WO2017209167A1 - 監視装置、対象装置の監視方法、およびプログラム - Google Patents
監視装置、対象装置の監視方法、およびプログラム Download PDFInfo
- Publication number
- WO2017209167A1 WO2017209167A1 PCT/JP2017/020200 JP2017020200W WO2017209167A1 WO 2017209167 A1 WO2017209167 A1 WO 2017209167A1 JP 2017020200 W JP2017020200 W JP 2017020200W WO 2017209167 A1 WO2017209167 A1 WO 2017209167A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- likelihood
- occurrence factor
- event
- occurrence
- target device
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
- G05B23/0224—Process history based detection method, e.g. whereby history implies the availability of large amounts of data
- G05B23/024—Quantitative history assessment, e.g. mathematical relationships between available data; Functions therefor; Principal component analysis [PCA]; Partial least square [PLS]; Statistical classifiers, e.g. Bayesian networks, linear regression or correlation analysis; Neural networks
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
- G05B23/0221—Preprocessing measurements, e.g. data collection rate adjustment; Standardization of measurements; Time series or signal analysis, e.g. frequency analysis or wavelets; Trustworthiness of measurements; Indexes therefor; Measurements using easily measured parameters to estimate parameters difficult to measure; Virtual sensor creation; De-noising; Sensor fusion; Unconventional preprocessing inherently present in specific fault detection methods like PCA-based methods
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/08—Cooling; Heating; Heat-insulation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/22—Fuel supply systems
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
- G05B23/0224—Process history based detection method, e.g. whereby history implies the availability of large amounts of data
- G05B23/0227—Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions
- G05B23/0235—Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions based on a comparison with predetermined threshold or range, e.g. "classical methods", carried out during normal operation; threshold adaptation or choice; when or how to compare with the threshold
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
- G05B23/0243—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
- G05B23/0243—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
- G05B23/0245—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model based on a qualitative model, e.g. rule based; if-then decisions
- G05B23/0248—Causal models, e.g. fault tree; digraphs; qualitative physics
Definitions
- the present invention relates to a monitoring device that monitors a target device, a monitoring method for the target device, and a program.
- a method using FTA (Fault Tree Analysis) is known as a method for specifying the cause of an abnormality when an abnormality occurs in the plant (see, for example, Patent Document 1).
- An object of the present invention is to provide a monitoring device, a method for monitoring a target device, and a program that can accurately estimate the cause of occurrence of an abnormality without depending on the experience of the monitoring personnel.
- the monitoring device includes an acquisition unit that acquires a measurement value of the target device, and each occurrence of a plurality of events that may occur in the target device based on the measurement value acquired by the acquisition unit.
- a likelihood calculating unit for calculating the likelihood a table storage unit for storing a table associating the plurality of events with the occurrence factors of the abnormality of the target device, and the likelihood and the table based on the table
- An estimation unit for estimating the generation factor.
- the table confirms the event when the occurrence factor, the event, and an abnormality related to the occurrence factor occur.
- the estimation unit calculates a weighted sum of the likelihood and the number of times for each occurrence factor, and estimates the occurrence factor based on the weighted sum It may be.
- the table confirms the event when the occurrence factor, the event, and an abnormality related to the occurrence factor occur.
- a value indicating whether or not the event has been made, and the estimation unit indicates that the likelihood is the event having a likelihood equal to or greater than a predetermined threshold and has occurred in the table.
- the occurrence factor may be estimated based on the number of events.
- the table is generated when the occurrence factor, the event, and an abnormality related to the occurrence factor occur.
- the estimation unit is configured to calculate a weighted sum of the likelihood and the probability for each occurrence factor, and estimate the occurrence factor based on the weighted sum. It's okay.
- the monitoring device further includes an SN ratio calculation unit that calculates an SN ratio of the measurement value acquired by the acquisition unit,
- the likelihood calculating unit may calculate the likelihood of each of the plurality of events based on the SN ratio calculated by the SN ratio calculating unit.
- the monitoring apparatus further includes a distance calculation unit that calculates a Mahalanobis distance based on the measurement value, and the likelihood calculation unit. May calculate the likelihood of each of the plurality of events when the Mahalanobis distance is greater than or equal to a predetermined value.
- the monitoring apparatus further includes a correction unit that obtains a corrected measurement value obtained by correcting the measurement value by a thermal equilibrium calculation based on the measurement value, and the measurement value Includes at least the temperature and flow rate of the input fluid that is input to the target device, and the temperature and flow rate of the output fluid that is output from the target device, and the distance calculation unit uses the corrected measurement value as a specification for the Mahalanobis distance. May be calculated.
- the monitoring method of the target device acquires the measurement value of the target device and the likelihood of occurrence of each of a plurality of events that may occur in the target device based on the acquired measurement value. Calculating a degree, a table storage unit storing a table in which the plurality of events and the cause of the abnormality of the target device are associated, and estimating the cause based on the likelihood .
- the table includes the occurrence factor, the event, and an abnormality related to the occurrence factor.
- the number of times that an event has been confirmed is correlated, and for each occurrence factor, a weighted sum of the likelihood and the number of times is calculated, and the occurrence factor is estimated based on the weighted sum. It's okay.
- the table includes the occurrence factor, the event, and an abnormality related to the occurrence factor.
- the generation factor may be estimated based on the number of
- the table includes the occurrence factor, the event, and an abnormality related to the occurrence factor.
- a probability that an event occurs, and a weighted sum of the likelihood and the probability may be calculated for each occurrence factor, and the occurrence factor may be estimated based on the weighted sum .
- the program acquires the measurement value of the target device from the computer, and the likelihood of occurrence of each of a plurality of events that can occur in the target device based on the acquired measurement value.
- a table storage unit that stores a table that associates the plurality of events with the occurrence factors of the abnormality of the target device, and estimating the occurrence factors based on the likelihood .
- the monitoring device calculates the likelihood of occurrence of each of a plurality of events that may occur in the target device based on the measurement value of the target device, Is used to estimate the cause of the abnormality that has occurred in the target device. As a result, the monitoring device can accurately estimate the cause of the abnormality without depending on the experience of the monitoring staff.
- the monitoring apparatus 100 monitors the presence or absence of an abnormality in the gas turbine T and identifies the cause of the abnormality.
- the gas turbine T is an example of a target device.
- FIG. 1 is a schematic diagram of a gas turbine that is an example of a target device.
- the gas turbine T includes a compressor T1, a combustor T2, a turbine T3, a rotor T5, a bleed pipe T4, and a generator T6.
- the compressor T1, the turbine T3, and the generator T6 are joined to the rotor T5 and rotate around the axis of the rotor T5.
- the compressor T1 takes in air from the air intake by rotation and compresses the taken-in air to generate compressed air.
- the combustor T2 generates high-temperature and high-pressure combustion gas by injecting fuel into the compressed air generated by the compressor T1. Cooling steam is blown onto the combustor T2 for cooling the combustor T2.
- the turbine T3 converts the thermal energy of the combustion gas generated by the combustor T2 into rotational energy of the rotor T5 to generate a driving force.
- One end of the extraction pipe T4 is connected to the compressor T1, and the other end is connected to the turbine T3.
- the extraction pipe T4 extracts a part of the compressed air generated by the compressor T1, and supplies the extracted compressed air (cooling air) to the turbine T3, thereby cooling the turbine T3.
- the generator T6 converts the rotational energy of the rotor T5 into electric energy.
- a plurality of sensors are attached to the gas turbine T.
- sensor values acquired by each sensor include atmospheric pressure, atmospheric temperature, atmospheric relative humidity, compressor T1 inlet differential pressure, compressor T1 outlet air temperature, compressor T1 outlet air pressure, fuel pressure, Fuel temperature, fuel heating value, fuel composition, fuel flow rate, cooling steam pressure, cooling steam temperature, cooling steam flow rate, cooling air temperature, cooling air flow rate, exhaust temperature, intake pressure loss, exhaust pressure loss, generator T6 Examples include power generation efficiency, generated power, generated current, generated voltage, and generated frequency.
- FIG. 2 is a schematic block diagram illustrating the configuration of the monitoring device according to the first embodiment.
- the monitoring apparatus 100 includes an acquisition unit 101, a characteristic value calculation unit 102, a correction unit 103, a unit space storage unit 104, a distance calculation unit 105, an abnormality determination unit 106, an SN ratio calculation unit 107, a likelihood calculation unit 108, and a table storage unit. 109, an estimation unit 110, and an output unit 111.
- the acquisition unit 101 acquires a sensor value acquired by a sensor provided in the gas turbine T and a control signal value (command value) of the gas turbine T.
- the sensor value acquired by the acquisition unit 101 includes at least the temperature of air and fuel (input fluid) input to the gas turbine T and the temperature of exhaust gas (output fluid) output from the gas turbine T as described above. .
- the sensor value is an example of a measured value of the gas turbine T.
- the characteristic value calculation unit 102 calculates a characteristic value indicating the characteristic of the gas turbine T based on the sensor value acquired by the acquisition unit 101. Examples of characteristic values include thermal efficiency, compressor efficiency, combustion efficiency, turbine efficiency, compressor power, turbine output, gas turbine air flow rate, gas turbine exhaust flow rate, compressor pressure ratio, turbine T3 inlet combustion gas temperature. It is done.
- the characteristic value calculation unit 102 divides the difference between the compressor outlet enthalpy and the compressor inlet enthalpy in the isentropic change by the difference between the actual compressor outlet enthalpy and the compressor inlet enthalpy, thereby improving the compressor efficiency (characteristics). Value).
- Enthalpy is calculated using temperature and pressure as sensor values.
- the characteristic value is an example of a measured value of the gas turbine T.
- the characteristic value calculated by the characteristic value calculation unit 102 includes at least the flow rate of air input to the gas turbine T and the flow rate of exhaust gas output from the gas turbine T as described above.
- the correction unit 103 obtains a corrected measurement value by correcting the sensor value acquired by the acquisition unit 101 and the characteristic value calculated by the characteristic value calculation unit 102 based on the thermal balance calculation of the gas turbine T. Specifically, the correction unit 103 corrects the measurement value according to the following procedure. First, the correction unit 103 substitutes the measurement value into an equation of thermal equilibrium related to the gas turbine T, and calculates an error of each measurement value so that the equation is satisfied. Then, the correction unit 103 obtains a sum of errors calculated for each measurement value or a sum of squares of errors, and selects a combination of errors for each measurement value that minimizes the obtained sum, thereby obtaining a corrected measurement value. obtain. Specifically, the thermal equilibrium of the entire gas turbine T is represented by the following formula (1).
- the thermal equilibrium of the compressor T1 is represented by the following formula (2).
- the thermal balance of the combustor T2 is expressed by the following formula (3).
- the thermal balance of the turbine T3 is expressed by the following equation (4).
- the left side indicates the amount of heat input, and the right side indicates the amount of heat output.
- the variable G1 indicates the intake flow rate.
- the variable H1C indicates the intake enthalpy.
- the variable G2 indicates the outlet flow rate of the compressor T1.
- the variable H2C indicates the outlet enthalpy of the compressor T1.
- the variable Gf indicates the fuel flow rate.
- a variable LHV indicates the amount of heat generated by the fuel.
- the variable Gst indicates the cooling steam flow rate.
- the variable Hst1 indicates the enthalpy of the cooling steam supplied to the combustor T2.
- the variable Hst2 indicates the enthalpy of the cooling steam discharged from the combustor T2.
- the variable Gc indicates the amount of cooling air.
- the variable Hc represents the cooling air enthalpy.
- the variable G4 indicates the inlet flow rate of the turbine T3.
- variable H1T indicates the inlet enthalpy of the turbine T3.
- a variable G8 indicates the exhaust gas flow rate.
- the variable H2T indicates the exhaust enthalpy.
- Variable ⁇ GEN shows the power generation efficiency.
- the variable ⁇ BURN indicates the combustion efficiency.
- the variable KWGEN indicates the generated power.
- the variable KWC indicates the compressor power.
- the variable KWT indicates the turbine output.
- the unit space storage unit 104 has a start period of the gas turbine T (for example, a period of two weeks from the most recent point in time when the gas turbine T starts operating in a new state or when the gas turbine T starts operating after completion of the periodic inspection).
- the combination of the state quantities (measured value, corrected measured value, and command value) of the gas turbine T acquired during () is stored as a unit space of Mahalanobis distance.
- the distance calculation unit 105 uses the sensor values and command values acquired by the acquisition unit 101, the characteristic values calculated by the characteristic value calculation unit 102, and the corrected measurement values corrected by the correction unit 103 as specifications. Based on the stored unit space, a Mahalanobis distance indicating the state of the gas turbine T is calculated.
- the Mahalanobis distance is a measure that represents the magnitude of the difference between a reference sample expressed as a unit space and a newly obtained sample. A method for calculating the Mahalanobis distance will be described later.
- the abnormality determination unit 106 determines whether an abnormality has occurred in the gas turbine T based on the Mahalanobis distance calculated by the distance calculation unit 105. Specifically, the abnormality determination unit 106 determines that an abnormality has occurred in the gas turbine T when the Mahalanobis distance is equal to or greater than a predetermined threshold (for example, 3.5).
- the threshold is usually set to a value of 3 or more.
- the SN ratio calculation unit 107 when the abnormality determination unit 106 determines that an abnormality has occurred in the gas turbine T, the sensor value and command value acquired by the acquisition unit 101, the characteristic value calculated by the characteristic value calculation unit 102, In addition, an SN ratio (Signal-Noise Ratio) related to the Taguchi method is calculated based on the corrected measurement value corrected by the correction unit 103. That is, the likelihood calculating unit 108 obtains a desired SN ratio for the presence / absence of an item by orthogonal table analysis. It can be determined that the higher the S / N ratio, the higher the possibility that there is an abnormality in the item of the state quantity (measured value, command value).
- the likelihood calculating unit 108 calculates the likelihood of occurrence of each of a plurality of events (performance degradation) that can occur in the gas turbine T based on the SN ratio calculated by the SN ratio calculating unit 107.
- events include gas turbine output decline, gas turbine efficiency decline, compressor efficiency decline, turbine efficiency decline, compressor inlet air volume decline, exhaust temperature rise, compressor compression ratio decline, combustion Examples include reduction in efficiency, increase in turbine inlet gas temperature, and increase in exhaust gas pressure.
- the likelihood calculating unit 108 stores, for each event, the relationship between the occurrence of the event and the state quantity that is dominantly involved in the increase / decrease in the SN ratio, and each state quantity associated with each event The likelihood of occurrence of each event is calculated by calculating the weighted sum of the S / N ratios.
- the table storage unit 109 stores a table that represents the relationship between the event and the cause of the abnormality. Specifically, the table storage unit 109 stores, for each event and each occurrence factor, the number of times that the event has been confirmed when an abnormality due to the occurrence factor has occurred. For example, when an abnormality due to damage (occurrence factor) of the exhaust diffuser has occurred in the past, and a state (event) in which the deviation of the blade path temperature is large is confirmed nine times, the table storage unit 109 stores the number of times “9” in association with the occurrence factor “damage of the exhaust diffuser” and the event “the state where the deviation of the blade path temperature is large”.
- the table stored in the table storage unit 109 can be generated based on, for example, FTA data (FT: Fault Tree) generated by maintenance personnel during operation of the gas turbine T.
- FTA data Fault Tree
- the estimation unit 110 estimates the cause of the abnormality of the gas turbine T based on the likelihood of occurrence of each event calculated by the likelihood calculation unit 108 and the table stored in the table storage unit 109. Specifically, the estimation unit 110 performs multiplication of a 1-row M-column vector having the likelihood of occurrence of each event as an element and an M-by-N matrix having a table value as an element, An N-by-1 vector having the likelihood of the cause of the abnormality as an element is obtained. M represents the number of events, and N represents the number of occurrence factors. And the estimation part 110 can estimate that the generation factor which concerns on the row
- the estimation unit 110 calculates a weighted sum of the likelihood of occurrence of each event and the number of occurrences of the event, and estimates the occurrence factor based on the weighted sum.
- the output unit 111 outputs the generation factors estimated by the estimation unit 110 in order of likelihood. Examples of output include display on a display, transmission of data to the outside, printing on a sheet, audio output, and the like.
- u be the number of items of a plurality of state quantities (measured values, command values) representing the state of the gas turbine T.
- u is an integer of 2 or more.
- the state quantities of the u item are X1 to Xu, respectively.
- the monitoring device 100 operates in the operation state of the gas turbine T serving as a reference (in the first embodiment, the latest operation time of the gas turbine T in a new state or the operation start time of the gas turbine T after completion of the periodic inspection). In the operation state for two weeks from the time), a total of v (two or more) state quantities X1 to Xu of each item are collected.
- v 60.
- the j-th state quantities X1 to Xu collected for each item in the operating state are assumed to be X1j to Xuj.
- j takes any value (integer) from 1 to v, meaning that the number of each state quantity is v. That is, the monitoring apparatus 100 collects the state quantities X11 to Xuv.
- the state quantities X11 to Xuv are stored in the unit space storage unit 104.
- the monitoring apparatus 100 obtains the average value Mi and the standard deviation ⁇ i (the degree of variation of the reference data) for each item of the state quantities X11 to Xuv from the expressions (5) and (6).
- i is the number of items (number of state quantities, integer).
- i is set to 1 to u and indicates a value corresponding to the state quantities X1 to Xu.
- the standard deviation is the square root of the expected value of the difference between the state quantity and its average value squared.
- the above-mentioned average value Mi and standard deviation ⁇ i are state quantities indicating features.
- the monitoring apparatus 100 converts the state quantities X11 to Xuv into the standardized state quantities x11 to xuv according to the following equation (7). That is, the abnormality monitoring device 10 converts the state quantity Xij of the gas turbine T into a random variable xij having an average of 0 and a standard deviation of 1.
- j takes any value (integer) from 1 to v. This means that the number of state quantities for each item is v.
- the monitoring apparatus 100 specifies the correlation between the state quantities X11 to Xuv. That is, the monitoring apparatus 100 defines a covariance matrix (correlation matrix) R indicating the relationship between the variables and an inverse matrix R-1 of the covariance matrix (correlation matrix) by the following formula (8).
- k is the number of items (number of state quantities). That is, k is equal to u.
- i and p represent values in the respective state quantities, and take values of 1 to u here.
- the monitoring device 100 obtains a Mahalanobis distance D, which is a state quantity indicating a feature, based on the following formula (9) after such a calculation process.
- j takes any value (integer) from 1 to v.
- K is the number of items (number of state quantities). That is, k is equal to u.
- a11 to akk are coefficients of the inverse matrix R-1 of the covariance matrix R shown in the above equation (8).
- Mahalanobis distance D is reference data.
- the average value of the Mahalanobis distance D in the unit space is 1.
- the Mahalanobis distance D is approximately 3 or less.
- the value of the Mahalanobis distance D is generally larger than 3.
- the Mahalanobis distance D has a property that the value increases according to the degree of abnormality of the state quantity of the gas turbine T (the degree of separation from the unit space).
- FIG. 3 is a flowchart showing the operation of the monitoring apparatus according to the first embodiment.
- the monitoring device 100 collects the state quantities of the gas turbine T and accumulates the state quantity combinations in the unit space storage unit 104 during the start-up period of the gas turbine T. That is, the monitoring apparatus 100 records the command value of the gas turbine acquired by the acquisition unit 101 and the corrected measurement value generated by the correction unit 103 in the unit space storage unit 104 in association with each other.
- the monitoring device 100 performs the following monitoring operation at a predetermined monitoring timing (for example, every other hour) after the start period of the gas turbine T elapses.
- the monitoring timing is an example of a time point after starting, which is a time point after a predetermined starting period has elapsed since the operation start time of the gas turbine T.
- the acquisition unit 101 acquires a sensor value acquired by a sensor provided in the gas turbine T and a command value of the gas turbine T (step S1).
- the characteristic value calculation unit 102 calculates a characteristic value indicating the characteristic of the gas turbine T based on the sensor value acquired by the acquisition unit 101 (step S2).
- amendment part 103 acquires a correction
- the distance calculation unit 105 stores the unit space storage unit 104 using the sensor value and command value acquired in step S1, the characteristic value calculated in step S2, and the corrected measurement value obtained in step S3 as specifications. Based on the unit space to be calculated, the Mahalanobis distance is calculated (step S4). Next, the abnormality determination unit 106 determines whether or not the calculated Mahalanobis distance is greater than or equal to a predetermined threshold (step S5).
- step S5 NO
- the abnormality determining unit 106 determines that no abnormality has occurred in the gas turbine T, ends the monitoring process, and waits for the next monitoring timing.
- the Mahalanobis distance is greater than or equal to the threshold (step S5: YES)
- the abnormality determination unit 106 determines that an abnormality has occurred in the gas turbine T.
- the SN ratio calculation unit 107 relates to the Taguchi method for each of the command value acquired in step S1 and the corrected measurement value obtained in step S3.
- An SN ratio is calculated (step S6).
- the likelihood calculating unit 108 calculates the likelihood of occurrence of each of a plurality of events that can occur in the gas turbine T based on the calculated S / N ratio (step S7).
- the estimation unit 110 multiplies the vector having the likelihood of each event calculated by the likelihood calculation unit 108 as an element by a matrix having the table value stored in the table storage unit 109 as an element. Then, a vector having the likelihood of the cause of the abnormality as an element is obtained (step S8). Next, the estimation unit 110 sorts the occurrence factors in descending order of the likelihood represented by the obtained vector (step S9). Then, the output unit 111 outputs the generation factors estimated by the estimation unit 110 in the sorted order (step S10). For example, the output unit 111 displays the cause with the highest likelihood on the display, and when a display command for the next cause is received by the user's operation, the cause with the next highest likelihood is displayed on the display. Display. For example, the output unit 111 prints a list of generation factors on a sheet in descending order of likelihood.
- the monitoring device 100 calculates the likelihood of occurrence of each of a plurality of events that may occur in the gas turbine T, and shows a table indicating the relationship between the event and the cause of the abnormality. Based on the likelihood, the cause of the abnormality is estimated. Thereby, the monitoring apparatus 100 can easily output the cause of the abnormality based on the observed event.
- the monitoring apparatus 100 according to the first embodiment performs multiplication of a 1-row M-column vector whose elements are the likelihood of occurrence of each event and an M-row N-column matrix whose elements are table values. By doing this, a vector of N rows and 1 column having the likelihood of the cause of the abnormality as an element is obtained.
- the monitoring apparatus 100 can specify easily the likelihood for every cause of abnormality by simple calculation.
- the present invention is not limited to this.
- the monitoring apparatus 100 according to another embodiment includes a 1-row M-column vector having the likelihood of occurrence of each event as an element, and each row vector of an M-row N-column matrix having a table value as an element.
- the cosine similarity is a value obtained by dividing the inner product of vectors (the weighted sum of the likelihood of occurrence of each event and the number of occurrences of the event) by the product of the norm of each vector.
- the monitoring apparatus 100 according to another embodiment may obtain the weighted sum of the likelihood of occurrence of each event and the number of occurrences of the event for each abnormality occurrence factor without using matrix calculation.
- the monitoring apparatus 100 performs thermal equilibrium calculation on measured values including the temperature and flow rate of air and fuel input to the gas turbine T and the temperature and flow rate of exhaust gas output from the gas turbine T. And the Mahalanobis distance is calculated. Thereby, the monitoring apparatus 100 can reduce the measurement error of the sensor provided in the gas turbine T and calculate the Mahalanobis distance. In addition, in other embodiment, it is not restricted to this. For example, the monitoring apparatus 100 according to another embodiment may calculate the Mahalanobis distance without correcting the measurement value. Moreover, the monitoring apparatus 100 according to another embodiment may determine whether there is an abnormality in the gas turbine T based on a method other than the abnormality determination method based on the Mahalanobis distance.
- the monitoring device 100 uses the measurement values acquired at the time after starting, which is the time after the predetermined starting time has elapsed from the time when the operation of the gas turbine T starts, as specifications.
- the Mahalanobis distance is calculated using the measurement value acquired during the start-up period as a unit space. That is, the monitoring apparatus 100 calculates the Mahalanobis distance using the normal operating state of the gas turbine T itself that is the monitoring target as a unit space. Conventionally, as the unit space of the Mahalanobis distance, the Mahalanobis distance is determined based on the unit space including the operating state in which the deterioration has occurred after the start period but no abnormality has occurred and the operating state of other gas turbines T. It was calculated.
- the Mahalanobis distance is calculated based on the unit space including only the operating state of the gas turbine T itself that is the monitoring target and before the deterioration occurs.
- the monitoring apparatus 100 can detect an abnormality with high accuracy for the gas turbine T to be monitored.
- the start-up period according to the first embodiment is a period starting from the most recent point in time when starting operation in a new state or starting operation after completion of periodic inspection. That is, the unit space of Mahalanobis distance is updated at every periodic inspection. Thereby, the abnormality of the gas turbine T can be detected on the basis of the normal operation state after the periodic inspection of the gas turbine T (the first operation state in the new state).
- the new state that is, the operating state of the non-deteriorating gas turbine T is used as the unit space
- the Mahalanobis distance becomes relatively large even if the operating state of the gas turbine T after the periodic inspection is normal. This is because it is difficult to completely repair deterioration due to the use of the gas turbine T by periodic inspection. Therefore, it is possible to accurately determine the operation state by detecting the abnormality of the gas turbine T with reference to the normal operation state after the periodic inspection of the gas turbine T.
- the monitoring apparatus 100 calculates the Mahalanobis distance using the measured value, the corrected measured value, and the command value as specifications. Thereby, even when the balance between the heat input amount and the heat output amount is lost due to deterioration of the gas turbine T or the like, the state of the gas turbine T can be appropriately evaluated.
- the structure of other embodiment is not restricted to this.
- the monitoring apparatus 100 according to another embodiment may calculate the Mahalanobis distance using the corrected measurement value as a specification without including the measurement value as a specification.
- the monitoring device 100 may calculate the Mahalanobis distance without including the command value in the specifications.
- FIG. 4 is a schematic block diagram illustrating the configuration of the monitoring device according to the second embodiment.
- the monitoring apparatus 100 according to the second embodiment includes an event extraction unit 112 in addition to the configuration of the first embodiment, and the operation of the estimation unit 110 is different from that of the first embodiment.
- the event extraction unit 112 extracts, from a plurality of events that can occur in the gas turbine T, those whose likelihood calculated by the likelihood calculation unit 108 is equal to or greater than a predetermined threshold.
- the estimation unit 110 counts the number of events having an occurrence count of 1 or more among the events extracted by the event extraction unit 112.
- the estimation unit 110 estimates that a relatively large number of occurrences among a plurality of occurrence factors is a cause of an abnormality in the gas turbine T. Specifically, the estimation unit 110 sorts the generation factors in descending order of the number of occurrences, and outputs them to the output unit 111. With the above configuration, the monitoring apparatus 100 can easily output the cause of the abnormality based on the observed event with a simpler configuration than that of the first embodiment.
- the table storage unit 109 according to the second embodiment as in the first embodiment, for each event and each occurrence factor, the number of times the event has been confirmed when an abnormality due to the occurrence factor has occurred.
- the table storage unit 109 according to another embodiment has, for each event and each occurrence factor, a Boolean value indicating whether or not the event has been confirmed when an abnormality due to the occurrence factor has occurred. It may be stored in association.
- the estimation unit 110 counts the number of events whose Boolean value indicates True among the events extracted by the event extraction unit 112 in the table stored in the table storage unit 109.
- the estimation unit 110 estimates that a relatively large number of counted Boolean values among a plurality of generation factors is a generation factor of an abnormality of the gas turbine T.
- the monitoring device 100 according to the third embodiment differs from the first embodiment in the information stored in the table storage unit 109.
- the table storage unit 109 according to the third embodiment stores, for each event and each occurrence factor, the probability that the event is confirmed when an abnormality due to the occurrence factor occurs in association with each other.
- the table can be generated based on, for example, FTA data (FT) generated by maintenance personnel during operation of the gas turbine T.
- the FT has a tree structure in which a top event is a top event (root) and a lower event that causes a higher event is a node.
- Each node is associated with a probability that an upper event related to a node immediately above the node is caused by a lower event indicated by the node.
- a table stored in the table storage unit 109 is generated by storing, in the table, the probability associated with the node indicating each event in the FT.
- the estimation unit 110 calculates a weighted sum of the likelihood of occurrence of each event calculated by the likelihood calculation unit 108 and the occurrence probability of the event, and estimates the generation factor based on the weighted sum. Specifically, the estimation unit 110 sorts the occurrence factors in descending order of likelihood, occurrence probability, and weighted sum, and outputs the results to the output unit 111. That is, the estimation unit 110 performs Bayesian update based on the event prior probability (probability stored in the table) and the event observation result (event likelihood), and the occurrence probability of the occurrence factor as the posterior probability. Is what you want. As described above, according to the present embodiment, it is possible to easily output the cause of the abnormality based on the observed event with higher accuracy than in the first embodiment or the second embodiment.
- the monitoring apparatus 100 stores the probability determined based on the FT for each event and each occurrence factor in association with each other, but is not limited thereto.
- the probability stored in the table according to another embodiment may be the sum of the likelihood of occurrence of each event calculated in the past operation of the gas turbine T.
- the monitoring apparatus 100 uses the likelihood of occurrence of each event and the weighted sum of the probabilities as the likelihood of the occurrence factor, but is not limited thereto.
- the monitoring apparatus 100 according to another embodiment includes a 1-row M-column vector having the likelihood of occurrence of each event as an element, and each row vector of an M-row N-column matrix having a table value as an element. By calculating the cosine similarity, a vector of N rows and 1 column having the likelihood of the cause of the abnormality as an element may be obtained.
- the target apparatus according to the above-described embodiment is the gas turbine T, but is not limited to this in other embodiments.
- the target device according to another embodiment may be a steam turbine, an engine, or another device having a thermal balance.
- the likelihood calculation part 108 of the monitoring apparatus 100 which concerns on embodiment mentioned above calculates
- the likelihood calculation unit 108 may calculate the likelihood of occurrence of each event using a Bayesian network that receives the measurement value acquired by the acquisition unit 101 as an input.
- FIG. 5 is a schematic block diagram illustrating a configuration of a computer according to at least one embodiment.
- the computer 900 includes a CPU 901, a main storage device 902, an auxiliary storage device 903, and an interface 904.
- the monitoring device 100 described above includes a computer 900.
- the operation of each processing unit described above is stored in the auxiliary storage device 903 in the form of a program.
- the CPU 901 reads a program from the auxiliary storage device 903, develops it in the main storage device 902, and executes the above processing according to the program. Further, the CPU 901 secures a storage area corresponding to each of the above-described storage units in the main storage device 902 according to the program.
- the auxiliary storage device 903 is an example of a tangible medium that is not temporary.
- Other examples of the tangible medium that is not temporary include a magnetic disk, a magneto-optical disk, an optical disk, and a semiconductor memory connected via the interface 904.
- the program may be for realizing a part of the functions described above. Further, the program may be a so-called difference file (difference program) that realizes the above-described function in combination with another program already stored in the auxiliary storage device 903.
- difference file difference program
- the monitoring device calculates the likelihood of occurrence of each of a plurality of events that may occur in the target device based on the measurement value of the target device, Is used to estimate the cause of the abnormality that has occurred in the target device. As a result, the monitoring device can accurately estimate the cause of the abnormality without depending on the experience of the monitoring staff.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Mathematical Physics (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
取得部は、対象装置の計測値を取得する。尤度算出部は、取得部が取得した計測値に基づいて対象装置に生じ得る複数の事象それぞれの発生の尤度を算出する。テーブル記憶部は、複数の事象と、対象装置の異常の発生要因とを関連付けたテーブルを記憶する。推定部は、尤度とテーブルとに基づいて発生要因を推定する。
Description
本発明は、対象装置を監視する監視装置、対象装置の監視方法、およびプログラムに関する。
本願は、2016年06月01日に日本に出願された特願2016-110336号について優先権を主張し、その内容をここに援用する。
本願は、2016年06月01日に日本に出願された特願2016-110336号について優先権を主張し、その内容をここに援用する。
プラントに異常が発生したときに、異常の発生要因を特定する方法としてFTA(Fault Tree Analysis)を用いる手法が知られている(例えば、特許文献1を参照)。
しかしながら、FTAに基づく異常の発生要因の推定は、監視員の経験に依存する部分が多いため、監視員ごとに推定の精度が異なる。またFTAに基づいて異常の発生要因を推定する技能を有する監視員の数には限りがあり、プラントに異常が発生したときに、発生要因の推定に時間がかかってしまう場合がある。
本発明の目的は、監視員の経験によらずに異常の発生要因を精度よく推定することができる監視装置、対象装置の監視方法、およびプログラムを提供することにある。
本発明の目的は、監視員の経験によらずに異常の発生要因を精度よく推定することができる監視装置、対象装置の監視方法、およびプログラムを提供することにある。
本発明の第1の態様によれば、監視装置は、対象装置の計測値を取得する取得部と、前記取得部が取得した前記計測値に基づいて対象装置に生じ得る複数の事象それぞれの発生の尤度を算出する尤度算出部と、前記複数の事象と、前記対象装置の異常の発生要因とを関連付けたテーブルを記憶するテーブル記憶部と、前記尤度と前記テーブルとに基づいて前記発生要因を推定する推定部とを備える。
本発明の第2の態様によれば、第1の態様に係る監視装置は、前記テーブルは、前記発生要因と、前記事象と、当該発生要因に係る異常が生じたときに当該事象が確認された回数とを関連付けたものであって、前記推定部は、前記発生要因毎に、前記尤度と前記回数との加重和を算出し、当該加重和に基づいて前記発生要因を推定するものであってよい。
本発明の第3の態様によれば、第1の態様に係る監視装置は、前記テーブルは、前記発生要因と、前記事象と、当該発生要因に係る異常が生じたときに当該事象が確認されたか否かを示す値とを関連付けたものであって、前記推定部は、前記尤度が所定の閾値以上の前記事象であって、かつ前記テーブルにおいて発生したことが示されている前記事象の数に基づいて、前記発生要因を推定するものであってよい。
本発明の第4の態様によれば、第1の態様に係る監視装置は、前記テーブルは、前記発生要因と、前記事象と、当該発生要因に係る異常が生じたときに当該事象が生じる確率とを関連付けたものであって、前記推定部は、前記発生要因毎に、前記尤度と前記確率との加重和を算出し、当該加重和に基づいて前記発生要因を推定するものであってよい。
本発明の第5の態様によれば、第1から第4の何れかの態様に係る監視装置は、前記取得部が取得した前記計測値のSN比を算出するSN比算出部をさらに備え、前記尤度算出部は、前記SN比算出部が算出した前記SN比に基づいて前記複数の事象それぞれの尤度を算出するものであってよい。
本発明の第6の態様によれば、第1から第5の何れかの態様に係る監視装置は、前記計測値に基づいてマハラノビス距離を算出する距離算出部をさらに備え、前記尤度算出部は、前記マハラノビス距離が所定値以上である場合に、前記複数の事象それぞれの尤度を算出するものであってよい。
本発明の第7の態様によれば、第6の態様に係る監視装置は、前記計測値に基づく熱平衡計算により、前記計測値を補正した補正計測値を得る補正部をさらに備え、前記計測値は、少なくとも前記対象装置に入力される入力流体の温度および流量、ならびに前記対象装置から出力される出力流体の温度および流量を含み、前記距離算出部は前記補正計測値を諸元として前記マハラノビス距離を算出するものであってよい。
本発明の第8の態様によれば、対象装置の監視方法は、対象装置の計測値を取得することと、取得した前記計測値に基づいて対象装置に生じ得る複数の事象それぞれの発生の尤度を算出することと、前記複数の事象と、前記対象装置の異常の発生要因とを関連付けたテーブルを記憶するテーブル記憶部と、前記尤度に基づいて前記発生要因を推定することとを含む。
本発明の第9の態様によれば、第8の態様に係る対象装置の監視方法は、前記テーブルは、前記発生要因と、前記事象と、当該発生要因に係る異常が生じたときに当該事象が確認された回数とを関連付けたものであって、前記発生要因毎に、前記尤度と前記回数との加重和を算出し、当該加重和に基づいて前記発生要因を推定するものであってよい。
本発明の第10の態様によれば、第8の態様に係る対象装置の監視方法は、前記テーブルは、前記発生要因と、前記事象と、当該発生要因に係る異常が生じたときに当該事象が確認されたか否かを示す値とを関連付けたものであって、前記尤度が所定の閾値以上の前記事象であって、かつ前記テーブルにおいて発生したことが示されている前記事象の数に基づいて、前記発生要因を推定するものであってよい。
本発明の第11の態様によれば、第8の態様に係る対象装置の監視方法は、前記テーブルは、前記発生要因と、前記事象と、当該発生要因に係る異常が生じたときに当該事象が生じる確率とを関連付けたものであって、前記発生要因毎に、前記尤度と前記確率との加重和を算出し、当該加重和に基づいて前記発生要因を推定するものであってよい。
本発明の第12の態様によれば、プログラムは、コンピュータに、対象装置の計測値を取得することと、取得した前記計測値に基づいて対象装置に生じ得る複数の事象それぞれの発生の尤度を算出することと、前記複数の事象と、前記対象装置の異常の発生要因とを関連付けたテーブルを記憶するテーブル記憶部と、前記尤度に基づいて前記発生要因を推定することとを実行させる。
上記態様のうち少なくとも1つの態様によれば、監視装置は、対象装置の計測値に基づいて当該対象装置に生じ得る複数の事象それぞれの発生の尤度を算出し、事象と異常の発生要因とを関連付けたテーブルを用いて対象装置に生じた異常の発生要因を推定する。これにより、監視装置は、監視員の経験によらずに異常の発生要因を精度よく推定することができる。
〈第1の実施形態〉
以下、図面を参照しながら第1の実施形態について詳しく説明する。
第1の実施形態に係る監視装置100は、ガスタービンTの異常の有無を監視し、異常の発生要因を特定する。ガスタービンTは対象装置の一例である。
以下、図面を参照しながら第1の実施形態について詳しく説明する。
第1の実施形態に係る監視装置100は、ガスタービンTの異常の有無を監視し、異常の発生要因を特定する。ガスタービンTは対象装置の一例である。
《対象装置》
図1は、対象装置の一例であるガスタービンの模式図である。
ガスタービンTは、圧縮機T1、燃焼器T2、タービンT3、ロータT5、抽気管T4、および発電機T6を備える。圧縮機T1、タービンT3、および発電機T6は、ロータT5に接合され、ロータT5の軸回りに回転する。圧縮機T1は、回転により空気取込口から空気を取り込み、取り込んだ空気を圧縮して圧縮空気を生成する。燃焼器T2は、圧縮機T1が生成した圧縮空気に燃料を噴射することにより、高温かつ高圧の燃焼ガスを発生させる。また燃焼器T2には、燃焼器T2の冷却のために冷却蒸気が吹き付けられる。タービンT3は、燃焼器T2が発生させた燃焼ガスの熱エネルギーをロータT5の回転エネルギーに変換して駆動力を発生させる。抽気管T4は、その一端が圧縮機T1に接続され、その他端がタービンT3に接続される。抽気管T4は、圧縮機T1が生成する圧縮空気の一部を抽気し、抽気した圧縮空気(冷却空気)をタービンT3に供給することで、タービンT3を冷却する。発電機T6は、ロータT5の回転エネルギーを電気エネルギーに変換する。
図1は、対象装置の一例であるガスタービンの模式図である。
ガスタービンTは、圧縮機T1、燃焼器T2、タービンT3、ロータT5、抽気管T4、および発電機T6を備える。圧縮機T1、タービンT3、および発電機T6は、ロータT5に接合され、ロータT5の軸回りに回転する。圧縮機T1は、回転により空気取込口から空気を取り込み、取り込んだ空気を圧縮して圧縮空気を生成する。燃焼器T2は、圧縮機T1が生成した圧縮空気に燃料を噴射することにより、高温かつ高圧の燃焼ガスを発生させる。また燃焼器T2には、燃焼器T2の冷却のために冷却蒸気が吹き付けられる。タービンT3は、燃焼器T2が発生させた燃焼ガスの熱エネルギーをロータT5の回転エネルギーに変換して駆動力を発生させる。抽気管T4は、その一端が圧縮機T1に接続され、その他端がタービンT3に接続される。抽気管T4は、圧縮機T1が生成する圧縮空気の一部を抽気し、抽気した圧縮空気(冷却空気)をタービンT3に供給することで、タービンT3を冷却する。発電機T6は、ロータT5の回転エネルギーを電気エネルギーに変換する。
ガスタービンTには図示しない複数のセンサが取り付けられる。各センサが取得するセンサ値の例としては、大気圧、大気温度、大気の相対湿度、圧縮機T1の入口差圧、圧縮機T1の出口空気温度、圧縮機T1の出口空気圧力、燃料圧力、燃料温度、燃料発熱量、燃料組成、燃料流量、冷却蒸気圧力、冷却蒸気温度、冷却蒸気流量、冷却空気の温度、冷却空気の流量、排気温度、吸気圧力損失、排気圧力損失、発電機T6の発電効率、発電電力、発電電流、発電電圧、発電周波数が挙げられる。
《構成》
監視装置100の構成について説明する。図2は、第1の実施形態に係る監視装置の構成を示す概略ブロック図である。
監視装置100は、取得部101、特性値算出部102、補正部103、単位空間記憶部104、距離算出部105、異常判定部106、SN比算出部107、尤度算出部108、テーブル記憶部109、推定部110、出力部111を備える。
取得部101は、ガスタービンTに設けられたセンサが取得したセンサ値、およびガスタービンTの制御信号の値(指令値)を取得する。なお、取得部101が取得するセンサ値は、上述の通り、少なくともガスタービンTに入力される空気および燃料(入力流体)の温度およびガスタービンTから出力される排気(出力流体)の温度を含む。センサ値は、ガスタービンTの計測値の一例である。
特性値算出部102は、取得部101が取得したセンサ値に基づいて、ガスタービンTの特性を示す特性値を算出する。特性値の例としては、熱効率、圧縮機効率、燃焼効率、タービン効率、圧縮機動力、タービン出力、ガスタービン空気流量、ガスタービン排気流量、圧縮機圧力比、タービンT3の入口燃焼ガス温度が挙げられる。例えば、特性値算出部102は、等エントロピ変化における圧縮機出口エンタルピと圧縮機入口エンタルピの差を、実際の圧縮機出口エンタルピと圧縮機入口エンタルピの差で除算することで、圧縮機効率(特性値)を算出する。エンタルピは、センサ値である温度および圧力を用いて算出される。特性値は、ガスタービンTの計測値の一例である。なお、特性値算出部102が算出する特性値は、上述の通り、少なくともガスタービンTに入力される空気の流量およびガスタービンTから出力される排気の流量を含む。
監視装置100の構成について説明する。図2は、第1の実施形態に係る監視装置の構成を示す概略ブロック図である。
監視装置100は、取得部101、特性値算出部102、補正部103、単位空間記憶部104、距離算出部105、異常判定部106、SN比算出部107、尤度算出部108、テーブル記憶部109、推定部110、出力部111を備える。
取得部101は、ガスタービンTに設けられたセンサが取得したセンサ値、およびガスタービンTの制御信号の値(指令値)を取得する。なお、取得部101が取得するセンサ値は、上述の通り、少なくともガスタービンTに入力される空気および燃料(入力流体)の温度およびガスタービンTから出力される排気(出力流体)の温度を含む。センサ値は、ガスタービンTの計測値の一例である。
特性値算出部102は、取得部101が取得したセンサ値に基づいて、ガスタービンTの特性を示す特性値を算出する。特性値の例としては、熱効率、圧縮機効率、燃焼効率、タービン効率、圧縮機動力、タービン出力、ガスタービン空気流量、ガスタービン排気流量、圧縮機圧力比、タービンT3の入口燃焼ガス温度が挙げられる。例えば、特性値算出部102は、等エントロピ変化における圧縮機出口エンタルピと圧縮機入口エンタルピの差を、実際の圧縮機出口エンタルピと圧縮機入口エンタルピの差で除算することで、圧縮機効率(特性値)を算出する。エンタルピは、センサ値である温度および圧力を用いて算出される。特性値は、ガスタービンTの計測値の一例である。なお、特性値算出部102が算出する特性値は、上述の通り、少なくともガスタービンTに入力される空気の流量およびガスタービンTから出力される排気の流量を含む。
補正部103は、取得部101が取得したセンサ値および特性値算出部102が算出した特性値をガスタービンTの熱平衡計算に基づいて補正することで、補正計測値を得る。具体的には、補正部103は、以下の手順で計測値を補正する。まず補正部103は、計測値をガスタービンTに係る熱平衡の式に代入し、当該式が成立するように各計測値の誤差を算出する。そして補正部103は、計測値ごとに算出した誤差の総和、または誤差の二乗の総和を求め、求められた総和が最小となる計測値ごとの誤差の組み合わせを選択することで、補正計測値を得る。
具体的には、ガスタービンT全体の熱平衡は、以下の式(1)により表される。圧縮機T1の熱平衡は、以下の式(2)により表される。燃焼器T2の熱平衡は、以下の式(3)により表される。タービンT3の熱平衡は、以下の式(4)により表される。以下の式(1)-式(4)において、左辺は入熱量を示し、右辺は出熱量を示す。
具体的には、ガスタービンT全体の熱平衡は、以下の式(1)により表される。圧縮機T1の熱平衡は、以下の式(2)により表される。燃焼器T2の熱平衡は、以下の式(3)により表される。タービンT3の熱平衡は、以下の式(4)により表される。以下の式(1)-式(4)において、左辺は入熱量を示し、右辺は出熱量を示す。
変数G1は、吸気流量を示す。変数H1Cは、吸気エンタルピを示す。変数G2は、圧縮機T1の出口流量を示す。変数H2Cは、圧縮機T1の出口エンタルピを示す。変数Gfは、燃料流量を示す。変数LHVは、燃料発熱量を示す。変数Gstは、冷却蒸気流量を示す。変数Hst1は、燃焼器T2に供給される冷却蒸気のエンタルピを示す。変数Hst2は、燃焼器T2から排出される冷却蒸気のエンタルピを示す。変数Gcは、冷却空気量を示す。変数Hcは、冷却空気エンタルピを示す。変数G4は、タービンT3の入口流量を示す。変数H1Tは、タービンT3の入口エンタルピを示す。変数G8は、排気流量を示す。変数H2Tは、排気エンタルピを示す。変数μGENは、発電効率を示す。変数μBURNは、燃焼効率を示す。変数KWGENは、発電電力を示す。変数KWCは、圧縮機動力を示す。変数KWTは、タービン出力を示す。
単位空間記憶部104は、ガスタービンTの始動期間(例えば、新品状態のガスタービンTの運転開始時点または定期点検の完了後のガスタービンTの運転開始時点のうち直近の時点から2週間の期間)の間に取得された、ガスタービンTの状態量(計測値、補正計測値および指令値)の組み合わせを、マハラノビス距離の単位空間として記憶する。
距離算出部105は、取得部101が取得したセンサ値および指令値、特性値算出部102が算出した特性値、ならびに補正部103が補正した補正計測値を諸元として、単位空間記憶部104が記憶する単位空間に基づいて、ガスタービンTの状態を示すマハラノビス距離を算出する。マハラノビス距離は、単位空間として表される基準の標本と新たに得られた標本との違いの大きさを表す尺度である。マハラノビス距離の算出方法については、後述する。
異常判定部106は、距離算出部105が算出したマハラノビス距離に基づいてガスタービンTに異常が生じているか否かを判定する。具体的には、異常判定部106は、マハラノビス距離が所定の閾値(例えば、3.5)以上である場合に、ガスタービンTに異常が生じていると判定する。閾値には、通常3以上の値が設定される。
距離算出部105は、取得部101が取得したセンサ値および指令値、特性値算出部102が算出した特性値、ならびに補正部103が補正した補正計測値を諸元として、単位空間記憶部104が記憶する単位空間に基づいて、ガスタービンTの状態を示すマハラノビス距離を算出する。マハラノビス距離は、単位空間として表される基準の標本と新たに得られた標本との違いの大きさを表す尺度である。マハラノビス距離の算出方法については、後述する。
異常判定部106は、距離算出部105が算出したマハラノビス距離に基づいてガスタービンTに異常が生じているか否かを判定する。具体的には、異常判定部106は、マハラノビス距離が所定の閾値(例えば、3.5)以上である場合に、ガスタービンTに異常が生じていると判定する。閾値には、通常3以上の値が設定される。
SN比算出部107は、異常判定部106がガスタービンTに異常が生じていると判定した場合に、取得部101が取得したセンサ値および指令値、特性値算出部102が算出した特性値、ならびに補正部103が補正した補正計測値に基づいて、タグチメソッドに係るSN比(Signal-Noise Ratio)を算出する。すなわち、尤度算出部108は、直交表分析による項目有無の望大SN比を求める。SN比が大きいほど、その状態量(計測値、指令値)の項目に異常がある可能性が高いと判断できる。
尤度算出部108は、SN比算出部107が算出したSN比に基づいて、ガスタービンTに発生し得る複数の事象(性能劣化)それぞれの発生の尤度を算出する。事象の例としては、ガスタービン出力の低下、ガスタービン効率の低下、圧縮機効率の低下、タービン効率の低下、圧縮機入口空気量の低下、排気温度の上昇、圧縮機圧縮比の低下、燃焼効率の低下、タービン入口ガス温度の上昇、排気ガス圧力の上昇などが挙げられる。例えば、尤度算出部108は、各事象について、当該事象の発生の有無がSN比の増減を支配的に関与する状態量との関係を記憶しておき、各事象に関連付けられた状態量それぞれのSN比の加重和を算出することで、各事象の発生の尤度を算出する。
尤度算出部108は、SN比算出部107が算出したSN比に基づいて、ガスタービンTに発生し得る複数の事象(性能劣化)それぞれの発生の尤度を算出する。事象の例としては、ガスタービン出力の低下、ガスタービン効率の低下、圧縮機効率の低下、タービン効率の低下、圧縮機入口空気量の低下、排気温度の上昇、圧縮機圧縮比の低下、燃焼効率の低下、タービン入口ガス温度の上昇、排気ガス圧力の上昇などが挙げられる。例えば、尤度算出部108は、各事象について、当該事象の発生の有無がSN比の増減を支配的に関与する状態量との関係を記憶しておき、各事象に関連付けられた状態量それぞれのSN比の加重和を算出することで、各事象の発生の尤度を算出する。
テーブル記憶部109は、事象と異常の発生要因との関係を表すテーブルを記憶する。具体的には、テーブル記憶部109は、各事象および各発生要因について、当該発生要因による異常が生じたときに、当該事象が確認された回数を記憶する。例えば、過去に排気ディフューザの損傷(発生要因)による異常が生じたときに、ブレードパス温度の偏差が大きくなっている状態(事象)が確認されたことが、9度あった場合、テーブル記憶部109は、「排気ディフューザの損傷」という発生要因と「ブレードパス温度の偏差が大きい状態」という事象とに関連付けて、「9」という回数を記憶する。テーブル記憶部109が記憶するテーブルは、例えば、ガスタービンTの運用時に保守員によって生成されたFTAのデータ(FT:Fault Tree)に基づいて生成することができる。
推定部110は、尤度算出部108が算出した各事象の発生の尤度と、テーブル記憶部109が記憶するテーブルとに基づいて、ガスタービンTの異常の発生要因を推定する。具体的には、推定部110は、各事象の発生の尤度を要素とする1行M列のベクトルと、テーブルの値を要素とするM行N列の行列との乗算を行うことで、異常の発生要因の尤度を要素とするN行1列のベクトルを得る。Mは事象の数、Nは発生要因の数を示す。そして、推定部110は、得られたN行1列のベクトルのうち要素の値が大きい行に係る発生要因が、ガスタービンTの異常の発生要因であると推定することができる。つまり、推定部110は、異常の発生要因毎に、各事象の発生の尤度とその事象の発生回数との加重和を算出し、当該加重和に基づいて発生要因を推定する。
出力部111は、推定部110が推定した発生要因を尤度の順に出力する。出力の例としては、ディスプレイへの表示、外部へのデータの送信、シートへの印刷、音声出力などが挙げられる。
出力部111は、推定部110が推定した発生要因を尤度の順に出力する。出力の例としては、ディスプレイへの表示、外部へのデータの送信、シートへの印刷、音声出力などが挙げられる。
《マハラノビス距離》
ここで、一般的なマハラノビス距離Dを計算するための計算式について説明する。
ガスタービンTの状態を表す複数の状態量(計測値、指令値)の項目の数をuとする。uは2以上の整数である。u項目の状態量をそれぞれX1~Xuとする。監視装置100は、基準となるガスタービンTの運転状態(第1の実施形態では、新品状態のガスタービンTの運転開始時点または定期点検の完了後のガスタービンTの運転開始時点のうち直近の時点から2週間の運転状態)において、各項目の状態量X1~Xuを、それぞれ合計v個(2以上)収集する。例えば、各項目の状態量を60個ずつ取得する場合、v=60となる。運転状態において収集された各項目のj個目の状態量X1~Xuを、X1j~Xujとする。jは1~vまでのいずれかの値(整数)をとり、それぞれの状態量の個数がv個であることを意味する。つまり、監視装置100は、状態量X11~Xuvを収集する。当該状態量X11~Xuvは、単位空間記憶部104に記憶される。
ここで、一般的なマハラノビス距離Dを計算するための計算式について説明する。
ガスタービンTの状態を表す複数の状態量(計測値、指令値)の項目の数をuとする。uは2以上の整数である。u項目の状態量をそれぞれX1~Xuとする。監視装置100は、基準となるガスタービンTの運転状態(第1の実施形態では、新品状態のガスタービンTの運転開始時点または定期点検の完了後のガスタービンTの運転開始時点のうち直近の時点から2週間の運転状態)において、各項目の状態量X1~Xuを、それぞれ合計v個(2以上)収集する。例えば、各項目の状態量を60個ずつ取得する場合、v=60となる。運転状態において収集された各項目のj個目の状態量X1~Xuを、X1j~Xujとする。jは1~vまでのいずれかの値(整数)をとり、それぞれの状態量の個数がv個であることを意味する。つまり、監視装置100は、状態量X11~Xuvを収集する。当該状態量X11~Xuvは、単位空間記憶部104に記憶される。
監視装置100は、状態量X11~Xuvの項目毎の平均値Mi及び標準偏差σi(基準データのばらつき度合い)を、式(5)および式(6)により求める。iは項目数(状態量の数、整数)である。ここではiは、1~uに設定され、状態量X1~Xuに対応する値を示す。ここで、標準偏差とは、状態量とその平均値との差を2乗したものの期待値の正平方根とする。
前述の平均値Mi及び標準偏差σiは、特徴を示す状態量である。監視装置100は、演算された平均値Mi及び標準偏差σiを用いて、状態量X11~Xuvを、下記の数式(7)によって、基準化された状態量x11~xuvに変換する。すなわち、異常監視装置10は、ガスタービンTの状態量Xijを、平均0、標準偏差1の確率変数xijに変換する。なお、下記の数式(7)において、jは1~vまでのいずれかの値(整数)をとる。これは、項目毎の状態量の個数がv個であることを意味する。
変量を平均0、分散1に標準化したデータで分析を行うため、監視装置100は、状態量X11~Xuvの相関関係を特定する。すなわち、監視装置100は、変量の間の関連性を示す共分散行列(相関行列)R、及び共分散行列(相関行列)の逆行列R-1を、下記の数式(8)で定義付ける。なお、下記の数式(8)において、kは項目数(状態量の数)である。つまりkはuと等しい。また、i及びpは、各状態量での値を示し、ここでは1~uの値をとる。
監視装置100は、このような演算処理の後で、特徴を示す状態量であるマハラノビス距離Dを、下記の数式(9)に基づいて求める。なお、数式(9)において、jは1~vまでのいずれかの値(整数)をとる。これは、項目毎の状態量の個数がv個であることを意味する。また、kは項目数(状態量の数)である。つまりkはuと等しい。また、a11~akkは、上述した数式(8)に示す共分散行列Rの逆行列R-1の係数である。
マハラノビス距離Dは基準データである。単位空間のマハラノビス距離Dの平均値は1となる。ガスタービンTの状態量が正常な状態では、マハラノビス距離Dは概ね3以下に収まる。しかし、ガスタービンTの状態量が異常な状態では、マハラノビス距離Dの値は概ね3より大きくなる。このように、マハラノビス距離Dは、ガスタービンTの状態量の異常の程度(単位空間からの離れ度合い)に応じて、値が大きくなるという性質を有する。
《ガスタービンの監視方法》
監視装置100によるガスタービンの監視方法について説明する。図3は、第1の実施形態に係る監視装置の動作を示すフローチャートである。
監視装置100は、ガスタービンTの始動期間の間、ガスタービンTの状態量を収集して単位空間記憶部104に状態量の組み合わせを蓄積する。つまり、監視装置100は、取得部101が取得したガスタービンの指令値および補正部103が生成した補正計測値を、関連付けて単位空間記憶部104に記録する。監視装置100は、ガスタービンTの始動期間の経過後、所定の監視タイミング(例えば、1時間おきのタイミング)で、以下に示す監視動作を実行する。監視タイミングは、ガスタービンTの運転開始時点から所定の始動期間が経過した後の時点である始動後時点の一例である。
監視装置100によるガスタービンの監視方法について説明する。図3は、第1の実施形態に係る監視装置の動作を示すフローチャートである。
監視装置100は、ガスタービンTの始動期間の間、ガスタービンTの状態量を収集して単位空間記憶部104に状態量の組み合わせを蓄積する。つまり、監視装置100は、取得部101が取得したガスタービンの指令値および補正部103が生成した補正計測値を、関連付けて単位空間記憶部104に記録する。監視装置100は、ガスタービンTの始動期間の経過後、所定の監視タイミング(例えば、1時間おきのタイミング)で、以下に示す監視動作を実行する。監視タイミングは、ガスタービンTの運転開始時点から所定の始動期間が経過した後の時点である始動後時点の一例である。
監視装置100が監視を開始すると、取得部101は、ガスタービンTに設けられたセンサが取得したセンサ値、およびガスタービンTの指令値を取得する(ステップS1)。次に、特性値算出部102は、取得部101が取得したセンサ値に基づいて、ガスタービンTの特性を示す特性値を算出する(ステップS2)。次に、補正部103は、センサ値および特性値をガスタービンTの熱平衡計算に基づいて補正することで、補正計測値を得る(ステップS3)。
次に、距離算出部105は、ステップS1で取得したセンサ値および指令値、ステップS2で算出した特性値、ならびにステップS3で得られた補正計測値を諸元として、単位空間記憶部104が記憶する単位空間に基づいて、マハラノビス距離を算出する(ステップS4)。次に、異常判定部106は、算出されたマハラノビス距離が所定の閾値以上であるか否かを判定する(ステップS5)。
マハラノビス距離が閾値未満である場合(ステップS5:NO)、異常判定部106は、ガスタービンTに異常が生じていないと判定して監視処理を終了し、次回の監視タイミングを待機する。
他方、マハラノビス距離が閾値以上である場合(ステップS5:YES)、異常判定部106は、ガスタービンTに異常が生じていると判定する。
他方、マハラノビス距離が閾値以上である場合(ステップS5:YES)、異常判定部106は、ガスタービンTに異常が生じていると判定する。
異常判定部106がガスタービンTに異常が生じていると判定すると、SN比算出部107は、ステップS1で取得した指令値およびステップS3で得られた補正計測値のそれぞれについて、タグチメソッドに係るSN比を算出する(ステップS6)。尤度算出部108は、算出されたSN比に基づいてガスタービンTに発生し得る複数の事象それぞれの発生の尤度を算出する(ステップS7)。
次に、推定部110は、尤度算出部108が算出した各事象の尤度を要素とするベクトルと、テーブル記憶部109が記憶するテーブルの値を要素とする行列との乗算を行うことで、異常の発生要因の尤度を要素とするベクトルを得る(ステップS8)。次に、推定部110は、各発生要因を、得られたベクトルが表す尤度の降順にソートする(ステップS9)。そして、出力部111は、推定部110が推定した発生要因を、ソートされた順に出力する(ステップS10)。例えば、出力部111は、最も尤度が高い発生要因をディスプレイに表示させ、利用者の操作により、次の発生要因の表示指令を受け付けた場合に、次に尤度が高い発生要因をディスプレイに表示させる。また例えば、出力部111は、発生要因のリストを、尤度の降順にシートに印刷する。
《作用・効果》
このように、第1の実施形態によれば、監視装置100は、ガスタービンTに生じ得る複数の事象それぞれの発生の尤度を算出し、事象と異常の発生要因との関係を示すテーブルと当該尤度とに基づいて、異常の発生要因を推定する。これにより、監視装置100は、観測された事象に基づいて容易に異常の発生要因を出力することができる。
また、第1の実施形態に係る監視装置100は、各事象の発生の尤度を要素とする1行M列のベクトルと、テーブルの値を要素とするM行N列の行列との乗算を行うことで、異常の発生要因の尤度を要素とするN行1列のベクトルを得る。これにより、監視装置100は、簡易な計算により、異常の発生要因ごとの尤度を容易に特定することができる。なお、他の実施形態ではこれに限られない。例えば、他の実施形態に係る監視装置100は、各事象の発生の尤度を要素とする1行M列のベクトルと、テーブルの値を要素とするM行N列の行列の各行ベクトルとのコサイン類似度を算出することにより、異常の発生要因の尤度を要素とするN行1列のベクトルを得てもよい。なお、コサイン類似度は、ベクトルの内積(各事象の発生の尤度と当該事象の発生回数との加重和)を各ベクトルのノルムの積で除算した値である。例えば、他の実施形態に係る監視装置100は、行列計算によらず、異常の発生要因ごとに、各事象の発生の尤度と当該事象の発生回数との加重和を求めてもよい。
このように、第1の実施形態によれば、監視装置100は、ガスタービンTに生じ得る複数の事象それぞれの発生の尤度を算出し、事象と異常の発生要因との関係を示すテーブルと当該尤度とに基づいて、異常の発生要因を推定する。これにより、監視装置100は、観測された事象に基づいて容易に異常の発生要因を出力することができる。
また、第1の実施形態に係る監視装置100は、各事象の発生の尤度を要素とする1行M列のベクトルと、テーブルの値を要素とするM行N列の行列との乗算を行うことで、異常の発生要因の尤度を要素とするN行1列のベクトルを得る。これにより、監視装置100は、簡易な計算により、異常の発生要因ごとの尤度を容易に特定することができる。なお、他の実施形態ではこれに限られない。例えば、他の実施形態に係る監視装置100は、各事象の発生の尤度を要素とする1行M列のベクトルと、テーブルの値を要素とするM行N列の行列の各行ベクトルとのコサイン類似度を算出することにより、異常の発生要因の尤度を要素とするN行1列のベクトルを得てもよい。なお、コサイン類似度は、ベクトルの内積(各事象の発生の尤度と当該事象の発生回数との加重和)を各ベクトルのノルムの積で除算した値である。例えば、他の実施形態に係る監視装置100は、行列計算によらず、異常の発生要因ごとに、各事象の発生の尤度と当該事象の発生回数との加重和を求めてもよい。
また、第1の実施形態に係る監視装置100は、ガスタービンTに入力される空気および燃料の温度および流量、ならびにガスタービンTから出力される排気の温度および流量を含む計測値を、熱平衡計算により補正して、マハラノビス距離を算出する。これにより、監視装置100は、ガスタービンTに設けられるセンサの計測誤差を低減してマハラノビス距離を算出することができる。なお、他の実施形態では、これに限られない。例えば、他の実施形態に係る監視装置100は、計測値を補正せずにマハラノビス距離を算出してもよい。また、他の実施形態に係る監視装置100はマハラノビス距離に基づく異常判定手法以外の手法に基づいてガスタービンTの異常の有無を判定してもよい。
また、第1の実施形態によれば、監視装置100は、ガスタービンTの運転開始時点から所定の始動期間が経過した後の時点である始動後時点に取得された計測値を諸元とし、始動期間中に取得された計測値を単位空間として、マハラノビス距離を算出する。つまり、監視装置100は、監視対象であるガスタービンTそのものの正常な運転状態を単位空間としてマハラノビス距離を算出する。従来は、マハラノビス距離の単位空間として、始動期間を過ぎて劣化が生じているが異常が発生していない運転状態、および他のガスタービンTの運転状態をも含む単位空間に基づいてマハラノビス距離を算出していた。他方、第1の実施形態によれば、監視対象であるガスタービンTそのものの運転状態であって、劣化が生じる以前の運転状態のみを含む単位空間に基づいて、マハラノビス距離を算出する。これにより、監視装置100は、監視対象のガスタービンTについて精度よく異常の検知を行うことができる。
また、第1の実施形態に係る始動期間は、新品状態の運転開始時点または定期点検の完了後の運転開始時点のうち直近の時点を始点とする期間である。つまり、定期点検のたびにマハラノビス距離の単位空間が更新される。これにより、ガスタービンTの定期点検後の正常な運転状態(初回は新品状態における運転状態)を基準として、ガスタービンTの異常の検知を行うことができる。新品状態、すなわち無劣化のガスタービンTの運転状態を単位空間とする場合、定期点検後のガスタービンTの運転状態は正常状態であっても、マハラノビス距離が相対的に大きくなる。これは、ガスタービンTの使用による劣化を定期点検によって完全に修復することが困難なためである。したがって、ガスタービンTの定期点検後の正常な運転状態を基準として、ガスタービンTの異常の検知を行うことで、精度よく運転状態を判定することができる。
また、第1の実施形態によれば、監視装置100は、計測値、補正計測値、および指令値を諸元としてマハラノビス距離を算出する。これにより、ガスタービンTの劣化等により入熱量と出熱量の平衡が崩れる場合にも、適切にガスタービンTの状態を評価することができる。なお、他の実施形態の構成は、これに限られない。例えば、他の実施形態に係る監視装置100は、計測値を諸元に含めずに、補正計測値を諸元としてマハラノビス距離を算出してもよい。また、他の実施形態に係る監視装置100は、指令値を諸元に含めずにマハラノビス距離を算出してもよい。
〈第2の実施形態〉
以下、図面を参照しながら第2の実施形態について詳しく説明する。図4は、第2の実施形態に係る監視装置の構成を示す概略ブロック図である。
第2の実施形態に係る監視装置100は、第1の実施形態の構成に加えて、事象抽出部112を備え、第1の実施形態と推定部110の動作が異なる。事象抽出部112は、ガスタービンTに生じ得る複数の事象から、尤度算出部108が算出した尤度が所定の閾値以上であるものを抽出する。推定部110は、テーブル記憶部109が記憶するテーブルにおいて、事象抽出部112が抽出した事象のうち、発生回数が1以上のものの数を計数する。推定部110は、複数の発生要因のうち計数された発生回数の数が相対的に多いものが、ガスタービンTの異常の発生要因であると推定する。具体的には、推定部110は、発生回数の数の降順に各発生要因をソートして、出力部111に出力する。
上記構成を有することで、監視装置100は、第1の実施形態よりさらに簡易な構成で、観測された事象に基づいて容易に異常の発生要因を出力することができる。
以下、図面を参照しながら第2の実施形態について詳しく説明する。図4は、第2の実施形態に係る監視装置の構成を示す概略ブロック図である。
第2の実施形態に係る監視装置100は、第1の実施形態の構成に加えて、事象抽出部112を備え、第1の実施形態と推定部110の動作が異なる。事象抽出部112は、ガスタービンTに生じ得る複数の事象から、尤度算出部108が算出した尤度が所定の閾値以上であるものを抽出する。推定部110は、テーブル記憶部109が記憶するテーブルにおいて、事象抽出部112が抽出した事象のうち、発生回数が1以上のものの数を計数する。推定部110は、複数の発生要因のうち計数された発生回数の数が相対的に多いものが、ガスタービンTの異常の発生要因であると推定する。具体的には、推定部110は、発生回数の数の降順に各発生要因をソートして、出力部111に出力する。
上記構成を有することで、監視装置100は、第1の実施形態よりさらに簡易な構成で、観測された事象に基づいて容易に異常の発生要因を出力することができる。
なお、第2の実施形態に係るテーブル記憶部109は、第1の実施形態と同様に、各事象および各発生要因について、当該発生要因による異常が生じたときに、当該事象が確認された回数を記憶するが、これに限られない。例えば、他の実施形態に係るテーブル記憶部109は、各事象および各発生要因について、当該発生要因による異常が生じたときに、当該事象が確認されたことがあるか否かを示すブール値を関連付けて記憶してもよい。この場合、推定部110は、テーブル記憶部109が記憶するテーブルにおいて、事象抽出部112が抽出した事象のうち、ブール値がTrueを示すものの数を計数する。推定部110は、複数の発生要因のうち計数されたブール値の数が相対的に多いものが、ガスタービンTの異常の発生要因であると推定する。
〈第3の実施形態〉
以下、図2を参照しながら第3の実施形態について詳しく説明する。
第3の実施形態に係る監視装置100は、第1の実施形態とテーブル記憶部109が記憶する情報が異なる。第3の実施形態に係るテーブル記憶部109は、各事象および各発生要因について、当該発生要因による異常が生じたときに当該事象が確認される確率を関連付けて記憶する。当該テーブルは、例えば、ガスタービンTの運用時に保守員によって生成されたFTAのデータ(FT)に基づいて生成することができる。FTは、トップ事象を最上位事象(ルート)とし、上位事象の要因となる下位事象をノードとする木構造である。各ノードには、当該ノードが示す下位事象によって当該ノードの直上のノードに係る上位事象が生じる確率が関連付けられる。当該FTのうち、各事象を示すノードに関連付けられた確率をテーブルに格納することで、テーブル記憶部109のテーブルが生成される。
以下、図2を参照しながら第3の実施形態について詳しく説明する。
第3の実施形態に係る監視装置100は、第1の実施形態とテーブル記憶部109が記憶する情報が異なる。第3の実施形態に係るテーブル記憶部109は、各事象および各発生要因について、当該発生要因による異常が生じたときに当該事象が確認される確率を関連付けて記憶する。当該テーブルは、例えば、ガスタービンTの運用時に保守員によって生成されたFTAのデータ(FT)に基づいて生成することができる。FTは、トップ事象を最上位事象(ルート)とし、上位事象の要因となる下位事象をノードとする木構造である。各ノードには、当該ノードが示す下位事象によって当該ノードの直上のノードに係る上位事象が生じる確率が関連付けられる。当該FTのうち、各事象を示すノードに関連付けられた確率をテーブルに格納することで、テーブル記憶部109のテーブルが生成される。
これにより、推定部110は、尤度算出部108が算出した各事象の発生の尤度と、その事象の発生確率との加重和を算出し、当該加重和に基づいて発生要因を推定する。具体的には、推定部110は、尤度と発生確率と加重和の降順に各発生要因をソートして、出力部111に出力する。つまり、推定部110は、事象の事前確率(テーブルに格納された確率)と、事象の観測結果(事象の発生の尤度)とに基づいてベイズ更新を行い、事後確率として発生要因の発生確率を求めるものである。
このように、本実施形態によれば、第1の実施形態または第2の実施形態と比較してさらに精度よく、観測された事象に基づいて容易に異常の発生要因を出力することができる。
このように、本実施形態によれば、第1の実施形態または第2の実施形態と比較してさらに精度よく、観測された事象に基づいて容易に異常の発生要因を出力することができる。
なお、第3の実施形態に係る監視装置100は、各事象および各発生要因について、FTに基づいて決定された確率を関連付けて記憶するが、これに限られない。例えば、他の実施形態に係るテーブルに記憶される確率は、過去のガスタービンTの運用において算出された各事象の発生の尤度の和であってもよい。
また、第3の実施形態に係る監視装置100は、各事象の発生の尤度と確率の加重和を発生要因の尤度として用いるが、これに限られない。例えば、他の実施形態に係る監視装置100は、各事象の発生の尤度を要素とする1行M列のベクトルと、テーブルの値を要素とするM行N列の行列の各行ベクトルとのコサイン類似度を算出することにより、異常の発生要因の尤度を要素とするN行1列のベクトルを得てもよい。
以上、図面を参照して一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、様々な設計変更等をすることが可能である。
例えば、上述した実施形態に係る対象装置は、ガスタービンTであるが、他の実施形態では、これに限られない。例えば、他の実施形態に係る対象装置は、蒸気タービン、エンジン、または熱的な収支がある他の装置であってもよい。
例えば、上述した実施形態に係る対象装置は、ガスタービンTであるが、他の実施形態では、これに限られない。例えば、他の実施形態に係る対象装置は、蒸気タービン、エンジン、または熱的な収支がある他の装置であってもよい。
また、上述した実施形態に係る監視装置100の尤度算出部108は、マハラノビス距離に係るSN比に基づいて各事象の発生の尤度を求めるが、これに限られない。例えば、他の実施形態に係る尤度算出部108は、取得部101が取得した計測値を入力とするベイジアンネットワークを用いて各事象の発生の尤度を算出してもよい。
図5は、少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
コンピュータ900は、CPU901、主記憶装置902、補助記憶装置903、インタフェース904を備える。
上述の監視装置100は、コンピュータ900を備える。そして、上述した各処理部の動作は、プログラムの形式で補助記憶装置903に記憶されている。CPU901は、プログラムを補助記憶装置903から読み出して主記憶装置902に展開し、当該プログラムに従って上記処理を実行する。また、CPU901は、プログラムに従って、上述した各記憶部に対応する記憶領域を主記憶装置902に確保する。
コンピュータ900は、CPU901、主記憶装置902、補助記憶装置903、インタフェース904を備える。
上述の監視装置100は、コンピュータ900を備える。そして、上述した各処理部の動作は、プログラムの形式で補助記憶装置903に記憶されている。CPU901は、プログラムを補助記憶装置903から読み出して主記憶装置902に展開し、当該プログラムに従って上記処理を実行する。また、CPU901は、プログラムに従って、上述した各記憶部に対応する記憶領域を主記憶装置902に確保する。
なお、少なくとも1つの実施形態において、補助記憶装置903は、一時的でない有形の媒体の一例である。一時的でない有形の媒体の他の例としては、インタフェース904を介して接続される磁気ディスク、光磁気ディスク、光ディスク、半導体メモリ等が挙げられる。また、このプログラムが通信回線によってコンピュータ900に配信される場合、配信を受けたコンピュータ900が当該プログラムを主記憶装置902に展開し、上記処理を実行してもよい。
また、当該プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、当該プログラムは、前述した機能を補助記憶装置903に既に記憶されている他のプログラムとの組み合わせで実現するもの、いわゆる差分ファイル(差分プログラム)であってもよい。
上記態様のうち少なくとも1つの態様によれば、監視装置は、対象装置の計測値に基づいて当該対象装置に生じ得る複数の事象それぞれの発生の尤度を算出し、事象と異常の発生要因とを関連付けたテーブルを用いて対象装置に生じた異常の発生要因を推定する。これにより、監視装置は、監視員の経験によらずに異常の
発生要因を精度よく推定することができる。
発生要因を精度よく推定することができる。
100 監視装置
101 取得部
102 特性値算出部
103 補正部
104 単位空間記憶部
105 距離算出部
106 異常判定部
107 SN比算出部
108 尤度算出部
109 テーブル記憶部
110 推定部
111 出力部
112 事象抽出部
T ガスタービン
101 取得部
102 特性値算出部
103 補正部
104 単位空間記憶部
105 距離算出部
106 異常判定部
107 SN比算出部
108 尤度算出部
109 テーブル記憶部
110 推定部
111 出力部
112 事象抽出部
T ガスタービン
Claims (12)
- 対象装置の計測値を取得する取得部と、
前記取得部が取得した前記計測値に基づいて対象装置に生じ得る複数の事象それぞれの発生の尤度を算出する尤度算出部と、
前記複数の事象と、前記対象装置の異常の発生要因とを関連付けたテーブルを記憶するテーブル記憶部と、
前記尤度と前記テーブルとに基づいて前記発生要因を推定する推定部と
を備える監視装置。 - 前記テーブルは、前記発生要因と、前記事象と、当該発生要因に係る異常が生じたときに当該事象が確認された回数とを関連付けたものであって、
前記推定部は、前記発生要因毎に、前記尤度と前記回数との加重和を算出し、当該加重和に基づいて前記発生要因を推定する
請求項1に記載の監視装置。 - 前記テーブルは、前記発生要因と、前記事象と、当該発生要因に係る異常が生じたときに当該事象が確認されたか否かを示す値とを関連付けたものであって、
前記推定部は、前記尤度が所定の閾値以上の前記事象であって、かつ前記テーブルにおいて発生したことが示されている前記事象の数に基づいて、前記発生要因を推定する
請求項1に記載の監視装置。 - 前記テーブルは、前記発生要因と、前記事象と、当該発生要因に係る異常が生じたときに当該事象が生じる確率とを関連付けたものであって、
前記推定部は、前記発生要因毎に、前記尤度と前記確率との加重和を算出し、当該加重和に基づいて前記発生要因を推定する
請求項1に記載の監視装置。 - 前記取得部が取得した前記計測値のSN比を算出するSN比算出部をさらに備え、
前記尤度算出部は、前記SN比算出部が算出した前記SN比に基づいて前記複数の事象それぞれの尤度を算出する
請求項1から請求項4の何れか1項に記載の監視装置。 - 前記計測値に基づいてマハラノビス距離を算出する距離算出部をさらに備え、
前記尤度算出部は、前記マハラノビス距離が所定値以上である場合に、前記複数の事象それぞれの尤度を算出する
請求項1から請求項5の何れか1項に記載の監視装置。 - 前記計測値に基づく熱平衡計算により、前記計測値を補正した補正計測値を得る補正部をさらに備え、
前記計測値は、少なくとも前記対象装置に入力される入力流体の温度および流量、ならびに前記対象装置から出力される出力流体の温度および流量を含み、
前記距離算出部は前記補正計測値を諸元として前記マハラノビス距離を算出する
請求項6に記載の監視装置。 - 対象装置の計測値を取得することと、
取得した前記計測値に基づいて対象装置に生じ得る複数の事象それぞれの発生の尤度を算出することと、
前記複数の事象と、前記対象装置の異常の発生要因とを関連付けたテーブルを記憶するテーブル記憶部と、前記尤度に基づいて前記発生要因を推定することと
を含む対象装置の監視方法。 - 前記テーブルは、前記発生要因と、前記事象と、当該発生要因に係る異常が生じたときに当該事象が確認された回数とを関連付けたものであって、
前記発生要因毎に、前記尤度と前記回数との加重和を算出し、当該加重和に基づいて前記発生要因を推定する
請求項8に記載の対象装置の監視方法。 - 前記テーブルは、前記発生要因と、前記事象と、当該発生要因に係る異常が生じたときに当該事象が確認されたか否かを示す値とを関連付けたものであって、
前記尤度が所定の閾値以上の前記事象であって、かつ前記テーブルにおいて発生したことが示されている前記事象の数に基づいて、前記発生要因を推定する
請求項8に記載の対象装置の監視方法。 - 前記テーブルは、前記発生要因と、前記事象と、当該発生要因に係る異常が生じたときに当該事象が生じる確率とを関連付けたものであって、
前記発生要因毎に、前記尤度と前記確率との加重和を算出し、当該加重和に基づいて前記発生要因を推定する
請求項8に記載の対象装置の監視方法。 - コンピュータに、
対象装置の計測値を取得することと、
取得した前記計測値に基づいて対象装置に生じ得る複数の事象それぞれの発生の尤度を算出することと、
前記複数の事象と、前記対象装置の異常の発生要因とを関連付けたテーブルを記憶するテーブル記憶部と、前記尤度に基づいて前記発生要因を推定することと
を実行させるためのプログラム。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2018013672A MX2018013672A (es) | 2016-06-01 | 2017-05-31 | Dispositivo de monitoreo, metodo para monitorear un dispositivo de destino y programa. |
KR1020187032722A KR102202159B1 (ko) | 2016-06-01 | 2017-05-31 | 감시 장치, 대상 장치의 감시 방법 및 프로그램 |
DE112017002780.2T DE112017002780T5 (de) | 2016-06-01 | 2017-05-31 | Überwachungsvorrichtung, Verfahren zur Überwachung von Zielvorrichtung und Programm |
US16/099,577 US11442443B2 (en) | 2016-06-01 | 2017-05-31 | Monitoring device, method for monitoring target device, and program |
CN201780028983.1A CN109154810B (zh) | 2016-06-01 | 2017-05-31 | 监视装置、对象装置的监视方法、以及存储介质 |
PH12018502379A PH12018502379A1 (en) | 2016-06-01 | 2018-11-12 | Monitoring device, method for monitoring target device, and program |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016110336A JP6432890B2 (ja) | 2016-06-01 | 2016-06-01 | 監視装置、対象装置の監視方法、およびプログラム |
JP2016-110336 | 2016-06-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017209167A1 true WO2017209167A1 (ja) | 2017-12-07 |
Family
ID=60478560
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/020200 WO2017209167A1 (ja) | 2016-06-01 | 2017-05-31 | 監視装置、対象装置の監視方法、およびプログラム |
Country Status (8)
Country | Link |
---|---|
US (1) | US11442443B2 (ja) |
JP (1) | JP6432890B2 (ja) |
KR (1) | KR102202159B1 (ja) |
CN (1) | CN109154810B (ja) |
DE (1) | DE112017002780T5 (ja) |
MX (1) | MX2018013672A (ja) |
PH (1) | PH12018502379A1 (ja) |
WO (1) | WO2017209167A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6821085B1 (ja) * | 2019-09-11 | 2021-01-27 | 日揮グローバル株式会社 | プラントの保全管理方法及び保全管理システム |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019183674A (ja) * | 2018-04-03 | 2019-10-24 | いすゞ自動車株式会社 | 内燃機関の診断装置 |
JP7132021B2 (ja) * | 2018-08-07 | 2022-09-06 | 三菱重工業株式会社 | 通知装置、通知方法及びプログラム |
JP6684038B1 (ja) * | 2019-04-03 | 2020-04-22 | 株式会社日立パワーソリューションズ | 予兆保全設備、予兆保全方法及び予兆保全プログラム |
CN115668085A (zh) | 2020-06-12 | 2023-01-31 | 三菱重工业株式会社 | 成套设备监视装置、成套设备监视方法及程序 |
JP7449803B2 (ja) * | 2020-07-22 | 2024-03-14 | 三菱重工業株式会社 | 異常要因推定方法、異常要因推定装置、及びプログラム |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0713617A (ja) * | 1993-06-29 | 1995-01-17 | Ishikawajima Harima Heavy Ind Co Ltd | 不具合事象の原因推定方法 |
JPH11119823A (ja) * | 1997-10-21 | 1999-04-30 | Yaskawa Electric Corp | 故障診断装置 |
JP2005293169A (ja) * | 2004-03-31 | 2005-10-20 | Toshiba Corp | プラント運転状態計算装置、プラントシミュレーション計算装置、プラント運用最適化システムと方法、プログラム |
JP2011090382A (ja) * | 2009-10-20 | 2011-05-06 | Mitsubishi Heavy Ind Ltd | 監視システム |
JP2016006594A (ja) * | 2014-06-20 | 2016-01-14 | 三菱日立パワーシステムズ株式会社 | プラント監視装置、プラント監視プログラム及びプラント監視方法 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3110060B2 (ja) | 1991-03-04 | 2000-11-20 | バブコック日立株式会社 | 異常事故原因診断方法 |
JPH0572004A (ja) * | 1991-09-10 | 1993-03-23 | Mitsubishi Heavy Ind Ltd | プラントの異常診断装置 |
JP2003310564A (ja) * | 2002-04-22 | 2003-11-05 | Fuji Xerox Co Ltd | 脳波自動解析装置および方法 |
GB0216858D0 (en) * | 2002-07-19 | 2002-08-28 | Bae Systems Plc | Fault diagnosis system |
US20050096759A1 (en) * | 2003-10-31 | 2005-05-05 | General Electric Company | Distributed power generation plant automated event assessment and mitigation plan determination process |
JP4396286B2 (ja) * | 2004-01-21 | 2010-01-13 | 三菱電機株式会社 | 機器診断装置および機器監視システム |
JP4032045B2 (ja) * | 2004-08-13 | 2008-01-16 | 新キャタピラー三菱株式会社 | データ処理方法及びデータ処理装置、並びに診断方法及び診断装置 |
JP4480019B2 (ja) | 2005-04-28 | 2010-06-16 | 財団法人石油産業活性化センター | 製油所監視システム |
JP5031088B2 (ja) * | 2008-02-27 | 2012-09-19 | 三菱重工業株式会社 | プラント状態監視方法、プラント状態監視用コンピュータプログラム、及びプラント状態監視装置 |
FR2939924B1 (fr) * | 2008-12-15 | 2012-10-12 | Snecma | Identification de defaillances dans un moteur d'aeronef |
JP4881402B2 (ja) | 2009-03-25 | 2012-02-22 | 株式会社東芝 | リスク表示機能を有する工程管理システムの作動方法 |
US9753455B2 (en) * | 2009-06-22 | 2017-09-05 | Johnson Controls Technology Company | Building management system with fault analysis |
US8996334B2 (en) * | 2011-03-02 | 2015-03-31 | General Electric Company | Method and system for analysis of turbomachinery |
US10333613B2 (en) * | 2014-06-26 | 2019-06-25 | Bombardier Inc. | Methods and apparatus for assisting in the maintenance of aircraft and other mobile platforms |
JP6079761B2 (ja) | 2014-12-04 | 2017-02-15 | トヨタ自動車株式会社 | 運転支援装置、運転支援方法および運転支援プログラム |
JP6770802B2 (ja) * | 2015-12-28 | 2020-10-21 | 川崎重工業株式会社 | プラント異常監視方法およびプラント異常監視用のコンピュータプログラム |
-
2016
- 2016-06-01 JP JP2016110336A patent/JP6432890B2/ja active Active
-
2017
- 2017-05-31 MX MX2018013672A patent/MX2018013672A/es unknown
- 2017-05-31 US US16/099,577 patent/US11442443B2/en active Active
- 2017-05-31 CN CN201780028983.1A patent/CN109154810B/zh active Active
- 2017-05-31 DE DE112017002780.2T patent/DE112017002780T5/de active Pending
- 2017-05-31 KR KR1020187032722A patent/KR102202159B1/ko active IP Right Grant
- 2017-05-31 WO PCT/JP2017/020200 patent/WO2017209167A1/ja active Application Filing
-
2018
- 2018-11-12 PH PH12018502379A patent/PH12018502379A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0713617A (ja) * | 1993-06-29 | 1995-01-17 | Ishikawajima Harima Heavy Ind Co Ltd | 不具合事象の原因推定方法 |
JPH11119823A (ja) * | 1997-10-21 | 1999-04-30 | Yaskawa Electric Corp | 故障診断装置 |
JP2005293169A (ja) * | 2004-03-31 | 2005-10-20 | Toshiba Corp | プラント運転状態計算装置、プラントシミュレーション計算装置、プラント運用最適化システムと方法、プログラム |
JP2011090382A (ja) * | 2009-10-20 | 2011-05-06 | Mitsubishi Heavy Ind Ltd | 監視システム |
JP2016006594A (ja) * | 2014-06-20 | 2016-01-14 | 三菱日立パワーシステムズ株式会社 | プラント監視装置、プラント監視プログラム及びプラント監視方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6821085B1 (ja) * | 2019-09-11 | 2021-01-27 | 日揮グローバル株式会社 | プラントの保全管理方法及び保全管理システム |
WO2021048956A1 (ja) * | 2019-09-11 | 2021-03-18 | 日揮グローバル株式会社 | プラントの保全管理方法及び保全管理システム |
GB2594219A (en) * | 2019-09-11 | 2021-10-20 | Jgc Corp | Plant maintenance management method and maintenance management system |
Also Published As
Publication number | Publication date |
---|---|
MX2018013672A (es) | 2019-04-25 |
JP2017215863A (ja) | 2017-12-07 |
US11442443B2 (en) | 2022-09-13 |
KR20180137513A (ko) | 2018-12-27 |
CN109154810B (zh) | 2021-04-16 |
US20190187676A1 (en) | 2019-06-20 |
DE112017002780T5 (de) | 2019-02-14 |
CN109154810A (zh) | 2019-01-04 |
PH12018502379A1 (en) | 2019-04-08 |
JP6432890B2 (ja) | 2018-12-05 |
KR102202159B1 (ko) | 2021-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017209179A1 (ja) | 監視装置、対象装置の監視方法、およびプログラム | |
JP6432890B2 (ja) | 監視装置、対象装置の監視方法、およびプログラム | |
JP4361582B2 (ja) | ガスタービンの性能診断方法及び性能診断システム | |
JP4513771B2 (ja) | 一軸型コンバインドサイクルプラントの性能監視方法及びシステム | |
JP2011090382A (ja) | 監視システム | |
JP6143667B2 (ja) | 予測システム、監視システム、運転支援システム、ガスタービン設備及び予測方法 | |
JP6486566B2 (ja) | リスク評価装置、リスク評価方法、及び、リスク評価プログラム | |
JP6862130B2 (ja) | 異常検知装置、異常検知方法、およびプログラム | |
WO2019124367A1 (ja) | 単位空間生成装置、プラント診断システム、単位空間生成方法、プラント診断方法、及びプログラム | |
JP6302755B2 (ja) | プラント診断用データ作成システム | |
CN117869285A (zh) | 空压机能耗监测方法、装置、设备及存储介质 | |
JP6554162B2 (ja) | 発電プラント性能評価方法及び発電プラント性能評価プログラム | |
Herrera et al. | A comparative analysis of turbine rotor inlet temperature models | |
JP7450238B2 (ja) | エンジンの異常診断方法、エンジンの異常診断プログラム、及びエンジンの異常診断システム | |
JP7387325B2 (ja) | プラント監視装置、プラント監視方法、及びプログラム | |
JP2018169763A (ja) | 情報処理装置、情報処理方法およびプログラム | |
JP6454826B1 (ja) | リスク評価装置、リスク評価方法、及び、リスク評価プログラム | |
JP7487412B2 (ja) | プラント監視方法、プラント監視装置及びプラント監視プログラム | |
JP5022018B2 (ja) | ガスタービンの監視装置 | |
JP6440525B2 (ja) | 設備性能診断装置および設備性能診断方法 | |
WO2021251200A1 (ja) | プラント監視装置、プラント監視方法およびプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 20187032722 Country of ref document: KR Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17806718 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17806718 Country of ref document: EP Kind code of ref document: A1 |