WO2017213035A1 - オイルポンプ - Google Patents

オイルポンプ Download PDF

Info

Publication number
WO2017213035A1
WO2017213035A1 PCT/JP2017/020564 JP2017020564W WO2017213035A1 WO 2017213035 A1 WO2017213035 A1 WO 2017213035A1 JP 2017020564 W JP2017020564 W JP 2017020564W WO 2017213035 A1 WO2017213035 A1 WO 2017213035A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
rotor
oil
drive shaft
fitting portion
Prior art date
Application number
PCT/JP2017/020564
Other languages
English (en)
French (fr)
Inventor
加藤博史
Original Assignee
アイシン精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン精機株式会社 filed Critical アイシン精機株式会社
Publication of WO2017213035A1 publication Critical patent/WO2017213035A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00

Definitions

  • the present invention relates to an oil pump having a pump rotor on a drive shaft driven by an electric motor, and housing the pump rotor in a housing.
  • Patent Document 1 discloses that an inner rotor rotates integrally with a drive shaft (rotating shaft) by a driving force of an electric motor, and suction causes suction from a suction channel (suction chamber) of the housing. A technique is shown in which discharged oil is sent out from a discharge channel (discharge chamber).
  • a steel ball that is in contact with the end portion on the motor side is disposed in order to restrict displacement of the drive shaft in the axial direction.
  • the pump rotor rotates integrally with the drive shaft (drive rotation shaft) by the driving force of the electric motor (electric motor unit), and oil sucked from the suction flow path (suction port) of the housing by this rotation is disclosed.
  • a technique for delivering from a discharge flow path (discharge port) is shown.
  • a first bearing portion is formed in a partition wall at an intermediate position between an electric motor (electric motor portion) and a pump rotor in a housing, and oil from a discharge passage is driven to the first bearing portion.
  • a first oil introduction passage for supplying to the shaft is formed.
  • a second bearing portion is formed in a portion of the housing where the drive shaft passing through the pump rotor is supported, and a second oil introduction passage for introducing oil from the second bearing portion suction flow path is formed. Is formed.
  • the discharge pressure of the pump may act on the end surface on the pump side of the drive shaft.
  • a thrust load is applied to the drive shaft, and the steel ball is worn or the frictional resistance acting on the rotation is increased.
  • Patent Document 2 In an oil pump that drives and rotates a pump rotor provided in a drive shaft, as shown in Patent Document 2, a hole formed in the housing is used as a bearing, and a ball bearing or the like is formed by inserting the drive shaft into the hole. Many configurations that do not use this bearing are also employed. However, in the oil pump having the configuration shown in Patent Document 2, although the drive shaft can be smoothly rotated, the oil supply pressure to the drive shaft is low, so that a sufficient oil film cannot be formed in the hole. In such a case, it has been considered to increase the frictional resistance acting on the rotation because a thrust load acts on the drive shaft and the shaft end strongly contacts the housing.
  • the characteristic configuration of the oil pump includes a drive shaft that is rotated by the driving force of the electric motor, a pump rotor that is coupled to the drive shaft, and a pump housing that houses a pump portion having the pump rotor,
  • the drive shaft includes a support shaft portion rotatably supported by a bearing hole portion of the pump housing, and a rotor fitting portion fitted to the pump rotor, and the rotor fitting portion is the pump rotor.
  • An oil flow path that allows oil to flow in a direction along the axis of the drive shaft between the rotor fitting portion and the pump rotor.
  • the pump housing supplies a suction channel for supplying oil to the pump unit, a discharge channel for sending pressurized oil from the pump unit, and a supply channel for sending pressurized oil from the pump unit to the bearing hole It is in the point equipped with.
  • the pressurized oil from the pump unit is sent to the discharge flow path and the pressurized oil is supplied to the bearing hole through the supply flow path. Is done. For this reason, the pressurized oil flows as lubricating oil in the oil flow path between the inner periphery of the bearing hole and the drive shaft, thereby realizing smooth rotation of the drive shaft.
  • the drive shaft when one of the oil pressures acting in the direction of sandwiching the pump rotor in the direction along the drive shaft core is different from the other oil pressure, the rotor fitting portion of the drive shaft and the pump Since oil flows through the oil flow path between the rotor and the oil, the pressure difference between the oils at the position where the pump rotor is sandwiched is eliminated, and no load is applied in the thrust direction.
  • this configuration it is possible to form the oil flow path with a relatively simple configuration such as enlarging a gap in a part of the fitting structure between the rotor fitting portion and the pump rotor. It is not necessary to perform complicated processing to form the path. Therefore, in the oil pump in which the drive shaft driven by the electric motor is connected to the pump rotor in a penetrating state, the drive shaft can be smoothly rotated.
  • the entire circumference of a region of the drive shaft to which the supply flow channel is connected may include a small diameter portion having a smaller diameter than the other regions.
  • a step portion is formed at a boundary between the support shaft portion and the rotor fitting portion.
  • the pump rotor may be brought into contact with the portion.
  • the pump rotor is brought into contact with the stepped portion, so that positioning in a form that prevents displacement is realized, and for example, the position of the pump rotor can be reliably determined without using a member such as a retaining ring. It becomes.
  • the rotor fitting portion has a D cut portion formed by a process of removing a part of the outer periphery of the rotor fitting portion of the drive shaft, and is fitted to the D cut portion.
  • a through hole having a fitting portion may be formed in the pump rotor, and the oil passage may be formed to flow oil in a direction along the shaft core with respect to the pump rotor.
  • the rotor fitting portion can be formed by simple processing such as cutting a part of the drive shaft, and the oil is circulated through the oil passage formed in the pump rotor to the region sandwiching the pump rotor. be able to.
  • an oil pump 100 is configured by connecting a motor housing 10 and a pump housing 20.
  • This oil pump 100 is provided in a hybrid vehicle or a vehicle in which idle stop is performed, and enables oil to be supplied to a transmission such as a CVT even when the engine is stopped.
  • the oil pump 100 contains the electric motor 1 in the motor housing 10 and the pump part 2 in the pump housing 20.
  • a drive shaft 11 that is driven and rotated by the drive force of the electric motor 1 is disposed in a region extending from the motor housing 10 to the pump housing 20, and the pump unit 2 is driven by the drive force of the drive shaft 11.
  • the pump housing 20 includes a suction port 27P and a discharge port 28P.
  • the pump unit 2 When the pump unit 2 is driven by the driving force of the electric motor 1, oil is sucked from the suction port 27P and oil is discharged from the discharge port 28P. Is discharged.
  • an electric motor 1 includes a drive shaft 11 that is rotatably supported on a drive shaft core X and a coaxial core, a motor rotor 12 fixed to one shaft end of the drive shaft 11, The stator 13 is disposed in a region surrounding the motor rotor 12 and supported by the motor housing 10.
  • the motor rotor 12 includes a back yoke and a plurality of permanent magnets, and a coil is wound around a stator core constituting the stator 13.
  • the electric motor 1 is configured as a brushless DC motor, but may be configured as a synchronous motor or a three-phase motor.
  • the pump unit 2 includes a pump housing 20, an inner rotor 21 as a pump rotor accommodated in a pump space 24 of the pump housing 20, and an outer rotor 22. It is configured as a gear type.
  • the inner rotor 21 (an example of a pump rotor) includes a plurality of external teeth 21A and is fitted and connected to an intermediate portion of the drive shaft 11 so as to be driven to rotate about the drive shaft core X.
  • the outer rotor 22 includes a plurality of inner teeth 22A that mesh with the outer teeth 21A of the inner rotor 21, and is housed in the pump space 24 of the pump housing 20 so as to rotate around a driven shaft core Y that is in a parallel posture with the drive shaft core X. ing.
  • the dimensions of the inner rotor 21 and the outer rotor 22 in the direction along the drive shaft core X are made equal, and the dimensions of the pump space 24 in the direction along the drive shaft core X with respect to this dimension. Is set to a slightly larger value.
  • the drive shaft 11 has an input shaft portion 11a connected to the motor rotor 12 on one end side, and a support shaft portion 11b that is rotatably inserted into the second insertion hole portion 26 (an example of a bearing hole portion) in the pump housing 20. Is formed on the other end side, and a rotor fitting portion 11c to be fitted to the inner rotor 21 is formed at an intermediate position.
  • the drive shaft 11 has a stepped portion 11d (at the boundary between the support shaft portion 11b and the rotor fitting portion 11c) by making the outer diameter of the support shaft portion 11b larger (larger than) the outer diameter of the rotor fitting portion 11c. 1 and FIG. 4).
  • the outer end portion of the support shaft portion 11b of the drive shaft 11 is formed in a hemispherical shape, and the outer end portion is disposed in a position close to or lightly in contact with the inner surface of the plate 20C.
  • a cover body 15 is connected to the motor housing 10, and a control board 16 that controls the electric motor 1 is accommodated in a space formed between the cover body 15 and the motor housing 10.
  • the pump housing 20 includes a first housing 20A in which a pump space 24 that accommodates the inner rotor 21 and the outer rotor 22 is formed, a second housing 20B that is connected to the first housing 20A, and a plate 20C that is connected to the outer surface side of the second housing 20B. Are connected in a stacked state.
  • the motor housing 10 is provided with a motor space 10S that accommodates the motor rotor 12, and a part of the first housing 20A is fitted into the motor space 10S to thereby make the motor housing 10 and the pump housing 20 relatively relative to each other. The position is determined.
  • the oil pump 100 is configured to allow oil to flow into a space in which the motor rotor 12 is accommodated, and the mating surface between the motor housing 10 and the first housing 20A is configured to allow oil leakage. .
  • a pump space 24 is formed in the first housing 20 ⁇ / b> A, and a through hole-like first insertion hole portion 25 through which a portion connected to the input shaft portion 11 a of the drive shaft 11 is inserted is formed.
  • the second housing 20B is formed with a second insertion hole portion 26 as a bearing hole portion, and a suction flow path 27 communicating with the negative pressure side of the pump space 24 and a discharge flow communicating with the high pressure side of the pump space 24 A path 28 is formed.
  • the plate 20C has a through-hole-shaped suction port 27P formed at a position communicating with the suction flow path 27, and a through-hole-shaped discharge port 28P formed at a position communicated with the discharge flow path 28.
  • a plurality of spline inner teeth 21T are formed on the inner rotor 21, and spline outer teeth 11T are formed on the rotor fitting portion 11c of the drive shaft 11, and these are fitted to each other.
  • the torque transmission part which transmits torque is comprised.
  • one of the plurality of spline inner teeth 21T is removed to form a cutout portion 21S, and one of the plurality of spline outer teeth 11T is removed to form an ablation region 11S.
  • an oil flow path S that allows oil flow in the direction along the drive shaft core X between the inner rotor 21 and the drive shaft 11 is formed in a region where the cutout portion 21S and the cut region 11S overlap.
  • the oil flow path S may be created by forming only one of the cutout portion 21S and the cut region 11S.
  • a supply flow path 29 that allows oil to flow from the discharge flow path 28 to the second insertion hole 26 (bearing hole) is formed.
  • the outer diameter of the entire circumference of the portion corresponding to the region where the supply flow path 29 communicates with the second insertion hole portion 26 is set to the support shaft portion 11 b.
  • a small-diameter portion 11e formed to have a smaller diameter than the outer diameter of the other region is formed.
  • a drain channel 30 that allows the second insertion hole 26 and the suction channel 27 to communicate with each other is formed in a groove shape.
  • the drain channel 30 is covered with the plate 20C.
  • a part of the pressurized oil flowing in the discharge flow path 28 is supplied from the supply flow path 29 to the second insertion hole portion 26. Since the oil supplied in this manner further flows around the entire circumference of the small diameter portion 11e, the oil is supplied from the entire circumference of the support shaft portion 11b to the inner periphery of the second insertion hole portion 26, and as a result, the support shaft portion 11b An oil film will be formed on the entire circumference, realizing good lubrication.
  • a part of the oil supplied in this way flows into the drain passage 30 and is discharged from the suction passage 27. Then, the remaining oil flows in the direction of the inner rotor 21, passes through the step portion 11d, reaches the rotor fitting portion 11c, further flows in the direction of the input shaft portion 11a via the oil flow path S, and reaches the motor space 10S.
  • the oil reaching the motor space 10S is discharged via the input shaft portion 11a so as to leak to the outside from the mating surface between the motor housing 10 and the first housing 20A due to the pressure.
  • the present invention may be configured as follows (the components having the same functions as those of the embodiments are given the same numbers and symbols as those of the embodiments).
  • a rotor fitting portion 11c having a larger diameter than these is formed at an intermediate portion between the input shaft portion 11a and the support shaft portion 11b.
  • the dimension in the direction along the drive shaft core X of the rotor fitting portion 11c is made to coincide with the dimension in the direction along the drive shaft core X of the inner rotor 21 (an example of a pump rotor).
  • the inner rotor 21 and the outer rotor 22 have the same dimensions in the direction along the drive shaft core X, and the pump space in the direction along the drive shaft core X with respect to these dimensions.
  • the size of 24 is set slightly larger.
  • the rotor fitting portion 11c is formed to have a larger diameter than the input shaft portion 11a and the support shaft portion 11b, so that one surface of the rotor fitting portion 11c abuts on the first housing 20A, and the other Positioning of the drive shaft 11 in the direction along the drive shaft core X is performed by the surface abutting against the second housing 20B.
  • the rotor fitting portion 11c is configured as a D-cut portion formed by a process of removing the insertion portion on the outer periphery, and this rotor fitting portion 11c (D-cut portion) A through hole 21 ⁇ / b> H having a fitting portion 21 ⁇ / b> Hc that fits in the inner rotor 21 is formed.
  • the torque transmission part which transmits a torque is comprised by the rotor fitting part 11c and the fitting part 21Hc fitting with each other.
  • the oil flow path S is formed in the through-hole 21H of the inner rotor 21 in the position adjacent to the fitting part 21Hc.
  • the oil flow path S is formed in a form in which a part of the end surface of the fitting portion 21Hc is cut out in a groove shape, and oil between the input shaft portion 11a and the support shaft portion 11b in the outer peripheral surface of the drive shaft 11 is formed. Allow the flow of.
  • the oil flow path S is not limited to a shape that is notched in the fitting portion 21Hc, and is formed, for example, as a through hole that is parallel to the drive shaft core X at a position near the fitting portion 21Hc. Things may be used.
  • a part of the pressurized oil flowing in the discharge flow path 28 is supplied from the supply flow path 29 to the second insertion hole portion 26 (an example of a bearing hole portion). Further, since this oil flows further to the entire circumference of the small diameter portion 11e, the oil is supplied from the entire circumference of the support shaft portion 11b to the inner circumference of the second insertion hole portion 26, and as a result, used as lubricating oil.
  • the input shaft portion 11a is formed at one end portion of the drive shaft 11, the rotor fitting portion 11c is formed at the opposite end portion, and the support shaft portion 11b is formed at the intermediate portion.
  • the first housing 20A is formed with a second insertion hole 26 that functions as a bearing hole so as to rotatably support the support shaft 11b, and the second housing 20B has an input shaft 11a and A shaft end space 35 in which the end of the drive shaft 11 on the opposite side is disposed is formed.
  • a plurality of spline inner teeth 21T are formed on the inner rotor 21 and the spline outer teeth 11T are formed on the rotor fitting portion 11c of the drive shaft 11 as in the example, and these are mutually connected.
  • a torque transmission unit that transmits torque by fitting is configured.
  • one of the plurality of spline inner teeth 21T is removed to form a cutout portion 21S, and one of the plurality of spline outer teeth 11T is removed to form an ablation region 11S.
  • an oil flow path S that allows oil to flow in the direction along the drive shaft core X between the inner rotor 21 and the drive shaft 11 is formed in a region where the notch 21S and the cut region 11S overlap.
  • the shaft end space 35 is formed in a simple concave shape, and the drain channel 30 that connects the shaft end space 35 and the suction channel 27 is formed. Yes.
  • a supply flow path 29 that allows oil to flow from the pressure region 28a communicating with the discharge flow path 28 to the support shaft portion 11b is formed.
  • the outer diameter of the entire circumference is set to the other region of the support shaft portion 11b.
  • a small-diameter portion 11e formed to have a smaller diameter than the outer diameter is formed.
  • the e-ring 36 may not be provided, and the shaft end of the input shaft portion 11a of the drive shaft 11 may be brought into contact with the inner wall of the motor space 10S.
  • the e-ring 36 since the e-ring 36 is not required, the number of parts can be reduced, and the shaft end of the input shaft portion 11a is in contact with the inner wall of the motor space 10S. Since the load in the thrust direction due to the oil pressure does not act, smooth rotation is possible and wear of the shaft end can be suppressed.
  • the present invention can be used for an oil pump having a pump rotor on a drive shaft driven by an electric motor.

Abstract

ポンプロータに貫通する状態で連結し、電動モータで駆動される駆動軸の円滑な回転を可能にするオイルポンプを構成する。駆動軸が、ポンプハウジングの軸受孔部に回転自在に支持される支持軸部と、ポンプロータに嵌合するロータ嵌合部とを備え、ロータ嵌合部とポンプロータとの間に駆動軸の軸芯に沿う方向へのオイルの流れを許すオイル流路を備えている。ポンプハウジングが、ポンプ部からの加圧オイルを軸受孔部に送る供給流路を備えている。

Description

オイルポンプ
 本発明は、電動モータで駆動される駆動軸にポンプロータを備え、このポンプロータをハウジングに収容しているオイルポンプに関する。
 上記のように構成されたオイルポンプとして特許文献1には電動モータの駆動力によって駆動軸(回転軸)と一体的にインナロータが回転し、この回転によりハウジングの吸引流路(吸入室)から吸引したオイルを、吐出流路(吐出室)から送り出す技術が示されている。
 この特許文献1の第1実施形態では、駆動軸の軸芯方向への変位を規制するためにモータ側の端部に当接する鋼球を配置している。
 特許文献2には、電動モータ(電動機部)の駆動力によって駆動軸(駆動回転軸)と一体的にポンプロータが回転し、この回転によりハウジングの吸引流路(吸入ポート)から吸引したオイルを、吐出流路(吐出ポート)から送り出す技術が示されている。
 この特許文献2では、ハウジングのうち、電動モータ(電動機部)とポンプロータとの中間位置の隔壁に第1の軸受部が形成され、この第1の軸受部に吐出流路からのオイルを駆動軸に供給する第1のオイル導入通路が形成されている。更に、ハウジングのうち、ポンプロータを貫通する駆動軸が支持される部位に第2の軸受部が形成され、この第2の軸受部吸入流路からのオイルを導入する第2のオイル導入通路が形成されている。
特開2012‐26294号公報 特開2015‐166570号公報
 特許文献1のオイルポンプのうち、第1の実施形態の構成では、駆動軸のうちポンプ側の端面にポンプの吐出圧が作用することもある。このように吐出圧が作用した場合には駆動軸にスラスト荷重が作用し、鋼球を摩耗させることや、回転に作用する摩擦抵抗を増大させることもあった。
 駆動軸に備えたポンプロータを駆動回転するオイルポンプでは、特許文献2にも示されるように、ハウジングに穿設した孔部を軸受とし、この孔部に駆動軸を挿入することによってボールベアリング等の軸受を用いない構成も多く採用されている。しかしながら、特許文献2に示される構成のオイルポンプでは、駆動軸の円滑な回転が実現するものの、駆動軸へのオイル供給圧力が低いため、孔部に充分な油膜を形成できない場合も考えられる。このような場合には、駆動軸に対してスラスト荷重が作用し、軸端がハウジングに強く接触する等の理由から回転に作用する摩擦抵抗を増大させることも考えられた。
 このような理由から、電動モータで駆動される駆動軸が、貫通状態でポンプロータに連結するオイルポンプにおいて、駆動軸の円滑な回転を可能にする構成が求められる。
 オイルポンプの特徴構成は、電動モータの駆動力により回転する駆動軸と、駆動軸に連結するポンプロータと、前記ポンプロータを有するポンプ部が収容されるポンプハウジングとを備え、
 前記駆動軸が、前記ポンプハウジングの軸受孔部に回転自在に支持される支持軸部と、前記ポンプロータに嵌合されたロータ嵌合部とを備えると共に、前記ロータ嵌合部が前記ポンプロータに嵌合する状態において、前記ロータ嵌合部と前記ポンプロータとの間に前記駆動軸の軸芯に沿う方向へのオイルの流れを許すオイル流路を備えており、
 前記ポンプハウジングが、前記ポンプ部にオイルを供給する吸引流路と、前記ポンプ部から加圧オイルを送り出す吐出流路と、前記ポンプ部からの加圧オイルを前記軸受孔部に送る供給流路とを備えている点にある。
 これによると、電動モータの駆動力によって駆動軸が回転する場合には、ポンプ部からの加圧オイルが吐出流路に送られると共に、加圧オイルが供給流路を介して軸受孔部に供給される。このため、加圧オイルが軸受孔部の内周と駆動軸とのオイル流路に潤滑油として流れ、駆動軸の円滑な回転を実現する。また、駆動軸において、駆動軸芯に沿う方向でポンプロータを挟み込む方向に作用するオイル圧力のうち一方のオイル圧力と他方のオイル圧力とが異なる場合には、駆動軸のロータ嵌合部とポンプロータとの間のオイル流路にオイルが流れるため、ポンプロータを挟む位置のオイルの圧力差をなくし、スラスト方向に荷重を作用させることもない。特に、この構成では、ロータ嵌合部とポンプロータとの間の嵌合構造の一部の隙間を拡大する等の比較的簡単な構成により、オイル流路を形成することも可能となり、オイル流路を形成するために複雑な加工を行わずに済む。
 従って、電動モータで駆動される駆動軸が、貫通状態でポンプロータに連結するオイルポンプにおいて、駆動軸の円滑な回転が実現した。
 他の構成として、前記駆動軸のうち、前記供給流路が接続された領域の全周が、他の領域より小径となる小径部を備えても良い。
 これによると、小径部の外周と、軸受孔部の内周との間に環状の空間が形成されるため、供給流路から小径部に加圧オイルが供給されることにより、小径部において駆動軸の全周にオイルを無理なく供給して偏りのない潤滑を実現する。
 他の構成として、前記支持軸部の外径を、前記ロータ嵌合部の外径より大きくすることにより、前記支持軸部と前記ロータ嵌合部との境界に段部を形成し、当該段部に前記ポンプロータを当接させても良い。
 これによると、段部にポンプロータが当接することにより、ポンプロータの支持軸部の方向への変位を阻止する形態での位置決めが実現し、例えば、止め輪等の部材を用いることなく、確実にポンプロータの位置を決めることが可能となる。
 他の構成として、前記ロータ嵌合部の外径を、前記電動モータの駆動力が伝えられる入力軸部の外径より大きくすることにより、前記ロータ嵌合部と前記入力軸部との境界に段部を形成し、当該段部に前記ポンプロータを当接させても良い。
 これによると、段部にポンプロータが当接することにより、変位を阻止する形態での位置決めが実現し、例えば、止め輪等の部材を用いることなく、確実にポンプロータの位置を決めることが可能となる。
 他の構成として、前記ロータ嵌合部が、前記駆動軸のうち前記ロータ嵌合部の外周の一部を除去する加工により形成されるDカット部を有し、当該Dカット部に嵌合する嵌合部を有する貫通孔が前記ポンプロータに形成されると共に、前記ポンプロータに対してオイルを前記軸芯に沿う方向に流す前記オイル流路が形成されても良い。
 これによると、駆動軸の一部を切削する等の単純な加工によりロータ嵌合部の形成が可能となり、ポンプロータに形成されたオイル流路を介してポンプロータを挟む領域にオイルを流通させることができる。
オイルポンプの断面図である。 ポンプ部の断面図である。 駆動軸のスプライン歯部の断面図である。 駆動軸の斜視図である。 インナロータの斜視図である。 オイル流路を示す断面図である。 別実施形態(a)のオイルポンプの断面図である。 別実施形態(a)のポンプ部の断面図である。 別実施形態(a)のポンプ部の分解斜視図である。 別実施形態(b)のオイルポンプの断面図である。 別実施形態(b)のポンプ部の分解斜視図である。
 以下、本発明の実施形態を図面に基づいて説明する。
〔基本構成〕
 図1に示すように、モータハウジング10と、ポンプハウジング20とを連結してオイルポンプ100が構成されている。
 このオイルポンプ100は、ハイブリッド型の車両や、アイドルストップが行われる車両に備えられるものであり、エンジンが停止する状況においてもCVT等の変速装置へのオイルの供給を可能にする。
 オイルポンプ100は、モータハウジング10に電動モータ1を収容し、ポンプハウジング20にポンプ部2を収容している。電動モータ1の駆動力で駆動回転する駆動軸11がモータハウジング10からポンプハウジング20に亘る領域に配置され、この駆動軸11の駆動力でポンプ部2が駆動される。
 ポンプハウジング20には、吸引ポート27Pと、吐出ポート28Pとを備え、電動モータ1の駆動力でポンプ部2が駆動されることにより、吸引ポート27Pからオイルを吸入すると共に、吐出ポート28Pからオイルを吐出する。
〔電動モータ・ポンプ部・駆動軸〕
 図1に示すように、電動モータ1は、駆動軸芯Xと同軸芯上において回転自在に支持された駆動軸11と、この駆動軸11の一方の軸端に固定されたモータロータ12と、このモータロータ12を取り囲む領域に配置され、モータハウジング10に支持されるステータ13とを備えている。
 モータロータ12は、バックヨークと複数の永久磁石とを備えており、ステータ13を構成するステータコアにはコイルが巻回されている。この電動モータ1は、ブラシレスDCモータとして構成されるものであるが、同期モータや三相モータとして構成されるものでも良い。
 図1~図6に示すように、ポンプ部2は、ポンプハウジング20と、このポンプハウジング20のポンプ空間24に収容されるポンプロータとしてのインナロータ21と、アウタロータ22とを備えることにより、内接歯車型に構成されている。
 インナロータ21(ポンプロータの一例)は、複数の外歯21Aを備え、駆動軸芯Xを中心に駆動回転するように駆動軸11の中間部に嵌合連結している。アウタロータ22はインナロータ21の外歯21Aに噛合する複数の内歯22Aを備え、駆動軸芯Xと平行姿勢となる従動軸芯Yを中心に回転するようにポンプハウジング20のポンプ空間24に収容されている。
 この構成のオイルポンプ100では、駆動軸芯Xに沿う方向でのインナロータ21とアウタロータ22との寸法を等しくすると共に、この寸法に対して、駆動軸芯Xに沿う方向でのポンプ空間24の寸法が僅かに大きい値に設定されている。
 駆動軸11は、モータロータ12に連結する入力軸部11aを一端側に形成し、ポンプハウジング20において第2挿通孔部26(軸受孔部の一例)に対して回転自在に挿通する支持軸部11bを他端側に形成すると共に、インナロータ21に嵌合するロータ嵌合部11cを中間位置に形成している。
 駆動軸11は、支持軸部11bの外径をロータ嵌合部11cの外径より大きく(大径に)することにより、支持軸部11bとロータ嵌合部11cとの境界に段部11d(図1、図4を参照)を形成している。この段部11dにインナロータ21を当接させることにより、このインナロータ21の駆動軸芯Xに沿う方向での位置が決まる。
 また、駆動軸11のうち支持軸部11bの外端部が半球状に成形され、この外端部がプレート20Cの内面に近接、又は、軽く接触する位置に配置される。
〔ハウジング〕
 モータハウジング10には、カバー体15が連結しており、このカバー体15とモータハウジング10との間に形成される空間に対して、電動モータ1を制御する制御基板16が収容される。
 ポンプハウジング20は、インナロータ21とアウタロータ22とを収容するポンプ空間24が形成される第1ハウジング20Aと、これに連結する第2ハウジング20Bと、第2ハウジング20Bの外面側に連結するプレート20Cとを重ね合わせた状態で連結して構成されている。
 特に、モータハウジング10には、モータロータ12を収容するモータ空間10Sが形成され、このモータ空間10Sに第1ハウジング20Aの一部を嵌め込むことによりモータハウジング10と、ポンプハウジング20との相対的な位置が決まるように構成されている。
 このオイルポンプ100は、モータロータ12が収容される空間へのオイルの流入が許容させるように構成され、モータハウジング10と第1ハウジング20Aとの合わせ面にはオイルのリークが可能に構成されている。
 図1に示すように、第1ハウジング20Aには、ポンプ空間24が形成されると共に、駆動軸11の入力軸部11aに連なる部位が挿通される貫通孔状の第1挿通孔部25が形成されている。第2ハウジング20Bには、軸受孔部としての第2挿通孔部26が形成されると共に、ポンプ空間24の負圧側に連通する吸引流路27と、ポンプ空間24の高圧側に連通する吐出流路28とが形成されている。
 プレート20Cには、吸引流路27と連通する位置に貫通孔状の吸引ポート27Pが形成されると共に、吐出流路28と連通する位置に貫通孔状の吐出ポート28Pが形成されている。
 図2~図6に示すように、インナロータ21には複数のスプライン内歯21Tが形成され、駆動軸11のロータ嵌合部11cにはスプライン外歯11Tが形成され、これらが互いに嵌合することでトルクを伝達するトルク伝達部が構成される。特に、このトルク伝達部では複数のスプライン内歯21Tの1つを取り除いて切欠部21Sを形成し、複数のスプライン外歯11Tの1つを取り除いて切除領域11Sを形成している。
 この構成から、切欠部21Sと切除領域11Sとが重なり合う領域には、インナロータ21と駆動軸11との間において駆動軸芯Xに沿う方向でのオイルの流れを許すオイル流路Sが形成される。尚、切欠部21Sと切除領域11Sとの何れか一方だけ形成することによりオイル流路Sを作り出しても良い。
 図1に示すように、吐出流路28から第2挿通孔部26(軸受孔部)へのオイルの流れを許す供給流路29が形成されている。これに対応して、駆動軸11の支持軸部11bにおいて、供給流路29が第2挿通孔部26に連通する領域に対応する部位には、その全周の外径を、支持軸部11bの他の領域の外径より小径に成形した小径部11eが形成されている。
 第2ハウジング20Bには、第2挿通孔部26と吸引流路27とを連通させるドレン流路30が溝状に形成されている。このドレン流路30は、プレート20Cによって覆われている。
〔作動形態〕
 この構成から、電動モータ1が駆動回転することにより、駆動軸11と一体的にインナロータ21が回転する。これに連動してアウタロータ22が回転することにより、吸引流路27に負圧が作用し、吸引ポート27Pから吸引流路27にオイルが吸引され、ポンプ部2で加圧されたオイルが吐出流路28から吐出ポート28Pに送り出される。
 また、吐出流路28に流れる加圧されたオイルの一部は供給流路29から第2挿通孔部26に供給される。このように供給されたオイルは、更に、小径部11eの全周に流れるため、支持軸部11bの全周から第2挿通孔部26の内周に供給され、結果として、支持軸部11bの全周にオイル膜を形成することになり良好な潤滑を実現する。
 このように供給されたオイルの一部は、ドレン流路30に流れ、吸引流路27から排出される。そして、残余のオイルはインナロータ21の方向に流れ、段部11dを超えてロータ嵌合部11cに達し、オイル流路Sを介して更に入力軸部11aの方向に流れ、モータ空間10Sに達する。
 更に、入力軸部11aを介して、モータ空間10Sに達したオイルは、その圧力により、モータハウジング10と第1ハウジング20Aとの合わせ面から外部にリークするように排出される。
 このように、オイル流路Sにオイルが流れる構成であるため、駆動軸芯Xに沿う方向でインナロータ21を挟み込む方向に作用する圧力のうち一方の圧力が、他方の圧力より上昇する不都合を抑制し、駆動軸11に対してスラスト方向に圧力が作用することがない。これにより駆動軸11の一方の端部がハウジング等に圧接して回転に抵抗を作用させることや、摩耗を招くこともない。更に、駆動軸11の全長の外周にオイルが供給されることにより、第1挿通孔部25と第2挿通孔部26とに充分なオイルを供給して円滑な回転を実現する。
 特に、この構成では、ロータ嵌合部11cとインナロータ21との間の嵌合構造の一部の隙間を拡大する等の比較的簡単な構成により、オイル流路Sを形成することも可能であるため、オイル流路Sを形成するために複雑な加工を行わずに済む。
〔別実施形態〕
 本発明は、上記した実施形態以外に以下のように構成しても良い(実施形態と同じ機能を有するものには、実施形態と共通の番号、符号を付している)。
(a)図7に示すように、入力軸部11aと支持軸部11bとの中間部分に、これらより大径となるロータ嵌合部11cを形成する。このロータ嵌合部11cの駆動軸芯Xに沿う方向での寸法を、インナロータ21(ポンプロータの一例)の駆動軸芯Xに沿う方向での寸法と一致させている。尚、実施形態の構成と同様に駆動軸芯Xに沿う方向でのインナロータ21とアウタロータ22との寸法を等しくしており、これらの寸法に対して、駆動軸芯Xに沿う方向でのポンプ空間24の寸法を僅かに大きく設定している。
 このように、ロータ嵌合部11cが、入力軸部11aおよび支持軸部11bより大径に形成されることにより、ロータ嵌合部11cの一方の面が第1ハウジング20Aに当接し、他方の面が第2ハウジング20Bに当接することで、駆動軸11の駆動軸芯Xに沿う方向での位置決めが行われる。
 この構成では、図7~図9に示すようにロータ嵌合部11cが、その外周の入部を除去する加工により形成されるDカット部として構成され、このロータ嵌合部11c(Dカット部)に嵌合する嵌合部21Hcを有する貫通孔21Hがインナロータ21に形成されている。このようにロータ嵌合部11cと嵌合部21Hcとが互いに嵌合することでトルクを伝達するトルク伝達部が構成されている。更に、インナロータ21の貫通孔21Hのうち、嵌合部21Hcに隣接する位置にオイル流路Sが形成されている。
 オイル流路Sは、嵌合部21Hcの端面の一部を溝状に切り欠く形態で形成され、駆動軸11の外周面のうち、入力軸部11aと支持軸部11bとの間でのオイルの流れを許す。尚、オイル流路Sは、嵌合部21Hcに切り欠く形態で形成されるものに限るものではなく、例えば、嵌合部21Hcの近傍位置において駆動軸芯Xに平行となる貫通孔として形成されるものでも良い。
 この別実施形態(a)では、実施形態と同様に、吐出流路28に流れる加圧されたオイルの一部が供給流路29から第2挿通孔部26(軸受孔部の一例)に供給され、このオイルは、更に、小径部11eの全周に流れるため、支持軸部11bの全周から第2挿通孔部26の内周に供給され、結果として、潤滑油として用いられる。
 また、オイル流路Sにオイルが流れることにより、駆動軸11に対してスラスト方向に圧力を作用させることがない。これにより、駆動軸11の一方の端部がハウジング等に圧接して回転に抵抗を作用させることや、摩耗を招くこともない。また、駆動軸11の全長の外周にオイルが供給されることにより、第1挿通孔部25と第2挿通孔部26とに充分なオイルを供給して円滑な回転を実現する。
(b)図10に示すように、駆動軸11の一方の端部に入力軸部11aを形成すると共に、反対側の端部にロータ嵌合部11cを形成し、中間部分に支持軸部11bを形成する。また、第1ハウジング20Aには、支持軸部11bを回転自在に支持するように軸受孔部として機能する第2挿通孔部26を形成すると共に、第2ハウジング20Bには、入力軸部11aと反対側となる駆動軸11の端部が配置される軸端空間35を形成する。
 図10、図11に示すように、駆動軸11の支持軸部11bの外径をロータ嵌合部11cの外径より大きくすることにより、支持軸部11bとロータ嵌合部11cとの境界に段部11dを形成している。この構成では、インナロータ21を段部11dに当接させて位置決めを行うため、このインナロータ21の抜け止めを行うeリング36(止め輪)がロータ嵌合部11cの軸端に取付けられている。
 この別実施形態(b)では、実施例と同様にインナロータ21には複数のスプライン内歯21Tが形成され、駆動軸11のロータ嵌合部11cにはスプライン外歯11Tが形成され、これらが互いに嵌合することでトルクを伝達するトルク伝達部が構成されている。
 更に、このトルク伝達部では複数のスプライン内歯21Tの1つを取り除いて切欠部21Sを形成し、複数のスプライン外歯11Tの1つを取り除いて切除領域11Sを形成している。これにより、切欠部21Sと、切除領域11Sとが重なり合う領域には、インナロータ21と駆動軸11との間において駆動軸芯Xに沿う方向でのオイルの流れを許すオイル流路Sが形成される。
 この構成では、eリング36によってインナロータ21の位置が決まるため、軸端空間35が単純な凹状に形成され、この軸端空間35と吸引流路27とを連通させるドレン流路30が形成されている。
 第1ハウジング20Aには、吐出流路28に連通する圧力領域28aから支持軸部11bへのオイルの流れを許す供給流路29が形成されている。これに対応して支持軸部11bのうち供給流路29が第2挿通孔部26に連通する領域に対応する部位には、その全周の外径を、支持軸部11bの他の領域の外径より小径に成形した小径部11eが形成されている。
 このような別実施形態でも、オイル流路Sにオイルが流れる構成であるため、駆動軸芯Xに沿う方向でインナロータ21を挟み込む方向で一方の圧力が、他方の圧力より上昇する不都合を抑制し、駆動軸11に対してスラスト方向に圧力が作用することがない。これにより、駆動軸11の一方の端部がハウジング等に圧接して回転に抵抗を作用させることや、摩耗を招くこともない。また、軸端空間35からオイルを、ドレン流路30を介してオイルを排出するため、駆動軸11の軸端にオイルの圧力を作用させることもない。
 この別実施形態(b)の変形例として、eリング36を備えずに、駆動軸11の入力軸部11aの軸端をモータ空間10Sの内壁に当接させるように構成しても良い。この変形例では、eリング36が不要になるため、部品点数の低減が可能となり、入力軸部11aの軸端が、モータ空間10Sの内壁に当接する構成となるが、駆動軸11に対してオイル圧に起因するスラスト方向への荷重が作用しないため、円滑な回転を可能にし、軸端の摩耗の抑制も可能となる。
(c)駆動軸11とインナロータ21とを嵌合する構成として異径嵌合を用いることも可能であり、このような嵌合を用いる場合でも、嵌合部分にオイルの流れを許すオイル流路Sを形成することが可能である。
 本発明は、電動モータで駆動される駆動軸にポンプロータを備えているオイルポンプに利用することができる。
1     電動モータ
2     ポンプ部
10    モータハウジング
11    駆動軸
11b   支持軸部
11c   ロータ嵌合部(Dカット部)
11d   段部
11e   小径部
20    ポンプハウジング
21    インナロータ(ポンプロータ)
21H   貫通孔
21Hc  嵌合部
25    第1挿通孔部(軸受孔部)
26    第2挿通孔部(軸受孔部)
27    吸引流路
28    吐出流路
29    供給流路
S     オイル流路
X     駆動軸芯(軸芯)

Claims (5)

  1.  電動モータの駆動力により回転する駆動軸と、駆動軸に連結するポンプロータと、前記ポンプロータを有するポンプ部が収容されるポンプハウジングとを備え、
     前記駆動軸が、前記ポンプハウジングの軸受孔部に回転自在に支持される支持軸部と、前記ポンプロータに嵌合されたロータ嵌合部とを備えると共に、前記ロータ嵌合部が前記ポンプロータに嵌合する状態において、前記ロータ嵌合部と前記ポンプロータとの間に前記駆動軸の軸芯に沿う方向へのオイルの流れを許すオイル流路を備えており、
     前記ポンプハウジングが、前記ポンプ部にオイルを供給する吸引流路と、前記ポンプ部から加圧オイルを送り出す吐出流路と、前記ポンプ部からの加圧オイルを前記軸受孔部に送る供給流路とを備えているオイルポンプ。
  2.  前記駆動軸のうち、前記供給流路が接続された領域の全周が、他の領域より小径となる小径部を備えている請求項1に記載のオイルポンプ。
  3.  前記支持軸部の外径を、前記ロータ嵌合部の外径より大きくすることにより、前記支持軸部と前記ロータ嵌合部との境界に段部を形成し、当該段部に前記ポンプロータを当接させている請求項1又は2に記載のオイルポンプ。
  4.  前記ロータ嵌合部の外径を、前記電動モータの駆動力が伝えられる入力軸部の外径より大きくすることにより、前記ロータ嵌合部と前記入力軸部との境界に段部を形成し、当該段部に前記ポンプロータを当接させている請求項1又は2に記載のオイルポンプ。
  5.  前記ロータ嵌合部が、前記駆動軸のうち前記ロータ嵌合部の外周の一部を除去する加工により形成されるDカット部を有し、当該Dカット部に嵌合する嵌合部を有する貫通孔が前記ポンプロータに形成されると共に、前記ポンプロータに対してオイルを前記軸芯に沿う方向に流す前記オイル流路が形成されている請求項1~4のいずれか一項に記載のオイルポンプ。
PCT/JP2017/020564 2016-06-07 2017-06-02 オイルポンプ WO2017213035A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-113549 2016-06-07
JP2016113549A JP2017218960A (ja) 2016-06-07 2016-06-07 オイルポンプ

Publications (1)

Publication Number Publication Date
WO2017213035A1 true WO2017213035A1 (ja) 2017-12-14

Family

ID=60578735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020564 WO2017213035A1 (ja) 2016-06-07 2017-06-02 オイルポンプ

Country Status (2)

Country Link
JP (1) JP2017218960A (ja)
WO (1) WO2017213035A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112696354A (zh) * 2019-10-23 2021-04-23 株式会社捷太格特 电动油泵设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7056361B2 (ja) * 2018-05-08 2022-04-19 株式会社アイシン オイルポンプ
EP4056853A4 (en) 2020-09-03 2023-06-28 Anhui Welling Auto Parts Co., Ltd. Pump device and vehicle
JP2022150294A (ja) * 2021-03-26 2022-10-07 日本電産トーソク株式会社 電動ポンプ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627685B2 (ja) * 1978-05-30 1981-06-26
JPS59150992U (ja) * 1983-03-28 1984-10-09 ダイハツ工業株式会社 オイルポンプの潤滑装置
JPH0634180U (ja) * 1990-12-28 1994-05-06 日東精工株式会社 トロコイドポンプの強制潤滑装置
JP2002339880A (ja) * 2001-05-17 2002-11-27 Kokusan Denki Co Ltd オイルポンプ付き電動機
JP2015052281A (ja) * 2013-09-06 2015-03-19 パナソニック株式会社 オイルポンプ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627685B2 (ja) * 1978-05-30 1981-06-26
JPS59150992U (ja) * 1983-03-28 1984-10-09 ダイハツ工業株式会社 オイルポンプの潤滑装置
JPH0634180U (ja) * 1990-12-28 1994-05-06 日東精工株式会社 トロコイドポンプの強制潤滑装置
JP2002339880A (ja) * 2001-05-17 2002-11-27 Kokusan Denki Co Ltd オイルポンプ付き電動機
JP2015052281A (ja) * 2013-09-06 2015-03-19 パナソニック株式会社 オイルポンプ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112696354A (zh) * 2019-10-23 2021-04-23 株式会社捷太格特 电动油泵设备

Also Published As

Publication number Publication date
JP2017218960A (ja) 2017-12-14

Similar Documents

Publication Publication Date Title
WO2017213035A1 (ja) オイルポンプ
US9683567B2 (en) Electric oil pump
JP2009162146A (ja) 電動ポンプ
JP2008067571A (ja) モータ及び電動ポンプ
JP2014173587A (ja) 内接歯車ポンプ
JP2012026294A (ja) 流体ポンプ
JP2015140682A (ja) ターボ圧縮機
JP2019110696A (ja) 回転電機
JP2011190763A (ja) 回転式ポンプ
JP7056361B2 (ja) オイルポンプ
JP2004232627A (ja) モータポンプユニット
JP6105280B2 (ja) 電動オイルポンプ
JPS60230580A (ja) 浸漬モ−タポンプ装置
WO2018062198A1 (ja) 歯車ポンプ又は歯車モータ
WO2017051828A1 (ja) オイルポンプ駆動装置
JP2021089014A (ja) 摩擦係合装置用支持部材
JP2012189011A (ja) ポンプおよび電動ポンプユニット
JP2020020462A (ja) 車両用駆動装置
JP2009287463A (ja) ポンプ
JP7017028B2 (ja) 外接ギヤポンプ
JP2018127918A (ja) 電動ポンプ
JP2012197709A (ja) ポンプおよび電動ポンプユニット
JP6546984B1 (ja) 電動液圧アクチュエータ
WO2019069418A1 (ja) 歯車ポンプ
JP5757082B2 (ja) 電動ポンプ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17810213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17810213

Country of ref document: EP

Kind code of ref document: A1