WO2023242988A1 - 遮断制御装置 - Google Patents

遮断制御装置 Download PDF

Info

Publication number
WO2023242988A1
WO2023242988A1 PCT/JP2022/023940 JP2022023940W WO2023242988A1 WO 2023242988 A1 WO2023242988 A1 WO 2023242988A1 JP 2022023940 W JP2022023940 W JP 2022023940W WO 2023242988 A1 WO2023242988 A1 WO 2023242988A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
voltage
value
current
power path
Prior art date
Application number
PCT/JP2022/023940
Other languages
English (en)
French (fr)
Inventor
貴史 川上
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to PCT/JP2022/023940 priority Critical patent/WO2023242988A1/ja
Publication of WO2023242988A1 publication Critical patent/WO2023242988A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications

Definitions

  • the present disclosure relates to a shutdown control device.
  • Patent Document 1 discloses a technique in which a current detection unit detects the magnitude of a current flowing in a power path, and a control unit monitors a signal acquired from the current detection unit. When the control section determines that the rate of change of the current flowing through the power path is equal to or higher than a specified value, the control section outputs a cutoff signal to a relay section or a cutoff section interposed in the power path, and switches the relay section or cutoff section to a cutoff state.
  • Patent Document 1 uses only the signal acquired from the current detection unit to determine whether to output a cutoff signal. For this reason, in the case of Patent Document 1, when noise occurs in the power path, there is a concern that this noise may be misjudged as a change in current and a cutoff signal may be output, and there is no technology to prevent such misjudgement. desired.
  • the present disclosure has been made based on the above-mentioned circumstances, and aims to provide a cutoff control device that can appropriately cut off a power path.
  • the shutoff control device of the present disclosure includes: A power storage unit, a power path that is a path through which power is transmitted between the power storage unit and the load; a cutoff unit that switches from an allowable state in which power is allowed to be supplied from the power storage unit side to the load side in the power path to a cutoff state in which power is cut off; A cutoff control device that is used in an in-vehicle system that controls the cutoff section, a current detection unit that detects the current state of the current flowing through the power path; a voltage detection unit that detects the voltage state of the voltage in the power path; to the cutoff unit when the current state detected by the current detection unit is a predetermined current increase state and the voltage state detected by the voltage detection unit is a predetermined voltage drop state. and a control section that instructs switching to the cutoff state.
  • the power path can be appropriately interrupted.
  • FIG. 1 is a block diagram illustrating an in-vehicle system including a shutoff control device according to a first embodiment.
  • FIG. 2 is a graph showing a region where a current increasing state and a voltage decreasing state are established.
  • FIG. 3 is a graph showing an example in which the current flowing through the power path suddenly increases when the power path has a ground fault.
  • FIG. 4 is a flowchart illustrating the flow of processing in the control unit according to the first embodiment.
  • FIG. 5 is a block diagram illustrating an in-vehicle system including a shutoff control device according to another embodiment.
  • the shutoff control device of the present disclosure is used in an on-vehicle system and controls a shutoff section.
  • An in-vehicle system consists of a power storage unit, a power path that is a path through which power is transmitted between the power storage unit and a load, and a permissible state that allows power to be supplied from the power storage unit side to the load side on the power path. and a cutoff section that switches to a cutoff state.
  • the cutoff control device includes a current detection section, a voltage detection section, and a control section.
  • the current detection unit detects the current state of the current flowing through the power path.
  • the voltage detection unit detects the voltage state of the voltage in the power path.
  • the control unit causes the cut-off unit to shut off when the current state detected by the current detection unit is a predetermined current increase state and the voltage state detected by the voltage detection unit is a predetermined voltage drop state. Instructs to switch to a state.
  • the above [1] cutoff control device switches the cutoff section to the cutoff state when both a current increase state and a voltage drop state are confirmed, so it is possible to more accurately grasp whether or not a short circuit current has occurred.
  • the interrupting section can be switched to the interrupting state when a short circuit current occurs. For example, in cases where the occurrence of a short-circuit current is determined only based on a rise in current, or in an example where the occurrence of a short-circuit current is judged only based on a drop in voltage, there is a concern that erroneous disconnection may occur due to noise, etc., but this disconnection control device Such erroneous shutoffs can be made less likely to occur.
  • the current detection section detects the first detection value that can identify the current value of the power path as the current rising state
  • the voltage detection section detects the first detection value as the voltage dropping state.
  • a second detection value that can identify the voltage value of the power path can be detected.
  • the current rising state may be a state in which the current value of the power path is greater than or equal to the current threshold value
  • the voltage decreasing state may be a state in which the voltage value of the power path is less than or equal to the voltage threshold value.
  • the cutoff control device of [2] above determines whether the current value of the power path is equal to or higher than the current threshold value and the power With a simple configuration in which it is determined whether the voltage value of the circuit is equal to or less than the voltage threshold value, it is possible to achieve both protection from short-circuit current and suppression of erroneous shutoff.
  • the in-vehicle system has a switch that is interposed in the power path and switches the power path between a energized state and a de-energized state, and the switch is configured to switch when a current of a predetermined value or more flows when the power path is energized.
  • the configuration may be such that the energized state is canceled and switched to the non-energized state due to the generation of electromagnetic repulsion.
  • the current detection unit of the cutoff control device in [1] above detects a first detection value that can identify the current value of the power path as a current rising state, and the current rising state means that the current value of the power path is equal to or higher than the current threshold.
  • the current threshold may be a value smaller than the predetermined value.
  • the above-mentioned cutoff control device [3] can set the current threshold within a range in which switching to a non-energized state due to electromagnetic repulsion does not occur.
  • the voltage drop state may be a state in which the voltage drop rate of the power line is equal to or higher than a certain value.
  • the above [4] cutoff control device can switch the cutoff part to the cutoff state when the rate of voltage drop exceeds a certain value in the current rising state, and achieves both quick protection from short-circuit current and suppression of erroneous cutoff. can do.
  • the in-vehicle system may include a measurement unit that measures the internal resistance value of the power storage unit.
  • the voltage drop state is a state in which the voltage value of the power line is equal to or lower than the voltage threshold, and the control unit controls the internal resistance based on the internal resistance value measured by the measurement unit.
  • the voltage threshold value can be set such that the larger the resistance value, the smaller the voltage threshold value.
  • the above [5] cutoff control device is based on the premise that the internal resistance value of the power storage unit is actually measured, and is adjusted to the actual internal resistance value so that the larger the actual internal resistance value is, the smaller the voltage threshold value is.
  • the voltage threshold can be set by
  • the voltage drop state is a state in which the voltage value of the power path is equal to or less than the voltage threshold value.
  • the voltage threshold value can be determined based on the multiplication value and the output voltage of the power storage unit according to an arithmetic expression in which the larger the output voltage is, the larger the voltage threshold value is, and the larger the multiplication value is, the smaller the voltage threshold value is.
  • the multiplication value is a value obtained by multiplying the current threshold value by the summation value of the internal resistance value of the power storage unit and the resistance value of the power path.
  • the cutoff control device of [6] above can appropriately set the voltage threshold by reflecting the internal resistance value, the resistance value of the power path, the current threshold value, and the output voltage of the power storage unit.
  • the in-vehicle system may include a switch that is interposed in the power path and switches the power path between a energized state and a de-energized state.
  • the voltage detection section can detect the voltage state on the load side rather than the switch.
  • the cutoff control device of [7] above can suppress dark current based on the power storage unit from flowing to the voltage detection unit when the switch is in a non-energized state, leading to power saving.
  • the in-vehicle system may include a switch that is interposed in the power path and switches the power path between a energized state and a de-energized state.
  • the voltage detection section can detect the voltage state on the side of the power storage section rather than the switch.
  • the cutoff control device of [8] above can easily detect the voltage state at a position closer to the power storage unit, it is possible to detect the voltage state of the power storage unit while minimizing the voltage drop that occurs in the power path.
  • Any one of a pyrofuse, an electromagnetic fuse, or a semiconductor switch may be used for the cutoff section of the cutoff control device according to any one of [1] to [8] above.
  • the shutoff control device of [9] above can easily switch to the shutoff state in a short time.
  • the in-vehicle system 10 having the cut-off control device 30 of the first embodiment is configured as an in-vehicle power supply system, and includes a power storage section 91, a power path 31, a cut-off section 34, a relay 36 as a switch, a measurement section 37, and It has a cutoff control device 30.
  • the cutoff control device 30 includes a current detection section 38, a voltage detection section 39, and a control section 20.
  • the cutoff control device 30 is used in the vehicle-mounted system 10 and has a function of controlling the cutoff section 34.
  • In-vehicle system 10 is configured to be able to apply voltage from power storage unit 91 to load 94 via power path 31, which is a path through which power is transmitted between power storage unit 91 and load 94.
  • the power storage unit 91 is a DC power source that generates a DC voltage, and uses power source means such as a lead battery, LiB, an alternator, and a converter, for example.
  • Power storage unit 91 is provided with a high potential side terminal and a low potential side terminal. Power storage unit 91 is configured to apply a predetermined output voltage to power path 31 .
  • the power path 31 has a high potential side power path 31A and a low potential side power path 31B.
  • a high potential side terminal of power storage unit 91 is electrically connected to high potential side power path 31A.
  • a low potential side terminal of power storage unit 91 is electrically connected to low potential side power path 31B.
  • Power storage unit 91 generates a predetermined potential difference (that is, the output voltage of power storage unit 91) between high potential side power path 31A and low potential side power path 31B.
  • Power path 31 is a path through which power is transmitted between power storage unit 91 and load 94.
  • the high potential side power path 31A is electrically connected to the positive electrode of the load 94.
  • the low potential side power path 31B is electrically connected to the negative electrode of the load 94.
  • the load 94 is an in-vehicle electronic component, and for example, products such as electric components, ECUs, and ADAS target components are applicable. Load 94 is electrically connected to power path 31 .
  • to be electrically connected desirably refers to a configuration in which they are connected in a mutually conductive state (a state in which current can flow) so that the potentials of both objects to be connected are equalized.
  • the configuration is not limited to this.
  • “to be electrically connected” may refer to a configuration in which both connection objects are connected in a state where they can be electrically conductive, with an electrical component interposed between the two connection objects.
  • a pyrofuse PYROFUSE (registered trademark) or the like is used for the cutoff section 34.
  • the cutoff section 34 is provided interposed in the low potential side power path 31B.
  • the cutoff unit 34 switches from an allowable state in which power is allowed to be supplied from the power storage unit 91 side to the load 94 side in the power path 31 to a cutoff state in which the power is cut off by being supplied with a drive signal D from the control unit 20 described later. , the supply of power from the power storage unit 91 side to the load 94 side is stopped.
  • the built-in gunpowder is ignited, and the explosive force of the gunpowder is used to connect the power path 31 on the power storage unit 91 side built into itself and the power path 31 on the load 94 side.
  • the conductive path that electrically connects the two is instantaneously divided into a cutoff state. Therefore, the pyrofuse can cut off the power path 31 in a shorter time than a relay or the like.
  • the cutoff section 34 that has been switched to the cutoff state does not switch from the cutoff state to the allowable state.
  • the relay 36 includes a high potential side relay 36A and a low potential side relay 36B.
  • a contactor, a mechanical relay, or the like is used for the high potential side relay 36A and the low potential side relay 36B.
  • the high potential side relay 36A is provided interposed in the high potential side power path 31A.
  • the low potential side relay 36B is provided interposed in the low potential side power path 31B on the load 94 side with respect to the cutoff section 34.
  • the high potential side relay 36A and the low potential side relay 36B are switched to a non-energized state by being given a cutoff signal C3 from the control unit 20.
  • the high potential side relay 36A and the low potential side relay 36B are switched to the energized state by being given a conduction signal C4 from the control unit 20. That is, the relay 36 is interposed in the power path 31 and switches each of the high potential side power path 31A and the low potential side power path 31B between a energized state and a non-energized state.
  • the measurement unit 37 is an in-vehicle battery monitoring device, and can function as a battery management system (BMS) that monitors and manages the power storage unit 91. Furthermore, the measurement unit 37 can also function as a battery sensing unit (BSU) that measures the voltage, current, temperature, etc. related to the power storage unit 91. Measurement section 37 is configured to calculate internal resistance value R0 of power storage section 91 based on the measured voltage, current, temperature, etc. regarding power storage section 91, and output this internal resistance value R0. For example, internal resistance value R0 gradually increases as the discharge from power storage unit 91 progresses. Further, the internal resistance value R0 of power storage unit 91 gradually decreases as charging progresses.
  • BMS battery management system
  • BSU battery sensing unit
  • the current detection unit 38 is provided interposed in the low potential side power path 31B on the side of the power storage unit 91 rather than the cutoff unit 34.
  • the current detection unit 38 includes, for example, a resistor and a differential amplifier, and detects a value indicating the current flowing through the low potential side power path 31B (specifically, a value corresponding to the value of the current flowing through the low potential side power path 31B). analog voltage) can be output as the first detected value A. That is, the current detection unit 38 detects the current state of the current flowing through the power path 31 as the first detection value A.
  • the voltage detection section 39 is configured, for example, as a part of the control section 20 described later.
  • the voltage detection unit 39 is configured to obtain a second detection value V corresponding to the potential difference between the high potential side power path 31A and the low potential side power path 31B (that is, the voltage value of the power path 31). That is, the voltage detection unit 39 detects the voltage state of the voltage in the power path 31 as the second detection value V.
  • Voltage detection section 39 detects a voltage state closer to power storage section 91 than relay 36 .
  • the voltage detection unit 39 is configured to calculate the second detection value V at predetermined short time intervals.
  • the control section 20 is configured to be able to store the second detection value V calculated by the previous voltage detection section 39 as the second detection value V0 in the storage area 20A provided therein.
  • the second detected values V and V0 correspond to the output voltage of the power storage unit 91.
  • the control unit 20 performs control to instruct the cutoff unit 34 to switch to the cutoff state.
  • the control unit 20 is composed of, for example, a circuit that can control a microcomputer, an FPGA, etc., and components.
  • the control unit 20 is configured to be able to receive the internal resistance value R0 of the power storage unit 91 from the measurement unit 37. Further, the control unit 20 is configured to be able to receive the first detection value A from the current detection unit 38.
  • the control unit 20 can execute determination control to determine whether or not to switch the shut-off unit 34 to the shut-off state based on the first detected value A, the internal resistance value R0, and the second detected values V and V0. .
  • the first detected value A is obtained from the current detection section 38.
  • the internal resistance value R0 is input from the measuring section 37.
  • the second detection value V is a value obtained by the voltage detection section 39.
  • the second detected value V0 is a value stored in the storage area 20A.
  • the first threshold Th1 corresponds to the maximum current value that can flow through the power path 31 when the power path 31 is in a normal state.
  • the normal state is, for example, a predetermined value in which the voltage value in the power line 31 is 0V or more (that is, a state in which the power line 31 is not grounded).
  • the maximum current value that can flow through the power path 31 is assumed to be, for example, the current that flows through the power path 31 when the load 94 such as a motor in the vehicle is operated to the maximum.
  • the second threshold Th2 which is a predetermined value, corresponds to the maximum current value at which the relay 36 can maintain the cutoff state.
  • the second threshold Th2 is a value larger than the first threshold Th1.
  • the relay 36 generates an electromagnetic repulsion force when a current of a predetermined value (the maximum current value (second threshold Th2) that allows the relay 36 to maintain the cutoff state) flows through itself when the relay 36 is in the energized state.
  • a current of a predetermined value the maximum current value (second threshold Th2) that allows the relay 36 to maintain the cutoff state
  • the current threshold value Ath is a value used to determine whether the current state of the current flowing through the power path 31 detected by the current detection unit 38 is in a predetermined current rising state.
  • the current threshold value Ath is set in a range larger than the first threshold value Th1 and smaller than the second threshold value Th2.
  • the control unit 20 determines that the current is increasing (that is, the condition for switching the cutoff unit 34 to the cutoff state has been met) when the first detection value A input from the current detection unit 38 exceeds the current threshold value Ath.
  • the current rising state is a state in which the first detected value A of the power path 31 is greater than or equal to the current threshold value Ath.
  • the current detection unit 38 detects a first detection value A that can specify the current value of the power path 31 as a current rising state.
  • the voltage threshold value Vth is a value used to determine whether the voltage state of the voltage in the power path 31 detected by the voltage detection unit 39 is in a predetermined voltage drop state.
  • the control unit 20 determines the voltage threshold Vth based on Equation 1 shown below.
  • Vth V0-Ath ⁇ (R0+Rj)...(Formula 1)
  • V0 is the second detected value V0 stored in the storage area 20A after being calculated by the voltage detection unit 39 last time
  • Ath is the current threshold value Ath
  • R0 is the second detected value V0 that was previously calculated and obtained by the voltage detection unit 39.
  • It is the internal resistance value R0 of the power storage unit 91
  • Rj is the resistance value Rj in the power path 31.
  • the resistance value Rj is calculated from the position where the high potential side terminal of the power storage unit 91 is connected in the high potential side power path 31A to the point where the signal line S of the voltage detection unit 39 is connected to the high potential side power path 31A.
  • 31A is the resistance value in the high potential side power path 31A up to the position where it is connected to the power path 31A.
  • the voltage threshold Vth may be adjusted by adding a correction value to Equation 1 or weighting each value.
  • the voltage threshold Vth is determined by the multiplication value (Ath ⁇ (R0+Rj)), which is the sum of the internal resistance value R0 of the power storage unit 91 and the resistance value Rj of the power path 31, multiplied by the current threshold Ath, and the second It is determined according to the arithmetic expression shown in Equation 1 based on the detected value V0 (output voltage of power storage unit 91). As shown in Equation 1, the voltage threshold Vth increases as the second detection value V0 increases, and decreases as the multiplication value (Ath ⁇ (R0+Rj)) increases.
  • the control unit 20 sets the voltage threshold Vth based on the internal resistance value R0 measured by the measuring unit 37 so that the voltage threshold value Vth decreases as the internal resistance value R0 increases.
  • the control unit 20 compares the magnitude of the second detection value V calculated by the voltage detection unit 39 and the voltage threshold Vth, and when the second detection value V is less than or equal to the voltage threshold Vth, the voltage It is determined that it is in a decreased state.
  • the voltage drop state is a state in which the second detected value V of the power path 31 is equal to or less than the voltage threshold Vth.
  • the voltage detection unit 39 detects the second detection value V that can specify the voltage value of the power line 31 as a voltage drop state.
  • control unit 20 determines that the current state detected by the current detection unit 38 is a predetermined current increase state and the voltage state detected by the voltage detection unit 39 is a predetermined voltage decrease state, the control unit 20 starts driving.
  • a signal D is output to the cutoff section 34 to instruct the cutoff section 34 to switch to the cutoff state.
  • step S1 a starting switch (ignition switch) provided in the vehicle is switched from an off state to an on state. Then, the control unit 20 gives a conduction signal C4 to the relay 36, thereby switching the relay 36 from the non-energized state to the energized state.
  • a starting switch ignition switch
  • the control unit 20 determines whether the current flowing through the power path 31 is in a current increasing state and the voltage in the power path 31 is in a voltage decreasing state. Specifically, the control unit 20 determines whether the first detection value A (current value flowing through the power path 31) from the current detection unit 38 is equal to or greater than the current threshold value Ath. At the same time, the control unit 20 determines whether the second detection value V (voltage value in the power path 31) obtained by the voltage detection unit 39 is equal to or less than the voltage threshold Vth.
  • the cutoff control device 30 is used in the vehicle-mounted system 10 and controls the cutoff section 34.
  • the in-vehicle system 10 includes a power storage unit 91, a power path 31, and a cutoff unit 34.
  • Power path 31 is a path through which power is transmitted between power storage unit 91 and load 94.
  • the cutoff unit 34 switches from an allowable state in which power is allowed to be supplied from the power storage unit 91 side to the load 94 side in the power path 31 to a cutoff state in which the power is cut off.
  • the cutoff control device 30 includes a current detection section 38, a voltage detection section 39, and a control section 20.
  • the current detection unit 38 detects the current state of the current flowing through the power path 31.
  • the in-vehicle system 10 includes a measurement unit 37 that measures the internal resistance value R0 of the power storage unit 91.
  • the voltage drop state is a state in which the voltage value of the power path 31 is equal to or lower than the voltage threshold value Vth, and the control unit 20 sets the internal resistance value R0 based on the internal resistance value R0 measured by the measurement unit 37.
  • the voltage threshold value Vth is set so that the larger the voltage threshold value Vth is, the smaller the voltage threshold value Vth is. According to this configuration, it is assumed that the internal resistance value R0 of the power storage unit 91 is actually measured, and the actual internal resistance value R0 is adjusted so that the larger the actual internal resistance value R0 is, the smaller the voltage threshold Vth is.
  • a voltage threshold value Vth can also be set accordingly.
  • the in-vehicle system 10 includes a relay 36 that is interposed in the power path 31 and switches the power path 31 between an energized state and a de-energized state.
  • voltage detection section 39 detects the voltage state on the side of power storage section 91 rather than relay 36 . According to this configuration, since it is easier to detect the voltage state at a position closer to power storage unit 91, the voltage state of power storage unit 91 can be detected while minimizing the voltage drop that occurs in power path 31.
  • a pyrofuse is used for the cutoff section 34 of the cutoff control device 30. According to this configuration, it is easy to switch to the cutoff state in a short time.
  • the amount of change K is a value smaller than 0 (ie, a negative value). Furthermore, as the voltage of the power path becomes smaller, the amount of change K becomes smaller and moves away from 0.
  • a voltage threshold value smaller than 0 may be stored in the control unit, and a voltage drop state may be determined when the amount of change K is smaller than the voltage threshold value (the rate of decrease in the voltage of the power path is equal to or higher than a certain value).
  • the cutoff section can be switched to the cutoff state when the voltage drop rate is above a certain value in the current rising state, and it is possible to achieve both quick protection from short-circuit current and suppression of erroneous cutoff. .
  • a comparator may be used as the current detection section.
  • a predetermined high-level signal is output when the current value in the power path is greater than or equal to a predetermined threshold
  • a predetermined low-level signal is output when the current value is less than the predetermined threshold.
  • a configuration using a current transformer or the like may be used.
  • Cutoff signal C4 ...Conduction signal D...Drive signal K, Ki...Amount of change R0...Internal resistance value Rj...Resistance value of power path S...Signal lines T0, T1, T2, T3, T4...Time Tb...Time Th1...First Threshold Th2...Second threshold (predetermined value) Tm...Maximum time V, V0...Second detection value Vth...Voltage threshold ⁇ T...Period

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

遮断制御装置(30)は、遮断部(34)を制御する。車載システム(10)は、蓄電部(91)と、蓄電部(91)と負荷(94)との間において電力が伝送される経路である電力路(31)と、電力路(31)において蓄電部(91)側から負荷(94)側へ電力が供給されることを許容する許容状態から遮断する遮断状態に切り替わる遮断部(34)とを有する。遮断制御装置(30)は、電流検知部(38)と、電圧検知部(39)と、制御部(20)と、を備える。電流検知部(38)は、電力路(31)を流れる電流の電流状態を検知する。電圧検知部(39)は、電力路(31)における電圧の電圧状態を検知する。制御部(20)は、電流検知部(38)が検知した電流状態が予め定められた電流上昇状態であり、且つ電圧検知部(39)が検知した電圧状態が予め定められた電圧低下状態である場合に遮断部(34)に対して遮断状態への切り替えを指示する。

Description

遮断制御装置
 本開示は、遮断制御装置に関するものである。
 特許文献1には、電力路に流れる電流の大きさを電流検知部で検知し、制御部において、電流検知部から取得した信号を制御部が監視する技術が開示されている。制御部は、電力路に流れる電流の変化率が規定値以上と判別すると、電力路に介在するリレー部や遮断部に対して遮断信号を出力し、リレー部や遮断部を遮断状態に切り替える。
国際公開第2021/010007号
 特許文献1に開示される技術は、電流検知部から取得した信号のみを用いて遮断信号を出力するか否かを判別している。このため、特許文献1のものは、電力路にノイズが発生した場合、このノイズを電流の変化であると誤判別して、遮断信号を出力する懸念があり、このような誤判別を防止する技術が望まれている。
 本開示は上述した事情に基づいてなされたものであり、電力路を適切に遮断できる遮断制御装置の提供を目的とするものである。
 本開示の遮断制御装置は、
 蓄電部と、
 前記蓄電部と負荷の間において電力が伝送される経路である電力路と、
 前記電力路において前記蓄電部側から前記負荷側へ電力が供給されることを許容する許容状態から遮断する遮断状態に切り替わる遮断部と、
 を有する車載システムに用いられ、前記遮断部を制御する遮断制御装置であって、
 前記電力路を流れる電流の電流状態を検知する電流検知部と、
 前記電力路における電圧の電圧状態を検知する電圧検知部と、
 前記電流検知部が検知した前記電流状態が予め定められた電流上昇状態であり、且つ前記電圧検知部が検知した前記電圧状態が予め定められた電圧低下状態である場合に前記遮断部に対して前記遮断状態への切り替えを指示する制御部と、を備える。
 本開示によれば、電力路を適切に遮断することができる。
図1は、実施形態1に係る遮断制御装置を備えた車載システムを例示するブロック図である。 図2は、電流上昇状態、及び電圧低下状態が成立する領域を示すグラフである。 図3は、電力路が地絡した場合において電力路に流れる電流が急激に上昇する一例を示すグラフである。 図4は、実施形態1に係る制御部における処理の流れを例示するフローチャートである。 図5は、他の実施形態に係る遮断制御装置を備えた車載システムを例示するブロック図である。
[本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
 〔1〕本開示の遮断制御装置は、車載システムに用いられ、遮断部を制御する。車載システムは、蓄電部と、蓄電部と負荷との間において電力が伝送される経路である電力路と、電力路において蓄電部側から負荷側へ電力が供給されることを許容する許容状態から遮断する遮断状態に切り替わる遮断部と、を有する。遮断制御装置は、電流検知部と、電圧検知部と、制御部と、を備える。電流検知部は、電力路を流れる電流の電流状態を検知する。電圧検知部は、電力路における電圧の電圧状態を検知する。制御部は、電流検知部が検知した電流状態が予め定められた電流上昇状態であり、且つ電圧検知部が検知した電圧状態が予め定められた電圧低下状態である場合に遮断部に対して遮断状態への切り替えを指示する。
 上記〔1〕の遮断制御装置は、電流上昇状態及び電圧低下状態の両方が確認された場合に遮断部を遮断状態に切り替えるため、短絡電流が発生したか否かを、より正確に把握した上で、短絡電流の発生時に遮断部を遮断状態に切り替えることができる。例えば、電流上昇のみで短絡電流の発生を判断する例や、電圧低下のみで短絡電流の発生を判断する例では、ノイズなどに起因する誤遮断の懸念があるが、この遮断制御装置は、このような誤遮断を、より発生し難くすることができる。
 〔2〕上記〔1〕の遮断制御装置において、電流検知部は、電流上昇状態として、電力路の電流値を特定可能な第1検出値を検知し、電圧検知部は、電圧低下状態として、電力路の電圧値を特定可能な第2検出値を検知し得る。電流上昇状態は、電力路の電流値が電流閾値以上の状態であり、電圧低下状態は、電力路の電圧値が電圧閾値以下の状態であり得る。
 上記〔2〕の遮断制御装置は、電流値を特定可能な第1検出値及び電圧値を特定可能な第2検出値に基づき、電力路の電流値が電流閾値以上であるか否か及び電力路の電圧値が電圧閾値以下の状態であるか否かを判断するという簡単な構成で、短絡電流からの保護と誤遮断の抑制を両立することができる。
 〔3〕車載システムは、電力路に介在し、電力路を通電状態と非通電状態とに切り替える開閉器を有し、開閉器は、通電状態のときに所定値以上の電流が流れた場合に電磁反発力の発生により通電状態が解除されて非通電状態に切り替わる構成であり得る。上記〔1〕の遮断制御装置の電流検知部は、電流上昇状態として、電力路の電流値を特定可能な第1検出値を検出し、電流上昇状態は、電力路の電流値が電流閾値以上の状態であり、電流閾値は、所定値よりも小さい値であり得る。
 上記〔3〕の遮断制御装置は、電磁反発力による非通電状態への切り替わりが発生しない範囲で電流閾値を設定することができる。
 〔4〕上記〔1〕又は〔3〕の遮断制御装置において、電圧低下状態は、電力路の電圧の低下速度が一定値以上の状態であり得る。
 上記〔4〕の遮断制御装置は、電流上昇状態において電圧の低下速度が一定値以上のときに遮断部を遮断状態に切り替えることができ、短絡電流からの迅速な保護と誤遮断の抑制を両立することができる。
 〔5〕車載システムは、蓄電部の内部抵抗値を計測する計測部を有し得る。上記〔1〕から〔3〕の遮断制御装置において、電圧低下状態は、電力路の電圧値が電圧閾値以下の状態であり、制御部は、計測部で計測される内部抵抗値に基づき、内部抵抗値が大きいほど電圧閾値を小さくするように電圧閾値を設定し得る。
 上記〔5〕の遮断制御装置は、蓄電部の内部抵抗値が実際に計測されることを前提とし、実際の内部抵抗値が大きいほど電圧閾値を小さくするように、実際の内部抵抗値に合わせて電圧閾値を設定することができる。
 〔6〕上記〔2〕又は〔3〕の遮断制御装置において、電圧低下状態は、電力路の電圧値が電圧閾値以下の状態である。電圧閾値は、乗算値と、蓄電部の出力電圧とに基づき、出力電圧が大きいほど電圧閾値を大きくし、乗算値が大きいほど電圧閾値を小さくする演算式に従って定められ得る。乗算値は、蓄電部の内部抵抗値と電力路の抵抗値とを加算した加算値に対して電流閾値を乗算した値である。
 上記〔6〕の遮断制御装置は、内部抵抗値、電力路の抵抗値、電流閾値、蓄電部の出力電圧を反映して電圧閾値を適切に設定することができる。
 〔7〕車載システムは、電力路に介在し、電力路を通電状態と非通電状態とに切り替える開閉器を有し得る。上記〔1〕から〔3〕のいずれかの遮断制御装置において、電圧検知部は、開閉器よりも負荷側における電圧状態を検知し得る。
 上記〔7〕の遮断制御装置は、開閉器が非通電状態のときには、蓄電部に基づく暗電流が電圧検知部に流れることを抑制することができるため、省電力につながる。
 〔8〕車載システムは、電力路に介在し、電力路を通電状態と非通電状態とに切り替える開閉器を有し得る。上記〔1〕から〔3〕のいずれかの遮断制御装置において、電圧検知部は、開閉器よりも蓄電部側における電圧状態を検知し得る。
 上記〔8〕の遮断制御装置は、蓄電部により近い位置の電圧状態を検知し易いため、電力路で生じる電圧降下を極力排除した形で蓄電部の電圧状態を検知することができる。
 〔9〕上記〔1〕から〔8〕のいずれかの遮断制御装置の遮断部には、パイロヒューズ、エレクトロマグネティックヒューズ、又は半導体スイッチのいずれかが用いられ得る。
 上記〔9〕の遮断制御装置は、遮断状態への切り替えを短時間で行い易い。
[本開示の実施形態の詳細]
<実施形態1>
 実施形態1の遮断制御装置30を有する車載システム10は、車載用の電源システムとして構成されており、蓄電部91、電力路31、遮断部34、開閉器であるリレー36、計測部37、及び遮断制御装置30を有している。遮断制御装置30は、電流検知部38、電圧検知部39、及び制御部20を備えている。遮断制御装置30は、車載システム10に用いられ、遮断部34を制御する機能を有している。車載システム10は、蓄電部91と負荷94との間において電力が伝送される経路である電力路31を介して蓄電部91から負荷94に電圧を印加し得る構成をなす。
[車載システムの概要]
 蓄電部91は、直流電圧を生じる直流電源であり、例えば、鉛バッテリ、LiB、オルタネーター、コンバータ等の電源手段が用いられている。蓄電部91には高電位側の端子と低電位側の端子が設けられている。蓄電部91は、電力路31に対して所定の出力電圧を印加する構成をなしている。
 電力路31は、高電位側電力路31A、及び低電位側電力路31Bを有している。蓄電部91の高電位側の端子は、高電位側電力路31Aに電気的に接続されている。蓄電部91の低電位側の端子は、低電位側電力路31Bに電気的に接続されている。蓄電部91は、高電位側電力路31Aと低電位側電力路31Bとの間に所定の電位差(すなわち、蓄電部91の出力電圧)を生じさせる。電力路31は、蓄電部91と負荷94との間において電力が伝送される経路である。
 高電位側電力路31Aは、負荷94の正極に電気的に接続されている。低電位側電力路31Bは、負荷94の負極に電気的に接続されている。
 負荷94は、車載用電子部品であり、例えば、電動部品、ECU、ADAS対象部品等の製品が適用対象となる。負荷94は電力路31に電気的に接続されている。
 本開示において、「電気的に接続される」とは、接続対象の両方の電位が等しくなるように互いに導通した状態(電流を流せる状態)で接続される構成であることが望ましい。ただし、この構成に限定されない。例えば、「電気的に接続される」とは、両接続対象の間に電気部品が介在しつつ両接続対象が導通し得る状態で接続された構成であってもよい。
 遮断部34には、例えば、パイロヒューズ(PYROFUSE(登録商標))等が用いられる。遮断部34は、低電位側電力路31Bに介在して設けられている。遮断部34は、後述する制御部20から駆動信号Dが与えられることによって電力路31において蓄電部91側から負荷94側へ電力が供給されることを許容する許容状態から遮断する遮断状態に切り替わり、蓄電部91側から負荷94側への電力の供給を停止する。
 パイロヒューズは、例えば、駆動信号Dが与えられると、内蔵された火薬に引火し、火薬の爆発力を利用して自身に内蔵する蓄電部91側の電力路31と負荷94側の電力路31とを電気的に接続する導電路を瞬時に分割して遮断状態になる。このため、パイロヒューズは、リレー等に比べ、短時間で電力路31を遮断状態にすることができる。遮断状態に切り替わった遮断部34は、遮断状態から許容状態に切り替わらない。
 リレー36は、高電位側リレー36A、及び低電位側リレー36Bを有している。高電位側リレー36A、及び低電位側リレー36Bには、例えば、コンタクタや機械式リレー等が用いられる。高電位側リレー36Aは、高電位側電力路31Aに介在して設けられている。低電位側リレー36Bは、遮断部34よりも負荷94側の低電位側電力路31Bに介在して設けられている。高電位側リレー36A、及び低電位側リレー36Bは、制御部20から遮断信号C3が与えられることによって、非通電状態に切り替わる。高電位側リレー36A、及び低電位側リレー36Bは、制御部20から導通信号C4が与えられることによって、通電状態に切り替わる。つまり、リレー36は、電力路31に介在し、高電位側電力路31A、及び低電位側電力路31Bの各々を通電状態と、非通電状態と、に切り替える。
 計測部37は、車載用の電池監視装置であり、蓄電部91を監視及び管理するバッテリ管理システム(BMS)として機能し得る。さらに、計測部37は、蓄電部91に関する電圧、電流、及び温度などを計測するバッテリセンシングユニット(BSU)としても機能し得る。計測部37は、計測した蓄電部91に関する電圧、電流、及び温度などに基づいて、蓄電部91の内部抵抗値R0を演算し、この内部抵抗値R0を出力し得る構成とされている。例えば、内部抵抗値R0は、蓄電部91からの放電が進むにつれ徐々に大きくなる。また、蓄電部91の内部抵抗値R0は、充電が進むにつれ徐々に小さくなる。
 電流検知部38は、遮断部34よりも蓄電部91側の低電位側電力路31Bに介在して設けられている。電流検知部38は、例えば、抵抗器及び差動増幅器を有し、低電位側電力路31Bを流れる電流を示す値(具体的には、低電位側電力路31Bを流れる電流の値に応じたアナログ電圧)を第1検出値Aとして出力し得る構成をなす。つまり、電流検知部38は、電力路31を流れる電流の電流状態を第1検出値Aとして検知する。
 電圧検知部39は、例えば、後述する制御部20の一部として構成されている。電圧検知部39は、高電位側電力路31Aと、低電位側電力路31Bとの電位差(すなわち、電力路31の電圧値)に対応した第2検出値Vを得る構成をなす。つまり、電圧検知部39は、電力路31における電圧の電圧状態を第2検出値Vとして検知する。電圧検知部39は、リレー36よりも蓄電部91側における電圧状態を検知する。例えば、電圧検知部39は、所定の短時間毎に第2検出値Vを演算して算出する構成とされている。そして、制御部20は、前回電圧検知部39が演算して算出した第2検出値Vを第2検出値V0として自身に設けられた記憶領域20Aに記憶し得る構成とされている。第2検出値V,V0は、蓄電部91の出力電圧に対応している。
 制御部20は、遮断部34に対して遮断状態への切り替えを指示する制御を行う。制御部20は、例えば、マイクロコンピュータやFPGA等の制御を行い得る回路、及び部品等で構成される。制御部20は、計測部37から蓄電部91の内部抵抗値R0が入力され得る構成とされている。また、制御部20は、電流検知部38から第1検出値Aが入力され得る構成とされている。制御部20は、第1検出値Aと、内部抵抗値R0と、第2検出値V,V0と、に基づいて遮断部34を遮断状態に切り替えるか否かを判定する判定制御を実行し得る。第1検出値Aは、電流検知部38から取得する。内部抵抗値R0は、計測部37から入力される。第2検出値Vは、電圧検知部39で得た値である。第2検出値V0は、記憶領域20Aに記憶した値である。
[判定制御について]
 制御部20における判定制御について説明する。例えば、電力路31のいずれかにおいて地絡が発生すると、電力路31に流れる電流は、経時的に急激に増加し、これとともに第1検出値Aも経時的に急激に増加する。そして、第1検出値Aが、第1閾値Th1よりも大きく、第2閾値Th2よりも小さい大きさの電流閾値Ath以上になると制御部20は、電流上昇状態であると判別する。さらに、第2検出値Vが電圧閾値Vth以下になると制御部20は、電圧低下状態であると判別する。制御部20は、電圧上昇状態、且つ電圧低下状態であると判別すると、遮断部34に向けて駆動信号Dを出力する。
[第1閾値、第2閾値、電流閾値について]
 第1閾値Th1は、電力路31が正常状態において、電力路31に流れ得る最大の電流値に対応する。ここで、正常状態とは、例えば、電力路31における電圧値が0V以上の所定の値(すなわち、電力路31が地絡していない状態)である。電力路31に流れ得る最大の電流値は、例えば、車両におけるモータ等の負荷94を最大限動作させた場合に電力路31に流れる電流が想定される。
 所定値である第2閾値Th2は、リレー36が遮断状態を維持できる最大の電流値に対応する。第2閾値Th2は、第1閾値Th1よりも大きい値である。電力路31に流れる電流がリレー36に流れ込むとリレー36内では、リレー36を通電状態から非通電状態に変化させるように電磁反発力が生じる。この電磁反発力は、リレー36に流れ込む電流の大きさに応じて大きくなる。リレー36に流れ込む電流が第2閾値Th2よりも大きくなると、リレー36を通電状態に保持する力よりも電磁反発力が大きくなり、リレー36が非通電状態に変化してリレー36内にアークが発生し、リレー36が故障してしまうおそれがある。このように、リレー36は、通電状態のときに所定値(リレー36が遮断状態を維持できる最大の電流値(第2閾値Th2))以上の電流が自身に流れた場合に電磁反発力の発生によって通電状態が解除されて非通電状態に切り替わる構成である。
 電流閾値Athは、電流検知部38が検知した電力路31を流れる電流の電流状態が予め定められた電流上昇状態であるか否かを判別するために用いる値である。電流閾値Athは、第1閾値Th1よりも大きく、第2閾値Th2よりも小さい範囲に設定される。制御部20は、電流検知部38から入力された第1検出値Aが電流閾値Athを超えた場合に電流上昇状態(すなわち、遮断部34を遮断状態に切り替える条件が成立した)と判別する。つまり、電流上昇状態は、電力路31の第1検出値Aが電流閾値Ath以上の状態である。電流検知部38は、電流上昇状態として、電力路31の電流値を特定可能な第1検出値Aを検知する。
[電圧閾値について]
 電圧閾値Vthは、電圧検知部39が検知した電力路31における電圧の電圧状態が予め定められた電圧低下状態であるか否かを判別するために用いる値である。制御部20は、以下に示す式1に基づいて、電圧閾値Vthを決定する。
 Vth=V0-Ath×(R0+Rj)…(式1)
 ここで、V0は前回電圧検知部39で演算して得た後、記憶領域20Aに記憶された第2検出値V0であり、Athは電流閾値Athであり、R0は計測部37から入力された蓄電部91の内部抵抗値R0であり、Rjは電力路31における抵抗値Rjである。抵抗値Rjは、図1に示すように、高電位側電力路31Aにおいて、蓄電部91の高電位側の端子が接続される位置から、電圧検知部39の信号線Sが高電位側電力路31Aに接続されている位置までの高電位側電力路31Aにおける抵抗値である。式1に対して補正値を加えたり、各値に重み付けをしたりして、電圧閾値Vthを調整してもよい。
 電圧閾値Vthは、蓄電部91の内部抵抗値R0と電力路31の抵抗値Rjとを加算した加算値に電流閾値Athを乗算した値である乗算値(Ath×(R0+Rj))と、第2検出値V0(蓄電部91の出力電圧)と、に基づき、式1に示す演算式に従って定められる。式1に示すように、電圧閾値Vthは、第2検出値V0が大きいほど大きくなり、乗算値(Ath×(R0+Rj))が大きいほど小さくなる。制御部20は、計測部37で計測される内部抵抗値R0に基づいて、内部抵抗値R0が大きいほど小さくするように電圧閾値Vthを設定する。
 制御部20は、電圧検知部39で演算して得た第2検出値Vと、電圧閾値Vthと、の大きさを比較し、第2検出値Vが電圧閾値Vth以下である場合に、電圧低下状態であると判別する。つまり、電圧低下状態は、電力路31の第2検出値Vが電圧閾値Vth以下の状態である。こうして、電圧検知部39は、電圧低下状態として、電力路31の電圧値を特定可能な第2検出値Vを検知する。
 制御部20は、電流検知部38が検知した電流状態が予め定められた電流上昇状態であり、且つ電圧検知部39が検知した電圧状態が予め定められた電圧低下状態であると判別すると、駆動信号Dを遮断部34に向けて出力して遮断部34に対して遮断状態への切り替えを指示する。
 具体的には、図2に示すように、第1検出値Aが電流閾値Ath以上になり、且つ第2検出値Vが電圧閾値Vth以下の大きさになった条件を満たす領域Cにある場合に制御部20は、駆動信号Dを遮断部34に向けて出力する。電流閾値Athは、第1閾値Th1よりも大きく、第2閾値Th2よりも小さい範囲に設定されている。電流閾値Athは、第2閾値Th2よりも小さい値に設定されるので、電磁反発力がリレー36を通電状態に保持する力よりも大きくなる前に(すなわち、リレー36が故障する前に)遮断部34を遮断状態に切り替えることができる。
[遮断部が遮断状態に切り替わるまでの時間について]
 次に、電力路31のいずれかにおいて地絡が発生したと同時に第2検出値Vが電圧閾値Vth以下(電圧低下状態)になった場合における、遮断部34が遮断状態に切り替わるまでの時間について説明する。例えば、図3に示すように、時刻T0に電力路31のいずれかにおいて地絡が発生すると、電力路31に流れる電流の電流値は急激に上昇し、時刻T1に第1検出値Aが電流閾値Athに到達する。このとき、電流上昇状態及び電圧低下状態が共に成立した状態である。すると、制御部20は、時刻T1に駆動信号Dを遮断部34に向けて出力する。遮断部34は、駆動信号Dが入力されると許容状態から遮断状態に切り替わる動作を開始する。時刻T1以降、第1検出値A(電力路31に流れる電流の電流値)の上昇は継続する。
 そして、時刻T2において、遮断部34の遮断状態への切り替わり動作が完了する。時刻T1から時刻T2までの間の時間Tbは、制御部20及び遮断部34の仕様に応じて変化し得る。時刻T1,T2は、電流閾値Athを第2閾値Th2寄りに設定するとより遅いタイミングとなり、電流閾値Athを第1閾値Th1寄りに設定するとより早いタイミングになる。
 時刻T4は、例えば、第1検出値Aが第2閾値Th2に到達した時刻T3を起点として、リレー36に第2閾値Th2以上の大きさの電流が流れることが許容される最大時間Tmで規定され得る。例えば、最大時間Tmよりも長い時間リレー36に電流が流れ続けるとリレー36が故障する可能性が高まる。従って、遮断部34の遮断状態への切り替わり動作が完了する時刻T2は、時刻T4よりも早いタイミングに設定することが好ましい。具体的には、電流閾値Athを第2閾値Th2よりも第1閾値Th1寄りに設定することによって、時刻T2のタイミングを早め、時刻T2と時刻T4との間の時間をより長くすることができる。
[制御部の動作について]
 次に、図4等を参照しつつ、制御部20の動作の一例について説明する。図4に示すフローチャートは、所定の開始条件成立時に制御部20によって繰り返し実行される処理である。
 先ず、ステップS1において、車両に設けられた始動スイッチ(イグニッションスイッチ)をオフ状態からオン状態に切り替える。すると、制御部20は、リレー36に対して導通信号C4を与え、これによってリレー36が非通電状態から通電状態に切り替わる。
 ステップS2に移行すると、制御部20は、電力路31に流れる電流が電流上昇状態であり、且つ電力路31における電圧が電圧低下状態であるか否かを判定する。具体的には、制御部20は、電流検知部38からの第1検出値A(電力路31に流れる電流値)が電流閾値Ath以上であるか否かの判定を実行する。これとともに、制御部20は、電圧検知部39で得た第2検出値V(電力路31における電圧値)が電圧閾値Vth以下であるか否かの判定を実行する。ステップS2において、第1検出値Aが電流閾値Athよりも小さい、又は第2検出値Vが電圧閾値Vthよりも大きい、の少なくともいずれか(ステップS2におけるNo)である場合、制御部20は、電流上昇状態、且つ電圧低下状態でないと判別する。そして、制御部20は、ステップS2の実行を繰り返す。ステップS2において、第1検出値Aが電流閾値Ath以上、且つ第2検出値Vが電圧閾値Vth以下(ステップS2におけるYes)である場合、制御部20は、電流上昇状態、且つ電圧低下状態であると判別する。そして、ステップS3に移行して、制御部20は、遮断部34に向けて駆動信号Dを出力し、図4における処理の実行を終了する。
 次に、本構成の効果を例示する。
 遮断制御装置30は、車載システム10に用いられ、遮断部34を制御する。車載システム10は、蓄電部91と、電力路31と、遮断部34と、を有する。電力路31は、蓄電部91と負荷94との間において電力が伝送される経路である。遮断部34は、電力路31において蓄電部91側から負荷94側へ電力が供給されることを許容する許容状態から遮断する遮断状態に切り替わる。遮断制御装置30は、電流検知部38と、電圧検知部39と、制御部20と、を備える。電流検知部38は、電力路31を流れる電流の電流状態を検知する。電圧検知部39は、電力路31における電圧の電圧状態を検知する。制御部20は、電流検知部38が検知した電流状態が予め定められた電流上昇状態であり、且つ電圧検知部39が検知した電圧状態が予め定められた電圧低下状態である場合に遮断部34に対して遮断状態への切り替えを指示する。
 この構成によれば、電流上昇状態及び電圧低下状態の両方が確認された場合に遮断部34を遮断状態に切り替えるため、短絡電流が発生したか否かを、より正確に把握した上で、短絡電流の発生時に遮断部34を遮断状態に切り替えることができる。例えば、電流上昇のみで短絡電流の発生を判断する例や、電圧低下のみで短絡電流の発生を判断する例では、ノイズなどに起因する誤遮断の懸念があるが、この遮断制御装置30は、このような誤遮断を、より発生し難くすることができる。
 遮断制御装置30において、電流検知部38は、電流上昇状態として、電力路31の電流値を特定可能な第1検出値Aを検知し、電圧検知部39は、電圧低下状態として、電力路31の電圧値を特定可能な第2検出値Vを検知する。電流上昇状態は、電力路31の電流値が電流閾値Ath以上の状態であり、電圧低下状態は、電力路31の電圧値が電圧閾値Vth以下の状態である。
 この構成によれば、電流値を特定可能な第1検出値A、及び電圧値を特定可能な第2検出値Vに基づき、電力路31の電流値が電流閾値Ath以上であるか否か、及び電力路31の電圧値が電圧閾値Vth以下の状態であるか否かを判断するという簡単な構成で、短絡電流からの保護と誤遮断の抑制を両立することができる。
 車載システム10は、電力路31に介在し、電力路31を通電状態と非通電状態とに切り替えるリレー36を有している。リレー36は、通電状態のときに第2閾値Th2以上の電流が流れた場合に電磁反発力の発生により通電状態が解除されて非通電状態に切り替わる構成である。遮断制御装置30の電流検知部38は、電流上昇状態として、電力路31の電流値を特定可能な第1検出値Aを検出し、電流上昇状態は、電力路31の電流値が電流閾値Ath以上の状態であり、電流閾値Athは、第2閾値Th2よりも小さい値である。この構成によれば、電磁反発力による非通電状態への切り替わりが発生しない範囲で電流閾値Athを設定することができる。
 車載システム10は、蓄電部91の内部抵抗値R0を計測する計測部37を有する。遮断制御装置30において、電圧低下状態は、電力路31の電圧値が電圧閾値Vth以下の状態であり、制御部20は、計測部37で計測される内部抵抗値R0に基づき、内部抵抗値R0が大きいほど電圧閾値Vthを小さくするように電圧閾値Vthを設定する。この構成によれば、蓄電部91の内部抵抗値R0が実際に計測されることを前提とし、実際の内部抵抗値R0が大きいほど電圧閾値Vthを小さくするように、実際の内部抵抗値R0に合わせて電圧閾値Vthを設定することができる。
 遮断制御装置30において、電圧低下状態は、電力路31の電圧値が電圧閾値Vth以下の状態である。電圧閾値Vthは、乗算値と、第2検出値V0(蓄電部91の出力電圧)とに基づき、第2検出値V0が大きいほど電圧閾値Vthを大きくし、乗算値が大きいほど電圧閾値Vthを小さくする演算式に従って定められる。乗算値は、蓄電部91の内部抵抗値R0と電力路31の抵抗値Rjとを加算した加算値に対して電流閾値Athを乗算した値である。この構成によれば、内部抵抗値R0、電力路31の抵抗値Rj、電流閾値Ath、蓄電部91の出力電圧を反映して電圧閾値Vthを適切に設定することができる。
 車載システム10は、電力路31に介在し、電力路31を通電状態と非通電状態とに切り替えるリレー36を有する。遮断制御装置30において、電圧検知部39は、リレー36よりも蓄電部91側における電圧状態を検知する。この構成によれば、蓄電部91により近い位置の電圧状態を検知し易いため、電力路31で生じる電圧降下を極力排除した形で蓄電部91の電圧状態を検知することができる。
 遮断制御装置30の遮断部34には、パイロヒューズが用いられる。この構成によれば、遮断状態への切り替えを短時間で行い易い。
<他の実施形態>
 今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、今回開示された実施の形態に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
 実施形態1とは異なり、図5に示すように、電圧検知部39がリレー36よりも負荷94側における電圧状態を検知する構成としてもよい。この構成によれば、リレー36が非通電状態のときには、蓄電部91に基づく暗電流が電圧検知部39に流れることを抑制することができるため、省電力につながる。なお、この場合、実施形態1よりも電力路31の抵抗値Rjが大きくなる。
 実施形態1とは異なり、電力路の電圧の低下速度が一定値以上の状態である場合に、電圧低下状態と判別する構成であってもよい。例えば、以下の式2によって、単位時間当たりの電力路における電圧の変化量Kを求める。K=(V-V0)/ΔT…(式2)ここで、Vは、電圧検知部が今回演算して得た第2検出値Vであり、V0は、電圧検知部が前回演算して得た第2検出値V0であり、ΔTは、電圧検知部が第2検出値を繰り返し演算する時間の周期ΔTである。電力路の電圧が経時的に小さくなる場合、VはV0よりも小さい値である。このため、変化量Kは、0よりも小さい値(すなわち、負の値)である。また、電力路の電圧が小さくなる度合いが大きくなるほど、変化量Kは、0から遠ざかるように小さい値になる。例えば、制御部内に0より小さい電圧閾値を記憶しておき、変化量Kが電圧閾値よりも小さい(電力路の電圧の低下速度が一定値以上の)場合に電圧低下状態と判別してもよい。この構成によれば、電流上昇状態において電圧の低下速度が一定値以上のときに遮断部を遮断状態に切り替えることができ、短絡電流からの迅速な保護と誤遮断の抑制を両立することができる。
 実施形態1とは異なり、電力路の電流の上昇速度が一定値以上の状態である場合に、電流上昇状態と判別する構成であってもよい。例えば、以下の式3によって、単位時間当たりの電力路における電流の変化量Kiを求める。Ki=(A-A0)/ΔT…(式3)ここで、Aは、電流検知部が今回検知した第1検出値Aであり、A0は、電流検知部が前回検知した第1検出値A0であり、ΔTは、電流検知部が第1検出値を繰り返し検知する時間の周期ΔTである。第1検出値A0は、例えば記憶領域20Aに記憶され得る構成である。電力路の電流が経時的に大きくなる場合、AはA0よりも大きい値である。このため、変化量Kiは、0よりも大きい値(すなわち、正の値)である。また、電力路の電流が大きくなる度合いが大きくなるほど、変化量Kiは、0から遠ざかるように大きい値になる。例えば、制御部内に0より大きい電流閾値を記憶しておき、変化量Kiが電流閾値よりも大きい(電力路の電流の上昇速度が一定値以上の)場合に電流上昇状態と判別してもよい。
 電流検知部として、コンパレータを用いてもよい。この場合、電力路における電流値が所定の閾値以上の値を示したときに所定のハイレベル信号を出力し、電流値が所定の閾値未満の値を示したときに所定のローレベル信号を出力する。また、カレントトランス等を用いた構成としてもよい。
 実施形態1とは異なり、高電位側電力路に遮断部を設けてもよい。また、高電位側電力路に電流検知部を設けてもよい。また、電圧検知部を制御部とは別体の構成として設けてもよい。
 実施形態1とは異なり、遮断部に、エレクトロマグネティックヒューズや、MOSFET等の半導体スイッチを用いてもよい。こられの部品を用いても遮断状態への切り替えを短時間で行うことができる。
10…車載システム
20…制御部
20A…記憶領域
30…遮断制御装置
31…電力路
31A…高電位側電力路
31B…低電位側電力路
34…遮断部
36…リレー(開閉器)
36A…高電位側リレー
36B…低電位側リレー
37…計測部
38…電流検知部
39…電圧検知部
91…蓄電部
94…負荷
A,A0…第1検出値
Ath…電流閾値
C…領域
C3…遮断信号
C4…導通信号
D…駆動信号
K,Ki…変化量
R0…内部抵抗値
Rj…電力路の抵抗値
S…信号線
T0,T1,T2,T3,T4…時刻
Tb…時間
Th1…第1閾値
Th2…第2閾値(所定値)
Tm…最大時間
V,V0…第2検出値
Vth…電圧閾値
ΔT…周期

Claims (9)

  1.  蓄電部と、
     前記蓄電部と負荷との間において電力が伝送される経路である電力路と、
     前記電力路において前記蓄電部側から前記負荷側へ電力が供給されることを許容する許容状態から遮断する遮断状態に切り替わる遮断部と、
     を有する車載システムに用いられ、前記遮断部を制御する遮断制御装置であって、
     前記電力路を流れる電流の電流状態を検知する電流検知部と、
     前記電力路における電圧の電圧状態を検知する電圧検知部と、
     前記電流検知部が検知した前記電流状態が予め定められた電流上昇状態であり、且つ前記電圧検知部が検知した前記電圧状態が予め定められた電圧低下状態である場合に前記遮断部に対して前記遮断状態への切り替えを指示する制御部と、を備える遮断制御装置。
  2.  前記電流検知部は、前記電流上昇状態として、前記電力路の電流値を特定可能な第1検出値を検知し、
     前記電圧検知部は、前記電圧低下状態として、前記電力路の電圧値を特定可能な第2検出値を検知し、
     前記電流上昇状態は、前記電力路の電流値が電流閾値以上の状態であり、
     前記電圧低下状態は、前記電力路の電圧値が電圧閾値以下の状態である
     請求項1に記載の遮断制御装置。
  3.  前記車載システムは、前記電力路に介在し、前記電力路を通電状態と非通電状態とに切り替える開閉器を有し、
     前記開閉器は、前記通電状態のときに所定値以上の電流が流れた場合に電磁反発力の発生により前記通電状態が解除されて前記非通電状態に切り替わる構成であり、
     前記電流検知部は、前記電流上昇状態として、前記電力路の電流値を特定可能な第1検出値を検出し、
     前記電流上昇状態は、前記電力路の電流値が電流閾値以上の状態であり、
     前記電流閾値は、前記所定値よりも小さい値である
     請求項1に記載の遮断制御装置。
  4.  前記電圧低下状態は、前記電力路の電圧の低下速度が一定値以上の状態である請求項1又は請求項3に記載の遮断制御装置。
  5.  前記車載システムは、前記蓄電部の内部抵抗値を計測する計測部を有し、
     前記電圧低下状態は、前記電力路の電圧値が電圧閾値以下の状態であり、
     前記制御部は、前記計測部で計測される前記内部抵抗値に基づき、前記内部抵抗値が大きいほど前記電圧閾値を小さくするように前記電圧閾値を設定する
     請求項1から請求項3のいずれか一項に記載の遮断制御装置。
  6.  前記電圧低下状態は、前記電力路の電圧値が電圧閾値以下の状態であり、
     前記電圧閾値は、前記蓄電部の内部抵抗値と前記電力路の抵抗値とを加算した加算値に対して前記電流閾値を乗算した値である乗算値と、前記蓄電部の出力電圧とに基づき、前記出力電圧が大きいほど前記電圧閾値を大きくし、前記乗算値が大きいほど前記電圧閾値を小さくする演算式に従って定められる
     請求項2又は請求項3に記載の遮断制御装置。
  7.  前記車載システムは、前記電力路に介在し、前記電力路を通電状態と非通電状態とに切り替える開閉器を有し、
     前記電圧検知部は、前記開閉器よりも前記負荷側における前記電圧状態を検知する請求項1から請求項3のいずれか一項に記載の遮断制御装置。
  8.  前記車載システムは、前記電力路に介在し、前記電力路を通電状態と非通電状態とに切り替える開閉器を有し、
     前記電圧検知部は、前記開閉器よりも前記蓄電部側における前記電圧状態を検知する請求項1から請求項3のいずれか一項に記載の遮断制御装置。
  9.  前記遮断部には、パイロヒューズ、エレクトロマグネティックヒューズ、又は半導体スイッチのいずれかが用いられる請求項1から請求項3のいずれか一項に記載の遮断制御装置。
PCT/JP2022/023940 2022-06-15 2022-06-15 遮断制御装置 WO2023242988A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/023940 WO2023242988A1 (ja) 2022-06-15 2022-06-15 遮断制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/023940 WO2023242988A1 (ja) 2022-06-15 2022-06-15 遮断制御装置

Publications (1)

Publication Number Publication Date
WO2023242988A1 true WO2023242988A1 (ja) 2023-12-21

Family

ID=89192465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023940 WO2023242988A1 (ja) 2022-06-15 2022-06-15 遮断制御装置

Country Status (1)

Country Link
WO (1) WO2023242988A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015141898A (ja) * 2014-01-28 2015-08-03 エルエス産電株式会社Lsis Co., Ltd. リレー
JP2017216795A (ja) * 2016-05-31 2017-12-07 株式会社オートネットワーク技術研究所 電源装置
JP2020114074A (ja) * 2019-01-09 2020-07-27 株式会社デンソー 通電制御装置
WO2021010007A1 (ja) * 2019-07-17 2021-01-21 パナソニックIpマネジメント株式会社 電力遮断装置
WO2022024695A1 (ja) * 2020-07-29 2022-02-03 株式会社オートネットワーク技術研究所 直流回路開閉装置
JP2022035412A (ja) * 2020-08-21 2022-03-04 トヨタ自動車株式会社 電池パック

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015141898A (ja) * 2014-01-28 2015-08-03 エルエス産電株式会社Lsis Co., Ltd. リレー
JP2017216795A (ja) * 2016-05-31 2017-12-07 株式会社オートネットワーク技術研究所 電源装置
JP2020114074A (ja) * 2019-01-09 2020-07-27 株式会社デンソー 通電制御装置
WO2021010007A1 (ja) * 2019-07-17 2021-01-21 パナソニックIpマネジメント株式会社 電力遮断装置
WO2022024695A1 (ja) * 2020-07-29 2022-02-03 株式会社オートネットワーク技術研究所 直流回路開閉装置
JP2022035412A (ja) * 2020-08-21 2022-03-04 トヨタ自動車株式会社 電池パック

Similar Documents

Publication Publication Date Title
JP4715253B2 (ja) 電源システムの監視装置
CN108604809B (zh) 继电器装置以及电源装置
US9255957B2 (en) Earth fault detection circuit and power source device
US10222423B2 (en) Electrical storage system
US9941712B2 (en) Electrical storage system
US20180358837A1 (en) Charging control device
US20170125995A1 (en) Electricity storage system
KR20140061637A (ko) 배터리 시스템의 릴레이 융착 검출 장치 및 방법
US20170187179A1 (en) Junction box
JP2012085455A (ja) 電池の故障判定装置
US10115549B2 (en) Electrical storage system
US10367345B2 (en) Temperature detection device
WO2018179855A1 (ja) 電池制御装置
KR101487577B1 (ko) 배터리 팩의 고장 진단 방법 및 장치, 이를 이용한 전력 릴레이 어셈블리
JP7137652B1 (ja) バッテリー試験システムの安全保護装置と方法
WO2023242988A1 (ja) 遮断制御装置
KR20160076825A (ko) 돌입전류 방지 및 배터리 고장 진단이 가능한 배터리 충전 방법
WO2013176087A1 (ja) 電池状態判定方法、電池制御装置、及び電池パック
JP2012059502A (ja) 転流式遮断装置
KR20150068310A (ko) 배터리 상태 감시 회로 및 배터리 장치
US20240201258A1 (en) Method and device for monitoring the state of health of a contactor
US8553377B2 (en) Electronic control device
EP4098493B1 (en) Control device and vehicle power distribution architecture incorporating the same
WO2023026874A1 (ja) 車両用電源システム
WO2024095412A1 (ja) 異常検知装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946807

Country of ref document: EP

Kind code of ref document: A1