WO2017208792A1 - 電源装置 - Google Patents

電源装置 Download PDF

Info

Publication number
WO2017208792A1
WO2017208792A1 PCT/JP2017/018162 JP2017018162W WO2017208792A1 WO 2017208792 A1 WO2017208792 A1 WO 2017208792A1 JP 2017018162 W JP2017018162 W JP 2017018162W WO 2017208792 A1 WO2017208792 A1 WO 2017208792A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
unit
switch
conductive path
voltage
Prior art date
Application number
PCT/JP2017/018162
Other languages
English (en)
French (fr)
Inventor
一志 深江
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to US16/301,620 priority Critical patent/US10658835B2/en
Priority to CN201780004069.3A priority patent/CN109417292B/zh
Publication of WO2017208792A1 publication Critical patent/WO2017208792A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/05Details with means for increasing reliability, e.g. redundancy arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/20Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage
    • H02H3/202Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage for dc systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/06Two-wire systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • H02J1/082Plural DC voltage, e.g. DC supply voltage with at least two different DC voltage levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/102Parallel operation of dc sources being switching converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • H01M2200/103Fuse
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power supply device provided between a plurality of power supply units.
  • Patent Document 1 As an example of a power supply device that supplies power from a plurality of power supplies to a load, a technique such as Patent Document 1 has been proposed.
  • the power supply device disclosed in Patent Document 1 includes a plurality of DC power supplies, and a DC power supply synthesis circuit is provided between each DC power supply and the shared device. Further, in the DC power supply synthesis circuit, power MOSFETs are provided in the paths from the DC power supplies, respectively, so that the backflow of current can be cut off in the paths.
  • the DC power supply synthesis circuit disclosed in Patent Document 1 cannot cut off the backflow of current caused by the power from the other power supply when a short circuit failure of the MOSFET occurs in one of the DC power supply paths.
  • a short circuit failure occurs in the MOSFET provided in the standby DC power source path
  • the conduction state is maintained by the parasitic diode of the MOSFET and the MOSFET in which the short circuit failure occurs even if the MOSFET on the working DC power source side is turned off. Therefore, the current flow from the working DC power supply to the standby DC power supply cannot be interrupted, and there is a concern that overcharging may occur.
  • the present invention has been made based on the above-described circumstances, and even when an abnormality occurs on one of the power supply units, the power supply device that can block the current from flowing from the other power supply unit to the path It aims at realizing.
  • the power supply device of the present invention is A first conductive path serving as a power path between the first power supply unit and the load; A second conductive path connected to the first conductive path and a second power supply unit; A first switch unit that is provided between the connection portion of the first conductive path to the second conductive path and the first power supply unit, and switches between a non-energized state that interrupts bidirectional energization and an energized state that energizes.
  • a second switch part provided between the connection part and the second power supply part in the second conductive path, and switching between a non-energized state that interrupts bidirectional energization and an energized state that energizes;
  • a control unit for controlling each switching operation of the first switch unit and the second switch unit; Is provided.
  • the above power supply device even when an abnormality occurs on one of the power supply units, it is possible to block current from flowing from the other power supply unit to the path. For example, even if a short circuit failure occurs in the second switch unit, it is possible to prevent current from flowing from the first power supply unit to the second power supply unit side by turning off the first switch unit.
  • FIG. 1 is a circuit diagram schematically illustrating an in-vehicle system including a power supply device according to a first embodiment. It is explanatory drawing which illustrates roughly the normal state in the power supply device of FIG. 1, and operation
  • the first conductive path may be electrically connected to a fuse part that cuts off current between the first power supply part and the first switch part when the first conductive path is in a predetermined overcurrent state. .
  • the power supply device configured as described above can protect the power supply by quickly shutting off the energization of this path by the fuse portion when an overcurrent occurs in the first conductive path.
  • the power supply device may include a first voltage detection unit that detects a voltage value of a conductive path between the fuse unit and the first switch unit.
  • the control unit is configured to place the first switch unit in a non-energized state and the second switch unit in a conductive state when the voltage value detected by the first voltage detecting unit is equal to or lower than a predetermined low voltage threshold. Also good.
  • the first switch unit can be in a non-energized state and the second switch unit can be in a conductive state.
  • the power supply from the second power supply unit to the first conductive path can be maintained while preventing the current from flowing into the low potential part (the low potential part between the fuse part and the first switch part).
  • the power supply device may include a second voltage detection unit that detects a voltage value of the second conductive path.
  • the control unit may be configured to place the first switch unit in a non-energized state when the voltage value detected by the second voltage detection unit is equal to or greater than a predetermined overvoltage threshold.
  • the voltage value of the second conductive path is When raised to some extent, the first switch unit can be de-energized to block the flow from the first power supply unit to the second power supply unit. With such a function, the overcharge prevention effect of the second power supply unit can be enhanced.
  • the second voltage detection unit may be configured to detect a voltage value at a position between the second switch unit and the second power supply unit in the second conductive path.
  • the control unit may be configured to maintain the second switch unit in a non-energized state when the voltage value detected by the second voltage detection unit is equal to or less than a predetermined abnormality threshold value.
  • the power supply device configured as described above does not turn on the second switch unit. It can be maintained in an energized state, and current can be prevented from flowing into the predetermined position from the first conductive path side. Therefore, even if the first switch unit is energized under this situation, the flow to the second power supply unit side can be prevented, and power supply can be continued.
  • the power supply device of the present invention converts the input voltage from the second power supply unit side according to the switching operation of the switching element and outputs it to the first conductive path side, and from the first conductive path according to the operation of the switching element.
  • the charging / discharging part which performs the charging operation which supplies the charging current based on this electric power to a 2nd power supply part may be provided.
  • at least one part of the 2nd switch part may be comprised as a switching element of a charging / discharging part.
  • the charging / discharging unit capable of performing voltage conversion enables the discharging from the second power supply unit and the charging to the second power supply unit, and the switching element forming a part of the charging / discharging unit is connected to the second switch unit.
  • the switching element forming a part of the charging / discharging unit is connected to the second switch unit.
  • the in-vehicle system 10 shown in FIG. 1 is configured as an in-vehicle power supply system, and includes a first power supply unit 91, a second power supply unit 92, a fuse unit 93, a load 94, a power supply device 30, and the like.
  • the in-vehicle system 10 has a configuration capable of supplying power from the first power supply unit 91 to the load 94, and further has a configuration capable of supplying power also from the first power supply unit 91 to the second power supply unit 92. . That is, the first power supply unit 91 is configured to be able to supply both the load current and the charging current. Further, the in-vehicle system 10 is configured to be able to supply electric power from the second power supply unit 92 to the load 94 at a predetermined time (for example, when the first power supply unit 91 fails).
  • the first power supply unit 91 is a DC power source that generates a DC voltage, and a known power storage means such as a lead battery is used.
  • the first power supply unit 91 is provided with a high potential side terminal and a low potential side terminal.
  • the high potential side terminal is electrically connected to the first conductive path 31, and the low potential side terminal is electrically connected to, for example, ground. Connected.
  • the first power supply unit 91 is configured to apply a predetermined output voltage to the first conductive path 31. For example, the output voltage when fully charged is about 12V to 14V.
  • a generator (not shown) is electrically connected to the first conductive path 31, and the first power supply unit 91 can be charged by the generated power from the generator.
  • the fuse portion 93 is configured as a well-known in-vehicle fuse component, and is provided in a wiring 81 that is a conductive path electrically connected to the first power supply portion 91. One end of the fuse portion 93 is electrically connected to the first power source portion 91 via the wiring 81, and the other end is electrically connected to the first switch portion 34 via the first conductive path 31.
  • the fuse part 93 forms a part of a path (energization path) between the first power supply part 91 and the first switch part 34 when not blown, and a current exceeding a predetermined current value (a fusing current value of the fuse part 93) is itself. When the current flows, the fuse between the first power supply 91 and the first switch 34 is made non-energized.
  • the load 94 is a well-known in-vehicle electronic component. For example, a navigation system, an audio, an air conditioner, a meter, and a transmission are applicable.
  • the load 94 is electrically connected to the wiring 82 and is electrically connected to the first conductive path 31 via the wiring 82.
  • the second power supply unit 92 is a DC power supply that outputs a DC voltage, and is configured by, for example, an electric double layer capacitor.
  • One terminal (high potential side terminal) of the second power supply unit 92 is electrically connected to the second conductive path 32, a predetermined output voltage is applied, and the other terminal (low potential side terminal) is connected to the ground. They are electrically connected and kept at a predetermined potential (for example, 0 V).
  • the second power supply unit 92 is charged from the first power supply unit 91 via the first conductive path 31 and the second conductive path 32 when the first switch unit 34 and the second switch unit 35 are in the on state (energized state). Charging is performed by supplying.
  • the second power supply unit 92 can function as a backup power supply for the first power supply unit 91. For example, even if the first switch unit 34 is in an off state and no power is supplied from the first power source unit 91 to the load 94, the second power source unit 92 is in a state where the second switch unit 35 is in an on state. Can be supplied to the load 94, and a load current can flow to the load 94. Note that the second power supply unit 92 has a smaller output voltage when fully charged than an output voltage when the first power supply unit 91 is fully charged.
  • the power supply device 30 includes a first conductive path 31, a second conductive path 32, a first switch unit 34, a second switch unit 35, a current detection unit 36, a voltage detection unit 51, a voltage detection unit 52, and a control unit 39. is doing.
  • the first conductive path 31 is a conductive path serving as a power path between the first power supply unit 91 and the load 94, and is electrically connected to each of the first power supply unit 91 and the load 94.
  • the first switch part 34 is provided between the connection part 33 and the first power supply part 91 in the first conductive path 31, and does not cut off bidirectional energization between the first power supply part 91 and the connection part 33. It has a function of switching between an energized state and an energized state in which current can flow (energize).
  • the connection portion 33 is a portion where the first conductive path 31 and the second conductive path 32 are connected.
  • the first switch part 34 is provided between the connection part 33 and the fuse part 93 in the first conductive path 31.
  • the first switch unit 34 includes two semiconductor switch elements, and specifically includes a first switch element 34A and a second switch element 34B.
  • the first switch element 34A and the second switch element 34B are both configured as MOSFETs and are disposed in opposite directions.
  • the source of the first switch element 34A is electrically connected to the first power supply part 91 via the fuse part 93 and the first conductive path 31, and the drain is connected to the drain of the second switch element 34B.
  • the source of the second switch element 34B is electrically connected to the load 94 via the second conductive path 32, and the drain is connected to the drain of the first switch element 34A.
  • the parasitic diode 34C of the first switch element 34A and the parasitic diode 34D of the second switch element 34B are opposite to each other, and the parasitic diode 34C is connected to the first power supply section 91 side from the connection section 33 side.
  • the parasitic diode 34D is arranged in a configuration that does not flow current from the first power supply unit 91 side to the connection unit 33 side. Therefore, when the first switch element 34A and the second switch element 34B are in the OFF state, no current flows through the parasitic diodes 34C and 34D, and bidirectional energization can be cut off.
  • the first switch element 34A and the second switch element 34B constituting the first switch unit 34 are controlled to be turned on and off by a control unit 39 described later. Specifically, an ON signal or an OFF signal is input from the control unit 39 to the gates of the first switch element 34A and the second switch element 34B, and the first switch element is supplied from the control unit 39. When an ON signal is input to the gates of 34A and the second switch element 34B, both the first switch element 34A and the second switch element 34B are turned on, and the first conductive path 31 is turned on.
  • the first power supply unit 91 can supply power to the load 94 via the first conductive path 31 when the first conductive path 31 is switched to the energized state by the ON operation of the first switch unit 34.
  • the conductive path 31 functions as a current path when a load current flows from the first power supply unit 91 to the load 94. Further, when the first conductive path 31 is switched to the non-energized state by the off operation of the first switch unit 34, power is not supplied from the first power supply unit 91 to the load 94.
  • the second conductive path 32 is electrically connected to the first conductive path 31 and the second power supply unit 92.
  • the second conductive path 32 functions as a current path when a charging current flows from the first power supply unit 91 to the second power supply unit 92, and a current path when a discharging current flows from the second power supply unit 92 to the load 94. Also works.
  • the second switch unit 35 is provided between the connection unit 33 and the second power supply unit 92 in the second conductive path 32, and does not cut off bidirectional energization between the connection unit 33 and the second power supply unit 92. It has a function of switching between an energized state and an energized state in which current can flow (energize).
  • the second switch unit 35 is composed of two semiconductor switch elements, and specifically includes a third switch element 35A and a fourth switch element 35B.
  • the third switch element 35A and the fourth switch element 35B are both configured as MOSFETs and are disposed in opposite directions.
  • the third switch element 35A has a source electrically connected to the first conductive path 31 and a drain connected to the drain of the fourth switch element 35B.
  • the fourth switch element 35B has a source electrically connected to the second power supply unit 92 and a drain connected to the drain of the third switch element 35A.
  • the parasitic diode 35C of the third switch element 35A and the parasitic diode 35D of the fourth switch element 35B are opposite to each other, and the parasitic diode 35C is connected to the connection section 33 side from the second power supply section 92 side.
  • the parasitic diode 34D is arranged in a configuration that does not allow current to flow from the connection portion 33 side to the second power supply portion 92 side. Therefore, when the third switch element 35A and the fourth switch element 35B are in the OFF state, no current flows through the parasitic diodes 35C and 35D, and bidirectional energization can be cut off.
  • the third switch element 35A and the fourth switch element 35B constituting the second switch unit 35 are controlled to be turned on and off by the control unit 39 described later. Specifically, an ON signal or an OFF signal is input from the control unit 39 to the gates of the third switch element 35A and the fourth switch element 35B, and the third switch element is supplied from the control unit 39. When an ON signal is input to the gates of 35A and the fourth switch element 35B, both the third switch element 35A and the fourth switch element 35B are turned on, and the second conductive path 32 is turned on.
  • the second power supply unit 92 can supply power to the load 94 via the second conductive path 32 when the second conductive path 32 is switched to the energized state by the ON operation of the second switch unit 35.
  • the conductive path 32 functions as a current path when a load current flows from the second power supply unit 92 to the load 94. Further, when the second conductive path 32 is switched to the non-energized state by the off operation of the second switch unit 35, power is not supplied from the second power source unit 92 to the load 94.
  • the current detection unit 36 is provided at a predetermined position of the first conductive path 31 (specifically, a position between the connection unit 33 and the load 94).
  • the current detection unit 36 is configured as a known current detection circuit, and is a value that can specify the current value Iout of the current flowing through the first conductive path 31 (specifically, corresponds to the magnitude of the current flowing through the first conductive path 31). Output voltage value).
  • the current detection unit 36 includes a resistor and a differential amplifier that are interposed in the first conductive path 31. A voltage across the resistor is input to the differential amplifier, and a resistance is generated by a current flowing through the first conductive path 31. The amount of voltage drop generated in the detector is amplified by a differential amplifier and output as a detection value.
  • the detection value (current value Iout) output from the current detection unit 36 is input to the control unit 39.
  • the voltage detection unit 51 corresponds to an example of a first voltage detection unit, and a voltage value Vout1 at a predetermined position in the first conductive path 31 (specifically, a position between the first switch unit 34 and the fuse unit 93). Is output (specifically, a voltage value corresponding to the magnitude of the voltage at this position). For example, the voltage detection unit 51 detects a voltage value Vout1 at a position between the first switch unit 34 and the fuse unit 93 itself, or a value obtained by dividing the voltage value Vout1 by a voltage dividing circuit (the voltage value Vout1). Output as an identifiable value).
  • the voltage detection unit 52 corresponds to an example of a second voltage detection unit, and is a voltage at a predetermined position in the second conductive path 32 (specifically, a position between the second switch unit 35 and the second power supply unit 92).
  • a value that can specify the value Vout2 (specifically, a voltage value corresponding to the magnitude of the voltage at this position) is output.
  • the voltage value Vout2 at a position between the second switch unit 35 and the second power supply unit 92 itself, or a value obtained by dividing the voltage value Vout2 by a voltage dividing circuit, or the like, is a detected value (a value that can specify the voltage value Vout2). ).
  • the control unit 39 is configured as a control circuit including a microcomputer, for example, and includes a CPU, a storage unit, and the like.
  • the control unit 39 has a function of controlling each switching operation of the first switch unit 34 and the second switch unit 35.
  • the power supply device 30 can use the first power supply unit 91 as a main power supply during normal operation. Further, the power supply device 30 can use the second power supply unit 92 as a backup for the first power supply unit 91 in the event of an abnormality in which the first power supply unit 91 cannot be used. Hereinafter, the operation of the power supply device 30 will be specifically described.
  • an IG OFF signal indicating that the ignition switch is in an OFF state is sent from the external ECU to the control unit 39.
  • an IG on signal indicating that the ignition switch is in the on state is input from the external ECU to the control unit 39.
  • an off signal is input to each gate of the first switch unit 34 and the second switch unit 35, and the first switch unit 34 and the second switch unit 35. Is maintained in the off state.
  • the control unit 39 When the ignition switch changes from the off state to the on state, the control unit 39 outputs an on signal to the gates of the first switch element 34A and the second switch element 34B constituting the first switch unit 34. In response to the output of such an ON signal, when the first switch element 34A and the second switch element 34B of the first switch unit 34 are both switched from the off state to the on state, and the first switch unit 34 is turned on, A current is supplied from the first power supply unit 91 to the load 94.
  • control unit 39 switches the first switch unit 34 to the ON state in this way, the operation state of the first switch unit 34 and the second switch unit 35 is changed to the current detection unit 36, the voltage detection unit 51, and the voltage detection unit. It is determined according to 52 detection results.
  • the normal state here means that the detection value of the current detection unit 36, the detection value of the voltage detection unit 51, and the detection value of the voltage detection unit 52 are all within the normal range during the period when the ignition switch is on. It means a certain state. Specifically, during a period in which the ignition switch is on, the current value Iout at the A position of the first conductive path 31 specified by the detection value of the current detection unit 36 is a predetermined upper limit current value It2 (predetermined The voltage value Vout1 at the B position specified by the detection value of the voltage detection unit 51 exceeds the first lower limit voltage value Vt1 (predetermined low voltage threshold) and is within the normal current range less than the current threshold value).
  • the voltage value Vout2 at the C position specified by the detection value of the voltage detection unit 52 exceeds the second lower limit voltage value Vt3 (predetermined abnormal threshold) within the first normal voltage range that is less than the value Vt2.
  • Vt3 predetermined abnormal threshold
  • the normal state is a state satisfying the relationship of Iout ⁇ It2, Vt1 ⁇ Vout1 ⁇ Vt2, Vt3 ⁇ Vout1 ⁇ Vt4 as shown in FIG.
  • the control unit 39 turns on the first switch unit 34 (that is, turns on the first switch element 34A and the second switch element 34B) as shown in FIG. 35 is turned off (that is, the third switch element 35A and the fourth switch element 35B are turned on). With such an operation, power can be supplied from the first power supply unit 91 to the load 94.
  • the charging timing is set in advance. If applicable, the second switch unit 35 is turned on (that is, the third switch element 35A and the fourth switch element 35B are turned on), and the second power supply unit 92 is charged by the power of the first power supply unit 91. can do.
  • the second switch unit 35 may be turned off when the threshold value indicating the above is reached.
  • the current supply from the first conductive path 31 side to the second power supply unit 92 side is also the current supply from the second power supply unit 92 side to the first conductive path 31 side. Supply is also cut off.
  • a state where a current flowing to the extent that the fuse portion 93 is blown is a “predetermined overcurrent state”, and when the first conductive path 31 becomes a “predetermined overcurrent state”, the fuse portion 93 is blown to cause The energization between the power supply unit 91 and the first switch unit 34 is interrupted.
  • the control unit 39 monitors the detection value from the voltage detection unit 51, and the voltage value Vout1 at the B position detected by the voltage detection unit 51 (first voltage detection unit) is the first lower limit voltage value Vt1 (predetermined).
  • the first switch section 34 is in an off state and is not energized, and the current value Iout of the first conductive path 31 is not the upper limit current value It2.
  • the second switch unit 35 is turned on so as to be energized.
  • the second power supply unit 92 and the first conductive path 31 are electrically connected, and power can be supplied from the second power supply unit 92 to the load 94.
  • the second power supply unit 92 is connected to the backup power supply. Can be operated as Further, since the first switch unit 34 is in an off state when the second power source unit 92 is operated as a backup power source, no current flows from the second power source unit 92 to the ground fault occurrence position.
  • the first switch unit 34 when the first switch unit 34 is turned on and the second switch unit 35 is turned off in the normal state described above, if a short failure occurs in the fourth switch element 35B, the first power supply unit 91 is operated. And the second power supply unit 92 are energized. At this time, if the output voltage of the first power supply unit 91 is larger than the output voltage of the second power supply unit 92, the charging current flows from the first power supply unit 91 to the second power supply unit 92.
  • the control unit 39 monitors the detection value from the voltage detection unit 52, and the voltage value Vout2 at the C position detected by the voltage detection unit 52 (second voltage detection unit) is the second upper limit voltage value Vt4.
  • the first switch unit 34 When it is equal to or greater than (predetermined overvoltage threshold), the first switch unit 34 is turned off to be in a non-energized state, and when the first abnormal state is not met (that is, the current value Iout of the first conductive path 31 is the upper limit current
  • the second switch unit 35 is turned on so as to be energized.
  • the second upper limit voltage value Vt4 may be the same as the above-described threshold value indicating full charge, or may be a value larger than this.
  • the control unit 39 performs the second switch unit 35. Is turned off and turned off. Further, when the first abnormal state and the second abnormal state are not satisfied (specifically, when Iout ⁇ It2 and Vt1 ⁇ Vout1 ⁇ Vt2), the first switch unit 34 is turned on to be in the energized state. . Thereby, the operation of the load 94 can be continued while preventing the current from flowing from the first power supply unit 91 to the low potential position on the second power supply unit 92 side.
  • the switch state may be maintained. Further, when the voltage value Vout2 at the C position changes below the second lower limit voltage value Vt3 (predetermined abnormality threshold) in the normal state, the abnormality state is stored or stored in an external device (external ECU or the like). You can be notified.
  • the current can be blocked from flowing from the other power supply unit to the path.
  • the first switch unit 34 is turned off to prevent current from flowing from the first power supply unit 91 to the second power supply unit 92 side. be able to.
  • the first conductive path 31 is electrically connected to a fuse part 93 that cuts off current between the first power supply part 91 and the first switch part 34 when the first conductive path 31 is in a predetermined overcurrent state.
  • the power supply device 30 configured as described above can protect the power supply device 30 by quickly cutting off the current through the fuse portion 93 when an overcurrent occurs in the first conductive path 31.
  • the power supply device 30 includes a voltage detection unit 51 (first voltage detection unit) that detects a voltage value of a conductive path between the fuse unit 93 and the first switch unit 34. As shown in FIG. 4, when the voltage value Vout detected by the voltage detection unit 51 (first voltage detection unit) is equal to or lower than the first lower limit voltage value Vt1 (predetermined low voltage threshold), the control unit 39 The 1 switch part 34 is set to a non-energized state, and the second switch part 35 is set to an energized state.
  • Vt1 predetermined low voltage threshold
  • the fuse portion 93 quickly cuts off this path and protects it.
  • the first switch unit 34 can be in a non-energized state and the second switch unit 35 can be in a conductive state.
  • the power supply from the second power supply unit 92 to the first conductive path 31 is maintained while preventing the flow of current from the unit 92 side to the low potential portion (low potential portion between the fuse unit 93 and the first switch unit 34). be able to.
  • the power supply device 30 includes a voltage detection unit 52 (second voltage detection unit) that detects the voltage value of the second conductive path 32. As shown in FIG. 5, the control unit 39 performs the first operation when the voltage value Vout2 detected by the voltage detection unit 52 (second voltage detection unit) is equal to or higher than the second upper limit voltage value Vt4 (predetermined overvoltage threshold). The switch unit 34 is turned off.
  • a voltage detection unit 52 second voltage detection unit
  • Vt4 predetermined overvoltage threshold
  • the second conductive path When the voltage value of 32 rises to some extent, the first switch unit 34 can be de-energized to block the flow from the first power supply unit 91 to the second power supply unit 92. With such a function, the overcharge prevention effect of the second power supply unit 92 can be enhanced.
  • the voltage detection unit 52 (second voltage detection unit) is configured to detect a voltage value at a position between the second switch unit 35 and the second power supply unit 92 in the second conductive path 32. As shown in FIG. 6, the control unit 39 performs the second operation when the voltage value Vout2 detected by the voltage detection unit 52 (second voltage detection unit) is equal to or lower than the second lower limit voltage value Vt3 (predetermined abnormal threshold value). The switch unit 35 is turned off. In the power supply device 30 configured as described above, for example, the voltage value between the second switch unit 35 and the second power supply unit 92 decreases to the second lower limit voltage value Vt3 (predetermined abnormal threshold) or less due to a ground fault or the like.
  • the second switch portion 35 can be maintained in a non-energized state, and current can be prevented from flowing from the first conductive path 31 side to the predetermined position. Therefore, even if the first switch unit 34 is energized in this situation, the flow to the second power source unit 92 side can be prevented, and power supply from the first power source unit 91 to the load 94 can be continued without hindrance. it can.
  • the first power supply unit 91 that is the main power supply. Therefore, since the power supply to the load 94 is continuously maintained, the operation of the load 94 is not immediately affected.
  • FIG. 7 shows an in-vehicle system 100 using the power supply device 130 of the second embodiment.
  • the third switch element 35A is provided on the second power supply unit 92 side
  • the fourth switch element 35B is provided on the connection unit 33 side (that is, what is different from the first embodiment)?
  • the in-vehicle system of the first embodiment is that the inductance L is provided between the third switch element 35A and the fourth switch element 35B, and the charge / discharge switch element 40A is provided.
  • 10 and the power supply device 30, and other circuit configurations are the same as those of the first embodiment. Therefore, in the in-vehicle system 100 and the power supply device 130 according to the second embodiment, the same reference numerals as those in the first embodiment are assigned to the same components as those in the first embodiment, and detailed description thereof is omitted.
  • the power supply device 130 according to the second embodiment includes all the functions of the power supply device 30 according to the first embodiment, and can perform all the controls described above in the description of the first embodiment. Furthermore, the power supply apparatus 130 can operate the charging / discharging unit 40 as a DCDC converter.
  • the drain of the third switch element 35A is electrically connected to the second power supply section 92 side, and the drain of the fourth switch element 35B is electrically connected to the first conductive path 31.
  • An inductance L is provided between the third switch element 35A and the fourth switch element 35B. One end of the inductance L is electrically connected to the source of the third switch element 35A, and the other end is electrically connected to the source of the fourth switch element 35B.
  • the parasitic diode 35C of the third switch element 35A and the parasitic diode 35D of the fourth switch element 35B are opposite to each other, and the parasitic diode 35C does not flow current from the second power supply unit 92 side to the first conductive path 31 side.
  • the parasitic diode 35D is arranged in a configuration that does not allow current to flow from the first conductive path 31 side to the second power supply unit 92 side. Therefore, when the second switch unit 35 is turned off, that is, when both the third switch element 35A and the fourth switch element 35B are in the off state, the current through the parasitic diodes 35C and 35D does not flow, and the bidirectional switch The energization can be cut off.
  • the charging / discharging switch element 40A is configured as a MOSFET, the source is connected to the ground, and the drain is electrically connected to the source of the fourth switch element 35B and the other end of the inductance L.
  • the parasitic diode 40B of the switch element 40A is arranged so that no current flows from the second conductive path 32 side to the ground side.
  • the power supply device 130 has a charging / discharging unit 40, and the charging / discharging unit 40 includes a switching element 40A, a fourth switching element 35B, and an inductance L.
  • the fourth switch element 35B functions as a high-side switching element
  • the switch element 40A functions as a low-side switching element
  • the control part 39 complementarily outputs a PWM signal in the form which set the dead time with respect to the 4th switch element 35B and the switch element 40A of such a charging / discharging part 40.
  • the charging / discharging unit 40 is controlled by the control unit 39, converts the input voltage from the second power supply unit 92 side according to the switching operation of the switching elements (switch element 40A, fourth switch element 35B), and the first conductive path 31. Discharge operation that outputs to the side, and a charging operation that supplies a charging current based on the electric power from the first conductive path 31 to the second power supply unit 92 according to the operation of the switching elements (switch element 40A, fourth switch element 35B). Can be done.
  • the power supply device 130 uses the first power supply unit 91 as a main power supply during normal operation.
  • an off signal is input from the control unit 39 to the gates of the first switch unit 34 and the second switch unit 135, and the first switch unit 34 and the second switch unit 2.
  • the switch unit 135 is maintained in an off state.
  • the switch element 40A is also maintained in the off state.
  • the control unit 39 outputs an on signal to the gates of the first switch element 34A and the second switch element 34B constituting the first switch unit 34. .
  • the first switch unit 34 is turned on, and current is supplied from the first power supply unit 91 to the load 94.
  • control unit 39 switches the first switch unit 34 to the ON state in this way, the operation state of the first switch unit 34 and the second switch unit 135 is changed to the current detection unit 36, the voltage detection unit 51, and the voltage detection unit. It is determined according to 52 detection results.
  • the charging timing is set in advance.
  • the third switch element 35A can be turned on, the charge / discharge unit 40 can be operated, and the second power supply unit 92 can be charged by the power of the first power supply unit 91.
  • the control unit 39 causes the fourth switching element 35B and the switching element 40A to operate the charging / discharging unit as a step-down DCDC converter.
  • the PWM signal may be output in a complementary manner.
  • the control unit 39 monitors the detection value from the current detection unit 36, and when the current value Iout of the first conductive path 31 becomes equal to or higher than the upper limit current value It2 (current threshold value), as shown in FIG. Both the first switch unit 34 and the second switch unit 135 are turned off. The switch element 40A is also turned off, and the charge / discharge unit 40 is stopped. As a result, no current flows from the first power supply unit 91 to the load 94, and no current flows from the second power supply unit 92 to the load 94.
  • the control unit 39 monitors the detection value from the voltage detection unit 51, and the voltage value Vout1 at the B position detected by the voltage detection unit 51 (first voltage detection unit) is the first lower limit voltage value Vt1 (predetermined). In the case where the first switch section 34 is in an off state and is not energized, and the current value Iout of the first conductive path 31 is not the upper limit current value It2. (If less than (current threshold)), the third switch element 35A is turned on and the charge / discharge unit 40 is operated to be in the power supply state.
  • the voltage applied by the second power supply unit 92 is used as the input voltage, and the output voltage is applied to the first conductive path 31 side.
  • the PWM signal may be complementarily output from the control unit 39 to the fourth switch element 35B and the switch element 40A so that the charge / discharge unit 40 operates as a step-up DCDC converter so as to be applied.
  • the control unit 39 monitors the detection value from the voltage detection unit 52, and the voltage value Vout2 at the C position detected by the voltage detection unit 52 (second voltage detection unit) is the second upper limit voltage value Vt4 (predetermined). If the current value Iout of the first conductive path 31 does not correspond to the first abnormal state (i.e., the upper limit current value It2). (When it is less than the current threshold value), the control unit 39 turns on the third switch element 35A and operates the charging / discharging unit 40 to the first conductive path 31 based on the power of the second power supply unit 92. Supply power.
  • the charging / discharging unit 40 is operated as a step-up DCDC converter so that the voltage applied by the second power supply unit 92 is an input voltage and the output voltage is applied to the first conductive path 31 side. With such an operation, it is possible to prevent the second power supply unit 92 from being overcharged when the fourth switch element 35B is short-circuited, and the operation of the load 94 can be continued.
  • the charging / discharging unit 40 capable of performing voltage conversion enables discharging from the second power supply unit 92 and charging to the second power supply unit 92 while forming a part of the charging / discharging unit 40.
  • the element (fourth switch element 35B) as the second switch unit 35, the number of parts can be reduced, the size can be reduced, and the like.
  • the lead battery is used for the first power supply unit.
  • the present invention is not limited to this configuration.
  • the first power supply is used instead of the lead battery or in combination with the lead battery.
  • Other power supply means other known power storage means, power generation means, etc. may be used for the power supply unit.
  • the number of power supply means constituting the first power supply unit is not limited to one, and may be constituted by a plurality of power supply means.
  • the electric double layer capacitor is used for the second power supply unit.
  • the second power supply unit includes a lithium ion battery or a lithium ion capacitor.
  • Other power storage means such as a nickel hydride rechargeable battery may be used.
  • the number of power storage means constituting the second power supply unit is not limited to one, and may be configured by a plurality of power storage means.
  • the switch unit constituted by two MOSFETs is exemplified as the first switch unit and the second switch unit.
  • the configuration is not limited to this configuration as long as the bidirectional current can be cut off.
  • You may be comprised by the other well-known switch part.
  • other semiconductor switch elements or mechanical relays may be used.
  • the number of elements constituting each of the first switch part and the second switch part is not limited to two as long as the bidirectional current can be cut off, and may be one or three or more. Also good.
  • the output voltage when the second power supply unit is fully charged is smaller than the output voltage when the first power supply unit is fully charged.
  • the second The output voltage when the power supply unit is fully charged may be approximately equal to or higher than the output voltage when the first power supply unit is fully charged or more than the output voltage when the first power supply unit is fully charged.
  • the first power supply unit and the load are connected to the first conductive path.
  • the present invention is not limited to this, and other electrical components such as a generator and another load may be electrically connected. Good.
  • the place which connects these electrical components is a position electrically connected to a 1st conductive path, various positions will be object.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Emergency Management (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Business, Economics & Management (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Secondary Cells (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Protection Of Static Devices (AREA)

Abstract

いずれか一方の電源部側で異常が生じた場合でも、その経路に対して他方の電源部から電流が流れ込むことを遮断し得る電源装置を実現する。 電源装置(1)は、第1電源部(91)と負荷(94)との間の電力の経路となる第1導電路(31)と、第1導電路(31)と第2電源部(92)とに接続される第2導電路(32)と、第1導電路(31)において第1電源部(91)と接続部(33)との間に設けられ、双方向の通電を遮断する非通電状態と通電する通電状態とに切り替える第1スイッチ部(34)と、第2導電路(32)において接続部(33)と第2電源部(92)との間に設けられ、双方向の通電を遮断する非通電状態と通電する通電状態とに切り替える第2スイッチ部(35)と、第1スイッチ部(34)及び第2スイッチ部(35)のそれぞれの切り替え動作を制御する制御部(39)とを備えている。

Description

電源装置
 本発明は、複数の電源部の間に設けられる電源装置に関するものである。
 負荷に対して複数の電源から電力を供給する電源装置の例として、特許文献1のような技術が提案されている。特許文献1で開示される電源装置は、複数の直流電源を備え、各直流電源と共用装置の間には直流電源合成回路が設けられている。更に、直流電源合成回路において各直流電源からの経路にはパワーMOSFETがそれぞれ設けられ、それぞれの経路において電流の逆流を遮断し得る構成となっている。
特公平7-55025号公報
 しかし、特許文献1で開示される直流電源合成回路は、いずれか一方の直流電源の経路でMOSFETのショート故障が発生すると、他方の電源からの電力に起因する電流の逆流を遮断することができないという問題がある。例えば、予備直流電源の経路に設けられたMOSFETにショート故障が発生した場合、現用直流電源側のMOSFETをオフ動作させても、このMOSFETの寄生ダイオード及びショート故障が生じたMOSFETによって導通状態が維持されてしまうため、現用直流電源から予備直流電源への電流の流れ込みを遮断することができず、過充電を生じさせる懸念がある。
 本発明は上記した事情に基づいてなされたものであり、いずれか一方の電源部側で異常が生じた場合でも、その経路に対して他方の電源部から電流が流れ込むことを遮断し得る電源装置を実現することを目的とするものである。
 本発明の電源装置は、
 第1電源部と負荷との間の電力の経路となる第1導電路と、
 前記第1導電路と第2電源部とに接続される第2導電路と、
 前記第1導電路において前記第2導電路との接続部と前記第1電源部との間に設けられ、双方向の通電を遮断する非通電状態と通電する通電状態とに切り替える第1スイッチ部と、
 前記第2導電路において前記接続部と前記第2電源部との間に設けられ、双方向の通電を遮断する非通電状態と通電する通電状態とに切り替える第2スイッチ部と、
 前記第1スイッチ部及び前記第2スイッチ部のそれぞれの切り替え動作を制御する制御部と、
を備える。
 上記電源装置によれば、いずれか一方の電源部側で異常が生じた場合でも、その経路に対して他方の電源部から電流が流れ込むことを遮断し得る。例えば、第2スイッチ部でショート故障が発生しても、第1スイッチ部をオフ動作させることで第1電源部から第2電源部側へ電流が流れ込むことを防ぐことができる。
実施例1の電源装置を備えた車載システムを概略的に示す回路図である。 図1の電源装置における通常状態と、そのときの動作を概略的に説明する説明図である。 図1の電源装置における第1異常状態と、そのときの動作を概略的に説明する説明図である。 図1の電源装置における第2異常状態と、そのときの動作を概略的に説明する説明図である。 図1の電源装置における第3異常状態と、そのときの動作を概略的に説明する説明図である。 図1の電源装置における第4異常状態と、そのときの動作を概略的に説明する説明図である。 実施例2の電源装置を備えた車載システムを概略的に示す回路図である。
 ここで、本発明の望ましい例を示す。
 第1導電路は、第1導電路が所定の過電流状態となったときに第1電源部と第1スイッチ部との間の通電を遮断するヒューズ部に電気的に接続されていてもよい。
 このように構成された電源装置は、第1導電路に過電流が生じた場合にヒューズ部によってこの経路の通電を迅速に遮断し、保護を図ることができる。
 電源装置は、ヒューズ部と第1スイッチ部の間の導電路の電圧値を検出する第1の電圧検出部を備えていてもよい。制御部は、第1の電圧検出部で検出された電圧値が所定の低電圧閾値以下である場合に第1スイッチ部を非通電状態とし、第2スイッチ部を通電状態とする構成であってもよい。
 このように構成された電源装置は、例えば、地絡等によってヒューズ部と第1スイッチ部の間が低電位状態となった場合、第1電源部からこの部分(ヒューズ部と第1スイッチ部の間の低電位部分)へ過電流が流れ込んでも、ヒューズによってこの経路が迅速に遮断され保護が図られる。また、このように第1電源部からの電力供給を遮断した状況下において、第1スイッチ部を非通電状態とし、第2スイッチ部を通電状態とすることができるため、第2電源部側から低電位部分(ヒューズ部と第1スイッチ部の間の低電位部分)への電流の流れ込みを防ぎつつ第2電源部から第1導電路への電力供給を維持することができる。
 電源装置は、第2導電路の電圧値を検出する第2の電圧検出部を備えていてもよい。制御部は、第2の電圧検出部で検出された電圧値が所定の過電圧閾値以上である場合に第1スイッチ部を非通電状態とする構成であってもよい。
 このように構成された電源装置は、例えば、第2スイッチ部にショート故障が発生し、第1電源部から第2電源部へと充電電流が流れ込んだとしても、第2導電路の電圧値がある程度高まったときには第1スイッチ部を非通電状態とし、第1電源部から第2電源部への流れ込みを遮断することができる。このような機能により、第2電源部の過充電防止効果を高めることができる。
 第2の電圧検出部は、第2導電路における第2スイッチ部と第2電源部との間の位置の電圧値を検出する構成であってもよい。制御部は、第2の電圧検出部で検出された電圧値が所定の異常閾値以下である場合に第2スイッチ部を非通電状態で維持する構成であってもよい。
 このように構成された電源装置は、例えば、第2スイッチ部と第2電源部の間の電圧値が地絡等によって所定の異常閾値以下に低下している場合に、第2スイッチ部を非通電状態で維持することができ、第1導電路側からその所定位置へ電流が流れ込むことを防ぐことができる。よって、この状況下で第1スイッチ部を通電状態としても第2電源部側への流れ込みを防ぐことができ、電力供給を継続することができる。
 本発明の電源装置は、スイッチング素子のスイッチング動作に応じて第2電源部側からの入力電圧を変換し第1導電路側へ出力する放電動作と、スイッチング素子の動作に応じて第1導電路からの電力に基づく充電電流を第2電源部へ供給する充電動作を行う充放電部を備えていてもよい。そして、第2スイッチ部の少なくとも一部が充放電部のスイッチング素子として構成されていてもよい。
 この構成によれば、電圧変換を行い得る充放電部によって第2電源部からの放電及び第2電源部に対する充電を可能としつつ、その充放電部の一部をなすスイッチング素子を第2スイッチ部として兼用することで、部品数の削減や小型化等を図ることができる。
 <実施例1>
 以下、本発明を具体化した実施例1について説明する。
 (電源装置の構成)
 まず、電源装置30及び関連する構成について説明する。
 図1で示す車載システム10は、車載用の電源システムとして構成されており、第1電源部91、第2電源部92、ヒューズ部93、負荷94、及び電源装置30などを備えている。車載システム10は、第1電源部91から負荷94に対して電力を供給し得る構成をなし、更に、第1電源部91から第2電源部92に対しても電力を供給し得る構成をなす。つまり、第1電源部91が負荷電流の供給と充電電流の供給をいずれも行い得る構成をなす。更に、車載システム10は所定時期(例えば第1電源部91の失陥時など)に第2電源部92から負荷94に対して電力を供給し得る構成をなす。
 第1電源部91は直流電圧を生じさせる直流電源であり、例えば鉛バッテリなどの公知の蓄電手段が用いられている。第1電源部91には高電位側の端子と低電位側の端子が設けられ、高電位側の端子は第1導電路31に電気的に接続され、低電位側の端子は例えばグラウンドに電気的に接続されている。第1電源部91は、第1導電路31に対して所定の出力電圧を印加する構成をなし、例えば満充電時の出力電圧が12V~14V程度となっている。なお、第1導電路31には、図示しない発電機が電気的に接続されており、第1電源部91は発電機からの発電電力によって充電され得る。
 ヒューズ部93は、公知の車載用ヒューズ部品として構成され、第1電源部91に電気的に接続された導電路である配線81に介在して設けられている。ヒューズ部93は一端が配線81を介して第1電源部91に電気的に接続され、他端が第1導電路31を介して第1スイッチ部34に電気的に接続されている。ヒューズ部93は、非溶断時に第1電源部91と第1スイッチ部34の間の経路(通電経路)の一部をなし、所定電流値(ヒューズ部93の溶断電流値)を超える電流が自身に流れた場合には溶断し、溶断時には第1電源部91と第1スイッチ部34の間を非通電状態とする。
 負荷94は、公知の車載用電子部品であり、例えば、ナビゲーションシステム、オーディオ、エアコン、メータ、トランスミッションなどが適用対象となる。負荷94は、配線82に電気的に接続されており、この配線82を介して第1導電路31に電気的に接続されている。
 第2電源部92は、直流電圧を出力する直流電源であり、例えば電気二重層キャパシタなどによって構成されている。第2電源部92の一方の端子(高電位側端子)は第2導電路32に電気的に接続され、所定の出力電圧が印加されており、他方の端子(低電位側端子)はグラウンドに電気的に接続され、所定電位(例えば0V)に保たれている。第2電源部92は、第1スイッチ部34及び第2スイッチ部35がオン状態(通電状態)のときに第1導電路31及び第2導電路32を介して第1電源部91から充電電流が供給されることで充電がなされる。
 第2電源部92は、第1電源部91のバックアップ電源として機能させることができる。例えば、第1スイッチ部34がオフ状態となり第1電源部91から負荷94に対して電力が供給されていない状況であっても、第2スイッチ部35がオン状態であれば第2電源部92からの電力を負荷94に供給することができ、負荷94に対して負荷電流を流すことができる。なお、第2電源部92は、満充電時の出力電圧が第1電源部91の満充電時の出力電圧よりも小さくなっており、小型化が図られている。
 電源装置30は、第1導電路31、第2導電路32、第1スイッチ部34、第2スイッチ部35、電流検出部36、電圧検出部51、電圧検出部52、及び制御部39を有している。
 第1導電路31は、第1電源部91と負荷94との間の電力の経路となる導電路であり、第1電源部91及び負荷94のそれぞれに電気的に接続されている。
 第1スイッチ部34は、第1導電路31において接続部33と第1電源部91との間に設けられ、第1電源部91と接続部33の間を、双方向の通電を遮断する非通電状態と電流が流れ得る(通電する)通電状態とに切り替える機能を有する。接続部33は、第1導電路31と第2導電路32とが接続された部分である。第1スイッチ部34は、具体的には、第1導電路31において接続部33とヒューズ部93の間に設けられている。
 第1スイッチ部34は、2つの半導体スイッチ素子によって構成され、具体的には、第1スイッチ素子34A、及び第2スイッチ素子34Bを有している。第1スイッチ素子34A、及び第2スイッチ素子34BはいずれもMOSFETとして構成され、互いに逆向きに配置されている。具体的には、第1スイッチ素子34Aはソースがヒューズ部93及び第1導電路31を介して第1電源部91に電気的に接続され、ドレインが第2スイッチ素子34Bのドレインに接続されている。第2スイッチ素子34Bはソースが第2導電路32を介して負荷94に電気的に接続され、ドレインが第1スイッチ素子34Aのドレインに接続されている。第1スイッチ部34では、第1スイッチ素子34Aの寄生ダイオード34Cと、第2スイッチ素子34Bの寄生ダイオード34Dとが互いに逆向きとされ、寄生ダイオード34Cは接続部33側から第1電源部91側へ電流を流さない構成で配置され、寄生ダイオード34Dは第1電源部91側から接続部33側へ電流を流さない構成で配置されている。よって、第1スイッチ素子34A及び第2スイッチ素子34Bがオフ状態のときには、寄生ダイオード34C,34Dを経路とする電流は流れず、双方向の通電を遮断することができる。
 第1スイッチ部34を構成する第1スイッチ素子34A及び第2スイッチ素子34Bは、後述する制御部39によってオン動作及びオフ動作が制御される。具体的には、第1スイッチ素子34A及び第2スイッチ素子34Bのそれぞれのゲートに対し、制御部39からオン信号又はオフ信号が入力されるようになっており、制御部39から第1スイッチ素子34A及び第2スイッチ素子34Bのゲートに対してオン信号が入力されているときには第1スイッチ素子34A及び第2スイッチ素子34Bがいずれもオン状態になり、第1導電路31が通電状態となる。また、制御部39から第1スイッチ素子34A及び第2スイッチ素子34Bのゲートに対してオフ信号が入力されているときには第1スイッチ素子34A及び第2スイッチ素子34Bがいずれもオフ状態になり、第1導電路31が非通電状態となる。
 第1電源部91は、第1スイッチ部34のオン動作によって第1導電路31が通電状態に切り替えられると、第1導電路31を介して負荷94に電力を供給することができ、第1導電路31は、第1電源部91から負荷94に対して負荷電流を流すときの電流経路として機能する。また、第1スイッチ部34のオフ動作によって第1導電路31が非通電状態に切り替えられると、第1電源部91から負荷94に対して電力が供給されなくなる。
 第2導電路32は、第1導電路31及び第2電源部92に電気的に接続されている。この第2導電路32は、第1電源部91から第2電源部92に充電電流を流すときの電流経路として機能し、第2電源部92から負荷94へと放電電流を流すときの電流経路としても機能する。
 第2スイッチ部35は、第2導電路32において接続部33と第2電源部92との間に設けられ、接続部33と第2電源部92の間を、双方向の通電を遮断する非通電状態と電流が流れ得る(通電する)通電状態とに切り替える機能を有する。
 第2スイッチ部35は、2つの半導体スイッチ素子によって構成され、具体的には、第3スイッチ素子35A、及び第4スイッチ素子35Bを有している。第3スイッチ素子35A、及び第4スイッチ素子35BはいずれもMOSFETとして構成され、互いに逆向きに配置されている。具体的には、第3スイッチ素子35Aはソースが第1導電路31に電気的に接続され、ドレインが第4スイッチ素子35Bのドレインに接続されている。第4スイッチ素子35Bはソースが第2電源部92に電気的に接続され、ドレインが第3スイッチ素子35Aのドレインに接続されている。第2スイッチ部35では、第3スイッチ素子35Aの寄生ダイオード35Cと、第4スイッチ素子35Bの寄生ダイオード35Dとが互いに逆向きとされ、寄生ダイオード35Cは第2電源部92側から接続部33側へ電流を流さない構成で配置され、寄生ダイオード34Dは接続部33側から第2電源部92側へ電流を流さない構成で配置されている。よって、第3スイッチ素子35A及び第4スイッチ素子35Bがオフ状態のときには、寄生ダイオード35C,35Dを経路とする電流は流れず、双方向の通電を遮断することができる。
 第2スイッチ部35を構成する第3スイッチ素子35A及び第4スイッチ素子35Bは、後述する制御部39によってオン動作及びオフ動作が制御される。具体的には、第3スイッチ素子35A及び第4スイッチ素子35Bのそれぞれのゲートに対し、制御部39からオン信号又はオフ信号が入力されるようになっており、制御部39から第3スイッチ素子35A及び第4スイッチ素子35Bのゲートに対してオン信号が入力されているときには第3スイッチ素子35A及び第4スイッチ素子35Bがいずれもオン状態になり、第2導電路32が通電状態となる。また、制御部39から第3スイッチ素子35A及び第4スイッチ素子35Bのゲートに対してオフ信号が入力されているときには第3スイッチ素子35A及び第4スイッチ素子35Bがいずれもオフ状態になり、第2導電路32が非通電状態となる。
 第2電源部92は、第2スイッチ部35のオン動作によって第2導電路32が通電状態に切り替えられると、第2導電路32を介して負荷94に電力を供給することができ、第2導電路32は、第2電源部92から負荷94に対して負荷電流を流すときの電流経路として機能する。また、第2スイッチ部35のオフ動作によって第2導電路32が非通電状態に切り替えられると、第2電源部92から負荷94に対して電力が供給されなくなる。
 電流検出部36は、第1導電路31の所定位置(具体的には、接続部33と負荷94の間の位置)に設けられている。電流検出部36は公知の電流検出回路として構成され、第1導電路31を流れる電流の電流値Ioutを特定し得る値(具体的には、第1導電路31を流れる電流の大きさに対応する電圧値)を出力する構成をなす。例えば、電流検出部36は、第1導電路31に介在する抵抗器と差動増幅器とを具備し、抵抗器の両端電圧が差動増幅器に入力され、第1導電路31を流れる電流によって抵抗器に発生した電圧降下量が差動増幅器で増幅され検出値として出力されるようになっている。電流検出部36から出力される検出値(電流値Iout)は、制御部39に入力される。
 電圧検出部51は、第1の電圧検出部の一例に相当し、第1導電路31における所定位置(具体的には、第1スイッチ部34とヒューズ部93の間の位置)の電圧値Vout1を特定し得る値(具体的には、この位置の電圧の大きさに対応する電圧値)を出力する構成をなす。例えば、電圧検出部51は、第1スイッチ部34とヒューズ部93の間の位置の電圧値Vout1そのもの、或いはこの電圧値Vout1を分圧回路によって分圧した値などを検出値(電圧値Vout1を特定し得る値)として出力する。
 電圧検出部52は、第2の電圧検出部の一例に相当し、第2導電路32における所定位置(具体的には、第2スイッチ部35と第2電源部92の間の位置)の電圧値Vout2を特定し得る値(具体的には、この位置の電圧の大きさに対応する電圧値)を出力する構成をなす。例えば、第2スイッチ部35と第2電源部92の間の位置の電圧値Vout2そのもの、或いはこの電圧値Vout2を分圧回路によって分圧した値などを検出値(電圧値Vout2を特定し得る値)として出力する。
 制御部39は、例えば、マイクロコンピュータを含んだ制御回路として構成され、CPUや記憶部などを有している。この制御部39は、第1スイッチ部34及び第2スイッチ部35のそれぞれの切り替え動作を制御する機能を有する。
 (電源装置の基本動作)
 次に、電源装置30の動作について説明する。
 電源装置30は、通常時に主電源として第1電源部91を用いることができるようになっている。また、電源装置30は、第1電源部91を使用することができない異常時に、第1電源部91のバックアップとして第2電源部92を用いることができるようになっている。以下、電源装置30の動作を具体的に説明する。
 本構成では、電源装置30が搭載される車両内に設けられた図示しないイグニッションスイッチがオフ状態のときには、外部ECUから制御部39に対してイグニッションスイッチがオフ状態であることを示すIGオフ信号が入力され、イグニッションスイッチがオン状態のときには、外部ECUから制御部39に対してイグニッションスイッチがオン状態であることを示すIGオン信号が入力されるようになっている。
 車両動作停止時(イグニッションスイッチのオフ動作時)には、例えば第1スイッチ部34及び第2スイッチ部35の各ゲートに対してオフ信号が入力され、第1スイッチ部34及び第2スイッチ部35はオフ状態で維持される。
 イグニッションスイッチがオフ状態からオン状態に変化した場合、制御部39は、第1スイッチ部34を構成する第1スイッチ素子34A、第2スイッチ素子34Bの各ゲートに対してオン信号を出力する。このようなオン信号の出力に応じて、第1スイッチ部34の第1スイッチ素子34A、第2スイッチ素子34Bがいずれもオフ状態からオン状態に切り替わり、第1スイッチ部34がオン状態になると、第1電源部91から負荷94に対して電流が供給される。
 制御部39は、このように第1スイッチ部34をオン状態に切り替えた後、第1スイッチ部34及び第2スイッチ部35の動作状態を、電流検出部36、電圧検出部51、電圧検出部52の検出結果に応じて定める。
 (通常状態の動作)
 まず、通常状態のときの動作を説明する。ここでいう通常状態とは、イグニッションスイッチがオン状態とされている期間において、電流検出部36の検出値、電圧検出部51の検出値、電圧検出部52の検出値がいずれも正常範囲内にある状態を意味する。具体的には、イグニッションスイッチがオン状態とされている期間において、電流検出部36の検出値によって特定される第1導電路31のA位置の電流値Ioutが所定の上限電流値It2(所定の電流閾値)未満の正常電流範囲内であり、電圧検出部51の検出値によって特定されるB位置の電圧値Vout1が第1下限電圧値Vt1(所定の低電圧閾値)を超え且つ第1上限電圧値Vt2未満の範囲である第1の正常電圧範囲内であり、電圧検出部52の検出値によって特定されるC位置の電圧値Vout2が、第2下限電圧値Vt3(所定の異常閾値)を超え且つ第2上限電圧値Vt4(所定の過電圧閾値)未満の範囲である第2の正常電圧範囲内である状態を意味する。つまり、通常状態は、図2のように、Iout<It2、Vt1<Vout1<Vt2、Vt3<Vout1<Vt4の関係を満たす状態である。
 制御部39は、このような通常状態のときには、図2のように第1スイッチ部34をオン動作(即ち、第1スイッチ素子34A及び第2スイッチ素子34Bをオン動作)させ、第2スイッチ部35をオフ動作(即ち、第3スイッチ素子35A及び第4スイッチ素子35Bをオン動作)させる。このような動作により、第1電源部91から負荷94に対して電力を供給することができる。
 但し、通常状態のときであっても所定の充電条件が成立した場合(例えば、電圧検出部52で検出される電圧値が所定の充電判定閾値以下である場合など、予め設定された充電時期に該当する場合)には、第2スイッチ部35をオン動作(即ち、第3スイッチ素子35A及び第4スイッチ素子35Bをオン動作)させ、第1電源部91の電力によって第2電源部92を充電することができる。なお、このように第2スイッチ部35をオン動作させて第2電源部92を充電する場合、例えば、電圧検出部52の検出値が一定値に達した場合(即ち、電圧値Vout2が満充電を示す閾値に達した場合)に第2スイッチ部35をオフ動作させればよい。このように第2スイッチ部35をオフ動作させたときには、第1導電路31側から第2電源部92側への電流供給も、第2電源部92側から第1導電路31側への電流供給も遮断される。
 (第1異常状態の動作)
 次に、第1導電路31で過電流が生じたとき(第1異常状態)の動作について説明する。例えば、配線82で地絡が発生した場合など、第1導電路31で過電流が生じた場合には、電流検出部36からの検出値によって特定される電流値Ioutが増大する。制御部39は、電流検出部36からの検出値を監視しており、第1導電路31の電流値Ioutが上限電流値Ith2(電流閾値)以上となった場合、図3のように、第1スイッチ部34及び第2スイッチ部35をいずれもオフ動作させる。これにより、第1電源部91から負荷94に対して電流が流れなくなり、第2電源部92からも負荷94に対して電流が流れなくなる。なお、第1電源部91から配線82の地絡部分へと過電流が流れる場合、ヒューズ部93が溶断されるため、少なくともこの時点で第1電源部91からの電流供給は遮断されることになる。
 (第2異常状態の動作)
 次に、ヒューズ部93と第1スイッチ部34との間で地絡等が発生し、この位置の電位が大きく低下したとき(第2異常状態)の電源装置30の動作について説明する。ヒューズ部93と第1スイッチ部34の間で地絡が発生すると、第1電源部91から地絡発生位置に向けて過大な電流が流れる。そして、ヒューズ部93に流れる電流の大きさが所定電流値(溶断電流値)に達するとヒューズ部93が溶断する。なお、ヒューズ部93が溶断する程度の電流が流れる状態が「所定の過電流状態」であり、第1導電路31が「所定の過電流状態」となったときにはヒューズ部93の溶断により第1電源部91と第1スイッチ部34の間の通電が遮断される。
 制御部39は、電圧検出部51からの検出値を監視しており、電圧検出部51(第1の電圧検出部)によって検出されるB位置の電圧値Vout1が第1下限電圧値Vt1(所定の電圧閾値)以下である場合に第1スイッチ部34をオフ状態として非通電状態とし、更に、第1異常状態に該当しない場合(即ち、第1導電路31の電流値Ioutが上限電流値It2(電流閾値)未満の場合)には第2スイッチ部35をオン状態として通電状態とする。このような動作により、第2電源部92と第1導電路31の間が導通し、第2電源部92から負荷94に対して電力を供給することができ、第2電源部92をバックアップ電源として動作させることができる。また、第2電源部92をバックアップ電源として動作させているときに第1スイッチ部34がオフ状態であるため、第2電源部92から地絡発生位置へ電流が流れ込まなくなる。
 (第3異常状態の動作)
 次に、第4スイッチ素子35Bでショート故障が発生し、第4スイッチ素子35Bにオフ指示が与えられているのに第4スイッチ素子35Bが通電状態で維持されてしまうショート状態(第3異常状態)の電源装置30の動作について説明する。
 例えば、上述した通常状態のとき、第1スイッチ部34をオン動作させ、第2スイッチ部35をオフ動作させている最中に第4スイッチ素子35Bにショート故障が発生すると、第1電源部91と第2電源部92の間が通電状態となる。このとき、第1電源部91の出力電圧が第2電源部92の出力電圧よりも大きければ第1電源部91から第2電源部92に対して充電電流が流れ込むことになる。
 一方、制御部39は、電圧検出部52からの検出値を監視しており、電圧検出部52(第2の電圧検出部)によって検出されるC位置の電圧値Vout2が第2上限電圧値Vt4(所定の過電圧閾値)以上である場合、第1スイッチ部34をオフ状態として非通電状態とし、更に、第1異常状態に該当しない場合(即ち、第1導電路31の電流値Ioutが上限電流値It2(電流閾値)未満である場合)には第2スイッチ部35をオン状態として通電状態とする。このような動作により、第4スイッチ素子35Bがショート故障したときの第2電源部92の過充電を防ぐことができるとともに、負荷94の動作を継続することができる。なお、第2上限電圧値Vt4は、上述した満充電を示す閾値と同じであってもよく、これよりも大きい値であってもよい。
 (第4異常状態の動作)
 次に、第2電源部92にショート故障等が発生し、第4スイッチ素子35Bと第2電源部92の間の位置の電位が大きく低下したとき(第4異常状態)の電源装置30の動作について説明する。
 制御部39は、電圧検出部52(第2の電圧検出部)によって検出されるC位置の電圧値Vout2が第2下限電圧値Vt3(所定の異常閾値)以下である場合、第2スイッチ部35をオフ状態とし非通電状態とする。更に、第1異常状態及び第2異常状態に該当しない場合(具体的には、Iout<It2且つ、Vt1<Vout1<Vt2の場合)には、第1スイッチ部34をオン状態とし通電状態とする。これにより、第1電源部91から第2電源部92側の低電位位置への電流の流れ込みを防ぎつつ、負荷94の動作を継続することができる。なお、通常状態において第1スイッチ部34がオン状態とされ、第2スイッチ部35がオフ状態とされているとき、このような第4異常状態に変化した場合には、その通常状態のときのスイッチ状態を維持すればよい。また、通常状態のときにC位置の電圧値Vout2が第2下限電圧値Vt3(所定の異常閾値)以下に変化した場合、その異常状態を記憶しておいたり、外部装置(外部ECUなど)に報知したりすることができる。
 以上のように、電源装置30によれば、いずれか一方の電源部側で異常が生じた場合でも、その経路に対して他方の電源部から電流が流れ込むことを遮断し得る。例えば、上述したように第2スイッチ部35でショート故障が発生しても、第1スイッチ部34をオフ動作させることで第1電源部91から第2電源部92側へ電流が流れ込むことを防ぐことができる。
 第1導電路31は、第1導電路31が所定の過電流状態となったときに第1電源部91と第1スイッチ部34との間の通電を遮断するヒューズ部93に電気的に接続されている。このように構成された電源装置30は、第1導電路31に過電流が生じた場合にヒューズ部93によってこの経路の通電を迅速に遮断し、保護を図ることができる。
 電源装置30は、ヒューズ部93と第1スイッチ部34の間の導電路の電圧値を検出する電圧検出部51(第1の電圧検出部)を備えている。図4のように、制御部39は、電圧検出部51(第1の電圧検出部)で検出された電圧値Voutが第1下限電圧値Vt1(所定の低電圧閾値)以下である場合に第1スイッチ部34を非通電状態とし、第2スイッチ部35を通電状態とする。このように構成された電源装置30は、例えば、地絡等によってヒューズ部93と第1スイッチ部34の間が低電位状態となった場合、第1電源部91からこの部分(ヒューズ部93と第1スイッチ部34の間の低電位部分)へ過電流が流れ込んでも、ヒューズ部93によってこの経路が迅速に遮断され保護が図られる。また、このように第1電源部91からの電力供給を遮断した状況下において、第1スイッチ部34を非通電状態とし、第2スイッチ部35を通電状態とすることができるため、第2電源部92側から低電位部分(ヒューズ部93と第1スイッチ部34の間の低電位部分)への電流の流れ込みを防ぎつつ第2電源部92から第1導電路31への電力供給を維持することができる。
 電源装置30は、第2導電路32の電圧値を検出する電圧検出部52(第2の電圧検出部)を備える。図5のように、制御部39は、電圧検出部52(第2の電圧検出部)で検出された電圧値Vout2が第2上限電圧値Vt4(所定の過電圧閾値)以上である場合に第1スイッチ部34を非通電状態とする。このように構成された電源装置30は、例えば、第2スイッチ部35にショート故障が発生し、第1電源部91から第2電源部92へと充電電流が流れ込んだとしても、第2導電路32の電圧値がある程度高まったときには第1スイッチ部34を非通電状態とし、第1電源部91から第2電源部92への流れ込みを遮断することができる。このような機能により、第2電源部92の過充電防止効果を高めることができる。
 電圧検出部52(第2の電圧検出部)は、第2導電路32における第2スイッチ部35と第2電源部92との間の位置の電圧値を検出する構成となっている。図6のように、制御部39は、電圧検出部52(第2の電圧検出部)で検出された電圧値Vout2が第2下限電圧値Vt3(所定の異常閾値)以下である場合に第2スイッチ部35を非通電状態とする。このように構成された電源装置30は、例えば、第2スイッチ部35と第2電源部92の間の電圧値が地絡等によって第2下限電圧値Vt3(所定の異常閾値)以下に低下している場合に、第2スイッチ部35を非通電状態で維持することができ、第1導電路31側からその所定位置へ電流が流れ込むことを防ぐことができる。よって、この状況下で第1スイッチ部34を通電状態としても第2電源部92側への流れ込みを防ぐことができ、第1電源部91から負荷94への電力供給を支障なく継続することができる。
 なお、本構成では、通常状態のときに第1スイッチ素子34A、第2スイッチ素子34B、及び第3スイッチ素子35Aのいずれかにショート故障が発生したとしても、主電源である第1電源部91から負荷94に対する電力供給が継続的に維持されるため、負荷94の動作に直ちに影響が及ぶことはない。
 <実施例2>
 次に、本発明を具体化した実施例2について説明する。
 実施例2の電源装置130を用いた車載システム100を図7に示す。この車載システム100及び電源装置130は、第3スイッチ素子35Aが第2電源部92側に設けられ、第4スイッチ素子35Bが接続部33側に設けられている点(即ち、実施例1とは入れ替えて配置した点)、第3スイッチ素子35A及び第4スイッチ素子35Bの間にインダクタンスLが設けられている点、及び充放電用スイッチ素子40Aが設けられている点が実施例1の車載システム10及び電源装置30の回路構成と異なっており、他の回路構成は実施例1と同一である。よって、実施例2の車載システム100及び電源装置130において、実施例1と同一の構成をなす部分については実施例1と同一の符号を付し、詳細な説明を省略する。
 実施例2の電源装置130は、実施例1の電源装置30の機能を全て含み、実施例1の説明で上述した制御を全て実施し得る。更に、電源装置130は、充放電部40を、DCDCコンバータとして動作させ得る。
 第2スイッチ部135は、第3スイッチ素子35Aのドレインが第2電源部92側に電気的に接続され、第4スイッチ素子35Bのドレインが第1導電路31に電気的に接続されている。そして、第3スイッチ素子35Aと第4スイッチ素子35Bの間にインダクタンスLが設けられている。インダクタンスLは一端が第3スイッチ素子35Aのソースに電気的に接続され、他端が第4スイッチ素子35Bのソースに電気的に接続されている。
 第3スイッチ素子35Aの寄生ダイオード35Cと第4スイッチ素子35Bの寄生ダイオード35Dとが互いに逆向きとされ、寄生ダイオード35Cは第2電源部92側から第1導電路31側へ電流を流さない構成で配置され、寄生ダイオード35Dは第1導電路31側から第2電源部92側へ電流を流さない構成で配置されている。よって、第2スイッチ部35のオフ動作時、即ち、第3スイッチ素子35A及び第4スイッチ素子35Bがいずれもオフ状態のときには、寄生ダイオード35C,35Dを経路とする電流は流れず、双方向の通電を遮断することができる。
 充放電用のスイッチ素子40AはMOSFETとして構成され、ソースがグラウンドに接続され、ドレインが第4スイッチ素子35Bのソース及びインダクタンスLの他端に電気的に接続されている。また、スイッチ素子40Aの寄生ダイオード40Bは第2導電路32側からグラウンド側へは電流を流さない配置となっている。
 電源装置130は充放電部40を有し、この充放電部40は、スイッチ素子40A、第4スイッチ素子35B、及びインダクタンスLを備えている。この充放電部40は、第4スイッチ素子35Bがハイサイド側のスイッチング素子として機能し、スイッチ素子40Aがローサイド側のスイッチング素子として機能し、同期整流方式のDCDCコンバータとして動作する。そして、制御部39は、このような充放電部40の第4スイッチ素子35B及びスイッチ素子40Aに対してデッドタイムを設定した形でPWM信号を相補的に出力する。充放電部40は、制御部39によって制御され、スイッチング素子(スイッチ素子40A、第4スイッチ素子35B)のスイッチング動作に応じて第2電源部92側からの入力電圧を変換し第1導電路31側へ出力する放電動作と、スイッチング素子(スイッチ素子40A、第4スイッチ素子35B)の動作に応じて第1導電路31からの電力に基づく充電電流を第2電源部92へ供給する充電動作を行い得る。
 次に、電源装置130の動作について説明する。
 電源装置130は、通常時に主電源として第1電源部91を用いる。車両動作停止時(イグニッションスイッチのオフ動作時)には、制御部39から第1スイッチ部34及び第2スイッチ部135の各ゲートに対してオフ信号が入力され、第1スイッチ部34及び第2スイッチ部135はオフ状態で維持される。このとき、スイッチ素子40Aもオフ状態で維持される。そして、イグニッションスイッチがオフ状態からオン状態に変化した場合、制御部39は、第1スイッチ部34を構成する第1スイッチ素子34A、第2スイッチ素子34Bの各ゲートに対してオン信号を出力する。このようなオン信号の出力に応じて、第1スイッチ部34がオン状態になり、第1電源部91から負荷94に対して電流が供給される。
 制御部39は、このように第1スイッチ部34をオン状態に切り替えた後、第1スイッチ部34及び第2スイッチ部135の動作状態を、電流検出部36、電圧検出部51、電圧検出部52の検出結果に応じて定める。
 (通常状態の動作)
 まず、通常状態のときの動作を説明する。イグニッションスイッチがオン状態とされている期間において、図2のように、Iout<It2、Vt1<Vout1<Vt2、Vt3<Vout1<Vt4の関係を満たす通常状態のときには、図2のように第1スイッチ部34をオン動作(即ち、第1スイッチ素子34A及び第2スイッチ素子34Bをオン動作)させ、第2スイッチ部135をオフ動作(即ち、第3スイッチ素子35A及び第4スイッチ素子35Bをオン動作)させる。このような動作により、第1電源部91から負荷94に対して電力を供給することができる。
 但し、通常状態のときであっても所定の充電条件が成立した場合(例えば、電圧検出部52で検出される電圧値が所定の充電判定閾値以下である場合など、予め設定された充電時期に該当する場合)には、第3スイッチ素子35Aをオン動作させるとともに充放電部40を動作させ、第1電源部91の電力によって第2電源部92を充電することができる。なお、このように充放電部40を動作させて第2電源部92を充電する場合、充放電部を降圧式のDCDCコンバータとして動作させるように制御部39から第4スイッチ素子35B及びスイッチ素子40Aに対してPWM信号を相補的に出力すればよい。そして、このように充放電部40を動作させて第2電源部92を充電する場合、例えば、電圧検出部52の検出値が一定値に達した場合(即ち、電圧値Vout2が満充電を示す閾値に達した場合)、第4スイッチ素子35B及びスイッチ素子40Aをいずれもオフ動作させて充放電部40を停止させるとともに、第3スイッチ素子35Aをオフ動作させればよい。このときには、第1導電路31側から第2電源部92側への電流供給も、第2電源部92側から第1導電路31側への電流供給も遮断される。
 (第1異常状態の動作)
 次に、第1導電路31で過電流が生じたとき(第1異常状態)の動作について説明する。制御部39は、電流検出部36からの検出値を監視しており、第1導電路31の電流値Ioutが上限電流値It2(電流閾値)以上となった場合、図3のように、第1スイッチ部34及び第2スイッチ部135をいずれもオフ動作させる。また、スイッチ素子40Aもオフ動作させ、充放電部40を停止させる。これにより、第1電源部91から負荷94に対して電流が流れなくなり、第2電源部92からも負荷94に対して電流が流れなくなる。
 (第2異常状態の動作)
 制御部39は、電圧検出部51からの検出値を監視しており、電圧検出部51(第1の電圧検出部)によって検出されるB位置の電圧値Vout1が第1下限電圧値Vt1(所定の電圧閾値)以下である場合に第1スイッチ部34をオフ状態として非通電状態とし、更に、第1異常状態に該当しない場合(即ち、第1導電路31の電流値Ioutが上限電流値It2(電流閾値)未満の場合)には、第3スイッチ素子35Aをオン状態にするとともに充放電部40を動作させて電力供給状態とする。なお、このように充放電部40を動作させて第1導電路31に電力を供給する場合、第2電源部92によって印加される電圧を入力電圧とし、第1導電路31側に出力電圧を印加するように充放電部40を昇圧式のDCDCコンバータとして動作させるように制御部39から第4スイッチ素子35B及びスイッチ素子40Aに対してPWM信号を相補的に出力すればよい。
 このような動作により、第2電源部92から負荷94に対して電力を供給することができ、第2電源部92をバックアップ電源として動作させることができる。また、第2電源部92をバックアップ電源として動作させているときに第1スイッチ部34がオフ状態であるため、仮にヒューズ部93と第1スイッチ部34の間で地絡が発生していたとしても、第2電源部92から地絡発生位置へは電流が流れ込まなくなる。
 (第3異常状態の動作)
 制御部39は、電圧検出部52からの検出値を監視しており、電圧検出部52(第2の電圧検出部)によって検出されるC位置の電圧値Vout2が第2上限電圧値Vt4(所定の過電圧閾値)以上である場合、第1スイッチ部34をオフ状態として非通電状態とし、更に、第1異常状態に該当しない場合(即ち、第1導電路31の電流値Ioutが上限電流値It2(電流閾値)未満である場合)、制御部39は、第3スイッチ素子35Aをオン状態にするとともに充放電部40を動作させ、第2電源部92の電力に基づいて第1導電路31に電力を供給する。即ち、第2電源部92によって印加される電圧を入力電圧とし、第1導電路31側に出力電圧を印加するように充放電部40を昇圧式のDCDCコンバータとして動作させる。このような動作により、第4スイッチ素子35Bがショート故障したときの第2電源部92の過充電を防ぐことができるとともに、負荷94の動作を継続することができる。
 (第4異常状態の動作)
 制御部39は、電圧検出部52(第2の電圧検出部)によって検出されるC位置の電圧値Vout2が第2下限電圧値Vt3(所定の異常閾値)以下である場合、第2スイッチ部135をオフ状態にするとともにスイッチ素子40Aもオフ状態にする。更に、第1異常状態及び第2異常状態に該当しない場合(具体的には、Iout<It2且つ、Vt1<Vout1<Vt2の場合)には、第1スイッチ部34をオン状態とし通電状態とする。これにより、第1電源部91から第2電源部92側の低電位位置への電流の流れ込みを防ぎつつ、負荷94の動作を継続することができる。なお、上述した通常状態のときにC位置の電圧値Vout2が第2下限電圧値Vt3(所定の異常閾値)以下に変化した場合、その異常状態を記憶しておいたり、外部装置(外部ECUなど)に報知したりすることができる。
 本構成も実施例1と同様の効果を得ることができる。
 また、本構成によれば、電圧変換を行い得る充放電部40によって第2電源部92からの放電及び第2電源部92に対する充電を可能としつつ、その充放電部40の一部をなすスイッチング素子(第4スイッチ素子35B)を第2スイッチ部35として兼用することで、部品数の削減や小型化等を図ることができる。
 <他の実施例>
 本発明は上記記述及び図面によって説明した実施例1に限定されるものではなく、例えば次のような実施例も本発明の技術的範囲に含まれる。
 上述した実施例では、第1電源部に鉛バッテリを用いているが、この構成に限定されず、本明細書のいずれの例においても、鉛バッテリに代えて又は鉛バッテリと併用して第1電源部に他の電源手段(公知の他の蓄電手段や発電手段など)を用いてもよい。第1電源部を構成する電源手段の数は1つに限定されず、複数の電源手段によって構成されていてもよい。
 上述した実施例では、第2電源部に電気二重層キャパシタを用いているが、この構成に限定されず、本明細書のいずれの例においても、第2電源部にリチウムイオン電池、リチウムイオンキャパシタ、ニッケル水素充電池などの他の蓄電手段を用いてもよい。また、第2電源部を構成する蓄電手段の数は1つに限定されず、複数の蓄電手段によって構成されていてもよい。
 上述した実施例では、第1スイッチ部、第2スイッチ部として、2つのMOSFETで構成されるスイッチ部を例示したが、双方向の電流を遮断し得る構成であればこの構成に限定されず、公知の他のスイッチ部によって構成されていてもよい。例えば、他の半導体スイッチ素子や機械式のリレー等を用いてもよい。また、双方向の電流を遮断し得る構成であれば、第1スイッチ部、第2スイッチ部のそれぞれを構成する素子数は2に限定されず、1であってもよく、3以上であってもよい。
 上述した実施例では、第2電源部の満充電時の出力電圧が、第1電源部の満充電時の出力電圧より小さい例を示したが、本明細書のいずれの例においても、第2電源部の満充電時の出力電圧が、第1電源部の満充電時の出力電圧と同程度又は第1電源部の満充電時の出力電圧以上であってもよい。
 上述した実施例では、第1導電路に第1電源部及び負荷が接続されているが、これに限らず、発電機や別の負荷等の他の電気部品が電気的に接続されていてもよい。また、これら電気部品を接続する場所は第1導電路に電気的に接続される位置であれば様々な位置が対象となる。
 10…電源装置
 31…第1導電路
 32…第2導電路
 33…接続部
 34…第1スイッチ部
 35,135…第2スイッチ部
 36…電流検出部
 39…制御部
 40…充放電部
 51…電圧検出部(第1の電圧検出部)
 52…電圧検出部(第2の電圧検出部)
 91…第1電源部
 92…第2電源部
 93…ヒューズ部

Claims (6)

  1.  第1電源部と負荷との間の電力の経路となる第1導電路と、
     前記第1導電路と第2電源部とに接続される第2導電路と、
     前記第1導電路において前記第2導電路との接続部と前記第1電源部との間に設けられ、双方向の通電を遮断する非通電状態と通電する通電状態とに切り替える第1スイッチ部と、
     前記第2導電路において前記接続部と前記第2電源部との間に設けられ、双方向の通電を遮断する非通電状態と通電する通電状態とに切り替える第2スイッチ部と、
     前記第1スイッチ部及び前記第2スイッチ部のそれぞれの切り替え動作を制御する制御部と、
    を備える電源装置。
  2.  前記第1導電路は、当該第1導電路が所定の過電流状態となったときに前記第1電源部と前記第1スイッチ部との間の通電を遮断するヒューズ部に電気的に接続されている請求項1に記載の電源装置。
  3.  前記ヒューズ部と前記第1スイッチ部の間の導電路の電圧値を検出する第1の電圧検出部を備え、
     前記制御部は、前記第1の電圧検出部で検出された電圧値が所定の低電圧閾値以下である場合に前記第1スイッチ部を非通電状態とし、前記第2スイッチ部を通電状態とする請求項2に記載の電源装置。
  4.  前記第2導電路の電圧値を検出する第2の電圧検出部を備え、
     前記制御部は、前記第2の電圧検出部で検出された電圧値が所定の過電圧閾値以上である場合に前記第1スイッチ部を非通電状態とする請求項1から請求項3のいずれか一項に記載の電源装置。
  5.  前記第2の電圧検出部は、前記第2導電路における前記第2スイッチ部と前記第2電源部との間の位置の電圧値を検出し、
     前記制御部は、前記第2の電圧検出部で検出された電圧値が所定の異常閾値以下である場合に前記第2スイッチ部を非通電状態で維持する請求項4に記載の電源装置。
  6.  スイッチング素子のスイッチング動作に応じて前記第2電源部側からの入力電圧を変換し前記第1導電路側へ出力する放電動作と、スイッチング素子の動作に応じて前記第1導電路からの電力に基づく充電電流を前記第2電源部へ供給する充電動作を行う充放電部を備え、
     前記第2スイッチ部の少なくとも一部が前記充放電部のスイッチング素子として構成されている請求項1から請求項5のいずれか一項に記載の電源装置。
PCT/JP2017/018162 2016-05-31 2017-05-15 電源装置 WO2017208792A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/301,620 US10658835B2 (en) 2016-05-31 2017-05-15 Power supply device
CN201780004069.3A CN109417292B (zh) 2016-05-31 2017-05-15 电源装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016108349A JP6610439B2 (ja) 2016-05-31 2016-05-31 電源装置
JP2016-108349 2016-05-31

Publications (1)

Publication Number Publication Date
WO2017208792A1 true WO2017208792A1 (ja) 2017-12-07

Family

ID=60477755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018162 WO2017208792A1 (ja) 2016-05-31 2017-05-15 電源装置

Country Status (4)

Country Link
US (1) US10658835B2 (ja)
JP (1) JP6610439B2 (ja)
CN (1) CN109417292B (ja)
WO (1) WO2017208792A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210135481A1 (en) * 2018-04-27 2021-05-06 Autonetworks Technologies, Ltd. In-vehicle auxiliary power source control device and in-vehicle auxiliary power source device
US20220263440A1 (en) * 2021-02-12 2022-08-18 Denso Corporation Power supply controller

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6751512B2 (ja) * 2016-12-08 2020-09-09 株式会社オートネットワーク技術研究所 車載用電源装置
JP7060435B2 (ja) * 2018-04-19 2022-04-26 Fdk株式会社 故障検知機能付き充電器、及び故障検知方法
US11139652B2 (en) * 2018-05-29 2021-10-05 Motorola Solutions, Inc. System and method for a load-based selectable battery cell
KR102627594B1 (ko) * 2018-09-18 2024-01-22 삼성전자주식회사 복수의 입력 전압에 기초하여 전압을 출력하는 전자 회로
US11545824B2 (en) * 2018-10-11 2023-01-03 Texas Instruments Incorporated USB short circuit protection
JP7017138B2 (ja) 2018-12-03 2022-02-08 株式会社オートネットワーク技術研究所 車載用のバックアップ電源制御装置、及び車載用のバックアップ電源
JP7014191B2 (ja) * 2019-01-09 2022-02-01 株式会社デンソー 通電制御装置
JP6935437B2 (ja) * 2019-01-23 2021-09-15 矢崎総業株式会社 電源装置
JP2021029093A (ja) * 2019-08-13 2021-02-25 矢崎総業株式会社 電源装置
JP7151695B2 (ja) * 2019-12-17 2022-10-12 株式会社デンソー 電子制御装置、および、電源システム
TWI743763B (zh) * 2020-04-28 2021-10-21 低碳動能開發股份有限公司 車用超級電容模組的保護方法及其保護裝置
CN112531627B (zh) * 2020-11-26 2023-06-30 阳光电源股份有限公司 一种智能开关装置及发电系统
CN116547173A (zh) * 2020-11-30 2023-08-04 松下知识产权经营株式会社 备用电源系统和移动载运工具
JPWO2023276838A1 (ja) * 2021-06-29 2023-01-05
WO2023242988A1 (ja) * 2022-06-15 2023-12-21 株式会社オートネットワーク技術研究所 遮断制御装置
JP7429874B1 (ja) 2022-10-04 2024-02-09 パナソニックIpマネジメント株式会社 バックアップ電源装置及びその制御方法
WO2024075351A1 (ja) * 2022-10-04 2024-04-11 パナソニックIpマネジメント株式会社 バックアップ電源装置及びその制御方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009189214A (ja) * 2008-02-08 2009-08-20 Toyota Motor Corp 駆動装置およびこれが備えるコンデンサの異常判定方法
JP2010207008A (ja) * 2009-03-05 2010-09-16 Mitsumi Electric Co Ltd 逆流防止回路および電源切換え装置
JP2014184752A (ja) * 2013-03-21 2014-10-02 Auto Network Gijutsu Kenkyusho:Kk 電源装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2959657B2 (ja) * 1993-05-13 1999-10-06 キヤノン株式会社 電子機器
JPH07260874A (ja) * 1994-03-18 1995-10-13 Fujitsu Ltd 半導体装置及びその試験方法
KR101255787B1 (ko) * 2011-04-13 2013-04-17 주식회사 유라코퍼레이션 차량용 정션 박스
EP2634882B1 (en) * 2012-02-29 2014-09-17 ABB Technology Ltd DC supply unit for a power provision unit
JP5885589B2 (ja) * 2012-05-28 2016-03-15 ルネサスエレクトロニクス株式会社 半導体集積回路およびその動作方法
WO2014061137A1 (ja) * 2012-10-18 2014-04-24 三菱電機株式会社 電源管理システムおよび電源管理方法
EP2983270A4 (en) * 2013-04-03 2016-07-27 Autonetworks Technologies Ltd CONTROL DEVICE, POWER SUPPLY CONTROL DEVICE, CHARGE CONTROL METHOD, CHARGE CONTROL DEVICE, AND POWER SUPPLY DEVICE FOR VEHICLE
JP6198642B2 (ja) * 2014-03-06 2017-09-20 アルプス電気株式会社 電圧選択回路及びこれを有する半導体集積回路装置
JP6407071B2 (ja) * 2015-03-16 2018-10-17 株式会社東芝 電圧切替回路および電源装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009189214A (ja) * 2008-02-08 2009-08-20 Toyota Motor Corp 駆動装置およびこれが備えるコンデンサの異常判定方法
JP2010207008A (ja) * 2009-03-05 2010-09-16 Mitsumi Electric Co Ltd 逆流防止回路および電源切換え装置
JP2014184752A (ja) * 2013-03-21 2014-10-02 Auto Network Gijutsu Kenkyusho:Kk 電源装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210135481A1 (en) * 2018-04-27 2021-05-06 Autonetworks Technologies, Ltd. In-vehicle auxiliary power source control device and in-vehicle auxiliary power source device
US11804726B2 (en) * 2018-04-27 2023-10-31 Autonetworks Technologies, Ltd. In-vehicle auxiliary power source control device and in-vehicle auxiliary power source device
US20220263440A1 (en) * 2021-02-12 2022-08-18 Denso Corporation Power supply controller
US11784593B2 (en) * 2021-02-12 2023-10-10 Denso Corporation Power supply controller

Also Published As

Publication number Publication date
US20190173274A1 (en) 2019-06-06
CN109417292B (zh) 2022-04-05
JP6610439B2 (ja) 2019-11-27
JP2017216795A (ja) 2017-12-07
CN109417292A (zh) 2019-03-01
US10658835B2 (en) 2020-05-19

Similar Documents

Publication Publication Date Title
JP6610439B2 (ja) 電源装置
JP6801528B2 (ja) 車載用電源部の制御装置及び車載用電源装置
JP6623937B2 (ja) リレー装置及び電源装置
JP6451708B2 (ja) 車載用のバックアップ装置
WO2017208751A1 (ja) リレー装置及び電源装置
JP2008072880A (ja) 電源システム
JP6915430B2 (ja) 電源システム
WO2017183400A1 (ja) リレー装置及び車載システム
US10998713B2 (en) Relay device
JP2007336631A (ja) 電源システム
US10819099B2 (en) Relay device
US9831715B2 (en) Energy supply module as a two-port network, use of a separating device in such an energy supply module, and method for operating such an energy supply module
JP2019195249A (ja) 車両用電源システム
US20170187179A1 (en) Junction box
CN113169563A (zh) 车载用的备用电源控制装置及车载用的备用电源
JP2019009950A (ja) 車載用電源回路及び車載用電源装置
JP6583161B2 (ja) 電圧変換回路
JP6164788B1 (ja) 車両用電源供給システム、及び車両用電源供給システムの制御方法
JP2024504799A (ja) 過電圧保護回路

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806350

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17806350

Country of ref document: EP

Kind code of ref document: A1