WO2017216934A1 - クロマトグラフ質量分析装置、及び制御方法 - Google Patents

クロマトグラフ質量分析装置、及び制御方法 Download PDF

Info

Publication number
WO2017216934A1
WO2017216934A1 PCT/JP2016/067990 JP2016067990W WO2017216934A1 WO 2017216934 A1 WO2017216934 A1 WO 2017216934A1 JP 2016067990 W JP2016067990 W JP 2016067990W WO 2017216934 A1 WO2017216934 A1 WO 2017216934A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
analysis
unit
mass spectrometer
chromatogram
Prior art date
Application number
PCT/JP2016/067990
Other languages
English (en)
French (fr)
Inventor
彰 前川
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to PCT/JP2016/067990 priority Critical patent/WO2017216934A1/ja
Priority to GB1817285.8A priority patent/GB2564988B/en
Priority to DE112016006847.6T priority patent/DE112016006847T5/de
Priority to US16/304,945 priority patent/US11320410B2/en
Priority to JP2018523127A priority patent/JP6717938B2/ja
Publication of WO2017216934A1 publication Critical patent/WO2017216934A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8651Recording, data aquisition, archiving and storage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/24Automatic injection systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • G01N30/46Flow patterns using more than one column
    • G01N30/466Flow patterns using more than one column with separation columns in parallel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7233Mass spectrometers interfaced to liquid or supercritical fluid chromatograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N2030/628Multiplexing, i.e. several columns sharing a single detector

Definitions

  • the present invention relates to a chromatographic mass spectrometer and a control method thereof.
  • a mass spectrometer is used as a high-sensitivity detector for a liquid chromatograph.
  • the mass spectrometer for example, there are a quadrupole mass spectrometer, an ion trap mass spectrometer, and a time-of-flight mass spectrometer, which are properly used according to the purpose of measurement.
  • a quadrupole mass spectrometer is often used.
  • the quadrupole mass spectrometer can measure the mass number by two methods, scan measurement and selected ion monitoring (SIM).
  • scan measurement scanning is performed within a predetermined mass number range, and the spectrum of ions included in the set mass number range is detected. This scanning method is used for qualitative analysis of unknown samples.
  • SIM measurement a chromatogram of ions having a specific mass number designated in advance is selectively detected. This method is used when a component to be analyzed is known and quantitative analysis of the component is performed with high sensitivity.
  • the mass spectrometer performs ionization and detection for several seconds to several tens of seconds in the vicinity of the retention time. Can be done.
  • the liquid chromatogram needs to pass through a column equilibration process, a column injection process, a gradient and component elution process, and a washing process after elution, and a process of several minutes to several hours. For this reason, if the liquid chromatogram and the mass spectrometer are in a one-to-one relationship, the mass spectrometer will be out of operation for most of the time.
  • This analyzer has a plurality of liquid feed pumps and columns, and each of these streams operates independently. By operating the set of analysis operations in parallel, the operating rate of the mass spectrometer is improved and the overall analysis time is shortened.
  • Patent Document 1 An example of such a system is Patent Document 1 and the like.
  • this document there are multiple streams of pump, autosampler, and column sets that are components of a liquid chromatogram, and the data collection capability of the mass spectrometer is maximized by switching them with valves. It is said.
  • liquid chromatograph mass spectrometer having a plurality of streams
  • liquid chromatograms require at least a column equilibration step, a column injection step, a gradient and component elution step, and a washing step after elution, but we want to collect data with a mass spectrometer.
  • the time zone is a small part of the component elution step among the steps.
  • an apparatus control unit for example, a control computer, must instruct the start of data collection of the mass spectrometer at an appropriate timing while proceeding with each step of the liquid chromatogram. Furthermore, it is necessary to schedule the non-data collection time zone in each stream to be executed as much as possible with that of other streams to improve the sample processing efficiency.
  • the mass spectrometer determines the time zone in which data is to be collected by the mass spectrometer and the time zone in which data collection is unnecessary, and to control the mass spectrometer to perform the analysis operation according to the determined analysis schedule.
  • the time zone in which data is to be collected must be determined so that the time zones do not overlap between multiple streams.
  • An object of the present invention is to solve the above-mentioned problems, determine an analysis schedule that processes each stream of a plurality of liquid chromatogram streams in parallel, and allows a liquid chromatograph mass spectrometer to collect data at an appropriate timing. It is an object of the present invention to provide a chromatographic mass spectrometer and a control method thereof.
  • a chromatograph mass spectrometer a plurality of chromatogram units, and a switching unit that selectively selects samples eluted from the plurality of chromatogram units
  • a mass analyzing unit that ionizes and analyzes a sample introduced from the switching unit
  • a control unit that controls the chromatogram unit, the switching unit, and the mass analyzing unit.
  • the time during collection is divided into the time after collection, the time during collection of multiple chromatogram units is searched for a time position, the time during collection is assigned, and the analysis start time for each of the multiple chromatogram units is determined in advance.
  • the present invention provides a chromatograph mass spectrometer and a control method thereof.
  • an appropriate analysis schedule for a chromatograph mass spectrometer can be determined by a simple procedure.
  • FIG. 3 is a flowchart illustrating an example of an analysis schedule determination procedure of the chromatograph mass spectrometer according to the first embodiment. It is a figure which shows the example of 1 structure of the chromatograph mass spectrometer based on each Example. It is a figure which shows an example of the sample table of the chromatograph mass spectrometer which concerns on each Example. It is a figure which shows an example of the analysis time in the liquid chromatogram apparatus based on Example 1. FIG. It is a figure which shows the analysis time in a liquid chromatogram apparatus based on Example 1 in a table format. It is a figure which shows the process which allocates data collection time to the free time of a mass spectrometer based on Example 1. FIG. FIG. FIG.
  • Example 6 is a graph showing the relationship between the eluent flow rate and the retention time when components are separated by a column according to Example 2. It is the figure based on Example 2 which represented the relationship between the eluent flow volume at the time of isolate
  • the embodiment of the present invention is not limited to the examples described later, and various modifications are possible within the scope of the technical idea.
  • the feature of the present invention is that the analysis operation of one sample of the chromatograph mass spectrometer is divided into three types of time, the pre-collection time, the mid-collection time, and the post-collection time.
  • the mass analyzer is operated more efficiently by operating in parallel with the stream collection time, and the definitions of the three types of times in this specification are as follows.
  • the pre-collection time is from the time when the chromatogram mass spectrometer starts the analysis operation to the time when the mass spectrometer starts collecting data, and from the time when the mass spectrometer completes data collection. Until the time to start. This time can include steps such as washing steps, equilibration, sample injection, and component elution.
  • the time during collection is from the time when the chromatogram mass spectrometer is the component elution step and the mass analyzer starts collecting data of the stream to the time when data collection is finished.
  • it is a time for detecting a peak appearing at a time (retention time) when a component is eluted. This is, for example, a time including a margin time before and after a peak peak and valley can be recognized. This time during data collection exists for each number of components when detecting a plurality of components from one sample.
  • the post-collection time is the time from the time when the mass spectrometer completes the last data collection to the time when the analysis operation of the chromatogram mass spectrometer is completed in the analysis of the sample. This time can include steps such as washing steps, equilibration, and preparation for the next analysis.
  • control unit of the chromatogram mass spectrometer of the present invention holds a parameter set for varying the component elution time in the storage unit, and adjusts the analysis parameters so that the data collection timing is suitable for creating an analysis schedule.
  • the parameter set that varies the component elution time is information that holds the relationship of how the component elution time changes in the chromatogram when a part of the analysis conditions is varied.
  • Example 1 is a chromatograph mass spectrometer, a plurality of chromatogram units, a switching unit that selectively selects samples eluted from each of the plurality of chromatogram units, and a sample introduced from the switching unit And a control unit for controlling the chromatogram unit, the switching unit, and the mass analysis unit, and the control unit sets the time required for sample analysis before the collection time, during the collection time, and after the collection.
  • a chromatograph mass spectrometer that divides the time, searches for a time position where the collecting time of the plurality of chromatogram parts does not overlap, assigns the collecting time, and predetermines the analysis start time of each of the plurality of chromatogram parts, And an example of the control method.
  • FIG. 2 shows a configuration example of the chromatograph mass spectrometer according to the first embodiment.
  • the liquid chromatogram systems 201 to 203 constituting the chromatogram section have pumps 207 to 209 as pumps 1, 2, and 3, respectively, autosamplers 210 to 212, and columns 213 to 215 as columns 1, 2, and 3. Yes. These are controlled by the controller 221 and can operate independently.
  • the valve 220 is a switching unit that is controlled by the control unit 221 and switches the flow paths from the liquid chromatogram systems 201 to 203.
  • the detector that is, the mass spectrometer 222 serving as a mass spectrometer ionizes and detects the eluted components of the liquid chromatogram systems 201 to 203 selected by the valve 220 serving as a switching unit.
  • the liquid chromatogram apparatus has an autosampler start signal 216 for knowing the timing of sample injection.
  • the autosamplers 210 to 212 each receive the autosampler start signal 216 at the moment the loop is connected to the flow path after injecting samples from the sample groups A, B, and C indicated by 204, 205, and 206, respectively, into the sample loop. Output.
  • This autosampler start signal 216 is used as an analysis start signal 219 of the mass spectrometer 222 which is a detector in a standard liquid chromatograph mass spectrometer.
  • the apparatus since it is desired to collect only a desired part of the data at the time of component separation, the apparatus further includes a delay signal generation unit 217 that can set the delay amount and the number of times by a command from the control unit 221 and includes an autosampler.
  • the mass spectrometer 222 can collect data for an arbitrary time and number of times. That is, a delay signal generation unit 217 that generates a start signal of the mass analysis unit based on the sample injection signal output from each chromatogram unit according to the time during collection determined in advance by the control unit 221 is provided.
  • each delay signal generation unit 217 needs to be prepared independently for each stream of the liquid chromatogram systems 201 to 203.
  • the output of each delay signal generation unit 217 is used as an analysis start signal 219 of a mass spectrometer 222 as a detector after the signals are integrated by a logical OR circuit 218.
  • a hardware configuration including the delay signal generation unit 217 and the logical OR circuit 218 that receives the autosampler start signal 216 from the liquid chromatogram systems 201 to 203 and generates the analysis start signal 219 is a control unit 221 described below. It may be realized by software processing of a computer configuring the above.
  • the control unit 221 of the chromatograph mass spectrometer is preferably assumed to be a personal computer (PC) or an embedded computer having a storage unit, and corresponds to the contents of the sample table in FIG. Analysis condition setting and operation instruction, switching instruction to the valve 220, delay pattern instruction to the delay signal generation unit 217, and analysis condition setting and operation instruction to the mass spectrometer 222.
  • the sample table in FIG. 3 is stored in a storage unit of the PC.
  • the control unit 221 when the functions of the delay signal generation unit 217 and the logical OR circuit 218 described above are realized by the control unit 221, the autosampler start signal 216 is input to the control unit 221, and the analysis start signal 219 created by executing the program is the mass.
  • the data is output to the analyzer 222. That is, the control unit generates a start signal for the mass analysis unit based on the sample injection signal output from each chromatogram unit according to the determined collection time.
  • FIG. 11 shows an example of an operation screen when the control unit 221 is a PC including a display unit such as a graphical user interface (GUI).
  • the order table 1102 displayed on the operation screen 1101 includes a sample name 1110 to be analyzed, selection of a stream 1111 for analysis, designation of vial No. 1112 in the liquid chromatogram autosampler of the selected stream, analysis conditions 1113 It consists of selection.
  • This order table corresponds to the sample name 301, vial No. 302, stream 303, and analysis condition 304 of the sample table 305 shown in FIG.
  • An arbitrary name can be assigned to the sample name 1110, and when the analysis is completed, the measurement result of the mass spectrometer is stored in the storage unit of the PC as a data file to which the sample name is assigned.
  • Stream 1111 specifies which stream is used for analysis. At that time, the vial No. 1112 set in the liquid chromatogram autosampler of the selected stream is input and associated with the sample to be analyzed.
  • Analysis condition 1113 designates a file storing the analysis conditions of the liquid chromatogram and the analysis conditions of the mass spectrometer when performing the analysis.
  • Specified data storage destination folder 1103 specifies a folder for storing the measurement result of the mass spectrometer.
  • the contents of the order table 1102 and the data storage destination folder specification 1103 can be saved and recalled by assigning arbitrary names using a recall / save button 1104.
  • the device status 1105 displays the operating status of the device (analyzing: Analyzing, preparing: Busy, ready: Ready, etc.), and the analysis progress of the sample currently being analyzed as the analysis progress during the analysis. Displays time and remaining time, elapsed time and remaining time in the entire analysis time, etc.
  • FIG. 11 shows that one of the two liquid chromatograms HPLC1 and HPLC2 is being analyzed and the other is ready.
  • the manual operation unit 1106 is used to perform pre-analysis preparation or maintenance for individual parts such as the liquid chromatogram unit pump, autosampler, column oven, or mass spectrometer unit ionization unit, analysis unit, and detector. It is an operation part. Each operation in the manual operation unit 1106 performs operations such as purging or replacing the solvent, equilibrating the column, stabilizing various temperatures and voltage control parts so that the analysis can be started before the sample analysis.
  • the start / stop button 1107 is for starting and stopping the analysis.
  • the schedule button 1108 instructs to create a schedule for determining in advance the analysis start time of each of the plurality of chromatogram units corresponding to the sample in the order table 1102.
  • the start / stop button 1107 is configured so that it cannot be operated until the analysis schedule is determined by the program executed by the control unit 221 by the operation of the schedule button 1108.
  • the schedule button 1108 is used to predetermine an analysis schedule based on the sample analysis information specified in the order table 1102.
  • the chromatographic mass after the operation of the schedule button 1108 will be described.
  • An analysis schedule determination procedure of the analyzer and a subsequent analysis procedure are shown.
  • FIG. 1 is a flowchart showing an analysis schedule determination procedure and an analysis procedure in the simplest case of the chromatographic mass spectrometer according to the first embodiment.
  • the processing procedure after the analysis start 101 will be described according to the steps.
  • the sample repetition 102 is a repetition step for sequentially processing the samples instructed by the order table 1102.
  • step 103 the data collection time is divided into a. Time before collection b. Time during collection c. Time after collection.
  • FIG. 4 is a diagram showing an example of analysis time of the liquid chromatogram apparatus according to the present embodiment.
  • the liquid chromatogram signal 407 shows a temporary graph when the mass spectrometer 222 as a detector is connected and the components are constantly observed.
  • the liquid chromatogram apparatus always operates the pump before the analysis to equilibrate the column.
  • this equilibration 402 is started and a specified time is awaited.
  • the component injection 403 the sample is sucked by the autosamplers 210 to 212 and injected into the flow path via the sample loop.
  • the autosampler injection signal 408 is output at this moment.
  • the autosampler injection signal 408 is input to the delay signal generator 217 shown in FIG. 2, and the delay signal generator output 409 starts. Thereafter, the pumps 207 to 209 perform isocratic analysis by sending liquid at a constant flow rate, or separation 404 while performing gradient elution that continuously changes the composition. In the component elution 405, a peak having an area proportional to the component concentration in the sample is observed within a known elution time range. At this time, the delay signal generation unit 217 outputs the delay signal generation unit output 409 in accordance with the data collection time that is a preset b. Collection time, so that the mass spectrometer 222 collects data at a necessary timing. In the washing 406, unnecessary residual components are discharged, and the solvent in the column is replaced as necessary.
  • the time from the start of liquid chromatogram analysis 401 to the first data collection start time of component elution 405 in equilibration 402 and separation 404 is a
  • the time before collection is 410.
  • the time including the peak top, peak start point, and peak end point at the time of component elution 405 is defined as b.
  • Data collection time 411 that is the time during data collection.
  • the time between b. Data collection time 411, which is the collection time, and b. Next data collection time 413, which is the collection time, is also a.
  • the pre-collection time is assumed, and the pre-collection time 412 and the data collection time 413 are alternately repeated according to the number of component elutions.
  • the time from the time when the last data collection 413 is completed until the liquid chromatogram analysis is completed is referred to as c. Time 414 after collection.
  • the above classification is performed in the step of division 103 in FIG.
  • step 104 in FIG. 1 data collection time is allocated to the free time of the mass spectrometer.
  • the analysis of the sample is assigned at a time when the execution of liquid chromatogram analysis can be started and the mass spectrometer 222 can collect data.
  • FIG. 6 is a conceptual diagram showing a process of assigning data collection time to the free time of the mass spectrometer.
  • the analysis start time 603 of the sample 1 is set as the analysis start time of the apparatus of this embodiment.
  • the data collection time which is b.
  • the time during collection when the analysis time of the sample 1 is divided, is shown as the data collection time 602 in the figure.
  • the analysis start time 607 of the sample 2 is a time when the data collection time 605 of the sample 2 searches for and adds the start time offset 606 of the sample 2 at a time that does not overlap with the data collection time 602 of the sample 1.
  • the offset does not overlap with other data collections of the data collection 605, and a gap may be added for a time necessary for setting the mass spectrometer conditions of the sample 2.
  • the analysis start time 611 of the sample 3 is added by searching for the start time offset 610 of the sample 3 when the data collection time 609 of the sample 3 does not overlap with either the data collection time 602 of the sample 1 or the data collection time 605 of the sample 2 Time.
  • the above-described steps shown in FIG. 1 are performed for the number of times corresponding to the sample repetition 105, and the analysis schedule is completed. Once the schedule has been determined for all samples, the following procedure begins.
  • the sample analysis start time wait 106 is a step of waiting for the start time of each sample of the analysis schedule determined up to the previous step when proceeding with the analysis in the order of the samples set in the sample table 305. When the sample analysis start time is reached, the process proceeds to the next step.
  • step 107 of setting the data collection signal pattern of the sample n in the delay signal generation unit the signal pattern of the data collection time for the sample to be analyzed is set in the delay signal generation unit 217.
  • FIG. 5 shows an example of the setting pattern.
  • a delay signal output time 501 after the input of the autosampler start signal and a signal width 502 that is a data collection time of the mass spectrometer are set in units of seconds.
  • step 108 mass spectrometer data collection preparation and liquid chromatogram analysis operation start are performed. That is, an analysis condition is set in the mass spectrometer 222, and an instruction to start an analysis operation is given to necessary streams of the liquid chromatogram systems 201 to 203. It is desirable if the mass spectrometer 222 itself can hold a plurality of analysis conditions and sequentially apply the set analysis conditions in accordance with the signal from the delay signal generation unit 217, but the signal output timing of the delay signal generation unit 217 In addition, the control unit 221 can be configured to sequentially set analysis conditions in the mass spectrometer 222.
  • the delayed signal generation unit 217 starts generating the data collection signal, and the mass spectrometer 222 collects the data in the process of separation 404. Is done.
  • each stream of the liquid chromatogram operates frequently in a liquid chromatograph mass spectrometer having a plurality of streams
  • the analysis schedule can be appropriately determined in advance so that the mass spectrometer can collect data at a necessary timing.
  • a. Time before collection and c. Time after collection are operated in parallel, and b.
  • a suitable analysis schedule for the liquid chromatograph mass spectrometer can be determined in advance with a simple procedure.
  • Example 1 the elution time of the component to be detected was scheduled by specifying the operation time of the mass spectrometer as being known and fixed time. However, this component elution time can be changed by adjusting parameters indicating analysis conditions such as the solvent composition, the amount of liquid fed, and the column temperature.
  • the second embodiment is an example of a chromatographic mass spectrometer that can perform schedule adjustment by changing the analysis conditions and extending the component elution time. That is, the control unit 221 adjusts the analysis conditions of the liquid chromatogram systems 201 to 203 as the chromatogram unit, extends the component elution time, and allocates the time during collection, and the control method thereof It is an example.
  • the control unit 221 holds a parameter set for varying the component elution time in the storage unit, and uses this parameter set to adjust the analysis parameters so that the data collection timing is suitable for creating a schedule.
  • the parameter set for varying the component elution time is information that retains the relationship of how the component elution time in the liquid chromatogram changes when a part of the analysis conditions is varied.
  • the control unit back-calculates analysis conditions to be changed from the parameter set to avoid duplication, and tries to recreate the schedule. Thereby, the operation rate of a mass spectrometer can be raised and a throughput can be improved.
  • FIG. 7 is a graph showing the relationship between the eluent flow rate and the retention time, which is an example of parameters indicating such adjustable analysis conditions. That is, FIG. 7 is a graph in which the vertical and horizontal axes indicate the eluent flow rate 701 and the retention time 702 when components are separated by the column of the liquid chromatogram system. In the figure, graphs of columns A, B, and C are shown as 703, 704, and 705, respectively. In general, when the eluent flow rate 701 is increased, the holding time 702 is shortened. Conversely, when the eluent flow rate 701 is decreased, the holding time 702 is extended. In other words, when it is desired to extend the holding time 702, the eluent flow rate 701 may be reduced within the usable flow range of the column.
  • FIG. 8 is a diagram showing an example of this relationship as a table.
  • the holding time at a typical operating pressure is 1.0
  • the change rate of the holding time is held for the flow rate before and after that.
  • the table holds a column type 801, a flow rate 802, and a retention time ratio 803 with respect to the standard flow rate.
  • Such a relational table can be created and held for each parameter of analysis conditions such as the composition of the solvent, the liquid feeding amount, and the column temperature.
  • the component elution time can be varied by changing these conditions in accordance with the held relational table.
  • a convenient component elution time can be set when assigning the schedule of the mass spectrometer when determining the schedule.
  • a schedule is performed based on the above knowledge.
  • FIG. 9 shows the procedure for assigning the time of the mass spectrometer while adjusting the component elution time in Example 2. From the start of analysis 901, each step will be described.
  • the sample repetition step 902 is a repetition step for sequentially processing the samples indicated by the sample table as shown in FIG.
  • the liquid chromatogram analysis can be started and the data collection time 1 of the mass spectrometer is Temporarily assign analysis of the sample at a schedulable time.
  • FIG. 10 shows this detail.
  • the analysis start time 1003 of the sample 1 in FIG. 10 is the analysis start time of the apparatus of this embodiment.
  • the analysis start time 1006 for sample 2 is temporarily assigned to the earliest time at which sample 2 data can be collected. In this case, temporary allocation is performed so that the data collection 1005 of the sample 2 is arranged immediately after the data collection 1002 of the sample 1.
  • step 905 of FIG. 9 it is determined whether data collection time 2 or later can be allocated. Since sample 2 has no data collection time 2 and thereafter, it is ignored and the data collection time assignment is determined in step 906 in which all data collection times are assigned.
  • step 904 where data collection time 1 is temporarily allocated to the free time of the mass spectrometer, data collection time 1 is temporarily allocated to the position of data collection time 1008 in FIG. However, it is determined that the data collection time 1015 of the sample 1 overlaps with the data collection time 1016 of the sample 3 in determining whether the data collection time 2 can be allocated after the 905 step. Therefore, in the configuration of the present embodiment, the step 913 for extending the data collection time and evaluating the allocation is performed.
  • the allocation evaluation 913 step in which the data collection time is extended is a step in which an assumed retention time is calculated when a variable range parameter as shown in the table of FIG. 8 is applied to the analysis condition, and a schedule is attempted based on the result. .
  • the elution time becomes longer due to the relationship illustrated in FIGS. 7 and 8 described above.
  • the retention time ratio with respect to the standard flow rate in FIG. 8 may be multiplied by a. Time before collection, b. Time during collection, c.
  • the data collection 1011 is still duplicated in the chromatogram signal 1010 when the flow rate of sample 3 is 0.7 mL, but the data of sample 1 and sample 2 is detected in the chromatogram signal 1013 when the flow rate of sample 3 is 0.6 mL. There is no overlap with any of the collection times. For this reason, it turns out that the analysis of the sample 3 can be efficiently started by analyzing the sample 3 at a flow rate of 0.6 mL / min.
  • the data collection time in FIG. 9 is extended and the assignment evaluation step 913 is a step for evaluating that the data collection time when the conditions are changed as described above does not overlap with the data collection time of other samples.
  • a table as shown in FIG. 8 is prepared and held for each changeable condition, and the control unit 221 in FIG. What is necessary is just to repeat evaluation by the brute force method.
  • a conversion approximation formula may be defined and held for each changeable condition, and the control unit 221 may similarly derive an optimum value by multivariate analysis.
  • step 914 it is determined whether an assignable condition has been searched. If assignment is not possible, data collection time 1 is assigned to the next available free time of the mass spectrometer. The process proceeds to the step of temporarily assigning the data collection time 1 to.
  • Example 1 As in Example 1, the above steps are repeated for all samples by repeating the sample step 907.
  • the sample analysis start time is waited for and the analysis operation is performed in 908 steps and thereafter. This operation is the same as that described with reference to FIG.
  • the operation rate of the mass spectrometer can be increased and the throughput can be further improved.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for better understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • the mass analyzer can be composed of two or more mass spectrometers, It becomes possible to assign more freely the time during data collection according to the number of mass spectrometers.
  • the configuration of the chromatographic mass spectrometer of the second embodiment the case where the data collection time corresponding to one chromatogram portion is extended has been described. However, the data collection time corresponding to two chromatogram portions is extended. Also good.
  • control unit has been described as an example of creating a program that realizes a part or all of them. Needless to say, it can be realized with this. That is, all or part of the functions of the control unit may be realized by an integrated circuit such as ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable Gate Array) instead of the program.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • Pre-collection time 1,411 ... In-collection time Data collection time 1,412 ... Pre-collection time 2,413 ... Data collection time 2,414 ... Time after collection, 501 ... Time, 502 ... Signal width, 601, 604, 608 ... Samples 1, 2, 3 chromatogram signals, 602, 605, 609 ... data collection, 603, 607, 611 ... sample 1, 2, 3 analysis start time, 606, 610 ... sample 2, 3 start time off 612 ... Mass spectrometer output, 701 ... Eluent flow rate, 702 ... Retention time, 703, 704, 705 ... Column A, B, C graph, 801 ... Column type, 802 ... Flow rate, 803 ...
  • Standard flow rate Retention time ratio 1001, 1004, 1007 ... Sample 1, 2, 3 Chromatogram signal, 1002, 1005, 1008, 1011, 1013, 1015, 1016 ... Data collection time, 1003, 1006, 1009 ... Sample 1, 2, 3 Analysis start time, 1010 ... chromatogram signal at sample 3 flow rate 0.7mL, 1012 ... chromatogram signal at sample 3 flow rate 0.6mL, 1014 ... mass spectrometer output, 1101 ... operation screen, 1102 ... order table, 1103 Specifying data storage folder, 1104 ... Call / Save button, 1105 ... Device status, 1106 ... Manual operation unit, 1107 ... Start / Stop button, 1108 ... Schedule button

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

複数の液体クロマトグラムの各ストリームが並行動作し、各々の成分溶出のタイミングで質量分析計がデータを収集できるよう、分析スケジュールを予め作成する。制御部は、複数の液体クロマトグラムシステム各々の試料を分析するのに必要な時間を、収集前時間、収集中時間、収集後時間に分割し、液体クロマトグラム部の収集中時間が重複しない時間位置を探索して割り当て、複数の液体クロマトグラム部の開始時刻を決定することにより分析スケジュールを作成し、その後分析を行うよう制御する。更に、制御部は成分溶出時間を可変するパラメータセットを記憶し、分析スケジュールの作成に適したデータ収集タイミングとなるよう分析パラメータを調整し、成分溶出時間を変更する。

Description

クロマトグラフ質量分析装置、及び制御方法
 本発明は、クロマトグラフ質量分析装置、及びその制御方法に関する。
 近年、液体クロマトグラフ質量分析計を用いた定量分析法が生体試料中の薬剤成分や代謝物、環境試料中の残留物等に多く使用されている。液体クロマトグラフの高感度検出器には質量分析計が使用される。質量分析計には、例えば四重極型質量分析計、イオントラップ型質量分析計、飛行時間型質量分析計があり、それらが測定目的に応じて使い分けられる。定量分析を目的とする場合には、多くの場合、四重極型質量分析計が使用される。
 四重極型質量分析計は、スキャン測定と選択イオンモニタリング(SIM)の2方式で質量数を測定することができる。スキャン測定では、所定の質量数の範囲内を走査し、設定された質量数範囲に含まれるイオンのスペクトルを検出する。このスキャン方法は、未知試料の定性分析等に用いられる。SIM測定では、予め指定された特定の質量数を有するイオンのクロマトグラムを選択的に検出する。この方法は、分析対象の成分が既知で、その成分の定量分析を高感度で行う場合に用いられる。
 特に、生体試料中の薬剤成分や代謝物、環境試料中の残留物等の確認においては、既知の質量数のSIM測定を行い、得られたクロマトグラムの任意のリテンションタイムにおけるピークを検出し、その面積値を定量値として算出することが一般的に行われる。ここで、検出しようとする成分が既知である場合には、分析条件が同一であればリテンションタイムも既知であるから、質量分析計は、当該リテンションタイムの近傍数秒~数十秒のイオン化と検出を行えばよい。
 一方、液体クロマトグラムはカラムの平衡化工程、カラムへの成分の注入工程、グラジエントと成分溶出工程、および溶出後の洗浄工程と、数分~数時間の工程を経ることが必要である。このため、液体クロマトグラムと質量分析計が1対1である場合、質量分析計は大部分の時間で非稼動状態となる。
 環境分析、医療用分析といったルーチン分析では、低コスト、高スループットの分析装置が求められている。前記のとおり非稼動状態が多い質量分析計の稼働率を向上させ、高スループットで試料を分析するには、液体クロマトグラムの分析系統(以下、ストリームと称す)を複数化したものをバルブで択一選択し、質量分析計に導入する分析装置が近年注目されている。
 この分析装置は、送液ポンプとカラムを複数有し、これら各々のストリームが独立して動作する装置構成となっている。その組の分析動作を並列に動作させることで、質量分析計の稼働率を向上させ、全体の分析時間の短縮を図るものである。
 このようなシステムの例として、特許文献1などが挙げられる。この文献では、液体クロマトグラムの構成要素であるポンプ、オートサンプラ、カラムの組を複数ストリーム有し、それらをバルブで切替えることにより、質量分析計のデータ収集能力を最大限に発揮させるものであるとしている。
特表2004-524518号公報
 複数のストリームを有する液体クロマトグラフ質量分析計では、その各ストリームの動作開始タイミング、および質量分析計のデータ収集タイミングを適切に設定することが肝要である。液体クロマトグラムは、前記のとおり少なくともカラムの平衡化工程、カラムへの成分の注入工程、グラジエントと成分溶出工程、および溶出後の洗浄工程が必要であるが、質量分析計でデータ収集を行いたい時間帯は、前記工程のうち、成分溶出工程のごく一部分である。
 そのため、装置制御部、例えば制御コンピュータは液体クロマトグラムの各工程を進めながら、適切なタイミングで質量分析計のデータ収集開始を指示しなければならない。さらには、各ストリームにおける非データ収集時間帯を極力他のストリームのそれと重複して実行するようスケジュールし、試料の処理効率を向上させる必要がある。
 すなわち、液体クロマトグラムのカラムの平衡化工程、カラムへの成分の注入工程、グラジエントと成分溶出工程、および溶出後の洗浄工程といった分析動作の各工程の時間帯を定義し、その時間帯を可能な限り並行に行う、スケジュール生成手順が必要である。
 またそれと同時に、質量分析計によってデータを収集したい時間帯と、データ収集が不要な時間帯とを決定し、決定した分析スケジュールにしたがって質量分析計が分析動作を行うよう装置制御部で制御する必要がある。質量分析計が単一のシステムでは、データを収集したい時間帯は、複数ストリーム間で時間帯が重複しないようスケジュールを決定しなければならない。
 本発明の目的は、上記の課題を解決し、複数の液体クロマトグラムストリームの各ストリームの工程を並行に処理し、かつ液体クロマトグラフ質量分析計が適切なタイミングでデータ収集を行える分析スケジュールを決定するクロマトグラフ質量分析装置、及びその制御方法を提供することにある。
 上記目的を達成するために、本発明においては、クロマトグラフ質量分析装置であって、複数のクロマトグラム部と、複数のクロマトグラム部から溶出される試料を択一的に選択する切替部と、切替部から導入される試料をイオン化して分析する質量分析部と、クロマトグラム部と切替部と質量分析部を制御する制御部とを備え、制御部は、試料分析にかかる時間を収集前時間、収集中時間、収集後時間に分割し、複数のクロマトグラム部の収集中時間が重複しない時間位置を探索して当該収集中時間を割り当て、複数のクロマトグラム部各々の分析開始時刻を予め決定するクロマトグラフ質量分析装置、及びその制御方法を提供する。
 本発明によれば、クロマトグラフ質量分析装置の適切な分析スケジュールを単純な手順で決定できる。
実施例1に係る、クロマトグラフ質量分析装置の分析スケジュール決定手順の一例を示すフロー図ある。 各実施例に係る、クロマトグラフ質量分析装置の一構成例を示す図である。 各実施例に係る、クロマトグラフ質量分析装置のサンプルテーブルの一例を示す図である。 実施例1に係る、液体クロマトグラム装置での分析時間の一例を示す図である。 実施例1に係る、液体クロマトグラム装置での分析時間をテーブル形式で示す図である。 実施例1に係る、質量分析計の空き時間にデータ収集時間を割り当てる処理を示す図である。 実施例2に係る、カラムで成分を分離する際の溶離液流量と保持時間の関係をグラフにした図である。 実施例2に係る、カラムで成分を分離する際の溶離液流量と保持時間の関係を表にした図である。 実施例2に係る、成分溶出時間を調整して質量分析計の時間割り当てを行う分析スケジュール決定手順の一例を示す図である。 実施例2に係る、データ収集時間を伸張させ、成分溶出時間を調整しながら質量分析計の時間割り当てを行う処理を示す図である。 各実施例に係る、クロマトグラフ質量分析装置全体を制御する操作画面例を示す図である。
 以下、図面に基づいて、本発明の実施の形態を説明する。なお、本発明の実施の態様は、後述する実施例に限定されるものではなく、その技術思想の範囲において、種々の変形が可能である。本発明の特徴は、クロマトグラフ質量分析装置の1試料の分析動作を、収集前時間、収集中時間、収集後時間の3種類の時間に分割し、ストリームの収集前時間、収集後時間を他ストリームの収集中時間と並行動作させることで、質量分析部をより効率的に動作させることにあり、本明細書における3種類の時間の定義を以下の通りとする。
 a.収集前時間は、クロマトグラム質量分析装置が分析動作を開始する時刻から、質量分析部がデータ収集を開始する時刻まで、および質量分析部がデータ収集を完了した時刻から、次のデータ収集を開始する時刻までである。この時間には、洗浄工程、平衡化、試料注入、成分溶出といった工程を含めることができる。
 b.収集中時間は、クロマトグラム質量分析装置が成分溶出工程であり、かつ質量分析部が当該ストリームのデータ収集を開始する時刻から、データ収集を終了する時刻までである。特に、選択イオンモニタリング方式におけるデータ収集では、成分が溶出する時刻(リテンションタイム)に出現するピークを検出する時間である。これは例えば、ピークの山・谷が認識できる程度の前後の余裕時間を加味した時間である。このデータ収集中時間は、1試料から複数の成分を検出する場合、その成分数毎に存在する。
 c.収集後時間は、当該試料の分析において、質量分析部が最後のデータ収集を完了した時刻から、クロマトグラム質量分析装置の分析動作が完了する時刻までの時間である。この時間には、洗浄工程、平衡化、次の分析の前準備といった工程を含めることができる。
 更に、本発明のクロマトグラム質量分析装置の制御部は、成分溶出時間を可変するパラメータセットを記憶部に保持し、分析スケジュールの作成に適したデータ収集タイミングとなるよう分析パラメータを調整する。成分溶出時間を可変するパラメータセットとは、分析条件の一部を可変した際、クロマトグラムでの成分溶出時間がどのように変化するかの関係を保持した情報である。あるストリームの収集中時間が他のストリームの収集中時間と重なっている場合、重複を回避するために当該パラメータセットから変更すべき分析条件を逆算し、分析スケジュールの再作成を行う。これにより、質量分析計の稼働率を高めスループットを更に向上させることができる。
 実施例1は、クロマトグラフ質量分析装置であって、複数のクロマトグラム部と、複数のクロマトグラム部各々から溶出される試料を択一的に選択する切替部と、切替部から導入される試料をイオン化して分析する質量分析部と、クロマトグラム部と切替部と質量分析部を制御する制御部とを備え、制御部は、試料分析にかかる時間を収集前時間、収集中時間、収集後時間に分割し、複数のクロマトグラム部の収集中時間が重複しない時間位置を探索して当該収集中時間を割り当て、複数のクロマトグラム部各々の分析開始時刻を予め決定するクロマトグラフ質量分析装置、及びその制御方法の実施例である。
 図2に実施例1に係るクロマトグラフ質量分析装置の一構成例を示す。クロマトグラム部を構成する液体クロマトグラムシステム201~203は、各々にポンプ1、2、3としてポンプ207~209、オートサンプラ210~212、カラム1、2、3としてカラム213~215を有している。これらは制御部221により制御され、各々独立して動作することが可能である。バルブ220は、制御部221により制御され、液体クロマトグラムシステム201~203からの流路を切替える切替部である。検出器、すなわち質量分析部である質量分析計222は、切替部であるバルブ220によって選択された液体クロマトグラムシステム201~203の溶出成分をイオン化し検出する。
 通常液体クロマトグラム装置は、試料注入のタイミングを知るためのオートサンプラ開始信号216を有している。一般的にオートサンプラ210~212各々がサンプルループにそれぞれ204、205、206で示す試料群A、B、Cから、試料を注入後、流路にループを接続した瞬間にオートサンプラ開始信号216を出力する。
 このオートサンプラ開始信号216は、標準的な液体クロマトグラフ質量分析装置では検出器である質量分析計222の分析開始信号219として使用されるものである。しかしながら本実施例の装置においては、成分分離時の所望の一部分のデータのみを収集したいため、制御部221からの指令で遅延量と回数を設定可能な遅延信号生成部217を更に備え、オートサンプラ開始信号216が入力された後、任意の時間および回数について質量分析計222でデータ収集できる構成となっている。すなわち、制御部221が予め決定した収集中時間に従い、クロマトグラム部各々から出力される試料注入信号に基づき、質量分析部の開始信号を生成する遅延信号生成部217を備える。
 図3に示すサンプルテーブルに示すように、液体クロマトグラムシステム201~203のストリーム毎に分析する成分が異なることから、成分が溶出する時間も異なる。このため遅延信号生成部217は液体クロマトグラムシステム201~203の各ストリームに対し独立して準備する必要がある。各々の遅延信号生成部217の出力は、論理OR回路218で信号が統合されたのち、検出器である質量分析計222の分析開始信号219として使用される。
 なお、液体クロマトグラムシステム201~203からのオートサンプラ開始信号216を受け、分析開始信号219を生成する遅延信号生成部217と論理OR回路218からなるハードウェア構成は、以下で説明する制御部221を構成するコンピュータのソフトウェア処理で実現しても良い。
 クロマトグラフ質量分析装置の制御部221は、好ましくは記憶部を備えるパーソナルコンピュータ(PC)または組み込み型コンピュータが想定され、図3のサンプルテーブルの内容に対応して、液体クロマトグラムシステム201~203への分析条件設定および動作指示、バルブ220への切替指示、遅延信号生成部217への遅延パターン指示、および質量分析計222への分析条件設定および動作指示を担う。なお、図3のサンプルテーブルはPCの記憶部などに記憶される。また、上述の遅延信号生成部217と論理OR回路218の機能を制御部221で実現する場合、オートサンプラ開始信号216は制御部221に入力され、プログラム実行によって作成された分析開始信号219が質量分析計222に出力される。すなわち、制御部は、決定した収集中時間に従い、クロマトグラム部各々から出力される試料注入信号に基づき、質量分析部の開始信号を生成する。
 図11に制御部221がグラフィカルユーザインターフェイス(GUI)などの表示部を備えるPCである場合の操作画面例を示す。操作画面1101に表示されるオーダーテーブル1102は、分析を行いたい試料名1110、分析するためのストリーム1111の選択、選択したストリームの液体クロマトグラムオートサンプラ内のバイアルNo.1112の指定、分析条件1113の選択などからなる。このオーダーテーブルは図3に示したサンプルテーブル305の試料名301、バイアルNo.302、ストリーム303、分析条件304に対応している。試料名1110は、任意の名称を付与可能であり、分析完了時、質量分析計の測定結果はこの試料名を付与したデータファイルとしてPCの記憶部に保存される。
 ストリーム1111は、どのストリームを使い分析を行うかを指定する。またその際、選択したストリームの液体クロマトグラムオートサンプラ内にセットされているバイアルNo.1112を入力し、分析したい試料と対応付ける。
 分析条件1113は、分析を行う際の液体クロマトグラムの分析条件、および質量分析計の分析条件を格納したファイルを指定する。
 データ保存先フォルダ指定1103は、質量分析計の測定結果を保存するフォルダを指定する。オーダーテーブル1102およびデータ保存先フォルダ指定1103の内容は、呼出・保存ボタン1104にて、任意の名前をつけて保存および呼び出しが可能である。
 装置状態1105は、装置の稼動状態(分析中:Analyzing、準備中:Busy、準備完:Ready、など)を表示すると共に、分析実行中においては分析の進捗として、現在分析中の試料の分析経過時間と残り時間、分析時間全体での経過時間と残り時間などを表示する。図11には、二つの液体クロマトグラムHPLC1、HPLC2の一方が分析中、他方が準備完状態であることを示している。
 手動操作部1106は、液体クロマトグラム部のポンプ、オートサンプラ、カラムオーブン、または質量分析計部のイオン化部、分析部、検出器などの個別の部位について、分析前準備、またはメンテナンスを行うための操作部位である。手動操作部1106内の各操作により、試料分析前には分析開始が可能なよう、溶媒のパージや置換、カラムの平衡化、各種温度、電圧制御部位の安定化、といった操作を行う。
 開始、停止ボタン1107は、分析を開始、停止するためのものである。スケジュールボタン1108は、オーダーテーブル1102中の試料に対応する複数のクロマトグラム部各々の分析開始時刻を予め決定するためのスケジュール作成を指示するものである。開始、停止ボタン1107は、スケジュールボタン1108の作動により、制御部221がプログラム実行して分析スケジュールが決定した後でなければ、作動することはできないよう構成される。
 このように、スケジュールボタン1108は、オーダーテーブル1102に指定された試料分析情報を元に、分析スケジュールを予め決定させるために用いるものであり、以下に、このスケジュールボタン1108作動後の、クロマトグラフ質量分析装置の分析スケジュール決定手順、及びその後の分析手順を示す。
 図1は、実施例1に係るクロマトグラフ質量分析装置の最も単純なケースにおける分析スケジュール決定手順、及び分析手順を示すフロー図である。以下、分析開始101以降の処理手順をステップに従って説明する。
 試料の繰り返し102は、オーダーテーブル1102によって指示された試料を、順次処理する繰り返しステップである。
 103のステップでは、データ収集時間をa.収集前時間b.収集中時間c.収集後時間に分割する。
 図4は本実施例の液体クロマトグラム装置の分析時間の一例を示す図である。液体クロマトグラム信号407は、検出器である質量分析計222を接続し、常時成分を観察した場合の仮のグラフを示す。
 一般的には、液体クロマトグラム装置は分析前には常時ポンプを動作させ、カラムの平衡化を行う。液体クロマトグラム分析開始401では、この平衡化402を開始し、規定時間待つ。この後、成分注入403では試料をオートサンプラ210~212で吸引しサンプルループ経由で流路へ注入する。また上述したように、この瞬間にオートサンプラ注入信号408が出力される。
 オートサンプラ注入信号408は、図2に示す遅延信号生成部217に入力され、遅延信号生成部出力409が開始する。この後、ポンプ207~209は一定流量での送液によるイソクラティック分析、または組成を連続的に変化させるグラジエント溶離させながら分離404を行う。成分溶出405では、既知の溶出時間の範囲において、試料中の成分濃度に比例した面積のピークが観測される。このとき遅延信号生成部217では、予め設定したb.収集中時間であるデータ収集時間に従って遅延信号生成部出力409を出力するため、質量分析計222が必要なタイミングでデータ収集を行う。洗浄406では、不要な残存成分を排出し、必要に応じてカラム内溶媒を置換する。
 以上の工程を本発明のa~cの各時間に分類した場合、液体クロマトグラム分析開始401を始めとし、平衡化402および分離404のなかで成分溶出405の最初のデータ収集開始時刻までをa.収集前時間410とする。また成分溶出405の時のピークトップおよび、ピーク開始点、ピーク終了点を含めた時間をb.データ収集中時間であるデータ収集時間411とする。
 なお一度の試料分析において複数成分の溶出が見込まれる場合は、b.収集中時間であるデータ収集時間411と、b.収集中時間である次のデータ収集時間413の間の時間も、a.収集前時間とし、成分溶出の個数に応じ収集前時間412とデータ収集時間413を交互に繰り返すものとする。最後のデータ収集413が終了した時刻から液体クロマトグラム分析が終了するまでの時間をc.収集後時間414とする。以上の分類を、図1の分割103のステップで行う。
 図1の次のステップ104では、質量分析計の空き時間にデータ収集時間を割り当てる。この割り当てステップでは、液体クロマトグラム分析実行を開始でき、かつ質量分析計222がデータ収集可能な時刻に、当該試料の分析を割り当てる。
 図6は、質量分析計の空き時間にデータ収集時間を割り当てる処理を示す概念図である。試料1の分析開始時刻603は、本実施例の装置の分析開始時刻とする。また試料1の分析時間を分割した際のb.収集中時間であるデータ収集時間を、図中のデータ収集時間602として示す。試料2の分析開始時刻607は、試料2のデータ収集時間605が、試料1のデータ収集時間602に重複しない時間の試料2の開始時刻オフセット606を探索し付加した時刻とする。なおこのオフセットは、データ収集605他のデータ収集と重複しないだけでなく、試料2の質量分析計条件設定に必要な時間だけギャップを加えてもよい。試料3の分析開始時刻611は、試料3のデータ収集時間609が試料1のデータ収集時間602および試料2のデータ収集時間605のいずれとも重複しない時間の試料3の開始時刻オフセット610を探索し付加した時刻とする。
 図1に示す上述したステップを試料の繰り返し105に対応する回数分行い、分析スケジュールを完成させる。すべての試料についてスケジュールが決定すると、以下の手順を開始する。試料分析開始時刻待ち106では、サンプルテーブル305に設定された試料の順に分析を進めるにあたり、前ステップまでで決定した分析スケジュールの各試料の開始時刻を待つステップである。試料分析開始時刻となった場合、次のステップに進む。
 遅延信号生成部に試料nのデータ収集信号パターンを設定する107ステップでは、分析する試料に対するデータ収集時間の信号パターンを遅延信号生成部217に設定する。図5に設定パターンの一例を示す。オートサンプラ開始信号が入力されてからの遅延信号出力の時刻501、および質量分析計のデータ収集時間となる信号幅502を秒単位で設定する。これにより、液体クロマトグラム装置の分析動作を開始し、オートサンプラ開始信号216が入力されれば、本ステップ107で設定した規定の時間経過後に、必要なデータ収集時間分の分析開始信号219が質量分析計222に出力される。
 続いて、108ステップでは、質量分析計データ収集準備、液体クロマトグラム分析動作開始を行う。すなわち、質量分析計222に分析条件を設定し、液体クロマトグラムシステム201~203の必要なストリームに分析動作開始の指示を行う。質量分析計222自身が、分析条件を複数保持し、遅延信号生成部217からの信号に従い、設定された分析条件を順番に適用することができれば望ましいが、遅延信号生成部217の信号出力タイミングに併せ、制御部221が逐次的に質量分析計222へ分析条件を設定するよう構成することができる。この108ステップの実行で液体クロマトグラムの分析動作が進み、成分注入403が行われると、遅延信号生成部217がデータ収集信号の生成を開始し、分離404 の工程において質量分析計222でデータ収集が行われる。
 109ステップである遅延信号生成部の全試料出力終了?では、すべての液体クロマトグラム分析が終了し、遅延信号生成部217の出力が質量分析計222に出力完了したことを確認し、分析終了110とする。終了していない試料がある場合は、試料分析開始時刻待ち106ステップに戻り、次の試料の分析指示を行う。
 以上詳述した本実施例のクロマトグラフ質量分析装置の分析スケジュールを予め決定する分析スケジュール決定処理により、複数ストリームを持つ液体クロマトグラフ質量分析計で、液体クロマトグラムの各ストリームが粛々と動作し、かつ必要なタイミングで質量分析計がデータを収集できるよう、分析スケジュールを予め適切に決定することができる。
 以上説明した実施例1のクロマトグラフ質量分析装置によれば、分割した時間について、a.収集前時間、およびc.収集後時間を並行動作させ、かつ、b.収集中時間の割付を行うといった単純な手順で、液体クロマトグラフ質量分析計の好適な分析スケジュールを予め決定することができる。
 実施例1では検出したい成分の溶出時間について、既知かつ固定の時間であるとして質量分析計の動作時間を規定してスケジュールを行った。しかしながら、この成分溶出時間は、溶媒の組成、送液量、カラム温度といった分析条件を示すパラメータの調整により変化させることができる。実施例2は、実施例1の構成に加え、分析条件を可変し成分溶出時間を伸張することでよりスケジュール調整を行うことが可能なクロマトグラフ質量分析装置の実施例である。すなわち、制御部221が、クロマトグラム部である液体クロマトグラムシステム201~203の分析条件を調整して成分溶出時間を伸張し、収集中時間を割り当てるクロマトグラフ質量分析装置、及びその制御方法の実施例である。
 そのため、制御部221はその記憶部に、成分溶出時間を可変するパラメータセットを記憶部に保持し、このパラメータセットを用いて、スケジュールの作成に適したデータ収集タイミングとなるよう分析パラメータを調整する。成分溶出時間を可変するパラメータセットとは、分析条件の一部を可変した際、液体クロマトグラムでの成分溶出時間がどのように変化するかの関係を保持した情報である。あるストリームの収集中時間が他のストリームの収集中時間と重なっていた場合、制御部は、重複を回避するためパラメータセットから変更すべき分析条件を逆算し、スケジュールの再作成を試みる。これにより、質量分析計の稼働率を高めスループットを向上させることができる。
 図7にこのような調整可能な分析条件を示すパラメータの一例である溶離液流量と保持時間の関係を示すグラフである。すなわち、図7はその縦軸・横軸を、液体クロマトグラムシステムのカラムで成分を分離する際の溶離液流量701と保持時間702とするグラフである。同図には、703、704、705として、カラムA、B、Cそれぞれのグラフが示されている。一般的には溶離液流量701を増加させると、保持時間702は短縮され、逆に溶離液流量701を低下させると、保持時間702は延長される関係がある。すなわち、保持時間702を延長したい場合は、当該カラムの流量使用可能範囲内において、溶離液流量701を低下させればよい。
 図8はこの関係を表にした一例を示す図であり、典型的な使用圧力における保持時間を1.0としたとき、その前後の流量について保持時間の変化比率を保持している。図8に示すように、表には、カラム種類801、流量802、標準流量に対する保持時間比率803が保持されている。このような関係表は、溶媒の組成、送液量、カラム温度、といった分析条件のパラメータ各々について作成・保持することができる。そして、保持した関係表に従い、これらの条件を変化させることで、成分溶出時間を可変することができる。
 このように成分溶出時間の調整が可能であることを鑑みると、スケジュールを決定する際に質量分析計のスケジュール割り当てを行うにあたり、都合が良い成分溶出時間を設定することができる。本実施例のクロマトグラフ質量分析装置の構成においては、以上の知見に基づきスケジュールを行う。
 図9は、実施例2における、成分溶出時間を調整しつつ質量分析計の時間割り当てを行う場合の手順である。分析開始901以下、各ステップを説明する。試料の繰り返しステップ902は、図3に示すようなサンプルテーブルによって指示された試料を、順次処理する繰り返しステップである。
 図9の収集時間をa.収集前時間、b.収集中時間、c.収集後時間に分割する903ステップは、図1に示したステップ103と同様に、各試料の分析時間を上記の各時間に分割する処理である。
 実施例1の104ステップ同様、質量分析計の空き時間に収集中時間であるデータ収集時間1を仮割当てする904ステップでは、液体クロマトグラム分析を開始でき、かつ質量分析計のデータ収集時間1がスケジュール可能な時刻に、当該試料の分析を仮割当てする。図10にこの詳細を示す。図10の試料1の分析開始時刻1003は、本実施例の装置の分析開始時刻とする。
 試料2の分析開始時刻1006は、試料2のデータ収集が行える最も早い時刻に仮割り当てする。この場合、試料1のデータ収集1002の直後に試料2のデータ収集1005が配置されるよう仮割り当てを行う。
 図9の905ステップではデータ収集時間2以降が割り当て可能かを判断する。 試料2についてはデータ収集時間2以降がないため無視し、すべてのデータ収集時間を割り当てる906ステップで、データ収集時間割り当てを確定する。
 試料3については、質量分析計の空き時間にデータ収集時間1を仮割当てする 904ステップにおいて、図10のデータ収集時間1008の位置にデータ収集時間1を仮割当てする。しかしながら、905ステップのデータ収集時間2以降割り当て可能かの判断において、試料1のデータ収集時間1015が試料3のデータ収集時間1016と重複していると判断する。そこで、本実施例の構成においては、データ収集時間を伸張し割り当て評価する913ステップを行う。
 データ収集時間を伸張し割り当て評価 913ステップは、図8テーブルに示したような可変範囲のパラメータを分析条件に適用した場合の想定保持時間を算出し、その結果を元にスケジュールを試みるステップである。例えば、試料3において、流量0.7mL/min、および流量0.6mL/minでは、上述の図7および図8に例示した関係により、溶出時間が長くなる。具体的には、収集時間を分割した、a.収集前時間、b.収集中時間、c.収集後時間に、図8の標準流量に対する保持時間比率を掛ければよい。
 図10において、試料3の流量0.7mL時のクロマトグラム信号1010ではまだデータ収集1011が重複しているが、試料3の流量0.6mL時のクロマトグラム信号1013では、試料1、および試料2のデータ収集時間のいずれとも重複していない。このため、試料3は流量0.6mL/minで分析することで、効率よく試料3の分析を開始することが可能であることが分かる。
 図9のデータ収集時間を伸張し割り当て評価913ステップでは、以上のように条件を変更した際のデータ収集時間が、他の試料のデータ収集時間と重複していないことを評価するステップである。このような条件の変更と評価については、簡単には図8に示したようなテーブルを、変更可能な各条件について準備・保持しておき、図1の制御部221が全ての変更可能範囲について総当り方式で評価を繰り返せばよい。より高度な方法としては、変更可能な各条件について変換近似式を定義・保持し、同じく制御部221が多変量解析による最適値導出を行ってもよい。
 図9の割り当て成功? 914ステップでは、割り当て可能な条件が探索できたかの判定を行い、割り当てが不可能であった場合には、データ収集時間1が割り当て可能な、質量分析計の次の空き時間に対して、空き時間にデータ収集時間1を仮割当てする ステップへ進行する。
 実施例1と同様、以上のステップを試料の繰り返し 907ステップにより全試料分繰り返す。
 そして、すべての試料の繰り返しが完了しスケジュールが決定したのち、試料分析開始時刻待ち 908ステップ以降によって分析動作を行う。この動作は図1により説明したものと同一であるため説明は省略する。
 実施例2のクロマトグラフ質量分析装置、及びその制御方法によれば、複数ストリーム間のデータ収集タイミングを鑑みながら調整を行うことで、質量分析計の稼働率を高め更にスループットを向上させることができる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明のより良い理解のために詳細に説明したのであり、必ずしも説明の全ての構成を備えるものに限定されものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることが可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。例えば、各実施例のクロマトグラフ質量分析装置の構成において、質量分析部を一個の質量分析計を用いる場合を説明したが、質量分析部を二個以上の質量分析計で構成することもでき、質量分析計の個数に応じたデータ収集中時間のより自由な割付を行うことが可能となる。また、実施例2のクロマトグラフ質量分析装置の構成において、一つのクロマトグラム部に対応するデータ収集時間を伸張する場合を説明したが、二つのクロマトグラム部に対応するデータ収集時間を伸張しても良い。
 更に、上述した各構成、機能、制御部等は、それらの一部又は全部を実現するプログラムを作成する例を説明したが、それらの一部又は全部を例えば集積回路で設計する等によりハードウェアで実現しても良いことは言うまでもない。すなわち、制御部の全部または一部の機能は、プログラムに代え、例えば、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)などの集積回路などにより実現してもよい。
201、202、203…液体クロマトグラムシステム1、2、3,204、205、206…試料群A、B、C,207、208、209…ポンプ1、2、3,210、211、212…オートサンプラ1、2、3,213、214、215…カラム1、2、3,216…オートサンプラ開始信号,217…遅延信号生成部,218…論理OR回路,219…分析開始信号,220…バルブ,221…制御部,222…質量分析計,301…試料名,302…バイアルNo.,303…ストリーム,304…分析条件,305…サンプルテーブル,410…収集前時間1,411…収集中時間であるデータ収集時間1,412…収集前時間2,413…収集中時間であるデータ収集時間2,414…収集後時間,501…時刻,502…信号幅,601、604、608…試料1、2、3クロマトグラム信号,602、605、609…データ収集,603、607、611…試料1、2、3分析開始時刻,606、610…試料2、3開始時刻オフセット,612…質量分析計出力,701…溶離液流量,702…保持時間,703、704、705…カラムA、B、Cのグラフ,801…カラム種類,802…流量,803…標準流量に対する保持時間比率,1001、1004、1007…試料1、2、3クロマトグラム信号,1002、1005、1008、1011、1013、1015、1016…データ収集時間,1003、1006、1009…試料1、2、3分析開始時刻,1010…試料3の流量0.7mL時のクロマトグラム信号,1012…試料3の流量0.6mL時のクロマトグラム信号,1014…質量分析計出力,1101…操作画面,1102…オーダーテーブル,1103…データ保存先フォルダ指定,1104…呼出・保存ボタン,1105…装置状態,1106…手動操作部,1107…開始、停止ボタン,1108…スケジュールボタン

Claims (15)

  1. クロマトグラフ質量分析装置であって、
    複数のクロマトグラム部と、
    複数の前記クロマトグラム部から溶出される試料を択一的に選択する切替部と、
    前記切替部から導入される前記試料をイオン化して分析する質量分析部と、
    前記クロマトグラム部と前記切替部と前記質量分析部を制御する制御部と、を備え、
    前記制御部は、
    試料分析にかかる時間を収集前時間、収集中時間、収集後時間に分割し、複数の前記クロマトグラム部の前記収集中時間が重複しない時間位置を探索して当該収集中時間を割り当て、複数の前記クロマトグラム部各々の分析開始時刻を予め決定する、
    ことを特徴とするクロマトグラフ質量分析装置。
  2. 請求項1記載のクロマトグラフ質量分析装置であって、
    前記制御部が決定した前記収集中時間に従い、前記クロマトグラム部から出力される試料注入信号に基づき、前記質量分析部の開始信号を生成する遅延信号生成部を更に備える、
    ことを特徴とするクロマトグラフ質量分析装置。
  3. 請求項1記載のクロマトグラフ質量分析装置であって、
    前記制御部は、
    決定した前記収集中時間に従い、前記クロマトグラム部から出力される試料注入信号に基づき、前記質量分析部の開始信号を生成する、
    ことを特徴とするクロマトグラフ質量分析装置。
  4. 請求項1記載のクロマトグラフ質量分析装置であって、
    前記制御部は、操作画面を表示する表示部を有し、
    前記表示部は、複数の前記クロマトグラム部各々の分析開始時刻を予め決定するためのスケジュール作成を指示するボタンを備える、
    ことを特徴とするクロマトグラフ質量分析装置。
  5. 請求項1記載のクロマトグラフ質量分析装置であって、
    前記制御部は、
    前記クロマトグラム部の分析条件を調整して成分溶出時間を伸張し、前記収集中時間を割り当て、複数の前記クロマトグラム部各々の分析開始時刻を決定する、
    ことを特徴とするクロマトグラフ質量分析装置。
  6. 請求項5記載のクロマトグラフ質量分析装置であって、
    前記制御部が調整する前記分析条件は前記クロマトグラム部の溶媒組成である、
    ことを特徴とするクロマトグラフ質量分析装置。
  7. 請求項5記載のクロマトグラフ質量分析装置であって、
    前記制御部が調整する前記分析条件は前記クロマトグラム部の溶媒流量である、
    ことを特徴とするクロマトグラフ質量分析装置。
  8. 請求項5記載のクロマトグラフ質量分析装置であって、
    前記制御部が調整する前記分析条件は前記クロマトグラム部のカラム温度である、
    ことを特徴とするクロマトグラフ質量分析装置。
  9. クロマトグラフ質量分析装置の制御方法であって、
    前記クロマトグラフ質量分析装置は、複数のクロマトグラム部と、複数の前記クロマトグラム部から溶出される試料を択一的に選択する切替部と、前記切替部から導入される前記試料をイオン化して分析する質量分析部と、前記クロマトグラム部と前記切替部と前記質量分析部を制御する制御部とを備え、
    前記制御部は、
    試料分析にかかる時間を収集前時間、収集中時間、収集後時間に分割し、複数の前記クロマトグラム部の前記収集中時間が重複しない時間位置に当該収集中時間を割り当て、複数の前記クロマトグラム部の分析開始時刻を予め決定する、
    ことを特徴とする制御方法。
  10. 請求項9記載の制御方法であって、
    前記制御部は、
    決定した前記収集中時間に従い、前記クロマトグラム部から出力される試料注入信号に基づき、前記質量分析部の開始信号を生成する、
    ことを特徴とする制御方法。
  11. 請求項9記載の制御方法であって、
    前記制御部は、操作画面を表示する表示部を有し、
    前記表示部に、複数の前記クロマトグラム部の可動状態と、分析の進捗状態を表示する、
    ことを特徴とする制御方法。
  12. 請求項9記載の制御方法であって、
    前記制御部は、
    前記クロマトグラム部の分析条件を調整して成分溶出時間を伸張し、前記収集中時間を割り当て、複数の前記クロマトグラム部各々の分析開始時刻を決定する、
    ことを特徴とする制御方法。
  13. 請求項12記載の制御方法であって、
    前記制御部が調整する前記分析条件は前記クロマトグラム部の溶媒組成である、
    ことを特徴とする制御方法。
  14. 請求項12記載の制御方法であって、
    前記制御部が調整する前記分析条件は前記クロマトグラム部の溶媒流量である、
    ことを特徴とする制御方法。
  15. 請求項12記載の制御方法であって、
    前記制御部が調整する前記分析条件は前記クロマトグラム部のカラム温度である、
    ことを特徴とする制御方法。
PCT/JP2016/067990 2016-06-16 2016-06-16 クロマトグラフ質量分析装置、及び制御方法 WO2017216934A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2016/067990 WO2017216934A1 (ja) 2016-06-16 2016-06-16 クロマトグラフ質量分析装置、及び制御方法
GB1817285.8A GB2564988B (en) 2016-06-16 2016-06-16 Chromatographic mass analysis device and control method
DE112016006847.6T DE112016006847T5 (de) 2016-06-16 2016-06-16 Chromatographie-Massenanalysevorrichtung und Steuerverfahren
US16/304,945 US11320410B2 (en) 2016-06-16 2016-06-16 Chromatographic mass analysis device and control method
JP2018523127A JP6717938B2 (ja) 2016-06-16 2016-06-16 クロマトグラフ質量分析装置、及び制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/067990 WO2017216934A1 (ja) 2016-06-16 2016-06-16 クロマトグラフ質量分析装置、及び制御方法

Publications (1)

Publication Number Publication Date
WO2017216934A1 true WO2017216934A1 (ja) 2017-12-21

Family

ID=60664003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067990 WO2017216934A1 (ja) 2016-06-16 2016-06-16 クロマトグラフ質量分析装置、及び制御方法

Country Status (5)

Country Link
US (1) US11320410B2 (ja)
JP (1) JP6717938B2 (ja)
DE (1) DE112016006847T5 (ja)
GB (1) GB2564988B (ja)
WO (1) WO2017216934A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019138725A1 (ja) * 2018-01-11 2019-07-18 株式会社日立ハイテクノロジーズ 複数のクロマトグラフを有する分析装置
JP2020051960A (ja) * 2018-09-28 2020-04-02 株式会社日立ハイテクサイエンス 液体クロマトグラフ分析方法及び液体クロマトグラフ分析装置
WO2020084738A1 (ja) * 2018-10-25 2020-04-30 株式会社島津製作所 質量分析装置およびプログラム
WO2020105624A1 (ja) * 2018-11-20 2020-05-28 株式会社日立ハイテク 複数の液体クロマトグラフを有する分析装置およびその分析方法
WO2020129118A1 (ja) * 2018-12-17 2020-06-25 株式会社島津製作所 質量分析装置
WO2021122784A1 (en) 2019-12-17 2021-06-24 Roche Diagnostics Gmbh Method and device for multiple transition monitoring
WO2022190605A1 (ja) * 2021-03-08 2022-09-15 株式会社日立ハイテク 自動分析装置の制御方法
US11860142B2 (en) 2018-12-10 2024-01-02 Hitachi High-Tech Corporation Liquid chromatograph mass spectrometer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113167772A (zh) * 2018-11-20 2021-07-23 株式会社日立高新技术 具有多个色谱仪的分析装置及其控制方法
US20220359181A1 (en) * 2019-08-30 2022-11-10 Dh Technologies Development Pte. Ltd. Method for Mass Spectrometry

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002181784A (ja) * 2000-12-19 2002-06-26 Shimadzu Corp 液体クロマトグラフ質量分析計
JP2004524518A (ja) * 2000-12-28 2004-08-12 コヒーシブ・テクノロジーズ・インコーポレイテッド マルチカラム・クロマトグラフ装置
US20130014566A1 (en) * 2011-07-15 2013-01-17 Marks Aaron N Method for Automatic Optimization Of Liquid Chromatography Autosampler
JP2013541022A (ja) * 2010-10-29 2013-11-07 コヒーシブ・テクノロジーズ・インコーポレイテッド 広範囲の疎水性を有する被検成分の精製及び検出のためのlc−ms構成
WO2014068786A1 (ja) * 2012-11-05 2014-05-08 株式会社島津製作所 クロマトグラフ分析装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002181784A (ja) * 2000-12-19 2002-06-26 Shimadzu Corp 液体クロマトグラフ質量分析計
JP2004524518A (ja) * 2000-12-28 2004-08-12 コヒーシブ・テクノロジーズ・インコーポレイテッド マルチカラム・クロマトグラフ装置
JP2013541022A (ja) * 2010-10-29 2013-11-07 コヒーシブ・テクノロジーズ・インコーポレイテッド 広範囲の疎水性を有する被検成分の精製及び検出のためのlc−ms構成
US20130014566A1 (en) * 2011-07-15 2013-01-17 Marks Aaron N Method for Automatic Optimization Of Liquid Chromatography Autosampler
WO2014068786A1 (ja) * 2012-11-05 2014-05-08 株式会社島津製作所 クロマトグラフ分析装置

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3739333A4 (en) * 2018-01-11 2021-10-20 Hitachi High-Tech Corporation ANALYSIS EQUIPMENT HAVING A PLURALITY OF CHROMATOGRAPHS
US11959895B2 (en) 2018-01-11 2024-04-16 Hitachi High-Tech Corporation Analysis apparatus provided with a plurality of chromatographic apparatuses
CN111868517B (zh) * 2018-01-11 2023-11-21 株式会社日立高新技术 具有多个色谱仪的分析装置
WO2019138725A1 (ja) * 2018-01-11 2019-07-18 株式会社日立ハイテクノロジーズ 複数のクロマトグラフを有する分析装置
JPWO2019138725A1 (ja) * 2018-01-11 2020-12-24 株式会社日立ハイテク 複数のクロマトグラフを有する分析装置
CN111868517A (zh) * 2018-01-11 2020-10-30 株式会社日立高新技术 具有多个色谱仪的分析装置
JP7240704B2 (ja) 2018-09-28 2023-03-16 株式会社日立ハイテクサイエンス 液体クロマトグラフ分析方法及び液体クロマトグラフ分析装置
JP2020051960A (ja) * 2018-09-28 2020-04-02 株式会社日立ハイテクサイエンス 液体クロマトグラフ分析方法及び液体クロマトグラフ分析装置
JP7176570B2 (ja) 2018-10-25 2022-11-22 株式会社島津製作所 質量分析装置およびプログラム
JPWO2020084738A1 (ja) * 2018-10-25 2021-09-30 株式会社島津製作所 質量分析装置およびプログラム
WO2020084738A1 (ja) * 2018-10-25 2020-04-30 株式会社島津製作所 質量分析装置およびプログラム
JP7282801B2 (ja) 2018-11-20 2023-05-29 株式会社日立ハイテク 複数の液体クロマトグラフを有する分析装置およびその分析方法
WO2020105624A1 (ja) * 2018-11-20 2020-05-28 株式会社日立ハイテク 複数の液体クロマトグラフを有する分析装置およびその分析方法
JPWO2020105624A1 (ja) * 2018-11-20 2021-10-07 株式会社日立ハイテク 複数の液体クロマトグラフを有する分析装置およびその分析方法
US11982655B2 (en) 2018-11-20 2024-05-14 Hitachi High-Tech Corporation Analysis apparatus having a plurality of liquid chromatographs and its analysis method
US11860142B2 (en) 2018-12-10 2024-01-02 Hitachi High-Tech Corporation Liquid chromatograph mass spectrometer
WO2020129118A1 (ja) * 2018-12-17 2020-06-25 株式会社島津製作所 質量分析装置
WO2021122784A1 (en) 2019-12-17 2021-06-24 Roche Diagnostics Gmbh Method and device for multiple transition monitoring
WO2022190605A1 (ja) * 2021-03-08 2022-09-15 株式会社日立ハイテク 自動分析装置の制御方法
JP7492646B2 (ja) 2021-03-08 2024-05-29 株式会社日立ハイテク 自動分析装置の制御方法

Also Published As

Publication number Publication date
JPWO2017216934A1 (ja) 2019-03-07
DE112016006847T5 (de) 2019-02-07
JP6717938B2 (ja) 2020-07-08
GB201817285D0 (en) 2018-12-05
GB2564988B (en) 2021-12-08
GB2564988A (en) 2019-01-30
US11320410B2 (en) 2022-05-03
US20210223218A1 (en) 2021-07-22

Similar Documents

Publication Publication Date Title
WO2017216934A1 (ja) クロマトグラフ質量分析装置、及び制御方法
US9460901B2 (en) Data-processing system for chromatograph mass spectrometry
JP6989622B2 (ja) 複数のクロマトグラフを有する分析装置
EP1995593B1 (en) Chromatograph mass spectrometer
JP5482912B2 (ja) クロマトグラフ質量分析装置
WO2017093861A1 (en) Sentinel signal for adaptive retention time in targeted ms methods
US10082490B1 (en) Variable data-dependent acquisition and dynamic exclusion method for mass spectrometry
US11031216B2 (en) Mass spectrometry data acquisition method
US20080110232A1 (en) Chromatographic analyzer
US7479629B2 (en) Multichannel rapid sampling of chromatographic peaks by tandem mass spectrometer
WO2015189945A1 (ja) 分析装置用制御装置
JP4470811B2 (ja) クロマトグラフ分析装置
JP4821742B2 (ja) 四重極型質量分析装置
JP2006189279A (ja) クロマトグラフ質量分析装置
EP4362059A1 (en) Systems and methods for performing dynamic data independent acquisition
CN116507910A (zh) 自动分析装置的控制方法
WO2020255340A1 (ja) クロマトグラフ質量分析装置
CN116325075A (zh) 高分辨率检测以管理用于通过ms/ms进行定量分析的组检测
Chang et al. Throughput improvement of bioanalytical LC–MS/MS by sharing detector between HPLC systems
Cox et al. Scout triggered MRM algorithm: The evolution of the MRM workflow

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 201817285

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20160616

WWE Wipo information: entry into national phase

Ref document number: 1817285.8

Country of ref document: GB

ENP Entry into the national phase

Ref document number: 2018523127

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16905489

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16905489

Country of ref document: EP

Kind code of ref document: A1