WO2017217186A1 - シリコンウェーハの搬送・保管方法 - Google Patents

シリコンウェーハの搬送・保管方法 Download PDF

Info

Publication number
WO2017217186A1
WO2017217186A1 PCT/JP2017/018964 JP2017018964W WO2017217186A1 WO 2017217186 A1 WO2017217186 A1 WO 2017217186A1 JP 2017018964 W JP2017018964 W JP 2017018964W WO 2017217186 A1 WO2017217186 A1 WO 2017217186A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon wafer
polymer
wafer
adsorbed
silicon
Prior art date
Application number
PCT/JP2017/018964
Other languages
English (en)
French (fr)
Inventor
正彬 大関
三千登 佐藤
薫 石井
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Publication of WO2017217186A1 publication Critical patent/WO2017217186A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping

Definitions

  • the present invention relates to a method for transporting and storing silicon wafers.
  • Patent Document 1 An inspection method using scattered light is often used for detecting defects on the wafer surface. Since the detection sensitivity of particles by a measuring machine using scattered light is determined by the ratio of the defect signal and the background noise, if the surface roughness is poor, the S / N ratio is lowered and accurate measurement cannot be performed.
  • This pit phenomenon due to metal contamination may occur during any one of the wafer processing steps, but it is considered to be a problem during transport to the next step and storage. Especially at production sites, the transportation and storage times often vary greatly depending on the operating conditions of the equipment, so it is necessary to strictly control the contamination level, and the surface is protected from metal contamination by appropriate surface treatment. Is required.
  • the surface quality is prevented from being deteriorated by applying an oxide film to the surface of the silicon wafer using ozone water, hydrogen peroxide water, or the like. This is because the surface of the wafer is protected by SiO 2 having poor reactivity with metal, pure water, or the like.
  • the above method must use high-purity ozone water, hydrogen peroxide water, or the like, which incurs the cost of the chemical solution itself and the waste liquid cost.
  • the productivity of polishing is lowered. This is because it takes much time to remove the surface oxide film because SiO 2 has a much slower polishing rate than Si.
  • the present invention has been made in view of the above problems, and can inexpensively protect the wafer surface, and suppress the metal contamination and surface roughness during wafer transportation or storage.
  • the purpose is to provide transportation and storage methods.
  • the silicon wafer in the silicon wafer processing step, the silicon wafer is transferred from the first step to the second step, which is the next step, or after the first step, the second step is performed.
  • a method for transporting and storing a silicon wafer, comprising transporting and storing the polymer up to the second step with the polymer adsorbed on the surface.
  • Such a silicon wafer transfer / storage method can inexpensively protect the wafer surface with a polymer adsorption layer, and can suppress metal contamination and surface roughness during wafer transfer or storage.
  • the first step is a polishing step for polishing the surface of the silicon wafer while supplying an abrasive, and after the polishing step, the supplied abrasive is switched to a solution containing the polymer to form the silicon. It is preferable that the polymer is adsorbed on the silicon wafer surface by treating the wafer surface.
  • the surface of the silicon wafer is treated by switching the supplied abrasive to a solution containing a polymer, thereby protecting the wafer surface more easily and inexpensively. It is possible to suppress metal contamination and surface roughness during wafer conveyance or storage.
  • the adsorption of the polymer to the surface of the silicon wafer is performed by immersing the silicon wafer in a pure water tank containing the polymer or by scattering the pure water containing the polymer onto the surface of the silicon wafer. It is preferable.
  • the surface of the wafer can be protected at low cost without affecting the productivity by adsorbing a polymer having a molecular weight of 100,000 or more.
  • Metal contamination resistance and etching resistance equivalent to those obtained when an oxide film is formed can be obtained.
  • the metal contamination resistance can be indirectly evaluated by evaluating the etching resistance such as ⁇ Haze. .
  • the present inventors have considered to realize surface protection during transportation and storage with a water-soluble polymer. Then, the present inventors have found that the polymer present in the solution is adsorbed on the wafer, and the polymer adsorption layer having a high molecular weight is generated between the silicon wafer and the metal or pure water or alkali. I was able to suppress this.
  • the present inventors have found that, after an arbitrary step, a polymer having a certain molecular weight or more is adsorbed on the wafer surface, thereby suppressing metal contamination and surface roughness between that step and the next step.
  • the present invention has been completed.
  • the silicon wafer in the silicon wafer processing process, the silicon wafer is transferred from the first process to the second process, which is the next process, or until the second process is performed after the first process.
  • the silicon wafer is transferred and stored up to the second step.
  • the first step in the present invention is an arbitrary step in the silicon wafer processing step, and includes, for example, a slicing step, a chamfering step, a lapping step, an etching step, a polishing step, and a cleaning step. It is done.
  • a polymer having a molecular weight of 100,000 or more is adsorbed on the surface of the silicon wafer (FIG. 1 (B)).
  • the polymer to be adsorbed in the present invention is not particularly limited as long as the molecular weight is 100,000 or more, and examples thereof include water-soluble polymers such as hydroxyethyl cellulose.
  • the molecular weight is preferably 1,000,000 or less.
  • the molecular weight in the present invention is a weight average molecular weight calculated as a converted value of polyethylene oxide using gel permeation chromatography.
  • the adsorption layer is formed thick, so that metal contaminants and bases do not reach the wafer surface, thus suppressing metal contamination and surface roughness. can do. If the molecular weight is less than 100,000, the adsorption layer becomes thin, so that the arrival of metal contaminants and bases on the wafer surface cannot be suppressed.
  • the first step is a polishing step for polishing the surface of the silicon wafer while supplying an abrasive, polishing supplied after the polishing step (first step)
  • a solution containing a polymer for example, pure water in which the polymer is dissolved so as to be 0.1% by mass to 1% by mass
  • the polymer can be adsorbed on the silicon wafer surface.
  • the adsorption of the polymer to the surface of the silicon wafer is carried out in a pure water tank containing the polymer (for example, the polymer is dissolved so as to be 0.1% by mass to 1% by mass), for example, about 10 seconds to 30 seconds, It can also be performed by immersing the silicon wafer, or by spraying pure water containing a polymer on the surface of the silicon wafer in a shower shape.
  • the silicon wafer is transported to the second step (FIG. 1C) or stored until it is put into the second step.
  • conveyance and storage can be performed in either a dry state or a wet state.
  • the second step (FIG. 1C), the same step as the first step may be mentioned.
  • the second step in the present invention is a polishing step
  • the polymer adsorbing layer is easily removed during the polishing step, so that there is no problem of polishing productivity reduction that occurs when a surface oxide film is attached.
  • the subsequent process is a polishing process or the like
  • a process for exfoliating the polymer other than the wafer processing process is not required.
  • the metal contamination resistance is indirectly evaluated by evaluating the etching resistance such as ⁇ Haze. can do.
  • the etching conditions (alkaline) are set so that the amount of deterioration of Haze is about 10 to 20%.
  • the comparison and evaluation are most easily made by adjusting the concentration and the immersion time.
  • the molecular weight of the polymer shown below is a weight average molecular weight calculated as a converted value of polyethylene oxide using gel permeation chromatography.
  • Examples 1 and 2 In order to evaluate the protective properties of the polymer, as shown in the evaluation level of Table 1, a surface oxide film formed using ozone water on the surface of one silicon wafer was used, and a surface oxide film was used using HF. The bare silicon was peeled off, and polymer A (hydroxyethyl cellulose having a molecular weight of 250,000) was adsorbed on the surface of the bare silicon (wafer 1-1). The adsorption of the polymer was carried out by immersing it in pure water in which 0.1 wt% of polymer A was dissolved.
  • polymer A hydroxyethyl cellulose having a molecular weight of 250,000
  • the wafer 1-1 thus prepared was stored in pure water intentionally contaminated with Cu (1 ppm) for one day, and then the number of pits was measured with SPx and SEM manufactured by KLA Tencor (Example 1). ). Also, by the same method as that for wafer 1-1, polymer B (polyvinyl alcohol having a molecular weight of 100,000) is adsorbed on the surface of bare silicon (wafer 2-1), and the number of pits is measured in the same manner as in Example 1. (Example 2). The results are shown in FIG.
  • the adsorption of the polymer was carried out by immersing it in pure water in which 0.1 wt% of polymers C and D were dissolved for 10 seconds.
  • the wafers 3-1, 4-1, 5-1 and 6-1 thus prepared are stored in pure water intentionally contaminated with Cu (1 ppm) for 1 day, and then stored in SPx and SEM manufactured by KLA Tencor. The number of pits was measured (Comparative Examples 1, 2, 3, 4 respectively). The results are shown in FIG.
  • Wafer 1-1 on which polymer A was adsorbed (Example 1) and wafer 2-1 on which polymer B was adsorbed (Example 2) were subjected to ozone cleaning, and wafer 3-1 on which a surface oxide film was formed (Comparison) While the generation of pits can be suppressed to the same level as in Example 1), the number of wafers 4-1 (Comparative Example 2) that has no surface oxide film and that has not been subjected to polymer adsorption treatment has increased significantly. I understood. Further, generation of pits was observed in the wafer 5-1 on which the polymer C was adsorbed (Comparative Example 3) and the wafer 6-1 on which the polymer D was adsorbed (Comparative Example 4).
  • a wafer that has been subjected to ozone cleaning to form a surface oxide film has a predetermined allowance for polishing compared to a wafer that has been subjected to surface protection by adsorbing polymer A or B. It took more than twice as much time to obtain, and the productivity was greatly reduced.
  • the haze evaluation of SPx made by KLA Tencor was adopted as a roughness parameter.
  • Haze is a parameter indicating how much light incident from an oblique direction is scattered. The better the surface roughness, the smaller the haze.
  • ⁇ Haze Haze (immersion part)
  • Haze non-immersion part. Since the haze of the immersion part is worsened as the surface protection is worse, ⁇ Haze is worsened.
  • FIG. 3 shows the result of ⁇ Haze.
  • the wafer 3-2 is formed by the same method as the wafer 3-1
  • the wafer 4-2 is formed by the same method as the wafer 4-1
  • the wafer 5-2 is formed by the same method as the wafer 5-1
  • the wafer 6- Wafer 6-2 was prepared by the same method as in Example 1, and the surface protection was similarly evaluated (Comparative Examples 5 to 8, respectively).
  • FIG. 3 shows the result of ⁇ Haze.
  • the wafer 1-2 (Example 3) and the wafer 2-2 (Example 4) on which the polymer B was adsorbed tended to deteriorate.
  • a wafer that has been subjected to ozone cleaning to form a surface oxide film has a predetermined allowance for polishing compared to a wafer that has been subjected to surface protection by adsorbing polymer A or B. It took more than twice as much time to obtain, and the productivity was greatly reduced.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

本発明は、シリコンウェーハの加工工程において、第1の工程から次工程である第2の工程までシリコンウェーハを搬送、又は、第1の工程後に第2の工程に投入するまでの間シリコンウェーハを保管する、シリコンウェーハの搬送・保管方法であって、前記第1の工程後に、前記シリコンウェーハの表面に、分子量100,000以上のポリマーを吸着させ、前記シリコンウェーハ表面に前記ポリマーを吸着させた状態で前記第2の工程まで搬送・保管することを特徴とするシリコンウェーハの搬送・保管方法である。これにより、安価に、ウェーハ搬送時又は保管時の金属汚染および表面荒れを抑制することができるシリコンウェーハの搬送・保管方法が提供される。

Description

シリコンウェーハの搬送・保管方法
 本発明は、シリコンウェーハの搬送・保管方法に関する。
 近年、半導体デバイスの微細化が進むにつれ、これまで問題にならなかった小さな表面欠陥がデバイスの性能に影響を与える可能性が指摘されるようになっている。今後微細化を更に進めるためには、いっそう表面完全性が高いウェーハ加工技術が求められる。
 ウェーハ表面の欠陥検出には、散乱光を用いた検査手法がよく用いられている(特許文献1)。散乱光を用いた測定機によるパーティクルの検出感度は、欠陥信号とそのバックグラウンドノイズの比率によって決まるため、表面粗さが悪いと、S/N比が低下し正確な測定ができなくなる。
 このように、今後半導体デバイスの微細化を可能にするためには、表面完全性と表面粗さの低減が求められている。
 デバイス性能に影響を与え得る表面欠陥の1つとして、金属汚染による欠陥が問題となることが多い。この問題は、Cu等の酸化力の強い金属不純物がシリコンウェーハに吸着して酸化還元反応を起こし、ウェーハ表面をピット化させることに起因すると考えられている。
 この金属汚染によるピット化現象はウェーハ加工工程のいずれか1工程中に発生することもあるが、次工程への搬送時、保管時にも問題となると考えられる。特に生産現場では、搬送、保管時間は装置の稼働状況により大きなばらつきを持つことが多いため、厳重に汚染レベルを管理する必要があり、適切な表面処理を行うことにより金属汚染から表面を保護することが求められる。
 また、液体中での保管を想定した場合、表面粗さは純水やアルカリ溶液中で悪化してしまうことが知られている。これはHOやOH基がウェーハ表面をエッチングしてしまうからである。よって、面荒れを防ぐという観点でも搬送時、保管時にウェーハ表面を保護し、エッチング耐性を持たせることが求められている。
特開2009-236519号公報
 上記問題に対して、一般的にはオゾン水や過酸化水素水等を用いて、シリコンウェーハ表面に酸化膜を付けることで表面品質の劣化を防いでいる。表面が金属や純水等との反応性に乏しいSiOとなることで、ウェーハ表面が保護されるからである。
 しかし、上記手法は高純度なオゾン水や過酸化水素水等を用いなければならず、薬液自体のコストもかかるうえ、廃液コストも発生する。また、研磨工程への搬送、保管を想定した際、表面酸化膜を付けてしまうと研磨の生産性が下がってしまう。これは、Siに比べ、SiOは研磨速度が格段に遅いため、表面酸化膜を除去するのに時間がかかってしまうためである。
 本発明は、上記問題点に鑑みてなされたものであって、安価に、ウェーハ表面を保護することができ、ウェーハ搬送時又は保管時の金属汚染および表面荒れを抑制することができるシリコンウェーハの搬送・保管方法を提供することを目的とする。
 上記目的を達成するために、本発明は、シリコンウェーハの加工工程において、第1の工程から次工程である第2の工程までシリコンウェーハを搬送、又は、第1の工程後に第2の工程に投入するまでの間シリコンウェーハを保管する、シリコンウェーハの搬送・保管方法であって、前記第1の工程後に、前記シリコンウェーハの表面に、分子量100,000以上のポリマーを吸着させ、前記シリコンウェーハ表面に前記ポリマーを吸着させた状態で前記第2の工程まで搬送・保管することを特徴とするシリコンウェーハの搬送・保管方法を提供する。
 このようなシリコンウェーハの搬送・保管方法であれば、安価に、ウェーハ表面をポリマーの吸着層で保護することができ、ウェーハ搬送時又は保管時の金属汚染および表面荒れを抑制することができる。
 またこのとき、前記第1の工程を、研磨剤を供給しながら前記シリコンウェーハ表面を研磨処理する研磨工程とし、該研磨工程後に、前記供給する研磨剤を前記ポリマーを含む溶液に切り替えて前記シリコンウェーハ表面を処理することにより、前記ポリマーを前記シリコンウェーハ表面に吸着させることが好ましい。
 このように、第1の工程が研磨工程である場合には、供給する研磨剤をポリマーを含む溶液に切り替えてシリコンウェーハ表面を処理することにより、より簡便で安価に、ウェーハ表面を保護することができ、ウェーハ搬送時又は保管時の金属汚染および表面荒れを抑制することが可能となる。
 またこのとき、前記シリコンウェーハ表面へのポリマーの吸着を、前記ポリマーを含む純水槽中に前記シリコンウェーハを浸漬させるか、又は、前記ポリマーを含む純水を前記シリコンウェーハ表面に飛散させることにより行うことが好ましい。
 このように、ポリマーの吸着を行うことで、より確実に、ウェーハ搬送時又は保管時の金属汚染および表面荒れを、安価に抑制することができる。
 本発明のシリコンウェーハの搬送・保管方法であれば、分子量100,000以上のポリマーを吸着させることで、安価に、なおかつ生産性に影響を与えずに、ウェーハ表面を保護することができ、表面酸化膜を形成した場合と同等の金属汚染耐性およびエッチング耐性を得ることが可能となる。また、本発明におけるポリマーを吸着させたシリコンウェーハの金属汚染耐性とエッチング耐性との間に相関がみられることから、ΔHazeなどのエッチング耐性を評価することで金属汚染耐性も間接評価が可能となる。
本発明シリコンウェーハの搬送・保管方法の一例を示した工程フロー図である。 実施例1、2、比較例1~4のシリコンウェーハのピット増加数の測定結果である。 実施例3、4、比較例5~8のシリコンウェーハのΔHazeの測定結果である。
 上述したように、安価な手法により、ウェーハ搬送時又は保管時にウェーハ表面を保護することができ、ウェーハ搬送時又は保管時の金属汚染および表面荒れを抑制する手法が求められている。
 そして、本発明者らは上記の目的を達成するために鋭意検討を重ねた結果、水溶性の高分子ポリマーにより搬送時及び保管時の表面保護を実現することを考えた。そして、本発明者らは、溶液中に存在するポリマーはウェーハに吸着することを知見し、分子量が大きいポリマーの吸着層が、シリコンウェーハと金属あるいは純水やアルカリとの間で発生する化学反応を抑制できることに想到した。
 そして、本発明者らは、任意の工程の後に、一定以上の分子量を持つポリマーをウェーハ表面に吸着させることで、その工程から次の工程までの間の金属汚染および表面荒れを抑制できることを見出し、本発明を完成させた。
 即ち、本発明は、シリコンウェーハの加工工程において、第1の工程から次工程である第2の工程までシリコンウェーハを搬送、又は、第1の工程後に第2の工程に投入するまでの間シリコンウェーハを保管する、シリコンウェーハの搬送・保管方法であって、前記第1の工程後に、前記シリコンウェーハの表面に、分子量100,000以上のポリマーを吸着させ、前記シリコンウェーハ表面に前記ポリマーを吸着させた状態で前記第2の工程まで搬送・保管することを特徴とするシリコンウェーハの搬送・保管方法である。
 以下、本発明のシリコンウェーハの搬送・保管方法を、図1に示した工程フロー図を用いて説明する。
 本発明における第1の工程(図1(A))は、シリコンウェーハの加工工程における任意の工程であり、例えば、スライス工程、面取り工程、ラッピング工程、エッチング工程、研磨工程、洗浄工程等が挙げられる。
 前記第1の工程後に、シリコンウェーハの表面に、分子量100,000以上のポリマーを吸着させる(図1(B))。本発明において吸着させるポリマーは、分子量が100,000以上であれば特に限定されず、例えば、ヒドロキシエチルセルロース等の水溶性のポリマーが挙げられる。また、分子量は1,000,000以下であることが好ましい。尚、本発明における分子量は、ゲル浸透クロマトグラフィーを用い、ポリエチレンオキサイド換算値として算出した重量平均分子量である。
 このように分子量100,000以上の分子量が大きいポリマーを吸着させることで、吸着層が厚く形成されるため、金属汚染物質や、塩基等がウェーハ表面に到達しないため、金属汚染および表面荒れを抑制することができる。分子量100,000未満では、吸着層が薄くなるために、金属汚染物質や塩基などのウェーハ表面への到達を抑制することができない。
 ポリマー吸着の具体的な手法としては、第1の工程が、研磨剤を供給しながらシリコンウェーハ表面を研磨処理する研磨工程である場合には、研磨工程(第1の工程)後に、供給する研磨剤をポリマーを含む溶液(例えば、ポリマーを0.1質量%~1質量%となるように溶解させた純水)に切り替えて、例えば10秒~30秒程度シリコンウェーハ表面を処理することにより、ポリマーをシリコンウェーハ表面に吸着させることができる。
 また、シリコンウェーハ表面へのポリマーの吸着を、ポリマーを含む(例えば、ポリマーが0.1質量%~1質量%となるように溶解させた)純水槽中に、例えば10秒~30秒程度、シリコンウェーハを浸漬させるか、又は、ポリマーを含む純水をシリコンウェーハ表面にシャワー状に飛散させることによっても行うことができる。
 そして、シリコンウェーハ表面にポリマーを吸着させた状態で、第2の工程(図1(C))までシリコンウェーハを搬送、又は第2の工程に投入するまでの間シリコンウェーハを保管する。尚、搬送・保管は乾燥状態でも湿潤状態でもどちらでも実施可能である。
 第2の工程(図1(C))としては、第1の工程と同様の工程が挙げられる。本発明における第2の工程が研磨工程である場合、研磨工程中にポリマー吸着層は容易に除去されるため、表面酸化膜を付けた場合に生じる研磨の生産性低下の問題が生じない。このように、本発明においては、後工程(第2の工程)が研磨工程等である場合、ウェーハ加工工程以外の、特別にポリマーを剥離する工程は必要としない。
 このような本発明のシリコンウェーハの搬送・保管方法であれば、ポリマーを吸着させることで、オゾン水等で表面酸化膜を形成した場合と同等の金属汚染耐性およびエッチング耐性を得ることが可能となる。
 また、ウェーハ表面保護能力が高いかを定量的に評価する必要があるが、金属汚染耐性をテストする際、故意汚染を行うことで洗浄槽および装置のアーム、検査機が汚染され、その後長期間にわたって汚染の影響が残る可能性があるため、故意汚染を行わないでポリマーの表面保護性を評価する手法が求められている。
 ここで、本発明におけるポリマーを吸着させたシリコンウェーハは、金属汚染耐性とエッチング耐性との間に相関がみられることから、ΔHazeなどのエッチング耐性を評価することで金属汚染耐性も間接的に評価することができる。
 また、エッチング耐性を評価するテストでは、Hazeの悪化量が大きすぎるとKLAテンコール社製のSPxでの評価が難しくなってしまうため、Haze悪化量が10~20%程度となるようエッチング条件(アルカリ濃度や浸漬時間)を調整することで最も比較評価しやすくなる。
 以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。尚、以下で示すポリマーの分子量は、ゲル浸透クロマトグラフィーを用い、ポリエチレンオキサイド換算値として算出した重量平均分子量である。
(実施例1、2)
 ポリマーの保護性を評価するため、表1の評価水準に示すように、1枚のシリコンウェーハの表面に、オゾン水を用いて表面酸化膜を形成したものを、HFを用いて表面酸化膜を剥離してベアシリコンとし、該ベアシリコンの表面にポリマーA(分子量250000のヒドロキシエチルセルロース)を吸着させた(ウェーハ1-1)。なお、ポリマーの吸着はポリマーAを0.1wt%溶解させた純水中に10sec浸漬させることにより実施した。このようにして作製したウェーハ1-1をCu(1ppm)により故意汚染した純水中に1日保管し、その後KLAテンコール社製のSPxとSEMにてピット化した個数を計測した(実施例1)。また、ウェーハ1-1と同様の方法により、ベアシリコンの表面にポリマーB(分子量100,000のポリビニルアルコール)を吸着させ(ウェーハ2-1)、実施例1と同様にピット化した個数を計測した(実施例2)。結果を図2に示す。
(比較例1~4)
 1枚のシリコンウェーハの表面に、表1の評価水準に示すように、濃度30ppmのオゾン水を用いて表面酸化膜を形成したもの(ウェーハ3-1)と、HFを用いて表面酸化膜を剥離したベアシリコン3枚を用意し、ベアシリコン3枚のうち1枚はポリマーを吸着させず(ウェーハ4-1)、1枚はポリマーC(分子量80000のポリビニルアルコール)を吸着させ(ウェーハ5-1)、1枚はポリマーD(分子量20000のポリビニルアルコール)を吸着させた(ウェーハ6-1)。なお、ポリマーの吸着はポリマーC、Dを0.1wt%溶解させた純水中に10sec浸漬させることにより実施した。このようにして作製したウェーハ3-1、4-1、5-1、6-1をCu(1ppm)により故意汚染した純水中に1日保管し、その後KLAテンコール社製のSPxとSEMにてピット化した個数を計測した(それぞれ比較例1、2、3、4)。結果を図2に示す。
Figure JPOXMLDOC01-appb-T000001
 ポリマーAを吸着させたウェーハ1-1(実施例1)、ポリマーBを吸着させたウェーハ2-1(実施例2)は、オゾン洗浄を行い、表面酸化膜を形成したウェーハ3-1(比較例1)と同等レベルにピットの発生を抑制できているのに対し、表面酸化膜のないウェーハでポリマー吸着処理を施していないウェーハ4-1(比較例2)は大幅に増加していることが判った。また、ポリマーCを吸着させたウェーハ5-1(比較例3)及びポリマーDを吸着させたウェーハ6-1(比較例4)はピットの発生が見られた。尚、第2の工程で研磨を行った場合、オゾン洗浄を行い表面酸化膜を形成したウェーハは、ポリマーA又はBを吸着させて表面保護を行ったウェーハに比べ、研磨で所定の取り代を得るのに2倍以上の時間を要し、生産性が大きく低下してしまった。
 ポリマーを吸着させた実施例1、2と、比較例3、4との間でピット増加数に差が見られた点に関しては、ポリマーの分子量の寄与が考えられる。分子量が100,000以上であるポリマーA、Bでは、吸着層が厚く形成されたためウェーハと金属間での化学反応が抑制できたのに対し、分子量が100,000未満であるポリマーC、Dでは吸着層が薄いため、抑制しきれなかったと考えられる。
(実施例3、4)
 次に、ポリマーの吸着有無による表面荒れの程度を評価するため、ウェーハ1-1と同様の方法により作製したウェーハ1-2、ウェーハ2-1と同様の方法により作製したウェーハ2-2を、Cuによる故意汚染がない純水中に1日浸漬させ、浸漬している部分としていない部位での粗さの差に注目した(それぞれ実施例3、実施例4)。もし、ポリマー吸着により表面荒れを抑制できていれば、浸漬部分と非浸漬部分の粗さが同等となるはずである。
 粗さのパラメータとしてKLAテンコール社製のSPxのHaze評価を採用した。Hazeは斜め方向から入射した光がどの程度以上散乱したかを示すパラメータであり、表面粗さが良好であるほどHazeは小さくなる。今回はΔHaze=Haze(浸漬部)-Haze(非浸漬部)というパラメータにより表面保護性を評価した。表面保護性が悪いほど浸漬部のHazeが悪化するため、ΔHazeは悪化する。図3にΔHazeの結果を示す。
(比較例5~8)
 また、ウェーハ3-1と同様の方法によりウェーハ3-2を、ウェーハ4-1と同様の方法によりウェーハ4-2を、ウェーハ5-1と同様の方法によりウェーハ5-2を、ウェーハ6-1と同様の方法によりウェーハ6-2を作製し、表面保護性を同様に評価した(それぞれ比較例5~8)。図3にΔHazeの結果を示す。
 表面酸化膜のないウェーハでポリマー吸着処理を施していないウェーハ4-2(比較例6)はΔHazeが大幅に増加しており、浸漬部で面荒れが進んでいることが分かる。ポリマーAを吸着させたウェーハ1-2(実施例3)及びポリマーBを吸着させたウェーハ2-2(実施例4)は、オゾン水で表面酸化膜を形成したウェーハ3-2(比較例5)と同等の良好なΔHazeであったのに対し、ポリマーCを吸着させたウェーハ5-2(比較例7)及びポリマーDを吸着させたウェーハ6-2(比較例8)はポリマーAを吸着させたウェーハ1-2(実施例3)やポリマーBを吸着させたウェーハ2-2(実施例4)より悪化傾向にあった。尚、第2の工程で研磨を行った場合、オゾン洗浄を行い表面酸化膜を形成したウェーハは、ポリマーA又はBを吸着させて表面保護を行ったウェーハに比べ、研磨で所定の取り代を得るのに2倍以上の時間を要し、生産性が大きく低下してしまった。
 図3の結果から、ポリマーAやポリマーBを吸着させることで純水中保管による面荒れを酸化膜形成時と同等レベルで保護できていることが分かると共に、図2の結果と相関性が高く、金属汚染からの保護性が高いポリマーはエッチングによる面荒れからの保護性も高いことが示され、ΔHazeなどのエッチング耐性を評価することで金属汚染耐性も間接評価が可能であることが示された。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (3)

  1.  シリコンウェーハの加工工程において、第1の工程から次工程である第2の工程までシリコンウェーハを搬送、又は、第1の工程後に第2の工程に投入するまでの間シリコンウェーハを保管する、シリコンウェーハの搬送・保管方法であって、
     前記第1の工程後に、前記シリコンウェーハの表面に、分子量100,000以上のポリマーを吸着させ、前記シリコンウェーハ表面に前記ポリマーを吸着させた状態で前記第2の工程まで搬送・保管することを特徴とするシリコンウェーハの搬送・保管方法。
  2.  前記第1の工程を、研磨剤を供給しながら前記シリコンウェーハ表面を研磨処理する研磨工程とし、該研磨工程後に、前記供給する研磨剤を前記ポリマーを含む溶液に切り替えて前記シリコンウェーハ表面を処理することにより、前記ポリマーを前記シリコンウェーハ表面に吸着させることを特徴とする請求項1に記載のシリコンウェーハの搬送・保管方法。
  3.  前記シリコンウェーハ表面へのポリマーの吸着を、前記ポリマーを含む純水槽中に前記シリコンウェーハを浸漬させるか、又は、前記ポリマーを含む純水を前記シリコンウェーハ表面に飛散させることにより行うことを特徴とする請求項1に記載のシリコンウェーハの搬送・保管方法。
PCT/JP2017/018964 2016-06-13 2017-05-22 シリコンウェーハの搬送・保管方法 WO2017217186A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-117215 2016-06-13
JP2016117215A JP6572830B2 (ja) 2016-06-13 2016-06-13 シリコンウェーハの搬送・保管方法

Publications (1)

Publication Number Publication Date
WO2017217186A1 true WO2017217186A1 (ja) 2017-12-21

Family

ID=60663475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018964 WO2017217186A1 (ja) 2016-06-13 2017-05-22 シリコンウェーハの搬送・保管方法

Country Status (3)

Country Link
JP (1) JP6572830B2 (ja)
TW (1) TW201810514A (ja)
WO (1) WO2017217186A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03248532A (ja) * 1990-02-27 1991-11-06 Sumitomo Electric Ind Ltd 半導体ウエハの加工方法
JPH03256328A (ja) * 1990-03-06 1991-11-15 Mitsubishi Electric Corp 半導体装置の製造方法
JPH10120965A (ja) * 1996-10-14 1998-05-12 Chisso Corp シリコンウエハー保護膜用樹脂組成物
JP2009255248A (ja) * 2008-04-18 2009-11-05 Disco Abrasive Syst Ltd 研磨装置
WO2014148399A1 (ja) * 2013-03-19 2014-09-25 株式会社フジミインコーポレーテッド 研磨用組成物、研磨用組成物製造方法および研磨用組成物調製用キット

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6206360B2 (ja) * 2014-08-29 2017-10-04 株式会社Sumco シリコンウェーハの研磨方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03248532A (ja) * 1990-02-27 1991-11-06 Sumitomo Electric Ind Ltd 半導体ウエハの加工方法
JPH03256328A (ja) * 1990-03-06 1991-11-15 Mitsubishi Electric Corp 半導体装置の製造方法
JPH10120965A (ja) * 1996-10-14 1998-05-12 Chisso Corp シリコンウエハー保護膜用樹脂組成物
JP2009255248A (ja) * 2008-04-18 2009-11-05 Disco Abrasive Syst Ltd 研磨装置
WO2014148399A1 (ja) * 2013-03-19 2014-09-25 株式会社フジミインコーポレーテッド 研磨用組成物、研磨用組成物製造方法および研磨用組成物調製用キット

Also Published As

Publication number Publication date
TW201810514A (zh) 2018-03-16
JP2017224652A (ja) 2017-12-21
JP6572830B2 (ja) 2019-09-11

Similar Documents

Publication Publication Date Title
JP2020061483A (ja) 半導体シリコンウェーハの洗浄処理装置および洗浄方法
JP5533624B2 (ja) 半導体ウェーハの洗浄方法
JP4817887B2 (ja) 半導体基板の洗浄方法
JP6572830B2 (ja) シリコンウェーハの搬送・保管方法
KR20190105701A (ko) 반도체 기판용 세정액 조성물
KR20180092049A (ko) 반도체 처리용 조성물 및 처리 방법
US20150357180A1 (en) Methods for cleaning semiconductor substrates
Bearda et al. Overview of wafer contamination and defectivity
US11862456B2 (en) Method for cleaning semiconductor wafer
JP6638636B2 (ja) ポリマーの保護性評価方法
JP4753656B2 (ja) シリコンウエーハ表面へのボロン汚染抑制方法
JPH08264499A (ja) シリコンウェーハ用洗浄液及び洗浄方法
JP4344855B2 (ja) 電子デバイス用基板の有機汚染防止法及び有機汚染を防止した電子デバイス用基板
JP7279753B2 (ja) シリコンウェーハの洗浄方法および製造方法
JP6520777B2 (ja) シリコン単結晶ウエハの評価方法
WO2014055752A1 (en) Uv treatment of polished wafers
JP7306373B2 (ja) ドライエッチング残渣を除去するための洗浄液及びこれを用いた半導体基板の製造方法
JP2012109289A (ja) シリコンウェハ洗浄用リンス液調製方法
EP3573090B1 (en) Semiconductor wafer cleaning method
Rimal et al. Characterization of Post Etch Residues on Patterned Porous Low-k Dielectric Using Multiple Internal Reflection Infrared Spectroscopy
JP2008166404A (ja) 疎水性シリコンウエハ用洗浄水及びそれを用いた洗浄方法
KR20240051142A (ko) 실리콘 웨이퍼의 세정방법 및 제조방법, 그리고 세정액 중의 과산화수소농도 평가방법 및 과산화수소농도 관리방법
Masaoka et al. Effect of Dilute Hydrogen Peroxide in Ultrapure Water on Sige Epitaxial Process
Luo et al. Effect of De-ionized Water Rinse in AlCu Line Post Etch Asher Residue Removal Process Using Fluoride Containing Stripper
CN116918041A (zh) 硅晶圆的清洗方法、硅晶圆的制造方法及硅晶圆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17813089

Country of ref document: EP

Kind code of ref document: A1