WO2017209135A1 - 内燃機関の摺動構造、アイドリング運転の制御方法、内燃機関の運転制御方法 - Google Patents

内燃機関の摺動構造、アイドリング運転の制御方法、内燃機関の運転制御方法 Download PDF

Info

Publication number
WO2017209135A1
WO2017209135A1 PCT/JP2017/020128 JP2017020128W WO2017209135A1 WO 2017209135 A1 WO2017209135 A1 WO 2017209135A1 JP 2017020128 W JP2017020128 W JP 2017020128W WO 2017209135 A1 WO2017209135 A1 WO 2017209135A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
stroke
piston
friction coefficient
wall surface
Prior art date
Application number
PCT/JP2017/020128
Other languages
English (en)
French (fr)
Inventor
満 浦辺
泰一 村田
和彦 菅野
寿太 多勢
一巳 諸井
Original Assignee
日本ピストンリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ピストンリング株式会社 filed Critical 日本ピストンリング株式会社
Priority to CN201780033714.4A priority Critical patent/CN109196209B/zh
Priority to US16/305,657 priority patent/US11111875B2/en
Priority to JP2018520930A priority patent/JP6818021B2/ja
Priority to KR1020187038237A priority patent/KR102047100B1/ko
Priority to KR1020187031290A priority patent/KR101935936B1/ko
Priority to EP17806688.2A priority patent/EP3460224B1/en
Publication of WO2017209135A1 publication Critical patent/WO2017209135A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/18Other cylinders
    • F02F1/20Other cylinders characterised by constructional features providing for lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/06Lubricating systems characterised by the provision therein of crankshafts or connecting rods with lubricant passageways, e.g. bores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/004Cylinder liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F5/00Piston rings, e.g. associated with piston crown
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J10/00Engine or like cylinders; Features of hollow, e.g. cylindrical, bodies in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J10/00Engine or like cylinders; Features of hollow, e.g. cylindrical, bodies in general
    • F16J10/02Cylinders designed to receive moving pistons or plungers
    • F16J10/04Running faces; Liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/06Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction using separate springs or elastic elements expanding the rings; Springs therefor ; Expansion by wedging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/12Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/12Details
    • F16J9/20Rings with special cross-section; Oil-scraping rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/26Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction characterised by the use of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine

Definitions

  • the present invention relates to a sliding structure of an internal combustion engine having a cylinder and a piston.
  • the present invention intends to further improve fuel consumption and reduce oil consumption with respect to the dimple liner.
  • the present invention for achieving the above object is a sliding structure of an internal combustion engine having a cylinder and a piston, wherein the cylinder is a lower surface of a ring groove of a lowest piston ring at the top dead center of the piston among inner wall surfaces.
  • a plurality of recesses are formed in a central region of the stroke that is all or part of the position from the position to the upper surface position of the ring groove of the uppermost piston ring at the bottom dead center of the piston, and the ring of the piston
  • the piston ring installed in the groove has an inclination that can contact the inner wall surface while being inclined in a direction away from the inner wall surface toward the outer side in the axial direction on both outer edges in the axial direction of the outer peripheral surface facing the inner wall surface.
  • a lubricating oil flows into a gap between the inner wall surface and the outer circumferential surface that are relatively moved through the inclined surface, and is configured to be fluidly lubricated.
  • the friction coefficient between the inner wall surface and the outer peripheral surface of the place where the piston ring passes at the highest speed in the stroke center region (hereinafter referred to as the center friction coefficient)
  • the center friction coefficient It is set to be smaller than the central friction coefficient when assuming a state in which the concave portion is not formed in the stroke center region, on the other hand, at any rotational speed that is equal to or higher than the rotational speed of idling operation of the internal combustion engine,
  • a friction coefficient (hereinafter referred to as an external friction coefficient) between the inner wall surface and the outer peripheral surface when the piston ring passes through any place in the outer region that is outside the stroke center region is in the outer region. It is a sliding structure of a cylinder and a piston, which is set to be smaller than the external friction coefficient when assuming a state in which a pluralit
  • the present invention for achieving the above object is a sliding structure of an internal combustion engine having a cylinder and a piston, wherein the cylinder is a lower surface of a ring groove of a lowest piston ring at the top dead center of the piston among inner wall surfaces.
  • a plurality of recesses are formed in a central region of the stroke that is all or part of the position from the position to the upper surface position of the ring groove of the uppermost piston ring at the bottom dead center of the piston, and the ring of the piston
  • the piston ring installed in the groove has an inclination that can contact the inner wall surface while being inclined in a direction away from the inner wall surface toward the outer side in the axial direction on both outer edges in the axial direction of the outer peripheral surface facing the inner wall surface.
  • a lubricating oil flows into a gap between the inner wall surface and the outer circumferential surface that are relatively moved through the inclined surface, and is configured to be fluidly lubricated.
  • the piston ring passes through the vicinity of the stroke center area adjacent to the boundary between the stroke center area and the outer area outside the stroke center area at any of the above rotation speeds. So that the friction coefficient of the piston ring passes through the vicinity of the outer region adjacent to the boundary (hereinafter referred to as the boundary outer friction coefficient). It is a sliding structure of a cylinder and a piston characterized by being set to.
  • the present invention relating to the sliding structure of the cylinder and the piston is such that the piston ring passes at a maximum speed in the stroke center region at any rotational speed that is equal to or higher than the rotational speed of idling operation of the internal combustion engine.
  • a friction coefficient between the inner wall surface and the outer peripheral surface of the place (hereinafter referred to as a center friction coefficient) is smaller than the center friction coefficient when it is assumed that the recess is not formed in the stroke center region.
  • the internal area when the piston ring passes through any location in the external region that is outside the stroke center region.
  • the coefficient of friction between the wall surface and the outer peripheral surface (hereinafter referred to as an external coefficient of friction) is based on the external coefficient of friction when assuming a state in which a plurality of recesses are formed in the external region. Characterized in that it is set to be smaller.
  • the present invention for achieving the above object is a sliding structure of an internal combustion engine having a cylinder and a piston, wherein the cylinder is a lower surface of a ring groove of a lowest piston ring at the top dead center of the piston among inner wall surfaces.
  • a stroke center region having a plurality of recesses is formed, and, of the inner wall surface, from the top dead center side edge of the reference stroke region, the stroke center region on the top dead center side
  • An upper smooth region that does not have the recess is formed all the way to the end edge, and the piston ring installed in the ring groove of the piston has both outer edges in the axial direction of the outer peripheral surface facing the inner wall surface.
  • An inclined surface that can come into contact with the inner wall surface while being inclined in a direction away from the inner wall surface is formed, and lubricating oil flows into a gap between the inner wall surface and the outer peripheral surface that move relative to each other via the inclined surface.
  • a friction coefficient between the outer peripheral surfaces (hereinafter referred to as a center friction coefficient) is set so as to be smaller than the center friction coefficient in the case where the recess is not formed in the stroke center region.
  • a friction coefficient between an inner wall surface and the outer peripheral surface (hereinafter referred to as an external friction coefficient) is set to be smaller than the external friction coefficient in a case where a plurality of concave portions are formed in the outer region.
  • This is a sliding structure of a cylinder and a piston.
  • the present invention relating to the sliding structure of the cylinder and the piston is characterized in that a stroke direction distance of the upper smooth region is set to 30% or more of a total distance of the reference stroke region.
  • the present invention relating to the sliding structure of the cylinder and the piston is that the center point in the stroke direction in the stroke center region is lower than the center point in the stroke direction in the reference stroke region. It is located in.
  • the present invention related to the sliding structure of the cylinder and the piston is characterized in that the top dead center in the center region of the stroke is defined as a fastest point where the highest piston ring passes through the inner wall surface at the highest speed.
  • the point-side edge is set to be equal to or less than the fastest point.
  • the present invention for achieving the above object is a sliding structure of an internal combustion engine having a cylinder and a piston, wherein the cylinder is a lower surface of a ring groove of a lowest piston ring at the top dead center of the piston among inner wall surfaces.
  • a stroke center region having a plurality of recesses is formed, and, of the inner wall surface, from the top dead center side edge of the reference stroke region, the stroke center region on the top dead center side
  • An upper smooth region that does not have the recess is formed all the way to the end edge, and the piston ring installed in the ring groove of the piston has both outer edges in the axial direction of the outer peripheral surface facing the inner wall surface.
  • the present invention relating to the sliding structure of the cylinder and the piston is characterized in that a stroke direction distance of the upper smooth region is set to 30% or more of a total distance of the reference stroke region.
  • the present invention relating to the sliding structure of the cylinder and the piston is that the center point in the stroke direction in the stroke center region is lower than the center point in the stroke direction in the reference stroke region. It is located in.
  • the present invention related to the sliding structure of the cylinder and the piston is characterized in that the top dead center in the center region of the stroke is defined as a fastest point where the highest piston ring passes through the inner wall surface at the highest speed.
  • the point-side edge is set to be equal to or less than the fastest point.
  • the present invention relating to the sliding structure of the cylinder and the piston is such that the piston ring passes at a maximum speed in the stroke center region at any rotational speed that is equal to or higher than the rotational speed of idling operation of the internal combustion engine.
  • a friction coefficient between the inner wall surface and the outer peripheral surface of the place (hereinafter referred to as a center friction coefficient) is smaller than the center friction coefficient when it is assumed that the recess is not formed in the stroke center region.
  • the internal area when the piston ring passes through any location in the external region that is outside the stroke center region.
  • the coefficient of friction between the wall surface and the outer peripheral surface (hereinafter referred to as an external coefficient of friction) is based on the external coefficient of friction when assuming a state in which a plurality of recesses are formed in the external region. Characterized in that it is set to be smaller.
  • the ratio ( ⁇ 1 / ⁇ 2) between the boundary outer side friction coefficient ⁇ 1 and the boundary center side friction coefficient ⁇ 2 is set within a range of 2.5 or less. It is characterized by that.
  • the ratio ( ⁇ 1 / ⁇ 2) of the boundary outer side friction coefficient ⁇ 1 and the boundary center side friction coefficient ⁇ 2 is set within a range of 1.5 or less. It is characterized by that.
  • the present invention relating to the sliding structure of the cylinder and the piston is characterized in that the maximum distance from the inner wall surface on the inclined surface is set to 1/2000 or more of the actual width of the outer circumferential surface.
  • the sliding surface of the piston ring with respect to the cylinder includes a base material, a hard first layer formed on the base material, and the first layer. And a second layer that is laminated and is softer than the first layer.
  • the present invention related to the sliding structure of the cylinder and the piston is characterized in that the surface roughness (Ra) of the first layer is 0.7 ⁇ m or less.
  • the present invention for achieving the above object is a control method of idling operation of an internal combustion engine having a cylinder and a piston, wherein the cylinder is a ring groove of the lowest piston ring at the top dead center of the piston among the inner wall surfaces.
  • a plurality of recesses are formed in the central region of the stroke that is all or part of the position between the bottom surface position of the piston and the top surface position of the ring groove of the uppermost piston ring at the bottom dead center of the piston.
  • the piston ring installed in the ring groove is in contact with the inner wall surface while inclining in the direction away from the inner wall surface toward the outer side in the axial direction on both outer edges in the axial direction of the outer peripheral surface facing the inner wall surface.
  • the Doringu rotational speed during operation a method of controlling the idling operation of the internal combustion engine and controls so as to satisfy the following conditions A and B.
  • Condition A The friction coefficient between the inner wall surface and the outer peripheral surface of the place where the piston ring passes at the maximum speed in the stroke center region (hereinafter referred to as the center friction coefficient) is in the stroke center region. It should be smaller than the central coefficient of friction when assuming a state in which no recess is formed.
  • Condition B a coefficient of friction between the inner wall surface and the outer peripheral surface at any location in the outer region that is outside the center region of the stroke (hereinafter referred to as an outer friction coefficient) is a plurality of the concave portions in the outer region. To make it smaller than the external friction coefficient in the case of assuming the formed state.
  • the present invention for achieving the above object is a control method of idling operation of an internal combustion engine having a cylinder and a piston, wherein the cylinder is a ring groove of the lowest piston ring at the top dead center of the piston among the inner wall surfaces.
  • a plurality of recesses are formed in the central region of the stroke that is all or part of the position between the bottom surface position of the piston and the top surface position of the ring groove of the uppermost piston ring at the bottom dead center of the piston.
  • the piston ring installed in the ring groove is in contact with the inner wall surface while inclining in the direction away from the inner wall surface toward the outer side in the axial direction on both outer edges in the axial direction of the outer peripheral surface facing the inner wall surface.
  • Condition C Friction coefficient (hereinafter referred to as boundary) when the piston ring passes through the vicinity of the stroke center area adjacent to the boundary between the stroke center area and the outer area outside the stroke center area. (Center side friction coefficient) is set to be smaller than the friction coefficient when the piston ring passes in the vicinity of the outer region side adjacent to the boundary (hereinafter referred to as boundary outer side friction coefficient).
  • the present invention related to the control method of the idling operation of the internal combustion engine is characterized in that the number of revolutions during the idling operation of the internal combustion engine is controlled to satisfy the following conditions A and B.
  • Condition A The friction coefficient between the inner wall surface and the outer peripheral surface of the place where the piston ring passes at the maximum speed in the stroke center region (hereinafter referred to as the center friction coefficient) is in the stroke center region. It should be smaller than the central coefficient of friction when assuming a state in which no recess is formed.
  • Condition B a coefficient of friction between the inner wall surface and the outer peripheral surface at any location in the outer region that is outside the center region of the stroke (hereinafter referred to as an outer friction coefficient) is a plurality of the concave portions in the outer region. To make it smaller than the external friction coefficient in the case where the formed state is assumed.
  • the present invention related to the control method of the idling operation of the internal combustion engine is characterized in that the rotational speed at the idling operation of the internal combustion engine is controlled so as to satisfy the following condition D.
  • Condition D The ratio ( ⁇ 1 / ⁇ 2) between the boundary outer side friction coefficient ⁇ 1 and the boundary center side friction coefficient ⁇ 2 is within a range of 2.5 or less.
  • the present invention for achieving the above object is a control method of idling operation of an internal combustion engine having a cylinder and a piston, wherein the cylinder is a ring groove of the lowest piston ring at the top dead center of the piston among the inner wall surfaces.
  • the cylinder is a ring groove of the lowest piston ring at the top dead center of the piston among the inner wall surfaces.
  • a stroke center region having a plurality of recesses is formed on the lower side, and the top dead center of the stroke center region from the edge of the reference stroke region on the top dead center side of the inner wall surface.
  • An upper smooth region that does not have the concave portion is formed all the way to the edge of the side, and the piston ring installed in the ring groove of the piston has both axially opposite outer peripheral surfaces facing the inner wall surface.
  • An inclined surface that can contact the inner wall surface while being inclined in a direction away from the inner wall surface toward the outer side in the axial direction is formed on the side edge, and the inner wall surface and the outer peripheral surface that move relative to each other via the inclined surface
  • the internal combustion engine idling operation is characterized in that the lubricating oil flows into the gap of the internal combustion engine so that fluid lubrication is possible, and the rotational speed during idling operation of the internal combustion engine is controlled to satisfy the following conditions A and B: This is a control method.
  • Condition A The friction coefficient between the inner wall surface and the outer peripheral surface of the place where the piston ring passes at the maximum speed in the stroke center region (hereinafter referred to as the center friction coefficient) is in the stroke center region. It should be smaller than the central coefficient of friction when assuming a state in which no recess is formed.
  • Condition B a coefficient of friction between the inner wall surface and the outer peripheral surface at any location in the outer region that is outside the center region of the stroke (hereinafter referred to as an outer friction coefficient) is a plurality of the concave portions in the outer region. To make it smaller than the external friction coefficient in the case of assuming the formed state.
  • the present invention for achieving the above object is a control method of idling operation of an internal combustion engine having a cylinder and a piston, wherein the cylinder is a ring groove of the lowest piston ring at the top dead center of the piston among the inner wall surfaces.
  • the cylinder is a ring groove of the lowest piston ring at the top dead center of the piston among the inner wall surfaces.
  • a stroke center region having a plurality of recesses is formed on the lower side, and the top dead center of the stroke center region from the edge of the reference stroke region on the top dead center side of the inner wall surface.
  • An upper smooth region that does not have the concave portion is formed all the way to the edge of the side, and the piston ring installed in the ring groove of the piston has both axially opposite outer peripheral surfaces facing the inner wall surface.
  • An inclined surface that can contact the inner wall surface while being inclined in a direction away from the inner wall surface toward the outer side in the axial direction is formed on the side edge, and the inner wall surface and the outer peripheral surface that move relative to each other via the inclined surface
  • a control method for idling operation of an internal combustion engine characterized in that the lubricating oil flows into the gap of the internal combustion engine so that fluid lubrication is possible and the rotational speed during idling operation of the internal combustion engine is controlled to satisfy the following condition C: .
  • Condition C Friction coefficient (hereinafter referred to as boundary) when the piston ring passes through the vicinity of the stroke center area adjacent to the boundary between the stroke center area and the outer area outside the stroke center area. (Center side friction coefficient) is set to be smaller than the friction coefficient when the piston ring passes in the vicinity of the outer region side adjacent to the boundary (hereinafter referred to as boundary outer side friction coefficient).
  • the present invention related to the control method of the idling operation of the internal combustion engine is characterized in that the number of revolutions during the idling operation of the internal combustion engine is controlled to satisfy the following conditions A and B.
  • Condition A The friction coefficient between the inner wall surface and the outer peripheral surface of the place where the piston ring passes at the maximum speed in the stroke center region (hereinafter referred to as the center friction coefficient) is in the stroke center region. It should be smaller than the central coefficient of friction when assuming a state in which no recess is formed.
  • Condition B a coefficient of friction between the inner wall surface and the outer peripheral surface at any location in the outer region that is outside the center region of the stroke (hereinafter referred to as an outer friction coefficient) is a plurality of the concave portions in the outer region. To make it smaller than the external friction coefficient in the case where the formed state is assumed.
  • the present invention related to the control method of the idling operation of the internal combustion engine is characterized in that the rotational speed at the idling operation of the internal combustion engine is controlled so as to satisfy the following condition D.
  • Condition D The ratio ( ⁇ 1 / ⁇ 2) between the boundary outer side friction coefficient ⁇ 1 and the boundary center side friction coefficient ⁇ 2 is within a range of 2.5 or less.
  • the present invention related to the control method of the idling operation of the internal combustion engine is characterized in that a stroke direction distance of the upper smooth region is set to 30% or more of a total distance of the reference stroke region.
  • the present invention related to the control method of the idling operation of the internal combustion engine is characterized in that the stroke center point in the stroke center region is lower than the center point in the stroke direction in the reference stroke region. It is located on the side.
  • the present invention relating to the control method for idling operation of the internal combustion engine is characterized in that the uppermost piston ring is located at a position where the highest piston ring passes through the inner wall surface at the highest speed as the highest speed point.
  • the edge on the dead center side is set below the fastest point.
  • the present invention for achieving the above object is an operation control method of an internal combustion engine having a cylinder and a piston, wherein the cylinder is a lower surface of a ring groove of a lowest piston ring at the top dead center of the piston among inner wall surfaces.
  • a plurality of recesses are formed in a central region of the stroke that is all or part of the position from the position to the upper surface position of the ring groove of the uppermost piston ring at the bottom dead center of the piston, and the ring of the piston
  • the piston ring installed in the groove has an inclination that can contact the inner wall surface while being inclined in a direction away from the inner wall surface toward the outer side in the axial direction on both outer edges in the axial direction of the outer peripheral surface facing the inner wall surface.
  • a lubricating oil flows into the gap between the inner wall surface and the outer circumferential surface that are relatively moved through the inclined surface, and is configured to be capable of fluid lubrication.
  • Condition A The friction coefficient between the inner wall surface and the outer peripheral surface of the place where the piston ring passes at the maximum speed in the stroke center region (hereinafter referred to as the center friction coefficient) is in the stroke center region. It should be smaller than the central coefficient of friction when assuming a state in which no recess is formed.
  • Condition B a coefficient of friction between the inner wall surface and the outer peripheral surface at any location in the outer region that is outside the center region of the stroke (hereinafter referred to as an outer friction coefficient) is a plurality of the concave portions in the outer region. To make it smaller than the external friction coefficient in the case of assuming the formed state.
  • the present invention for achieving the above object is an operation control method of an internal combustion engine having a cylinder and a piston, wherein the cylinder is a lower surface of a ring groove of a lowest piston ring at the top dead center of the piston among inner wall surfaces.
  • a plurality of recesses are formed in a central region of the stroke that is all or part of the position from the position to the upper surface position of the ring groove of the uppermost piston ring at the bottom dead center of the piston, and the ring of the piston
  • the piston ring installed in the groove has an inclination that can contact the inner wall surface while being inclined in a direction away from the inner wall surface toward the outer side in the axial direction on both outer edges in the axial direction of the outer peripheral surface facing the inner wall surface.
  • a lubricating oil flows into the gap between the inner wall surface and the outer circumferential surface that are relatively moved through the inclined surface, and is configured to be capable of fluid lubrication.
  • Condition C Friction coefficient (hereinafter referred to as boundary) when the piston ring passes through the vicinity of the stroke center area adjacent to the boundary between the stroke center area and the outer area outside the stroke center area. (Center side friction coefficient) is set to be smaller than the friction coefficient when the piston ring passes in the vicinity of the outer region side adjacent to the boundary (hereinafter referred to as boundary outer side friction coefficient).
  • the present invention for achieving the above object is an operation control method of an internal combustion engine having a cylinder and a piston, wherein the cylinder is a lower surface of a ring groove of a lowest piston ring at the top dead center of the piston among inner wall surfaces.
  • a stroke center region having a plurality of recesses is formed, and, of the inner wall surface, from the top dead center side edge of the reference stroke region, the stroke center region on the top dead center side
  • An upper smooth region that does not have the recess is formed all the way to the end edge, and the piston ring installed in the ring groove of the piston has both outer edges in the axial direction of the outer peripheral surface facing the inner wall surface.
  • the axis An inclined surface that can come into contact with the inner wall surface while being inclined in a direction away from the inner wall surface toward the outer side is formed, and lubricating oil is placed in a gap between the inner wall surface and the outer peripheral surface that move relative to each other via the inclined surface.
  • An operation control method for an internal combustion engine wherein the internal combustion engine is configured to be inflowable and capable of fluid lubrication, and the rotational speed of the internal combustion engine is controlled to satisfy the following conditions A and B.
  • Condition A The friction coefficient between the inner wall surface and the outer peripheral surface of the place where the piston ring passes at the maximum speed in the stroke center region (hereinafter referred to as the center friction coefficient) is in the stroke center region.
  • Condition B a coefficient of friction between the inner wall surface and the outer peripheral surface at any location in the outer region that is outside the center region of the stroke (hereinafter referred to as an outer friction coefficient) is a plurality of the concave portions in the outer region. To make it smaller than the external friction coefficient in the case of assuming the formed state.
  • the present invention for achieving the above object is an operation control method of an internal combustion engine having a cylinder and a piston, wherein the cylinder is a lower surface of a ring groove of a lowest piston ring at the top dead center of the piston among inner wall surfaces.
  • a stroke center region having a plurality of recesses is formed, and, of the inner wall surface, from the top dead center side edge of the reference stroke region, the stroke center region on the top dead center side
  • An upper smooth region that does not have the recess is formed all the way to the end edge, and the piston ring installed in the ring groove of the piston has both outer edges in the axial direction of the outer peripheral surface facing the inner wall surface.
  • the axis An inclined surface that can come into contact with the inner wall surface while being inclined in a direction away from the inner wall surface toward the outer side is formed, and lubricating oil is placed in a gap between the inner wall surface and the outer peripheral surface that move relative to each other via the inclined surface.
  • An operation control method for an internal combustion engine wherein the internal combustion engine is configured to be inflowable and capable of fluid lubrication, and the rotational speed of the internal combustion engine is controlled to satisfy a condition C below.
  • Condition C Friction coefficient (hereinafter referred to as boundary) when the piston ring passes through the vicinity of the stroke center area adjacent to the boundary between the stroke center area and the outer area outside the stroke center area. (Center side friction coefficient) is set to be smaller than the friction coefficient when the piston ring passes in the vicinity of the outer region side adjacent to the boundary (hereinafter referred to as boundary outer side friction coefficient).
  • the present invention related to the operation control method of the internal combustion engine is characterized in that a stroke direction distance of the upper smooth region is set to 30% or more of a total distance of the reference stroke region.
  • the present invention related to the operation control method of the internal combustion engine is characterized in that a stroke center point in the stroke center region is closer to a bottom dead center side of the piston than a center point in the stroke direction in the reference stroke region. It is characterized by being located.
  • the present invention related to the operation control method of the internal combustion engine is the top dead center in the stroke center region when the position where the uppermost piston ring passes the inner wall surface at the highest speed is defined as the fastest point.
  • the side edge is set to be equal to or less than the fastest point.
  • (A) And (B) is an expanded view which shows the state which expand
  • (A) is a side view showing a piston and a piston ring applied to the sliding structure of the internal combustion engine
  • (B) is a partially enlarged sectional view showing the piston and the piston ring
  • (D) is a partial expanded sectional view of a second ring.
  • (A) is sectional drawing of a 2 piece type oil ring
  • (B) is sectional drawing of a 3 piece type oil ring.
  • It is a Stribeck diagram regarding sliding of a general internal combustion engine.
  • (A) is a Stribeck diagram for explaining the sliding structure of the internal combustion engine of the present embodiment
  • (B) is a side view showing the sliding stroke of the cylinder liner and the piston ring.
  • (A) is a Stribeck diagram for explaining the sliding structure of the internal combustion engine of the present embodiment
  • (B) is a side view showing the sliding stroke of the cylinder liner and the piston ring.
  • (A) is a Stribeck diagram for explaining the sliding structure of the internal combustion engine of the present embodiment
  • (B) is a side view showing the sliding stroke of the cylinder liner and the piston ring.
  • (A) is a Stribeck diagram for explaining the sliding structure of the internal combustion engine of the present embodiment
  • (B) is a side view showing the sliding stroke of the cylinder liner and the piston ring.
  • (A) And (B) is a Stribeck diagram for demonstrating the operation control of the internal combustion engine of this embodiment.
  • (A) And (B) is a Stribeck diagram for demonstrating the operation control of the internal combustion engine of this embodiment.
  • (A) is sectional drawing of the 2 piece type oil ring which concerns on the application example of this embodiment
  • (B) is sectional drawing of a 3 piece type oil ring. It is sectional drawing in alignment with the axial direction of a cylinder liner which shows the example of the cylinder liner to which a microtexture technique is applied. It is sectional drawing in alignment with the axial direction of the cylinder liner applied to the sliding structure of the internal combustion engine which concerns on 2nd embodiment of this invention.
  • (A) is a Stribeck diagram for explaining the sliding structure of the internal combustion engine of the present embodiment
  • (B) is a side view showing the sliding stroke of the cylinder liner and the piston ring.
  • (A) is a Stribeck diagram for explaining the sliding structure of the internal combustion engine of the present embodiment
  • (B) is a side view showing the sliding stroke of the cylinder liner and the piston ring.
  • (A) And (B) is a Stribeck diagram for demonstrating the operation control of the internal combustion engine of this embodiment.
  • (A) And (B) is a Stribeck diagram for demonstrating the operation control of the internal combustion engine of this embodiment.
  • (A) And (B) is a Stribeck diagram for demonstrating the operation control of the internal combustion engine which concerns on the modification of this embodiment.
  • (A) And (B) is a Stribeck diagram for demonstrating the operation control of the internal combustion engine which concerns on the modification of this embodiment.
  • (A) And (B) is a Stribeck diagram for demonstrating the operation control of the internal combustion engine which concerns on the modification of this embodiment.
  • (A) And (B) is a Stribeck diagram for demonstrating the operation control of the internal combustion engine which concerns on the modification of this embodiment.
  • (A) is a sectional view of the sliding structure of the internal combustion engine in the experimental example of this embodiment, and (B) is a chart showing the verification results.
  • a plurality of recesses 14 are formed on the inner wall surface 12 of the cylinder liner 10 according to the internal combustion engine of the present embodiment.
  • the recess 14 is formed only in the stroke center region 20 of the inner wall surface 12.
  • This stroke center region 20 is from the lower surface position of the ring groove of the lowest piston ring at the top dead center T of the piston 30 to the upper surface position of the ring groove of the uppermost piston ring at the bottom dead center U of the piston 30.
  • the whole or a part of the range here, the whole range becomes the stroke center region 20 and the recess 14 is formed in the region).
  • the outer region 25 includes the upper outer region 25 ⁇ / b> A adjacent to the top dead center side of the stroke center region 20 and the bottom death of the stroke center region 20. It consists of a lower external region 25B adjacent to the point side.
  • the piston 30 reciprocates in the cylinder liner 10
  • the piston 30 repeatedly passes through the upper outer region 25A, the stroke center region 20, the lower outer region 25B, the stroke center region 20, and the upper outer region 25A in this order.
  • the boundary between the upper outer region 25A and the stroke center region 20 is defined as an upper boundary 27A
  • the boundary between the lower outer region 25B and the stroke center region 20 is defined as a lower boundary 27B.
  • the concave portion 14 is arranged such that at least one concave portion 14 exists in the cross section of the inner wall surface 12 of the stroke center portion region 20 at any location in the direction perpendicular to the axis. That is, the recess 14 is disposed so as to overlap in the axial direction. As a result, the outer peripheral surface of the piston ring that passes through the stroke center region 20 always faces at least one recess 14. On the other hand, the recess 14 is not formed in the upper external region 25A and the lower external region 25B.
  • the shape of the concave portion 14 is a square (square or rectangular) arranged obliquely with respect to the axial direction, and as a result, the entire plurality of concave portions 14 are arranged in an oblique lattice shape.
  • the lowest point 14 b in the axial direction of the recess 14 is the highest in the axial direction of the other recess 14. It is located below the point 14a in the axial direction.
  • the recesses 14 are overlapped in the axial direction, the recesses 14 are always present in the cross-section in the axis-perpendicular direction at every location (for example, arrow A, arrow B, arrow C) in the stroke center region 20. it can.
  • a plurality of concave portions 14 having the same area are uniformly arranged in the surface direction (axial direction and circumferential direction).
  • a plurality of recesses 14 having the same area may be non-uniformly arranged in the surface direction.
  • the circumferential belt-like region 20P at the axial end of the stroke center region 20 has a smaller area occupied by the plurality of recesses 14, and the circumferential belt-like region at the axial center of the stroke center region 20 is smaller.
  • the area occupied by the plurality of recesses 14 is large.
  • the size and shape of the recess 14 are not particularly limited, but are appropriately selected according to the size and purpose of the cylinder or piston ring.
  • the recess 14 can be formed in a slit shape or a band shape so as to penetrate (or extend) in the cylinder axial direction of the stroke center region 20.
  • the maximum average length J of the recess 14 in the cylinder axis direction is set to the cylinder axis of the piston ring (top ring) positioned at the highest position of the piston. It is preferable that the length (thickness) or less in the direction, specifically, about 5 to 100% thereof.
  • the average length J of the recesses 14 means the average value when the axial maximum dimensions of the plurality of recesses 14 vary.
  • the maximum average length S in the cylinder circumferential direction of the recess 14 is preferably within a range of 0.1 mm to 15 mm, and more preferably within a range of 0.3 mm to 5 mm.
  • the sliding area reduction effect by the recess 14 itself may not be sufficiently obtained.
  • a part of the piston ring is likely to enter the recess, and a problem such as deformation of the piston ring may occur.
  • the maximum average length R (maximum average depth R) of the recess 14 in the cylinder radial direction is preferably in the range of 0.1 ⁇ m to 1000 ⁇ m, and preferably in the range of 0.1 ⁇ m to 500 ⁇ m. More desirably, the thickness is set to 0.1 ⁇ m to 50 ⁇ m. If the maximum average length R in the cylinder radial direction of the recess 14 is smaller than these ranges, the sliding area reduction effect of the recess 14 itself may not be sufficiently obtained. On the other hand, when trying to make it larger than these ranges, processing becomes difficult, and problems such as the need to increase the thickness of the cylinder may occur.
  • the average value of the minimum distance H in the cylinder circumferential direction between the recesses 14 adjacent in the circumferential direction at the same position in the axial direction is preferably in the range of 0.05 mm to 15 mm, preferably 0.1 mm to 5 mm.
  • a range of 0.0 mm is particularly preferable. If it is smaller than these ranges, the contact area (sliding area) between the piston ring and the cylinder liner may be too small to slide stably. On the other hand, if it is larger than these ranges, the sliding area reduction effect of the recess 14 itself may not be sufficiently obtained.
  • the microtexture technology exists as a fundamentally different one, so this will be explained briefly.
  • the microtexture is configured such that a region V where a recess is formed and a region Z where no recess exists are alternately repeated along the cylinder axial direction of the inner wall surface of the cylinder liner. It is a theory that every time the piston ring moves on the inner wall surface, inflow / outflow of engine oil is caused to the recess, and the oil film is thickened by the dynamic pressure to reduce the frictional force. Therefore, the fundamental technical idea is different from the dimple liner technique in which the plurality of concave portions are arranged so as to overlap in the axial direction as in the present embodiment.
  • ⁇ Piston and piston ring> 4A and 4B show the piston 30 and the piston ring 40 (top ring 50, second ring 60, oil ring 70) installed in the ring groove of the piston 30.
  • the piston ring 40 reciprocates in the cylinder axial direction with the outer peripheral surface 42 facing the inner wall surface 12 of the cylinder liner 10.
  • the top ring 50 eliminates a gap between the piston 30 and the cylinder liner 10 and prevents a phenomenon (blow-by) that compressed gas escapes from the combustion chamber to the crankcase side.
  • the second ring 60 serves to eliminate a gap between the piston 30 and the cylinder liner 10 and to remove excess engine oil adhering to the inner wall surface 12 of the cylinder liner 10.
  • the oil ring 70 scrapes off excess engine oil attached to the inner wall surface 12 of the cylinder liner 10 to form an appropriate oil film, thereby preventing the piston 30 from burning.
  • the top ring 50 is a single annular member, and has a so-called barrel shape that protrudes radially outward when the outer peripheral surface 52 is viewed in cross section.
  • inclined surfaces 54 and 54 that can come into contact with the inner wall surface 12 while being inclined away from the inner wall surface 12 toward the outer side in the cylinder axial direction on both outer edges in the cylinder axial direction of the outer peripheral surface 52.
  • the inclined surfaces 54 and 54 have a so-called sagging shape, and are surfaces formed by contact wear of the piston 30 and the piston ring 40.
  • the maximum distance e from the inner wall surface 12 of the inclined surfaces 54, 54 is set to 1/2000 to 1/500 of the actual width f of the outer peripheral surface 52, and more preferably 1/1500 to 1/500. In this embodiment, it is about 1/1000.
  • the actual width f means a range in which the top ring 50 can substantially contact the inner wall surface 12 by sliding while being finely inclined or deformed with respect to the inner wall surface 12.
  • the inclined surfaces 54 and 54 are all included at both ends.
  • the actual width f is preferably 0.3 mm or less.
  • the second ring 60 is a single annular member, and has a so-called barrel shape that protrudes radially outward when the outer peripheral surface 62 is viewed in cross section. Similar to the top ring, both outer edges of the outer peripheral surface 62 in the cylinder axial direction are inclined surfaces 64 and 64 that can contact the inner wall surface 12 while inclining in the direction away from the inner wall surface 12 toward the outer side in the cylinder axis direction. Have. The inclined surfaces 64 and 64 have a so-called sagging shape, and become surfaces formed by the familiar operation of the piston 30 and the piston ring 40 and wear thereof.
  • the maximum distance e from the inner wall surface 12 of the inclined surfaces 64, 64 is set to 1/2000 to 1/500 of the actual width f of the outer peripheral surface 62, and more preferably 1/1500 to 1/500. In this embodiment, it is about 1/1000. In the case of a vehicle internal combustion engine, it is preferable that the actual width f is, for example, 0.3 mm or less.
  • the oil ring 70 shown in an enlarged manner in FIG. 5A is a two-piece type, and includes a ring main body 72 and a coil spring-like coil expander 76.
  • the ring main body 72 includes a pair of annular rails 73 and 73 disposed at both ends in the axial direction, and an annular column portion 75 disposed between the pair of rails 73 and 73 and connecting them.
  • the cross-sectional shape of the pair of rails 73 and 73 and the column portion 75 is substantially I-shaped or H-shaped, and this shape is used to accommodate the coil expander 76 on the inner peripheral surface side.
  • An inner circumferential groove 76 having a semicircular cross section is formed.
  • the pair of rails 73 and 73 are formed with annular protrusions 74 and 74 that protrude radially outward with respect to the column portion 75, respectively.
  • the outer peripheral surfaces 82 and 82 formed at the projecting ends of the annular protrusions 74 and 74 abut against the inner wall surface 12 of the cylinder liner 10.
  • the coil expander 76 is housed in the inner circumferential groove 76 and thereby presses and urges the ring body 72 outward in the radial direction.
  • a plurality of oil return holes 77 are formed in the circumferential direction in the column portion 75 of the ring body 72.
  • the pair of outer peripheral surfaces 82 and 82 are formed integrally with the ring main body 72.
  • One outer peripheral surface 83 can be defined.
  • inclined surfaces 84 and 84 that can contact the inner wall surface 12 while being inclined in a direction away from the inner wall surface 12 toward the outer side in the cylinder axial direction are formed.
  • the inclined surfaces 84 and 84 have a so-called sagging shape, and become surfaces formed by the familiar operation of the piston 30 and the piston ring 40 and wear thereof.
  • the maximum distance e from the inner wall surface 12 of the inclined surfaces 84 and 84 is set to 1/2000 to 1/500 of the actual width f which is the total value of the actual widths f1 and f2 of the outer peripheral surfaces 82, and more preferably. Is 1/1500 to 1/500. In this embodiment, it is about 1/1000.
  • the actual width f is preferably 0.02 mm to 0.18 mm.
  • the oil ring 70 is not limited to the two-piece type, and may be a three-piece type oil ring 70 shown in FIG. 5B, for example.
  • the oil ring 70 includes annular side rails 73a and 73b that are separated in the vertical direction, and a spacer expander 76s that is disposed between the side rails 73a and 73b.
  • the spacer expander 76s is formed by plastic working a steel material into a corrugated shape in which irregularities are repeated in the cylinder axis direction. Using this corrugated shape, an upper support surface 78a and a lower support surface 78b are formed, and the pair of side rails 73a and 73b are respectively supported in the axial direction.
  • the inner end portion of the spacer expander 76s has an ear portion 74m erected in an arch shape toward the outer side in the axial direction.
  • the ear portion 74m is in contact with the inner peripheral surfaces of the side rails 73a and 73b.
  • the spacer expander 76s is assembled in the ring groove of the piston 30 in a contracted state in the circumferential direction with a joint. As a result, the ear 74m presses and urges the side rails 73a and 73b radially outward by the restoring force of the spacer expander 76s.
  • both outer edges of the outer peripheral surfaces 82 of the side rails 73a and 73b are separated from the inner wall surface 12 toward the outer side in the cylinder axial direction. It has the inclined surfaces 84 and 84 which can contact the inner wall surface 12 while inclining in the direction.
  • the inclined surfaces 84 and 84 have a so-called sagging shape, and become surfaces formed by the familiar operation of the piston 30 and the piston ring 40 and wear thereof.
  • the maximum distance e from the inner wall surface 12 of the inclined surfaces 84, 84 is set to 1/2000 to 1/500 of the actual width f of the outer peripheral surface 82, and more preferably 1/1500 to 1/500. In this embodiment, it is about 1/1000.
  • the actual width f is preferably 0.02 mm to 0.18 mm.
  • the horizontal axis is a logarithm of “kinematic viscosity (kinematic viscosity) ⁇ ” ⁇ “speed U” / “contact load W”, and the vertical axis is the coefficient of friction ( ⁇ ) Therefore, the frictional force can be minimized in the fluid lubrication region 114. Effective use of this region 114 is effective in reducing friction, that is, in reducing fuel consumption. On the other hand, even if the speed U increases, if the transition to the fluid lubrication region 114 cannot be performed from the middle of the boundary contact region 112, the boundary contact region 112 continues to the high speed region as shown by the dotted line (or the fluid lubrication region) 114).
  • the outer peripheral surface 42 of the piston ring 40 is formed into a barrel shape, and the inclined surface is used to actively flow oil into the actual contact surface, thereby quickly moving to the fluid lubrication region 114. Achieves low friction.
  • the recess 14 is formed in the stroke center region 20 of the cylinder liner 10, thereby reducing the substantial area in which the oil shear resistance is generated. Efficiently reduce frictional force.
  • the actual width of the outer peripheral surface of the piston ring is made extremely small (that is, a V-shaped cross section), while the contact load W is made small (low tension) and the surface hardness (wear resistance)
  • the idea of realizing low friction in the boundary contact region 112 without forming a sagging shape by increasing the property) is mainstream.
  • the friction mode between the cylinder liner 10 and the piston ring 40 will be described.
  • the fixing positions of the top ring 50, the second ring 60, and the oil ring 70 installed on the piston 30 are relatively different in the cylinder axial direction, the cylinder liner 10 and the friction state are also strictly limited. There is a slight difference between the piston rings.
  • the friction mode of the second ring 60 will be described here, and the description of the friction mode of the top ring 50 and the oil ring 70 that can be grasped by analogy from the friction mode of the second ring 60 will be omitted.
  • the top ring 50 is used as a reference only for the fastest passing point C.
  • FIG. 7A the dotted line (base liner) strikebeck diagram, in which the concave portions 14 are formed in both the central region 20 of the stroke and the outer region 25 (the entire inner wall surface) measured by the present inventors.
  • the cylinder liner 10 that is not in contact with the fluid lubrication region 114 of the piston ring 40 becomes a frictional mode.
  • the horizontal axis of this Stribeck diagram shows “kinematic viscosity (kinematic viscosity) ⁇ ” ⁇ “speed U” / “contact load W” as a real number instead of logarithm, and the vertical axis represents friction. Coefficient ( ⁇ ).
  • “Kinematic viscosity (kinematic viscosity) ⁇ ” and “contact load W” are constants that are substantially fixed by the specifications of the cylinder liner 10 and the piston ring 40, so that the piston 30 has a top dead center T of the cylinder liner 10.
  • the friction coefficient ( ⁇ ) of the cylinder liner 10 and the piston ring 40 when sliding from the bottom dead center U to the bottom dead center U depends on the relative speed between the two, and this relative speed depends on the engine speed ( rpm). Accordingly, in the process of moving the piston 30 from the top dead center T to the bottom dead center U through the fastest passing point C as shown in the stroke line 214 along the dotted line (base liner) and FIG.
  • the relative speed U between the piston ring 40 and the cylinder liner 10 changes from zero to the maximum speed and returns to zero, during which the friction coefficient constantly changes.
  • the fastest passing point C at which the moving speed of the piston 30 in the piston crank mechanism becomes the highest speed is not the center of the reciprocating process, but a point slightly deviated from the center toward the top dead center T side.
  • the region Q in the Stribeck diagram after FIG. 7 is a point where the moving speed of the piston ring 40 is the fastest in the rotational speed region that is equal to or higher than the rotational speed of the idling operation (that is, the travel line 214 transitioning in the graph).
  • the solid line (Dimple liner) Stribeck diagram of FIG. 8A shows a cylinder liner 10 in which a recess 14 is formed in both the stroke center region 20 and the outer region 25 (entire inner wall surface), and the piston ring 40. This is a friction mode in the fluid lubrication region 114.
  • the variation of the friction coefficient ( ⁇ ) between the cylinder liner 10 and the piston ring 40 depends on the relative speed of both. Thus, this relative speed is uniquely determined by the engine speed (rpm).
  • the piston 30 slides from the top dead center T to the bottom dead center U of the cylinder liner 10.
  • the relative speed U between the liner liner 10 and the piston ring 40 changes from zero to the maximum speed and returns to zero, and the friction coefficient constantly changes during that time.
  • the solid line (Dimple liner) strikebeck diagram is offset to the right (high speed side) compared to the dotted line (base liner) strikebeck diagram, and the lower side (low friction side) ).
  • the difference in the friction coefficient between the solid line (Dimple liner) and the dotted line (base liner) increases as the speed increases.
  • the frictional mode between the cylinder liner 10 having the recess 14 only in the stroke center region 20 described in FIG. 1 and the piston ring 40 includes a stroke line 214 of a base liner in FIG. 7A and a stroke line 214 of FIG. It is inferred that this is a combination of the Dimple liner travel line 314. This state is shown in FIGS. 9 (A) and 10 (A). That is, while the piston ring 40 is moving relative to the outer region 25 of the cylinder liner 10 from the top dead center T toward the bottom dead center U, as shown in FIG.
  • the piston ring 40 is at the maximum speed in the stroke center region 20 at any rotational speed (here, the rotational speed at idling) that is equal to or higher than the rotational speed of idling operation.
  • the friction coefficient Ca (hereinafter referred to as the central friction coefficient Ca) between the inner wall surface 12 and the outer peripheral surface 42 of the place passing through (the fastest passing point C in the entire stroke) is in a state where no recess is formed in the central region of the stroke. It becomes smaller than the central friction coefficient Cb at the same timing (fastest passing point C) when assuming.
  • Friction coefficient Ta top dead center side
  • Ua bottom dead center side
  • Friction coefficients Ta, Ua are external friction coefficients of the same timing when a plurality of recesses are formed in the external region 25. It is set to be smaller than Tb and Ub.
  • the stroke center region adjacent to the boundary between the stroke center region 20 and the outer region 25 (upper boundary 27A, lower boundary 27B). Friction coefficients Tin (top dead center side) and Uin (bottom dead center side) when the piston ring 40 passes through the 20-side neighboring area 20in are referred to as the boundary center side friction coefficient. Friction coefficients Tout (top dead center side) and Uout (bottom dead center side) when the piston ring 40 passes through the adjacent region 25out on the side of the adjacent external region 25 (hereinafter both are referred to as boundary external side friction coefficients) It is set to be smaller than that.
  • a point K (hereinafter referred to as a frictional turning point) where the solid line (Dimple liner) striker diagram and the dotted line (base liner) strikebeck diagram shown in FIGS. 9 (A) and 10 (A) intersect. K)), the friction coefficient is shifted by passing through the boundaries 27A and 27B between the stroke center region 20 and the outer region 25 within the range on the right side (high speed region side). ing.
  • the boundary outside friction coefficient Tout, Uout and the boundary center friction coefficient Tin are set to be 2.5 or less, and more preferably within a range of 1.5 or less.
  • the boundary outer side friction coefficients Tout, Uout and the boundary center side friction coefficients Tin, Uin can pass through the boundaries 27A, 27B as close as possible, and a sudden change in the friction coefficient can be caused. Can be suppressed. As a result, smoother engine rotation can be realized.
  • FIGS. 12A and 12B when the engine speed during idling operation is made higher than in the state of FIG. 11, the timing at which the piston ring 40 passes the boundaries 27A and 27B is the friction turning point.
  • the adverse effect of the stroke center region 20 shown in FIG. 11 is eliminated.
  • the high friction coefficient of the outer region 25 on the high speed side from the friction turning point K starts to have an adverse effect (see the diagram of the baseliner strikebeck).
  • the pair of rails 73 and 73 of the two-piece type oil ring 70 includes a base material 600 and a surface treatment layer 620 formed on the surface of the base material 600.
  • the base material 600 is made of steel, cast iron, aluminum alloy, or the like, but the material is not particularly limited as long as it exhibits good wear resistance. Examples of desirable steel materials include steel materials containing C: 0.16 to 1.30%, or chromium steel containing a small amount of at least one of Mo and V.
  • the surface treatment layer 620 includes a hard first layer 622 and a second layer 624 that is softer than the first layer 622.
  • the first layer 622 preferably has, for example, a Vickers hardness of HV800 or more. Specifically, hard carbon coating (DLC), hard chrome plating, or the like is used.
  • the first layer 622 may be a nitride layer and / or a PVD film formed by physical vapor deposition (PVD) such as ion plating or sputtering consisting of Cr—N or Cr—BN, It may be obtained by performing a wear-resistant surface treatment by a nitriding method such as gas nitriding (GN).
  • PVD physical vapor deposition
  • the side rails 73a and 73b of the three-piece type oil ring 70 also have the same base material 600 as the two-piece type and the surface treatment layer 620 formed on the surface of the base material 600.
  • the surface treatment layer 620 includes a hard first layer 622 and a second layer 624 that is softer than the first layer 622.
  • the thickness of the first layer 622 is preferably 10 to 150 ⁇ m for the two-piece type oil ring 70 and 2 to 50 ⁇ m for the three-piece type oil ring 70 when formed as a nitrided layer by gas nitriding.
  • the thickness is preferably 5 to 50 ⁇ m for the two-piece type oil ring 70 and 5 to 30 ⁇ m for the three-piece oil ring.
  • the surface roughness (Ra) is 0.7 ⁇ m or less. More preferably, it is 0.5 ⁇ m or less, and preferably 0.05 ⁇ m or more.
  • the surface roughness (Ra) means “arithmetic average roughness”.
  • the second layer 624 is formed of a soft material as compared with the first layer 622, for example, a Vickers altitude of HV800 or less or less than HV800.
  • the second layer 624 uses a synthetic resin such as chromium (Cr), nickel phosphorus (Ni—P), and a polyamideimide resin, a coating made of Cr—N or Cr—BN, tin (Sn), and the like. It is preferable.
  • the outer surface of the second layer 624 does not need to be subjected to a finishing process such as lapping.
  • the second layer 624 plays a role of moderate abrasion during the initial operation (familiar operation) of the internal combustion engine.
  • a part of the first layer 622 is exposed and the outer peripheral surface 82 has a barrel shape. Can do.
  • the exposed first layer 622 and the second layer remaining on both sides of the first layer 622 and worn so as to have a curved cross section. 624 are smoothly continuous with each other.
  • the fluid lubrication region required in the sliding structure of the present embodiment can be determined by the oil ring 70 and the cylinder liner 10. Can be created between.
  • the thickness of the second layer 624 is formed so that the barrel-shaped sag amount (the maximum separation distance e from the cylinder liner 10) after the conforming operation becomes a desired amount, specifically 10 ⁇ m or less, more preferably It is set to 0.5 ⁇ m to 5.0 ⁇ m.
  • a preferable sag amount is preferably within a range of 1/1500 to 1/500 of the actual width f of the oil ring 70 and the cylinder liner 10. When the sagging amount is set in the above range, suitable fluid lubrication can be created between the piston ring and the cylinder liner, and low friction can be achieved.
  • 13Cr steel can be used for the base material 600 of the oil ring 70 of 2 piece type or 3 piece type.
  • This 13Cr steel is composed of carbon 0.6 to 0.7 mass%, silicon 0.25 to 0.5 mass%, manganese 0.20 to 0.50 mass%, chromium 13.0 to 14.0 mass%, molybdenum It has a composition of 0.2 to 0.4 mass%, phosphorus 0.03% or less, sulfur 0.03% or less, the balance iron and inevitable impurities.
  • 17Cr steel can be used for the base material 600 of the oil ring 70.
  • This 17Cr steel is composed of carbon 0.80 to 0.95 mass%, silicon 0.35 to 0.5 mass%, manganese 0.25 to 0.40 mass%, chromium 17.0 to 18.0 mass%, molybdenum 1.00 to 1.25% by mass, vanadium 0.08 to 0.15% by mass, phosphorus 0.04% by mass or less, sulfur 0.04% by mass or less, balance iron and inevitable impurities.
  • 8Cr steel, SWRH77B equivalent material can be used as other materials.
  • the actual width is set in a state including the second layer 624, the actual widths of the protrusions of the base material 600 and the first layer 622 should be set smaller than the actual width. Is preferred.
  • the oil ring 70 has the base material 600 and the surface treatment layer 620 formed on the surface of the base material 600 is illustrated, but the same surface treatment is applied to the top ring 50 and the second ring 60 as well. It is preferable to form a layer.
  • a plurality of recesses 14 are formed on the inner wall surface 12 of the cylinder liner 10 according to the internal combustion engine of the present embodiment.
  • the recess 14 is formed only in the stroke center region 20 of the inner wall surface 12.
  • This stroke center region 20 is located at the bottom dead center U of the piston 30 from the lower surface position 27A of the ring groove of the lowest piston ring at the top dead center T of the piston 30 (hereinafter also referred to as the top dead center side edge). It is a part of the entire range (hereinafter referred to as the reference stroke area 19) up to the upper surface position 27B (hereinafter also referred to as the bottom dead center side edge) of the ring groove of the uppermost piston ring.
  • the region 19 is located at a position shifted downward from the top dead center side edge 27A.
  • a smooth upper smooth region 130 having no recess is formed in the entire area from the top dead center side edge 27A of the reference stroke region 19 to the top dead center side edge 20A of the stroke center region 20. It is formed.
  • the edge 20A on the top dead center side of the stroke center region 20 is referred to as an “upper boundary 20A” which means a boundary line between the place where the recess 14 is formed and the place where the recess 14 is not formed.
  • the end edge 20B on the bottom dead center side of the stroke center region 20 may be referred to as a “lower boundary 20B” which means a boundary line between a place where the recess 14 is formed and a place where the recess 14 is not formed. is there.
  • the bottom dead center side edge (lower boundary) 20B of the stroke center region 20 is made to coincide with the bottom dead center side edge 27B of the reference stroke region 19, but it is not necessarily limited thereto. However, it may be located on the lower side or on the upper side.
  • the outer region 25 includes the upper outer region 25 ⁇ / b> A adjacent to the top dead center side of the stroke center region 20 and the stroke center region 20. It is composed of a lower external region 25B adjacent to the bottom dead center side. Note that the upper smooth region 130 is included in a part of the upper outer region 25A.
  • the upper outer region 25A (upper smooth region 130), the stroke center region 20, the lower outer region 25B, the stroke center region 20, and the upper outer region 25A (upper smooth region). 130) is repeatedly passed in this order.
  • the stroke direction distance of the upper smooth region 130 is desirably set to 30% or more of the total stroke direction distance of the reference stroke region 19. Further, a stroke center point 20M in the stroke center region 20 is located closer to the bottom dead center U of the piston than the stroke center point 19M in the reference stroke region.
  • the upper dead center side edge (upper boundary) of the stroke center region 20 20A is set below the fastest passing point C.
  • the upper boundary 20A and the fastest passing point C are set to coincide.
  • the upper smooth region 130 in which no concave portion is formed is provided on the top dead center side with respect to the stroke center region 20.
  • the significance of the upper smooth region 130 is as follows.
  • the top dead center side of the piston 30 becomes a high temperature environment because of the existence of the combustion chamber. Therefore, if a concave portion is formed on the top dead center side of the cylinder liner 10 and the engine oil is retained in the concave portion, the engine oil becomes high temperature and vaporizes to increase oil consumption.
  • top dead center T side of the piston 30 also has a reduced friction coefficient due to a decrease in the viscosity of the engine oil due to a high temperature environment, so that the necessity for a recess is less than that at the bottom dead center U side.
  • FIGS. 16A and 16B show a stroke in which the piston liner 40 moves relative to the bottom dead center U from the top dead center T on the cylinder liner 10.
  • the stroke lines A and L along the dotted line (base liner) in FIG. the piston ring 40 passes through the upper smooth region 130 and the fastest passing point C of the cylinder liner 10 and enters the stroke center region 20, while the piston ring 40 is relatively moving therethrough. It becomes the process line M along the solid line (Dimple liner) of 16 (A).
  • the dotted line in FIG. It becomes the process line B along (base liner).
  • 17A and 17B show a stroke in which the piston liner 40 moves relative to the top dead center T from the bottom dead center U through the cylinder liner 10.
  • the stroke line B along the dotted line (base liner) in FIG. .
  • the piston ring 40 is moving relative to it along the solid line (Dimple liner) in FIG. It becomes process line M.
  • FIG. It becomes process lines L and A along the dotted line (base liner) of (A).
  • the piston ring 40 is at the maximum speed in the stroke center region 20 at any rotational speed (here, the rotational speed at idling) that is equal to or higher than the rotational speed of idling operation.
  • the friction coefficient Ca (hereinafter referred to as the central friction coefficient Ca) between the inner wall surface 12 and the outer peripheral surface 42 of the place (in the present embodiment, the upper boundary 20A of the stroke center region 20 in this embodiment) is in the stroke center region. It becomes smaller than the central friction coefficient Cb at the same timing (timing of passing through the upper boundary 20A) when it is assumed that no recess is formed.
  • the piston ring 40 is located anywhere in the external region 25 (upper external region 25A or lower external region 25B) that is outside the stroke center region 20.
  • the friction coefficient Ta (top dead center side) and Ua (bottom dead center side) between the inner wall surface 12 and the outer peripheral surface 42 when passing through are a plurality of concave portions in the outer region 25. Is set so as to be smaller than the external friction coefficients Tb and Ub at the same timing.
  • the stroke center region adjacent to the boundary between the stroke center region 20 and the external region 25 (upper boundary 20A, lower boundary 20B).
  • Friction coefficients Tin (top dead center side) and Uin (bottom dead center side) when the piston ring 40 passes through the 20-side neighboring area 20in are referred to as the boundary center side friction coefficient.
  • Friction coefficients Tout (top dead center side) and Uout (bottom dead center side) when the piston ring 40 passes through the adjacent region 25out on the side of the adjacent external region 25 (hereinafter both are referred to as boundary external side friction coefficients) It is set to be smaller than that.
  • the frictional turning point where the solid line (Dimple liner) strike diagram and the dotted line (base liner) strike map shown in FIGS. 16 (A) and 17 (A) intersect. K)
  • the friction coefficient is shifted by passing through the boundaries 20A and 20B between the stroke center region 20 and the outer region 25 within the range on the right side (high speed region side). ing.
  • the boundary external friction coefficient Uout at the lower boundary 20B and the lower boundary 20B The fluctuation ratio (Uout / Uin) of the boundary center side friction coefficient Uin at the time of boundary shift is set to be 2.5 or less, and more preferably set to a range of 1.5 or less. If it does in this way, it will be possible to pass through the lower boundary 20B in a state where the boundary outer side friction coefficient Uout and the boundary center side friction coefficient Uin are as close as possible, and a sudden change in the friction coefficient can be suppressed. As a result, smoother engine rotation can be realized.
  • the boundary outside friction coefficient Uout is set to be 0.06 or less.
  • ⁇ Sliding structure of cylinder liner and piston ring according to a modification of this embodiment> 20 and 21 show modified examples of the sliding structure shown in FIGS. 16 (A) and 17 (A).
  • the range of the upper smooth region 130 further extends toward the bottom dead center U.
  • the edge (upper boundary) 20A on the top dead center side of the stroke center region 20 is the fastest passing point C. It is located on the lower side.
  • 20A and 20B show a stroke in which the piston ring 40 moves relative to the bottom dead center U from the top dead center T in the cylinder liner 10.
  • the stroke lines A, L1, and L2 along the dotted line (baserliner) in FIG. Note that, as shown in FIG. 20B, the fastest passing point C is passed in the middle of the relative movement of the upper smooth region 130, so that the dotted lines shown in the process lines L1 and L2 in FIG. Turn back at the fastest passing point C along (base liner).
  • 21A and 21B show a stroke in which the piston liner 40 moves relative to the top dead center T from the bottom dead center U through the cylinder liner 10. While the piston ring 40 is relatively moving toward the top dead center side in the lower outer region 25B of the cylinder liner 10, a stroke line B along the dotted line (base (liner) in FIG. . And while passing through the lower outer region 25B and entering the stroke center region 20, the piston ring 40 is moving along the same, along the solid line (Dimple liner) in FIG. It becomes process line M. During the relative movement by entering the upper smooth region 130 after passing through the center region 20 of the stroke, the stroke line L2 along the dotted line (baserliner) in FIG.
  • the stroke line L1 along the dotted line (base liner) in FIG. 21A becomes a relative line and passes through the upper smooth region 130 to move the remaining upper outer region 25A.
  • the stroke line A along the dotted line (base (liner) in FIG. In this way, the oil consumption can be further reduced by ensuring the wider upper smooth region 130.
  • FIGS. 16 (A) and 17 (A) show other modified examples of the sliding structure shown in FIGS. 16 (A) and 17 (A).
  • the range of the upper smooth region 130 is narrow, and as a result, the upper dead center side edge (upper boundary) 20A of the stroke center region 20 is located above the fastest passing point C. ing.
  • 22A and 22B show a stroke in which the piston liner 40 moves relative to the bottom dead center U from the top dead center T on the cylinder liner 10. While the piston ring 40 moves relative to the upper external region 25A and the upper smooth region 130 as a part thereof, the stroke lines A and L along the dotted line (base liner) in FIG. Then, while the piston ring 40 passes through the upper smooth region 130 and enters the stroke center region 20 and the piston ring 40 is relatively moving there, the solid line ( It becomes a travel line M1 along Dimple liner). As shown in FIG. 22 (B), the fastest passing point C is passed in the middle of the relative movement of the stroke center area 20, so that the stroke lines M1 and M2 in FIG.
  • 23 (A) and 23 (B) show a stroke in which the piston liner 40 moves relative to the top dead center T from the bottom dead center U through the cylinder liner 10. While the piston ring 40 is relatively moving toward the top dead center side in the lower outer region 25B of the cylinder liner 10, the stroke line B along the dotted line (base (liner) in FIG. . Then, while passing through the lower outer region 25B and entering the stroke center region 20, the piston ring 40 is moving relative to it along the solid line (Dimple liner) in FIG. It becomes process line M2. Further, during the relative movement of the stroke center region 20 after passing through the fastest passing point C, the stroke line M1 along the solid line (Dimplerliner) in FIG.
  • the stroke line L along the dotted line (base liner) in FIG. 23A is obtained and passes through the upper smooth region 130.
  • a stroke line A along the dotted line (base liner) in FIG. In this case, the upper smooth region 130 is somewhat narrowed, so that the oil consumption is slightly increased, but the stroke lines M1 and M2 along the solid line (Dimple liner) are lengthened, so that fuel efficiency can be improved.
  • the distance of the reference stroke area 19 is S
  • the distance of the upper smooth area 130 is P
  • the distance of the stroke center area 20 is Q
  • the remaining distance of the reference stroke area 19 is R
  • Experimental examples 1 to 3 with different stroke ratios were prepared, and the oil consumption (LOC) was verified by performing a trial operation of the engine at 1800 rpm.
  • region 20 was a perfect circle with a diameter of 0.5 mm, and the depth was 3.5 micrometers.
  • region 20 was 50%.
  • the distance S of the reference stroke area 19 was 115 mm
  • Comparative Example 1 the case where all of the reference stroke region 19 becomes the stroke center region 20, that is, the case where the upper smooth region 130 is not provided at all is verified, and as Comparative Example 2, the stroke center region 20 is The case where it was not provided, that is, the case where the recess 14 was not formed was verified.
  • the oil consumption that becomes the verification result when the central region 20 of the stroke of the comparative example 2 is not provided is set as the reference oil consumption, and the other verification results with respect to the reference oil consumption The degree of increase or decrease was evaluated relative to the ratio.
  • the upper smooth region 130 is the reference stroke region 19.
  • an increase in oil consumption is suppressed to 5%.
  • the upper smooth region 130 is 5% or more and less than 30% of the reference stroke region 19, an increase in oil consumption is suppressed to 60%.
  • the oil consumption hardly changes. . That is, it can be seen that the oil consumption depends on the occupation ratio of the upper smooth region 130.
  • the remaining distance R is preferably set to substantially zero (or 10% or less of the distance S of the reference stroke region 19).
  • the stroke center region 20 is offset to the bottom dead center side with respect to the reference stroke region 19, the oil consumption can be suppressed.
  • the stroke center point 20M in the stroke center region 20 may be positioned closer to the bottom dead center U of the piston than the stroke center point 19M in the reference stroke region.
  • the sliding structure and the rotational speed control of the internal combustion engine during idling operation have been described, but the present invention is not limited to this. That is, it is sufficient that the sliding structure (sliding state) as shown in the present embodiment is realized at any arbitrary rotational speed that is higher than the rotational speed of the idling operation.
  • the time (in the idling rotational speed operating state) includes the case where the sliding structure (sliding state) as shown in the present embodiment is not realized.
  • the sliding structure shown in the present embodiment is realized at the time of idling operation, and as a result, there is a high possibility that the sliding structure is continuously realized even in a higher rotation region.
  • the rotational speed control of the present embodiment can be applied in an operation mode other than the idling operation.
  • an internal combustion engine such as a ship or a train
  • it may be applied to rotation speed control during normal navigation / travel.
  • the present invention may be applied to the rotational speed control of the internal combustion engine during steady power generation. That is, it is preferable to apply the rotational speed control of the present invention during a long-time driving mode that affects fuel consumption in an internal combustion engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Abstract

本発明の内燃機関の摺動構造に関して、シリンダは、行程中央部領域に複数の凹部が形成されており、ピストンリングの外周面には傾斜面が形成され、傾斜面を介して相対移動する内壁面と外周面の隙間に潤滑油が流入して流体潤滑可能に構成され、内燃機関のアイドリング運転の回転数以上となるいずれかの回転数において、行程中央部領域の中でピストンリングが最高速度で通過する場所の摩擦係数(以下、中央摩擦係数)が、同行程中央部領域に凹部が形成されない状態を仮定する場合の中央摩擦係数よりも小さくなるように設定され、一方、同回転数において、行程中央部領域の外側となる外部領域のいずれかの場所をピストンリングが通過する際の摩擦係数(以下、外部摩擦係数)が、外部領域に複数の凹部が形成される場合における外部摩擦係数よりも小さくなるように設定されるようにした。結果、ディンプルライナ技術に関して、更なる低燃費を実現できる。

Description

内燃機関の摺動構造、アイドリング運転の制御方法、内燃機関の運転制御方法
 本発明は、シリンダとピストンを有する内燃機関の摺動構造等に関する。
 従来、シリンダとピストンを有する内燃機関では、燃費向上やオイル消費量削減の為、シリンダとピストンの摺動抵抗(摩擦力)を小さくする努力がなされている。本出願人は、ピストンリングとシリンダの摩擦力を低減する手法として、いわゆるディンプルライナを開発しており(例えば、特許5155924号公報参照)、シリンダの内壁面の行程中央部領域に複数の凹部を形成すること等によって、運転時の摺動抵抗を小さくしている。
 本出願時点で未公知ではあるが、本発明者らの更なる研究により、このディンプルライナ技術について、更に燃費向上等を実現できる余地が残っていることが明らかとなった。一方、ディンプルライナ技術により燃費向上を実現しようとすると、同時にオイル消費量も増大するという問題も明らかとなった。
 本発明は、斯かる実情に鑑み、ディンプルライナに関して更なる燃費向上やオイル消費量削減を実現しようとするものである。
 上記目的を達成する本発明は、シリンダとピストンを有する内燃機関の摺動構造であって、前記シリンダは、内壁面のうち、前記ピストンの上死点における最下位のピストンリングのリング溝の下面位置から、前記ピストンの下死点における最上位のピストンリングのリング溝の上面位置までの間の全部又は一部となる行程中央部領域に複数の凹部が形成されており、前記ピストンの前記リング溝に設置されるピストンリングは、前記内壁面と対向する外周面の軸方向両外側縁には、軸方向外側に向かって前記内壁面から離れる方向に傾斜しつつ前記内壁面と接触し得る傾斜面が形成され、前記傾斜面を介して相対移動する前記内壁面と前記外周面の隙間に潤滑油が流入して流体潤滑可能に構成され、内燃機関のアイドリング運転の回転数以上となるいずれかの回転数において、前記行程中央部領域の中で前記ピストンリングが最高速度で通過する場所の前記内壁面と前記外周面の間の摩擦係数(以下、中央摩擦係数)が、前記行程中央部領域に前記凹部が形成されない状態を仮定する場合の前記中央摩擦係数よりも小さくなるように設定され、一方、内燃機関のアイドリング運転の回転数以上となるいずれかの回転数において、前記行程中央部領域の外側となる外部領域のいずれかの場所を前記ピストンリングが通過する際の前記内壁面と前記外周面の間の摩擦係数(以下、外部摩擦係数)が、前記外部領域に複数の凹部が形成される状態を仮定する場合の前記外部摩擦係数よりも小さくなるように設定されることを特徴とする、シリンダとピストンの摺動構造である。
 上記目的を達成する本発明は、シリンダとピストンを有する内燃機関の摺動構造であって、前記シリンダは、内壁面のうち、前記ピストンの上死点における最下位のピストンリングのリング溝の下面位置から、前記ピストンの下死点における最上位のピストンリングのリング溝の上面位置までの間の全部又は一部となる行程中央部領域に複数の凹部が形成されており、前記ピストンの前記リング溝に設置されるピストンリングは、前記内壁面と対向する外周面の軸方向両外側縁には、軸方向外側に向かって前記内壁面から離れる方向に傾斜しつつ前記内壁面と接触し得る傾斜面が形成され、前記傾斜面を介して相対移動する前記内壁面と前記外周面の隙間に潤滑油が流入して流体潤滑可能に構成され、内燃機関のアイドリング運転の回転数以上となるいずれかの回転数において、前記行程中央部領域と、前記行程中央部領域の外側となる外部領域との境界に隣接する前記行程中央部領域側の近傍を前記ピストンリングが通過する際の摩擦係数(以下、境界中央側摩擦係数)が、前記境界に隣接する前記外部領域側の近傍を前記ピストンリングが通過する際の摩擦係数(以下、境界外部側摩擦係数)よりも小さくなるように設定されることを特徴とする、シリンダとピストンの摺動構造である。
 上記シリンダとピストンの摺動構造に関連する本発明は、内燃機関のアイドリング運転の回転数以上となるいずれかの回転数において、前記行程中央部領域の中で前記ピストンリングが最高速度で通過する場所の前記内壁面と前記外周面の間の摩擦係数(以下、中央摩擦係数)が、前記行程中央部領域に前記凹部が形成されない状態を仮定する場合の前記中央摩擦係数よりも小さくなるように設定され、一方、内燃機関のアイドリング運転の回転数以上となるいずれかの回転数において、前記行程中央部領域の外側となる外部領域のいずれかの場所を前記ピストンリングが通過する際の前記内壁面と前記外周面の間の摩擦係数(以下、外部摩擦係数)が、前記外部領域に複数の凹部が形成される状態を仮定する場合の前記外部摩擦係数よりも小さくなるように設定されることを特徴とする。
 上記目的を達成する本発明は、シリンダとピストンを有する内燃機関の摺動構造であって、前記シリンダは、内壁面のうち、前記ピストンの上死点における最下位のピストンリングのリング溝の下面位置から、前記ピストンの下死点における最上位のピストンリングのリング溝の上面位置までの間(以下、基準行程領域と呼ぶ)には、該基準行程領域の上死点側の端縁よりも下側において、複数の凹部を有する行程中央部領域が形成され、前記内壁面のうち、前記基準行程領域の前記上死点側の端縁から、前記行程中央部領域の前記上死点側の端縁までの間の全部には、前記凹部を有しない上側平滑領域が形成され、前記ピストンの前記リング溝に設置されるピストンリングは、前記内壁面と対向する外周面の軸方向両外側縁には、軸方向外側に向かって前記内壁面から離れる方向に傾斜しつつ前記内壁面と接触し得る傾斜面が形成され、前記傾斜面を介して相対移動する前記内壁面と前記外周面の隙間に潤滑油が流入して流体潤滑可能に構成され、内燃機関のアイドリング運転の回転数以上となるいずれかの回転数において、前記行程中央部領域の中で前記ピストンリングが最高速度で通過する場所の前記内壁面と前記外周面の間の摩擦係数(以下、中央摩擦係数)が、前記行程中央部領域に前記凹部が形成されない状態を仮定する場合の前記中央摩擦係数よりも小さくなるように設定され、一方、内燃機関のアイドリング運転の回転数以上となるいずれかの回転数において、前記行程中央部領域の外側となる外部領域のいずれかの場所を前記ピストンリングが通過する際の前記内壁面と前記外周面の間の摩擦係数(以下、外部摩擦係数)が、前記外部領域に複数の凹部が形成される状態を仮定する場合の前記外部摩擦係数よりも小さくなるように設定されることを特徴とする、シリンダとピストンの摺動構造である。
 上記シリンダとピストンの摺動構造に関連する本発明は、前記上側平滑領域の行程方向距離は、前記基準行程領域の全距離の30%以上に設定されることを特徴とする。
 上記シリンダとピストンの摺動構造に関連する本発明は、前記行程中央部領域における行程方向の中央点は、前記基準行程領域における行程方向の中央点と比較して、前記ピストンの下死点側に位置することを特徴とする。
 上記シリンダとピストンの摺動構造に関連する本発明は、前記最上位のピストンリングが前記内壁面を最高速度で通過する位置を最速点と定義した場合に、前記行程中央部領域の前記上死点側の端縁は、前記最速点以下に設定されることを特徴とする。
 上記目的を達成する本発明は、シリンダとピストンを有する内燃機関の摺動構造であって、前記シリンダは、内壁面のうち、前記ピストンの上死点における最下位のピストンリングのリング溝の下面位置から、前記ピストンの下死点における最上位のピストンリングのリング溝の上面位置までの間(以下、基準行程領域と呼ぶ)には、該基準行程領域の上死点側の端縁よりも下側において、複数の凹部を有する行程中央部領域が形成され、前記内壁面のうち、前記基準行程領域の前記上死点側の端縁から、前記行程中央部領域の前記上死点側の端縁までの間の全部には、前記凹部を有しない上側平滑領域が形成され、前記ピストンの前記リング溝に設置されるピストンリングは、前記内壁面と対向する外周面の軸方向両外側縁には、軸方向外側に向かって前記内壁面から離れる方向に傾斜しつつ前記内壁面と接触し得る傾斜面が形成され、前記傾斜面を介して相対移動する前記内壁面と前記外周面の隙間に潤滑油が流入して流体潤滑可能に構成され、内燃機関のアイドリング運転の回転数以上となるいずれかの回転数において、前記行程中央部領域と、前記行程中央部領域の外側となる外部領域との境界に隣接する前記行程中央部領域側の近傍を前記ピストンリングが通過する際の摩擦係数(以下、境界中央側摩擦係数)が、前記境界に隣接する前記外部領域側の近傍を前記ピストンリングが通過する際の摩擦係数(以下、境界外部側摩擦係数)よりも小さくなるように設定されることを特徴とする、シリンダとピストンの摺動構造である。
 上記シリンダとピストンの摺動構造に関連する本発明は、前記上側平滑領域の行程方向距離は、前記基準行程領域の全距離の30%以上に設定されることを特徴とする。
 上記シリンダとピストンの摺動構造に関連する本発明は、前記行程中央部領域における行程方向の中央点は、前記基準行程領域における行程方向の中央点と比較して、前記ピストンの下死点側に位置することを特徴とする。
 上記シリンダとピストンの摺動構造に関連する本発明は、前記最上位のピストンリングが前記内壁面を最高速度で通過する位置を最速点と定義した場合に、前記行程中央部領域の前記上死点側の端縁は、前記最速点以下に設定されることを特徴とする。
 上記シリンダとピストンの摺動構造に関連する本発明は、内燃機関のアイドリング運転の回転数以上となるいずれかの回転数において、前記行程中央部領域の中で前記ピストンリングが最高速度で通過する場所の前記内壁面と前記外周面の間の摩擦係数(以下、中央摩擦係数)が、前記行程中央部領域に前記凹部が形成されない状態を仮定する場合の前記中央摩擦係数よりも小さくなるように設定され、一方、内燃機関のアイドリング運転の回転数以上となるいずれかの回転数において、前記行程中央部領域の外側となる外部領域のいずれかの場所を前記ピストンリングが通過する際の前記内壁面と前記外周面の間の摩擦係数(以下、外部摩擦係数)が、前記外部領域に複数の凹部が形成される状態を仮定する場合の前記外部摩擦係数よりも小さくなるように設定されることを特徴とする。
 上記シリンダとピストンの摺動構造に関連する本発明は、前記境界外部側摩擦係数μ1と前記境界中央側摩擦係数μ2の比(μ1/μ2)が、2.5以下の範囲内に設定されることを特徴とする。
 上記シリンダとピストンの摺動構造に関連する本発明は、前記境界外部側摩擦係数μ1と前記境界中央側摩擦係数μ2の比(μ1/μ2)が、1.5以下の範囲内に設定されることを特徴とする。
 上記シリンダとピストンの摺動構造に関連する本発明は、前記傾斜面における前記内壁面からの最大距離は、前記外周面の実あたり幅の1/2000以上に設定されることを特徴とする。
 上記シリンダとピストンの摺動構造に関連する本発明は、前記ピストンリングにおける前記シリンダに対する摺動面は、母材と、前記母材に形成される硬質な第一層と、前記第一層に積層され、前記第一層と比較して軟質となる第二層と、を備えて構成されることを特徴とする。
 上記シリンダとピストンの摺動構造に関連する本発明は、前記第一層の表面粗さ(Ra)は0.7μm以下であることを特徴とする。
 上記目的を達成する本発明は、シリンダとピストンを有する内燃機関のアイドリング運転の制御方法であって、前記シリンダは、内壁面のうち、前記ピストンの上死点における最下位のピストンリングのリング溝の下面位置から、前記ピストンの下死点における最上位のピストンリングのリング溝の上面位置までの間の全部又は一部となる行程中央部領域に複数の凹部が形成されており、前記ピストンの前記リング溝に設置されるピストンリングは、前記内壁面と対向する外周面の軸方向両外側縁には、軸方向外側に向かって前記内壁面から離れる方向に傾斜しつつ前記内壁面と接触し得る傾斜面が形成され、前記傾斜面を介して相対移動する前記内壁面と前記外周面の隙間に潤滑油が流入して流体潤滑可能に構成され、前記内燃機関のアイドリング運転時の回転数を、以下条件A及び条件Bを満たすように制御することを特徴とする内燃機関のアイドリング運転の制御方法である。条件A:前記行程中央部領域の中で前記ピストンリングが最高速度で通過する場所の前記内壁面と前記外周面の間の摩擦係数(以下、中央摩擦係数)が、前記行程中央部領域に前記凹部が形成されない状態を仮定する場合の前記中央摩擦係数よりも小さくなるようにする事。条件B:前記行程中央部領域の外側となる外部領域のいずれかの場所の前記内壁面と前記外周面の間の摩擦係数(以下、外部摩擦係数)が、前記外部領域に複数の前記凹部が形成される状態を仮定する場合の前記外部摩擦係数よりも小さくなるようにする事。
 上記目的を達成する本発明は、シリンダとピストンを有する内燃機関のアイドリング運転の制御方法であって、前記シリンダは、内壁面のうち、前記ピストンの上死点における最下位のピストンリングのリング溝の下面位置から、前記ピストンの下死点における最上位のピストンリングのリング溝の上面位置までの間の全部又は一部となる行程中央部領域に複数の凹部が形成されており、前記ピストンの前記リング溝に設置されるピストンリングは、前記内壁面と対向する外周面の軸方向両外側縁には、軸方向外側に向かって前記内壁面から離れる方向に傾斜しつつ前記内壁面と接触し得る傾斜面が形成され、前記傾斜面を介して相対移動する前記内壁面と前記外周面の隙間に潤滑油が流入して流体潤滑可能に構成され、前記内燃機関のアイドリング運転時の回転数を、以下条件Cを満たすように制御することを特徴とする内燃機関のアイドリング運転の制御方法。条件C:前記行程中央部領域と、前記行程中央部領域の外側となる外部領域との境界に隣接する前記行程中央部領域側の近傍を前記ピストンリングが通過する際の摩擦係数(以下、境界中央側摩擦係数)が、前記境界に隣接する前記外部領域側の近傍を前記ピストンリングが通過する際の摩擦係数(以下、境界外部側摩擦係数)よりも小さくなるようにする事。
 上記内燃機関のアイドリング運転の制御方法に関連する本発明は、前記内燃機関のアイドリング運転時の回転数を、以下条件A及び条件Bを満たすように制御することを特徴とする。条件A:前記行程中央部領域の中で前記ピストンリングが最高速度で通過する場所の前記内壁面と前記外周面の間の摩擦係数(以下、中央摩擦係数)が、前記行程中央部領域に前記凹部が形成されない状態を仮定する場合の前記中央摩擦係数よりも小さくなるようにする事。条件B:前記行程中央部領域の外側となる外部領域のいずれかの場所の前記内壁面と前記外周面の間の摩擦係数(以下、外部摩擦係数)が、前記外部領域に複数の前記凹部が形成される状態を仮定する場合の前記外部摩擦係数よりも小さくなるようする事。 
 上記内燃機関のアイドリング運転の制御方法に関連する本発明は、前記内燃機関のアイドリング運転時の回転数を、以下条件Dを満たすように制御することを特徴とする。条件D:前記境界外部側摩擦係数μ1と前記境界中央側摩擦係数μ2の比(μ1/μ2)が、2.5以下の範囲内になる事。
 上記目的を達成する本発明は、シリンダとピストンを有する内燃機関のアイドリング運転の制御方法であって、前記シリンダは、内壁面のうち、前記ピストンの上死点における最下位のピストンリングのリング溝の下面位置から、前記ピストンの下死点における最上位のピストンリングのリング溝の上面位置までの間(以下、基準行程領域と呼ぶ)には、該基準行程領域の上死点側の端縁よりも下側において、複数の凹部を有する行程中央部領域が形成され、前記内壁面のうち、前記基準行程領域の前記上死点側の端縁から、前記行程中央部領域の前記上死点側の端縁までの間の全部には、前記凹部を有しない上側平滑領域が形成され、前記ピストンの前記リング溝に設置されるピストンリングは、前記内壁面と対向する外周面の軸方向両外側縁には、軸方向外側に向かって前記内壁面から離れる方向に傾斜しつつ前記内壁面と接触し得る傾斜面が形成され、前記傾斜面を介して相対移動する前記内壁面と前記外周面の隙間に潤滑油が流入して流体潤滑可能に構成され、前記内燃機関のアイドリング運転時の回転数を、以下条件A及び条件Bを満たすように制御することを特徴とする内燃機関のアイドリング運転の制御方法である。条件A:前記行程中央部領域の中で前記ピストンリングが最高速度で通過する場所の前記内壁面と前記外周面の間の摩擦係数(以下、中央摩擦係数)が、前記行程中央部領域に前記凹部が形成されない状態を仮定する場合の前記中央摩擦係数よりも小さくなるようにする事。条件B:前記行程中央部領域の外側となる外部領域のいずれかの場所の前記内壁面と前記外周面の間の摩擦係数(以下、外部摩擦係数)が、前記外部領域に複数の前記凹部が形成される状態を仮定する場合の前記外部摩擦係数よりも小さくなるようにする事。
 上記目的を達成する本発明は、シリンダとピストンを有する内燃機関のアイドリング運転の制御方法であって、前記シリンダは、内壁面のうち、前記ピストンの上死点における最下位のピストンリングのリング溝の下面位置から、前記ピストンの下死点における最上位のピストンリングのリング溝の上面位置までの間(以下、基準行程領域と呼ぶ)には、該基準行程領域の上死点側の端縁よりも下側において、複数の凹部を有する行程中央部領域が形成され、前記内壁面のうち、前記基準行程領域の前記上死点側の端縁から、前記行程中央部領域の前記上死点側の端縁までの間の全部には、前記凹部を有しない上側平滑領域が形成され、前記ピストンの前記リング溝に設置されるピストンリングは、前記内壁面と対向する外周面の軸方向両外側縁には、軸方向外側に向かって前記内壁面から離れる方向に傾斜しつつ前記内壁面と接触し得る傾斜面が形成され、前記傾斜面を介して相対移動する前記内壁面と前記外周面の隙間に潤滑油が流入して流体潤滑可能に構成され、前記内燃機関のアイドリング運転時の回転数を、以下条件Cを満たすように制御することを特徴とする内燃機関のアイドリング運転の制御方法。条件C:前記行程中央部領域と、前記行程中央部領域の外側となる外部領域との境界に隣接する前記行程中央部領域側の近傍を前記ピストンリングが通過する際の摩擦係数(以下、境界中央側摩擦係数)が、前記境界に隣接する前記外部領域側の近傍を前記ピストンリングが通過する際の摩擦係数(以下、境界外部側摩擦係数)よりも小さくなるようにする事。
 上記内燃機関のアイドリング運転の制御方法に関連する本発明は、前記内燃機関のアイドリング運転時の回転数を、以下条件A及び条件Bを満たすように制御することを特徴とする。条件A:前記行程中央部領域の中で前記ピストンリングが最高速度で通過する場所の前記内壁面と前記外周面の間の摩擦係数(以下、中央摩擦係数)が、前記行程中央部領域に前記凹部が形成されない状態を仮定する場合の前記中央摩擦係数よりも小さくなるようにする事。条件B:前記行程中央部領域の外側となる外部領域のいずれかの場所の前記内壁面と前記外周面の間の摩擦係数(以下、外部摩擦係数)が、前記外部領域に複数の前記凹部が形成される状態を仮定する場合の前記外部摩擦係数よりも小さくなるようする事。
 上記内燃機関のアイドリング運転の制御方法に関連する本発明は、前記内燃機関のアイドリング運転時の回転数を、以下条件Dを満たすように制御することを特徴とする。条件D:前記境界外部側摩擦係数μ1と前記境界中央側摩擦係数μ2の比(μ1/μ2)が、2.5以下の範囲内になる事。
 上記内燃機関のアイドリング運転の制御方法に関連する本発明は、前記上側平滑領域の行程方向距離は、前記基準行程領域の全距離の30%以上に設定されることを特徴とする。
 上記内燃機関のアイドリング運転の制御方法に関連する本発明は、前記行程中央部領域における行程方向の中央点は、前記基準行程領域における行程方向の中央点と比較して、前記ピストンの下死点側に位置することを特徴とする。
 上記内燃機関のアイドリング運転の制御方法に関連する本発明は、前記最上位のピストンリングが前記内壁面を最高速度で通過する位置を最速点と定義した場合に、前記行程中央部領域の前記上死点側の端縁は、前記最速点以下に設定されることを特徴とする。
 上記目的を達成する本発明は、シリンダとピストンを有する内燃機関の運転制御方法であって、前記シリンダは、内壁面のうち、前記ピストンの上死点における最下位のピストンリングのリング溝の下面位置から、前記ピストンの下死点における最上位のピストンリングのリング溝の上面位置までの間の全部又は一部となる行程中央部領域に複数の凹部が形成されており、前記ピストンの前記リング溝に設置されるピストンリングは、前記内壁面と対向する外周面の軸方向両外側縁には、軸方向外側に向かって前記内壁面から離れる方向に傾斜しつつ前記内壁面と接触し得る傾斜面が形成され、前記傾斜面を介して相対移動する前記内壁面と前記外周面の隙間に潤滑油が流入して流体潤滑可能に構成され、前記内燃機関の回転数を、以下条件A及び条件Bを満たすように制御することを特徴とする内燃機関の運転制御方法。条件A:前記行程中央部領域の中で前記ピストンリングが最高速度で通過する場所の前記内壁面と前記外周面の間の摩擦係数(以下、中央摩擦係数)が、前記行程中央部領域に前記凹部が形成されない状態を仮定する場合の前記中央摩擦係数よりも小さくなるようにする事。条件B:前記行程中央部領域の外側となる外部領域のいずれかの場所の前記内壁面と前記外周面の間の摩擦係数(以下、外部摩擦係数)が、前記外部領域に複数の前記凹部が形成される状態を仮定する場合の前記外部摩擦係数よりも小さくなるようにする事。
 上記目的を達成する本発明は、シリンダとピストンを有する内燃機関の運転制御方法であって、前記シリンダは、内壁面のうち、前記ピストンの上死点における最下位のピストンリングのリング溝の下面位置から、前記ピストンの下死点における最上位のピストンリングのリング溝の上面位置までの間の全部又は一部となる行程中央部領域に複数の凹部が形成されており、前記ピストンの前記リング溝に設置されるピストンリングは、前記内壁面と対向する外周面の軸方向両外側縁には、軸方向外側に向かって前記内壁面から離れる方向に傾斜しつつ前記内壁面と接触し得る傾斜面が形成され、前記傾斜面を介して相対移動する前記内壁面と前記外周面の隙間に潤滑油が流入して流体潤滑可能に構成され、前記内燃機関の回転数を、以下条件Cを満たすように制御することを特徴とする内燃機関の運転制御方法。条件C:前記行程中央部領域と、前記行程中央部領域の外側となる外部領域との境界に隣接する前記行程中央部領域側の近傍を前記ピストンリングが通過する際の摩擦係数(以下、境界中央側摩擦係数)が、前記境界に隣接する前記外部領域側の近傍を前記ピストンリングが通過する際の摩擦係数(以下、境界外部側摩擦係数)よりも小さくなるようにする事。
 上記目的を達成する本発明は、シリンダとピストンを有する内燃機関の運転制御方法であって、前記シリンダは、内壁面のうち、前記ピストンの上死点における最下位のピストンリングのリング溝の下面位置から、前記ピストンの下死点における最上位のピストンリングのリング溝の上面位置までの間(以下、基準行程領域と呼ぶ)には、該基準行程領域の上死点側の端縁よりも下側において、複数の凹部を有する行程中央部領域が形成され、前記内壁面のうち、前記基準行程領域の前記上死点側の端縁から、前記行程中央部領域の前記上死点側の端縁までの間の全部には、前記凹部を有しない上側平滑領域が形成され、前記ピストンの前記リング溝に設置されるピストンリングは、前記内壁面と対向する外周面の軸方向両外側縁には、軸方向外側に向かって前記内壁面から離れる方向に傾斜しつつ前記内壁面と接触し得る傾斜面が形成され、前記傾斜面を介して相対移動する前記内壁面と前記外周面の隙間に潤滑油が流入して流体潤滑可能に構成され、前記内燃機関の回転数を、以下条件A及び条件Bを満たすように制御することを特徴とする内燃機関の運転制御方法である。条件A:前記行程中央部領域の中で前記ピストンリングが最高速度で通過する場所の前記内壁面と前記外周面の間の摩擦係数(以下、中央摩擦係数)が、前記行程中央部領域に前記凹部が形成されない状態を仮定する場合の前記中央摩擦係数よりも小さくなるようにする事。条件B:前記行程中央部領域の外側となる外部領域のいずれかの場所の前記内壁面と前記外周面の間の摩擦係数(以下、外部摩擦係数)が、前記外部領域に複数の前記凹部が形成される状態を仮定する場合の前記外部摩擦係数よりも小さくなるようにする事。
 上記目的を達成する本発明は、シリンダとピストンを有する内燃機関の運転制御方法であって、前記シリンダは、内壁面のうち、前記ピストンの上死点における最下位のピストンリングのリング溝の下面位置から、前記ピストンの下死点における最上位のピストンリングのリング溝の上面位置までの間(以下、基準行程領域と呼ぶ)には、該基準行程領域の上死点側の端縁よりも下側において、複数の凹部を有する行程中央部領域が形成され、前記内壁面のうち、前記基準行程領域の前記上死点側の端縁から、前記行程中央部領域の前記上死点側の端縁までの間の全部には、前記凹部を有しない上側平滑領域が形成され、前記ピストンの前記リング溝に設置されるピストンリングは、前記内壁面と対向する外周面の軸方向両外側縁には、軸方向外側に向かって前記内壁面から離れる方向に傾斜しつつ前記内壁面と接触し得る傾斜面が形成され、前記傾斜面を介して相対移動する前記内壁面と前記外周面の隙間に潤滑油が流入して流体潤滑可能に構成され、前記内燃機関の回転数を、以下条件Cを満たすように制御することを特徴とする内燃機関の運転制御方法である。条件C:前記行程中央部領域と、前記行程中央部領域の外側となる外部領域との境界に隣接する前記行程中央部領域側の近傍を前記ピストンリングが通過する際の摩擦係数(以下、境界中央側摩擦係数)が、前記境界に隣接する前記外部領域側の近傍を前記ピストンリングが通過する際の摩擦係数(以下、境界外部側摩擦係数)よりも小さくなるようにする事。
 上記内燃機関の運転制御方法に関連する本発明は、前記上側平滑領域の行程方向距離は、前記基準行程領域の全距離の30%以上に設定されることを特徴とする。
 上記内燃機関の運転制御方法に関連する本発明は、前記行程中央部領域における行程方向の中央点は、前記基準行程領域における行程方向の中央点と比較して、前記ピストンの下死点側に位置することを特徴とする。
 上記内燃機関の運転制御方法に関連する本発明は、前記最上位のピストンリングが前記内壁面を最高速度で通過する位置を最速点と定義した場合に、前記行程中央部領域の前記上死点側の端縁は、前記最速点以下に設定されることを特徴とする。
 本発明によれば、燃費を向上させ、または、オイル消費量を削減させるという優れた効果を奏し得る。
本発明の実施形態に係る内燃機関の摺動構造に適用されるシリンダライナの軸方向に沿う断面図である。 (A)及び(B)は同シリンダライナの内周壁を周方向に展開した状態を示す展開図である。 同シリンダライナの内周壁の軸直角方向の断面図である。 (A)は同内燃機関の摺動構造に適用されるピストン及びピストンリングを示す側面図であり、(B)は同ピストン及びピストンリングを示す部分拡大断面図であり、(C)はトップリングの部分拡大断面図であり、(D)はセカンドリングの部分拡大断面図である。 (A)は2ピースタイプのオイルリングの断面図であり、(B)は3ピースタイプのオイルリングの断面図である。 一般的な内燃機関の摺動に関するストライベック線図である。 (A)は本実施形態の内燃機関の摺動構造を説明するためのストライベック線図であり、(B)はシリンダライナとピストンリングの摺動行程を示す側面図である。 (A)は本実施形態の内燃機関の摺動構造を説明するためのストライベック線図であり、(B)はシリンダライナとピストンリングの摺動行程を示す側面図である。 (A)は本実施形態の内燃機関の摺動構造を説明するためのストライベック線図であり、(B)はシリンダライナとピストンリングの摺動行程を示す側面図である。 (A)は本実施形態の内燃機関の摺動構造を説明するためのストライベック線図であり、(B)はシリンダライナとピストンリングの摺動行程を示す側面図である。 (A)及び(B)は本実施形態の内燃機関の運転制御を説明するためのストライベック線図である。 (A)及び(B)は本実施形態の内燃機関の運転制御を説明するためのストライベック線図である。 (A)は本実施形態の応用例に係る2ピースタイプのオイルリングの断面図であり、(B)は3ピースタイプのオイルリングの断面図である。 マイクロテクスチャ技術が適用されるシリンダライナの例を示すシリンダライナの軸方向に沿う断面図である。 本発明の第二実施形態に係る内燃機関の摺動構造に適用されるシリンダライナの軸方向に沿う断面図である。 (A)は本実施形態の内燃機関の摺動構造を説明するためのストライベック線図であり、(B)はシリンダライナとピストンリングの摺動行程を示す側面図である。 (A)は本実施形態の内燃機関の摺動構造を説明するためのストライベック線図であり、(B)はシリンダライナとピストンリングの摺動行程を示す側面図である。 (A)及び(B)は本実施形態の内燃機関の運転制御を説明するためのストライベック線図である。 (A)及び(B)は本実施形態の内燃機関の運転制御を説明するためのストライベック線図である。 (A)及び(B)は本実施形態の変形例に係る内燃機関の運転制御を説明するためのストライベック線図である。 (A)及び(B)は本実施形態の変形例に係る内燃機関の運転制御を説明するためのストライベック線図である。 (A)及び(B)は本実施形態の変形例に係る内燃機関の運転制御を説明するためのストライベック線図である。 (A)及び(B)は本実施形態の変形例に係る内燃機関の運転制御を説明するためのストライベック線図である。 (A)は本実施形態の実験例に内燃機何の摺動構造の断面図であり、(B)は検証結果を示す図表である。
 以下、本発明の実施の形態に関して添付図面を参照して説明する。まず、本発明の実施の形態に係る内燃機関の摺動構造について詳細に説明する。
 <シリンダライナ>
図1に示すように、本実施形態の内燃機関に係るシリンダライナ10の内壁面12には、複数の凹部14が形成される。凹部14は、内壁面12における行程中央部領域20のみに形成される。この行程中央部領域20とは、ピストン30の上死点Tにおける最下位のピストンリングのリング溝の下面位置から、ピストン30の下死点Uおける最上位のピストンリングのリング溝の上面位置までの範囲を最大とし、その内の全部または一部領域となる(ここでは全部の範囲が行程中央部領域20となり、そこに凹部14が形成される場合を例示する)。行程中央部領域20の外側の領域を外部領域25と定義すると、この外部領域25は、行程中央部領域20の上死点側に隣接する上側外部領域25Aと、行程中央部領域20の下死点側に隣接する下側外部領域25Bから構成される。ピストン30がシリンダライナ10内を往復運動する際、上側外部領域25A、行程中央部領域20、下側外部領域25B、行程中央部領域20、上側外部領域25Aをこの順に繰り返し通過する。なお、上側外部領域25Aと行程中央部領域20の境界を上側境界27A、下側外部領域25Bと行程中央部領域20の境界を下側境界27Bと定義する。
 凹部14は、行程中央部領域20の内壁面12において、どの場所の軸直角方向の断面をとっても、少なくとも一つの凹部14がその断面に存在するように配置される。即ち、凹部14は、軸方向に重なり合うように配置される。この結果、行程中央部領域20を通過するピストンリングの外周面は、常に、少なくとも1つの凹部14と対向している。一方、上側外部領域25Aと下側外部領域25Bには凹部14が形成されない。
 凹部14の形状は、軸方向に対して斜めに配置される方形(正方形又は長方形)となっており、結果として、複数の凹部14全体が斜め格子状に配置される。このようにすると、図2(A)の展開図に示すように、ある特定の凹部14に着目する場合、その凹部14の軸方向の最下点14bが、他の凹部14の軸方向の最上点14aよりも軸方向下側に位置する。このように、複数の凹部14が軸方向に重なり合うので、行程中央部領域20におけるあらゆる場所(例えば、矢視A、矢視B、矢視C)の軸直角方向断面において、凹部14が常に存在できる。ここでは、行程中央部領域20において、同じ面積となる複数の凹部14が、面方向(軸方向及び周方向)に均一に配置されている。
 なお、図2(B)の展開図に示すように、同一面積となる複数の凹部14が、面方向に不均一に配置されていても良い。ここでは行程中央部領域20の軸方向端部における周方向の帯状領域20Pは、複数の凹部14が占める面積が小さくなっており、行程中央部領域20の軸方向中央部における周方向の帯状領域20Qは、複数の凹部14が占める面積が大きくなっている。
 凹部14の寸法や形状は特に限定されないが、シリンダやピストンリングの寸法や目的に応じて適宜選択される。例えば、凹部14は、行程中央部領域20のシリンダ軸方向に貫く(又は延びる)ようにスリット状又は帯状に形成されることができる。一方、シリンダの気密性の観点に鑑みると、凹部14のシリンダ軸方向の最大平均長さJ(図2(A)参照)を、ピストンの最も上位に位置するピストンリング(トップリング)のシリンダ軸方向長さ(厚さ)以下、具体的にはその5~100%程度とすることが好ましい。凹部14の平均長さJとは、複数の凹部14の軸方向の最大寸法にバラつきがある場合はその平均値を意味する。
 凹部14のシリンダ周方向の最大平均長さSは、0.1mm~15mmの範囲内が好ましく、0.3mm~5mmの範囲内が望ましい。これらの範囲より小さくなると、凹部14自体による摺動面積低減効果が十分に得られない場合がある。一方、これらの範囲より大きくなると、ピストンリングの一部が凹部内に入り込みやすくなり、ピストンリングが変形する等の不具合が発生する場合がある。
 図3に示すように、凹部14のシリンダ径方向の最大平均長さR(最大平均深さR)は、0.1μm~1000μmの範囲内が好ましく、0.1μm~500μmの範囲内が望ましい。より望ましくは0.1μm~50μmに設定する。凹部14のシリンダ径方向の最大平均長さRが、これらの範囲より小さくなると、凹部14自体の摺動面積低減効果が十分に得られない場合がある。一方、これらの範囲より大きくしようとすると、加工が困難となり、また、シリンダの肉厚を厚くする必要がある等の不具合が生じ得る。
 図2に戻って、軸方向に同位置で周方向に隣り合う凹部14間のシリンダ周方向の最小の間隔Hの平均値は、0.05mm~15mmの範囲内が好ましく、0.1mm~5.0mmの範囲内が特に好ましい。これらの範囲より小さくなると、ピストンリングとシリンダライナの接触面積(摺動面積)が小さすぎて、安定して摺動できない可能性が有る。一方、これらの範囲より大きいと、凹部14自体の摺動面積低減効果が十分に得られない場合がある。
 ちなみに、このディンプルライナ技術と一見すると似ているが、根本的に異なるものとしてマイクロテクスチャ技術が存在するので、これについて簡単に説明する。マイクロテクスチャとは、図14に示すように、シリンダライナの内壁面のシリンダ軸方向に沿って、凹部が形成される領域Vと、凹部が全く存在しない領域Zとが交互に繰り返されるようにし、ピストンリングがこの内壁面を移動する度に、凹部に対してエンジンオイルの流入・流出を生じさせ、その動圧によって油膜を厚くして摩擦力を下げる理論である。従って、本実施形態のように、複数の凹部が軸方向に重なるように配置するディンプルライナ技術とは、根本の技術思想を異にしている。
 <ピストン及びピストンリング>
図4(A)及び図4(B)にピストン30及びこのピストン30のリング溝に設置されるピストンリング40(トップリング50、セカンドリング60、オイルリング70)を示す。ピストンリング40は、シリンダライナ10の内壁面12に対して、外周面42が対向する状態でシリンダ軸方向に往復運動する。トップリング50は、ピストン30とシリンダライナ10との間のすき間を無くし、燃焼室からクランクケース側へと圧縮ガスが抜ける現象(ブローバイ)を防ぐ。セカンドリング60は、トップリング50と同様に、ピストン30とシリンダライナ10との間のすき間を無くす役割と、シリンダライナ10の内壁面12に付着する余分なエンジンオイルをかき落とす役割を兼ねる。オイルリング70は、シリンダライナ10の内壁面12についている余分なエンジンオイルをかき落として、適度な油膜を形成することで、ピストン30の焼きつきを防止する。
 図4(C)に拡大して示すように、トップリング50は、単一の環状部材であり、外周面52を断面視すると、径方向外側に凸となるいわゆるバレル形状となっている。具体的には、外周面52のシリンダ軸方向両外側縁には、シリンダ軸方向の外側に向かって内壁面12から離れる方向に傾斜しつつ、内壁面12を接触し得る傾斜面54,54を有する。即ち、この傾斜面54,54は、いわゆるダレ形状であり、ピストン30及びピストンリング40をなじみ運転し、その接触摩耗によって形成される面となる。傾斜面54,54における内壁面12からの最大距離eは、外周面52の実あたり幅fの1/2000~1/500に設定され、より好ましくは1/1500~1/500とする。本実施形態では、1/1000程度としている。なお、この実あたり幅fとは、トップリング50が内壁面12に対して微細に傾斜したり、変形したりしながら摺動することで、実質的に内壁面12と接触し得る範囲を意味しており、傾斜面54,54の全部を両端に含む。実あたり幅fは、例えば0.3mm以下に形成すると好適である。
 図4(D)に拡大して示すように、セカンドリング60は、単一の環状部材であり、外周面62を断面視すると、径方向外側に凸となるいわゆるバレル形状となっている。トップリングと同様に、外周面62のシリンダ軸方向両外側縁は、シリンダ軸方向の外側に向かって内壁面12から離れる方向に傾斜しつつ、内壁面12を接触し得る傾斜面64,64を有する。この傾斜面64,64は、いわゆるダレ形状であり、ピストン30及びピストンリング40をなじみ運転し、その摩耗によって形成される面となる。傾斜面64,64における内壁面12からの最大距離eは、外周面62の実あたり幅fの1/2000~1/500に設定され、より好ましくは1/1500~1/500とする。本実施形態では、1/1000程度としている。車両用内燃機関の場合、実あたり幅fは例えば0.3mm以下に形成すると好適である。
 図5(A)に拡大して示すオイルリング70は、2ピースタイプであり、リング本体72と、コイルばね状のコイルエキスパンダ76を有する。リング本体72は、軸方向両端に配置される一対の環状のレール73,73と、この一対のレール73,73の間に配置されてこれらを連結する環状の柱部75を有する。一対のレール73,73及び柱部75を合わせた断面形状は略I形状又はH形状となっており、この形状を利用して、内周面側には、コイルエキスパンダ76を収容するための断面半円弧形状の内周溝76が形成される。また、一対のレール73,73には、それぞれ、柱部75を基準として径方向外側に突出する環状突起74,74が形成される。この環状突起74,74の突端に形成される外周面82,82が、シリンダライナ10の内壁面12と当接する。コイルエキスパンダ76は、内周溝76に収容されることで、リング本体72を径方向外側に押圧付勢する。なお、リング本体72の柱部75には、油戻し孔77が、周方向に複数形成される。
 図5(A)の領域Oに更に拡大して示すように、一対の外周面82,82は、リング本体72に一体的に形成されていることから、両外周面82,82を合わせて単一外周面83と定義できる。この単一外周面83のシリンダ軸方向両外側縁には、シリンダ軸方向の外側に向かって内壁面12から離れる方向に傾斜しつつ、内壁面12を接触し得る傾斜面84,84が形成される。この傾斜面84,84は、いわゆるダレ形状であり、ピストン30及びピストンリング40をなじみ運転し、その摩耗によって形成される面となる。傾斜面84,84における内壁面12からの最大距離eは、各外周面82の実あたり幅f1,f2の合計値となる実あたり幅fの1/2000~1/500に設定され、より好ましくは1/1500~1/500とする。本実施形態では、1/1000程度としている。なお、実あたり幅fは、0.02mm~0.18mmに形成されることが好ましい。
 なお、オイルリング70は2ピースタイプに限られず、例えば図5(B)に示す3ピースタイプのオイルリング70であっても良い。このオイルリング70は、上下に分離している環状のサイドレール73a,73bと、このサイドレール73a,73bの間に配置されるスペーサエキスパンダ76sを有する。
 スペーサエキスパンダ76sは、鋼材をシリンダ軸方向に凹凸を繰り返す波形形状に塑性加工して形成される。この波型形状を利用して、上方側支持面78aと下方側支持面78bが形成され、一対のサイドレール73a,73bがそれぞれ軸方向に支持される。スペーサエキスパンダ76sの内周側端部には、軸方向外側に向かってアーチ状に立設される耳部74mを有する。この耳部74mは、サイドレール73a,73bの内周面に当接する。なお、スペーサエキスパンダ76sは、合口が付き合わされて、周方向に収縮状態でピストン30のリング溝に組み込まれる。結果、スペーサエキスパンダ76sの復元力によって、耳部74mがサイドレール73a,73bを径方向外側に押圧付勢する。
  図5(B)の領域Oに更に拡大して示すように、サイドレール73a,73bの各々の外周面82のシリンダ軸方向両外側縁は、シリンダ軸方向の外側に向かって内壁面12から離れる方向に傾斜しつつ、内壁面12を接触し得る傾斜面84,84を有する。この傾斜面84,84は、いわゆるダレ形状であり、ピストン30及びピストンリング40をなじみ運転し、その摩耗によって形成される面となる。傾斜面84,84における内壁面12からの最大距離eは、外周面82の実あたり幅fの1/2000~1/500に設定され、より好ましくは1/1500~1/500とする。本実施形態では、1/1000程度としている。なお、実あたり幅fは、0.02mm~0.18mmに形成されることが好ましい。
 <シリンダライナとピストンリングの摩擦態様>
次に、シリンダライナとピストンリングの摩擦態様について説明する。一般的な摺動時の摩擦には、図6に示すストライベック線図として表現されるように、直接接触して摺動する固体接触領域110の摩擦態様、油性被膜を介して摺動する境界接触領域112の摩擦態様、粘性潤滑油膜を介して摺動する流体潤滑領域114における摩擦態様に分別される。なお、このストライベック線図は、横軸が、「動粘度(動粘性率)μ」×「速度U」/「接触荷重W」を対数表示したものであり、縦軸が、摩擦係数(μ)となる。従って、摩擦力が最も小さくなり得るのは流体潤滑領域114であり、この領域114を有効利用することが、低摩擦化、即ち、低燃費に有効となる。一方、速度Uが上昇しても、境界接触領域112の途中から流体潤滑領域114に移行できない場合は、点線に示すように、境界接触領域112がそのまま高速領域まで継続する状態(又は流体潤滑領域114との混在状態)になる。
 ちなみに、流体潤滑領域114の摩擦力の大部分は、オイルのせん断抵抗であり、このせん断抵抗は、(粘度)×(速度)×(面積)/(油膜厚さ)で定義される。結果、せん断面積を低減することが、摩擦力の低減に直結する。
 そこで、本実施形態では、ピストンリング40の外周面42をバレル形状とし、その傾斜面を利用して、実あたり面にオイルを積極的に流入させることで、素早く流体潤滑領域114に移行して低摩擦化を実現する。同時に、シリンダライナ10に対していわゆるディンプルライナ技術を適用することで、シリンダライナ10の行程中央部領域20に凹部14を形成して、オイルのせん断抵抗が生じる実質面積を減少させることで、より効率的に摩擦力の低下を達成する。ちなみに、近年のピストンリングでは、ピストンリングの外周面の実あたり幅を極端に小さくし(即ちV字形状断面とし)、接触荷重Wを小さくしつつ(低張力化)、その表面硬度(耐摩耗性)を高くすることで、ダレ形状を形成することなく、境界接触領域112において低摩擦化を実現する思想が主流となっている。
 次に、シリンダライナ10とピストンリング40の摩擦態様等について説明する。なお、ピストン30に対して、これに設置されるトップリング50、セカンドリング60、オイルリング70の固定位置が、シリンダ軸方向に相対的に異なることから、シリンダライナ10と摩擦状態も厳密にはそれぞれのピストンリングで微差が生じる。しかし、ここではセカンドリング60の摩擦態様について説明を行うことにし、セカンドリング60の摩擦態様から類推的に把握可能なトップリング50及びオイルリング70の摩擦態様の説明を省略する。なお、最速通過点Cに限っては、トップリング50を基準としている。
 <凹部なしシリンダライナとピストンリングの摩擦態様>
図7(A)の点線(base liner)のストライベックの線図は、本発明者らによって実測された、行程中央部領域20と外部領域25の双方(内壁面全体)に凹部14が形成されていないシリンダライナ10と、ピストンリング40の流体潤滑領域114における摩擦態様となる。なお、このストライベック線図の横軸は、「動粘度(動粘性率)μ」×「速度U」/「接触荷重W」を、対数ではなくそのまま実数表示したものであり、縦軸が摩擦係数(μ)となる。「動粘度(動粘性率)μ」や「接触荷重W」は、シリンダライナ10とピストンリング40の仕様で略固定される定数であることから、ピストン30が、シリンダライナ10の上死点Tから下死点Uまで摺動する際の、シリンダライナ10とピストンリング40の摩擦係数(μ)の変動は、両者の相対速度に依存することになり、この相対速度は、エンジンの回転数(rpm)によって一義的に決定する。従って、点線(base liner)に沿って付記される行程線214と図7(B)に示すように、ピストン30が上死点Tから最速通過点Cを経て下死点Uまで移動する過程で、ピストンリング40とシリンダライナ10の相対速度Uが零から最高速度となって零に戻り、その間に摩擦係数が常に変化する。なお、ピストンクランク機構におけるピストン30の移動速度が最高速度となる最速通過点Cは、往復工程の中心ではなく、中心から多少上死点T側に偏った地点となる。なお、図7以降のストライベックの線図における領域Qは、アイドリング運転の回転数以上の回転数領域において、ピストンリング40の移動速度が最速となる地点(つまり、グラフ内を遷移する行程線214の右端)の到達範囲の例を示している。
 <全体凹部有りシリンダライナとピストンリングの摩擦態様>
図8(A)の実線(Dimple liner)のストライベックの線図は、行程中央部領域20と外部領域25の双方(内壁面全体)に凹部14が形成されるシリンダライナ10と、ピストンリング40の流体潤滑領域114における摩擦態様となる。ピストン30が、シリンダライナ10の上死点Tから下死点Uまで摺動する際の、シリンダライナ10とピストンリング40の摩擦係数(μ)の変動は、両者の相対速度に依存することになり、この相対速度は、エンジンの回転数(rpm)に一義的に決定する。従って、実線(Dimple liner)に沿って付記される行程線314及び図8(B)に示すように、ピストン30が、シリンダライナ10の上死点Tから下死点Uまで摺動する過程で、リンダライナ10とピストンリング40の相対速度Uが零から最高速度となって零に戻り、その間に摩擦係数が常に変化する。ここで、実線(Dimple liner)のストライベックの線図は、点線(base liner)のストライベックの線図と比較して右側(高速側)にオフセットしており、更に、下側(低摩擦側)にオフセットしていることが分かる。特に、高速領域になるほど、実線(Dimple liner)と点線(base liner)の摩擦係数の差が大きくなる。
 <本実施形態のシリンダライナとピストンリングの摺動構造>
図1で説明した行程中央部領域20のみに凹部14を有するシリンダライナ10とピストンリング40の摩擦態様は、図7(A)の点線(base liner)の行程線214と、図8(A)の実線(Dimple liner)の行程線314を組み合わせたものになると推察される。この状態を図9(A)及び図10(A)に示す。つまり、シリンダライナ10の外部領域25を、ピストンリング40が上死点Tから下死点Uに向かって相対移動している最中は、図9(A)に示すように、点線(base liner)に沿った行程線214(A及びB)となり、シリンダライナ10の行程中央部領域20をピストンリング40が相対移動している最中は、実線(Dimple liner)に沿った行程線314(L及びM)となる。また、シリンダライナ10の外部領域25を、ピストンリング40が下死点Uから上死点Tに向かって相対移動している最中は、図10(A)に示すように、点線(base liner)に沿った行程線214(A及びB)となり、シリンダライナ10の行程中央部領域20をピストンリング40が相対移動している最中は、実線(Dimple liner)に沿った行程線314(L及びM)となる。
 更に本実施形態の摺動構造では、アイドリング運転の回転数以上となるいずれかの回転数(ここではアイドリング時の回転数とする)において、行程中央部領域20の中でピストンリング40が最高速度で通過する場所(全行程の最速通過点C)の内壁面12と外周面42の間の摩擦係数Ca(以下、中央摩擦係数Caと称する)が、行程中央部領域に凹部が形成されない状態を仮定する場合の同タイミング(最速通過点C)の中央摩擦係数Cbよりも小さくなる。更に、同回転数(ここではアイドリング運転の回転数)において、行程中央部領域20の外側となる外部領域25のいずれかの場所をピストンリング40が通過する際の内壁面12と外周面42の間の摩擦係数Ta(上死点側)、Ua(下死点側)(以下、外部摩擦係数Ta,Ua)が、外部領域25に複数の凹部が形成される場合における同タイミングの外部摩擦係数Tb,Ubよりも小さくなるように設定される。
 このようにすると、凹部が無い外部領域25を低速域で活用することで、凹部14が存在しないことによる低摩擦化を実現し、一方、凹部14が存在する行程中央部領域20を高速域で活用することで、凹部14の存在による低摩擦化を実現し、双方に利点を両立させた摺動構造とすることができる。
 また本実施形態では、図9(B)及び図10(B)に示すように、行程中央部領域20と外部領域25の境界(上側境界27A、下側境界27B)に隣接する行程中央部領域20側の近傍領域20inをピストンリング40が通過する際の摩擦係数Tin(上死点側),Uin(下死点側)(以下、両者を共に境界中央側摩擦係数という)が、同境界に隣接する外部領域25の側の近傍領域25outをピストンリング40が通過する際の摩擦係数Tout(上死点側),Uout(下死点側)(以下、両者を共に境界外部側摩擦係数という)よりも小さくなるように設定される。即ち、図9(A)及び図10(A)に示す、実線(Dimple liner)のストライベックの線図と点線(base liner)のストライベックの線図が交差する点K(以下、摩擦転換点Kという)を基準とする場合、それよりも右側(高速領域側)の範囲内において、行程中央部領域20と外部領域25の境界27A,27Bを通過することで、摩擦係数をシフトさせるようにしている。
 このようにする理由として、実線(Dimple liner)のストライベック線図の摩擦転換点Kよりも低速領域側は、急激に摩擦係数が増大しており、その領域内で境界27A,27Bを通過させてしまうと、実線(Dimple liner)のストライベック線図の低速側領域(高い摩擦係数となる領域)を利用してしまい、燃費効率をかえって悪化させてしまうからである。
 更に本実施形態では、アイドリング運転の回転数以上となるいずれかの回転数(ここではアイドリング時の回転数とする)において、上記境界外部側摩擦係数Tout,Uoutと上記境界中央側摩擦係数Tin,Uinの境界シフト時の変動比(Tout/Tin),(Uout/Uin)が、2.5以下となるように設定し、更に望ましくは1.5以下の範囲内に設定する。このようにすると、境界外部側摩擦係数Tout,Uoutと上記境界中央側摩擦係数Tin,Uinができる限り接近する状態で、境界27A,27Bを通過することが可能となり、急激な摩擦係数の変化を抑制できる。結果、より滑らかなエンジン回転を実現できる。なお、本実施形態では、点線(base liner)のストライベックの線図に示すように、外部摩擦係数Tout,Uoutが大きくなりすぎる高速範囲を活用するのは無駄が多いため、本実施形態では、境界外部側摩擦係数Tout,Uoutの少なくとも一方が0.06以下となるように設定している。
 <本実施形態の内燃機関のアイドリング運転時のエンジン回転数制御>
 次に、内燃機関のアイドリング運転時のエンジン回転数制御について説明する。本実施形態で示す内燃機関では、ピストンリング40の移動速度によって、摩擦態様が変化することから、アイドリング運転時においてピストンリング40の移動速度の設定が、燃費等に大きな影響を与える。
 例えば図11(A)及び(B)に示すように、アイドリング運転時のエンジン回転数を低く設定すると、摩擦転換点Kよりも低速側の領域でピストンリング40が境界27A,27Bを通過する。結果、境界27A,27Bから摩擦転換点Kまでの間において、行程中央部領域20の存在が摩擦係数をかえって悪化させることになる(実線(Dimple liner)のストライベックの線図を参照のこと)。
 一方、図12(A)及び(B)に示すように、図11の状態よりもアイドリング運転時のエンジン回転数を高くすると、ピストンリング40が境界27A,27Bを通過するタイミングが、摩擦転換点Kよりも高速側の領域に移動することで、図11に示す行程中央部領域20の悪影響は解消される。しかしながら、今度は摩擦転換点Kよりも高速側における外部領域25の高摩擦係数が悪影響を及ぼし始める(点線(base liner)のストライベックの線図を参照のこと)。なお、この図12(A)及び(B)は未だ適切な範囲内であるが、アイドリング運転時の回転数を更に高くすると、境界27A,27Bを通過するタイミングが更に高速側に移動し、境界シフト時の摩擦係数の変動比(Tout/Tin),(Uout/Uin)が2.5を超え出す結果となり、摩擦係数の変化が大きくなりすぎて、円滑な回転を阻害し得る。
 以上の結果、図9及び図10で示すような摺動構造を実現できるように、アイドリング運転時の内燃機関の回転数を設定することが好ましいことが分かる。
 <ピストンリングの応用構造>
 次に2ピースタイプのオイルリング70(図13(A)参照)及び3ピースタイプのオイルリング70(図13(B)参照)の応用構造について説明する。図13(A)に示すように、2ピースタイプのオイルリング70の一対のレール73,73は、母材600と、母材600の表面に形成される表面処理層620を有する。母材600は、鋼材、鋳鉄材、アルミニウム合金等から構成されるが、良好な耐摩耗性を発揮するものであればその材料は特に限定されない。望ましい鋼材の例としては、C:0.16~1.30%を含有する鋼材、あるいはこれにMo及びVの少なくともいずれか一方を少量含有させるクロム鋼等が挙げられる。
 表面処理層620は、硬質な第一層622と、第一層622と比較して軟質な第二層624とを備える。第一層622は、例えばビッカース硬度がHV800以上であることが好ましい。具体的には、硬質炭素被膜(DLC)や硬質クロムメッキ等が用いられる。また第一層622は、窒化層及び/又はCr-N又はCr-B-Nからなるイオンプレーティング法やスパッタリング法等の物理的蒸着法(PVD)によるPVD被膜としてもよく、また、溶射又はガス窒化処理(GN)などの窒化処理法による耐摩耗性の表面処理を施すことで得てもよい。
 図13(B)に示すように、3ピースタイプのオイルリング70のサイドレール73a,73bについても、2ピースタイプと同様の母材600と、母材600の表面に形成される表面処理層620を有する。表面処理層620は、硬質な第一層622と、第一層622と比較して軟質な第二層624とを備える。
 第一層622の厚さは、ガス窒化による窒化層として形成する場合、2ピースタイプのオイルリング70では10~150μm、3ピースタイプのオイルリング70においては2~50μmとすることが好ましい。物理的蒸着(PVD)によるPVD被膜の場合は、2ピースタイプのオイルリング70では5~50μm、3ピースオイルリングにおいては5~30μmとすることが好ましい。
 また第一層622の形成後であって、第二層624を形成する前に、その表面に対してラッピング等の仕上げ処理を施すことが好ましく、表面粗さ(Ra)は0.7μm以下に形成され、より好ましくは0.5μm以下とし、0.05μm以上にすることが望ましい。なお、表面粗さ(Ra)は「算術平均粗さ」を意味する。
 第二層624は、第一層622と比較して軟質な材料、例えばビッカース高度でHV800以下又はHV800未満に形成される。具体的に第二層624は、クロム(Cr)、ニッケルリン(Ni-P)、ポリアミドイミド樹脂等の合成樹脂、Cr-N又はCr-B-Nからなる被膜及び錫(Sn)等を用いることが好ましい。また、第二層624の外表面は、第一層622と異なり、ラッピング等の仕上げ処理を施す必要はない。
 第二層624は、内燃機関の初期運転時(なじみ運転時)に適度に摩滅させる役割を担い、結果として、第一層622の一部が露出して、外周面82がバレル形状を呈することができる。外周面82における実あたり幅を構成する実あたり面では、露出された第一層622と、この第一層622の両脇に残存して断面が湾曲形状となるように摩滅された第二層624とが、互いに滑らかに連続する。
 以上の結果、両脇の第二層624の存在により、外周面82が効果的なバレル形状にできるので、本実施形態の摺動構造で求められる流体潤滑領域を、オイルリング70とシリンダライナ10の間に創出することができる。なお第二層624の厚さは、なじみ運転後のバレル形状のダレ量(シリンダライナ10からの最大離反距離e)が所望量となる程度に形成され、具体的には10μm以下、より好ましくは0.5μm~5.0μmに設定される。好ましいダレ量としては、オイルリング70とシリンダライナ10の実あたり幅fに対して、その1/1500~1/500の範囲に形成されることが好ましい。ダレ量を上記範囲に設定すると、ピストンリングとシリンダライナの間に好適な流体潤滑を創出することができ、低摩擦化を達成できる。
 なお、2ピースタイプ又は3ピースタイプのオイルリング70の母材600は、13Cr鋼を用いることができる。この13Cr鋼は、炭素0.6~0.7質量%、ケイ素0.25~0.5質量%、マンガン0.20~0.50質量%、クロム13.0~14.0質量%、モリブデン0.2~0.4質量%、リン0.03質量%以下、硫黄0.03質量%以下、残部鉄及び不可避不純物の組成のものをいう。
 また、上記以外にも、オイルリング70の母材600は、17Cr鋼を用いることができる。この17Cr鋼は、炭素0.80~0.95質量%、ケイ素0.35~0.5質量%、マンガン0.25~0.40質量%、クロム17.0~18.0質量%、モリブデン1.00~1.25質量%、バナジウム0.08~0.15質量%、リン0.04質量%以下、硫黄0.04質量%以下、残部鉄及び不可避不純物の組成のものをいう。他の材料として8Cr鋼、SWRH77B相当材を用いることができる。
 なお、なお第二層624を含めた状態で実あたり幅が設定されることから、母材600及び第一層622の突端の実幅は、この実あたり幅と比較して、小さく設定することが好ましい。
 なお、ここでは、オイルリング70について、母材600と、母材600の表面に形成される表面処理層620を有する場合を例示したが、トップリング50やセカンドリング60についても、同様の表面処理層を形成することが好ましい。
 以下、本発明の第二の実施の形態に関して添付図面を参照して説明する。まず、本発明の実施の形態に係る内燃機関の摺動構造について詳細に説明する。
 <シリンダライナ>
図15に示すように、本実施形態の内燃機関に係るシリンダライナ10の内壁面12には、複数の凹部14が形成される。凹部14は、内壁面12における行程中央部領域20のみに形成される。この行程中央部領域20は、ピストン30の上死点Tにおける最下位のピストンリングのリング溝の下面位置27A(以下、上死点側端縁とも呼ぶ)から、ピストン30の下死点Uおける最上位のピストンリングのリング溝の上面位置27B(以下、下死点側端縁とも呼ぶ)までの全範囲(以下、基準行程領域19と呼ぶ)の一部となっており、とりわけ、基準行程領域19の上死点側端縁27Aよりも下側にずれた位置となる。その結果、基準行程領域19の上死点側端縁27Aから、行程中央部領域20の上死点側の端縁20Aまでの間の全部には、凹部を有しない平滑な上側平滑領域130が形成される。
 本実施形態では、行程中央部領域20の上死点側の端縁20Aを、凹部14が形成される場所と凹部14が形成されない場所の境界線を意味する「上側境界20A」と呼ぶことがあり、また、行程中央部領域20の下死点側の端縁20Bを、凹部14が形成される場所と凹部14が形成されない場所の境界線を意味する「下側境界20B」と呼ぶこともある。なお、本実施形態では、行程中央部領域20の下死点側の端縁(下側境界)20Bは、基準行程領域19の下死点側端縁27Bと一致させているが、必ずしもそれに限定されず、それよりも下側に位置しても良く、上側に位置しても良い。
 また、行程中央部領域20の外側の領域を外部領域25と定義すると、この外部領域25は、行程中央部領域20の上死点側に隣接する上側外部領域25Aと、行程中央部領域20の下死点側に隣接する下側外部領域25Bから構成される。なお、上側外部領域25Aの一部には、上側平滑領域130が含まれることになる。
 ピストン30がシリンダライナ10内を往復運動する際、上側外部領域25A(上側平滑領域130)、行程中央部領域20、下側外部領域25B、行程中央部領域20、上側外部領域25A(上側平滑領域130)をこの順に繰り返し通過する。
 上側平滑領域130の行程方向距離は、望ましくは、基準行程領域19の行程方向全距離の30%以上に設定される。また、行程中央部領域20における行程方向の中央点20Mは、基準行程領域における行程方向の中央点19Mと比較して、ピストンの下死点U側に位置する。
 最上位のピストンリング(後述するトップリング50)が内壁面12を最高速度で通過する位置を最速通過点Cと定義した場合、行程中央部領域20の上死点側の端縁(上側境界)20Aは、最速通過点C以下に設定される。本実施形態では、上側境界20Aと最速通過点Cが一致するように設定されている。
 <上側平滑領域の存在意義>
既に述べたように、本実施形態では、行程中央部領域20よりも上死点側に、凹部が形成されない上側平滑領域130を備える。この上側平滑領域130の意義は次の通りである。ピストン30の上死点側は、燃焼室が存在することから高温環境となる。従って、シリンダライナ10の上死点側に凹部を形成して、凹部内にエンジンオイルを滞留させてしまうと、そのエンジンオイルが高温となり、気化することでオイル消費量が増大する。また、ピストン30の上死点T側は、高温環境によってエンジンオイルの粘性も低下して摩擦係数が小さくなるので、凹部の必要性も下死点U側と比較すれば少ない。
 <本実施形態のシリンダライナとピストンリングの摺動構造>
図15で説明した、上側平滑領域130と行程中央部領域20を有するシリンダライナ10とピストンリング40の摩擦態様は、図7(A)の点線(base liner)の行程線214と、図8(A)の実線(Dimple liner)の行程線314を組み合わせたものになると推察される。この状態を図16(A)及び図17(A)に示す。
 図16(A)及び(B)には、シリンダライナ10をピストンリング40が上死点Tから下死点Uに向かって相対移動する行程を示す。ピストンリング40が、上側外部領域25A及びその一部となる上側平滑領域130を相対移動する際中は、図16(A)の点線(base liner)に沿った行程線A、Lとなる。そして、ピストンリング40が、上側平滑領域130及びシリンダライナ10の最速通過点Cを通過して、行程中央部領域20に進入し、そこをピストンリング40が相対移動している最中は、図16(A)の実線(Dimple liner)に沿った行程線Mとなる。更に、行程中央部領域20を通過して、シリンダライナ10の下側外部領域25Bを、ピストンリング40が下死点側に向かって相対移動している最中は、図16(A)の点線(base liner)に沿った行程線Bとなる。
 図17(A)及び(B)には、シリンダライナ10をピストンリング40が下死点Uから上死点Tに向かって相対移動する行程を示す。シリンダライナ10の下側外部領域25Bを、ピストンリング40が上死点側に向かって相対移動している最中は、図17(A)の点線(base liner)に沿った行程線Bとなる。そして、下側外部領域25Bを通過して、行程中央部領域20に進入し、そこをピストンリング40が相対移動している最中は、図17(A)の実線(Dimple liner)に沿った行程線Mとなる。行程中央部領域20及びシリンダライナ10の最速通過点Cを通過して、上側外部領域25A及びその一部となる上側平滑領域130を上死点側に向かって相対移動する際中は、図17(A)の点線(base liner)に沿った行程線L、Aとなる。
 更に本実施形態の摺動構造では、アイドリング運転の回転数以上となるいずれかの回転数(ここではアイドリング時の回転数とする)において、行程中央部領域20の中でピストンリング40が最高速度で通過する場所(本実施形態では行程中央部領域20の上側境界20A)の内壁面12と外周面42の間の摩擦係数Ca(以下、中央摩擦係数Caと称する)が、行程中央部領域に凹部が形成されない状態を仮定する場合の同タイミング(上側境界20Aを通過するタイミング)の中央摩擦係数Cbよりも小さくなる。更に、同回転数(ここではアイドリング運転の回転数)において、行程中央部領域20の外側となる外部領域25(上側外部領域25A又は下側外部領域25B)のいずれかの場所をピストンリング40が通過する際の内壁面12と外周面42の間の摩擦係数Ta(上死点側)、Ua(下死点側)(以下、外部摩擦係数Ta,Ua)が、外部領域25に複数の凹部が形成される場合における同タイミングの外部摩擦係数Tb,Ubよりも小さくなるように設定される。
 このようにすると、凹部が無い外部領域25を低速域で活用することで、凹部14が存在しないことによる低摩擦化を実現し、一方、凹部14が存在する行程中央部領域20を高速域で活用することで、凹部14の存在による低摩擦化を実現し、双方に利点を両立させた摺動構造とすることができる。更に、行程中央部領域20を下死点U側にオフセットさせつつ、上死点T側に、凹部が形成されない上側平滑領域130を確保することで、オイル消費量を低減することも同時に実現している。
 また本実施形態では、図16(B)及び図17(B)に示すように、行程中央部領域20と外部領域25の境界(上側境界20A、下側境界20B)に隣接する行程中央部領域20側の近傍領域20inをピストンリング40が通過する際の摩擦係数Tin(上死点側),Uin(下死点側)(以下、両者を共に境界中央側摩擦係数という)が、同境界に隣接する外部領域25の側の近傍領域25outをピストンリング40が通過する際の摩擦係数Tout(上死点側),Uout(下死点側)(以下、両者を共に境界外部側摩擦係数という)よりも小さくなるように設定される。即ち、図16(A)及び図17(A)に示す、実線(Dimple liner)のストライベックの線図と点線(base liner)のストライベックの線図が交差する点K(以下、摩擦転換点Kという)を基準とする場合、それよりも右側(高速領域側)の範囲内において、行程中央部領域20と外部領域25の境界20A,20Bを通過することで、摩擦係数をシフトさせるようにしている。
 このようにする理由として、実線(Dimple liner)のストライベック線図の摩擦転換点Kよりも低速領域側は、急激に摩擦係数が増大しており、その領域内で境界20A,20Bを通過させてしまうと、実線(Dimple liner)のストライベック線図の低速側領域(高い摩擦係数となる領域)を利用してしまい、燃費効率をかえって悪化させてしまうからである。
 更に本実施形態では、アイドリング運転の回転数以上となるいずれかの回転数(ここではアイドリング時の回転数とする)において、下側境界20Bにおける境界外部側摩擦係数Uoutと、下側境界20Bにおける境界中央側摩擦係数Uinの境界シフト時の変動比(Uout/Uin)が、2.5以下となるように設定し、更に望ましくは1.5以下の範囲内に設定する。このようにすると、境界外部側摩擦係数Uoutと上記境界中央側摩擦係数Uinができる限り接近する状態で、下側境界20Bを通過することが可能となり、急激な摩擦係数の変化を抑制できる。結果、より滑らかなエンジン回転を実現できる。なお、本実施形態では、境界外部側摩擦係数Uoutが0.06以下となるように設定している。
 <本実施形態の内燃機関のアイドリング運転時のエンジン回転数制御>
 次に、内燃機関のアイドリング運転時のエンジン回転数制御について説明する。本実施形態で示す内燃機関では、ピストンリング40の移動速度によって、摩擦態様が変化することから、アイドリング運転時においてピストンリング40の移動速度の設定が、燃費等に大きな影響を与える。
 例えば図18(A)及び(B)に示すように、アイドリング運転時のエンジン回転数を低く設定すると、摩擦転換点Kよりも低速側の領域でピストンリング40が下側境界20Bを通過する。結果、下側境界20Bから摩擦転換点Kまでの間において、行程中央部領域20の存在が摩擦係数をかえって悪化させることになる(実線(Dimple liner)のストライベックの線図の行程線Lを参照のこと)。
 一方、図19(A)及び(B)に示すように、図18の状態よりもアイドリング運転時のエンジン回転数を高くすると、ピストンリング40が下側境界20Bを通過するタイミングが、摩擦転換点Kよりも高速側の領域に移動することで、図18に示す行程中央部領域20の悪影響は解消される。しかしながら、今度は摩擦転換点Kよりも高速側における外部領域25の高摩擦係数が悪影響を及ぼし始める(点線(base liner)のストライベックの線図の行程線Bを参照のこと)。なお、この図19(A)及び(B)は未だ適切な範囲内であるが、アイドリング運転時の回転数を更に高くすると、下側境界20Bを通過するタイミングが更に高速側に移動し、境界シフト時の摩擦係数の変動比(Uout/Uin)が2.5を超え出す結果となり、摩擦係数の変化が大きくなりすぎて、円滑な回転を阻害し得る。
 以上の結果、図16及び図17で示すような摺動構造を実現できるように、アイドリング運転時の内燃機関の回転数を設定することが好ましいことが分かる。
 <本実施形態の変形例に係るシリンダライナとピストンリングの摺動構造>
図20及び図21に、図16(A)及び図17(A)に示した摺動構造の変形例を示す。この変形例においては、上側平滑領域130の範囲が更に下死点U側に広がっており、結果、行程中央部領域20の上死点側の端縁(上側境界)20Aは、最速通過点Cよりも下側に位置している。
 図20(A)及び(B)には、シリンダライナ10をピストンリング40が上死点Tから下死点Uに向かって相対移動する行程を示す。ピストンリング40が、上側外部領域25A及びその一部となる上側平滑領域130を相対移動する際中は、図20(A)の点線(base liner)に沿った行程線A、L1、L2となる。なお、図20(B)の通り、上側平滑領域130を相対移動する途中で、最速通過点Cを通過することになるので、図20(A)の行程線L1、L2に示すように、点線(base liner)に沿って最速通過点Cで折り返す。そして、ピストンリング40が、上側平滑領域130を通過して、行程中央部領域20に進入し、そこをピストンリング40が相対移動している最中は、図20(A)の実線(Dimple liner)に沿った行程線Mとなる。更に、行程中央部領域20を通過して、シリンダライナ10の下側外部領域25Bを、ピストンリング40が下死点側に向かって相対移動している最中は、図20(A)の点線(base liner)に沿った行程線Bとなる。
 図21(A)及び(B)には、シリンダライナ10をピストンリング40が下死点Uから上死点Tに向かって相対移動する行程を示す。シリンダライナ10の下側外部領域25Bを、ピストンリング40が上死点側に向かって相対移動している最中は、図21(A)の点線(base liner)に沿った行程線Bとなる。そして、下側外部領域25Bを通過して、行程中央部領域20に進入し、そこをピストンリング40が相対移動している最中は、図21(A)の実線(Dimple liner)に沿った行程線Mとなる。行程中央部領域20を通過して上側平滑領域130に進入して相対移動する際中は、図21(A)の点線(base liner)に沿った行程線L2となり、更に最速通過点Cを通過して上側平滑領域130を相対移動する際中は、図21(A)の点線(base liner)に沿った行程線L1となり、上側平滑領域130を通過して残りの上側外部領域25Aを相対移動する際中は、図21(A)の点線(base liner)に沿った行程線Aとなる。このようにすると、上側平滑領域130が更に広く確保されることで、オイル消費量を一層低減することができる。
 図22及び図23に、図16(A)及び図17(A)に示した摺動構造の他の変形例を示す。この変形例においては、上側平滑領域130の範囲が狭くなっており、結果、行程中央部領域20の上死点側の端縁(上側境界)20Aが、最速通過点Cよりも上側に位置している。
 図22(A)及び(B)には、シリンダライナ10をピストンリング40が上死点Tから下死点Uに向かって相対移動する行程を示す。ピストンリング40が、上側外部領域25A及びその一部となる上側平滑領域130を相対移動する際中は、図22(A)の点線(base liner)に沿った行程線A、Lとなる。そして、そして、ピストンリング40が、上側平滑領域130を通過して、行程中央部領域20に進入し、そこをピストンリング40が相対移動している最中は、図22(A)の実線(Dimple liner)に沿った行程線M1となる。なお、図22(B)の通り、行程中央部領域20を相対移動する途中で、最速通過点Cを通過することになるので、図22(A)の行程線M1、M2に示すように、実線(Dimple liner)に沿って最速通過点Cで折り返す。そして、ピストンリング40が、行程線M2に沿って相対移動して行程中央部領域20を通過し、シリンダライナ10の下側外部領域25Bに進入する。その後、ピストンリング40が下死点側に向かって相対移動している最中は、図22(A)の点線(base liner)に沿った行程線Bとなる。
 図23(A)及び(B)には、シリンダライナ10をピストンリング40が下死点Uから上死点Tに向かって相対移動する行程を示す。シリンダライナ10の下側外部領域25Bを、ピストンリング40が上死点側に向かって相対移動している最中は、図23(A)の点線(base liner)に沿った行程線Bとなる。そして、下側外部領域25Bを通過して、行程中央部領域20に進入し、そこをピストンリング40が相対移動している最中は、図23(A)の実線(Dimple liner)に沿った行程線M2となる。更に最速通過点Cを通過して行程中央部領域20を相対移動する際中は、図23(A)の実線(Dimple liner)に沿った行程線M1となる。行程中央部領域20を通過して上側平滑領域130に進入して相対移動する際中は、図23(A)の点線(base liner)に沿った行程線Lとなり、上側平滑領域130を通過して残りの上側外部領域25Aを相対移動する際中は、図23(A)の点線(base liner)に沿った行程線Aとなる。このようにすると、上側平滑領域130が多少狭くなるため、オイル消費量は多少増加するものの、実線(Dimple liner)に沿った行程線M1、M2が長くなるので、燃費効率を高めることができる。
 <検証例>
 図24(A)に示すように、基準行程領域19の距離をS、上側平滑領域130の距離をP、行程中央部領域20の距離をQ、基準行程領域19の残部距離をRとし、各行程の比率を変更した実験例1~3を用意し、エンジンを1800rpmで試運転することでオイル消費量(LOC)を検証した。なお、行程中央部領域20に形成される凹部14の形状は、直径0.5mmの正円とし、その深さは3.5μmとした。また、行程中央部領域20において凹部14が占める面積率は50%とした。また、基準行程領域19の距離Sは115mmとし、この基準工程領域19の下死点側端縁27Bからトップリング50が最速で通過する最速通過点Cまでの距離Oを70mmとした。
 また比較例1として、基準行程領域19の全てが行程中央部領域20となる場合、即ち、上側平滑領域130を全く設けない場合を検証し、また、比較例2として、行程中央部領域20を設けない場合、即ち、凹部14を形成しない場合を検証した。オイル消費量の評価は、比較例2の行程中央部領域20を設けない場合の検証結果となるオイル消費量を基準オイル消費量とし、その基準オイル消費量に対して、他の検証結果がどの程度増減するかについて比率により相対評価した。
 図24(B)の比較例1に示すように、上側平滑領域130を設けずに、全域に凹部を形成する場合は、オイル消費量の増加が90%となる。
 一方、図24(B)の実験例1に示すように、行程中央部領域20が、最速通過点Cから下側の全域に設けた場合、換言すると、上側平滑領域130が基準行程領域19の30%以上、望ましくは35%以上を占める場合、オイル消費量の増加が5%に抑制される。また、実験例2に示すように、上側平滑領域130が、基準行程領域19の5%以上、かつ、30%未満の場合、オイル消費量の増加が60%に抑制される。なお、実験例3に示すように、上側平滑領域130が、実験例2と同じ距離に設定しつつ、行程中央部領域20を短くしても、オイル消費量に殆ど変化が生じないことも分かる。つまり、オイル消費量は、上側平滑領域130の占有比率に依存することが分かる。勿論、燃費効率の観点では、行程中央部領域20の面積が大きいことが好ましいことから、残部距離Rは略零(又は基準行程領域19の距離Sの10%以下)に設定することが望ましい。
 また、上記検証結果からわかるとおり、基準行程領域19に対して行程中央部領域20を下死点側にオフセットすれば、オイル消費量を抑制できることが分かる。具体的には、行程中央部領域20における行程方向の中央点20Mが、基準行程領域における行程方向の中央点19Mと比較して、ピストンの下死点U側に位置するようにすれば良い。
 また、本実施形態では、アイドリング運転時の内燃機関の摺動構造や回転数制御について説明したが、本発明はこれに限定されない。つまり、アイドリング運転の回転数よりも高くなるいずれかの任意回転数の時に、本実施形態で示したような摺動構造(摺動状態)が実現されていれば良く、その場合は、アイドリング運転時(アイドリング回転数の運転状態の時)は、本実施形態で示したような摺動構造(摺動状態)が実現されていない場合を含む。勿論、アイドリング運転時に本実施形態で示した摺動構造が実現されていることが好ましく、結果、それよりも高回転領域においても本摺動構造が継続して実現される可能性が高い。同様に、アイドリング運転時以外の運転態様において、本実施形態の回転数制御を適用することができる。例えば、船舶や汽車等の内燃機関の場合は、通常航行/走行時の回転数制御に適用しても良い。また例えば、発電機用の内燃機関の場合は、定常発電時の内燃機関の回転数制御に適用しても良い。即ち、内燃機関において燃費に影響を与えるような、長時間の運転態様時に、本発明の回転数制御を適用することが好ましい。
 尚、本発明は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。

Claims (35)

  1.  シリンダとピストンを有する内燃機関の摺動構造であって、
     前記シリンダは、
     内壁面のうち、前記ピストンの上死点における最下位のピストンリングのリング溝の下面位置から、前記ピストンの下死点における最上位のピストンリングのリング溝の上面位置までの間の全部又は一部となる行程中央部領域に複数の凹部が形成されており、
     前記ピストンの前記リング溝に設置されるピストンリングは、
     前記内壁面と対向する外周面の軸方向両外側縁には、軸方向外側に向かって前記内壁面から離れる方向に傾斜しつつ前記内壁面と接触し得る傾斜面が形成され、前記傾斜面を介して相対移動する前記内壁面と前記外周面の隙間に潤滑油が流入して流体潤滑可能に構成され、
     内燃機関のアイドリング運転の回転数以上となるいずれかの回転数において、前記行程中央部領域の中で前記ピストンリングが最高速度で通過する場所の前記内壁面と前記外周面の間の摩擦係数(以下、中央摩擦係数)が、前記行程中央部領域に前記凹部が形成されない状態を仮定する場合の前記中央摩擦係数よりも小さくなるように設定され、一方、
     内燃機関のアイドリング運転において、前記行程中央部領域の外側となる外部領域のいずれかの場所を前記ピストンリングが通過する際の前記内壁面と前記外周面の間の摩擦係数(以下、外部摩擦係数)が、前記外部領域に複数の凹部が形成される状態を仮定する場合の前記外部摩擦係数よりも小さくなるように設定されることを特徴とする、
     シリンダとピストンの摺動構造。
  2.  シリンダとピストンを有する内燃機関の摺動構造であって、
     前記シリンダは、
     内壁面のうち、前記ピストンの上死点における最下位のピストンリングのリング溝の下面位置から、前記ピストンの下死点における最上位のピストンリングのリング溝の上面位置までの間の全部又は一部となる行程中央部領域に複数の凹部が形成されており、
     前記ピストンの前記リング溝に設置されるピストンリングは、
     前記内壁面と対向する外周面の軸方向両外側縁には、軸方向外側に向かって前記内壁面から離れる方向に傾斜しつつ前記内壁面と接触し得る傾斜面が形成され、前記傾斜面を介して相対移動する前記内壁面と前記外周面の隙間に潤滑油が流入して流体潤滑可能に構成され、
     内燃機関のアイドリング運転の回転数以上となるいずれかの回転数において、前記行程中央部領域と、前記行程中央部領域の外側となる外部領域との境界に隣接する前記行程中央部領域側の近傍を前記ピストンリングが通過する際の摩擦係数(以下、境界中央側摩擦係数)が、前記境界に隣接する前記外部領域側の近傍を前記ピストンリングが通過する際の摩擦係数(以下、境界外部側摩擦係数)よりも小さくなるように設定されることを特徴とする、
     シリンダとピストンの摺動構造。
  3.  内燃機関のアイドリング運転の回転数以上となるいずれかの回転数において、前記行程中央部領域の中で前記ピストンリングが最高速度で通過する場所の前記内壁面と前記外周面の間の摩擦係数(以下、中央摩擦係数)が、前記行程中央部領域に前記凹部が形成されない状態を仮定する場合の前記中央摩擦係数よりも小さくなるように設定され、一方、
     内燃機関のアイドリング運転の回転数以上となるいずれかの回転数において、前記行程中央部領域の外側となる外部領域のいずれかの場所を前記ピストンリングが通過する際の前記内壁面と前記外周面の間の摩擦係数(以下、外部摩擦係数)が、前記外部領域に複数の凹部が形成される状態を仮定する場合の前記外部摩擦係数よりも小さくなるように設定されることを特徴とする、
     請求の範囲2に記載のシリンダとピストンの摺動構造。
  4.  シリンダとピストンを有する内燃機関の摺動構造であって、
     前記シリンダは、
     内壁面のうち、前記ピストンの上死点における最下位のピストンリングのリング溝の下面位置から、前記ピストンの下死点における最上位のピストンリングのリング溝の上面位置までの間(以下、基準行程領域と呼ぶ)には、該基準行程領域の上死点側の端縁よりも下側において、複数の凹部を有する行程中央部領域が形成され、
     前記内壁面のうち、前記基準行程領域の前記上死点側の端縁から、前記行程中央部領域の前記上死点側の端縁までの間の全部には、前記凹部を有しない上側平滑領域が形成され、
     前記ピストンの前記リング溝に設置されるピストンリングは、
     前記内壁面と対向する外周面の軸方向両外側縁には、軸方向外側に向かって前記内壁面から離れる方向に傾斜しつつ前記内壁面と接触し得る傾斜面が形成され、前記傾斜面を介して相対移動する前記内壁面と前記外周面の隙間に潤滑油が流入して流体潤滑可能に構成され、
     内燃機関のアイドリング運転の回転数以上となるいずれかの回転数において、前記行程中央部領域の中で前記ピストンリングが最高速度で通過する場所の前記内壁面と前記外周面の間の摩擦係数(以下、中央摩擦係数)が、前記行程中央部領域に前記凹部が形成されない状態を仮定する場合の前記中央摩擦係数よりも小さくなるように設定され、一方、
     内燃機関のアイドリング運転の回転数以上となるいずれかの回転数において、前記行程中央部領域の外側となる外部領域のいずれかの場所を前記ピストンリングが通過する際の前記内壁面と前記外周面の間の摩擦係数(以下、外部摩擦係数)が、前記外部領域に複数の凹部が形成される状態を仮定する場合の前記外部摩擦係数よりも小さくなるように設定されることを特徴とする、
     シリンダとピストンの摺動構造。
  5.  前記上側平滑領域の行程方向距離は、前記基準行程領域の全距離の30%以上に設定されることを特徴とする、
     請求の範囲4に記載のシリンダとピストンの摺動構造。
  6.  前記行程中央部領域における行程方向の中央点は、前記基準行程領域における行程方向の中央点と比較して、前記ピストンの下死点側に位置することを特徴とする、
     請求の範囲4又は5に記載のシリンダとピストンの摺動構造。
  7.  前記最上位のピストンリングが前記内壁面を最高速度で通過する位置を最速点と定義した場合に、
     前記行程中央部領域の前記上死点側の端縁は、前記最速点以下に設定されることを特徴とする、
     請求の範囲4乃至6のいずれかに記載のシリンダとピストンの摺動構造。
  8.  シリンダとピストンを有する内燃機関の摺動構造であって、
     前記シリンダは、
     内壁面のうち、前記ピストンの上死点における最下位のピストンリングのリング溝の下面位置から、前記ピストンの下死点における最上位のピストンリングのリング溝の上面位置までの間(以下、基準行程領域と呼ぶ)には、該基準行程領域の上死点側の端縁よりも下側において、複数の凹部を有する行程中央部領域が形成され、
     前記内壁面のうち、前記基準行程領域の前記上死点側の端縁から、前記行程中央部領域の前記上死点側の端縁までの間の全部には、前記凹部を有しない上側平滑領域が形成され、
     前記ピストンの前記リング溝に設置されるピストンリングは、
     前記内壁面と対向する外周面の軸方向両外側縁には、軸方向外側に向かって前記内壁面から離れる方向に傾斜しつつ前記内壁面と接触し得る傾斜面が形成され、前記傾斜面を介して相対移動する前記内壁面と前記外周面の隙間に潤滑油が流入して流体潤滑可能に構成され、
     内燃機関のアイドリング運転の回転数以上となるいずれかの回転数において、前記行程中央部領域と、前記行程中央部領域の外側となる外部領域との境界に隣接する前記行程中央部領域側の近傍を前記ピストンリングが通過する際の摩擦係数(以下、境界中央側摩擦係数)が、前記境界に隣接する前記外部領域側の近傍を前記ピストンリングが通過する際の摩擦係数(以下、境界外部側摩擦係数)よりも小さくなるように設定されることを特徴とする、
     シリンダとピストンの摺動構造。
  9.  前記上側平滑領域の行程方向距離は、前記基準行程領域の全距離の30%以上に設定されることを特徴とする、
     請求の範囲8に記載のシリンダとピストンの摺動構造。
  10.  前記行程中央部領域における行程方向の中央点は、前記基準行程領域における行程方向の中央点と比較して、前記ピストンの下死点側に位置することを特徴とする、
     請求の範囲8又は9に記載のシリンダとピストンの摺動構造。
  11.  前記最上位のピストンリングが前記内壁面を最高速度で通過する位置を最速点と定義した場合に、
     前記行程中央部領域の前記上死点側の端縁は、前記最速点以下に設定されることを特徴とする、
     請求の範囲8乃至10のいずれかに記載のシリンダとピストンの摺動構造。
  12.  内燃機関のアイドリング運転の回転数以上となるいずれかの回転数において、前記行程中央部領域の中で前記ピストンリングが最高速度で通過する場所の前記内壁面と前記外周面の間の摩擦係数(以下、中央摩擦係数)が、前記行程中央部領域に前記凹部が形成されない状態を仮定する場合の前記中央摩擦係数よりも小さくなるように設定され、一方、
     内燃機関のアイドリング運転の回転数以上となるいずれかの回転数において、前記行程中央部領域の外側となる外部領域のいずれかの場所を前記ピストンリングが通過する際の前記内壁面と前記外周面の間の摩擦係数(以下、外部摩擦係数)が、前記外部領域に複数の凹部が形成される状態を仮定する場合の前記外部摩擦係数よりも小さくなるように設定されることを特徴とする、
     請求の範囲8乃至11のいずれかに記載のシリンダとピストンの摺動構造。
  13.  前記境界外部側摩擦係数μ1と前記境界中央側摩擦係数μ2の比(μ1/μ2)が、2.5以下の範囲内に設定されることを特徴とする、
     請求の範囲2及び3、並びに、請求の範囲8乃至11のいずれかに記載のシリンダとピストンの摺動構造。
  14.  前記境界外部側摩擦係数μ1と前記境界中央側摩擦係数μ2の比(μ1/μ2)が、1.5以下の範囲内に設定されることを特徴とする、
     請求の範囲13に記載のシリンダとピストンの摺動構造。
  15.  前記傾斜面における前記内壁面からの最大距離は、前記外周面の実あたり幅の1/2000以上に設定されることを特徴とする、
     請求の範囲1乃至14のいずれかに記載のシリンダとピストンの摺動構造。
  16.  前記ピストンリングにおける前記シリンダに対する摺動面は、
     母材と、
     前記母材に形成される硬質な第一層と、
     前記第一層に積層され、前記第一層と比較して軟質となる第二層と、を備えて構成されることを特徴とする、
     請求の範囲1乃至15のいずれかに記載のシリンダとピストンの摺動構造。
  17.  前記第一層の表面粗さ(Ra)は0.7μm以下であることを特徴とする、
     請求の範囲16に記載のシリンダとピストンの摺動構造。
  18.  シリンダとピストンを有する内燃機関のアイドリング運転の制御方法であって、
     前記シリンダは、
     内壁面のうち、前記ピストンの上死点における最下位のピストンリングのリング溝の下面位置から、前記ピストンの下死点における最上位のピストンリングのリング溝の上面位置までの間の全部又は一部となる行程中央部領域に複数の凹部が形成されており、
     前記ピストンの前記リング溝に設置されるピストンリングは、
     前記内壁面と対向する外周面の軸方向両外側縁には、軸方向外側に向かって前記内壁面から離れる方向に傾斜しつつ前記内壁面と接触し得る傾斜面が形成され、前記傾斜面を介して相対移動する前記内壁面と前記外周面の隙間に潤滑油が流入して流体潤滑可能に構成され、
     前記内燃機関のアイドリング運転時の回転数を、以下条件A及び条件Bを満たすように制御することを特徴とする内燃機関のアイドリング運転の制御方法。
      条件A:前記行程中央部領域の中で前記ピストンリングが最高速度で通過する場所の前記内壁面と前記外周面の間の摩擦係数(以下、中央摩擦係数)が、前記行程中央部領域に前記凹部が形成されない状態を仮定する場合の前記中央摩擦係数よりも小さくなるようにする事
      条件B:前記行程中央部領域の外側となる外部領域のいずれかの場所の前記内壁面と前記外周面の間の摩擦係数(以下、外部摩擦係数)が、前記外部領域に複数の前記凹部が形成される状態を仮定する場合の前記外部摩擦係数よりも小さくなるようにする事
  19.  シリンダとピストンを有する内燃機関のアイドリング運転の制御方法であって、
     前記シリンダは、
     内壁面のうち、前記ピストンの上死点における最下位のピストンリングのリング溝の下面位置から、前記ピストンの下死点における最上位のピストンリングのリング溝の上面位置までの間の全部又は一部となる行程中央部領域に複数の凹部が形成されており、
     前記ピストンの前記リング溝に設置されるピストンリングは、
     前記内壁面と対向する外周面の軸方向両外側縁には、軸方向外側に向かって前記内壁面から離れる方向に傾斜しつつ前記内壁面と接触し得る傾斜面が形成され、前記傾斜面を介して相対移動する前記内壁面と前記外周面の隙間に潤滑油が流入して流体潤滑可能に構成され、
     前記内燃機関のアイドリング運転時の回転数を、以下条件Cを満たすように制御することを特徴とする内燃機関のアイドリング運転の制御方法。
      条件C:前記行程中央部領域と、前記行程中央部領域の外側となる外部領域との境界に隣接する前記行程中央部領域側の近傍を前記ピストンリングが通過する際の摩擦係数(以下、境界中央側摩擦係数)が、前記境界に隣接する前記外部領域側の近傍を前記ピストンリングが通過する際の摩擦係数(以下、境界外部側摩擦係数)よりも小さくなるようにする事
  20.  前記内燃機関のアイドリング運転時の回転数を、以下条件A及び条件Bを満たすように制御することを特徴とする請求の範囲19に記載の内燃機関のアイドリング運転の制御方法。
      条件A:前記行程中央部領域の中で前記ピストンリングが最高速度で通過する場所の前記内壁面と前記外周面の間の摩擦係数(以下、中央摩擦係数)が、前記行程中央部領域に前記凹部が形成されない状態を仮定する場合の前記中央摩擦係数よりも小さくなるようにする事
      条件B:前記行程中央部領域の外側となる外部領域のいずれかの場所の前記内壁面と前記外周面の間の摩擦係数(以下、外部摩擦係数)が、前記外部領域に複数の前記凹部が形成される状態を仮定する場合の前記外部摩擦係数よりも小さくなるようする事 
  21.  前記内燃機関のアイドリング運転時の回転数を、以下条件Dを満たすように制御することを特徴とする請求の範囲19又は20に記載の内燃機関のアイドリング運転の制御方法。
      条件D:前記境界外部側摩擦係数μ1と前記境界中央側摩擦係数μ2の比(μ1/μ2)が、2.5以下の範囲内になる事
  22.  シリンダとピストンを有する内燃機関のアイドリング運転の制御方法であって、
     前記シリンダは、
     内壁面のうち、前記ピストンの上死点における最下位のピストンリングのリング溝の下面位置から、前記ピストンの下死点における最上位のピストンリングのリング溝の上面位置までの間(以下、基準行程領域と呼ぶ)には、該基準行程領域の上死点側の端縁よりも下側において、複数の凹部を有する行程中央部領域が形成され、
     前記内壁面のうち、前記基準行程領域の前記上死点側の端縁から、前記行程中央部領域の前記上死点側の端縁までの間の全部には、前記凹部を有しない上側平滑領域が形成され、
     前記ピストンの前記リング溝に設置されるピストンリングは、
     前記内壁面と対向する外周面の軸方向両外側縁には、軸方向外側に向かって前記内壁面から離れる方向に傾斜しつつ前記内壁面と接触し得る傾斜面が形成され、前記傾斜面を介して相対移動する前記内壁面と前記外周面の隙間に潤滑油が流入して流体潤滑可能に構成され、
     前記内燃機関のアイドリング運転時の回転数を、以下条件A及び条件Bを満たすように制御することを特徴とする内燃機関のアイドリング運転の制御方法。
      条件A:前記行程中央部領域の中で前記ピストンリングが最高速度で通過する場所の前記内壁面と前記外周面の間の摩擦係数(以下、中央摩擦係数)が、前記行程中央部領域に前記凹部が形成されない状態を仮定する場合の前記中央摩擦係数よりも小さくなるようにする事
      条件B:前記行程中央部領域の外側となる外部領域のいずれかの場所の前記内壁面と前記外周面の間の摩擦係数(以下、外部摩擦係数)が、前記外部領域に複数の前記凹部が形成される状態を仮定する場合の前記外部摩擦係数よりも小さくなるようにする事
  23.  シリンダとピストンを有する内燃機関のアイドリング運転の制御方法であって、
     前記シリンダは、
     内壁面のうち、前記ピストンの上死点における最下位のピストンリングのリング溝の下面位置から、前記ピストンの下死点における最上位のピストンリングのリング溝の上面位置までの間(以下、基準行程領域と呼ぶ)には、該基準行程領域の上死点側の端縁よりも下側において、複数の凹部を有する行程中央部領域が形成され、
     前記内壁面のうち、前記基準行程領域の前記上死点側の端縁から、前記行程中央部領域の前記上死点側の端縁までの間の全部には、前記凹部を有しない上側平滑領域が形成され、
     前記ピストンの前記リング溝に設置されるピストンリングは、
     前記内壁面と対向する外周面の軸方向両外側縁には、軸方向外側に向かって前記内壁面から離れる方向に傾斜しつつ前記内壁面と接触し得る傾斜面が形成され、前記傾斜面を介して相対移動する前記内壁面と前記外周面の隙間に潤滑油が流入して流体潤滑可能に構成され、
     前記内燃機関のアイドリング運転時の回転数を、以下条件Cを満たすように制御することを特徴とする内燃機関のアイドリング運転の制御方法。
      条件C:前記行程中央部領域と、前記行程中央部領域の外側となる外部領域との境界に隣接する前記行程中央部領域側の近傍を前記ピストンリングが通過する際の摩擦係数(以下、境界中央側摩擦係数)が、前記境界に隣接する前記外部領域側の近傍を前記ピストンリングが通過する際の摩擦係数(以下、境界外部側摩擦係数)よりも小さくなるようにする事
  24.  前記内燃機関のアイドリング運転時の回転数を、以下条件A及び条件Bを満たすように制御することを特徴とする請求の範囲23に記載の内燃機関のアイドリング運転の制御方法。
      条件A:前記行程中央部領域の中で前記ピストンリングが最高速度で通過する場所の前記内壁面と前記外周面の間の摩擦係数(以下、中央摩擦係数)が、前記行程中央部領域に前記凹部が形成されない状態を仮定する場合の前記中央摩擦係数よりも小さくなるようにする事
      条件B:前記行程中央部領域の外側となる外部領域のいずれかの場所の前記内壁面と前記外周面の間の摩擦係数(以下、外部摩擦係数)が、前記外部領域に複数の前記凹部が形成される状態を仮定する場合の前記外部摩擦係数よりも小さくなるようする事
  25.  前記内燃機関のアイドリング運転時の回転数を、以下条件Dを満たすように制御することを特徴とする請求の範囲23又は24に記載の内燃機関のアイドリング運転の制御方法。
      条件D:前記境界外部側摩擦係数μ1と前記境界中央側摩擦係数μ2の比(μ1/μ2)が、2.5以下の範囲内になる事
  26.  前記上側平滑領域の行程方向距離は、前記基準行程領域の全距離の30%以上に設定されることを特徴とする、
     請求の範囲22乃至25のいずれかに記載の内燃機関のアイドリング運転の制御方法。
  27.  前記行程中央部領域における行程方向の中央点は、前記基準行程領域における行程方向の中央点と比較して、前記ピストンの下死点側に位置することを特徴とする、
     請求の範囲22乃至26のいずれかに記載の内燃機関のアイドリング運転の制御方法。
  28.  前記最上位のピストンリングが前記内壁面を最高速度で通過する位置を最速点と定義した場合に、
     前記行程中央部領域の前記上死点側の端縁は、前記最速点以下に設定されることを特徴とする、
     請求の範囲22乃至27のいずれかに記載の内燃機関のアイドリング運転の制御方法。
  29.  シリンダとピストンを有する内燃機関の運転制御方法であって、
     前記シリンダは、
     内壁面のうち、前記ピストンの上死点における最下位のピストンリングのリング溝の下面位置から、前記ピストンの下死点における最上位のピストンリングのリング溝の上面位置までの間の全部又は一部となる行程中央部領域に複数の凹部が形成されており、
     前記ピストンの前記リング溝に設置されるピストンリングは、
     前記内壁面と対向する外周面の軸方向両外側縁には、軸方向外側に向かって前記内壁面から離れる方向に傾斜しつつ前記内壁面と接触し得る傾斜面が形成され、前記傾斜面を介して相対移動する前記内壁面と前記外周面の隙間に潤滑油が流入して流体潤滑可能に構成され、
     前記内燃機関の回転数を、以下条件A及び条件Bを満たすように制御することを特徴とする内燃機関の運転制御方法。
      条件A:前記行程中央部領域の中で前記ピストンリングが最高速度で通過する場所の前記内壁面と前記外周面の間の摩擦係数(以下、中央摩擦係数)が、前記行程中央部領域に前記凹部が形成されない状態を仮定する場合の前記中央摩擦係数よりも小さくなるようにする事
      条件B:前記行程中央部領域の外側となる外部領域のいずれかの場所の前記内壁面と前記外周面の間の摩擦係数(以下、外部摩擦係数)が、前記外部領域に複数の前記凹部が形成される状態を仮定する場合の前記外部摩擦係数よりも小さくなるようにする事
  30.  シリンダとピストンを有する内燃機関の運転制御方法であって、
     前記シリンダは、
     内壁面のうち、前記ピストンの上死点における最下位のピストンリングのリング溝の下面位置から、前記ピストンの下死点における最上位のピストンリングのリング溝の上面位置までの間の全部又は一部となる行程中央部領域に複数の凹部が形成されており、
     前記ピストンの前記リング溝に設置されるピストンリングは、
     前記内壁面と対向する外周面の軸方向両外側縁には、軸方向外側に向かって前記内壁面から離れる方向に傾斜しつつ前記内壁面と接触し得る傾斜面が形成され、前記傾斜面を介して相対移動する前記内壁面と前記外周面の隙間に潤滑油が流入して流体潤滑可能に構成され、
     前記内燃機関の回転数を、以下条件Cを満たすように制御することを特徴とする内燃機関の運転制御方法。
      条件C:前記行程中央部領域と、前記行程中央部領域の外側となる外部領域との境界に隣接する前記行程中央部領域側の近傍を前記ピストンリングが通過する際の摩擦係数(以下、境界中央側摩擦係数)が、前記境界に隣接する前記外部領域側の近傍を前記ピストンリングが通過する際の摩擦係数(以下、境界外部側摩擦係数)よりも小さくなるようにする事
  31.  シリンダとピストンを有する内燃機関の運転制御方法であって、
     前記シリンダは、
     内壁面のうち、前記ピストンの上死点における最下位のピストンリングのリング溝の下面位置から、前記ピストンの下死点における最上位のピストンリングのリング溝の上面位置までの間(以下、基準行程領域と呼ぶ)には、該基準行程領域の上死点側の端縁よりも下側において、複数の凹部を有する行程中央部領域が形成され、
     前記内壁面のうち、前記基準行程領域の前記上死点側の端縁から、前記行程中央部領域の前記上死点側の端縁までの間の全部には、前記凹部を有しない上側平滑領域が形成され、
     前記ピストンの前記リング溝に設置されるピストンリングは、
     前記内壁面と対向する外周面の軸方向両外側縁には、軸方向外側に向かって前記内壁面から離れる方向に傾斜しつつ前記内壁面と接触し得る傾斜面が形成され、前記傾斜面を介して相対移動する前記内壁面と前記外周面の隙間に潤滑油が流入して流体潤滑可能に構成され、
     前記内燃機関の回転数を、以下条件A及び条件Bを満たすように制御することを特徴とする内燃機関の運転制御方法。
      条件A:前記行程中央部領域の中で前記ピストンリングが最高速度で通過する場所の前記内壁面と前記外周面の間の摩擦係数(以下、中央摩擦係数)が、前記行程中央部領域に前記凹部が形成されない状態を仮定する場合の前記中央摩擦係数よりも小さくなるようにする事
      条件B:前記行程中央部領域の外側となる外部領域のいずれかの場所の前記内壁面と前記外周面の間の摩擦係数(以下、外部摩擦係数)が、前記外部領域に複数の前記凹部が形成される状態を仮定する場合の前記外部摩擦係数よりも小さくなるようにする事
  32.  シリンダとピストンを有する内燃機関の運転制御方法であって、
     前記シリンダは、
     内壁面のうち、前記ピストンの上死点における最下位のピストンリングのリング溝の下面位置から、前記ピストンの下死点における最上位のピストンリングのリング溝の上面位置までの間(以下、基準行程領域と呼ぶ)には、該基準行程領域の上死点側の端縁よりも下側において、複数の凹部を有する行程中央部領域が形成され、
     前記内壁面のうち、前記基準行程領域の前記上死点側の端縁から、前記行程中央部領域の前記上死点側の端縁までの間の全部には、前記凹部を有しない上側平滑領域が形成され、
     前記ピストンの前記リング溝に設置されるピストンリングは、
     前記内壁面と対向する外周面の軸方向両外側縁には、軸方向外側に向かって前記内壁面から離れる方向に傾斜しつつ前記内壁面と接触し得る傾斜面が形成され、前記傾斜面を介して相対移動する前記内壁面と前記外周面の隙間に潤滑油が流入して流体潤滑可能に構成され、
     前記内燃機関の回転数を、以下条件Cを満たすように制御することを特徴とする内燃機関の運転制御方法。
      条件C:前記行程中央部領域と、前記行程中央部領域の外側となる外部領域との境界に隣接する前記行程中央部領域側の近傍を前記ピストンリングが通過する際の摩擦係数(以下、境界中央側摩擦係数)が、前記境界に隣接する前記外部領域側の近傍を前記ピストンリングが通過する際の摩擦係数(以下、境界外部側摩擦係数)よりも小さくなるようにする事
  33.  前記上側平滑領域の行程方向距離は、前記基準行程領域の全距離の30%以上に設定されることを特徴とする、
     請求の範囲31乃至32のいずれかに記載の内燃機関の運転制御方法。
  34.  前記行程中央部領域における行程方向の中央点は、前記基準行程領域における行程方向の中央点と比較して、前記ピストンの下死点側に位置することを特徴とする、
     請求の範囲31乃至33のいずれかに記載の内燃機関の運転制御方法。
  35.  前記最上位のピストンリングが前記内壁面を最高速度で通過する位置を最速点と定義した場合に、
     前記行程中央部領域の前記上死点側の端縁は、前記最速点以下に設定されることを特徴とする、
     請求の範囲31乃至34のいずれかに記載の内燃機関の運転制御方法。
PCT/JP2017/020128 2016-05-31 2017-05-30 内燃機関の摺動構造、アイドリング運転の制御方法、内燃機関の運転制御方法 WO2017209135A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201780033714.4A CN109196209B (zh) 2016-05-31 2017-05-30 内燃机的滑动结构、怠速运转的控制方法、以及内燃机的运转控制方法
US16/305,657 US11111875B2 (en) 2016-05-31 2017-05-30 Sliding structure for internal combustion engine, method for controlling idling operation, and method for controlling operation of internal combustion engine
JP2018520930A JP6818021B2 (ja) 2016-05-31 2017-05-30 内燃機関の摺動構造、アイドリング運転の制御方法、内燃機関の運転制御方法
KR1020187038237A KR102047100B1 (ko) 2016-05-31 2017-05-30 내연 기관의 슬라이딩 구조, 아이들링 운전의 제어 방법, 내연 기관의 운전 제어 방법
KR1020187031290A KR101935936B1 (ko) 2016-05-31 2017-05-30 내연 기관의 슬라이딩 구조, 아이들링 운전의 제어 방법, 내연 기관의 운전 제어 방법
EP17806688.2A EP3460224B1 (en) 2016-05-31 2017-05-30 Sliding structure for internal combustion engine, method for controlling idling operation and method for controlling operation of internal combustion engine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-108814 2016-05-31
JP2016108814 2016-05-31
JP2017026032 2017-02-15
JP2017-026032 2017-02-15

Publications (1)

Publication Number Publication Date
WO2017209135A1 true WO2017209135A1 (ja) 2017-12-07

Family

ID=60477530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020128 WO2017209135A1 (ja) 2016-05-31 2017-05-30 内燃機関の摺動構造、アイドリング運転の制御方法、内燃機関の運転制御方法

Country Status (6)

Country Link
US (1) US11111875B2 (ja)
EP (1) EP3460224B1 (ja)
JP (1) JP6818021B2 (ja)
KR (2) KR101935936B1 (ja)
CN (1) CN109196209B (ja)
WO (1) WO2017209135A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020050336A1 (ja) * 2018-09-07 2020-03-12 株式会社リケン ピストンリング、及びピストンリングの製造方法
JP6759471B1 (ja) * 2018-11-15 2020-09-23 Tpr株式会社 ピストンリングの組み合わせ
WO2021066067A1 (ja) * 2019-09-30 2021-04-08 日本ピストンリング株式会社 内燃機関の摺動構造
JP2021060048A (ja) * 2019-10-03 2021-04-15 日本ピストンリング株式会社 内燃機関の摺動構造、内燃機関の摺動構造の作り込み方法
JP2021059983A (ja) * 2019-10-03 2021-04-15 日本ピストンリング株式会社 オイルリングの形状作り込み方法、オイルリング

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102268258B1 (ko) * 2019-11-08 2021-06-23 엘지전자 주식회사 압축기 및 그 제조방법
CN110761912B (zh) * 2019-12-26 2020-05-26 潍柴动力股份有限公司 缸套的设计方法
CN112228236B (zh) * 2020-10-20 2021-11-05 江苏大学 一种内燃机缸套及其加工方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129492A (ja) * 1998-10-22 2000-05-09 Riken Corp 内燃機関用ピストンリング及びその製造方法
JP2007132247A (ja) * 2005-11-09 2007-05-31 Mazda Motor Corp 摺動部材およびその製造方法
JP2010138711A (ja) * 2008-12-09 2010-06-24 Hino Motors Ltd シリンダライナ構造
JP2011075065A (ja) * 2009-09-30 2011-04-14 Nippon Piston Ring Co Ltd 内燃機関用オイルリング
JP5155924B2 (ja) 2008-09-30 2013-03-06 日本ピストンリング株式会社 シリンダ
US20140182540A1 (en) * 2011-03-14 2014-07-03 Volvo Technology Corporation Combustion engine, cylinder for a combustion engine, and cylinder liner for a combustion engine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4429649C2 (de) 1994-08-20 1998-02-19 Ae Goetze Gmbh Kolbenring
DE112008002642B4 (de) * 2007-10-05 2013-12-05 Hino Jidosha Kabushiki Kaisha Zylinder
JP5386213B2 (ja) 2009-03-31 2014-01-15 日本ピストンリング株式会社 シリンダとピストンの組み合わせ
JP5620794B2 (ja) 2010-11-18 2014-11-05 いすゞ自動車株式会社 ピストンリング
KR20120058150A (ko) * 2010-11-29 2012-06-07 현대자동차주식회사 오일 포켓이 형성된 실린더 보어
CN103998755B (zh) * 2011-12-19 2016-07-06 斗山英维高株式会社 通过微细凹凸的最佳配置而改善了耐磨损性的气缸装置
BR102013018952B1 (pt) * 2013-07-24 2021-10-26 Mahle Metal Leve S/A Conjunto de deslizamento
GB2540209B (en) * 2015-07-10 2019-01-02 Ford Global Tech Llc Machine with reduced cylinder friction
KR20180028159A (ko) * 2016-09-08 2018-03-16 현대자동차주식회사 전단저항 감소 패턴을 갖는 엔진
US10267258B2 (en) * 2016-12-05 2019-04-23 Ford Global Technologies, Llc Method of honing high-porosity cylinder liners
US10718291B2 (en) * 2017-12-14 2020-07-21 Ford Global Technologies, Llc Cylinder liner for an internal combustion engine and method of forming

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129492A (ja) * 1998-10-22 2000-05-09 Riken Corp 内燃機関用ピストンリング及びその製造方法
JP2007132247A (ja) * 2005-11-09 2007-05-31 Mazda Motor Corp 摺動部材およびその製造方法
JP5155924B2 (ja) 2008-09-30 2013-03-06 日本ピストンリング株式会社 シリンダ
JP2010138711A (ja) * 2008-12-09 2010-06-24 Hino Motors Ltd シリンダライナ構造
JP2011075065A (ja) * 2009-09-30 2011-04-14 Nippon Piston Ring Co Ltd 内燃機関用オイルリング
US20140182540A1 (en) * 2011-03-14 2014-07-03 Volvo Technology Corporation Combustion engine, cylinder for a combustion engine, and cylinder liner for a combustion engine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020050336A1 (ja) * 2018-09-07 2020-03-12 株式会社リケン ピストンリング、及びピストンリングの製造方法
JP2020041573A (ja) * 2018-09-07 2020-03-19 株式会社リケン ピストンリング、及びピストンリングの製造方法
JP6759471B1 (ja) * 2018-11-15 2020-09-23 Tpr株式会社 ピストンリングの組み合わせ
EP3825584A4 (en) * 2018-11-15 2021-12-22 Tpr Co., Ltd. COMBINATION OF PISTON RINGS
US11320049B2 (en) 2018-11-15 2022-05-03 Tpr Co., Ltd. Piston ring combination
WO2021066067A1 (ja) * 2019-09-30 2021-04-08 日本ピストンリング株式会社 内燃機関の摺動構造
JP2021060048A (ja) * 2019-10-03 2021-04-15 日本ピストンリング株式会社 内燃機関の摺動構造、内燃機関の摺動構造の作り込み方法
JP2021059983A (ja) * 2019-10-03 2021-04-15 日本ピストンリング株式会社 オイルリングの形状作り込み方法、オイルリング
JP7368166B2 (ja) 2019-10-03 2023-10-24 日本ピストンリング株式会社 オイルリングの形状作り込み方法、オイルリング

Also Published As

Publication number Publication date
CN109196209A (zh) 2019-01-11
KR101935936B1 (ko) 2019-01-07
JP6818021B2 (ja) 2021-01-20
KR20180123716A (ko) 2018-11-19
EP3460224A1 (en) 2019-03-27
US20200325844A1 (en) 2020-10-15
JPWO2017209135A1 (ja) 2019-04-18
US11111875B2 (en) 2021-09-07
EP3460224B1 (en) 2021-12-15
KR20190003845A (ko) 2019-01-09
EP3460224A4 (en) 2020-01-08
KR102047100B1 (ko) 2019-11-20
CN109196209B (zh) 2021-03-23

Similar Documents

Publication Publication Date Title
WO2017209135A1 (ja) 内燃機関の摺動構造、アイドリング運転の制御方法、内燃機関の運転制御方法
US10571024B2 (en) Combination oil ring
JPWO2019008780A1 (ja) 組合せオイルリング
JP2012215238A (ja) ガソリンエンジン用ピストンリングの組合せ
JP2005264978A (ja) 圧力リング
JP6685642B2 (ja) オイルリング
JP2017036823A (ja) ピストンリング
JP6552022B2 (ja) バルブリフタ
JP7045383B2 (ja) ピストンリング
JP2014101893A (ja) 圧力リング装着ピストン
JP6467222B2 (ja) 組合せオイルリング
US10077838B2 (en) Piston ring configured to reduce friction
JP6385700B2 (ja) オイルリング
JP2018515714A (ja) 内燃エンジンのシリンダハウジングのためのシリンダボア、およびそのようなシリンダボアとピストンからなる装置
JP6914291B2 (ja) 内燃機関のシリンダ
WO2024048188A1 (ja) オイルリング、オイルリングの製造方法
US20220364643A1 (en) Coated piston ring for an internal combustion engine
JP2002235602A (ja) ピストン
WO2019167241A1 (ja) ピストンリング
WO2019142668A1 (ja) オイルリング
WO2015178009A1 (ja) オイルリング
JP2019011838A (ja) ピストンリング
JP2018080752A (ja) ピストンリング
JP2018053894A (ja) ピストン摺動部の潤滑構造
GB2477141A (en) A gas turbine including multiple sealing ring packs

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187031290

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806688

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018520930

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017806688

Country of ref document: EP

Effective date: 20190102