WO2017206060A1 - 图像稳定装置控制方法和图像稳定装置 - Google Patents

图像稳定装置控制方法和图像稳定装置 Download PDF

Info

Publication number
WO2017206060A1
WO2017206060A1 PCT/CN2016/084104 CN2016084104W WO2017206060A1 WO 2017206060 A1 WO2017206060 A1 WO 2017206060A1 CN 2016084104 W CN2016084104 W CN 2016084104W WO 2017206060 A1 WO2017206060 A1 WO 2017206060A1
Authority
WO
WIPO (PCT)
Prior art keywords
handle
state
image stabilization
stabilization device
free state
Prior art date
Application number
PCT/CN2016/084104
Other languages
English (en)
French (fr)
Inventor
王岩
Original Assignee
深圳市大疆灵眸科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆灵眸科技有限公司 filed Critical 深圳市大疆灵眸科技有限公司
Priority to PCT/CN2016/084104 priority Critical patent/WO2017206060A1/zh
Priority to CN201680002809.5A priority patent/CN106796420B/zh
Publication of WO2017206060A1 publication Critical patent/WO2017206060A1/zh
Priority to US16/190,657 priority patent/US10788736B2/en
Priority to US17/021,975 priority patent/US11422440B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories
    • G03B17/563Camera grips, handles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/041Allowing quick release of the apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/10Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting around a horizontal axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/12Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction
    • F16M11/121Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction constituted of several dependent joints
    • F16M11/123Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction constituted of several dependent joints the axis of rotation intersecting in a single point, e.g. by using gimbals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/18Heads with mechanism for moving the apparatus relatively to the stand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon Stands for scientific apparatus such as gravitational force meters
    • F16M11/20Undercarriages with or without wheels
    • F16M11/2007Undercarriages with or without wheels comprising means allowing pivoting adjustment
    • F16M11/2035Undercarriages with or without wheels comprising means allowing pivoting adjustment in more than one direction
    • F16M11/2071Undercarriages with or without wheels comprising means allowing pivoting adjustment in more than one direction for panning and rolling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M13/00Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M13/00Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles
    • F16M13/04Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles for supporting on, or holding steady relative to, a person, e.g. by chains, e.g. rifle butt or pistol grip supports, supports attached to the chest or head
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories
    • G03B17/561Support related camera accessories
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6812Motion detection based on additional sensors, e.g. acceleration sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6815Motion detection by distinguishing pan or tilt from motion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • F16M2200/04Balancing means
    • F16M2200/041Balancing means for balancing rotational movement of the head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • F16M2200/04Balancing means
    • F16M2200/044Balancing means for balancing rotational movement of the undercarriage
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2651Camera, photo

Definitions

  • the present invention relates to the field of imaging technology, and in particular, to an image stabilization device control method and an image stabilization device.
  • the image stabilization device is a fixture for mounting an image pickup device, commonly known as a pan/tilt. After the image pickup apparatus is mounted on the image stabilization device, the shooting angle of the image pickup apparatus can be adjusted by controlling the image stabilization device.
  • a negative feedback system can be configured for the image stabilization device.
  • the negative feedback system can control the image stabilization device to perform an action opposite to the moving direction of the imaging device by detecting the motion state of the imaging device mounted on the image stabilization device, thereby eliminating the shaking of the imaging device and ensuring that the image captured by the imaging device is stable.
  • the commonly used image stabilization device is a three-axis image stabilization device, and the operator generally holds the handle connected to the image stabilization device to operate the image stabilization device, thereby controlling the orientation of the imaging device to be aligned.
  • the negative feedback system rotates the respective shaft motors that drive the image stabilizing device in order to eliminate the rattling caused by the image pickup apparatus. Since the camera device is artificially fixed but the handle is in a free state, which will cause the motor to continue to rotate but still cannot eliminate the shaking of the camera device, the handle will be swayed.
  • the handle swinging affects the operator to take images using the camera device, and since the handle is generally provided with a rotation limit device, the handle swinging may also cause damage to the image stabilization device.
  • the invention provides an image stabilization device control method and an image stabilization device, which can detect the movement state of the handle of the image stabilization device to avoid the handle swinging.
  • the first aspect provides a method for controlling an image stabilization device, including:
  • the rotating shaft motor that controls the image stabilization device to rotate the handle stops rotating;
  • the state of motion of the handle is in a free state, meaning that the handle is not fixed and any part of the image stabilizing device except the handle is fixed.
  • the detecting a motion state of a handle of the image stabilization device includes:
  • the detecting whether the handle is held comprises:
  • Detecting a holding pressure on the handle if the holding pressure on the handle is less than a preset threshold, determining that the handle is not held;
  • the detecting a motion state of a handle of the image stabilization device includes:
  • the motion state of the handle conforms to a pre-determined free state, it is determined that the motion state of the handle is in a free state.
  • the method before the detecting whether the motion state of the handle meets a pre-determined free state, the method further includes:
  • the detecting whether the motion state of the handle conforms to a pre-determined free state includes:
  • determining that the motion state of the handle is in a free state including:
  • the method before the detecting the motion state of the handle of the image stabilization device, the method further includes:
  • the detecting a motion state of a handle of the image stabilization device includes:
  • the motion state of the handle of the image stabilization device is detected.
  • the rotating shaft motor that controls the image stabilization device to rotate the handle to stop rotating comprises:
  • the motor that controls the rotation of the handle by the image stabilization device rotates, and the motor that rotates the rotation axis that exceeds the preset threshold stops rotating.
  • the method further includes:
  • an alert message is sent, the alert message including indication information that the handle of the image stabilization device is in a free state.
  • a second aspect provides an image stabilization apparatus, including:
  • Camera device fixing mechanism camera device motion state detector, camera device motion control component
  • the camera device motion control assembly includes: a processor and at least two rotating mechanisms in different directions, wherein the rotating mechanism of each direction comprises a rotating shaft motor, wherein the rotating shaft motor in one direction drives the handle to rotate;
  • the imaging device fixing mechanism is configured to fix the imaging device on the image stabilization device
  • the imaging device motion state detector is configured to detect a current posture of the imaging device, and send a current posture of the imaging device to the processor;
  • the processor is configured to perform attitude control on the imaging device
  • the image stabilization device further includes a handle state detector for detecting Measuring the motion state of the handle;
  • the processor is further configured to: when the handle state detector detects that the motion state of the handle is in a free state, control the rotation axis motor that rotates the handle by the image stabilization device to stop rotating;
  • the state of motion of the handle is in a free state, meaning that the handle is not fixed and any part of the image stabilizing device except the handle is fixed.
  • the handle state detector includes a grip sensor
  • the grip sensor is configured to detect whether the handle is held
  • the processor is configured to determine that the motion state of the handle is in a free state if the grip sensor detects that the handle is not gripped.
  • the holding sensor comprises: a pressure sensor or a touch switch
  • the pressure sensor is configured to detect a holding pressure on the handle, and if the holding pressure on the handle is less than a preset threshold, determining that the handle is not held;
  • the touch switch is configured to detect a touch state on the handle, and if the touch state is not touched, determine that the handle is not held.
  • the handle state detector is specifically configured to detect whether a motion state of the handle conforms to a pre-determined free state
  • the processor is specifically configured to determine that the motion state of the handle is in a free state if the handle state detector detects that the motion state of the handle conforms to a pre-determined free state.
  • the processor is further configured to determine a moment of inertia when the handle is in a free state
  • the handle state detector is specifically configured to detect a rotational angular velocity of the rotating shaft motor that drives the handle to rotate by the image stabilization device;
  • the processor is specifically configured to calculate a difference between a rotational angular velocity of the motor between two test time points, an integral of a rotational torque of the motor between the two test time points, and the handle is at The quotient of the moment of inertia in the free state, the correspondence between the two; if the rotational angular velocity of the motor is between the two test time points, the rotational torque of the motor is at the two test time points.
  • the processor is further configured to determine, on the image stabilization device, before the handle state detector detects a motion state of a handle of the image stabilization device Whether a camera device is connected;
  • the handle state detector is specifically configured to detect a motion state of a handle of the image stabilization device when the processor determines that the image stabilization device is connected to the image capture device.
  • the processor is configured to control the image stabilization device to be driven when the handle state detector detects that the motion state of the handle is in a free state.
  • the motor of the rotating shaft whose rotating range exceeds the preset threshold stops rotating.
  • the processor is further configured to send an alert message when the handle state detector detects that the motion state of the handle is in a free state, the reminder
  • the message includes indication information that the handle of the image stabilization device is in a free state.
  • the image stabilization device control method and the image stabilization device provided by the present invention detect the movement state of the handle of the image stabilization device, and when the movement state of the handle is in a free state, the rotation axis motor that controls the image stabilization device to rotate the handle stops rotating, thereby Avoid the handle swing caused by the handle being in a free state, which affects the user's normal use of the image stabilization device, and avoids damage to the limit mechanism of the image stabilization device caused by the handle swinging.
  • FIG. 1 is a schematic structural view of a conventional three-axis image stabilization device
  • Embodiment 1 is a flowchart of Embodiment 1 of a method for controlling an image stabilization device according to an embodiment of the present invention
  • FIG. 3 is a flowchart of Embodiment 2 of a method for controlling an image stabilization apparatus according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of Embodiment 1 of an image stabilization apparatus according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural view of a conventional three-axis image stabilization device.
  • the three-axis image stabilizing device shown in FIG. 1 can provide axial adjustment capability in three directions of X, Y, and Z mounted thereon.
  • the image stabilization device includes a Y-axis motor 1, an X-axis motor 6, a Z-axis motor 3, a Y-axis arm 7 rotatably coupled to the Y-axis motor 1, and an X-axis arm 2 rotatably coupled to the X-axis motor 6, and Z.
  • the shaft motor 3 is rigidly connected to the Z-axis arm 5.
  • the Y-axis motor 1, the X-axis motor 6, and the Z-axis motor 3 can respectively drive the Y-axis arm 7, the X-axis arm 2, and the Z-axis arm 5 to rotate about the Y-axis, the X-axis, and the Z-axis.
  • the Z-axis arm 5 is also rigidly coupled to the X-axis motor 6.
  • the X-axis arm 2 is also rigidly coupled to the Y-axis motor 1.
  • An imaging device fixing mechanism 8 is connected to one end of the Y-axis arm 7 away from the Y-axis motor 1, and the imaging device fixing mechanism 8 is for fixing the imaging device 9 to the image stabilization device.
  • the Z-axis motor 3 is also rotatably coupled to the base 4, and the handle 10 is rigidly coupled to the base 4.
  • the image pickup device 9 is first fixedly attached to the image stabilization device using the image pickup device fixing mechanism 8, and then the handle 10 is hand-held to start shooting using the image pickup device 8.
  • an imaging device motion state detector is provided in the Y-axis arm 7 or the fixing mechanism 8.
  • the imaging device motion state detector is an inertial measurement component, and the imaging device 8 can detect the imaging device 8 by the imaging device motion state detector. Gesture.
  • the user adjusts the posture of the imaging device 8 according to the shooting demand, and when the imaging device motion state detector detects that the actual posture of the imaging device 8 is inconsistent with the target posture that the imaging device needs to adjust, the image stabilization device
  • the Y-axis motor 1, the X-axis motor 6, and the Z-axis motor 3 are respectively controlled to rotate so that the current posture of the image pickup apparatus 8 is adjusted to the target posture to which the image pickup apparatus needs to be adjusted.
  • the imaging device motion state detector detects the current state of the imaging device 8.
  • the Z-axis motor 3 will not be able to drive the Z-axis arm 5 to rotate about the Z-axis, but will drive the base 4 and the handle 10 rigidly connected to the base 4. Rotate around the Z axis. Since the Z-axis arm 5 cannot rotate around the Z-axis, then The image stabilization device will also be unable to adjust the current posture of the imaging apparatus 8 to the target posture. However, the image stabilization device will continue to try to adjust the current posture of the imaging device 8, and will continue to rotate the Z-axis motor, which will cause the handle 10 to swing.
  • the chaotic swing of the handle 10 will first affect the normal use of the user, and may even cause harm to the user.
  • each motor generally has a limiting mechanism, that is, the motor can only rotate within a certain range, the sway of the handle 10 may also cause the Z-axis motor 3 to rotate too fast, if the Z-axis motor 3 hits the corresponding limit at a high speed. In the position mechanism, the limit mechanism may be damaged, resulting in damage to the entire image stabilization device.
  • FIG. 2 is a flowchart of Embodiment 1 of a method for controlling an image stabilization apparatus according to an embodiment of the present invention. As shown in FIG. 2, the method provided in this embodiment includes:
  • step S201 the motion state of the handle of the image stabilization device is detected.
  • the image stabilization device control method provided in this embodiment is applicable to any image stabilization device capable of adjusting a motion posture of at least one direction of an installed imaging device, wherein a handle is connected in an adjustable direction.
  • the image stabilization device can be fixedly connected to the imaging device, and by detecting the posture of the imaging device, the posture of the imaging device is adjusted to the target posture by controlling the motion posture adjustment mechanism in at least one direction.
  • the handle is swayed.
  • the image stabilizing device is Based on the detection of the posture of the connected imaging device, the motion state of the handle of the image stabilization device is also detected.
  • the purpose of detecting the motion state of the handle of the image stabilization device is to detect whether the motion state of the handle is in a free state, and the free state refers to a state in which the handle is not fixed and any part of the image stabilization device except the handle is fixed. . Whether the handle of the image stabilizing device is in a free state can be detected by various methods, such as detecting whether the handle is held, or detecting whether the motion state of the handle satisfies the motion state characteristic when not being held.
  • Step S202 when the motion state of the handle is in a free state, the rotating shaft motor that controls the image stabilization device to drive the handle to rotate stops rotating.
  • the damage may be Controlling the rotation of the handle in the image stabilization device
  • the moving shaft motor stops rotating, that is, forcibly stops the rotation of the rotating shaft motor, or cuts off the power of the rotating shaft motor.
  • the handle can be prevented from being swayed, thereby ensuring the normal use of the user and ensuring that the limit mechanism of the image stabilizing device is not damaged.
  • the image stabilization device control method provided by the embodiment is actually based on the adjustment of the posture of the imaging device 8 by the three-axis stabilization device shown in FIG.
  • the motion state of the handle 10 is also detected.
  • the Z-axis motor 3 to which the control handle 10 is connected stops rotating.
  • the influence of the handle 10 on the customer's use can be avoided, and the Z-axis motor 3 can be prevented from colliding with the limit mechanism due to the handle 10 being swayed.
  • the image stabilization device control method provided by the embodiment detects the movement state of the handle of the image stabilization device, and when the motion state of the handle is in a free state, the rotation axis motor that controls the image stabilization device to rotate the handle stops rotating, thereby avoiding the handle
  • the handle swing caused by the free state affects the user's normal use of the image stabilization device, and avoids damage to the limit mechanism of the image stabilization device caused by the handle swinging.
  • the method for detecting the motion state of the handle is mainly divided into two categories, one is to detect whether the handle is held by the user, and the other is to detect whether the motion state of the handle conforms to the motion state feature in a free state.
  • the detection handle is held by the user.
  • the pressure sensor can be used to detect the pressure on the handle by setting a pressure sensor on the handle. If the grip pressure on the handle is less than the preset threshold, or the grip pressure is 0, it can be determined that the handle is not held, then the handle is determined to be in a free state.
  • a touch switch can also be arranged on the handle, and when the handle is held, the touch switch will be triggered to close. If the touch switch on the handle is not closed, it can be determined that the touch state of the handle is not touched, and the handle is determined to be in a free state.
  • the temperature sensor when the handle is held, the temperature sensor will detect the body temperature of the user holding the handle. If the problem detected by the temperature sensor does not meet the body temperature range, it can be determined that the handle is in a free state.
  • the method for detecting whether the handle is held is described in the above, but the method for controlling the image stabilization device provided by the embodiment of the present invention is not limited thereto, and any one of the methods can detect whether the handle is held.
  • the method of living can be applied to this.
  • the state of motion when the handle is in the free state will be different from the state of motion when the handle is not in the free state.
  • the state of motion when the handle is in a free state should have a general feature. The characteristics of the movement state of the handle when in the free state can be determined in advance, and then the movement state of the handle is detected during use, and it is judged whether the movement state of the handle conforms to the characteristic of the pre-determined free state, thereby judging whether the handle is in Free state.
  • FIG. 3 is a flowchart of Embodiment 2 of a method for controlling an image stabilization apparatus according to an embodiment of the present invention. As shown in FIG. 3, the method provided in this embodiment includes:
  • step S301 the moment of inertia when the handle is in the free state is determined.
  • the moment of inertia when it is rotated should be a constant. Therefore, the moment of inertia when the handle is in the free state can be determined in advance.
  • the specific method is: when the handle of the image stabilization device is not fixed, and any part of the image stabilization device except the handle is fixed, and the handle is in a stationary state, the input rotation torque M is clicked for the rotation axis that drives the handle to rotate. After the time t in which the handle is in motion, the angle of rotation a of the motor is obtained. Then according to the formula Calculate the moment of inertia J when the handle is in the free state.
  • Step S302 detecting a rotational angular velocity of the rotating shaft motor that drives the handle to rotate by the image stabilizing device.
  • the movement state of the handle can be detected at any time during use of the image stabilization device.
  • it can be used for image stabilization devices
  • the rotational angular velocity of the rotating shaft motor that rotates the movable handle is detected.
  • Step S303 calculating the difference between the rotational angular velocity of the motor between the two test time points, the integral of the rotational torque of the motor between the two test time points, and the kinetic moment of the moment of inertia when the handle is in the free state. Correspondence.
  • the moment of inertia J is calculated when the motor M rotating torque between two adjacent points of time in a free state and a handle integral supplier ⁇ ⁇ , where t ⁇ is the rotation angular velocity of the motor cycle test were tested.
  • the rotational torque M of the motor is actively input to the motor and can be obtained from the motor.
  • t ⁇ represents the period during which the rotational angular velocity of the motor is tested, that is, the time interval between each test.
  • Step S304 if the difference between the rotational angular velocity of the motor between the two test time points, the integral of the rotational torque of the motor between the two test time points, and the rotational inertia of the handle in the free state, If the difference is less than the preset threshold, it is determined that the motion state of the handle is in a free state.
  • the plurality of differences are less than the preset threshold The number. If the number is greater than the preset number threshold, it can be considered that the current motion state of the handle conforms to the motion state when the handle is in the free state, then it can be determined that the motion state of the handle is in a free state. It should be noted that when determining the number of the plurality of differences that is less than the preset threshold, the number of the number that is less than the threshold may be determined, and compared with a preset threshold; or the threshold may be less than the threshold. The ratio of the number of all differences is compared to a preset proportional threshold.
  • the three-axis image stabilization device shown in Fig. 1 is still taken as an example.
  • the first embodiment determines the moment of inertia when the handle 10 is in the free state, which requires that the handle 10 is not fixed, and any part other than the handle 10 is fixed (for example, the X axis)
  • the rotational moment M is input to the Z-axis motor 3, thereby driving the handle 10 to rotate.
  • the rotation angle a of the Z-axis motor 3 is acquired, thereby calculating the moment of inertia J when the handle 10 is in the free state according to the formula.
  • the moment of inertia J when the handle 10 is in the free state is recorded as an intrinsic property of the image stabilizing device, and then the motion state of the handle 10 can be detected in a state where the image stabilizing device is normally operated, that is, the Z-axis motor 3 is detected in each measurement.
  • the angular velocity of rotation at the time is recorded as an intrinsic property of the image stabilizing device, and then the motion state of the handle 10 can be detected in a state where the image stabilizing device is normally operated, that is, the Z-axis motor 3 is detected in each measurement.
  • the general image stabilization device performs the actual shooting operation after the image pickup device is connected, the detection and adjustment of the image stabilization device has meaning, and generally after detecting that the image stabilization device is connected to the image pickup device, The attitude detection and automatic adjustment of the camera device will be activated. If the image stabilization device has not activated the posture detection and automatic adjustment of the imaging device, then the handle is not swayed, and the detection of the motion state of the handle is unnecessary. Therefore, it is also possible to determine whether or not an image pickup device is connected to the image stabilization device before detecting the motion state of the handle of the image stabilization device. When the image capturing device is connected to the image capturing device, the motion state of the handle of the image stabilizing device is detected. Thereby, unnecessary detection of the movement state of the handle is avoided, and the electric energy of the image stabilization device is saved.
  • step S202 of the embodiment shown in FIG. 2 when the motion state of the handle is in a free state, the rotating shaft motor that controls the image stabilization device to rotate the handle stops rotating, one purpose is to avoid the influence of the handle swinging on the user, and One purpose is to avoid the rotation speed of the motor that drives the handle to rotate too fast, and the rotation range is too large to damage the limit mechanism.
  • the handle is placed in some occasions and does not affect the user, or the user's influence on the handle swing is not very concerned. If the rotation of the motor connected with the closing and closing is stopped, the automatic operation of the image stabilization device will be affected. Adjusting the function will have a greater impact on the user.
  • the motor of the rotating shaft whose rotation range exceeds the preset threshold stops rotating. That is to say, only when the handle is in a free state, and the rotation range of the rotating shaft motor that drives the handle rotates exceeds the rotation preset threshold of the motor, the rotation of the motor is stopped to prevent the rotation of the motor from damaging the limit mechanism.
  • the range of rotation that is, the motor without the limit mechanism, or the motor whose rotation range does not exceed the preset threshold value, can be stopped without rotating, so that the image can be ensured without damage to the image stabilization device.
  • the stabilizer is always in normal operation.
  • the handle is in a free state generally means that the user is in an abnormal operating state. Then, in order to enable the user to perform correct operation on the image stabilization device, when it is detected that the motion state of the handle is in a free state, an alert message may also be sent, which may be presented by various means such as sound, light, vibration, and the like. It is also possible to send the reminder message to the image capturing device connected to the image stabilizing device. In the image capturing device, the user is prompted to the current state in a free state by various means such as sound, image, text, light, and the like. Thereby, the user is informed of the information and instead operates the image stabilization device using the production mode of the production.
  • FIG. 4 is a schematic structural diagram of Embodiment 1 of an image stabilization apparatus according to an embodiment of the present invention. As shown in FIG. 4, the image stabilization apparatus provided in this embodiment includes:
  • the imaging device fixing mechanism 41 is configured to fix the imaging device on the image stabilization device;
  • the imaging device motion state detector 42 is configured to detect the current posture of the imaging device, and send the current posture of the imaging device to the processor 51; Perform attitude control on the camera device.
  • the processor 51 is configured to determine a deviation between the current posture of the imaging apparatus and the target posture of the imaging apparatus, and control the rotating shaft motor 53 of the at least one different direction to rotate to eliminate the current posture of the imaging apparatus and the target posture of the imaging apparatus. The deviation between.
  • the imaging device fixing mechanism 41, the imaging device motion state detector 42, and the imaging device motion control component 43 constitute a basic structure of the image stabilization device, which can complete detection and automatic adjustment of the posture of the imaging device.
  • the handle state detector 44 implements the image stabilization device control method as shown in FIG. 2 by the cooperation processing with the processor 51, and the implementation principle and technical effects thereof are similar, and details are not described herein again.
  • the imaging device motion state detector 42 may be a potentiometer or a Hall sensor disposed on a rotating shaft connected to each rotating shaft motor, and the posture of the image stabilizing device is estimated by detecting the rotation angle of each rotating shaft motor. , that is, to obtain the current posture of the camera device.
  • the handle state detector 44 includes a grip sensor; the grip sensor is configured to detect whether the handle 54 is held; the processor 51 is configured to hold The sensor detects that the handle 54 is not gripped, and determines that the motion state of the handle 54 is in a free state.
  • the grip sensor includes: a pressure sensor or a touch switch; the pressure sensor or the touch switch is disposed on the handle 54. The pressure sensor is used to detect the grip pressure on the handle 54. If the grip pressure on the handle 54 is less than a predetermined threshold, it is determined that the handle 54 is not gripped.
  • the touch switch is used to detect the touch state on the handle 54. If the touch state is not touched, it is determined that the handle 54 is not held.
  • the handle state detector 44 can also be other forms of detectors or sensors, as long as the device capable of detecting whether the handle is held, such as a temperature sensor. If the handle state detector 44 is a temperature sensor, the temperature sensor will detect the body temperature of the user holding the handle when the handle is held. If the problem detected by the temperature sensor does not meet the body temperature range, it can be determined that the handle is in a free state.
  • the handle state detector 44 is specifically configured to detect whether the motion state of the handle 54 conforms to a pre-determined free state; and the processor 51 is specifically configured to detect the state of the handle.
  • the device 44 detects that the motion state of the handle 54 conforms to the pre-determined free state, and determines that the motion state of the handle 54 is in a free state.
  • the processor 51 is further configured to determine a moment of inertia when the handle 54 is in a free state; the handle state detector 44 is specifically configured to detect a rotational angular velocity of the rotating shaft motor 53 to which the image stabilizing device is coupled to the handle 54; the processor 51 Specifically, it is used to calculate the difference between the rotational angular velocity of the rotating shaft motor 53 between the two test time points, the integral of the rotational torque of the rotating shaft motor 53 between the two test time points, and the handle 54 is at The quotient of the moment of inertia in the free state, the correspondence between the two; if the rotational angular velocity of the rotating shaft motor 53 is between the two test time points, the rotational torque of the rotating shaft motor 53 is at two test time points The quotient between the integral and the moment of inertia when the handle 54 is in the free state, and the difference between the two is less than the preset threshold, it is determined that the motion state of the handle 54 is in a free state.
  • the processor 51 is further configured to determine whether the image stabilization device is connected before the handle state detector 44 detects the motion state of the handle 54 of the image stabilization device.
  • the camera state detector 44 is specifically configured to detect the motion state of the handle 54 of the image stabilization device when the processor 51 determines that the image stabilization device is connected to the image capture device.
  • the processor 51 is specifically configured to control the image stabilization device to be connected to the handle 54 when the handle state detector 44 detects that the motion state of the handle 54 is in a free state.
  • the motor 53 that rotates the rotating shaft whose range exceeds the preset threshold stops rotating.
  • the processor 51 is further configured to send an alert message when the handle state detector 44 detects that the motion state of the handle 51 is in a free state, and the alert message includes an image. The indication that the handle of the stabilizer is in a free state.
  • the processor 51 is specifically configured to input a rotating shaft motor that drives the handle to rotate when the imaging device connected to the image stabilization device is fixed, the handle is not fixed, and the handle is stationary.
  • Rotating moment M after the time t in which the handle is in a moving state, acquiring the motor rotation angle a; according to the formula The moment of inertia J when the handle is in a free state is calculated.
  • ⁇ qp ⁇ q - ⁇ p
  • the test period if the difference between the rotational angular velocities between the two adjacent time points p and q between time 0 and time m is ⁇ qp and ⁇ ⁇ , the number less than the preset threshold is greater than the pre- The set number threshold determine

Abstract

一种图像稳定装置控制方法和图像稳定装置,包括:检测图像稳定装置的手柄(10)的运动状态;当手柄(10)的运动状态处于自由状态时,控制图像稳定装置带动手柄(10)转动的转动轴电机(3)停止转动。所述图像稳定装置控制方法和图像稳定装置,可以避免图像稳定装置的手柄(10)在自由状态时出现乱摆而影响用户使用,且避免由于手柄(10)乱摆造成图像稳定装置的限位机构损坏。

Description

图像稳定装置控制方法和图像稳定装置 技术领域
本发明涉及摄像技术领域,尤其涉及一种图像稳定装置控制方法和图像稳定装置。
背景技术
图像稳定装置是用于安装摄像设备的固定装置,俗称云台。将摄像设备安装在图像稳定装置上之后,可以通过对图像稳定装置的控制来调整摄像设备的拍摄角度。
由于在使用摄像设备拍摄的过程中,可能由于操作人员的操作或者外界因素导致摄像设备产生晃动。为了保证摄像设备拍摄的图像稳定,可以为图像稳定装置配置负反馈系统。负反馈系统可以通过检测安装在图像稳定装置上的摄像设备的运动状态,控制图像稳定装置进行与摄像设备运动方向相反的动作,从而消除摄像设备的晃动,保证摄像设备拍摄的图像稳定。
目前常用的图像稳定装置为三轴图像稳定装置,操作者一般是握住与图像稳定装置连接的手柄来操作图像稳定装置,从而控制摄像设备对准所需拍摄的方向。但是,若操作者握住图像稳定装置的其他部位来固定摄像设备,而使手柄处于自由状态时,负反馈系统为了消除摄像设备产生的晃动,将驱动图像稳定装置的各轴电机转动。由于摄像设备被人为固定但手柄处于自由状态,这将导致电机持续转动但仍无法消除摄像设备的晃动,那么将出现手柄乱摆的情况。手柄乱摆会影响操作者使用摄像设备拍摄图像,并且由于手柄一般都设置有转动限位装置,手柄乱摆还可能造成图像稳定装置损坏。
发明内容
本发明提供一种图像稳定装置控制方法和图像稳定装置,通过对图像稳定装置的手柄的运动状态进行检测,避免手柄乱摆。
第一方面提供一种图像稳定装置控制方法,包括:
检测所述图像稳定装置的手柄的运动状态;
当所述手柄的运动状态处于自由状态时,控制所述图像稳定装置带动所述手柄转动的转动轴电机停止转动;
其中,所述手柄的运动状态处于自由状态指所述手柄未被固定且所述图像稳定装置除所述手柄外的任一部分被固定的状态。
进一步地,在第一方面一种可能的实现方式中,所述检测所述图像稳定装置的手柄的运动状态,包括:
检测所述手柄是否被握持;
若所述手柄未被握持,则确定所述手柄的运动状态处于自由状态。
进一步地,在第一方面一种可能的实现方式中,所述检测所述手柄是否被握持,包括:
检测所述手柄上的握持压力,若所述手柄上的握持压力小于预设阈值,则确定所述手柄未被握持;
或者,检测所述手柄上的触控状态,若所述触控状态为未被触摸,则确定所述手柄未被握持。
进一步地,在第一方面一种可能的实现方式中,所述检测所述图像稳定装置的手柄的运动状态,包括:
检测所述手柄的运动状态是否符合预先测定的自由状态;
若所述手柄的运动状态符合预先测定的自由状态,则确定所述手柄的运动状态处于自由状态。
进一步地,在第一方面一种可能的实现方式中,所述检测所述手柄的运动状态是否符合预先测定的自由状态之前,还包括:
确定所述手柄处于自由状态时的转动惯量;
所述检测所述手柄的运动状态是否符合预先测定的自由状态,包括:
检测所述图像稳定装置带动所述手柄转动的转动轴电机的转动角速度;
计算所述电机的转动角速度在两个测试时间点之间的差值、所述电机的转动力矩在所述两个测试时间点之间的积分和所述手柄处于自由状态时的转动惯量之商,两者之间的对应关系;
所述若所述手柄的运动状态符合预先测定的自由状态,则确定所述手柄的运动状态处于自由状态,包括:
若所述电机的转动角速度在两个测试时间点之间的差值、所述电机的转动力矩在所述两个测试时间点之间的积分和所述手柄处于自由状态时的转动惯量之商,两者之间的差值小于预设阈值,则确定所述手柄的运动状态处于自由状态。
进一步地,在第一方面一种可能的实现方式中,所述检测所述图像稳定装置的手柄的运动状态之前,还包括:
确定所述图像稳定装置上是否连接有摄像设备;
所述检测所述图像稳定装置的手柄的运动状态,包括:
当所述图像稳定装置上连接收摄像设备时,检测所述图像稳定装置的手柄的运动状态。
进一步地,在第一方面一种可能的实现方式中,所述当所述手柄的运动状态处于自由状态时,控制所述图像稳定装置带动所述手柄转动的转动轴电机停止转动,包括:
当所述手柄的运动状态处于自由状态时,控制所述图像稳定装置带动所述手柄转动的转动轴中,转动范围超过预设阈值的转动轴的电机停止转动。
进一步地,在第一方面一种可能的实现方式中,所述方法还包括:
当所述手柄的运动状态处于自由状态时,发送提醒消息,所述提醒消息包括所述图像稳定装置的手柄处于自由状态的指示信息。
第二方面提供一种图像稳定装置,包括:
摄像设备固定机构、摄像设备运动状态检测器、摄像设备运动控制组件;
所述摄像设备运动控制组件包括:处理器和至少两个不同方向的转动机构,每个方向的转动机构包括一个转动轴电机,其中,与一个方向的转动轴电机带动手柄转动;
所述摄像设备固定机构用于将所述摄像设备固定在所述图像稳定装置上;
所述摄像设备运动状态检测器用于检测所述摄像设备的当前姿态,并将所述摄像设备的当前姿态发送至所述处理器;
所述处理器用于对所述摄像设备进行姿态控制;
所述图像稳定装置还包括手柄状态检测器,所述手柄状态检测器用于检 测所述手柄的运动状态;
所述处理器,还用于当所述手柄状态检测器检测到所述手柄的运动状态处于自由状态时,控制所述图像稳定装置带动所述手柄转动的转动轴电机停止转动;
其中,所述手柄的运动状态处于自由状态指所述手柄未被固定且所述图像稳定装置除所述手柄外的任一部分被固定的状态。
进一步地,在第二方面一种可能的实现方式中,所述手柄状态检测器包括握持感应器;
所述握持感应器用于检测所述手柄是否被握持;
所述处理器,用于若握持感应器检测到所述手柄未被握持,则确定所述手柄的运动状态处于自由状态。
进一步地,在第二方面一种可能的实现方式中,所述握持感应器包括:压力传感器或触控开关;
所述压力传感器用于检测所述手柄上的握持压力,若所述手柄上的握持压力小于预设阈值,则确定所述手柄未被握持;
所述触控开关用于检测所述手柄上的触控状态,若所述触控状态为未被触摸,则确定所述手柄未被握持。
进一步地,在第二方面一种可能的实现方式中,所述手柄状态检测器具体用于检测所述手柄的运动状态是否符合预先测定的自由状态;
所述处理器,具体用于若所述手柄状态检测器检测到所述手柄的运动状态符合预先测定的自由状态,则确定所述手柄的运动状态处于自由状态。
进一步地,在第二方面一种可能的实现方式中,所述处理器还用于确定所述手柄处于自由状态时的转动惯量;
所述手柄状态检测器,具体用于检测所述图像稳定装置带动所述手柄转动的转动轴电机的转动角速度;
所述处理器,具体用于计算所述电机的转动角速度在两个测试时间点之间的差值、所述电机的转动力矩在所述两个测试时间点之间的积分和所述手柄处于自由状态时的转动惯量之商,两者之间的对应关系;若所述电机的转动角速度在两个测试时间点之间的差值、所述电机的转动力矩在所述两个测试时间点之间的积分和所述手柄处于自由状态时的转动惯量之商,两者之间 的差值小于预设阈值,则确定所述手柄的运动状态处于自由状态。
进一步地,在第二方面一种可能的实现方式中,所述处理器,还用于在所述手柄状态检测器检测所述图像稳定装置的手柄的运动状态之前,确定所述图像稳定装置上是否连接有摄像设备;
所述手柄状态检测器,具体用于当所述处理器确定所述图像稳定装置上连接收摄像设备时,检测所述图像稳定装置的手柄的运动状态。
进一步地,在第二方面一种可能的实现方式中,所述处理器,具体用于当所述手柄状态检测器检测到所述手柄的运动状态处于自由状态时,控制所述图像稳定装置带动所述手柄转动的转动轴中,转动范围超过预设阈值的转动轴的电机停止转动。
进一步地,在第二方面一种可能的实现方式中,所述处理器,还用于当所述手柄状态检测器检测到所述手柄的运动状态处于自由状态时,发送提醒消息,所述提醒消息包括所述图像稳定装置的手柄处于自由状态的指示信息。
本发明提供的图像稳定装置控制方法和图像稳定装置,通过检测图像稳定装置的手柄的运动状态,当手柄的运动状态处于自由状态时,控制图像稳定装置带动手柄转动的转动轴电机停止转动,从而避免由于手柄处于自由状态导致的手柄乱摆影响用户正常使用图像稳定装置,并且避免由于手柄乱摆造成图像稳定装置的限位机构损坏。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图做一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为传统三轴图像稳定装置的结构示意图;
图2为本发明实施例提供的图像稳定装置控制方法实施例一的流程图;
图3为本发明实施例提供的图像稳定装置控制方法实施例二的流程图;
图4为本发明实施例提的图像稳定装置实施例一的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为传统三轴图像稳定装置的结构示意图。图1所示的三轴图像稳定装置可以为其上安装的提供X、Y、Z三个方向的轴向调整能力。该图像稳定装置包括Y轴电机1、X轴电机6、Z轴电机3,与Y轴电机1转动连接的Y轴轴臂7,与X轴电机6转动连接的X轴轴臂2,与Z轴电机3刚性连接的Z轴轴臂5。Y轴电机1、X轴电机6、Z轴电机3可分别带动Y轴轴臂7、X轴轴臂2、Z轴轴臂5绕Y轴、X轴、Z轴转动。Z轴轴臂5还与X轴电机6刚性连接。X轴轴臂2还与Y轴电机1刚性连接。Y轴轴臂7远离Y轴电机1的一端连接有摄像设备固定机构8,摄像设备固定机构8用于将摄像设备9固定在图像稳定装置上。Z轴电机3还与基座4转动连接,手柄10与基座4刚性连接。
用户在使用该三轴图像稳定装置时,首先将摄像设备9使用摄像设备固定机构8固定连接在图像稳定装置上,然后手持手柄10,开始使用摄像设备8进行拍摄。在Y轴轴臂7中或固定机构8中,设置有摄像设备运动状态检测器,一般地,该摄像设备运动状态检测器为惯性测量元件,通过摄像设备运动状态检测器可以检测出摄像设备8的姿态。在进行拍摄的过程中,用户会根据拍摄需求调整摄像设备8的姿态,而当摄像设备运动状态检测器检测到摄像设备8的实际姿态与摄像设备需要调整到的目标姿态不一致时,图像稳定装置将分别控制Y轴电机1、X轴电机6、Z轴电机3转动,以使摄像设备8的当前姿态调整为摄像设备需要调整到的目标姿态。
但是,若用户在使用图1所示的图像稳定装置时,并未握住手柄10,而是握持住图像稳定装置的其他部分,那么当摄像设备运动状态检测器检测到摄像设备8的当前姿态与目标姿态不一致,且需要调整Z轴电机3转动时,Z轴电机3将无法带动Z轴轴臂5绕Z轴转动,而是将带动基座4以及与基座4刚性连接的手柄10绕Z轴转动。由于Z轴轴臂5无法绕Z轴转动,那 么图像稳定装置也将无法将摄像设备8的当前姿态调整至目标姿态。但图像稳定装置仍会持续尝试调整摄像设备8的当前姿态,也就会持续使Z轴电机转动,那么将会导致手柄10出现乱摆的情况。
手柄10出现乱摆首先会影响用户的正常使用,甚至可能对用户造成伤害。另外,由于各电机一般都具有限位机构,即电机仅能在一定范围内转动,手柄10的乱摆还可能导致Z轴电机3转动速度过快,若Z轴电机3高速撞到相应的限位机构上,将可能导致限位机构损坏,从而致使整个图像稳定装置损坏。
图2为本发明实施例提供的图像稳定装置控制方法实施例一的流程图,如图2所示,本实施例提供的方法包括:
步骤S201,检测图像稳定装置的手柄的运动状态。
具体地,本实施例提供的图像稳定装置控制方法适用于任一种能够对安装的摄像设备的至少一个方向的运动姿态进行调整的图像稳定装置,其中一个能够调整的方向上连接有手柄。图像稳定装置上能够固定连接摄像设备,通过检测摄像设备的姿态,通过对至少一个方向的运动姿态调整机构的控制,将摄像设备的姿态调整为目标姿态。
为了避免当图像稳定装置处手柄以外的其他部分被固定而手柄未被固定,导致图像稳定装置在调整摄像设备的姿态时,出现手柄乱摆的情况,在本实施例中,在对图像稳定装置连接的摄像设备的姿态进行检测的基础上,还对图像稳定装置的手柄的运动状态进行检测。
对图像稳定装置的手柄的运动状态进行检测的目的,就是为了检测手柄的运动状态是否处于自由状态,而该自由状态是指手柄未被固定且图像稳定装置除手柄外的任一部分被固定的状态。可以通过多种方法检测图像稳定装置的手柄是否处于自由状态,例如检测手柄是否被握持,或者检测手柄的运动状态是否满足未被握持时的运动状态特征等。
步骤S202,当手柄的运动状态处于自由状态时,控制图像稳定装置带动手柄转动的转动轴电机停止转动。
具体地,当检测到图像稳定装置的手柄处于自由状态时,为了避免手柄乱摆影响用户的正常使用,或者由于手柄乱摆导致带动手柄转动的转动轴电机撞到限位机构造成损坏,因此可以控制图像稳定装置中带动手柄转动的转 动轴电机停止转动,也就是强制停止该转动轴电机的转动,或者是切断该转动轴电机的电源。当与带动手柄转动的转动轴电机停止转动后,即可避免手柄乱摆,从而保证用户的正常使用,并确保图像稳定装置的限位机构不被损坏。
以图1所示三轴图像稳定装置为例,本实施例提供的图像稳定装置控制方法实际就是在完成图1所示三轴稳定装置对摄像设备8的姿态进行调整的基础上,进一步地,还对手柄10的运动状态进行检测。当检测到手柄10的运动状态处于自由状态时,控制手柄10连接的Z轴电机3停止转动。当Z轴电机3停止转动后,即可避免手柄10乱摆对客户使用的影响,另外也可以避免由于手柄10乱摆使Z轴电机3撞坏限位机构。
本实施例提供的图像稳定装置控制方法,通过检测图像稳定装置的手柄的运动状态,当手柄的运动状态处于自由状态时,控制图像稳定装置带动手柄转动的转动轴电机停止转动,从而避免由于手柄处于自由状态导致的手柄乱摆影响用户正常使用图像稳定装置,并且避免由于手柄乱摆造成图像稳定装置的限位机构损坏。
在图2所示实施例中,检测图像稳定装置的手柄的运动状态的方法可以有多种,下面以几个具体的检测方法为例,对检测手柄的运动状态的方法进行详细说明。
通过分析图像稳定装置的手柄处于自由状态的特点,可知,首先,手柄是未被用户握持住的,其次,处于自由状态的手柄的运动状态不同于处于非自由状态的手柄的运动状态。因此,检测手柄的运动状态的方法主要分为两类,一类是检测手柄是否被用户握持住,另一类是检测手柄的运动状态是否符合处于自由状态的运动状态特征。
首先,由于手柄被用户握持住时,手柄上会受到一定的压力,因此,检测手柄是否被用户握持住,可以通过在手柄上设置压力传感器,通过压力传感器检测手柄上受到的压力大小。若手柄上受到的握持压力小于预设阈值,或者握持压力为0,则可以确定手柄未被握持住,那么即可确定手柄处于自由状态。其次,还可以在手柄上设置触控开关,当手柄被握持住时,触控开关将被触发而闭合。若手柄上的触控开关未闭合,那么可确定手柄的触控状态为未被触摸,即可确定手柄处于自由状态。另外,还可以在手柄上设置温 度传感器,当手柄被握持住时,温度传感器将检测到握持手柄的用户的体温。若温度传感器所检测到的问题不符合人体体温范围,即可确定手柄处于自由状态。
以上仅以几种具体的检测方法说明了检测手柄是否被握持住的方法,但本发明实施例提供的图像稳定装置控制方法中不以此为限,任一种能够检测手柄是否被握持住的方法都可以应用于此。
由于图像稳定装置的手柄被握持住时,握持手柄的用户会给手柄的转动带来阻力,而当手柄处于自由状态时,握持手柄的用户所带来的阻力将消失。因此手柄处于自由状态时的运动状态将不同于手柄未处于自由状态时的运动状态。对于一个图像稳定装置而言,由于其结构相对固定,当手柄处于自由状态时的运动状态应具有一个普遍的特征。可以预先测定手柄在处于自由状态时的运动状态所呈现出的特征,然后在使用过程中检测手柄的运动状态,判断手柄运动状态是否符合预先测定的自由状态所具有的特征,从而判断手柄是否处于自由状态。
下面以一个具体实施例说明根据手柄的运动状态判断手柄是否处于自由状态的具体方法。图3为本发明实施例提供的图像稳定装置控制方法实施例二的流程图,如图3所示,本实施例提供的方法包括:
步骤S301,确定手柄处于自由状态时的转动惯量。
具体地,由于图像稳定装置的结构相对固定,那么当手柄处于自由状态时,其转动时的转动惯量应为一个常数。因此可以预先测定手柄处于自由状态时的转动惯量。
其具体方法为:在与图像稳定装置的手柄未被固定、且图像稳定装置除手柄外的任一部分被固定、且手柄处于静止状态时,为带动手柄转动的转动轴点击输入转动力矩M。在手柄处于运动状态中的时间t后,获取该电机的转动角度a。然后根据公式
Figure PCTCN2016084104-appb-000001
计算手柄处于自由状态时的转动惯量J。
步骤S302,检测图像稳定装置带动手柄转动的转动轴电机的转动角速度。
具体地,当确定了手柄处于自由状态时的转动惯量后,即可在图像稳定装置使用过程中,随时检测手柄的运动状态。其中,可以对图像稳定装置带 动手柄转动的转动轴电机的转动角速度进行检测。
对带动手柄转动的转动轴电机的转动角速度的检测是一个持续的过程。例如分别检测图像稳定装置带动手柄转动的转动轴电机从时刻t0到时刻tn的转动角速度ω0到转动角速度ωn,n=1,2,…,m,m为在对电机的转动角速度进行测试的测试次数。即每当带动手柄转动的转动轴电机转动时,都持续对其转动角速度进行检测,获取多个时刻所分别对应的转动角速度。
步骤S303,计算电机的转动角速度在两个测试时间点之间的差值、电机的转动力矩在两个测试时间点之间的积分和手柄处于自由状态时的转动惯量之商,两者之间的对应关系。
具体地,在获取了多个转动角速度后,根据公式ωq-p=ωqp计算两个相邻测试点p和q之间电机的转动角速度ωq和ωp之差ωq-p,p=0,1,2,…,m-1,q=1,2,…,m。
根据公式
Figure PCTCN2016084104-appb-000002
计算电机的转动力矩M在两个相邻时间点之间的积分和手柄处于自由状态时的转动惯量J之商ωΔ,其中tΔ为对电机的转动角速度进行测试的测试周期。电机的转动力矩M是主动输入至电机的,可以从电机中获取,tΔ表示对电机的转动角速度进行测试的周期,即每两次测试之间的时间间隔。
计算每两个测试时间点之间的ωq-p和ωΔ之间的差值,根据各个差值之间的关系,即可确定出手柄的运动状态是否为自由状态。
步骤S304,若电机的转动角速度在两个测试时间点之间的差值、电机的转动力矩在两个测试时间点之间的积分和手柄处于自由状态时的转动惯量之商,两者之间的差值小于预设阈值,则确定手柄的运动状态处于自由状态。
具体地,从测试次数0到测试次数m,对每两个相邻测试点p和q之间的转动角速度之差ωq-p和ωΔ计算差值后,判断多个差值中小于预设阈值的个数。若该个数大于预设的个数阈值,则可以认为手柄的当前运动状态符合手柄处于自由状态时的运动状态,那么即可确定手柄的运动状态处于自由状态。需要说明的是,判断多个差值中小于预设阈值的个数时,可以是判断小于阈值的个数的数量值,与一个预设的个数阈值进行比较;也可以是判断小于阈 值的个数在所有差值中的比例,与一个预设的比例阈值进行比较。
仍以图1所示的三轴图像稳定装置为例。本实施例提供的判断手柄是否处于自由状态的具体方法中,首先确定手柄10处于自由状态时的转动惯量,这需要在手柄10未被固定、且除手柄10外任一部分被固定(例如X轴轴臂2被固定)、且手柄10处于静止状态时,为Z轴电机3输入转动力矩M,从而带动手柄10转动。然后在手柄10仍处于运动状态中的时间t后,获取Z轴电机3的转动角度a,从而根据公式计算出手柄10处于自由状态时的转动惯量J。手柄10处于自由状态时的转动惯量J作为图像稳定装置的固有属性记录下来,随后即可在图像稳定装置正常工作的状态下对手柄10的运动状态进行检测,即检测Z轴电机3在各个测量时间点的转动角速度。最后根据Z轴电机3的转动角速度、Z轴电机3的转动力矩和手柄10处于自由状态时的转动惯量J,确定手柄10的运动状态是否处于自由状态。
通过对手柄的运动状态进行检测来判断手柄是否处于自由状态,无需再图像稳定装置上设置其他的传感器或检测装置,将更加节约成本。
进一步地,由于一般图像稳定装置都是在连接了摄像设备之后才进行实际的拍摄操作,此时图像稳定装置的检测和调整才具有意义,一般也是在检测到图像稳定装置连接了摄像设备后,才会启动对摄像设备的姿态检测和自动调整。若图像稳定装置还未启动对摄像设备的姿态检测和自动调整,那么也不会造成手柄的乱摆,此时对手柄的运动状态检测是没有必要的。因此,在检测图像稳定装置的手柄的运动状态之前,还可以确定图像稳定装置上是否连接有摄像设。当图像稳定装置上连接收摄像设备时,再检测图像稳定装置的手柄的运动状态。从而避免对手柄的运动状态进行无谓的检测,节约图像稳定装置的电能。
在图2所示实施例的步骤S202中,当手柄的运动状态处于自由状态时,控制图像稳定装置带动手柄转动的转动轴电机停止转动,一个目的是为了避免手柄乱摆对用户的影响,另一个目的是为了避免带动手柄转动的电机转速过快、转动范围过大撞坏限位机构。而手柄乱摆在一些场合中也不会对用户产生影响,或者用户对手柄乱摆所产生的影响不是很关注,此时若停止与收并连接的电机的转动,将影响图像稳定装置的自动调整功能,反而会对用户造成更大的影响。因此,当检测到手柄的运动状态处于自由状态时,可以进 控制图像稳定装置带动手柄转动的转动轴中,转动范围超过预设阈值的转动轴的电机停止转动。也就是说,只有当手柄处于自由状态,且带动手柄转动的转动轴电机的转动范围超过该电机的转动预设阈值,才停止该电机的转动,以避免该电机的转动撞坏限位机构。而对转动范围没有限制,即没有限位机构的电机,或者转动范围未超过所规定的预设阈值的电机,可不停止其转动,从而可以在确保图像稳定装置不被损坏的前提下,使图像稳定装置始终处于正常工作中。
进一步地,由于图像稳定装置的正常操作都应是由用户握持手柄,而手柄处于自由状态一般都意味着用户处于非正常的操作状态下。那么为了使用户对图像稳定装置进行正确的操作,当检测到手柄的运动状态处于自由状态时,还可以发送提醒消息,该提醒消息例如可以是通过声音、光线、震动等多种方式呈现。还可以是将提醒消息发送至与图像稳定装置连接的摄像设备中,在摄像设备中通过声音、图像、文字、灯光等多种方式向用户提示当前手柄处于自由状态。从而使用户获知该信息,转而使用正产的操作方式操作图像稳定装置。
图4为本发明实施例提的图像稳定装置实施例一的结构示意图,如图4所示,本实施例提供的图像稳定装置包括:
摄像设备固定机构41、摄像设备运动状态检测器42、摄像设备运动控制组件43;摄像设备运动控制组件43包括:处理器51和至少一个不同方向的转动机构52,每个方向的转动机构52包括一个转动轴电机53,其中,一个方向的转动轴电机53带动手柄54转动。
摄像设备固定机构41用于将摄像设备固定在图像稳定装置上;摄像设备运动状态检测器42用于检测摄像设备的当前姿态,并将摄像设备的当前姿态发送至处理器51;处理器51用于对摄像设备进行姿态控制。具体地,处理器51用于确定摄像设备的当前姿态与摄像设备的目标姿态之间的偏差,控制至少一个不同方向的转动轴电机53转动,以消除摄像设备的当前姿态与摄像设备的目标姿态之间的偏差。
图像稳定装置还包括手柄状态检测器44,手柄状态检测器44用于检测手柄54的运动状态;处理器51,还用于当手柄状态检测器44检测到手柄54的运动状态处于自由状态时,控制图像稳定装置与手柄54连接的转动轴电机 53停止转动;其中,手柄54的运动状态处于自由状态指手柄54未被固定且图像稳定装置除手柄54外的任一部分被固定的状态。
具体地,摄像设备固定机构41、摄像设备运动状态检测器42、摄像设备运动控制组件43组成了图像稳定装置的基本结构,其可以完成对摄像设备姿态的检测和自动调整。而手柄状态检测器44通过和处理器51的配合处理,实现了如图2所示的图像稳定装置控制方法,其实现原理和技术效果类似,此处不再赘述。
需要说明的是,摄像设备运动状态检测器42可以为设置在各个转动轴电机连接的转动轴上的电位器或霍尔传感器,通过检测各个转动轴电机的转动角度来推算得到图像稳定装置的姿态,也即获取摄像设备的当前姿态。
进一步地,在图4所示实施例的一种实现方式中,手柄状态检测器44包括握持感应器;握持感应器用于检测手柄54是否被握持;处理器51,用于若握持感应器检测到手柄54未被握持,则确定手柄54的运动状态处于自由状态。握持感应器包括:压力传感器或触控开关;压力传感器或触控开关都设置于手柄54上。压力传感器用于检测手柄54上的握持压力,若手柄54上的握持压力小于预设阈值,则确定手柄54未被握持。触控开关用于检测手柄54上的触控状态,若触控状态为未被触摸,则确定手柄54未被握持。当然,手柄状态检测器44还可以为其他形式的检测器或传感器,只要能够检测出手柄是否被握持住的器件都可以应用于此,例如温度传感器。若手柄状态检测器44为温度传感器,那么当手柄被握持住时,温度传感器将检测到握持手柄的用户的体温。若温度传感器所检测到的问题不符合人体体温范围,即可确定手柄处于自由状态。
进一步地,在图4所示实施例的一种实现方式中,手柄状态检测器44具体用于检测手柄54的运动状态是否符合预先测定的自由状态;处理器51,具体用于若手柄状态检测器44检测到手柄54的运动状态符合预先测定的自由状态,则确定手柄54的运动状态处于自由状态。具体而言,处理器51还用于确定手柄54处于自由状态时的转动惯量;手柄状态检测器44,具体用于检测图像稳定装置与手柄54连接的转动轴电机53的转动角速度;处理器51,具体用于计算转动轴电机53的转动角速度在两个测试时间点之间的差值、转动轴电机53的转动力矩在两个测试时间点之间的积分和手柄54处于 自由状态时的转动惯量之商,两者之间的对应关系;若转动轴电机53的转动角速度在两个测试时间点之间的差值、转动轴电机53的转动力矩在两个测试时间点之间的积分和手柄54处于自由状态时的转动惯量之商,两者之间的差值小于预设阈值,则确定手柄54的运动状态处于自由状态。
进一步地,在图4所示实施例的一种实现方式中,处理器51,还用于在手柄状态检测器44检测图像稳定装置的手柄54的运动状态之前,确定图像稳定装置上是否连接有摄像设备;手柄状态检测器44,具体用于当处理器51确定图像稳定装置上连接收摄像设备时,检测图像稳定装置的手柄54的运动状态。
进一步地,在图4所示实施例的一种实现方式中,处理器51,具体用于当手柄状态检测器44检测到手柄54的运动状态处于自由状态时,控制图像稳定装置与手柄54连接的转动轴中,转动范围超过预设阈值的转动轴的电机53停止转动。
进一步地,在图4所示实施例的一种实现方式中,处理器51,还用于当手柄状态检测器44检测到手柄51的运动状态处于自由状态时,发送提醒消息,提醒消息包括图像稳定装置的手柄处于自由状态的指示信息。
具体而言,处理器51具体用于在与所述图像稳定装置连接的摄像设备被固定、所述手柄未被固定且所述手柄静止的状态下,为带动所述手柄转动的转动轴电机输入转动力矩M,在所述手柄处于运动状态中的时间t后,获取所述电机转动角度a;根据公式
Figure PCTCN2016084104-appb-000003
计算所述手柄处于自由状态时的转动惯量J。手柄状态检测器44,具体用于分别检测所述图像稳定装置带动所述手柄转动的转动轴电机从时刻t0到时刻tn的转动角速度ω0到角速度ωn,n=1,2,…,m,m为在对所述电机的转动角速度进行测试的测试次数;处理器51,具体用于根据公式ωq-p=ωqp计算两个相邻时间点p和q之间所述电机的转动角速度ωq和ωp之差ωq-p,p=0,1,2,…,m-1,q=1,2,…,m;根据公式
Figure PCTCN2016084104-appb-000004
计算所述电机的转动力矩M在两个相邻时间点之间的积分和所 述手柄处于自由状态时的转动惯量J之商ωΔ,其中tΔ为对所述电机的转动角速度进行测试的测试周期;若从时刻0到时刻m之间每两个相邻时间点p和q之间的转动角速度之差ωq-p和ωΔ之间的差值中,小于预设阈值的个数大于预设的个数阈值,则确定所述手柄的运动状态处于自由状态。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (16)

  1. 一种图像稳定装置控制方法,其特征在于,包括:
    检测所述图像稳定装置的手柄的运动状态;
    当所述手柄的运动状态处于自由状态时,控制所述图像稳定装置带动所述手柄转动的转动轴电机停止转动;
    其中,所述手柄的运动状态处于自由状态指所述手柄未被固定且所述图像稳定装置除所述手柄外的任一部分被固定的状态。
  2. 根据权利要求1所述的方法,其特征在于,所述检测所述图像稳定装置的手柄的运动状态,包括:
    检测所述手柄是否被握持;
    若所述手柄未被握持,则确定所述手柄的运动状态处于自由状态。
  3. 根据权利要求2所述的方法,其特征在于,所述检测所述手柄是否被握持,包括:
    检测所述手柄上的握持压力,若所述手柄上的握持压力小于预设阈值,则确定所述手柄未被握持;
    或者,检测所述手柄上的触控状态,若所述触控状态为未被触摸,则确定所述手柄未被握持。
  4. 根据权利要求1所述的方法,其特征在于,所述检测所述图像稳定装置的手柄的运动状态,包括:
    检测所述手柄的运动状态是否符合预先测定的自由状态;
    若所述手柄的运动状态符合预先测定的自由状态,则确定所述手柄的运动状态处于自由状态。
  5. 根据权利要求4所述的方法,其特征在于,所述检测所述手柄的运动状态是否符合预先测定的自由状态之前,还包括:
    确定所述手柄处于自由状态时的转动惯量;
    所述检测所述手柄的运动状态是否符合预先测定的自由状态,包括:
    检测所述图像稳定装置带动所述手柄转动的转动轴电机的转动角速度;
    计算所述电机的转动角速度在两个测试时间点之间的差值、所述电机的转动力矩在所述两个测试时间点之间的积分和所述手柄处于自由状态时的转 动惯量之商,两者之间的对应关系;
    所述若所述手柄的运动状态符合预先测定的自由状态,则确定所述手柄的运动状态处于自由状态,包括:
    若所述电机的转动角速度在两个测试时间点之间的差值、所述电机的转动力矩在所述两个测试时间点之间的积分和所述手柄处于自由状态时的转动惯量之商,两者之间的差值小于预设阈值,则确定所述手柄的运动状态处于自由状态。
  6. 根据权利要求1~5任一项所述的方法,其特征在于,所述检测所述图像稳定装置的手柄的运动状态之前,还包括:
    确定所述图像稳定装置上是否连接有摄像设备;
    所述检测所述图像稳定装置的手柄的运动状态,包括:
    当所述图像稳定装置上连接收摄像设备时,检测所述图像稳定装置的手柄的运动状态。
  7. 根据权利要求1~5任一项所述的方法,其特征在于,所述当所述手柄的运动状态处于自由状态时,控制所述图像稳定装置带动所述手柄转动的转动轴电机停止转动,包括:
    当所述手柄的运动状态处于自由状态时,控制所述图像稳定装置带动所述手柄转动的转动轴中,转动范围超过预设阈值的转动轴的电机停止转动。
  8. 根据权利要求1~5任一项所述的方法,其特征在于,还包括:
    当所述手柄的运动状态处于自由状态时,发送提醒消息,所述提醒消息包括所述图像稳定装置的手柄处于自由状态的指示信息。
  9. 一种图像稳定装置,其特征在于,包括:
    摄像设备固定机构、摄像设备运动状态检测器、摄像设备运动控制组件;
    所述摄像设备运动控制组件包括:处理器和至少两个不同方向的转动机构,每个方向的转动机构包括一个转动轴电机,其中,一个方向的转动轴电机带动手柄转动;
    所述摄像设备固定机构用于将所述摄像设备固定在所述图像稳定装置上;
    所述摄像设备运动状态检测器用于检测所述摄像设备的当前姿态,并将 所述摄像设备的当前姿态发送至所述处理器;
    所述处理器用于对所述摄像设备进行姿态控制;
    所述图像稳定装置还包括手柄状态检测器,所述手柄状态检测器用于检测所述手柄的运动状态;
    所述处理器,还用于当所述手柄状态检测器检测到所述手柄的运动状态处于自由状态时,控制所述图像稳定装置与带动所述手柄转动的转动轴电机停止转动;
    其中,所述手柄的运动状态处于自由状态指所述手柄未被固定且所述图像稳定装置除所述手柄外的任一部分被固定的状态。
  10. 根据权利要求9所述的图像稳定装置,其特征在于,所述手柄状态检测器包括握持感应器;
    所述握持感应器用于检测所述手柄是否被握持;
    所述处理器,用于若握持感应器检测到所述手柄未被握持,则确定所述手柄的运动状态处于自由状态。
  11. 根据权利要求10所述的图像稳定装置,其特征在于,所述握持感应器包括:压力传感器或触控开关;
    所述压力传感器用于检测所述手柄上的握持压力,若所述手柄上的握持压力小于预设阈值,则确定所述手柄未被握持;
    所述触控开关用于检测所述手柄上的触控状态,若所述触控状态为未被触摸,则确定所述手柄未被握持。
  12. 根据权利要求9所述的图像稳定装置,其特征在于,所述手柄状态检测器具体用于检测所述手柄的运动状态是否符合预先测定的自由状态;
    所述处理器,具体用于若所述手柄状态检测器检测到所述手柄的运动状态符合预先测定的自由状态,则确定所述手柄的运动状态处于自由状态。
  13. 根据权利要求12所述的图像稳定装置,其特征在于,所述处理器还用于确定所述手柄处于自由状态时的转动惯量;
    所述手柄状态检测器,具体用于检测所述图像稳定装置带动所述手柄转动的转动轴电机的转动角速度;
    所述处理器,具体用于计算所述电机的转动角速度在两个测试时间点之间的差值、所述电机的转动力矩在所述两个测试时间点之间的积分和所述手 柄处于自由状态时的转动惯量之商,两者之间的对应关系;若所述电机的转动角速度在两个测试时间点之间的差值、所述电机的转动力矩在所述两个测试时间点之间的积分和所述手柄处于自由状态时的转动惯量之商,两者之间的差值小于预设阈值,则确定所述手柄的运动状态处于自由状态。
  14. 根据权利要求9~13任一项所述的图像稳定装置,其特征在于,所述处理器,还用于在所述手柄状态检测器检测所述图像稳定装置的手柄的运动状态之前,确定所述图像稳定装置上是否连接有摄像设备;
    所述手柄状态检测器,具体用于当所述处理器确定所述图像稳定装置上连接收摄像设备时,检测所述图像稳定装置的手柄的运动状态。
  15. 根据权利要求9~13任一项所述的图像稳定装置,其特征在于,所述处理器,具体用于当所述手柄状态检测器检测到所述手柄的运动状态处于自由状态时,控制所述图像稳定装置带动所述手柄转动的转动轴中,转动范围超过预设阈值的转动轴的电机停止转动。
  16. 根据权利要求9~13任一项所述的图像稳定装置,其特征在于,所述处理器,还用于当所述手柄状态检测器检测到所述手柄的运动状态处于自由状态时,发送提醒消息,所述提醒消息包括所述图像稳定装置的手柄处于自由状态的指示信息。
PCT/CN2016/084104 2016-05-31 2016-05-31 图像稳定装置控制方法和图像稳定装置 WO2017206060A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2016/084104 WO2017206060A1 (zh) 2016-05-31 2016-05-31 图像稳定装置控制方法和图像稳定装置
CN201680002809.5A CN106796420B (zh) 2016-05-31 2016-05-31 图像稳定装置控制方法和图像稳定装置
US16/190,657 US10788736B2 (en) 2016-05-31 2018-11-14 Image stabilization apparatus and control method thereof
US17/021,975 US11422440B2 (en) 2016-05-31 2020-09-15 Image stabilization apparatus and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/084104 WO2017206060A1 (zh) 2016-05-31 2016-05-31 图像稳定装置控制方法和图像稳定装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/190,657 Continuation US10788736B2 (en) 2016-05-31 2018-11-14 Image stabilization apparatus and control method thereof

Publications (1)

Publication Number Publication Date
WO2017206060A1 true WO2017206060A1 (zh) 2017-12-07

Family

ID=58952269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/084104 WO2017206060A1 (zh) 2016-05-31 2016-05-31 图像稳定装置控制方法和图像稳定装置

Country Status (3)

Country Link
US (2) US10788736B2 (zh)
CN (1) CN106796420B (zh)
WO (1) WO2017206060A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD783079S1 (en) * 2015-12-15 2017-04-04 Gopro, Inc. Camera arm mount
CN106796420B (zh) * 2016-05-31 2019-05-07 深圳市大疆灵眸科技有限公司 图像稳定装置控制方法和图像稳定装置
CN113485464A (zh) * 2017-06-27 2021-10-08 深圳市大疆灵眸科技有限公司 手持云台装置及其控制方法与计算机可读存储介质
WO2019019152A1 (zh) * 2017-07-28 2019-01-31 深圳市大疆创新科技有限公司 云台可靠性测试方法与装置
KR102007390B1 (ko) * 2017-09-27 2019-10-08 이충열 짐벌
CN108184061B (zh) * 2017-12-31 2020-06-02 深圳市越疆科技有限公司 手持云台的跟拍控制方法、装置、手持云台及存储介质
CN111213002B (zh) * 2019-04-23 2022-02-25 深圳市大疆创新科技有限公司 一种云台控制方法、设备、云台、系统及存储介质
WO2021016857A1 (zh) * 2019-07-30 2021-02-04 深圳市大疆创新科技有限公司 一种手持云台的控制方法、设备、手持云台及存储介质
WO2021016903A1 (zh) * 2019-07-31 2021-02-04 深圳市大疆创新科技有限公司 手持云台
CN110610465B (zh) * 2019-08-26 2022-05-17 Oppo广东移动通信有限公司 图像校正方法和装置、电子设备、计算机可读存储介质
USD911411S1 (en) 2019-09-13 2021-02-23 Gopro, Inc. Camera housing
USD911412S1 (en) 2019-09-13 2021-02-23 Gopro, Inc. Camera housing
USD921084S1 (en) 2019-09-13 2021-06-01 Gopro, Inc. Camera housing
USD912120S1 (en) 2019-09-30 2021-03-02 Gopro, Inc. Camera housing
FR3107754B1 (fr) * 2020-02-27 2022-03-18 Xyzed Lyre motorisée pour vidéo projecteur
USD946071S1 (en) 2020-06-30 2022-03-15 Gopro, Inc. Camera housing
USD963016S1 (en) 2020-07-31 2022-09-06 Gopro, Inc. Camera housing
USD946072S1 (en) 2020-08-10 2022-03-15 Gopro, Inc. Camera housing
USD953404S1 (en) 2020-08-14 2022-05-31 Gopro, Inc. Camera housing
WO2022061592A1 (zh) * 2020-09-23 2022-03-31 深圳市大疆创新科技有限公司 电机的控制与检测方法及装置、云台以及可移动平台
CN114811387A (zh) * 2022-04-21 2022-07-29 深圳市源德盛数码科技有限公司 一种固持装置的控制方法、固持装置及手持稳定器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040130657A1 (en) * 2003-01-07 2004-07-08 Joe Hsu Digital camera
CN204420520U (zh) * 2015-01-27 2015-06-24 马鞍山市赛迪智能科技有限公司 一种手持自稳拍照云台
CN105090695A (zh) * 2015-09-29 2015-11-25 深圳市大疆创新科技有限公司 手柄云台及其控制方法
CN204989728U (zh) * 2015-10-13 2016-01-20 南京钟山苑航空技术有限公司 手持云台
CN205176664U (zh) * 2015-08-25 2016-04-20 深圳市大疆创新科技有限公司 手持云台

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0208977D0 (en) * 2002-04-19 2002-05-29 Smith Howard J Article mounting
US8179078B2 (en) * 2005-04-27 2012-05-15 Sidman Adam D Handheld or vehicle-mounted platform stabilization system
US7642741B2 (en) * 2005-04-27 2010-01-05 Sidman Adam D Handheld platform stabilization system employing distributed rotation sensors
CN101858476A (zh) * 2010-05-25 2010-10-13 威宝摄影器材有限公司 一种多功能轻便云台
GB2521865A (en) * 2014-01-07 2015-07-08 Mastortech Ltd Camera stabilisation mounting
CN103984193B (zh) * 2014-03-14 2020-10-16 广州虹天航空科技有限公司 拍摄设备稳定器及其控制方法
CN105223967B (zh) * 2014-06-30 2017-11-28 深圳市大疆灵眸科技有限公司 一种摄像控制方法、装置及云台设备
CN204666122U (zh) * 2015-04-09 2015-09-23 陶卫军 一种用于手动摄像机云台的角度检测装置
CN106796420B (zh) * 2016-05-31 2019-05-07 深圳市大疆灵眸科技有限公司 图像稳定装置控制方法和图像稳定装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040130657A1 (en) * 2003-01-07 2004-07-08 Joe Hsu Digital camera
CN204420520U (zh) * 2015-01-27 2015-06-24 马鞍山市赛迪智能科技有限公司 一种手持自稳拍照云台
CN205176664U (zh) * 2015-08-25 2016-04-20 深圳市大疆创新科技有限公司 手持云台
CN105090695A (zh) * 2015-09-29 2015-11-25 深圳市大疆创新科技有限公司 手柄云台及其控制方法
CN204989728U (zh) * 2015-10-13 2016-01-20 南京钟山苑航空技术有限公司 手持云台

Also Published As

Publication number Publication date
US20200409244A1 (en) 2020-12-31
CN106796420B (zh) 2019-05-07
US10788736B2 (en) 2020-09-29
CN106796420A (zh) 2017-05-31
US20190079373A1 (en) 2019-03-14
US11422440B2 (en) 2022-08-23

Similar Documents

Publication Publication Date Title
WO2017206060A1 (zh) 图像稳定装置控制方法和图像稳定装置
CN103901897B (zh) 云台的控制方法及云台的控制系统
WO2018120012A1 (zh) 云台控制方法、装置及云台
US20160114483A1 (en) Robot control method, robot apparatus, program, recording medium, and manufacturing method of assembly part
JP2017019080A5 (ja) 制御方法
JP2000055778A (ja) 落下試験装置
JP2014211531A5 (zh)
US10514244B2 (en) Roundness measuring machine
JP2019206047A5 (ja) ロボットシステム、制御装置および制御方法
JP2010237251A5 (zh)
JP2019206047A (ja) 制御装置、ロボットおよびロボットシステム
EP3288177A1 (en) Fault detection for a pan-tilt camera
CN107462674B (zh) 空气检测装置及方法
JP2007057981A5 (zh)
JP2017102138A (ja) 水平位置調節装置付き三脚
JP2007263975A (ja) 落下試験装置及び落下試験方法
CN105370601B (zh) 一种风扇和风扇控制方法
CN110869283A (zh) 云台的控制方法与装置、云台系统和无人机
JP2020011361A5 (ja) ロボットシステムおよびロボットシステムの制御方法
CN110831860A (zh) 云台的控制方法、云台、飞行器和计算机可读存储介质
WO2020181530A1 (zh) 云台振动调节的方法、云台以及客户端
JP2020104249A (ja) 産業用ロボットシステム
JP6075561B2 (ja) ねじり振動減衰器の計測装置および計測方法
TW201317557A (zh) 測試系統及其測試方法
WO2021026982A1 (zh) 柔性显示装置及其智能保护方法和计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16903445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16903445

Country of ref document: EP

Kind code of ref document: A1