつ核生成工程S11におけるpH値よりも低ければ、新たな核はほとんど生成せず、核生成よりも粒子成長の方が優先して生じる。
尚、pH値が12.0の場合は、核生成と粒子成長の境界条件であるため、反応水溶液中に存在する核の有無により、優先順位が変わる。例えば、核生成工程S11のpH値を12.0より高くして多量に核生成させた後、粒子成長工程S12でpH値を12.0とすると、反応水溶液中に多量の核が存在するため、粒子成長が優先する。一方、反応水溶液中に核が存在しない状態、すなわち、核生成工程S11においてpH値を12.0とした場合、成長する核が存在しないため、核生成が優先する。その後、粒子成長工程S12においてpH値を12.0より小さくすれば、生成した核が成長する。核生成と粒子成長を明確に分離するためには、粒子成長工程のpH値を核生成工程のpH値より0.5以上低くすることが好ましく、1.0以上低くすることがより好ましい。
また、粒子成長工程S12において、反応水溶液のpH値が10.5以上であれば、アンモニアによる溶解度が低いため、析出せずに液中に残る金属イオンが減り、生産効率が向上する。
粒子成長工程S12では、反応水溶液のpH値やアンモニア濃度、温度が上記範囲内に維持されるように、撹拌槽内に、原料液の他に、アルカリ水溶液、アンモニア水溶液を供給する。これにより、反応水溶液中で、粒子成長が継続される。
粒子成長工程S12は、撹拌槽内の雰囲気を切り換えることで前半と後半とに分けることができる。前半の雰囲気は、核生成工程S11と同様に酸化性雰囲気とされる。酸化性雰囲気の酸素濃度は、1容量%以上、好ましくは2容量%以上、より好ましくは10容量%以上である。酸化性雰囲気は、制御が容易な大気雰囲気(酸素濃度:21容量%)であってよい。酸化性雰囲気の酸素濃度の上限は、特に限定されるものではないが、30容量%以下である。一方、後半の雰囲気は、非酸化性雰囲気とされる。非酸化性雰囲気の酸素濃度は、1容量%以下、好ましくは0.5容量%以下、より好ましくは0.3容量%以下である。非酸化性雰囲気の酸素濃度は、酸素ガスまたは大気と、不活性ガスとを混合することにより制御する。
図5は、一実施形態による粒子成長工程の前半で形成される凝集体を模式化した断面図である。図6は、一実施形態による粒子成長工程の後半で形成される外殻を模式化した断面図である。
粒子成長工程S12の前半では、核が成長することで種晶粒子2が形成され、種晶粒子2がある程度大きくなると、種晶粒子2同士が衝突するようになり、複数の種晶粒子2からなる凝集体4が形成される。一方、粒子成長工程S12の後半では、凝集体4の周りに緻密な外殻6が形成される。その結果、凝集体4と外殻6とで構成される粒子が得られる。
尚、ニッケル含有水酸化物の粒子の構造は、図6に示す構造に限定されない。例えば、核生成工程S11と粒子成長工程S12とが同時に実施される場合、中和晶析の完了時に得られる粒子の構造は、図6に示す構造とは別の構造である。その構造は、例えば、種晶粒子2に相当するものと外殻6に相当するものとが混じり合い、容易にその境界が分からない一様な構造となる。
ニッケル含有水酸化物の粒子が所定の粒径まで成長した時点で、粒子成長工程S12を終了させる。その粒径は、核生成工程S11と粒子成長工程S12のそれぞれにおける金属塩の供給量から推測できる。
尚、核生成工程S11の終了後、粒子成長工程S12の途中で、原料液などの供給を停止すると共に反応水溶液の撹拌を停止し、粒子を沈降させ、上澄み液を排出してもよい。これにより、中和晶析によって減少した反応水溶液中の金属イオン濃度を、高めることができる。
図7は、一実施形態による核生成工程における反応水溶液中の第1高過飽和領域を示す図である。図7において、矢印方向は、吐出部22付近における流れの方向を表す。
第1高過飽和領域12Aとは、反応水溶液中に溶けているニッケル含有水酸化物のモル濃度が5.0mol/m以上である領域を意味する。第1高過飽和領域12Aでは、ニッケル含有水酸化物のモル濃度が溶解度よりも十分に高いので、核生成が有意な速さで生じる。
ここで、溶解度とは、水100gに溶けるニッケル含有水酸化物の限界量(g/100g−HO)を意味する。水酸化ニッケル(Ni(OH))の溶解度は、例えば、10−7(g/100g−HO)である。このように,
ニッケル含有水酸化物の溶解度は、ゼロに近いので、第1高過飽和領域12Aのモル濃度の下限値5.0mol/mに比べ無視できるほど小さい。
図8は、連続式の撹拌槽内の反応水溶液に占める第1高過飽和領域の体積割合が0.025%である場合、つまり、実施例1−1の場合に得られた粒子の一例のSEM写真である。図8に示す粒子の外表面は滑らかであり、凸凹はほとんど認められなかった。一方、図9は、連続式の撹拌槽内の反応水溶液に占める第1高過飽和領域の体積割合が0.100%である場合、つまり、比較例1−1の場合に得られた粒子の一例のSEM写真である。図9に示す粒子の外表面には、顕著な凹凸が認められた。
図8および図9から明らかなように、中和晶析の完了時に得られる粒子の外表面の凸凹の発生を抑制する観点から、核生成工程S11における反応水溶液に占める第1高過飽和領域の体積割合(以下、第1体積割合と呼ぶ)が0.100%未満であることが好ましい。第1体積割合が0.100%未満であれば、中和晶析の完了時に得られる粒子の外表面の凹凸の発生を抑制できる理由は下記のように推定される。
核生成工程S11において、核は、主に第1高過飽和領域12Aにおいて生成され、その後、反応水溶液全体に分散する。第1体積割合が0.100%未満であれば、反応水溶液の単位体積当たりの核の発生数が少ない。そのため、粒子成長工程S12の前半において、反応水溶液の単位体積当たりの種晶粒子2の数も少なく、複数の種晶粒子2からなる凝集体4の数も少ない。その結果、粒子成長工程S12の後半において、凝集体4の周りに形成される外殻6の厚さが厚くなる。
外殻6の厚さが厚くなるのは、外殻6の成長の起点となる凝集体4の数が多い場合と、少ない場合とで、個々の凝集体4に対する外殻6を形成する材料の供給割合が異なるためである。凝集体4の数が少ない場合、凝集体4の数が多い場合に比べて、個々の凝集体4に対する外殻6を形成する材料の供給割合が高い。そのため、凝集体4の数が少ない場合、個々の凝集体4の外殻6を厚くすることができる。
よって、第1体積割合を0.100%未満とし、核の発生数を抑えることで、凝集体4の外表面の凸凹を厚い外殻6で被覆でき、最終的に得られる粒子の外表面の凸凹を低減できる。尚、この効果は、核生成工程S11と粒子成長工程S12とが同時に行われる場合にも得られる。
中和晶析の完了時に得られる粒子の外表面の凸凹を低減する観点からは、第1体積割合が小さいほど好ましい。第1体積割合は、吐出部34付近の流れ場のUやKなどに依存する。UやKが大きいほど、第1体積割合が小さい。第1体積割合は、好ましくは0.070%以下、より好ましくは0.050%以下、さらに好ましくは0.030%以下である。但し、UやKは撹拌軸40を回転させるモータの容量などの制約を受けるので、第1体積割合は好ましくは0.004%以上である。
核生成工程S11では、原料液を分けて複数の吐出部22から反応水溶液中に吐出してよい。これにより、効率的に第1体積割合を小さくできる。このとき、複数の吐出部22から吐出される複数の第1高過飽和領域12Aが重ならないように、複数の吐出部22の間隔が設定されることが好ましい。
図10は、一実施形態による粒子成長工程における反応水溶液中の第2高過飽和領域を示す図である。図10において、矢印方向は、吐出部22付近における流れの方向を表す。
第2高過飽和領域12Bとは、反応水溶液中に溶けているニッケル含有水酸化物のモル濃度が1.7mol/m以上である領域を意味する。第2高過飽和領域12Bでは、ニッケル含有水酸化物のモル濃度が溶解度よりも十分に高いので、粒子成長が有意な速さで生じる。
尚、上述の如く、ニッケル含有水酸化物の溶解度は、ゼロに近いので、第2高過飽和領域12Bのモル濃度の下限値1.7mol/mに比べ無視できるほど小さい。
図11は、連続式の撹拌槽内の反応水溶液に占める第2高過飽和領域の体積割合が0.379%である場合、つまり、実施例2−1の場合に得られた粒子の断面の一例のSEM写真である。図11に示す粒子の断面には、年輪状の構造は認められなかった。一方、図12は、連続式の撹拌槽内の反応水溶液に占める第2高過飽和領域の体積割合が0.624%である場合、つまり、比較例2−1の場合に得られた粒子の断面の一例のSEM写真である。図12に示す粒子の断面には、矢印で示す箇所に年輪状の構造が認められた。
図11および図12から明らかなように、年輪状の構造の発生を抑制する観点から、反応水溶液に占める第2高過飽和領域12Bの体積割合(以下、第2体積割合と呼ぶ)が0.624%未満であることが好ましい。第2体積割合が0.624%未満であれば、年輪状の構造の発生を抑制できる理由は下記のように推定される。
粒子成長工程S12において、粒子は、反応水溶液全体に分散しており、主に第2高過飽和領域12Bを通過する際に成長する。反応水溶液全体に占める第2高過飽和領域12Bの体積割合が0.624%未満であれば、粒子成長が緩やかに生じ、密度の異なる複数の層からなる年輪状の構造の発生が抑制できる。粒子成長を緩やかに生じさせることで、結晶成長方位の変化やその変化に伴う空隙の発生などを抑制できるためと推定される。
年輪状の構造の発生を抑制する観点からは、第2体積割合は小さいほど好ましい。第2体積割合は、吐出部34付近の流れ場のUやKなどに依存する。UやKが大きいほど、第2体積割合が小さい。第2体積割合は、好ましくは0.600%以下、より好ましくは0.500%以下、さらに好ましくは0.400%以下である。但し、UやKは撹拌軸40を回転させるモータの容量などの制約を受けるので、第2体積割合は好ましくは0.019%以上である。
粒子成長工程S12では、原料液を分けて複数の吐出部22から反応水溶液中に吐出してよい。これにより、効率的に第2体積割合を小さくできる。このとき、複数の吐出部22から吐出される複数の第2高過飽和領域12Bが重ならないように複数の吐出部22の間隔が設定されることが好ましい。
[実施例1−1]
実施例1−1では、オーバーフロー型の連続式の撹拌槽を用い、中和晶析によって、ニッケル複合水酸化物の粒子の核を生成させる核生成工程と、粒子を成長させる粒子成長工程とを同時に行った。
撹拌槽の容積は200L、撹拌翼のタイプはディスクタービン翼、撹拌翼の羽根の枚数は6枚、撹拌翼の翼径は250mm、撹拌翼と撹拌槽の内底面との間の上下方向距離は140mm、撹拌翼の回転数は280rpmとした。
撹拌槽内の反応水溶液の液量は200L、反応水溶液のpH値は11.3、反応水溶液のアンモニア濃度は12g/L、反応水溶液の温度は50℃に維持した。反応水溶液の周辺雰囲気は大気雰囲気とした。
原料液は、ニッケル複合水酸化物としてNi0.82Co0.15Al0.03(OH)が得られるように調製した。原料液供給管の本数は1本、1本の原料液供給管からの供給量は400ml/分であった。
核生成工程や粒子成長工程の間、撹拌槽内に、原料液の他に水酸化ナトリウム水溶液およびアンモニア水を供給して、反応水溶液のpH値や反応水溶液のアンモニア濃度を維持した。
反応水溶液に占める第1高過飽和領域の体積割合は、シミュレーションにより算出したところ、0.025%であった。尚、解析条件は、上述の解析条件と同様に設定した。
図8に実施例1−1で得られたニッケル複合水酸化物の粒子のSEM写真を示す。図8に示すように、中和晶析の完了時に得られる粒子の外表面は滑らかであり、凸凹はほとんど認められなかった。
[実施例1−2]
実施例1−2では、実施例1−1における撹拌翼の回転数を150rpmに変更したこと以外、実施例1−1と同様にして、ニッケル複合水酸化物の粒子を製造した。
反応水溶液に占める第1高過飽和領域の体積割合は、実施例1−1と同様にシミュレーションにより算出したところ、0.090%であった。尚、解析条件は、上述の解析条件と同様に設定した。
実施例1−2で得られたニッケル複合水酸化物の粒子についても、図8に示した実施例1−1の粒子と同様に、中和晶析の完了時に得られる粒子の外表面は滑らかであり、凸凹はほとんど認められなかった。
[実施例1−3]
実施例1−3では、ニッケル複合水酸化物として、Ni0.88Co0.09Al0.03(OH)が得られるように原料液を調整したこと以外は実施例1−1と同様にして、ニッケル複合水酸化物の粒子を製造した。
反応水溶液に占める第1高過飽和領域の体積割合は、実施例1−1と同様にシミュレーションにより算出したところ、0.025%であった。尚、解析条件は、上述の解析条件と同様に設定した。
実施例1−3で得られたニッケル複合水酸化物の粒子についても、図8に示した実施例1−1の粒子と同様に、中和晶析の完了時に得られる粒子の外表面は滑らかであり、凸凹はほとんど認められなかった。
[実施例1−4]
実施例1−4では、撹拌槽の容積は60L、撹拌翼のタイプはディスクタービン翼、撹拌翼の羽根の枚数は6枚、撹拌翼の翼径は168mm、撹拌翼と撹拌槽の内底面との間の上下方向距離は100mm、撹拌翼の回転数は425rpmとした。撹拌槽内の反応水溶液の液量は60Lとした。原料液は、ニッケル複合水酸化物としてNi0.82Co0.15Al0.03(OH)が得られるように調製した。原料液供給管の本数は1本、1本の原料液供給管からの供給量は120ml/分であった。それ以外は、実施例1−1と同様にニッケル複合水酸化物の粒子を製造した。
反応水溶液に占める第1高過飽和領域の体積割合は、実施例1−1と同様にシミュレーションにより算出したところ、0.015%であった。尚、解析条件は、上述の解析条件と同様に設定した。
実施例1−4で得られたニッケル複合水酸化物の粒子についても、図8に示した実施例1−1の粒子と同様に、中和晶析の完了時に得られる粒子の外表面は滑らかであり、凸凹はほとんど認められなかった。
[実施例1−5]
実施例1−5では、撹拌槽の容積は60L、撹拌翼のタイプは45°ピッチドパドル翼、撹拌翼の羽根の枚数は4枚、撹拌翼の翼径は168mm、撹拌翼と撹拌槽の内底面との間の上下方向距離は100mm、撹拌翼の回転数は500rpmとした。また、撹拌槽内の反応水溶液の液量は60Lとした。原料液は、ニッケル複合水酸化物としてNi0.82Co0.15Al0.03(OH)が得られるように調製した。原料液供給管の本数は1本、1本の原料液供給管からの供給量は120ml/分であった。それ以外は、実施例1−1と同様にニッケル複合水酸化物の粒子を製造した。
反応水溶液に占める第1高過飽和領域の体積割合は、実施例1−1と同様にシミュレーションにより算出したところ、0.027%であった。尚、解析条件は、上述の解析条件と同様に設定した。
実施例1−5で得られたニッケル複合水酸化物の粒子についても、図8に示した実施例1−1の粒子と同様に、中和晶析の完了時に得られる粒子の外表面は滑らかであり、凸凹はほとんど認められなかった。
[実施例1−6]
実施例1−6では、ニッケル複合水酸化物として、Ni0.34Co0.33Mn0.33(OH)が得られるように原料液を調整したこと以外は、実施例1−1と同様にして、ニッケル複合水酸化物の粒子を製造した。
反応水溶液に占める第1高過飽和領域の体積割合は、実施例1−1と同様にシミュレーションにより算出したところ、0.025%であった。尚、解析条件は、上述の解析条件と同様に設定した。
実施例1−6で得られたニッケル複合水酸化物の粒子についても、図8に示した実施例1−1の粒子と同様に、中和晶析の完了時に得られる粒子の外表面は滑らかであり、凸凹はほとんど認められなかった。
[実施例1−7]
実施例1−7では、ニッケル複合水酸化物として、Ni0.60Co0.20Mn0.20(OH)が得られるように原料液を調整したこと以外は、実施例1−1と同様にして、ニッケル複合水酸化物の粒子を製造した。
反応水溶液に占める第1高過飽和領域の体積割合は、実施例1−1と同様にシミュレーションにより算出したところ、0.025%であった。尚、解析条件は、上述の解析条件と同様に設定した。
実施例1−7で得られたニッケル複合水酸化物の粒子についても、図8に示した実施例1−1の粒子と同様に、中和晶析の完了時に得られる粒子の外表面は滑らかであり、凸凹はほとんど認められなかった。
[実施例1−8]
実施例1−8では、撹拌槽の容積は60L、撹拌翼のタイプはディスクタービン翼、撹拌翼の羽根の枚数は6枚、撹拌翼の翼径は168mm、撹拌翼と撹拌槽の内底面との間の上下方向距離は100mm、撹拌翼の回転数は425rpmとした。撹拌槽内の反応水溶液の液量は60Lとした。原料液は、ニッケル複合水酸化物としてNi0.34Co0.33Mn0.33(OH)が得られるように調製した。原料液供給管の本数は1本、1本の原料液供給管からの供給量は120ml/分であった。それ以外は、実施例1−1と同様にして、ニッケル複合水酸化物の粒子を製造した。
反応水溶液に占める第1高過飽和領域の体積割合は、実施例1−1と同様にシミュレーションにより算出したところ、0.015%であった。尚、解析条件は、上述の解析条件と同様に設定した。
実施例1−8で得られたニッケル複合水酸化物の粒子についても、図8に示した実施例1−1の粒子と同様に、中和晶析の完了時に得られる粒子の外表面は滑らかであり、凸凹はほとんど認められなかった。
[実施例1−9]
実施例1−9では、撹拌槽の容積は60L、撹拌翼のタイプは45°ピッチドパドル翼、撹拌翼の羽根の枚数は4枚、撹拌翼の翼径は168mm、撹拌翼と撹拌槽の内底面との間の上下方向距離は100mm、撹拌翼の回転数は500rpmとした。また、撹拌槽内の反応水溶液の液量は60Lとした。原料液は、ニッケル複合水酸化物としてNi0.34Co0.33Mn0.33(OH)が得られるように調製した。原料液供給管の本数は1本、1本の原料液供給管からの供給量は120ml/分であった。それ以外は、実施例1−1と同様にして、ニッケル複合水酸化物の粒子を製造した。
反応水溶液に占める第1高過飽和領域の体積割合は、実施例1−1と同様にシミュレーションにより算出したところ、0.027%であった。尚、解析条件は、上述の解析条件と同様に設定した。
実施例1−9で得られたニッケル複合水酸化物の粒子についても、図8に示した実施例1−1の粒子と同様に、中和晶析の完了時に得られる粒子の外表面は滑らかであり、凸凹はほとんど認められなかった。
[比較例1−1]
比較例1−1では、1本の原料液供給管からの供給量を800ml/分としたこと以外、実施例1−1と同様にニッケル複合水酸化物の粒子を製造した。
反応水溶液に占める第1高過飽和領域の体積割合は、実施例1−1と同様にシミュレーションにより算出したところ、0.100%であった。
図9に比較例1−1で得られたニッケル複合水酸化物の粒子のSEM写真を示す。図9に矢印で示すように、中和晶析の完了時に得られる粒子の外表面に顕著な凹凸が認められた。
[比較例1−2]
比較例1−2では、ニッケル複合水酸化物としてNi0.34Co0.33Mn0.33(OH)が得られるように原料液を調整して、1本の原料液供給管からの供給量を800ml/分としたこと以外、実施例1−1と同様にニッケル複合水酸化物の粒子を製造した。
反応水溶液に占める第1高過飽和領域の体積割合は、実施例1−1と同様にシミュレーションにより算出したところ、0.100%であった。
比較例1−2で得られたニッケル複合水酸化物の粒子についても、図9に示した比較例1の粒子と同様に、中和晶析の完了時に得られる粒子の外表面に顕著な凹凸が認められた。
[まとめ]
実施例1−1〜1−9と、比較例1−1および1−2とから、反応水溶液に占める第1高過飽和領域の体積割合が0.100%未満であれば、撹拌翼のタイプや翼径、撹拌槽の容積が変わっても、粒子外表面の凸凹を低減できることがわかる。
[実施例2−1]
実施例2−1では、オーバーフロー型の連続式の撹拌槽を用い、中和晶析によって、ニッケル複合水酸化物の粒子の核を生成させる核生成工程と、粒子を成長させる粒子成長工程とを同時に行った。
撹拌槽の容積は200L、撹拌翼のタイプはディスクタービン翼、撹拌翼の羽根の枚数は6枚、撹拌翼の翼径は250mm、撹拌翼と撹拌槽の内底面との間の上下方向距離は140mm、撹拌翼の回転数は280rpmとした。
撹拌槽内の反応水溶液の液量は200L、反応水溶液のpH値は11.8、反応水溶液のアンモニア濃度は12g/L、反応水溶液の温度は50℃に維持した。反応水溶液の周辺雰囲気は窒素雰囲気とした。
原料液は、ニッケル複合水酸化物としてNi0.82Co0.15Al0.03(OH)が得られるように調製し、それぞれの金属イオン濃度の合計は2.0mol/Lとした。原料液供給管の本数は2本、各原料液供給管からの供給量は400ml/分、2本の原料液供給管からの合計の供給量は800ml/分であった。
核生成工程や粒子成長工程の間、撹拌槽内に、原料液の他に水酸化ナトリウム水溶液およびアンモニア水を供給して、反応水溶液のpH値や反応水溶液のアンモニア濃度を維持した。
反応水溶液に占める第2高過飽和領域の体積割合は、シミュレーションにより算出したところ、0.379%であった。尚、解析条件は、上述の解析条件と同様に設定した。
図11に実施例2−1で得られたニッケル複合水酸化物の粒子の断面のSEM写真を示す。図11に示すように、粒子の断面に年輪状の構造は認められなかった。尚、得られたニッケル複合水酸化物のタップ密度は1.40g/ccであった。
[実施例2−2]
実施例2−2では、原料液供給管の本数を1本、1本の原料液供給管からの供給量を400ml/分としたこと以外、実施例2−1と同様にニッケル複合水酸化物の粒子を製造した。
反応水溶液に占める第2高過飽和領域の体積割合は、実施例2−1と同様にシミュレーションにより算出したところ、0.190%であった。
得られたニッケル複合水酸化物の粒子の断面のSEM写真から、粒子の断面に年輪状の構造は認められなかった。
[実施例2−3]
実施例2−3では、撹拌槽の容積を60L、撹拌翼の翼径を160mm、撹拌翼と撹拌槽の内底面との間の上下方向距離を60mm、撹拌翼の回転数を375rpm、原料液供給管の本数を1本、1本の原料液供給管からの供給量を97ml/分としたこと以外、実施例2−1と同様にニッケル複合水酸化物の粒子を製造した。
反応水溶液に占める第2高過飽和領域の体積割合は、シミュレーションにより算出したところ、0.100%であった。
得られたニッケル複合水酸化物の粒子の断面のSEM写真から、粒子の断面に年輪状の構造は認められなかった。
[実施例2−4]
実施例2−4では、撹拌翼の回転数を325rpmとしたこと以外、実施例2−3と同様にニッケル複合水酸化物の粒子を製造した。
反応水溶液に占める第2高過飽和領域の体積割合は、実施例2−1と同様にシミュレーションにより算出したところ、0.134%であった。
得られたニッケル複合水酸化物の粒子の断面のSEM写真から、粒子の断面に年輪状の構造は認められなかった。
[実施例2−5]
実施例2−5では、原料液を、ニッケル複合水酸化物としてNi0.88Co0.09Al0.03(OH)が得られるように調製したこと以外、実施例2−1と同様にニッケル複合水酸化物の粒子を製造した。
反応水溶液に占める第2高過飽和領域の体積割合は、実施例2−1と同様にシミュレーションにより算出したところ、0.379%であった。
得られたニッケル複合水酸化物の粒子の断面のSEM写真から、粒子の断面に年輪状の構造は認められなかった。
[実施例2−6]
実施例2−6では、撹拌翼の回転数を220rpmとしたこと以外、実施例2−1と同様にニッケル複合水酸化物の粒子を製造した。
反応水溶液に占める第2高過飽和領域の体積割合は、実施例2−1と同様にシミュレーションにより算出したところ、0.600%であった。尚、解析条件は、上述の解析条件と同様に設定した。
得られたニッケル複合水酸化物の粒子の断面のSEM写真から、粒子の断面に年輪状の構造は認められなかった。
[実施例2−7]
実施例2−7では、撹拌槽の容積は60L、撹拌翼のタイプは45°ピッチドパドル翼、撹拌翼の羽根の枚数は4枚、撹拌翼の翼径は168mm、撹拌翼と撹拌槽の内底面との間の上下方向距離は100mm、撹拌翼の回転数は400rpmとした。また、撹拌槽内の反応水溶液の液量は60Lとした。それ以外は実施例2−3と同様にニッケル複合水酸化物の粒子を製造した。
反応水溶液に占める第2高過飽和領域の体積割合は、実施例2−1と同様にシミュレーションにより算出したところ、0.205%であった。尚、解析条件は、上述の解析条件と同様に設定した。
[実施例2−8]
実施例2−8では、ニッケル複合水酸化物としてNi0.34Co0.33Mn0.33(OH)が得られるように原料液を調整したこと以外、実施例2−1と同様にニッケル複合水酸化物の粒子を製造した。
反応水溶液に占める第2高過飽和領域の体積割合は、実施例2−1と同様にシミュレーションにより算出したところ、0.379%であった。尚、解析条件は、上述の解析条件と同様に設定した。
実施例2−8で得られたニッケル複合水酸化物の粒子についても、図11に示した実施例2−1の粒子と同様に、粒子の断面に年輪状の構造は認められなかった。尚、得られたニッケル複合水酸化物のタップ密度は1.40g/ccであった。
[実施例2−9]
実施例2−9では、ニッケル複合水酸化物としてNi0.60Co0.20Mn0.20(OH)が得られるように原料液を調整したこと以外、実施例2−1と同様にニッケル複合水酸化物の粒子を製造した。
反応水溶液に占める第2高過飽和領域の体積割合は、実施例2−1と同様にシミュレーションにより算出したところ、0.379% であった。尚、解析条件は、上述の解析条件と同様に設定した。
実施例2−9で得られたニッケル複合水酸化物の粒子についても、図11に示した実施例2−1の粒子と同様に、粒子の断面に年輪状の構造は認められなかった。尚、得られたニッケル複合水酸化物のタップ密度は1.40g/ccであった。
[実施例2−10]
実施例2−10では、撹拌槽の容積は60L、撹拌翼のタイプはディスクタービン翼、撹拌翼の羽根の枚数は6枚、撹拌翼の翼径は168mm、撹拌翼と撹拌槽の内底面との間の上下方向距離は60mm、撹拌翼の回転数は375rpmとした。撹拌槽内の反応水溶液の液量は60Lとした。原料液は、ニッケル複合水酸化物としてNi0.34Co0.33Mn0.33(OH)が得られるように調製した。原料液供給管の本数は1本、1本の原料液供給管からの供給量は97ml/分であった。それ以外は実施例2−1と同様にニッケル複合水酸化物の粒子を製造した。
反応水溶液に占める第2高過飽和領域の体積割合は、実施例2−1と同様にシミュレーションにより算出したところ、0.100%であった。尚、解析条件は、上述の解析条件と同様に設定した。
実施例2−10で得られたニッケル複合水酸化物の粒子についても、図11に示した実施例2−1の粒子と同様に、中和晶析の完了時に得られる粒子の断面に年輪状の構造は認められなかった。
[実施例2−11]
実施例2−11では、撹拌槽の容積は60L、撹拌翼のタイプは45°ピッチドパドル翼、撹拌翼の羽根の枚数は4枚、撹拌翼の翼径は168mm、撹拌翼と撹拌槽の内底面との間の上下方向距離は100mm、撹拌翼の回転数は400rpmとした。また、撹拌槽内の反応水溶液の液量は60Lとした。原料液は、ニッケル複合水酸化物としてNi0.34Co0.33Mn0.33(OH)が得られるように調製した。原料液供給管の本数は1本、1本の原料液供給管からの供給量は97ml/分であった。それ以外は実施例2−3と同様にニッケル複合水酸化物の粒子を製造した。
反応水溶液に占める第2高過飽和領域の体積割合は、実施例2−1と同様にシミュレーションにより算出したところ、0.205%であった。尚、解析条件は、上述の解析条件と同様に設定した。
実施例2−11で得られたニッケル複合水酸化物の粒子についても、図11に示した実施例2−1の粒子と同様に、中和晶析の完了時に得られる粒子の断面に年輪状の構造は認められなかった。
[比較例2−1]
比較例2−1では、原料液供給管の本数を1本とし、1本の原料液供給管からの供給量を800ml/分としたこと以外、実施例2−1と同様にニッケル複合水酸化物の粒子を製造した。
反応水溶液に占める第2高過飽和領域の体積割合は、実施例2−1と同様にシミュレーションにより算出したところ、0.624%であった。
図12に比較例2−1で得られたニッケル複合水酸化物の粒子の断面のSEM写真を示す。図12に矢印で示すように、粒子の断面に年輪状の構造が認められた。尚、得られたニッケル複合水酸化物のタップ密度は1.24g/ccであった。
[比較例2−2]
比較例2−2では、ニッケル複合水酸化物としてNi0.34Co0.33Mn0.33(OH)が得られるように原料液を調整して、1本の原料液供給管からの供給量を800ml/分としたこと以外、実施例2−1と同様にニッケル複合水酸化物の粒子を製造した。
反応水溶液に占める第2高過飽和領域の体積割合は、実施例2−1と同様にシミュレーションにより算出したところ、0.624%であった。
比較例2−2で得られたニッケル複合水酸化物の粒子についても、図12に示した比較例1の粒子と同様に、粒子の断面に年輪状の構造が認められた。尚、得られたニッケル複合水酸化物のタップ密度は1.21g/ccであった。
[まとめ]
実施例2−1〜2−11と、比較例2−1および2−2とから、反応水溶液に占める第2高過飽和領域の体積割合が0.624%未満であれば、撹拌翼のタイプや翼径、撹拌槽の容積が変わっても、粒子の断面に年輪状の構造の発生を抑制できることがわかる。粒子成長が緩やかに生じたためと推定される。
以上、化学反応装置の実施形態等について説明したが、本発明は上記実施形態等に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、改良が可能である。
本出願は、2016年6月14日に日本国特許庁に出願した特願2016−118373号に基づく優先権を主張するものであり、特願2016−118373号の全内容を本出願に援用する。
2 種晶粒子
4 凝集体
6 外殻
10 化学反応装置
12 高過飽和領域
20 撹拌槽
21 底部
22 吐出部
30 撹拌翼
40 撹拌軸
50 バッフル
60 原料液供給管
61 吐出部

Claims (7)

  1. 溶液の中に原料液を供給しながら、前記溶液の中で粒子を析出させる、化学反応装置であって、
    前記溶液を収容する撹拌槽と、前記溶液を撹拌する撹拌翼と、前記撹拌槽の内周面から突出するバッフルとを有し、
    前記溶液の中に前記原料液を吐出する吐出部を複数有し、
    上方視で、複数の前記吐出部は、前記バッフルよりも径方向内側に配設され
    前記溶液は水溶液であって、前記原料液はニッケル塩を含み、前記粒子はニッケル含有水酸化物であり、
    前記吐出部の付近には、前記水溶液に占める前記水溶液に溶けている前記ニッケル含有水酸化物のモル濃度が5.0mol/m 以上である第1高過飽和領域が形成され、
    前記第1高過飽和領域は、前記水溶液に占める前記第1高過飽和領域の第1体積割合が0.100%未満となるように形成される、化学反応装置。
  2. 溶液の中に原料液を供給しながら、前記溶液の中で粒子を析出させる、化学反応装置であって、
    前記溶液を収容する撹拌槽と、前記溶液を撹拌する撹拌翼と、前記撹拌槽の内周面から突出するバッフルとを有し、
    前記溶液の中に前記原料液を吐出する吐出部を複数有し、
    上方視で、複数の前記吐出部は、前記バッフルよりも径方向内側に配設され、
    前記溶液は水溶液であって、前記原料液はニッケル塩を含み、前記粒子はニッケル含有水酸化物であって、
    前記吐出部の付近には、前記水溶液に占める前記水溶液に溶けている前記ニッケル含有水酸化物のモル濃度が1.7mol/m 以上である第2高過飽和領域が形成され、
    前記第2高過飽和領域は、前記水溶液に占める前記第2高過飽和領域の第2体積割合が0.624%未満となるように形成される化学反応装置。
  3. 数の前記吐出部の付近に形成される複数の前記第1高過飽和領域が重ならないように、複数の前記吐出部の間隔が設定されている、請求項1に記載の化学反応装置。
  4. 数の前記吐出部の付近に形成される複数の前記第2高過飽和領域が重ならないように、複数の前記吐出部の間隔が設定されている、請求項2に記載の化学反応装置。
  5. 複数の前記吐出部は、前記撹拌槽の底部に間隔をおいて設けられ、上に向けて前記原料液を吐出する、請求項1〜4のいずれか1項に記載の化学反応装置。
  6. 上方視で、複数の前記吐出部は、前記撹拌翼よりも径方向外側に配設されている、請求項に記載の化学反応装置。
  7. 請求項1〜6のいずれか1項に記載の化学反応装置を用いて、前記溶液の中に前記原料液を供給しながら、前記溶液の中で粒子を析出させる、粒子の製造方法。
JP2018523897A 2016-06-14 2017-06-12 化学反応装置、および、化学反応装置を用いた粒子の製造方法 Active JP6911853B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016118373 2016-06-14
JP2016118373 2016-06-14
PCT/JP2017/021651 WO2017217371A1 (ja) 2016-06-14 2017-06-12 化学反応装置、および、化学反応装置を用いた粒子の製造方法

Publications (2)

Publication Number Publication Date
JPWO2017217371A1 JPWO2017217371A1 (ja) 2019-05-16
JP6911853B2 true JP6911853B2 (ja) 2021-07-28

Family

ID=60664357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018523897A Active JP6911853B2 (ja) 2016-06-14 2017-06-12 化学反応装置、および、化学反応装置を用いた粒子の製造方法

Country Status (6)

Country Link
US (1) US11305243B2 (ja)
EP (1) EP3470136B1 (ja)
JP (1) JP6911853B2 (ja)
KR (1) KR102376250B1 (ja)
CN (1) CN109310977A (ja)
WO (1) WO2017217371A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6939499B2 (ja) * 2017-12-13 2021-09-22 住友金属鉱山株式会社 ニッケル含有水酸化物の製造方法
JP7031535B2 (ja) * 2018-09-03 2022-03-08 住友金属鉱山株式会社 ニッケル含有水酸化物の製造方法
KR20240020889A (ko) * 2022-08-09 2024-02-16 한화솔루션 주식회사 반응기

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8808330D0 (en) * 1988-04-08 1988-05-11 Unilever Plc Method of preparing chemical compound
AU2002301811B2 (en) * 2001-11-07 2007-08-23 Sumitomo Chemical Company, Limited Aluminum hydroxide aggregated particles, process for producing the same, vessel used therefor, and process for producing aluminum hydroxide powder
JP4097418B2 (ja) * 2001-11-07 2008-06-11 住友化学株式会社 水酸化アルミニウム凝集体の製造方法およびそれを用いてなる水酸化アルミニウム粉末の製造方法ならびに析出槽
DE10245467A1 (de) * 2002-09-28 2004-04-08 Varta Automotive Systems Gmbh Aktives Nickelmischhydroxid-Kathodenmaterial für alkalische Akkumulatoren und Verfahren zu seiner Herstellung
CN2836910Y (zh) * 2005-11-02 2006-11-15 长沙力元新材料股份有限公司 用于制备球形粒状物的设备
JP4590383B2 (ja) * 2006-09-04 2010-12-01 オルガノ株式会社 フッ素を含む排水の晶析処理方法
US20080282606A1 (en) 2007-04-16 2008-11-20 Plaza John P System and process for producing biodiesel
JP5614334B2 (ja) * 2010-03-02 2014-10-29 住友金属鉱山株式会社 ニッケルコバルト複合水酸化物およびその製造方法、ならびに該複合水酸化物を用いて得られる非水系電解質二次電池用正極活物質
CN103482710B (zh) 2013-08-27 2015-09-09 江苏华东锂电技术研究院有限公司 球形羟基氧化钴的制备方法
CN204503060U (zh) 2014-12-26 2015-07-29 苏玮 一种pp反应釜
CN204735206U (zh) * 2015-04-23 2015-11-04 金川集团股份有限公司 一种氢氧化物合成用反应釜

Also Published As

Publication number Publication date
EP3470136C0 (en) 2024-03-13
JPWO2017217371A1 (ja) 2019-05-16
CN109310977A (zh) 2019-02-05
US20190217260A1 (en) 2019-07-18
KR102376250B1 (ko) 2022-03-21
US11305243B2 (en) 2022-04-19
WO2017217371A1 (ja) 2017-12-21
EP3470136B1 (en) 2024-03-13
EP3470136A1 (en) 2019-04-17
EP3470136A4 (en) 2019-06-26
KR20190017787A (ko) 2019-02-20

Similar Documents

Publication Publication Date Title
JP6911853B2 (ja) 化学反応装置、および、化学反応装置を用いた粒子の製造方法
JP2018034137A (ja) 化学反応装置、および、化学反応装置を用いた粒子の製造方法
JP7088006B2 (ja) ニッケル含有水酸化物の製造方法
JP7088007B2 (ja) ニッケル含有水酸化物の製造方法
JP6965719B2 (ja) ニッケル含有水酸化物の製造方法
JP7024710B2 (ja) ニッケル含有水酸化物の製造方法
JP6852316B2 (ja) 化学反応装置、および、化学反応装置を用いた粒子の製造方法
JP6965718B2 (ja) ニッケル含有水酸化物の製造方法
JP7035497B2 (ja) ニッケル含有水酸化物の製造方法
JP6958315B2 (ja) ニッケル含有水酸化物の製造方法
JP6939499B2 (ja) ニッケル含有水酸化物の製造方法
JP6690485B2 (ja) 化学反応装置、および、化学反応装置を用いた粒子の製造方法

Legal Events

Date Code Title Description
A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A527

Effective date: 20181210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210621

R150 Certificate of patent or registration of utility model

Ref document number: 6911853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150