WO2017215012A1 - 一种智能淘洗磁选机及磁选方法 - Google Patents

一种智能淘洗磁选机及磁选方法 Download PDF

Info

Publication number
WO2017215012A1
WO2017215012A1 PCT/CN2016/086512 CN2016086512W WO2017215012A1 WO 2017215012 A1 WO2017215012 A1 WO 2017215012A1 CN 2016086512 W CN2016086512 W CN 2016086512W WO 2017215012 A1 WO2017215012 A1 WO 2017215012A1
Authority
WO
WIPO (PCT)
Prior art keywords
sorting cylinder
intelligent
magnetic separator
panning
water supply
Prior art date
Application number
PCT/CN2016/086512
Other languages
English (en)
French (fr)
Inventor
张承臣
郑德亮
王超
朱东方
Original Assignee
沈阳隆基电磁科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沈阳隆基电磁科技股份有限公司 filed Critical 沈阳隆基电磁科技股份有限公司
Priority to US15/526,999 priority Critical patent/US20180185853A1/en
Priority to AU2016340294A priority patent/AU2016340294A1/en
Publication of WO2017215012A1 publication Critical patent/WO2017215012A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B5/00Washing granular, powdered or lumpy materials; Wet separating
    • B03B5/28Washing granular, powdered or lumpy materials; Wet separating by sink-float separation
    • B03B5/30Washing granular, powdered or lumpy materials; Wet separating by sink-float separation using heavy liquids or suspensions
    • B03B5/36Devices therefor, other than using centrifugal force
    • B03B5/40Devices therefor, other than using centrifugal force of trough type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/031Component parts; Auxiliary operations
    • B03C1/033Component parts; Auxiliary operations characterised by the magnetic circuit
    • B03C1/0335Component parts; Auxiliary operations characterised by the magnetic circuit using coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B13/00Control arrangements specially adapted for wet-separating apparatus or for dressing plant, using physical effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B5/00Washing granular, powdered or lumpy materials; Wet separating
    • B03B5/62Washing granular, powdered or lumpy materials; Wet separating by hydraulic classifiers, e.g. of launder, tank, spiral or helical chute concentrator type
    • B03B5/66Washing granular, powdered or lumpy materials; Wet separating by hydraulic classifiers, e.g. of launder, tank, spiral or helical chute concentrator type of the hindered settling type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B5/00Washing granular, powdered or lumpy materials; Wet separating
    • B03B5/68Washing granular, powdered or lumpy materials; Wet separating by water impulse
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B7/00Combinations of wet processes or apparatus with other processes or apparatus, e.g. for dressing ores or garbage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/23Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp
    • B03C1/24Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp with material carried by travelling fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/28Magnetic plugs and dipsticks
    • B03C1/288Magnetic plugs and dipsticks disposed at the outer circumference of a recipient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/30Combinations with other devices, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/32Magnetic separation acting on the medium containing the substance being separated, e.g. magneto-gravimetric-, magnetohydrostatic-, or magnetohydrodynamic separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/24Details of magnetic or electrostatic separation for measuring or calculating parameters, efficiency, etc.

Definitions

  • the invention belongs to the technical field of mineral processing, and particularly relates to an intelligent panning magnetic separator and a magnetic separation method, which are suitable for sorting minerals by a combination of water/magnetic field and gravity.
  • the panning magnetic separator is a common magnetic metal ore dressing equipment, which is often used in the practice of wet precision magnetic separation. It is used to improve the grade of minerals or to ensure the coarseness of the selected grade.
  • the panning magnetic separator usually consists of a sorting cylinder, an excitation coil, a cover, a feed trough, an overflow trough, a lower cone, a water supply system, a discharge concentrate system, and a control cabinet.
  • the working principle is that after the slurry is fed into the sorting cylinder by the feeding tank, the magnetic particles are subjected to magnetic force and gravity to descend to the bottom of the concentrate system to form a concentrate, and the non-magnetic impurity particles float to the overflow tank with the rising water. The stream is discharged to form a tailings.
  • the selected equipment used in the magnetite ore dressing plant includes a magnetic separator, a mud removal tank, a magnetic separation column, etc.
  • the magnetic separator is a permanent magnet product.
  • the working principle is to use magnetic force to adsorb magnetic materials and sort them. The concentrates that come out are often accompanied by magnetic inclusions, which affect the concentrate grade. Most of the de-sludge tanks are permanent magnet products, which are used less.
  • the working principle is to use material gravity, rising water buoyancy and magnetic field force to separate and sort, but because the magnetic field is a single fixed magnetic field, the sorting efficiency is low, and the materials are selected. Fluctuation has a greater impact on the sorting effect.
  • the magnetic separation column is an electromagnetic product, the grade lifting ability can be, but the sorting index has poor stability.
  • the product structure is that the sorting cylinder is externally arranged from the top to the top, and there are multiple sets of coils.
  • the lower part of the sorting cylinder has a water supply system and concentrate.
  • the upper part of the sorting cylinder is a feed tank and an overflow tank.
  • the working principle is that the coils are alternately energized in sequence to form a intermittent pulsating magnetic field, and the magnetic particles are agglomerated, dispersed, and agglomerated alternately with the presence or absence of the magnetic field, and the non-magnetic gangue, mud and magnetic are combined with gravity and rising water buoyancy.
  • the particles are separated, but because the material state is agglomeration, dispersion and agglomeration during the sorting process, the state has poor continuity of sorting and low sorting efficiency.
  • the fluctuation of the selected materials has a great influence on the sorting index, and the relative processing energy The power is low.
  • the present invention provides an intelligent panning magnetic separator and a magnetic separation method, which are specifically an intelligent panning magnetic separator and a magnetic separation method with a pressure water supply function, and the existing selection
  • the equipment is optimized and improved to improve the sorting efficiency, stabilize the sorting index, increase the grade improvement range, resist the fluctuation of feedstock, and save water and environmental protection.
  • an intelligent panning magnetic separator which comprises a feeding trough 1, an overflow trough 2, a sorting cylinder 3, an exciting coil 4, a balance column 5, a cover 6, and a water supply system 7 , the lower cone 8, the concentrate system 10 and the sensor 11; from top to bottom, respectively, the feed tank 1, the overflow tank 2 and the sorting cylinder 3, and the outer circumference of the sorting cylinder 3 is provided with a plurality of sets of exciting coils 4 , the outer coil 6 of the excitation coil 4, the balance column 5 is installed in the middle and lower part of the inner side of the sorting cylinder 3, the balance column 5 is installed coaxially with the sorting cylinder 3, the water supply system 7 is located at the lower part of the sorting cylinder 3, and the lower cone 8 and the sorting
  • the bottom of the drum 3 is connected in series; the bottom of the lower cone 8 is provided with a discharge concentrate system 10; the sensor 11 is mounted on the lower cone 8 for measuring the concentration of the slurry of
  • the intelligent panning magnetic separator with a pressure-feeding water supply function further includes a pressure-feeding water supply system 9 installed on the lower cone 8.
  • the feeding trough 1 is mounted on the overflow tank 2 through the bracket 24, and the bracket 24 may be three or more.
  • the feed tank 1 and the overflow tank 2 and the sorting cylinder 3 have a coaxial structure.
  • the feed pipe 22 is connected to the outer circumference of the feed tank 1.
  • a feed pipe 21 is connected to the lower portion of the feed tank 1, and the feed pipe 21 is coaxial with the sorting cylinder 3.
  • the overflow tank 2 is connected to the sorting cylinder 3 via a flange 29.
  • the overflow tank 2 is composed of a peripheral plate 25, a sloping bottom plate 26, an inner surrounding plate 27, a lower cone plate 28, an overflow groove flange 29, and a tailings pipe 20; the inclined bottom plate 26 connects the peripheral plate 25 and the inner peripheral plate 27, The tailings chute is formed, and the inclined bottom plate 26 has a high height and a low inclined structure.
  • the inner shroud 27 and the overflow trough flange 29 are connected by a lower cone plate 28, and the lower cone plate 28 functions as a variable diameter transition so that the inner shroud 27 has a larger diameter than the sorting cylinder 3.
  • the gap between the exciting coil 4 and the outer casing 6 is 1-500 mm.
  • the lower portion of the sorting cylinder 3 is connected to the annular water supply system 7, and the inner chamber of the annular water supply system 7 is tangentially connected to the main inlet pipe 23, and the main inlet pipe 23 is one or more.
  • the pressure water supply system 9 includes a sub-inlet pipe 13, a draft pipe 16, and a tangential spiral pipe branch 17, and the sub-inlet pipe 13 is one or more.
  • the direction of the water outlet of the tangential spiral branch pipe 17 is circumferential tangential direction; the tangential spiral branch pipe 17 may be two or more.
  • the slurry concentration of the sorting cylinder 3 is a concentration sensor or a pressure sensor for measuring the slurry concentration of the sorting cylinder 3.
  • the concentrate system 10 is a pinch valve and an electric controller 12.
  • the slurry is fed from the feed tank 1, and the slurry flows down the feed pipe 21, and uniformly enters the sorting cylinder 3 from the cage outlet 18 at the lower portion of the feed pipe 21;
  • the magnetic particles are subjected to a plurality of sets of exciting coils 4 to generate a downward moving magnetic field force and a gravity force to be connected into a vertical magnetic flux chain, suspended downward; the material is blocked by the balance column 5, Dispersed in the space between the balance column 5 and the sorting cylinder 3; the magnetic field strength and the pulsation period of all the coils of the exciting coil 4 are adjustable;
  • the non-magnetic gangue particles are distributed around the magnetic flux, and the rising flushing water is tangentially fed into the sorting cylinder 3 from the water supply system 7 at the lower portion of the sorting cylinder 3, and spirally ascending in the sorting cylinder 3, the gangue The granules overflow with the rising water floating to the overflow tank 2 to form a tailings;
  • the pressurized water is fed from the supplementary water supply system 9 located in the lower cone 8, and is rushed from the tangential spiral branch 17 into the sorting cylinder 3 through the draft tube 16.
  • the magnetic particles descend to the discharge concentrate system 10 in the state of flux linkage to discharge the concentrate.
  • the intelligent panning magnetic separator and the magnetic separation method of the invention adopt automatic intelligent program control, can resist the fluctuation of the ore supply, obtain high-grade concentrate, and effectively prevent a large amount of running iron from the overflow tailings. It utilizes the "magnetic chain suspension down" technology to achieve high efficiency and large scale of equipment. Good work stability, high intelligence and easy operation.
  • the main principle is the composite force field through magnetic force, gravity and water buoyancy. The sorting action pulls and rinses the material to sink the iron powder and raise the tailings to achieve the purpose of reducing impurities.
  • FIG. 1 is a schematic structural view of an intelligent panning magnetic separator according to the present invention.
  • Figure 2 is a left side view of the intelligent panning magnetic separator of Figure 1;
  • FIG. 3 is a schematic structural view of a feed tank of an intelligent panning magnetic separator
  • Figure 4 is a plan view of the feed chute of Figure 3;
  • FIG. 5 is a second top view of the feed chute of Figure 3;
  • FIG. 6 is a schematic structural view of a cage outlet of an intelligent panning magnetic separator
  • FIG. 7 is a second structural schematic view of the cage outlet of the intelligent panning magnetic separator
  • FIG. 8 is a third structural schematic view of the cage outlet of the intelligent panning magnetic separator
  • FIG. 9 is a schematic structural view of an overflow tank of an intelligent panning magnetic separator
  • Figure 10 is a schematic structural view of a pressure water supply system of an intelligent panning magnetic separator
  • Figure 11 is a plan view of the pressure water supply system shown in Figure 10.
  • the intelligent panning magnetic separator of the invention mainly comprises a feeding trough 1, an overflow trough 2, a sorting cylinder 3, an exciting coil 4, a balance column 5, a cover 6, a water supply system 7, a lower cone 8, and a pressure water supply system. 9.
  • the slurry is fed from the feed tank 1 and flows down the feed pipe 21 from the feed pipe.
  • the lower cage outlet 18 of the lower portion 21 enters the sorting cylinder 3 uniformly.
  • the magnetic particles are subjected to the downward moving magnetic field force and gravity by the exciting coil 4 to be connected into a vertical magnetic flux chain, and suspended downward.
  • the flux linkage down process is continuous, ensuring efficient operation of the equipment.
  • the non-magnetic gangue particles are distributed around the magnetic chain, and the weak magnetic lean continuous body and a small amount of gangue are entrained in the flux linkage.
  • the rising flushing water is tangentially fed into the sorting cylinder 3 from the water supply system 7 located at the lower portion of the sorting cylinder 3, and is spirally advanced in the sorting cylinder 3, and the gangue particles are discharged to the overflow tank 2 as the rising water floats. Form tailings.
  • the gangue and the lean-connected living body entrained in the flux linkage are separated from the flux linkage by the lateral cutting force of the spiral rising water and are also discharged with the overflow of the rising water.
  • the supplementary pressure water is fed from the pressure-feeding water supply system 9 located in the lower cone 8 and is rushed from the tangential spiral branch pipe 17 into the sorting cylinder 3 through the draft tube 16. , to help the spiral rise the rotation of the water.
  • the magnetic particles descend to the discharge concentrate system 10 in the state of flux linkage to discharge the concentrate.
  • the concentrate system 10 includes a pinch valve and an electric controller 12, and the flow rate of the valve is automatically adjusted according to the fluctuation of the feed.
  • the sensor 11 located in the lower cone collects the material sorting state parameter in the sorting cylinder 3 to provide an automatic adjustment basis, and ensures that the equipment can resist the fluctuation of the material to realize intelligent control.
  • the slurry is fed from the feed tank 1.
  • the feed pipe 23 and the feed tank 1 may be connected vertically, or may be connected circumferentially tangentially.
  • the slurry flows down the feed pipe 21 and uniformly enters the sorting cylinder 3 from the cage outlet 18 at the lower portion of the feed pipe 21.
  • the cage outlet 18 is typically a vertical elongated hole, a circular hole or a transverse elongated hole structure.
  • the magnetic particles are subjected to a plurality of sets of exciting coils 4 to generate a downward moving magnetic field force and a gravity force to be connected into a vertical magnetic flux chain, and suspended downward.
  • the balance column 5 Since the magnetic field in the central portion of the sorting cylinder 3 is too small, the balance column 5 is installed in the central portion of the sorting cylinder 3. The material is blocked by the balance column 5 and is dispersed in the space between the balance column 5 and the sorting cylinder 3.
  • the balance column 5 may have a cylindrical shape and a truncated cone shape, and the balance column 5 also has the function of assisting the rotation of the rising water.
  • the flux linkage down process is continuous, ensuring efficient operation of the equipment.
  • Magnetic field strength and pulsation period of all coils of the exciting coil 4 Adjustable. There are many ways to activate the excitation scheme.
  • the upper coil 19 and the lowermost lower coil 14, which are generally located at the uppermost portion, are set to be open-excitation.
  • the remaining coils of the exciting coil 4 are generally set to pulsating excitation, the excitation sequence is top to bottom, and the excitation alternating process is continuous without interval.
  • excitation combinations each of which can be individually excited or a set of excitations combined with two or more adjacent coils.
  • the non-magnetic gangue particles are distributed around the magnetic chain, and the weak magnetic lean continuous body and a small amount of gangue are entrained in the flux linkage.
  • the rising flushing water is tangentially fed into the sorting cylinder 3 from the water supply system 7 at the lower part of the sorting cylinder 3, and is spirally advanced in the sorting cylinder 3, and the gangue particles are discharged by overflowing the floating water to the overflow tank 2 to form an overflow.
  • the tailings, while the gangue and the lean-connected living body entrained in the flux linkage are separated from the flux linkage by the lateral cutting force of the spiral rising water, and are also discharged as the rising water overflows.
  • the pressurized water is fed from the pressure-feeding water supply system 9 located in the lower cone 8, and is rushed from the tangential spiral branch 17 into the sorting cylinder 3 through the draft tube 16.
  • This method is to avoid the weakening of the lateral cutting force of the spiral rising water during the ascending process, and to assist the rotation of the spiral rising water.
  • the magnetic particles descend to the discharge concentrate system 10 in the state of flux linkage to discharge the concentrate.
  • the concentrate system 10 includes a pinch valve and an electric controller 12, and the flow rate of the valve is automatically adjusted according to the fluctuation of the feed.
  • the sensor 11 located in the lower cone 8 collects the material sorting state parameters in the sorting cylinder 3 to provide an automatic adjustment basis to ensure that the equipment can resist the fluctuation of the material and realize intelligent control.
  • the basic structure of the intelligent panning magnetic separator of the present invention comprises a feeding trough 1, an overflow trough 2, a sorting cylinder 3, an exciting coil 4, a balance column 5, a cover 6, a water supply system 7, a lower cone 8, The pressure water supply system 9, the concentrate system 10, and the sensor 11.
  • the upper structure is a feed tank 1, an overflow tank 2, a sorting cylinder 3, and a plurality of sets of exciting coils 4 on the outer circumference of the sorting cylinder 3, the outer coil 6 of the exciting coil 4, and the inner side of the sorting cylinder 3
  • the balance column 5 is mounted on the lower portion, and the balance column 5 is mounted coaxially with the sorting cylinder 3.
  • the water supply system 7 is located at the lower portion of the sorting cylinder 3.
  • the lower cone 8 is mounted at the bottom of the sorting cylinder 3.
  • the pressure water supply system 9 and the sensor 11 are mounted on the lower cone 8.
  • a concentrate system 10 is installed at the bottom of the lower cone 8.
  • the feeding trough 1 is mounted on the overflow tank 2 through the bracket 24, and the bracket 24 may be three or more.
  • the feed tank 1 and the overflow tank 2 and the sorting cylinder 3 have a coaxial structure.
  • the circumference of the feed tank 1 is externally connected to the feed pipe 22.
  • the feed tube 22 and the feed tank 1 can be connected vertically or in a circumferential tangential connection.
  • a feed pipe 21 is connected to the lower portion of the feed tank 1, and the feed pipe 21 is coaxial with the sorting cylinder 3.
  • the lower part of the delivery pipe 21 is a cage outlet 18.
  • the cage outlet 18 is generally a vertical elongated hole, a circular hole or a transverse elongated hole structure, but is not limited to these structures.
  • the overflow tank 2 is connected to the sorting cylinder 3 via a flange 29.
  • the overflow tank 2 is composed of a peripheral plate 25, a sloping bottom plate 26, an inner peripheral plate 27, a lower cone plate 28, an overflow groove flange 29, and a tailings pipe 20.
  • the inclined bottom plate 26 is connected to the peripheral plate 25 and the inner peripheral plate 27 to constitute a tailings chute, and the inclined bottom plate 26 is a tilted structure with a high head and a low head.
  • the inner shroud 27 and the overflow trough flange 29 are connected by a lower cone plate 28, and the lower cone plate 28 serves as a variable diameter transition so that the inner shroud 27 has a larger diameter than the sorting cylinder 3.
  • the magnetic field strength and the pulsation period of all the coils of the exciting coil 4 are adjustable. There are many ways to activate the excitation scheme.
  • the upper coil 19 and the lowermost lower coil 14, which are generally located at the uppermost portion, are set to be open-excitation.
  • the remaining coils of the exciting coil 4 are generally set to pulsating excitation, and the excitation sequence is top to bottom, which is continuous without gap.
  • the field coil 4 is provided with an outer cover 6, and the gap between the field coil 4 and the outer casing 6 is 1-500 mm, typically 5-200 mm.
  • the lower portion of the sorting cylinder 3 is connected to the annular water supply system 7, and the inner chamber of the annular water supply system 7 is tangentially connected to the main inlet pipe 23, and the main inlet pipe 23 can be designed to be one or more.
  • the inner wall of the annular water supply system 7 is integrated with the sorting cylinder 3, and a plurality of water outlets 15 are uniformly arranged in the circumference.
  • the lower cone 8 is connected to the bottom of the sorting cylinder 3.
  • the pressure water supply system 9 is connected to the lower cone 8, and the pressure water supply system 9 includes a secondary water inlet pipe 13, a draft pipe 16, and a tangential spiral pipe 17, and the auxiliary water inlet pipe 13 is mounted on the lower cone 8 and the lower portion of the draft pipe 16
  • the auxiliary inlet pipe 13 is connected, and the upper portion of the draft tube 16 is connected to the tangential spiral branch pipe 17, and the tangential spiral branch pipe 17 is located near the middle of the sorting cylinder.
  • the sub inlet pipe 13 can be designed to be one or more.
  • the direction of the outlet of the tangential spiral branch pipe 17 is circumferentially tangential.
  • the tangential spiral branches 17 may be two or more.
  • the sensor 9 is mounted on the lower cone 8 and communicates with its inner cavity, and the sensor 9 can be a concentration sensor or a pressure sensor.
  • the bottom of the lower cone 6 is connected to the concentrate system 10, and the concentrate system 10 is
  • the intelligent panning magnetic separator of the present invention comprises a feed tank 1, an overflow tank 2, a sorting cylinder 3, an exciting coil 4, a balance column 5, a cover 6, a water supply system 7, a lower cone 8, and a pressurized water supply.
  • the upper structure is a feed tank 1, an overflow tank 2, a sorting cylinder 3, and a plurality of sets of exciting coils 4 on the outer circumference of the sorting cylinder 3, the outer coil 6 of the exciting coil 4, and the inner side of the sorting cylinder 3
  • the balance column 5 is mounted on the lower portion, and the balance column 5 is coaxial with the sorting cylinder 3.
  • the water supply system 7 is located at the lower portion of the sorting cylinder 3.
  • the lower cone 8 is mounted at the bottom of the sorting cylinder 3.
  • the pressure water supply system 9 and the sensor 11 are mounted on the lower cone 8.
  • a concentrate system 10 is installed at the bottom of the lower cone 8.
  • a feed chute 1 which is mounted on the overflow tank 2 via a bracket 24, and the bracket 24 may be three or more.
  • the feed tank 1 and the overflow tank 2 and the sorting cylinder 3 have a coaxial structure.
  • the feed pipe 22 is connected to the outer circumference of the feed tank 1.
  • the feed tube 22 and the feed tank 1 can be connected vertically or in a circumferential tangential connection.
  • a feed pipe 21 is connected to the lower portion of the feed tank 1, and the feed pipe 21 is coaxial with the sorting cylinder 3.
  • the lower part of the delivery pipe 21 is a cage outlet 18.
  • the cage outlet 18 is generally a vertical elongated hole, a circular hole or a transverse elongated hole structure, but is not limited to these structures.
  • the overflow tank 2 is located at the lower portion of the feed tank 1.
  • the overflow tank 2 is connected to the sorting cylinder 3 via a flange 29.
  • the overflow tank 2 is composed of a peripheral plate 25, a sloping bottom plate 26, an inner peripheral plate 27, a lower cone plate 28, an overflow groove flange 29, and a tailings pipe 20.
  • the inclined bottom plate 26 is connected to the peripheral plate 25 and the inner peripheral plate 27 to constitute a tailings chute, and the inclined bottom plate 26 is a tilted structure with a high head and a low head.
  • the inner shroud 27 and the overflow trough flange 29 are connected by a lower cone plate 28, and the lower cone plate 28 serves as a variable diameter transition so that the inner shroud 27 has a larger diameter than the sorting cylinder 3.
  • the plurality of sets of exciting coils 4 are set on the outer circumference of the sorting cylinder 3, and the magnetic field strength and the pulsation period of all the coils of the exciting coil 4 are adjustable. There are many ways to activate the excitation scheme.
  • the upper coil 19 and the lowermost lower coil 14, which are generally located at the uppermost portion, are set to be open-excitation.
  • the remaining coils of the exciting coil 4 are generally set to pulsating excitation, and the excitation sequence is top to bottom, which is continuous without gap.
  • excitation combinations each of which can be individually excited or a set of excitations combined with two or more adjacent coils.
  • Excitation coil 4 The outer cover 6, the field coil 4 and the outer sleeve 6 have a gap of 1 mm to 500 mm (mm), typically 5 mm to 200 mm (mm).
  • the balance column 5 is installed in the middle and lower part of the inside of the sorting cylinder 3, and the balance column 5 is installed coaxially with the sorting cylinder 3.
  • the lower portion of the sorting cylinder 3 is connected to the annular water supply system 7, and the inner chamber of the annular water supply system 7 is tangentially connected to the main inlet pipe 23, and the main inlet pipe 23 can be designed to be one or more.
  • the inner wall of the annular water supply system 7 is integrated with the sorting cylinder 3, and a plurality of water outlets 15 are uniformly arranged in the circumference.
  • the lower cone 8 is connected to the bottom of the sorting cylinder 3.
  • the pressure water supply system 9 is connected to the lower cone 8, and the pressure water supply system 9 includes a secondary water inlet pipe 13, a flow guiding pipe 16, and a tangential spiral branch pipe 17.
  • the sub inlet pipe 13 can be designed to be one or more.
  • the direction of the outlet of the tangential spiral branch pipe 17 is circumferentially tangential.
  • the tangential spiral branches 17 may be two or more.
  • the sensor 9 is mounted on the lower cone 8 and communicates with its inner cavity, and the sensor 9 can be a concentration sensor or a pressure sensor.
  • the bottom of the lower cone 6 is connected to the concentrate system 10, which is a pinch valve and an electric controller 12.

Abstract

一种智能淘洗磁选机及磁选方法,磁选机包括给料槽(1)、溢流槽(2)、分选筒(3)、励磁线圈(4)、平衡柱(5)、外罩(6)、给水系统(7)、下锥体(8)、排精矿系统(10)和传感器(11);其自上而下分别安装给料槽(1)、溢流槽(2)和分选筒(3),分选筒(3)的圆周外侧套装多组励磁线圈(4),励磁线圈(4)外套外罩(6),分选筒(3)内侧中下部安装平衡柱(5),平衡柱(5)与分选筒(3)同轴安装,给水系统(7)位于分选筒(3)中下部;下锥体(8)与分选筒(3)的底部连通安装;下锥体(8)的底部安装有排精矿系统(10);传感器(11)安装在下锥体(8)上,用于测量分选筒(3)的矿浆浓度。该磁选机采用自动化智能程序控制,能够抵抗给矿量的波动,获得高品位精矿,有效防止溢流尾矿大量跑铁,实现了设备的高效化、大型化,工作稳定性好,智能化程度高,操作简单。

Description

一种智能淘洗磁选机及磁选方法 技术领域
本发明属于选矿技术领域,具体涉及一种智能淘洗磁选机及磁选方法,其适用于用水/磁场及重力相结合来分选矿物。
背景技术
淘洗磁选机是一种常见的磁性金属矿选矿设备,常用于湿式精磁选实践中,其用于提高矿物的品位或保证一定品位前提下放粗入选粒度。淘洗磁选机通常由分选筒、励磁线圈、外罩、给料槽、溢流槽、下锥体、给水系统、排精矿系统及控制柜等组成。工作原理是矿浆由给矿槽给入到选别筒后,磁性颗粒受到磁场力及重力作用下行至底部的排精矿系统形成精矿,非磁性杂质颗粒随着上升水上浮至溢流槽溢流排出形成尾矿。
目前,磁铁矿选矿厂所用的精选设备有磁选机、脱泥槽、磁选柱等,磁选机为永磁类产品,工作原理是利用磁力的作用将磁性物料吸附出来,分选出来的精矿多伴有磁夹杂,影响精矿品位。脱泥槽也多为永磁类产品,现使用较少,工作原理是利用物料重力、上升水浮力、磁场力复合作用分选,但因其磁场为单一固定磁场,分选效率低,入选物料波动对分选效果影响较大。磁选柱为电磁类产品,品位提升能力可以,但分选指标稳定性较差,其产品结构是分选筒圆周外部至上而下套装有多组线圈,分选筒下部有给水系统,精矿排矿系统,分选筒上部为给矿槽和溢流槽。其工作原理是通过线圈依次交替通电,形成间歇脉动磁场,磁性颗粒随着磁场的有无产生团聚、分散、团聚交替状态,同时配合重力和上升水浮力作用下将非磁性脉石、泥浆与磁性颗粒分开,但是因其分选过程中物料状态是团聚、分散、团聚,该状态分选连续性差,分选效率低,入选物料波动对选别指标影响较大,相对处理能 力低下。
发明内容
为了解决上述技术问题,本发明提供一种智能淘洗磁选机及磁选方法,其具体为一种带有补压给水功能的智能淘洗磁选机及磁选方法,对现有精选设备进行优化,改良,从而提高分选效率,稳定分选指标,增大品位提升幅度,抵抗给料波动,节水环保。
依据本发明的第一技术方案,提供一种智能淘洗磁选机,其包括给料槽1、溢流槽2、分选筒3、励磁线圈4、平衡柱5、外罩6、给水系统7、下锥体8、排精矿系统10和传感器11;其自上而下分别是给料槽1、溢流槽2和分选筒3,分选筒3的圆周外侧套装多组励磁线圈4,励磁线圈4外套外罩6,分选筒3内侧中下部安装平衡柱5,平衡柱5与分选筒3同轴安装,给水系统7位于分选筒3中下部;下锥体8与分选筒3的底部连通安装;下锥体8的底部安装有排精矿系统10;传感器11安装在下锥体8上,用于测量分选筒3的矿浆浓度。
优选地,该其为一种带有补压给水功能的智能淘洗磁选机,所述智能淘洗磁选机进一步包括补压给水系统9,补压给水系统9安装在下锥体8上。
其中,给料槽1通过支架24架装在溢流槽2上,支架24可以为3个或多个。给料槽1与溢流槽2及分选筒3为同轴结构。给料槽1的圆周外部连接给料管22。给料槽1的下部连接有输料管21,输料管21与分选筒3同轴。溢流槽2与分选筒3通过法兰29连接。溢流槽2由外围板25、倾斜底板26、内围板27、下锥板28、溢流槽法兰29、尾矿管20组成;倾斜底板26连接了外围板25和内围板27,组成了尾矿溜槽,倾斜底板26为一头高,一头低的倾斜结构。
进一步地,内围板27与溢流槽法兰29之间通过下锥板28连接,下锥板28起到变径过渡作用,使内围板27直径大于分选筒3。
更优选地,励磁线圈4与外套6间隙为1-500mm。分选筒3的下部连接环形给水系统7,环形给水系统7内腔沿切向连接主进水管23,主进水管23为1个或多个。补压给水系统9包括副进水管13、导流管16、切向螺旋分管17;副进水管13为1个或多个。
更进一步地,切向螺旋分管17出水口方向为圆周切向;切向螺旋分管17可以为2个或多个。
优选地,传感器9为浓度传感器或压力传感器,用于测量分选筒3的矿浆浓度。排精矿系统10为管夹阀和电动控制器12。
依据本发明的第二技术方案,提供一种使用上述权利要求所述智能淘洗磁选机的磁选方法,其包括如下步骤:
第一步,矿浆由给料槽1给入,矿浆顺着输料管21下流,从输料管21下部的笼式出口18均匀进入分选筒3中;
第二步,矿浆给入到分选筒3后,磁性颗粒受到多组励磁线圈4产生下行运动磁场力及重力作用连接成竖直向磁链,悬浮下行;物料受到平衡柱5的阻挡,被分散在平衡柱5及分选筒3之间空间处;励磁线圈4的所有线圈的磁场强度及脉动周期可调;
第三步,非磁性脉石颗粒分布在磁链周围,上升冲洗水从分选筒3下部的给水系统7切向给入分选筒3,在分选筒3中以螺旋方式上行,脉石颗粒随着上升水上浮至溢流槽2溢流排出形成尾矿;
第四步,补压水从位于下锥体8的补压给水系统9给入,通过导流管16从切向螺旋分管17冲入分选筒3;
第五步,磁性颗粒以磁链的状态下行至排精矿系统10,排出精矿。
本发明的智能淘洗磁选机及磁选方法采用自动化智能程序控制,能够抵抗给矿量的波动,获得高品位精矿,有效防止溢流尾矿大量跑铁。其利用了“磁链悬浮下行”技术实现了设备的高效化、大型化。工作稳定性好,智能化程度高,操作简单。其主要原理是通过磁场力、重力、水浮力的复合力场 分选作用对物料进行拉拽、冲洗,使铁粉下沉,尾矿上升,达到提品降杂的目的。
附图说明
附图1为依据本发明的智能淘洗磁选机的结构示意图;
附图2为图1中的智能淘洗磁选机的左视图;
附图3为智能淘洗磁选机的给料槽的结构示意图;
附图4为图3中的给料槽的俯视图;
附图5为图3中的给料槽的第二种俯视图;
附图6为智能淘洗磁选机的笼式出口的结构示意图;
附图7为智能淘洗磁选机的笼式出口的第二种结构示意图;
附图8为智能淘洗磁选机的笼式出口的第三种结构示意图;
附图9为智能淘洗磁选机的溢流槽的结构示意图;
附图10为智能淘洗磁选机的补压给水系统的结构示意图;
附图11为图10所示补压给水系统的俯视图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。另外地,不应当将本发明的保护范围仅仅限制至下述具体结构或部件或具体参数。
本发明的智能淘洗磁选机主要包括给料槽1、溢流槽2、分选筒3、励磁线圈4、平衡柱5、外罩6、给水系统7、下锥体8、补压给水系统9、排精矿系统10和传感器11。矿浆由给料槽1给入,顺着输料管21下流,从输料管 21下部的笼式出口18均匀进入分选筒3中。磁性颗粒受到励磁线圈4产生下行运动磁场力及重力作用连接成竖直向磁链,悬浮下行。磁链下行过程为连续式,保证设备的高效运行。非磁性脉石颗粒分布在磁链周围,弱磁性贫连生体及少量脉石被夹带在磁链中。上升冲洗水从位于分选筒3下部的给水系统7切向给入分选筒3,在分选筒3中以螺旋方式上行,脉石颗粒随着上升水上浮至溢流槽2溢流排出形成尾矿。同时,夹带在磁链中的脉石及贫连生体受到螺旋上升水横向切割力作用脱离磁链也随着上升水溢流排出。为了避免螺旋上升水在上升过程中的横向切割力减弱,补压水从位于下锥体8的补压给水系统9给入,通过导流管16从切向螺旋分管17冲入分选筒3,加助螺旋上升水的旋转。而磁性颗粒以磁链的状态下行至排精矿系统10,排出精矿。排精矿系统10包括管夹阀及电动控制器12,阀门的流量根据给料的波动进行自动调节。位于下锥体的传感器11采集分选筒3中物料分选状态参数提供自动调节依据,保证设备能够抵抗物料的波动而实现智能控制。
下面分步骤详细介绍本发明智能淘洗磁选机的工作原理及过程(使用该智能淘洗磁选机的磁选方法):
第一步,矿浆由给料槽1给入。给入方式和给入点有多种方案,可以从给料槽1的上部直接向下给入,也给以从给料槽1圆周外部连接的给料管22横向给入。而给料管23与给料槽1之间可以垂直连接,也可以圆周切向连接。矿浆顺着输料管21下流,从输料管21下部的笼式出口18均匀进入分选筒3中。笼式出口18通常为竖直长条孔、圆孔或横向长条孔结构。
第二步,矿浆给入到分选筒3后,磁性颗粒受到多组励磁线圈4产生下行运动磁场力及重力作用连接成竖直向磁链,悬浮下行。因分选筒3中心区域磁场过小,因此在分选筒3的中心区域安装了平衡柱5。物料受到平衡柱5的阻挡,被分散在平衡柱5及分选筒3之间空间处。平衡柱5可以为圆柱形及圆台形,平衡柱5同时具有加助上升水旋转的作用。磁链下行过程为连续式,保证设备的高效运行。励磁线圈4的所有线圈的磁场强度及脉动周期 可调。励磁方案有多种方式。一般位于最上部的上线圈19和最下部的下线圈14设定为长开励磁。励磁线圈4的其余线圈一般设定为脉动励磁,励磁顺序是至上而下,励磁交替过程为连续无间隔。励磁组合方案可以有多种,每个线圈可以单独励磁或每相邻2个或多个线圈组合一组励磁。
第三步,非磁性脉石颗粒分布在磁链周围,弱磁性贫连生体及少量脉石被夹带在磁链中。上升冲洗水从分选筒3下部的给水系统7切向给入分选筒3,在分选筒3中以螺旋方式上行,脉石颗粒随着上升水上浮至溢流槽2溢流排出形成尾矿,同时夹带在磁链中的脉石及贫连生体受到螺旋上升水横向切割力作用脱离磁链,也随着上升水溢流排出。
第四步,补压水从位于下锥体8的补压给水系统9给入,通过导流管16从切向螺旋分管17冲入分选筒3。这种方式是为了避免螺旋上升水在上升过程中的横向切割力减弱,加助于螺旋上升水的旋转。
第五步,磁性颗粒以磁链的状态下行至排精矿系统10,排出精矿。排精矿系统10包括管夹阀及电动控制器12,阀门的流量根据给料的波动进行自动调节。位于下锥体8的传感器11采集分选筒3中物料分选状态参数提供自动调节依据,保证设备能够抵抗物料的波动而实现智能控制。
具体地,本发明的智能淘洗磁选机基本结构包括给料槽1、溢流槽2、分选筒3、励磁线圈4、平衡柱5、外罩6、给水系统7、下锥体8、补压给水系统9、排精矿系统10、传感器11。大致结构自上而下分别是给料槽1,溢流槽2,分选筒3,分选筒3的圆周外侧套装多组励磁线圈4,励磁线圈4外套外罩6,分选筒3内侧中下部安装平衡柱5,平衡柱5与分选筒3同轴安装。给水系统7位于分选筒3下部。下锥体8安装在分选筒3的底部。补压给水系统9和传感器11安装在下锥体8上。下锥体8的底部安装有排精矿系统10。
其中,给料槽1通过支架24架装在溢流槽2上,支架24可以为3个或多个。给料槽1与溢流槽2及分选筒3为同轴结构。
优选地,给料槽1的圆周外部连接给料管22。从图4-5看出,给料管22与给料槽1之间可以垂直连接,也可以圆周切向连接。给料槽1的下部连接有输料管21,输料管21与分选筒3同轴。输料管21下部为笼式出口18。从图6-8看出,笼式出口18通常为竖直长条孔、圆孔或横向长条孔结构,但不限于这些结构。溢流槽2与分选筒3通过法兰29连接。溢流槽2由外围板25、倾斜底板26、内围板27、下锥板28、溢流槽法兰29、尾矿管20组成。倾斜底板26连接了外围板25和内围板27,组成了尾矿溜槽,倾斜底板26为一头高一头低的倾斜结构。内围板27与溢流槽法兰29之间通过下锥板28连接,下锥板28起到变径过渡作用,使内围板27直径大于分选筒3。
励磁线圈4的所有线圈的磁场强度及脉动周期可调。励磁方案有多种方式。一般位于最上部的上线圈19和最下部的下线圈14设定为长开励磁。励磁线圈4的其余线圈一般设定为脉动励磁,励磁顺序是至上而下,为连续无间隔。励磁组合方案可以有多种,每个线圈可以单独励磁或每相邻2个或多个线圈组合一组励磁。励磁线圈4外套外罩6,励磁线圈4与外套6间隙为1-500mm,一般为5-200mm。分选筒3的下部连接环形给水系统7,环形给水系统7内腔沿切向连接主进水管23,主进水管23可设计为1个或多个。环形给水系统7内壁与分选筒3一体,且圆周均布开多处出水口15。
分选筒3底部连接下锥体8。补压给水系统9连接在下锥体8上,补压给水系统9包括副进水管13、导流管16、切向螺旋分管17,副进水管13安装在下锥体8上,导流管16下部连接副进水管13,导流管16上部连接切向螺旋分管17,切向螺旋分管17位于分选筒的中部附近。副进水管13可设计为1个或多个。切向螺旋分管17出水口方向为圆周切向。切向螺旋分管17可以为2个或多个。传感器9安装在下锥体8上并与其内腔连通,传感器9可为浓度传感器或压力传感器。下锥体6的底部连接排精矿系统10,排精矿系统10为管夹阀和电动控制器12
下面依据附图,对本发明的智能淘洗磁选机进一步详细说明。如图1-11 所示,本发明智能淘洗磁选机包括给料槽1、溢流槽2、分选筒3、励磁线圈4、平衡柱5、外罩6、给水系统7、下锥体8、补压给水系统9、排精矿系统10、传感器11。大致结构自上而下分别是给料槽1,溢流槽2,分选筒3,分选筒3的圆周外侧套装多组励磁线圈4,励磁线圈4外套外罩6,分选筒3内侧中下部安装平衡柱5,平衡柱5与分选筒3同轴。给水系统7位于分选筒3下部。下锥体8安装在分选筒3的底部。补压给水系统9和传感器11安装在下锥体8上。下锥体8的底部安装有排精矿系统10。下面进一步详细介绍设备结构:
位于设备最上部的是给料槽1,给料槽1通过支架24架装在溢流槽2上,支架24可以为3个或3个以上。给料槽1与溢流槽2及分选筒3为同轴结构。给料槽1的圆周外部连接给料管22。从图4-5看出,给料管22与给料槽1之间可以垂直连接,也可以圆周切向连接。给料槽1的下部连接有输料管21,输料管21与分选筒3同轴。输料管21下部为笼式出口18。从图6-8看出,笼式出口18通常为竖直长条孔、圆孔或横向长条孔结构,但不限于这些结构。
溢流槽2位于给料槽1的下部。溢流槽2与分选筒3通过法兰29连接。溢流槽2由外围板25、倾斜底板26、内围板27、下锥板28、溢流槽法兰29、尾矿管20组成。倾斜底板26连接了外围板25和内围板27,组成了尾矿溜槽,倾斜底板26为一头高一头低的倾斜结构。内围板27与溢流槽法兰29之间通过下锥板28连接,下锥板28起到变径过渡作用,使内围板27直径大于分选筒3。
分选筒3的圆周外侧套装多组励磁线圈4,励磁线圈4的所有线圈的磁场强度及脉动周期可调。励磁方案有多种方式。一般位于最上部的上线圈19和最下部的下线圈14设定为长开励磁。励磁线圈4的其余线圈一般设定为脉动励磁,励磁顺序是至上而下,为连续无间隔。励磁组合方案可以有多种,每个线圈可以单独励磁或每相邻2个或多个线圈组合一组励磁。励磁线圈4 外套外罩6,励磁线圈4与外套6间隙为1mm-500mm(毫米),一般为5mm-200mm(毫米)。分选筒3内侧中下部安装平衡柱5,平衡柱5与分选筒3同轴安装。
分选筒3的下部连接环形给水系统7,环形给水系统7内腔沿切向连接主进水管23,主进水管23可设计为1个或多个。环形给水系统7内壁与分选筒3一体,且圆周均布开多处出水口15。
分选筒3底部连接下锥体8。补压给水系统9连接在下锥体8上,补压给水系统9包括副进水管13、导流管16、切向螺旋分管17。副进水管13可设计为1个或多个。切向螺旋分管17出水口方向为圆周切向。切向螺旋分管17可以为2个或多个。传感器9安装在下锥体8上并与其内腔连通,传感器9可为浓度传感器或压力传感器。下锥体6的底部连接排精矿系统10,排精矿系统10为管夹阀和电动控制器12。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。本领域普通的技术人员可以理解,在不背离所附权利要求定义的本发明的精神和范围的情况下,可以在形式和细节中做出各种各样的修改。

Claims (16)

  1. 一种智能淘洗磁选机,其包括给料槽(1)、溢流槽(2)、分选筒(3)、励磁线圈(4)、平衡柱(5)、外罩(6)、给水系统(7)、下锥体(8)、排精矿系统(10)和传感器(11);
    其特征在于,自上而下分别安装给料槽(1)、溢流槽(2)和分选筒(3),分选筒(3)的圆周外侧套装多组励磁线圈(4),励磁线圈(4)外套外罩(6),分选筒(3)内侧中下部安装平衡柱(5),平衡柱(5)与分选筒(3)同轴安装,给水系统(7)位于分选筒(3)中下部;下锥体(8)与分选筒(3)的底部连通安装;下锥体(8)的底部安装有排精矿系统(10);传感器(11)安装在下锥体(8)上,用于测量分选筒(3)的矿浆浓度。
  2. 依据权利要求1所述的智能淘洗磁选机,其特征在于,其为一种带有补压给水功能的智能淘洗磁选机,所述智能淘洗磁选机进一步包括补压给水系统(9),补压给水系统(9)安装在下锥体(8)上。
  3. 依据权利要求1所述的智能淘洗磁选机,其特征在于,给料槽(1)通过支架(24)架装在溢流槽(2)上,支架(24)为3个或3个以上。
  4. 依据权利要求3或2所述的智能淘洗磁选机,其特征在于,给料槽(1)与溢流槽(2)及分选筒(3)为同轴结构。
  5. 依据权利要求3或2所述的智能淘洗磁选机,其特征在于,给料槽(1)的圆周外部连接给料管(22)。
  6. 依据权利要求3或2所述的智能淘洗磁选机,其特征在于,给料槽(1)的下部连接有输料管(21),输料管(21)与分选筒(3)同轴。
  7. 依据权利要求1或2所述的智能淘洗磁选机,其特征在于,溢流槽(2)与分选筒(3)通过法兰(29)连接。
  8. 依据权利要求1或2所述的智能淘洗磁选机,其特征在于,溢流槽(2)由外围板(25)、倾斜底板(26)、内围板(27)、下锥板(28)、溢流 槽法兰(29)、尾矿管(20)组成;倾斜底板(26)连接了外围板(25)和内围板(27),组成了尾矿溜槽,倾斜底板(26)为一头高一头低的倾斜结构。
  9. 依据权利要求8所述的智能淘洗磁选机,其特征在于,内围板(27)与溢流槽法兰(29)之间通过下锥板(28)连接,下锥板(28)起到变径过渡作用,使内围板(27)直径大于分选筒(3)。
  10. 依据权利要求1或2所述的智能淘洗磁选机,其特征在于,励磁线圈(4)与外套(6),间隙为1-500mm。
  11. 依据权利要求1或2所述的智能淘洗磁选机,其特征在于,分选筒(3)的下部连接环形给水系统(7),环形给水系统(7)内腔沿切向连接主进水管(23),主进水管(23)为1个或多个。
  12. 依据权利要求2所述的智能淘洗磁选机,其特征在于,补压给水系统(9)包括副进水管(13)、导流管(16)、切向螺旋分管(17);副进水管(13)为1个或多个。
  13. 依据权利要求12所述的智能淘洗磁选机,其特征在于,切向螺旋分管(17)出水口方向为圆周切向;切向螺旋分管(17)可以为2个或多个。
  14. 依据权利要求1或2所述的智能淘洗磁选机,其特征在于,传感器(9)为浓度传感器或压力传感器。
  15. 依据权利要求1或2所述的智能淘洗磁选机,其特征在于,排精矿系统(10)为管夹阀和电动控制器(12)。
  16. 一种使用权利要求2-15之任一所述智能淘洗磁选机的磁选方法,其包括如下步骤:
    第一步,矿浆由给料槽(1)给入,矿浆顺着输料管(21)下流,从输料管(21)下部的笼式出口(18)均匀进入分选筒(3)中;
    第二步,矿浆给入到分选筒(3)后,磁性颗粒受到多组励磁线圈(4)产生下行运动磁场力及重力作用连接成竖直向磁链,悬浮下行;物料受到平 衡柱(5)的阻挡,被分散在平衡柱(5)及分选筒(3)之间空间处;励磁线圈(4)的所有线圈的磁场强度及脉动周期可调;
    第三步,非磁性脉石颗粒分布在磁链周围,上升冲洗水从分选筒(3)下部的给水系统(7)切向给入分选筒(3),在分选筒(3)中以螺旋方式上行,脉石颗粒随着上升水上浮至溢流槽(2)溢流排出形成尾矿;
    第四步,补压水从位于下锥体(8)的补压给水系统(9)给入,通过导流管(16)从切向螺旋分管(17)冲入分选筒(3);
    第五步,磁性颗粒以磁链的状态下行至排精矿系统(10),排出精矿。
PCT/CN2016/086512 2016-06-15 2016-06-21 一种智能淘洗磁选机及磁选方法 WO2017215012A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/526,999 US20180185853A1 (en) 2016-06-15 2016-06-21 Intelligent elutriation magnetic separator and magnetic-separating method
AU2016340294A AU2016340294A1 (en) 2016-06-15 2016-06-21 Intelligent elutriation magnetic separator and magnetic-separating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610415984.9 2016-06-15
CN201610415984.9A CN105921271B (zh) 2016-06-15 2016-06-15 一种智能淘洗磁选机及磁选方法

Publications (1)

Publication Number Publication Date
WO2017215012A1 true WO2017215012A1 (zh) 2017-12-21

Family

ID=56834053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/086512 WO2017215012A1 (zh) 2016-06-15 2016-06-21 一种智能淘洗磁选机及磁选方法

Country Status (5)

Country Link
US (1) US20180185853A1 (zh)
CN (1) CN105921271B (zh)
AU (1) AU2016340294A1 (zh)
CL (1) CL2017001526A1 (zh)
WO (1) WO2017215012A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110302890A (zh) * 2019-07-03 2019-10-08 中国恩菲工程技术有限公司 基于图像采集的溜槽分选机、方法及存储介质和电子设备
CN110328041A (zh) * 2019-08-12 2019-10-15 山西紫金矿业有限公司 一种新型金矿尾矿库物料再选制浆装置
CN110328041B (zh) * 2019-08-12 2024-04-26 山西紫金矿业有限公司 一种新型金矿尾矿库物料再选制浆装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106824508A (zh) * 2017-01-10 2017-06-13 中冶北方(大连)工程技术有限公司 一种磁铁矿破碎‑磨矿‑磁选工艺
CN107649287B (zh) 2017-11-03 2024-04-02 沈阳隆基电磁科技股份有限公司 一种磁微流控精选机及其成套选矿设备
CN107755091A (zh) * 2017-11-25 2018-03-06 玉溪大红山矿业有限公司 一种能够大幅度降低选矿成本的浮磁选柱
CN107812609A (zh) * 2017-12-07 2018-03-20 石家庄金垦科技有限公司 磁力脱泥机
WO2020186596A1 (zh) * 2019-03-15 2020-09-24 山东华特磁电科技股份有限公司 低频交流电磁淘洗机
CN110180675B (zh) * 2019-04-23 2020-08-04 中节能兆盛环保有限公司 一种干湿两用复合型高梯度智能磁分离装置
CN110302898A (zh) * 2019-08-01 2019-10-08 涉县宝轩机械设备有限公司 一种双筒式磁铁矿精粉品味提升机
CN111632753B (zh) * 2019-12-04 2022-03-11 石家庄金垦科技有限公司 淘洗磁选机
CN111774176A (zh) * 2020-07-15 2020-10-16 涉县宝轩机械设备有限公司 一种塔式淘洗机
CN111940128B (zh) * 2020-08-06 2022-09-02 佛山市杰创科技有限公司 一种浆料机选矿系统及其控制方法
CN112517239B (zh) * 2020-12-25 2022-07-22 中冶北方(大连)工程技术有限公司 一种筒式磁选机精矿品位调控系统
CN113182068A (zh) * 2021-03-30 2021-07-30 中南大学 一种磁力脉动逆流分选装置
CN113333150B (zh) * 2021-05-13 2022-05-31 西北矿冶研究院 一种选铁尾矿矿浆间歇式磨矿降耗工艺
CN113695081A (zh) * 2021-08-24 2021-11-26 北矿机电科技有限责任公司 一种电永磁磁体的分选机
CN114289174B (zh) * 2021-11-17 2023-11-24 镇康县振兴矿业开发有限责任公司 一种铁精矿的提质降硅工艺及装置
CN114433349B (zh) * 2022-02-09 2024-04-05 北矿机电科技有限责任公司 一种分区激磁型电磁精选机
CN114602635A (zh) * 2022-04-12 2022-06-10 中南大学 一种磁力分级机
CN114715987A (zh) * 2022-04-28 2022-07-08 共享机床辅机(大连)有限公司 一种用于净化水箱的磁柱装置及其净化方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006305417A (ja) * 2005-04-26 2006-11-09 Bunri:Kk 濾過装置
CN101648158A (zh) * 2009-09-14 2010-02-17 武汉理工大学 具有分选功能的磁性物料浓缩装置
CN104043522A (zh) * 2014-06-05 2014-09-17 鞍钢集团矿业公司 高梯度立环磁选机液位自动控制装置
CN104772211A (zh) * 2015-04-30 2015-07-15 山东华特磁电科技股份有限公司 电磁淘洗精选机
CN205199717U (zh) * 2015-12-03 2016-05-04 广州粤有研矿物资源科技有限公司 磁选机
CN205288680U (zh) * 2015-07-29 2016-06-08 石家庄金垦科技有限公司 高浓度淘洗磁选机

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3246749A (en) * 1960-10-18 1966-04-19 Capital Coal Company Inc Method and apparatus for sink and float separation for minerals of small particle size
CN2188429Y (zh) * 1993-05-10 1995-02-01 鞍山钢铁学院 磁选柱
CN2416959Y (zh) * 2000-04-13 2001-01-31 鞍钢集团弓长岭矿业公司 磁-重选矿机
CN2666558Y (zh) * 2003-11-11 2004-12-29 鞍山科技大学 一种新型磁选柱
CN101612607B (zh) * 2009-07-03 2013-09-25 刘阳 一种变径磁选柱
CN202290291U (zh) * 2011-10-26 2012-07-04 沈阳隆基电磁科技股份有限公司 全自动磁悬浮精选机
CA2792277C (en) * 2011-12-16 2016-11-08 Cenovus Energy Inc. Apparatus and methods for conveying a flow of oil-containing liquid into an oil separation skim tank, and skim tanks including the same
CN203389748U (zh) * 2013-07-01 2014-01-15 北矿机电科技有限责任公司 一种电磁精选磁选机
CN204338312U (zh) * 2014-11-26 2015-05-20 石家庄金垦科技有限公司 大型全自动淘洗磁选机
AU2015100935A6 (en) * 2015-07-15 2016-07-21 Austech Supplies Pty Ltd Water-saving electromagnetic panning mineral separating system
CN205288682U (zh) * 2016-01-08 2016-06-08 石家庄金垦科技有限公司 一种节水型淘洗磁选机
CN105597929B (zh) * 2016-02-01 2018-05-29 沈阳隆基电磁科技股份有限公司 一种全自动磁悬浮精选机
CN205731618U (zh) * 2016-06-15 2016-11-30 沈阳隆基电磁科技股份有限公司 一种智能淘洗磁选机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006305417A (ja) * 2005-04-26 2006-11-09 Bunri:Kk 濾過装置
CN101648158A (zh) * 2009-09-14 2010-02-17 武汉理工大学 具有分选功能的磁性物料浓缩装置
CN104043522A (zh) * 2014-06-05 2014-09-17 鞍钢集团矿业公司 高梯度立环磁选机液位自动控制装置
CN104772211A (zh) * 2015-04-30 2015-07-15 山东华特磁电科技股份有限公司 电磁淘洗精选机
CN205288680U (zh) * 2015-07-29 2016-06-08 石家庄金垦科技有限公司 高浓度淘洗磁选机
CN205199717U (zh) * 2015-12-03 2016-05-04 广州粤有研矿物资源科技有限公司 磁选机

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110302890A (zh) * 2019-07-03 2019-10-08 中国恩菲工程技术有限公司 基于图像采集的溜槽分选机、方法及存储介质和电子设备
CN110302890B (zh) * 2019-07-03 2023-08-22 中国恩菲工程技术有限公司 基于图像采集的溜槽分选机、方法及存储介质和电子设备
CN110328041A (zh) * 2019-08-12 2019-10-15 山西紫金矿业有限公司 一种新型金矿尾矿库物料再选制浆装置
CN110328041B (zh) * 2019-08-12 2024-04-26 山西紫金矿业有限公司 一种新型金矿尾矿库物料再选制浆装置

Also Published As

Publication number Publication date
CN105921271A (zh) 2016-09-07
US20180185853A1 (en) 2018-07-05
AU2016340294A1 (en) 2018-01-18
CN105921271B (zh) 2018-11-02
CL2017001526A1 (es) 2018-03-16

Similar Documents

Publication Publication Date Title
WO2017215012A1 (zh) 一种智能淘洗磁选机及磁选方法
CN104772211B (zh) 电磁淘洗精选机
CN104815753B (zh) 一种浮团聚电磁精选设备
RU2711695C1 (ru) Магнитный микрофлюидный концентратор и комплект оборудования для обогащения, в котором он используется
CN203425904U (zh) 底锥旋流、叶轮式给水磁选柱
CN204338354U (zh) 一种电磁旋流浮选柱
CN107225042A (zh) 一种集重、磁、浮多力场于一体的分选机及其分选方法
CN202290291U (zh) 全自动磁悬浮精选机
CN205731618U (zh) 一种智能淘洗磁选机
CN106914339B (zh) 一种尾矿内流式磁选柱
CN2917799Y (zh) 脉动磁选柱
CN201073617Y (zh) 永磁旋流脱水槽
CN107127048B (zh) 一种磁微流控精选机及其成套磁选设备
CN101648158A (zh) 具有分选功能的磁性物料浓缩装置
CN2782219Y (zh) 一种水力分离器
CN203862407U (zh) 浮选柱
CN204746573U (zh) 一种磁力选矿装置
CN107233997B (zh) 具有智能调控功能的磁微流控精选机及其成套磁选设备
CN206631752U (zh) 一种尾矿内流式磁选柱
CN204620180U (zh) 电磁淘洗精选机
CN106622655B (zh) 永磁脉动箱式磁选机
CN103586128A (zh) 旋流磁选柱
CN208944358U (zh) 细粒金属矿分级与粗选一体化装置
CN108273658B (zh) 一种智能电磁分离机及其成套分离设备
CN206444755U (zh) 有压萤石粗粒级矿分选旋流器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016340294

Country of ref document: AU

Date of ref document: 20160621

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16905126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16905126

Country of ref document: EP

Kind code of ref document: A1