WO2017211008A1 - 栅极驱动器的扫描补偿方法和扫描补偿电路 - Google Patents

栅极驱动器的扫描补偿方法和扫描补偿电路 Download PDF

Info

Publication number
WO2017211008A1
WO2017211008A1 PCT/CN2016/095501 CN2016095501W WO2017211008A1 WO 2017211008 A1 WO2017211008 A1 WO 2017211008A1 CN 2016095501 W CN2016095501 W CN 2016095501W WO 2017211008 A1 WO2017211008 A1 WO 2017211008A1
Authority
WO
WIPO (PCT)
Prior art keywords
scan
scan mode
compensation
signal
mode
Prior art date
Application number
PCT/CN2016/095501
Other languages
English (en)
French (fr)
Inventor
王照
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/309,185 priority Critical patent/US10262612B2/en
Priority to KR1020197000295A priority patent/KR102204166B1/ko
Priority to JP2019516037A priority patent/JP2019519004A/ja
Publication of WO2017211008A1 publication Critical patent/WO2017211008A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0202Addressing of scan or signal lines
    • G09G2310/0213Addressing of scan or signal lines controlling the sequence of the scanning lines with respect to the patterns to be displayed, e.g. to save power
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/067Special waveforms for scanning, where no circuit details of the gate driver are given
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery

Definitions

  • the present invention relates to the field of liquid crystal display technologies, and more particularly to a scan compensation method and a scan compensation circuit for a gate driver.
  • liquid crystal displays LCDs
  • CTR cathode ray tube
  • the driving of the liquid crystal display is to establish a driving electric field by adjusting the phase, peak value, frequency, and the like of the potential signal applied to the electrodes of the liquid crystal device to realize the display effect of the liquid crystal display device.
  • driving methods for liquid crystal display There are many kinds of driving methods for liquid crystal display, and the common driving method is dynamic driving method.
  • the liquid crystal display device for example, a dot matrix liquid crystal display device
  • processing is performed on the fabrication and arrangement of the electrodes of the liquid crystal display device, and a matrix type structure is implemented, that is, horizontally
  • the back electrodes of a group of display pixels are connected together to be called a row electrode; the segment electrodes of a vertical set of display pixels are connected together and called a column electrode.
  • Each display pixel on a liquid crystal display device is uniquely determined by the position of the column and row in which it is located.
  • a raster scanning method similar to CRT is used correspondingly in the driving method.
  • the dynamic driving method of the liquid crystal display is to cyclically apply a selection pulse to the row electrodes (ie, scan the rows), and all the column electrodes of the display data give corresponding selection or non-selection driving pulses, thereby realizing all display pixels of a certain row. Display function. This line scan is performed in a row-by-row sequence with a short cycle time, resulting in a stable display on the LCD.
  • the gate driver scan mode is sequential scan mode, and when a heavy load is detected, the gate driver scan mode switches to non-shun. Sequential scan mode. Depending on the display screen, switching between the sequential scan mode and the non-sequential scan mode can be performed in units of frames.
  • non-sequential scan mode can significantly reduce the power consumption and temperature of the source driver under some special conditions (for example, heavy load), there are also some disadvantages, one of which is due to the liquid crystal capacitance (LC) potential between different rows. The difference in holding time may result in a streak of the display screen. Therefore, in order to improve the display quality, it is necessary to further optimize the design of the gate driver.
  • LC liquid crystal capacitance
  • an exemplary embodiment of the present invention provides a method capable of mitigating an influence on display due to a difference in potential holding time by compensating a line in which a liquid crystal capacitor potential holding time is changed due to a change in a scanning order. Scan compensation method for the gate driver.
  • a scan compensation method for a gate driver includes: switching from a first scan mode to a second scan mode or from a gate driver When the second scan mode is switched to the first scan mode, performing a first operation on the clock signal of the gate driver and the first compensation signal, and performing a second operation on the obtained signal and the second compensation signal, wherein the first scan mode It is a sequential scan mode, and the second scan mode is a non-sequential scan mode.
  • the first operation is an OR operation and the second operation is an AND operation.
  • the first compensation signal is used to reduce the degree of increase of the potential holding time of the corresponding row due to the mode switching of the gate driver
  • the second compensation signal is used to reduce the corresponding row due to the mode switching of the gate driver.
  • the potential of the potential retention time is reduced.
  • the gate driver switches from the first scan mode to the second scan mode or from the second scan mode to the first scan mode
  • the mth row of the plurality of rows of the liquid crystal display is in the nth order
  • the falling edge of the first compensation signal is aligned with the rising edge of the waveform of the nth cycle of the clock signal of the driver
  • n is greater than n
  • the falling edge of the second compensation signal is The rising edge of the waveform of the nth cycle of the clock signal of the driver is aligned.
  • n is equal to n, the first operation or the second operation is not performed in the nth cycle of the clock signal of the driver, where n and m are positive integers. .
  • a scan compensation circuit for a gate driver includes: a first compensation circuit configured to be a gate drive When switching from the first scan mode to the second scan mode or from the second scan mode to the first scan mode, performing a first operation on the clock signal of the gate driver and the first compensation signal; the second compensation circuit is Configuring to perform a second operation on the output signal of the first operation and the second compensation signal when the gate driver switches from the first scan mode to the second scan mode or from the second scan mode to the first scan mode, where The first scan mode is a sequential scan mode and the second scan mode is a non-sequential scan mode.
  • the first operation is an OR operation and the second operation is an AND operation.
  • the first compensation signal is used to reduce the degree of increase of the potential holding time of the corresponding row due to the mode switching of the gate driver
  • the second compensation signal is used to reduce the corresponding row due to the mode switching of the gate driver.
  • the potential of the potential retention time is reduced.
  • the gate driver switches from the first scan mode to the second scan mode or from the second scan mode to the first scan mode
  • the first compensation circuit aligns the falling edge of the first compensation signal with the rising edge of the waveform of the nth cycle of the clock signal of the driver
  • the second compensation circuit will The falling edge of the second compensation signal is aligned with the rising edge of the waveform of the nth cycle of the clock signal of the driver. If m is equal to n, the first compensation circuit and the second compensation circuit are not in the nth cycle of the clock signal of the driver.
  • a first operation or a second operation is performed, where n and m are positive integers.
  • the scan compensation method and the scan compensation circuit of the gate driver provided according to an exemplary embodiment of the present invention can attenuate the display screen due to the difference in potential holding time by compensating for a change in the liquid crystal capacitor potential holding time due to a change in the scanning order The impact.
  • FIG. 1A is a diagram illustrating an example of a sequence in which rows in a first scan mode are scanned, according to an exemplary embodiment of the present invention
  • FIG. 1B is a diagram showing that a line in a second scan mode is scanned according to an exemplary embodiment of the present invention. Diagram of an example of the order;
  • FIG. 2 is an explanatory diagram illustrating performing line scanning when a gate driver switches from a first scan mode to a second scan mode using a scan compensation method, according to an exemplary embodiment of the present invention
  • 3A and 3B are explanatory diagrams showing a more general case of performing line scanning using a scan compensation method, according to an exemplary embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a scan compensation method according to an exemplary embodiment of the present invention
  • FIG. 5 is a logic block diagram showing a scan compensation circuit in accordance with an exemplary embodiment of the present invention.
  • first, second, third, etc. may be used to describe various elements, components, regions, layers and/or portions, these elements, components, regions, layers and/or portions should not be Limited by these terms. These terms are only used to distinguish one element, component, region, layer, Thus, a first element, component, region, layer or portion of a singular singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular or singular
  • FIG. 1A is a diagram illustrating an example of a sequence in which a row in a first scan mode is scanned, according to an exemplary embodiment of the present invention.
  • a scan of four lines (for example, L1, L2, L3, and L4) is taken as an example.
  • the term "row” refers to a row of pixels. Scanning a row of pixels can also be referred to as turning on the row of pixels.
  • the scan for each line is progressive (ie, top to bottom).
  • L1 is first scanned, then L2 is scanned, then L3 is scanned, and L4 is finally scanned.
  • the gate signal CKV is a periodic signal, and each period corresponds to a scan of one line.
  • the line scan in the sequential scan mode causes the power of the source driver to rise significantly, and the amount of heat generation increases, which is disadvantageous for the normal operation of the liquid crystal display.
  • An example of performing line scanning in the second scan mode (also referred to as "non-sequential scan mode") is described below with reference to FIG. 1B.
  • FIG. 1B is a diagram illustrating an example of a sequence in which rows in a second scan mode are scanned, according to an exemplary embodiment of the present invention.
  • the scanning of four lines is still taken as an example.
  • the gate driver switches from the first scan mode (ie, the sequential scan mode) to the second scan mode (ie, the non-sequential scan mode).
  • the scanning of each line is not from top to bottom.
  • the gate signal CKV output from the gate driver L1 is first scanned, then L3 is scanned, then L2 is scanned, and L4 is finally scanned. Therefore, as shown in FIG. 1A and FIG. 1B, according to the display screen, scanning according to the gate signal The order can be switched between the first scan mode and the second scan mode in units of frames.
  • the sequential scan mode for each row, since the time point at which the row is turned on in each frame is the same, when the frame is switched, after the charging is completed, the potential of the liquid crystal capacitor of each row is The hold time (as shown in Fig. 1, the low potential phase of each row is the potential holding phase of the liquid crystal capacitor) is the same.
  • the time points at which some of the rows are turned on may change, and thus the streaks of the display screen may be caused due to the difference in potential holding times of the rows. Therefore, further optimization of the gate driver is required.
  • FIG. 2 is an explanatory diagram illustrating performing line scanning when a gate driver switches from a first scan mode to a second scan mode using a scan compensation method, according to an exemplary embodiment of the present invention.
  • the clock signal CKV of the gate driver and the first compensation signal and the second compensation signal perform a first operation and a second operation to generate a signal of CKV_C.
  • the calculated signal CKV_C is used as the clock signal of the gate driver.
  • the corresponding potential hold time of the row also changes. For example, the potential holding times of L1 and L4 do not change, and the opening time of L2 is delayed, and the opening time of L3 is advanced. Since the turn-on time of L2 is delayed, its potential holding time is increased. Since the turn-on time of L3 is advanced, its potential holding time is reduced.
  • the rising edge of the waveform of the period of the clock signal CKV of the corresponding gate driver is aligned with the falling edge of the first compensation signal S1, thereby performing the first operation (ie, Or (OR) operation) adjusts the waveform of the corresponding period of the calculated signal CKV_C.
  • the first operation ie, Or (OR) operation
  • the value of the potential holding time increase of L2 is decreased, and the reduced value is represented by ⁇ T2.
  • the first compensation signal S1 can be used to reduce the extent to which the potential holding time of the corresponding row is increased due to the mode switching of the gate driver.
  • the rising edge of the waveform of the period of the clock signal CKV of the corresponding gate driver is aligned with the falling edge of the second compensation signal S2, thereby performing the second operation (ie, (AND) operation) Adjusts the waveform of the corresponding period of the calculated signal CKV_C. As shown in FIG.
  • the second compensation signal S2 serves to reduce the extent to which the potential holding time of the corresponding row is reduced due to the mode switching of the gate driver.
  • the values of ⁇ T1 and ⁇ T2 are adjustable. ⁇ T1 and ⁇ T2 can be adjusted according to the actual display screen.
  • the respective potential hold times of the respective rows also change. For example, in this example, in order to resume a progressive scan of a row, the on time of L2 needs to be advanced, and the on time of L3 needs to be postponed. Therefore, the potential holding time of L2 needs to be reduced, and the potential holding time of L3 needs to be increased.
  • 3A and 3B are explanatory diagrams showing a more general case of performing line scanning using a scan compensation method, according to an exemplary embodiment of the present invention.
  • a scan compensation method may be used to cause a portion of a plurality of rows of the liquid crystal display
  • the scan order has changed.
  • the mth row is scanned in the nth order (here, m and n are positive integers)
  • n is smaller than n
  • the falling edge of the first compensation signal S1 is compared with the clock signal of the driver.
  • the rising edge of the waveform of the nth cycle is aligned. So, perform the first operation As a result of the second operation, the degree of increase in the potential holding time of the mth row is lowered.
  • the result of performing the first operation and the second operation is that the degree of decrease in the potential holding time of the mth row is lowered.
  • the time at which the rising edge of the first compensation signal is applied and the time at which the rising edge of the second compensation signal is applied may be adjusted according to the actual display screen. Therefore, by adjusting the degree of change in the potential holding time of the pixel row due to switching of the scanning mode, it is possible to significantly reduce the negative influence (for example, streak feeling, etc.) on the display screen.
  • FIG. 4 is a flowchart illustrating a scan compensation method according to an exemplary embodiment of the present invention.
  • step S101 when the scan mode of the gate driver is switched, if the mth row of the plurality of rows of the liquid crystal display is scanned in the nth order, then in step S101, it is judged whether m is equal to n.
  • m and n are positive integers.
  • the method is not executed (ie, the method goes to the end). Since m and n are equal, the scanning order of the corresponding row does not change, so the potential holding time does not change, so that the display screen is not affected.
  • a first operation ie, OR operation
  • step S103 the second operation (i.e., the AND operation) is performed on the calculated signal obtained in step S102 and the second compensation signal S2.
  • step S104 it is judged whether m is smaller than n. If m is smaller than n, the falling edge of the first compensation signal S1 is aligned with the rising edge of the waveform of the nth cycle of the clock signal of the gate driver in step S105.
  • step S105 due to the action of the first compensation signal S1, the trigger time of the calculated signal CKV_C is advanced in the nth cycle of the clock signal of the gate driver, so the corresponding line is turned on earlier.
  • the amount of advance time can be adjusted by adjusting the time at which the rising edge of the first compensation signal S1 is applied, so that the degree to which the corresponding line is turned on earlier can be controlled. If m is greater than n, the falling edge of the second compensation signal S2 is aligned with the rising edge of the waveform of the nth cycle of the clock signal of the gate driver in step S106. In step S106, due to the action of the second compensation signal S2, the trigger time of the calculated signal CKV_C is delayed in the nth cycle of the clock signal of the gate driver, and thus the corresponding row is delayed. The amount of time delayed can be adjusted by adjusting the time at which the rising edge of the second compensation signal S2 is applied, thereby controlling the extent to which the corresponding line is delayed.
  • FIG. 5 is a logic block diagram showing scan compensation circuit 20, in accordance with an exemplary embodiment of the present invention.
  • the scan compensation circuit 20 includes a first compensation circuit 100 and a second compensation circuit 200.
  • the first compensation circuit 100 can be an OR gate that can be input to the input of the first compensation circuit 100.
  • the clock signal CKV of the gate driver and the first compensation signal S1, the output of the OR gate, may output or operate a resulting signal, which may be input as an input to the second compensation circuit 200.
  • the second compensation circuit 200 can be an AND gate.
  • the input end of the second compensation circuit 200 receives the output signal of the first compensation circuit 100 and the second compensation signal S2, and outputs the processed signal CKV_C to the gate driver as a clock signal.
  • the first compensation circuit 100 is shown as an OR gate and the second compensation circuit 200 is an AND gate in the present example, example embodiments are not limited thereto.
  • the first compensation circuit 100 and the second compensation circuit 200 may be other logic circuits having similar functions.
  • the first compensation circuit 100 performs an OR operation on the first compensation signal S1 and the clock signal CKV of the driver, and then the second compensation circuit 200 performs an operation on the output signal of the first compensation circuit 100 and the second compensation signal S2. The operation is performed, and the calculated signal CKV_C is output to the gate driver as a clock signal.
  • the scan compensation method and the scan compensation circuit of the gate driver can weaken the difference in potential holding time by compensating for a change in the liquid crystal capacitor potential holding time due to a change in the scanning order Display the effect of the screen and improve the stability of the liquid crystal display.
  • At least one of the components, elements or units represented by the blocks shown in FIG. 4 may be implemented as various numbers of hardware, software, and/or firmware structures that perform the functions described above, respectively.
  • at least one of these components, elements or units may use direct circuit structures (such as memory, processing device, logic unit, lookup) that can perform their respective functions through control of one or more microprocessors or other control devices. Table, etc.).
  • at least one of these components, elements or units may be embodied by a module, program, or portion of code comprising one or more executable instructions for performing a particular logical function, and by one or more A processor or other control device is executed.
  • At least one of these components, elements or units may also include a processor, such as a central processing unit (CPU), a microprocessor or the like that performs the respective functions. Two or more of these components, elements or units may be combined into a single component, element or unit that performs the combined two or more components, components Or all operations or functions of the unit. Furthermore, at least some of the functions of at least one of these components, elements or units can be performed by the other of the components, elements or units.
  • the bus is not shown in the above block diagram, communication between components, elements or units may be performed over the bus. Functional aspects of the above exemplary embodiments may be implemented in algorithms executed on one or more processors.
  • the group represented by the box or processing step The components, components or units may be electronically configured, signal processed and/or controlled, data processed, etc., using any number of related art techniques.
  • Method steps may be performed by one or more programmable processors executing a computer program to perform functions by operating input data and generating output.
  • the method steps can also be performed by dedicated logic circuitry (eg, an FPGA (Field Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit)), and the apparatus can be implemented by dedicated logic circuitry.
  • dedicated logic circuitry eg, an FPGA (Field Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit)
  • a computer readable medium can comprise instructions that, when executed, cause a device to perform at least a portion of the method steps.
  • a computer readable medium can be included in a magnetic medium, an optical medium, other medium, or a combination thereof (eg, a CD-ROM, a hard drive, a read only memory, a flash drive, etc.).
  • the computer readable medium can be an article of manufacture that is tangibly and non-transitory.

Abstract

一种栅极驱动器的扫描补偿方法和扫描补偿电路(20)。所述扫描补偿方法包括:当栅极驱动器从第一扫描模式切换到第二扫描模式或从第二扫描模式切换到第一扫描模式时,对栅极驱动器的时钟信号(CKV)与第一补偿信号执行第一运算,并对得到的信号与第二补偿信号执行第二运算,其中,第一扫描模式是顺序扫描模式,第二扫描模式是非顺序扫描模式。

Description

栅极驱动器的扫描补偿方法和扫描补偿电路 技术领域
本发明涉及液晶显示器技术领域,更具体地,涉及一种用于栅极驱动器的扫描补偿方法和扫描补偿电路。
背景技术
近年来,液晶显示器(LCD)因其体积小、重量轻、功耗低、显示质量高而深受欢迎并逐渐替代了以往的阴极射线显像管(CRT)显示器。液晶显示器的应用领域正在逐步扩大,已经从音像制品、笔记本电脑等显示器发展到台式计算机、工程工作站(EWS)用监视器等。
液晶显示的驱动就是通过调整施加在液晶器件电极上的电位信号的相位、峰值、频率等,建立驱动电场,以实现液晶显示器件的显示效果。液晶显示的驱动方式有许多种,常用的驱动方法是动态驱动法。当液晶显示器件上显示的像素很多时(例如,点阵型液晶显示器件),为了节省庞大的硬件驱动电路,在液晶显示器件电极的制作与排列上进行加工,实施矩阵型的结构,即把水平一组显示像素的背电极都连在一起引出,称之为行电极;把纵向一组显示像素的段电极都连起来一起引出,称之为列电极。在液晶显示器件上每一个显示像素都由其所在的列与行的位置唯一确定。在驱动方式上相应地采用了类似于CRT的光栅扫描方法。液晶显示的动态驱动法是循环地给行电极施加选择脉冲(即,对行进行扫描),同时所有显示数据的列电极给出相应的选择或非选择的驱动脉冲,从而实现某行所有显示像素的显示功能。这种行扫描是逐行顺序进行的,循环周期很短,使得液晶显示屏上呈现出稳定的显示。
然而,在顺序扫描的模式下,在一些特殊的重载情况下,源极驱动器的功率会大幅上升,同时发热量增加,因此给液晶显示器的正常工作带来风险。为了优化液晶显示器在这种特殊的重载情况下的工作状态,已经提出了一种新的栅极驱动器的非顺序扫描的技术。例如,在正常画面下,栅极驱动器的扫描方式为顺序扫描模式,而当检测到重载时,栅极驱动器的扫描方式会切换到非顺 序扫描模式。根据显示画面的不同,可以以帧为单位在顺序扫描模式和非顺序扫描模式之间进行切换。虽然使用非顺序扫描模式可显著降低一些特殊情况(例如,重载)下源极驱动器的功耗和温度,但是同时也存在一些缺点,其中之一是因为不同行之间液晶电容(LC)电位保持时间不同而可能产生显示画面的条纹感。因此,为了改善显示品质,需要对栅极驱动器进行进一步的优化设计。
发明内容
为克服现有技术的不足,本发明的示例性实施例提供一种能够通过对由于扫描顺序的改变导致液晶电容电位保持时间改变的行进行补偿来减轻由于电位保持时间不同对显示造成的影响的栅极驱动器的扫描补偿方法。
根据本发明的示例性实施例的方面,提供一种用于栅极驱动器的扫描补偿方法,其中,所述扫描补偿方法包括:当栅极驱动器从第一扫描模式切换到第二扫描模式或从第二扫描模式切换到第一扫描模式时,对栅极驱动器的时钟信号与第一补偿信号执行第一运算,并对得到的信号与第二补偿信号执行第二运算,其中,第一扫描模式是顺序扫描模式,第二扫描模式是非顺序扫描模式。
可选地,第一运算是或运算,第二运算是与运算。
可选地,第一补偿信号用于降低由于栅极驱动器的模式切换而导致的相应行的电位保持时间增加的程度,第二补偿信号用于降低由于栅极驱动器的模式切换而导致的相应行的电位保持时间减小的程度。
可选地,当栅极驱动器从第一扫描模式切换到第二扫描模式或从第二扫描模式切换到第一扫描模式时,当液晶显示器的多个行中的第m行以第n个次序被扫描时,如果m小于n,则将第一补偿信号的下降沿与驱动器的时钟信号的第n个周期的波形的上升沿对齐,如果m大于n,则将第二补偿信号的下降沿与驱动器的时钟信号的第n个周期的波形的上升沿对齐,如果m等于n,则在驱动器的时钟信号的第n个周期不执行第一运算或第二运算,其中,n和m为正整数。
根据本发明的示例性实施例的另一方面,提供一种用于栅极驱动器的扫描补偿电路,其中,所述扫描补偿电路包括:第一补偿电路,被配置为当栅极驱 动器从第一扫描模式切换到第二扫描模式或从第二扫描模式切换到第一扫描模式时,对栅极驱动器的时钟信号与第一补偿信号执行第一运算;第二补偿电路,被配置为当栅极驱动器从第一扫描模式切换到第二扫描模式或从第二扫描模式切换到第一扫描模式时,对第一运算的输出信号与第二补偿信号执行第二运算,其中,第一扫描模式是顺序扫描模式,第二扫描模式是非顺序扫描模式。
可选地,第一运算是或运算,第二运算是与运算。
可选地,第一补偿信号用于降低由于栅极驱动器的模式切换而导致的相应行的电位保持时间增加的程度,第二补偿信号用于降低由于栅极驱动器的模式切换而导致的相应行的电位保持时间减小的程度。
可选地,当栅极驱动器从第一扫描模式切换到第二扫描模式或从第二扫描模式切换到第一扫描模式时,当液晶显示器的多个行中的第m行以第n个次序被扫描时,如果m小于n,则第一补偿电路将第一补偿信号的下降沿与驱动器的时钟信号的第n个周期的波形的上升沿对齐,如果m大于n,则第二补偿电路将第二补偿信号的下降沿与驱动器的时钟信号的第n个周期的波形的上升沿对齐,如果m等于n,则第一补偿电路和第二补偿电路在驱动器的时钟信号的第n个周期不执行第一运算或第二运算,其中,n和m为正整数。
根据本发明的示例性实施例提供的栅极驱动器的扫描补偿方法和扫描补偿电路,能够通过对由于扫描顺序的改变导致液晶电容电位保持时间的改变进行补偿来削弱由于电位保持时间不同对显示画面造成的影响。
示例实施例的另外的方面将在以下描述中部分地阐述,并且部分地将从该描述显而易见,或者可通过本公开的实践而获知。
附图说明
通过下面结合附图进行的对实施例的描述,本发明的上述和/或其他目的和优点将会变得更加清楚,其中:
图1A是示出根据本发明的示例性实施例的在第一扫描模式下的行被扫描的顺序的示例的示图;
图1B是示出根据本发明的示例性实施例的在第二扫描模式下的行被扫描 的顺序的示例的示图;
图2是示出根据本发明的示例性实施例的使用扫描补偿方法在栅极驱动器从第一扫描模式切换到第二扫描模式时进行行扫描的说明性示图;
图3A和图3B是示出根据本发明的示例性实施例的使用扫描补偿方法进行行扫描的更普遍情况的说明性示图;
图4是示出根据本发明的示例性实施例的扫描补偿方法的流程图;
图5是示出根据本发明的示例性实施例的扫描补偿电路的逻辑框图。
具体实施方式
现在将详细描述示例性实施例,这些示例性实施例在附图中示出,其中,相同的参考标号始终表示相同的元件。在这点上,本示例性实施例可具有不同的形式并且不应解释为限于这里阐明的描述。因此,以下仅通过参照附图描述示例性实施例,以解释发明构思的多个方面。如在这里使用的,术语“和/或”包括一个或多个相关的所列项目的任意组合和所有组合。当诸如“……中的至少一个”的表述在一列元素之后时,所述表述修饰整列元素,而不是修饰该列的单个元素。
这里使用的术语只为描述示例性实施例的目的,不意图限制本发明构思。如在这里使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式。将会理解,当在这里使用诸如“包括”、“具有”的术语时,说明存在陈述的特征、整体、步骤、操作、元件、组件、或它们的组合,但是不排除存在或添加一个或多个其他特征、整体、步骤、操作、元件、组件,或它们的组合。
将会理解,虽然术语第一、第二、第三等可在这里使用以描述各种元件、组件、区域、层和/或部分,但是这些元件、组件、区域、层和/或部分不应被这些术语限制。这些术语仅用于将一个元件、组件、区域、层或部分与另一区域、层或部分区分。因此,在不脱离本公开的主题的教导的情况下,以下讨论的第一元件、组件、区域、层或部分可被叫做第二元件、组件、区域、层或部分。
除非另有定义,否则这里使用的全部术语(包括技术术语和科学术语)具 有与本公开的主题所属的领域的普通技术人员通常理解的含义相同的含义。还将理解,除非在这里明确地定义,否则术语(诸如在通用字典中定义的术语)应该被解释为具有与它们在相关领域的环境中的含义一致的含义,而不应被解释为理想化或过于正式的意义。
还应注意,在一些可选实现中,示出的功能/动作可不以附图中示出的顺序发生。例如,根据涉及的功能/作用,相继示出的两幅图实际上可基本同时被执行或有时可以以相反的顺序被执行。
现在将参照示出了一些示例实施例的附图来更加充分地描述各种示例实施例。在附图中,为简单起见,层的厚度或区域被夸大。
图1A是示出根据本发明的示例性实施例的在第一扫描模式下的行被扫描的顺序的示例的示图。
参照图1,以对四个行(例如,L1、L2、L3和L4)进行扫描为例。在这里,术语“行”是指像素行。对像素行进行扫描也可称作开启该像素行。在第一扫描模式(也称为“顺序扫描模式”)下,对各行的扫描是逐行扫描(即,从上至下)。例如,根据栅极驱动器输出的栅极信号CKV,首先扫描L1,然后扫描L2,随后扫描L3,最后扫描L4。栅极信号CKV是周期性信号,每个周期对应于一行的扫描。然而,当出现一些特殊的情况(例如,重载画面)时,在顺序扫描模式下进行行扫描会导致源极驱动器的功率明显升高,发热量增加,不利于液晶显示器的正常工作。以下参考图1B描述在第二扫描模式(也称为“非顺序扫描模式”)下进行行扫描的示例。
图1B是示出根据本发明的示例性实施例的在第二扫描模式下的行被扫描的顺序的示例的示图。
参照图1B,仍然以对四个行(例如,L1、L2、L3和L4)进行扫描为例。为了优化液晶显示器在重载画面下的工作状态,当检测到重载时,栅极驱动器从第一扫描模式(即,顺序扫描模式)切换到第二扫描模式(即,非顺序扫描模式)。在第二扫描模式下,对各行的扫描不是从上至下。例如,根据栅极驱动器输出的栅极信号CKV,首先扫描L1,然后扫描L3,随后扫描L2,最后扫描L4。因此,如图1A和图1B所示,根据显示画面,根据栅极信号的扫描 顺序可以以帧为单位在第一扫描模式和第二扫描模式之间进行切换。
虽然使用第二扫描模式进行行扫描会显著降低源极驱动器的功耗和温度,但是同时也带来一些负面影响。例如,在顺序扫描模式下,对每一行而言,因为该行在每一帧中被开启的时间点都是相同的,所以当切换帧时,在充电完成后,每一行的液晶电容的电位保持时间(如图1所示,各行的低电位阶段即为液晶电容的电位保持阶段)均相同。然而,当从顺序扫描模式切换为使用非顺序扫描模式对各行进行扫描时,一些行被开启的时间点可能发生改变,因此可能由于这些行的电位保持时间不同而造成显示画面的条纹感。因此,需要对栅极驱动器进行进一步的优化。
图2是示出根据本发明的示例性实施例的使用扫描补偿方法在栅极驱动器从第一扫描模式切换到第二扫描模式时进行行扫描的说明性示图。
参照图2,栅极驱动器的时钟信号CKV与第一补偿信号和第二补偿信号执行第一运算和第二运算后产生的信号为CKV_C。运算后的信号CKV_C被用作栅极驱动器的时钟信号。如上所述,当栅极驱动器从第一扫描模式切换到第二扫描模式时,由于行的开启时间点发生改变,所以该行相应的电位保持时间也发生改变。例如,L1和L4的电位保持时间不发生变化,而L2的开启时间延后,L3的开启时间提前。由于L2的开启时间延后,因此其电位保持时间增加。由于L3的开启时间提前,因此其电位保持时间减小。在这点上,针对开启时间被延后的L2,将对应的栅极驱动器的时钟信号CKV的周期的波形的上升沿与第一补偿信号S1的下降沿对齐,从而通过执行第一运算(即,或(OR)运算)调节运算后的信号CKV_C的相应周期的波形。如图2所示,由于行扫描信号被时钟信号CKV_C的上升沿触发,因此L2因第一补偿信号S1的作用而被提前开启,从而使得由于切换到第二扫描模式而导致L2的电位保持时间增加的程度被相应地降低。也就是说,L2的电位保持时间增加的值减小,减小的值以ΔT2来表示。换言之,第一补偿信号S1可用于降低由于栅极驱动器的模式切换而导致的相应行的电位保持时间增加的程度。另一方面,针对开启时间被提前的L3,将对应的栅极驱动器的时钟信号CKV的周期的波形的上升沿与第二补偿信号S2的下降沿对齐,从而通过执行第二运算(即,与(AND)运算)调节运算后的信号CKV_C的相应周期的波形。如图2所示,由于行扫描信号被时钟信号CKV_C的上升沿触发,因此L3因第二补偿信号S2的作用 而被延后开启,从而使得由于切换到第二扫描模式而导致L3的电位保持时间减小的程度被相应地降低。也就是说,L3的电位保持时间减小的值增加,增加的值以ΔT1来表示。换言之,第二补偿信号S2用于降低由于栅极驱动器的模式切换而导致的相应行的电位保持时间减小的程度。根据本发明的示例性实施例,ΔT1和ΔT2的值是可调节的。可根据实际的显示画面来调节ΔT1和ΔT2。
类似地,当栅极驱动器从第二扫描模式切换回第一扫描模式时,各行的相应电位保持时间也发生改变。例如,在这个示例中,为了恢复逐行的顺序扫描,L2的开启时间需要提前,而L3的开启时间需要延后。因此,L2的电位保持时间需要减小,而L3的电位保持时间需要增加。此时,针对开启时间被提前的L2,将对应的栅极驱动器的时钟信号CKV的周期的波形的上升沿与第二补偿信号S2的下降沿对齐,从而通过执行第二运算(即,与(AND)运算)调节运算后的信号CKV_C的相应周期的波形。因此L2因第二补偿信号S2的作用而被延后开启,从而使得由于切换回第一扫描模式而导致L2的电位保持时间减小的程度被相应地降低。另一方面,针对开启时间被延后的L3,将对应的栅极驱动器的时钟信号CKV的周期的波形的上升沿与第一补偿信号S1的下降沿对齐,从而通过执行第一运算(即,或(OR)运算)调节运算后的信号CKV_C的相应周期的波形。因此L3因第一补偿信号S1的作用而被提前开启,从而使得由于切换回第一扫描模式而导致L3的电位保持时间增加的程度被相应地降低。
根据上述示例实施例,通过调节由于切换扫描模式而导致的L2和L3的电位保持时间改变的程度,能够明显降低其造成的显示画面的条纹感等负面影响。
图3A和图3B是示出根据本发明的示例性实施例的使用扫描补偿方法进行行扫描的更普遍情况的说明性示图。
参照图3A,当栅极驱动器在第一扫描模式和第二扫描模式之间进行切换时,使用根据本发明的示例性实施例的扫描补偿方法会使液晶显示器的多个行中的部分行的扫描次序发生改变。在这点上,当第m行以第n个次序被扫描时(在这里,m和n为正整数),如果m小于n,则将第一补偿信号S1的下降沿与驱动器的时钟信号的第n个周期的波形的上升沿对齐。如此,执行第一运算 和第二运算的结果是使第m行的电位保持时间增加的程度被降低。另外,如果m大于n,则将第二补偿信号的下降沿与驱动器的时钟信号的第n个周期的波形的上升沿对齐。如此,执行第一运算和第二运算的结果是使第m行的电位保持时间减小的程度被降低。施加第一补偿信号的上升沿的时间和施加第二补偿信号的上升沿的时间可以根据实际的显示画面而调节。因此,通过调节由于切换扫描模式而导致的像素行的电位保持时间改变的程度,能够明显降低其对显示画面造成的负面影响(例如,条纹感等)。
图4是示出根据本发明的示例性实施例的扫描补偿方法的流程图。
参照图4,当栅极驱动器的扫描模式发生切换时,如果液晶显示器的多个行中的第m行以第n个次序被扫描,则在步骤S101,判断m是否等于n。在这里,m和n是正整数。当m等于n时,不执行本方法(即,方法转到结束)。因为m与n相等说明相应行的扫描顺序不发生改变,因此其电位保持时间不发生改变,从而不影响显示画面。当m不等于n时,在步骤S102,对栅极驱动器的时钟信号与第一补偿信号S1执行第一运算(即,或运算)。然后,在步骤S103,对在步骤S102得到的运算后的信号与第二补偿信号S2执行第二运算(即,与运算)。在步骤S104,判断m是否小于n。如果m小于n,则在步骤S105将第一补偿信号S1的下降沿与栅极驱动器的时钟信号的第n个周期的波形的上升沿对齐。在步骤S105,由于第一补偿信号S1的作用,在栅极驱动器的时钟信号的第n个周期,运算后的信号CKV_C的触发时间被提前,因此对应的行被提前开启。可通过调节施加第一补偿信号S1的上升沿的时间来调节提前的时间量,从而可控制对应的行被提前开启的程度。如果m大于n,则在步骤S106将第二补偿信号S2的下降沿与栅极驱动器的时钟信号的第n个周期的波形的上升沿对齐。在步骤S106,由于第二补偿信号S2的作用,在栅极驱动器的时钟信号的第n个周期,运算后的信号CKV_C的触发时间被延后,因此对应的行被延后开启。可通过调节施加第二补偿信号S2的上升沿的时间来调节延后的时间量,从而可控制对应的行被延后开启的程度。
图5是示出根据本发明的示例性实施例的扫描补偿电路20的逻辑框图。
参照图5,扫描补偿电路20包括第一补偿电路100和第二补偿电路200。第一补偿电路100可以是或(OR)门,可向第一补偿电路100的输入端输入 栅极驱动器的时钟信号CKV和第一补偿信号S1,或门的输出端可输出或运算的结果信号,该结果信号可作为输入被输入到第二补偿电路200。第二补偿电路200可以是与(AND)门。第二补偿电路200的输入端接收第一补偿电路100的输出信号和第二补偿信号S2,并将与运算后的信号CKV_C输出至栅极驱动器作为时钟信号。虽然本示例中示出第一补偿电路100是或门并且第二补偿电路200是与门,但是示例实施例不限于此。第一补偿电路100和第二补偿电路200可以是具有类似功能的其他逻辑电路。
如图5所示,第一补偿电路100对第一补偿信号S1与驱动器的时钟信号CKV执行或运算,然后第二补偿电路200对第一补偿电路100的输出信号与第二补偿信号S2执行与运算,并将运算后的信号CKV_C输出至栅极驱动器作为时钟信号。
如上所述,根据本发明的示例性实施例的栅极驱动器的扫描补偿方法和扫描补偿电路能够通过对由于扫描顺序的改变导致液晶电容电位保持时间的改变进行补偿来削弱由于电位保持时间不同对显示画面造成的影响,提高液晶显示的稳定性。
根据示例性实施例,由图4所示的方框所表示的组件、元件或单元中的至少一个可被实施为分别执行上述功能的各种数量的硬件、软件和/或固件结构。例如,这些组件、元件或单元中的至少一个可使用可通过一个或更多个微处理器或其它控制设备的控制来执行各自的功能的直接电路结构(诸如存储器、处理设备、逻辑单元、查找表等)。此外,这些组件、元件或单元中的至少一个可通过包含用于执行特定逻辑功能的一个或更多个可执行指令的模块、程序、或者部分代码被具体实施,并通过一个或更多个微处理器或其它控制设备被执行。此外,这些组件、元件或单元中的至少一个还可包括执行各自功能的诸如中央处理单元(CPU)的处理器、微处理器等。这些组件、元件或单元中的两个或更多个可被合并成一个单独的组件、元件或单元,所述一个单独的组件、元件或单元执行所合并的两个或更多个组件、元件或单元的所有操作或功能。此外,这些组件、元件或单元中的至少一个的至少部分功能可以由这些组件、元件或单元中的另一个执行。此外,尽管在以上框图中未示出总线,但是组件、元件或单元之间的通信可通过总线来执行。以上示例性实施例的功能方面可在一个或多个处理器上执行的算法中被实施。此外,由方框或处理步骤表示的组 件、元件或单元可采用任何数量的相关领域技术进行电子学配置、信号处理和/或控制、数据处理等。
方法步骤可由执行计算机程序以通过操作输入数据并产生输出来执行功能的一个或更多个可编程处理器执行。方法步骤也可由专用逻辑电路(例如,FPGA(现场可编程门阵列)或ASIC(应用专用集成电路))执行,并且设备可由专用逻辑电路实现。
在各种实施例中,计算机可读介质可包括指令,当所述指令被执行时,使装置执行所述方法步骤的至少一部分。在一些实施例中,计算机可读介质可被包括在磁介质、光介质、其它介质或它们的组合(例如,CD-ROM、硬盘驱动器、只读存储器、闪存驱动器等)中。在这样的实施例中,计算机可读介质可以是可触摸地和非暂时性地实现的制造品。
虽然已经参考示例性实施例描述了本发明的主题的原理,但是本领域技术人员将会清楚,在不脱离这些公开的构思的精神和范围的情况下,可对在此描述的示例性实施例做出各种改变和修改。因此,应该理解,以上实施例不是限制性的,而仅是示例性的。因此,公开的构思的范围将由权利要求及其等同物的最宽泛的可容许解释来确定,而不应被前述的描述所局限或限制。因此,将会理解,权利要求意在涵盖落入实施例的范围内的所有修改和改变。

Claims (10)

  1. 一种用于栅极驱动器的扫描补偿方法,其中,所述扫描补偿方法包括:
    当栅极驱动器从第一扫描模式切换到第二扫描模式或从第二扫描模式切换到第一扫描模式时,对栅极驱动器的时钟信号与第一补偿信号执行第一运算,并对得到的信号与第二补偿信号执行第二运算,
    其中,第一扫描模式是顺序扫描模式,第二扫描模式是非顺序扫描模式。
  2. 根据权利要求1所述的扫描补偿方法,其中,第一运算是或运算,第二运算是与运算。
  3. 根据权利要求1所述的扫描补偿方法,其中,第一补偿信号用于降低由于栅极驱动器的模式切换而导致的相应行的电位保持时间增加的程度,第二补偿信号用于降低由于栅极驱动器的模式切换而导致的相应行的电位保持时间减小的程度。
  4. 根据权利要求2所述的扫描补偿方法,其中,当栅极驱动器从第一扫描模式切换到第二扫描模式或从第二扫描模式切换到第一扫描模式时,当液晶显示器的多个行中的第m行以第n个次序被扫描时,如果m小于n,则将第一补偿信号的下降沿与驱动器的时钟信号的第n个周期的波形的上升沿对齐,以执行第一运算,如果m大于n,则将第二补偿信号的下降沿与驱动器的时钟信号的第n个周期的波形的上升沿对齐,以执行第二运算,如果m等于n,则在驱动器的时钟信号的第n个周期不执行第一运算或第二运算,
    其中,n和m为正整数。
  5. 根据权利要求3所述的扫描补偿方法,其中,当栅极驱动器从第一扫描模式切换到第二扫描模式或从第二扫描模式切换到第一扫描模式时,当液晶显示器的多个行中的第m行以第n个次序被扫描时,如果m小于n,则将第一补偿信号的下降沿与驱动器的时钟信号的第n个周期的波形的上升沿对齐,以执行第一运算,如果m大于n,则将第二补偿信号的下降沿与驱动器的时钟信号的第n个周期的波形的上升沿对齐,以执行第二运算,如果m等于n,则在 驱动器的时钟信号的第n个周期不执行第一运算或第二运算,
    其中,n和m为正整数。
  6. 一种用于栅极驱动器的扫描补偿电路,其中,所述扫描补偿电路包括:
    第一补偿电路,被配置为当栅极驱动器从第一扫描模式切换到第二扫描模式或从第二扫描模式切换到第一扫描模式时,对栅极驱动器的时钟信号与第一补偿信号执行第一运算;
    第二补偿电路,被配置为当栅极驱动器从第一扫描模式切换到第二扫描模式或从第二扫描模式切换到第一扫描模式时,对第一运算的输出信号与第二补偿信号执行第二运算,
    其中,第一扫描模式是顺序扫描模式,第二扫描模式是非顺序扫描模式。
  7. 根据权利要求6所述的扫描补偿电路,其中,第一运算是或运算,第二运算是与运算。
  8. 根据权利要求6所述的扫描补偿电路,其中,第一补偿信号用于降低由于栅极驱动器的模式切换而导致的相应行的电位保持时间增加的程度,第二补偿信号用于降低由于栅极驱动器的模式切换而导致的相应行的电位保持时间减小的程度。
  9. 根据权利要求7所述的扫描补偿电路,其中,当栅极驱动器从第一扫描模式切换到第二扫描模式或从第二扫描模式切换到第一扫描模式时,当液晶显示器的多个行中的第m行以第n个次序被扫描时,如果m小于n,则第一补偿电路将第一补偿信号的下降沿与驱动器的时钟信号的第n个周期的波形的上升沿对齐,以执行第一运算,如果m大于n,则第二补偿电路将第二补偿信号的下降沿与驱动器的时钟信号的第n个周期的波形的上升沿对齐,以执行第二运算,如果m等于n,则第一补偿电路和第二补偿电路在驱动器的时钟信号的第n个周期不执行第一运算或第二运算,
    其中,n和m为正整数。
  10. 根据权利要求8所述的扫描补偿电路,其中,当栅极驱动器从第一扫 描模式切换到第二扫描模式或从第二扫描模式切换到第一扫描模式时,当液晶显示器的多个行中的第m行以第n个次序被扫描时,如果m小于n,则第一补偿电路将第一补偿信号的下降沿与驱动器的时钟信号的第n个周期的波形的上升沿对齐,以执行第一运算,如果m大于n,则第二补偿电路将第二补偿信号的下降沿与驱动器的时钟信号的第n个周期的波形的上升沿对齐,以执行第二运算,如果m等于n,则第一补偿电路和第二补偿电路在驱动器的时钟信号的第n个周期不执行第一运算或第二运算,
    其中,n和m为正整数。
PCT/CN2016/095501 2016-06-07 2016-08-16 栅极驱动器的扫描补偿方法和扫描补偿电路 WO2017211008A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/309,185 US10262612B2 (en) 2016-06-07 2016-08-16 Scan compensation method and scan compensation circuit of gate driver
KR1020197000295A KR102204166B1 (ko) 2016-06-07 2016-08-16 게이트 구동기의 스캔 보상방법 및 스캔 보상회로
JP2019516037A JP2019519004A (ja) 2016-06-07 2016-08-16 ゲートドライバ用の走査補償方法及び走査補償回路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610397934.2 2016-06-07
CN201610397934.2A CN105913818B (zh) 2016-06-07 2016-06-07 栅极驱动器的扫描补偿方法和扫描补偿电路

Publications (1)

Publication Number Publication Date
WO2017211008A1 true WO2017211008A1 (zh) 2017-12-14

Family

ID=56749746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/095501 WO2017211008A1 (zh) 2016-06-07 2016-08-16 栅极驱动器的扫描补偿方法和扫描补偿电路

Country Status (5)

Country Link
US (1) US10262612B2 (zh)
JP (1) JP2019519004A (zh)
KR (1) KR102204166B1 (zh)
CN (1) CN105913818B (zh)
WO (1) WO2017211008A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10354569B2 (en) * 2017-02-08 2019-07-16 Microsoft Technology Licensing, Llc Multi-display system
CN109166544B (zh) * 2018-09-27 2021-01-26 京东方科技集团股份有限公司 栅极驱动电路及驱动方法、阵列基板、显示装置
US11024246B2 (en) * 2018-11-09 2021-06-01 Sakai Display Products Corporation Display apparatus and method for driving display panel with scanning line clock signal or scanning line signal correcting unit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1648987A (zh) * 2004-01-28 2005-08-03 佳能株式会社 图像显示装置的驱动方法
JP2008026800A (ja) * 2006-07-25 2008-02-07 Sharp Corp 画像表示装置
CN102402033A (zh) * 2010-09-16 2012-04-04 苏州汉朗光电有限公司 近晶态液晶显示屏用列区域校正扫描驱动方法
CN102903341A (zh) * 2011-07-26 2013-01-30 联咏科技股份有限公司 影像显示扫描方法
CN204857151U (zh) * 2015-08-04 2015-12-09 凌巨科技股份有限公司 显示驱动电路、显示驱动芯片及显示器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002366100A (ja) * 2001-06-05 2002-12-20 Tohoku Pioneer Corp 発光表示パネルの駆動装置
JP2004246050A (ja) * 2003-02-13 2004-09-02 Toshiba Corp 液晶表示装置、液晶駆動回路及び液晶表示装置の表示方法
JP4110102B2 (ja) * 2004-01-28 2008-07-02 キヤノン株式会社 画像表示装置の駆動方法
KR100793094B1 (ko) * 2005-09-23 2008-01-10 엘지전자 주식회사 플라즈마 디스플레이 장치 및 그의 구동 방법
KR100667326B1 (ko) * 2005-10-07 2007-01-12 엘지전자 주식회사 플라즈마 디스플레이 장치 및 그의 구동 방법
KR100748360B1 (ko) * 2006-08-08 2007-08-09 삼성에스디아이 주식회사 논리 게이트 및 이를 이용한 주사 구동부와 유기전계발광표시장치
JP5214601B2 (ja) * 2007-06-12 2013-06-19 シャープ株式会社 液晶表示装置、液晶表示装置の駆動方法、及びテレビジョン受像機
KR20120079609A (ko) * 2011-01-05 2012-07-13 삼성모바일디스플레이주식회사 주사 구동부 및 이를 이용한 평판 표시장치
KR102202128B1 (ko) * 2014-01-08 2021-01-14 삼성디스플레이 주식회사 액정표시장치와 그 구동방법
KR102269319B1 (ko) * 2014-10-16 2021-06-28 삼성디스플레이 주식회사 표시 장치 및 이의 구동 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1648987A (zh) * 2004-01-28 2005-08-03 佳能株式会社 图像显示装置的驱动方法
JP2008026800A (ja) * 2006-07-25 2008-02-07 Sharp Corp 画像表示装置
CN102402033A (zh) * 2010-09-16 2012-04-04 苏州汉朗光电有限公司 近晶态液晶显示屏用列区域校正扫描驱动方法
CN102903341A (zh) * 2011-07-26 2013-01-30 联咏科技股份有限公司 影像显示扫描方法
CN204857151U (zh) * 2015-08-04 2015-12-09 凌巨科技股份有限公司 显示驱动电路、显示驱动芯片及显示器

Also Published As

Publication number Publication date
CN105913818B (zh) 2018-06-29
JP2019519004A (ja) 2019-07-04
US20180190226A1 (en) 2018-07-05
US10262612B2 (en) 2019-04-16
KR102204166B1 (ko) 2021-01-15
CN105913818A (zh) 2016-08-31
KR20190014080A (ko) 2019-02-11

Similar Documents

Publication Publication Date Title
KR102371896B1 (ko) 표시 패널의 구동 방법 및 이를 수행하는 표시 장치
KR102199149B1 (ko) 디스플레이 패널 용 소스 드라이버 유니트
JP6585893B2 (ja) 表示駆動回路
TWI413968B (zh) 驅動一液晶顯示器的方法及其相關驅動裝置
JP2020511692A (ja) ディスプレイパネルの駆動方法、タイマーコントローラ及び液晶ディスプレイ
US20140340297A1 (en) Liquid crystal display device
US20070242024A1 (en) Thin film transistor liquid crystal display panel driving device and method thereof
US11322111B2 (en) Driving method of display device and display device
WO2018233368A1 (zh) 像素电路、显示装置以及驱动方法
CN106251803B (zh) 用于显示面板的栅极驱动器、显示面板及显示器
WO2017211008A1 (zh) 栅极驱动器的扫描补偿方法和扫描补偿电路
US20140191936A1 (en) Driving Module and Driving Method
US9013386B2 (en) Liquid crystal display and method for operating the same
US20200143763A1 (en) Driving method and device of display panel, and display device
TW201312537A (zh) 顯示裝置及顯示裝置之驅動裝置
JP4478710B2 (ja) 表示装置
WO2016065863A1 (zh) 栅极驱动电路、栅极驱动方法和显示装置
TW201331905A (zh) 液晶顯示器及其運作方法
TWI633476B (zh) 觸控顯示裝置及其控制方法
JP2019532330A (ja) 駆動制御回路及びその駆動方法、表示装置
WO2018173897A1 (ja) 表示装置およびその駆動方法
KR20160058361A (ko) 표시 패널의 구동 방법 및 이를 수행하는 표시 장치
JP3959291B2 (ja) 液晶パネルの駆動方法および液晶表示装置
JP2006119447A (ja) 表示パネル制御回路
KR100961947B1 (ko) 입력 클록 에러 검출 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16904457

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019516037

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197000295

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16904457

Country of ref document: EP

Kind code of ref document: A1