WO2017206292A1 - 硬质合金 - Google Patents
硬质合金 Download PDFInfo
- Publication number
- WO2017206292A1 WO2017206292A1 PCT/CN2016/090697 CN2016090697W WO2017206292A1 WO 2017206292 A1 WO2017206292 A1 WO 2017206292A1 CN 2016090697 W CN2016090697 W CN 2016090697W WO 2017206292 A1 WO2017206292 A1 WO 2017206292A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase
- cemented carbide
- binder phase
- binder
- hcp
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/005—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides comprising a particular metallic binder
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
- C22C1/051—Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/02—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
- C22C29/06—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/02—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
- C22C29/06—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
- C22C29/08—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/02—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
- C22C29/06—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
- C22C29/10—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on titanium carbide
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
Definitions
- the present invention relates to a cemented carbide that still has good cutting properties and mechanical properties at high temperatures.
- Cemented carbide is a high-hardness refractory metal carbide (such as tungsten carbide WC, titanium carbide TiC) micron-sized powder as the main component (that is, as a hard phase), cobalt (Co) as a binder phase, supplemented with inhibition Phase, a powder metallurgy product sintered in a vacuum furnace or a hydrogen reduction furnace.
- the hard alloy materials used in the technical fields of tools, molds, etc. mainly use WC or other carbides as the hard phase, and Co as the binder phase.
- the main chemical components are WC-Co, WC-TiC-Co, Cemented carbide of WC-TiC-TaC-Co formulation. As shown in Fig.
- the Co binder phase in the cemented carbide is a close-packed hexagonal structure (HCP structure) at a temperature lower than 430 ° C.
- HCP structure close-packed hexagonal structure
- the atomic arrangement is relatively tight and the density is high; when the temperature is higher than 430 ° C, it is the face core.
- Cubic structure (FCC structure) at this time the atomic arrangement is relatively loose, the density suddenly drops, and the volume expands violently (about 1.35%). Therefore, during the cutting process, the Co-bonded phase changes from a close-packed hexagonal structure (HCP phase) at low temperature to a face-centered cubic structure (FCC phase) due to friction heating up to 400 ° C or higher, resulting in a binder phase.
- Cimented Patent Publication No. CN 103173673 A discloses a cemented carbide system in which a Co-Ni alloy is used as a binder.
- the Co-Ni binder phase is improved by additives, and the consumption of the binder phase at room temperature is slowed down to prolong the service life of the cemented carbide.
- the binder phase contains a large amount of nickel, the FCC is converted into the HCP phase. The change point is lower than that of pure Co, and the binder phase is transformed into the FCC phase at a lower temperature, which becomes softer with the increase of temperature, which greatly reduces the cutting performance of the cemented carbide at high temperature.
- the technical problem to be solved by the present invention is to overcome the deficiencies of the prior art and provide a cemented carbide which still has good cutting performance and mechanical properties at high temperatures.
- the technical solution proposed by the present invention is:
- a cemented carbide comprising a hard phase and a Co binder phase, wherein the Co binder phase contains Cr or/and Mo.
- the Co binder phase does not contain Ni.
- the absence of Ni in the Co binder phase reduces the conversion of HCP to the FCC phase transition point.
- Co bond phase contains Cr or / and Mo, which can improve the phase transition point, ensure that the binder phase is still HCP structure at high temperature, improve the cutting performance and mechanical properties of cemented carbide.
- the mass content of Cr in the Co binder phase is 0% to 29%, the mass content of Mo is 0% to 5%, and the balance is Co. Further preferably, the mass content of Cr in the Co binder phase is 2% to 20%, the mass content of Mo is 1% to 5%, and the balance is Co.
- adding a certain amount of Cr and Mo to the binder phase can help inhibit the conversion of the HCP phase to the FCC phase of Co, and reduce the reaction between the binder phase and the processing material, thereby reducing the loss.
- excessive addition of Cr and/or Mo to the binder phase reacts with Co to form a brittle sigma phase or ⁇ phase, and too little Cr and/or Mo is added, but does not meet the requirement for inhibiting the transformation of the Co phase.
- the mass of the binder phase is 5% to 25% by mass of the cemented carbide.
- the hard phase is mainly WC or TiC or a mixture of the two. It may also be one or more metal carbides which may serve as a hard phase of the cemented carbide.
- the preparation process of the cemented carbide comprises: first batching according to the content of each element, followed by ball milling, granulating, sintering, and finally aging at the phase change point temperature of the binder. 5-24 hours.
- the sintered cemented carbide is aged for 5-24 hours at the corresponding binder phase transformation point temperature, which can transform the binder phase into HCP structure.
- the HCP structure has a smaller volume, which can ensure the relative bonding.
- the better coating of the hard phase improves the bonding strength between the hard phase and the binder phase, and at the same time, the binder phase of the HCP structure has higher mechanical properties, and the cutting performance and mechanical properties of the cemented carbide are comprehensively improved.
- the sintering temperature is higher than 1300 ° C, and the holding time after reaching the sintering temperature is not less than 30 min.
- the cemented carbide of the present invention uses a Co-bonding phase containing no Ni, and by adding Cr and/or Mo element to the Co-bonded phase containing no Ni, the Co-bonded phase HCP is converted to an FCC phase transition point. It can prevent the loss of Co phase caused by the volume expansion of the Co-bond phase when the temperature changes to HCC and the volume expansion after the FCC phase change, thereby greatly improving the service life of the cemented carbide.
- the cemented carbide of the present invention can greatly improve the stability of the HCP phase of the Co binder phase at a high temperature by adding Cr and/or Mo elements in the Co-bonded phase containing no Ni. Greatly improve the high temperature machinability and hardness of cemented carbide.
- the present invention can greatly improve the wettability of the Co binder phase and the hard phase and improve the sintering property of the cemented carbide by adding Cr and/or Mo elements to the Co-bonded phase containing no Ni.
- the present invention can greatly improve the mechanical properties of the Co binder phase and improve the hardness by adding Cr and/or Mo elements in the Co-bonded phase containing no Ni, due to solid solution strengthening of Cr and Mo in Co. Alloy hardness and cutting performance.
- the hardness of the cemented carbide of the present invention can be increased by 10-50 HV at room temperature compared to the hardness of the un-added cemented carbide.
- the bending strength is increased by 50-500 MPa, and the hardness can be increased by 20-40 HV at high temperatures (above 400 ° C).
- Figure 1 is a crystal structure of a prior art cemented carbide Co binder phase at different temperatures.
- FIG. 2 is a test diagram of a phase change volume expansion process in a cemented carbide Co binder phase exceeding 400 ° C in the prior art.
- Fig. 3 is a schematic view showing the mechanism of the phase transition of the cemented carbide Co phase in the prior art which causes the loss of the Co bond phase.
- the various reagents and raw materials used in the present invention are commercially available products or products which can be obtained by a known method.
- the cemented carbide of the present invention comprises a hard phase and a Co binder phase, wherein the Co binder phase contains Cr and/or Mo; and the hard phase mainly comprises WC or TiC or a mixture of the two, the hard phase
- the average particle size is less than 1.2 ⁇ m.
- the preparation process of the cemented carbide of the invention comprises: firstly compounding according to the content of each element, and then performing ball milling, granulating and sintering in sequence, wherein the sintering temperature of the hard phase and the binder phase is higher than 1300 ° C, after reaching the sintering temperature
- the holding time is not less than 30 min; after sintering, according to the phase transition point of different binder phase, aging treatment (aging time 5-24 hours) is carried out at the phase transformation temperature to obtain the binder phase of all HCP phases, and the hard alloy is improved. High temperature cutting performance.
- the binder phase composition and properties of the cemented carbide in various embodiments of the present invention are shown in Tables 1 and 2 (Note: the Mo and Cr contents in Table 1 refer to the mass fraction of the binder phase, and the WC content is Refers to its mass fraction of cemented carbide materials; since there is no high-temperature wear resistance test equipment, the wear resistance and service life of cemented carbide in Table 2 are measured at room temperature according to ASTM G65 standard).
- the cemented carbide of the present invention has a flexural strength at room temperature of 100-400 MPa compared with the prior art cemented carbide (Comparative Examples 1-4), and wear resistance at room temperature. Increase 1-6 times, the service life at room temperature is increased by 2-7 times; at high temperature (above 400 °C) the hardness can be increased by 10-20HRA. It can be seen that the present invention improves the phase transition point of the Co bond phase HCP to the FCC by adding an appropriate amount of Cr and/or Mo elements on the basis of the Co binder phase, so that the binder phase remains at a high temperature.
- the HCP phase It is the HCP phase, and because the phase slip system is small, the hardness is high, which ensures the mechanical properties and high cutting performance of the cemented carbide at high temperature. At the same time, since the phase becomes suppressed, the HCP phase can be prevented from being converted into the FCC phase. The volume expansion caused by the change causes the cobalt phase to be lost, thereby ensuring excellent cutting performance and long service life of the cemented carbide.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Powder Metallurgy (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
Abstract
一种硬质合金,包括硬质相和Co粘结相,其中Co粘结相中主要含有Cr或/和Mo,并且Co粘结相中不含Ni。硬质合金采用不含Ni的Co粘结相,通过在不含Ni的Co粘结相里添加Cr和/或Mo元素,Co粘结相HCP转为FCC相变点增加,可防止Co粘结相在温度升高时HCP转变成FCC相变后体积膨胀及变软而引起的Co相流失,从而大大提高硬质合金的切削性能与使用寿命。
Description
本发明涉及一种在高温下仍具有较好的切削性能和力学性能的硬质合金。
硬质合金是以高硬度难熔金属的碳化物(如碳化钨WC、碳化钛TiC)微米级粉末为主要成分(即作为硬质相),以钴(Co)为粘结相,辅以抑制相,在真空炉或氢气还原炉中烧结而成的粉末冶金制品。而目前用于刀具、模具等技术领域的硬质合金材料,主要以WC或其它碳化物作为硬质相,以Co作为粘结相,比如主要化学成分为WC-Co、WC-TiC-Co、WC-TiC-TaC-Co配方的硬质合金等。如图1所示,硬质合金中Co粘结相在温度低于430℃时为密排六方结构(HCP结构),原子排列比较紧密,密度较高;当温度高于430℃时为面心立方结构(FCC结构),此时原子排列比较松散,密度突然下降,体积剧烈膨胀(约1.35%)。所以在切削加工过程中由于摩擦发热至400℃以上时或者高温下时Co粘结相会由低温下的密排六方结构(HCP相)转变为面心立方结构(FCC相),造成粘结相体积膨胀、变软(测试数据如图2所示),粘结相流失(Co粘结相流失机理示意图如图3所示),并极大地降低了硬质合金在高温下的切割性能与机械性能,并且这些特点在2007年28卷第5期出版的《材料热处理学报》中的第105-110页“硬质合金强度随温度的变化及失效机理的研究”中也报道过;而如何提高Co粘结相的这一相变点,以提高硬质合金高温下的切削性能和力学性能是关系到硬质合金更广泛应用的难题。目前研究人员大多集中在Co粘结相基体中加入Ni等元素来稳定FCC结构,这样会导致该相变点降低,虽然室温下硬质合金的硬度、切削性能较好,但温度升高后,FCC相由于滑移系较多,容易变软,硬质合金切削性能仍会急剧下降,例如中国专利公开号CN 103173673 A中公开了在Co-Ni合金做粘结剂的硬质合金体系中提出通过添加剂来对Co-Ni粘结相进行改善,减缓粘结相在室温下的消耗,以延长了硬质合金的使用寿命,但由于粘结相中含有大量的镍,使FCC转为HCP相变点较纯Co更低,粘结相在更低温度下转变为FCC相,随温度的升高迅速变软,大大降低了硬质合金高温下的切削性能。
发明内容
本发明要解决的技术问题是克服现有技术的不足,提供一种在高温下仍具有较好的切削性能和力学性能的硬质合金。
为解决上述技术问题,本发明提出的技术方案为:
一种硬质合金,包括硬质相和Co粘结相,其中Co粘结相中含有Cr或/和Mo。优选的,所述Co粘结相中不含Ni。所述Co粘结相中不含有Ni等会降低HCP转化为FCC相变点的
元素;Co粘结相中含有Cr或/和Mo,可以提高该相变点,保证粘结相在高温下仍然为HCP结构,提高硬质合金的切削性能与力学性能。
上述的硬质合金,优选的,所述Co粘结相中Cr的质量含量为0%~29%,Mo的质量含量为0%~5%,其余为Co。进一步优选的,所述Co粘结相中Cr的质量含量为2%~20%,Mo的质量含量为1%~5%,其余为Co。申请人通过研究发现,在粘结相中加入一定量的Cr和Mo能够有助于抑制Co的HCP相向FCC相转变,减少粘结相与加工材料的反应,从而达到减缓其损耗的要求。但是粘结相中加入Cr和/或Mo过多会与Co发生反应,形成脆性的σ相或η相,加入的Cr和/或Mo过少,却达不到抑制Co相转变的要求。
上述的硬质合金,优选的,所述粘结相的质量占硬质合金质量的为5%~25%。
上述的硬质合金,优选的,所述硬质相主要为WC或TiC或二者的混合物。也可以为其它可作为硬质合金硬质相的一种或多种金属碳化物。
上述的硬质合金,优选的,所述硬质合金的制备过程包括为:先按照各元素含量进行配料,再依次进行球磨、制粒、烧结,最后在粘结剂的相变点温度下时效5-24小时。烧结后的硬质合金在相应的粘结相相变点温度下时效5-24小时,可以使粘结相全部转变为HCP结构,一方面由于HCP结构具有更小的体积,可保证粘结相对硬质相的更好包覆,提高硬质相与粘结相的结合强度,同时使HCP结构的粘结相具有更高的力学性能,全面提高硬质合金的切削性能与力学性能。
上述的硬质合金,优选的,所述烧结温度高于1300℃,达到烧结温度后的保温时长不低于30min。
与现有技术相比,本发明的优点在于:
(1)本发明的硬质合金采用不含Ni的Co粘结相,通过在不含Ni的Co粘结相里添加Cr和/或Mo元素,Co粘结相HCP转为FCC相变点增加,可防止Co粘结相在温度升高时HCP转变成FCC相变后体积膨胀而引起的Co相流失,从而大大提高硬质合金的使用寿命。
(2)本发明的硬质合金通过在不含Ni的Co粘结相里添加Cr和/或Mo元素,可以大大提高力学性能好的Co粘结相的HCP相在高温下的稳定性,极大改善硬质合金的高温切削性和硬度。
(3)本发明通过在不含Ni的Co粘结相里添加Cr和/或Mo元素,可以大大提高Co粘结相与硬质相的润湿性,提高硬质合金烧结性能。
(4)本发明通过在不含Ni的Co粘结相里添加Cr和/或Mo元素,由于Cr、Mo在Co内的固溶强化,可以大大提高Co粘结相的力学性能,提高硬质合金的硬度与切削性能。
(5)本发明的硬质合金相比于未添加硬质合金的硬度,其在室温下可以提高10-50HV,
抗弯强度提高50-500MPa,在高温下(400℃以上)硬度可以提高20-40HV。
图1是现有技术中硬质合金Co粘结相在不同温度下的晶体结构。
图2是现有技术中硬质合金Co粘结相超过400℃时相变体积膨胀过程的测试图。
图3是现有技术中硬质合金Co粘结相发生相变导致Co粘结相流失的机理示意图。
为了便于理解本发明,下文将结合较佳的实施例对本发明作更全面、细致地描述,但本发明的保护范围并不限于以下具体的实施例。
除非另有定义,下文中所使用的所有专业术语与本领域技术人员通常理解的含义相同。本文中所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围。
除有特别说明,本发明中用到的各种试剂、原料均为可以从市场上购买的商品或者可以通过公知的方法制得的产品。
本发明的硬质合金,包括硬质相和Co粘结相,其中,Co粘结相中含有Cr和/或Mo;而硬质相主要包括WC或TiC或二者的混合物,硬质相的平均粒径小于1.2μm。本发明的硬质合金的制备过程包括:先按照各元素含量进行配料,再依次进行球磨、制粒、烧结,其中硬质相、粘结相的烧结温度高于1300℃,达到烧结温度后的保温时长不低于30min;烧结后依照不同粘结相的相变点,在相变温度下实行时效处理(时效时间5-24小时),以获取全部HCP相的粘结相,提高硬质合金的高温切削性能。
本发明的各个实施例中硬质合金的粘结相成分及性能见表1和表2所示(注:表1中的Mo和Cr含量是指其占粘结相的质量分数,WC含量是指其占硬质合金材料的质量分数;由于目前无高温下耐磨性测试设备,表2中硬质合金的耐磨性与使用寿命是在室温下根据ASTM G65标准来测量的)。
表1各个实施例和对比例的硬质合金的粘结相成分及室温性能
表2本发明不同实施例中的硬质合金在不同温度下的硬度
由表1和表2的实验数据可知,本发明的硬质合金相比于现有技术的硬质合金(对比例1-4),室温下抗弯强度提高100-400MPa,室温下耐磨性提高1-6倍,室温下使用寿命提高2-7倍;在高温下(400℃以上)硬度可以提高10-20HRA。由此可见,本发明在Co粘结相的基础上,通过添加适量的Cr和/或Mo元素,提高了Co粘结相HCP转为FCC的相变点,使粘结相在高温下仍保持为HCP相,并由于该相滑移系较少,硬度高,保证了硬质合金在高温下的力学性能与高切削性能,同时,由于该相变得到抑制,可防止HCP相转为FCC相变引起的体积膨胀而使钴相流失,从而可保证硬质合金的具有优异的切削性能与较长的使用寿命。
Claims (8)
- 一种硬质合金,其特征在于,包括硬质相和Co粘结相,其中Co粘结相中含有Cr或/和Mo。
- 如权利要求1所述的硬质合金,其特征在于,所述Co粘结相中不含Ni。
- 如权利要求1所述的硬质合金,其特征在于,所述Co粘结相中Cr的质量含量为0%~29%,Mo的质量含量为0%~5%,其余为Co。
- 如权利要求1所述的硬质合金,其特征在于,所述Co粘结相中Cr的质量含量为2%~20%,Mo的质量含量为1%~5%,其余为Co。
- 如权利要求1所述的硬质合金,其特征在于,所述Co粘结相的质量占硬质合金质量的百分数为5%~25%。
- 如权利要求1~5任一项所述的硬质合金,其特征在于,所述硬质相主要为WC或TiC或二者的混合物。
- 如权利要求1~5任一项所述的硬质合金,其特征在于,所述硬质合金的制备过程包括为:先按照各元素含量进行配料,再依次进行球磨、制粒、烧结,最后在粘结剂的相变点温度下时效5-24小时。
- 如权利要求7所述的硬质合金,其特征在于,所述烧结温度高于1300℃,达到烧结温度后的保温时长不低于30min。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610367856.1 | 2016-05-30 | ||
CN201610367856.1A CN105861903B (zh) | 2016-05-30 | 2016-05-30 | 硬质合金 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017206292A1 true WO2017206292A1 (zh) | 2017-12-07 |
Family
ID=56641620
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/090697 WO2017206292A1 (zh) | 2016-05-30 | 2016-07-20 | 硬质合金 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105861903B (zh) |
WO (1) | WO2017206292A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109280838B (zh) * | 2018-11-30 | 2020-11-06 | 宇龙精机科技(浙江)有限公司 | 一种钛钴合金及其制备方法 |
CN112853188A (zh) * | 2020-12-31 | 2021-05-28 | 株洲硬质合金集团有限公司 | 一种硬质合金及其制备方法和应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020031440A1 (en) * | 1997-09-05 | 2002-03-14 | Alistair Grearson | Tool for drilling/routing of printed circuit board materials |
JP2006117974A (ja) * | 2004-10-19 | 2006-05-11 | Sumitomo Electric Ind Ltd | 超硬合金 |
CN101358314A (zh) * | 2008-09-22 | 2009-02-04 | 牡丹江工具有限责任公司 | 多元m类硬质合金 |
CN101462206A (zh) * | 2008-09-12 | 2009-06-24 | 郭庆虎 | 硬质合金焊丝或焊条及其制造方法和应用 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5839764A (ja) * | 1981-09-02 | 1983-03-08 | Hitachi Metals Ltd | 超硬合金 |
JP4746310B2 (ja) * | 2004-11-30 | 2011-08-10 | 住友電工ハードメタル株式会社 | 金型 |
CN102234729B (zh) * | 2010-04-23 | 2013-07-03 | 河南省大地合金股份有限公司 | 一种硬质合金的制造方法 |
CN103602870B (zh) * | 2013-10-30 | 2015-08-26 | 株洲钻石切削刀具股份有限公司 | 具有近球形wc晶粒的硬质合金及其制备方法 |
CN103602871B (zh) * | 2013-12-09 | 2016-02-10 | 株洲硬质合金集团有限公司 | 一种高耐热性、高强度硬质合金及其制备方法 |
-
2016
- 2016-05-30 CN CN201610367856.1A patent/CN105861903B/zh not_active Expired - Fee Related
- 2016-07-20 WO PCT/CN2016/090697 patent/WO2017206292A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020031440A1 (en) * | 1997-09-05 | 2002-03-14 | Alistair Grearson | Tool for drilling/routing of printed circuit board materials |
JP2006117974A (ja) * | 2004-10-19 | 2006-05-11 | Sumitomo Electric Ind Ltd | 超硬合金 |
CN101462206A (zh) * | 2008-09-12 | 2009-06-24 | 郭庆虎 | 硬质合金焊丝或焊条及其制造方法和应用 |
CN101358314A (zh) * | 2008-09-22 | 2009-02-04 | 牡丹江工具有限责任公司 | 多元m类硬质合金 |
Also Published As
Publication number | Publication date |
---|---|
CN105861903B (zh) | 2018-08-07 |
CN105861903A (zh) | 2016-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sun | Progress in research and development on MAX phases: a family of layered ternary compounds | |
CN108118230B (zh) | 一种硬质合金及其制备方法 | |
CN103058662B (zh) | 二硼化钛基纳米复合自润滑陶瓷刀具材料及其制备方法 | |
CN114645171B (zh) | 一种多主元合金-金刚石磨具材料及其制备方法和应用 | |
JP2016098393A (ja) | 超硬合金 | |
CN104630589B (zh) | 一种碳化钨包覆的复合硬质合金材料及其制备方法 | |
CN110655404A (zh) | 一种钛碳化硅基复合陶瓷材料及其制备工艺 | |
WO2017206292A1 (zh) | 硬质合金 | |
CN110438384A (zh) | 一种铁镍基超细晶硬质合金及其制备方法 | |
US20190084888A1 (en) | Eutectic cermets | |
CN106566972B (zh) | 具有梯度结构的板状wc晶粒硬质合金的制备方法 | |
Xu et al. | Influence of TaC content on microstructure and mechanical performance of Ti (C, N)-based cermets fabricated by mechanical activation and subsequent in situ carbothermal reduction | |
CN109053191B (zh) | 一种无粘结相碳氮化钛基金属陶瓷及其制备方法 | |
WO2019169744A1 (zh) | 一种(WMo)C基硬质合金材质及其制备方法 | |
CN116463523B (zh) | 原位自生纳米氧化物碳化物协同增韧细晶钼合金及其制备方法 | |
CN109811235B (zh) | 一种高耐磨硬质合金材料及其制备方法与应用 | |
CN115138849B (zh) | 一种无粘结相硬质合金刀具材料的制备方法 | |
CN112941391B (zh) | 一种含NbC的高致密复合金属陶瓷材料及其制备方法 | |
CN109371309A (zh) | 一种高强度高塑性的多主元梯度合金及其制备方法 | |
CN103114233B (zh) | 一种涂层梯度硬质合金刀具材料 | |
CN110343899B (zh) | 一种双尺寸硬质颗粒增强的铜基复合材料及其制备方法 | |
CN106914624B (zh) | 一种降低硬质合金摩擦系数的方法 | |
CN111485155A (zh) | 添加氧化铝包覆立方氮化硼复合粉体的(Ti,W)C基金属陶瓷刀具材料及其制备方法 | |
JPS6059195B2 (ja) | すぐれた耐摩耗性と靭性を有する硬質焼結材料の製造法 | |
CN108411178A (zh) | 一种硬质合金材料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16903674 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 05/02/2019) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16903674 Country of ref document: EP Kind code of ref document: A1 |