WO2017204088A1 - Substrate processing apparatus and substrate processing method - Google Patents

Substrate processing apparatus and substrate processing method Download PDF

Info

Publication number
WO2017204088A1
WO2017204088A1 PCT/JP2017/018735 JP2017018735W WO2017204088A1 WO 2017204088 A1 WO2017204088 A1 WO 2017204088A1 JP 2017018735 W JP2017018735 W JP 2017018735W WO 2017204088 A1 WO2017204088 A1 WO 2017204088A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
water
processing
fluid
nozzle
Prior art date
Application number
PCT/JP2017/018735
Other languages
French (fr)
Japanese (ja)
Inventor
昌之 林
亨 遠藤
啓之 河原
敬次 岩田
世 根来
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Priority to CN201780026979.1A priority Critical patent/CN109155247B/en
Priority to KR1020207032614A priority patent/KR102223972B1/en
Priority to KR1020187031267A priority patent/KR20180128957A/en
Publication of WO2017204088A1 publication Critical patent/WO2017204088A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like

Definitions

  • the present invention relates to a substrate processing apparatus and a substrate processing method for processing a substrate using a first chemical fluid and a second chemical fluid.
  • the substrate include a semiconductor wafer, a liquid crystal display substrate, a plasma display substrate, an FED (Field ⁇ Emission Display) substrate, an optical disk substrate, a magnetic disk substrate, a magneto-optical disk substrate, a photomask substrate, Ceramic substrates, solar cell substrates and the like are included.
  • a single-wafer type substrate processing apparatus that processes substrates one by one in order to perform processing with a chemical on the surface of a substrate such as a semiconductor wafer or a glass substrate for a liquid crystal display panel
  • the single-wafer type substrate processing apparatus includes a spin chuck that rotates a substrate held substantially horizontally inside a processing chamber partitioned by a partition, and a first chemical solution on the upper surface of the substrate held by the spin chuck.
  • a second chemical nozzle for supplying the second chemical liquid to the upper surface of the substrate held by the spin chuck.
  • the first chemical liquid nozzle has a discharge port, and a chemical liquid pipe for supplying chemical liquid from a chemical liquid supply source to the first chemical liquid nozzle is connected to the first chemical liquid nozzle.
  • the first chemical solution and the second chemical solution are a combination in which contact is dangerous (that is, a combination not suitable for contact).
  • a new valve for the other chemical solution is opened when one chemical solution is supplied so as not to contact inside the processing chamber. It has been proposed to execute an interlock process that prohibits the opening of a chemical solution valve when the detected value of the rotation speed of the substrate is outside the rotation speed range (see, for example, Patent Documents 1 and 2).
  • the atmosphere containing the second chemical fluid is passed through the discharge port. May enter the chemical fluid piping (chemical fluid piping). The entry of the atmosphere containing the second drug fluid into the drug fluid piping may cause contact between the first drug fluid and the second drug fluid.
  • an object of the present invention is to prevent the occurrence of contact of these chemical fluids inside the chemical fluid piping even if the combination of a plurality of types of chemical fluids used for substrate processing is not suitable for contact.
  • the present invention includes a processing chamber, a substrate holding unit that is disposed in the processing chamber and holds a substrate, and a discharge port for discharging a fluid toward the main surface of the substrate held by the substrate holding unit
  • a first fluid nozzle connected to the first nozzle and having an inside communicating with the discharge port, and a first medicine for supplying the first fluid to the medicine fluid pipe
  • a fluid supply unit, a first water supply unit for supplying water to the chemical fluid pipe, and a main surface of a substrate held by the substrate holding unit are different from the first chemical fluid.
  • a second drug fluid supply unit for supplying a second drug fluid, which is a fluid, and the first drug fluid supply unit, the second drug fluid supply unit, and the first water supply unit; And the controller discharges the first drug fluid from the first nozzle toward the main surface of the substrate by supplying the first drug fluid to the drug fluid pipe. Then, a first processing step of applying a treatment using the first chemical fluid to the substrate, and supplying the second chemical fluid to the main surface of the substrate, using the second chemical fluid. Before and / or after execution of the second processing step and / or after execution of the first processing step, and / or before and / or after execution of the second processing step.
  • a substrate processing apparatus for performing a water replacement step of supplying water from one water supply unit to the chemical fluid pipe and replacing the inside of the chemical fluid pipe with the water.
  • the first processing step using the first chemical fluid and the second chemical liquid supply step using the second chemical fluid are performed in the common processing chamber.
  • the first chemical fluid is discharged from the first nozzle toward the main surface of the substrate by supplying the first chemical fluid to the chemical fluid piping.
  • the first chemical fluid may remain inside the chemical fluid piping after the end of the first processing step and / or before the start of the second processing step.
  • the first drug fluid can be removed from the drug fluid pipe by replacing the inside of the drug fluid pipe with water after the end of the first process step and / or before the start of the second process step. Therefore, at the start of the second processing step, the first chemical fluid does not remain inside the chemical fluid piping. Therefore, even if the second drug fluid enters the drug fluid piping in the second processing step, the second drug fluid does not come into contact with the first drug fluid. Thereby, the contact with the 1st chemical fluid and the 2nd chemical fluid in the inside of chemical fluid piping can be prevented.
  • the second chemical fluid may adhere to the inside of the chemical fluid piping before the start of the first processing step and / or after the end of the second processing step.
  • the second drug fluid can be removed from the drug fluid pipe by replacing the inside of the drug fluid pipe with water before the start of the first process step and / or after the end of the second process step. Therefore, at the start of the first processing step, the second chemical fluid does not remain inside the chemical fluid piping. Therefore, even if the first drug fluid is supplied into the drug fluid pipe in the first processing step, the first drug fluid does not come into contact with the second drug fluid. Thereby, the contact with the 1st chemical fluid and the 2nd chemical fluid in the inside of chemical fluid piping can be prevented.
  • first chemical fluid and second chemical fluid used for substrate processing
  • those chemicals inside the chemical fluid piping are used. It is possible to provide a substrate processing apparatus capable of completing the processing using the plurality of types of chemical fluids in one processing chamber while preventing the occurrence of fluid contact.
  • a combination that is not suitable for contact includes not only “a combination that is dangerous to contact” but also “a combination that generates a product by contact”. It is. “Combination that produces a product by contact” includes a combination of an acid and an alkali.
  • the substrate holding unit further includes a facing member having a substrate facing surface facing the main surface of the substrate held by the substrate holding unit, and the discharge port of the first nozzle has the substrate facing surface. Is open.
  • the facing member that faces the main surface of the substrate is provided, and the discharge port of the first nozzle is opened on the surface of the facing member that faces the substrate. Therefore, in the second processing step, the second chemical fluid may enter the inside of the chemical fluid piping from the discharge port with the supply of the second chemical fluid to the main surface of the substrate. The entry of the atmosphere containing the second drug fluid into the drug fluid piping may cause contact between the first drug fluid and the second drug fluid.
  • the inside of the chemical fluid piping is replaced with water. Therefore, even if a counter member facing the main surface of the substrate is provided and the discharge port of the first nozzle is open on the substrate counter surface of the counter member, the first inside the drug fluid piping is provided. Contact between the drug fluid and the second drug fluid can be prevented.
  • the substrate processing apparatus may further include a suction unit for sucking the inside of the chemical fluid piping.
  • the control device may further control the suction unit to further execute a first suction step of sucking the inside of the drug fluid piping after the water replacement step is completed.
  • the inside of the chemical fluid piping is sucked after the water replacement step is completed.
  • water is removed from the inside of the chemical fluid piping, and after suction, no water remains inside the chemical fluid piping, or the amount of water remaining inside the chemical fluid piping is small.
  • the control device may start the first processing step after the end of the second processing step.
  • the said control apparatus may perform the 1st water replacement process performed prior to a said 2nd process process as the said water replacement process.
  • the first water replacement step is executed prior to the second treatment step.
  • the first drug fluid used in the previous process remains in the drug fluid piping.
  • the first drug fluid does not remain inside the drug fluid pipe at the start of the second process step. Therefore, even if the second drug fluid enters the drug fluid pipe in the second processing step, it does not contact the first drug fluid inside the drug fluid pipe. Thereby, in a 2nd process process, the contact with the 1st chemical fluid and the 2nd chemical fluid in the inside of chemical fluid piping can be prevented.
  • control device may start the first processing step after the second processing step is completed.
  • the control device may execute a second water replacement step executed after the second processing step and prior to the first processing step as the water replacement step.
  • the second water replacement step is executed prior to the first processing step.
  • the second chemical fluid used in the second processing step enters the chemical fluid piping, and the inside of the chemical fluid piping May remain.
  • the second drug fluid does not remain inside the drug fluid pipe at the start of the first process step. Therefore, even if the first drug fluid is supplied to the drug fluid pipe in the first processing step, it does not come into contact with the second drug fluid. Thereby, in a 1st process process, the contact with the 1st chemical fluid and the 2nd chemical fluid in the inside of chemical fluid piping can be prevented.
  • control device may be disposed on the main surface of the substrate prior to the first processing step so that the second chemical fluid is washed away from the main surface of the substrate with water after the second processing step. You may further perform the 1st water supply process which supplies water. The control device may execute the second water replacement step in the first water supply step.
  • the substrate processing apparatus is a nozzle different from the first nozzle, and a second nozzle for discharging a fluid toward the main surface of the substrate held by the substrate holding unit; And a second water supply unit for supplying water to the second nozzle.
  • the control device may further control the second water supply unit.
  • the control device starts the first processing step after the end of the second processing step, and after the second processing step and before the start of the first processing step, the first processing step.
  • the control device may start the supply of the first chemical fluid to the chemical fluid piping in the first processing step prior to the end of the second water supply step.
  • the first chemical fluid can be discharged from the discharge port immediately after the end of the second water supply. That is, the first treatment process can be started immediately after the end of the second water supply process. Thereby, the whole processing time can be shortened.
  • control device may start the first treatment process before the end of the second water supply process.
  • the first chemical fluid can be discharged from the discharge port before the end of the second water supply step. Thereby, the whole processing time can be further shortened.
  • control device may further execute a second suction step of sucking the inside of the chemical fluid pipe after the discharge of the first chemical fluid from the first nozzle in the first processing step. Good.
  • the cleaning liquid may contain carbonated water.
  • the first chemical fluid may contain a sulfuric acid-containing liquid
  • the second chemical fluid may contain an organic solvent
  • the present invention provides a substrate holding step for holding a substrate in a processing chamber, and supplying a first chemical fluid to a chemical fluid pipe connected to the first nozzle, thereby supplying the main substrate from the first nozzle.
  • a first processing step in which the first chemical fluid is ejected toward the surface and a treatment using the first chemical fluid is performed on the substrate; and the first chemical fluid is a different type of fluid.
  • the first processing step using the first chemical fluid and the second chemical liquid supply step using the second chemical fluid are performed in the common processing chamber.
  • the first chemical fluid is discharged from the first nozzle toward the main surface of the substrate by supplying the first chemical fluid to the chemical fluid piping.
  • the first chemical fluid may remain inside the chemical fluid piping after the end of the first processing step and / or before the start of the second processing step.
  • the first drug fluid can be removed from the drug fluid pipe by replacing the inside of the drug fluid pipe with water after the end of the first process step and / or before the start of the second process step. Therefore, at the start of the second processing step, the first chemical fluid does not remain inside the chemical fluid piping. Therefore, even if the second drug fluid enters the drug fluid piping in the second processing step, the second drug fluid does not come into contact with the first drug fluid. Thereby, the contact with the 1st chemical fluid and the 2nd chemical fluid in the inside of chemical fluid piping can be prevented.
  • the second chemical fluid may adhere to the inside of the chemical fluid piping before the start of the first processing step and / or after the end of the second processing step.
  • the second drug fluid can be removed from the drug fluid pipe by replacing the inside of the drug fluid pipe with water before the start of the first process step and / or after the end of the second process step. Therefore, at the start of the first processing step, the second chemical fluid does not remain inside the chemical fluid piping. Therefore, even if the first drug fluid is supplied into the drug fluid pipe in the first processing step, the first drug fluid does not come into contact with the second drug fluid. Thereby, the contact with the 1st chemical fluid and the 2nd chemical fluid in the inside of chemical fluid piping can be prevented.
  • first chemical fluid and second chemical fluid used for substrate processing
  • those chemicals inside the chemical fluid piping are used. It is possible to provide a substrate processing apparatus capable of completing the processing using the plurality of types of chemical fluids in one processing chamber while preventing the occurrence of fluid contact.
  • a combination that is not suitable for contact includes not only “a combination that is dangerous to contact” but also “a combination that generates a product by contact”. It is. “Combination that produces a product by contact” includes a combination of an acid and an alkali.
  • the substrate processing method further includes a first suction step of sucking the inside of the chemical fluid piping after completion of the water replacement step.
  • the inside of the chemical fluid piping is sucked after the water replacement step is completed.
  • this suction water is removed from the inside of the chemical fluid piping, and after suction, no water remains inside the chemical fluid piping, or the amount of water remaining inside the chemical fluid piping is small.
  • the first processing step may include a step that starts after the end of the second processing step.
  • the water replacement step may include a first water replacement step that is performed prior to the second treatment step.
  • the first water replacement step is performed prior to the second treatment step.
  • the first drug fluid used in the previous process remains in the drug fluid piping.
  • the first drug fluid does not remain inside the drug fluid pipe at the start of the second process step. Therefore, even if the second drug fluid enters the drug fluid pipe in the second processing step, it does not contact the first drug fluid inside the drug fluid pipe. Thereby, in a 2nd process process, the contact with the 1st chemical fluid and the 2nd chemical fluid in the inside of chemical fluid piping can be prevented.
  • the first processing step may include a step that starts after the end of the second processing step.
  • the water replacement step may include a second water replacement step that is performed after the second processing step and prior to the first processing step.
  • the second water replacement step is performed prior to the first treatment step.
  • the second chemical fluid used in the second processing step enters the chemical fluid piping, and the inside of the chemical fluid piping May remain.
  • the second drug fluid does not remain inside the drug fluid pipe at the start of the first process step. Therefore, even if the first drug fluid is supplied to the drug fluid pipe in the first processing step, it does not come into contact with the second drug fluid. Thereby, in a 1st process process, the contact with the 1st chemical fluid and the 2nd chemical fluid in the inside of chemical fluid piping can be prevented.
  • the substrate processing method may include the main surface of the substrate prior to the first processing step so that the second chemical fluid is washed away from the main surface of the substrate with water after the second processing step.
  • a first water supply step for supplying water to the liquid may be further included.
  • the first water supply step may include the second water replacement step.
  • the first processing step may include a step that starts after the end of the second processing step.
  • the second nozzle which is a nozzle different from the first nozzle is directed to the main surface of the substrate.
  • a second water supply step for discharging water may be further included.
  • the supply of the first chemical fluid to the chemical fluid piping may be started prior to the end of the second water supply step.
  • the first chemical fluid can be discharged from the discharge port immediately after the end of the second water supply step. That is, the first treatment process can be started immediately after the end of the second water supply process. Thereby, the whole processing time can be shortened.
  • the substrate processing method may further include a second water supply step of supplying water from the second nozzle to the main surface of the substrate after the second processing step.
  • the substrate processing method may execute the first processing step in parallel with the second water supply step.
  • the first chemical fluid can be discharged from the discharge port before the end of the second water supply step. Thereby, the whole processing time can be further shortened.
  • the substrate processing method further includes a second suction step of sucking the inside of the chemical fluid piping after the discharge of the first chemical fluid from the first nozzle in the first processing step. Also good.
  • the cleaning liquid may contain carbonated water.
  • the first chemical fluid may contain a sulfuric acid-containing liquid
  • the second chemical fluid may contain an organic solvent
  • FIG. 1 is an illustrative plan view for explaining an internal layout of a substrate processing apparatus according to an embodiment of the present invention.
  • FIG. 2A is a schematic cross-sectional view for explaining a configuration example of a processing unit provided in the substrate processing apparatus.
  • FIG. 2B is a diagram for specifically explaining a configuration around a counter member included in the processing unit.
  • FIG. 2C is an illustrative cross-sectional view showing an enlarged configuration example of the lower portion of the processing unit.
  • FIG. 3 is a block diagram for explaining an electrical configuration of a main part of the substrate processing apparatus.
  • FIG. 4 is a flowchart for explaining a first substrate processing example by the processing unit.
  • 5A-5B are schematic diagrams for explaining the first substrate processing example.
  • FIG. 5C-5D are schematic diagrams for explaining the process following FIG. 5B.
  • 5E-5F are schematic diagrams for explaining the process following FIG. 5D.
  • FIGS. 5G to 5H are schematic diagrams for explaining the process following FIG. 5F.
  • FIG. 6 is an illustrative view for explaining a monitoring state by the first liquid detection sensor and the second liquid detection sensor in the main process of the first substrate processing example.
  • FIG. 7 is a view for explaining hard interlock in the first substrate processing example.
  • FIG. 8 is an illustrative view for explaining a second substrate processing example by the processing unit.
  • FIG. 9 is an illustrative view for explaining a third substrate processing example by the processing unit.
  • FIG. 1 is an illustrative plan view for explaining an internal layout of a substrate processing apparatus 1 according to a first embodiment of the present invention.
  • the substrate processing apparatus 1 is a single wafer processing apparatus that processes substrates W such as silicon wafers one by one.
  • the substrate W is a disk-shaped substrate.
  • the substrate processing apparatus 1 includes a plurality of processing units 2 that process a substrate W with a processing liquid, a load port LP on which a carrier C that houses a plurality of substrates W processed by the processing unit 2 is placed, a load port It includes transfer robots IR and CR that transfer the substrate W between the LP and the processing unit 2, and a control device 3 that controls the substrate processing apparatus 1.
  • the transfer robot IR transfers the substrate W between the carrier C and the substrate transfer robot CR.
  • the substrate transfer robot CR transfers the substrate W between the transfer robot IR and the processing unit 2.
  • the plurality of processing units 2 have the same configuration, for example.
  • FIG. 2A is a schematic cross-sectional view for explaining a configuration example of the processing unit 2.
  • the processing unit 2 holds the box-shaped processing chamber 4 and a single substrate W in the processing chamber 4 in a horizontal posture, and rotates the substrate W about a vertical rotation axis A1 passing through the center of the substrate W.
  • a spin chuck (substrate holding unit) 5 and a facing member 7 having a substrate facing surface 6 facing the upper surface (main surface) of the substrate W held by the spin chuck 5 are included.
  • the opposing member 7 includes a first nozzle 9 having a first discharge port (discharge port) 8 for discharging a fluid toward the central portion of the upper surface of the substrate W held by the spin chuck 5, and a spin chuck.
  • IPA isopropyl alcohol
  • second water supply unit 13 for supplying water (for example, carbonated water) as a rinsing liquid and a second chemical on the upper surface of the substrate W held by the spin chuck 5 fluid
  • the processing chamber 4 includes a box-shaped partition wall 18 that houses the spin chuck 5 and nozzles, and an FFU (fan filter) as a blower unit that sends clean air (air filtered by a filter) from the upper part of the partition wall 18 into the partition wall 18.
  • FFU fan filter
  • the FFU 19 is disposed above the partition wall 18 and attached to the ceiling of the partition wall 18.
  • the FFU 19 sends clean air downward from the ceiling of the partition wall 18 into the processing chamber 4.
  • an exhaust liquid pipe 81 is connected to the bottom of the processing cup 16, and the exhaust liquid pipe 81 is disposed in the processing chamber 4 toward an exhaust processing facility provided in a factory where the substrate processing apparatus 1 is installed. Deriving gas. Therefore, a downflow (downflow) that flows downward in the processing chamber 4 is formed by the FFU 19 and the exhaust liquid pipe 81.
  • the processing of the substrate W is performed in a state where a down flow is formed in the processing chamber 4.
  • the spin chuck 5 As the spin chuck 5, a clamping chuck that holds the substrate W horizontally with the substrate W held in the horizontal direction is employed.
  • the spin chuck 5 includes a spin motor 22, a lower spin shaft 23 integrated with a drive shaft of the spin motor 22, and a disk-like shape attached to the upper end of the lower spin shaft 23 substantially horizontally.
  • a plurality of (three or more, for example, six) clamping members 25 are disposed on the peripheral edge thereof.
  • the plurality of clamping members 25 are arranged at appropriate intervals on the circumference corresponding to the outer peripheral shape of the substrate W at the peripheral edge of the upper surface of the spin base 24.
  • the spin chuck 5 is not limited to a sandwich type, and for example, the substrate W is held in a horizontal posture by vacuum-sucking the back surface of the substrate W, and further rotated around a vertical rotation axis in that state.
  • a vacuum suction type vacuum chuck
  • the substrate W held on the spin chuck 5 may be employed.
  • FIG. 2B is a diagram for specifically explaining the configuration around the opposing member 7 included in the processing unit 2.
  • the facing member 7 includes a blocking plate 26 and an upper spin shaft 27 provided coaxially with the blocking plate 26.
  • the blocking plate 26 has a disk shape having a diameter substantially equal to or larger than that of the substrate W.
  • the substrate facing surface 6 forms a lower surface of the blocking plate 26 and has a circular shape facing the entire upper surface of the substrate W.
  • a cylindrical through hole 28 is formed that vertically penetrates the blocking plate 26 and the upper spin shaft 27.
  • the inner peripheral wall of the through hole 28 is partitioned by a cylindrical surface.
  • the first nozzle 9 and the second nozzle 11 are inserted into the through hole 28.
  • the first and second nozzles 9 and 11 extend in the vertical direction along the rotation axis A2 (coaxial with the rotation axis A1) of the upper spin shaft 27, respectively.
  • a central axis nozzle 29 extending vertically along the rotation axis A2 of the blocking plate 26 is inserted into the through hole 28.
  • the central axis nozzle 29 includes first and second nozzles 9 and 11 and a cylindrical casing 30 that surrounds the first and second nozzles 9 and 11.
  • each of the first and second nozzles 9 and 11 is an inner tube.
  • the first discharge port 8 is formed at the lower end of the first nozzle 9.
  • the second discharge port 10 is formed at the lower end of the second nozzle 11.
  • the casing 30 extends in the vertical direction along the rotation axis A2.
  • the casing 30 is inserted into the through hole 28 in a non-contact state. Therefore, the inner periphery of the blocking plate 26 surrounds the outer periphery of the casing 30 with a gap in the radial direction.
  • the upper spin shaft 27 is coupled to a shield plate rotating unit 31.
  • the blocking plate rotating unit 31 rotates the upper spin shaft 27 together with the blocking plate 26 around the rotation axis A2.
  • a shield plate lifting / lowering unit 32 including an electric motor, a ball screw, and the like is coupled to the shield plate 26.
  • the blocking plate lifting / lowering unit 32 moves the blocking plate 26 together with the central axis nozzle 29 in the vertical direction.
  • the blocking plate lifting / lowering unit 32 includes a proximity position (see FIG. 5A and the like) where the substrate facing surface 6 of the blocking plate 26 is close to the upper surface of the substrate W held by the spin chuck 5 and a retreat provided above the proximity position. Between the positions (see FIG. 2A, FIG. 5G, etc.), the blocking plate 26 and the central shaft nozzle 29 are moved up and down.
  • the shield plate lifting / lowering unit 32 can hold the shield plate 26 at each position between the proximity position and the retracted position.
  • a blocking plate proximity position sensor 33 (not shown in FIGS. 2A to 2C) for detecting the arrangement of the blocking plate 26 in the proximity position is provided.
  • the organic solvent supply unit 12 is connected to the first nozzle 9, and an organic solvent pipe (chemical fluid pipe) 34 whose inside communicates with the first discharge port 8 and an organic solvent pipe 34.
  • a first organic solvent valve 35 that opens and closes the organic solvent
  • a second organic solvent valve that opens and closes the organic solvent interposed in the organic solvent pipe 34 downstream of the first organic solvent valve 35.
  • 36 and a valve closing sensor 37 for detecting that the first organic solvent valve 35 is in a closed state.
  • a first water pipe 39 is provided at a first branch position 38 set between the first organic solvent valve 35 and the second organic solvent valve 36 in the organic solvent pipe 34. Branch connected.
  • the downstream portion 40 downstream of the first branch position 38 in the organic solvent pipe 34 is referred to as “organic solvent downstream portion 40”.
  • the upstream portion 41 upstream of the first branch position 38 in the organic solvent pipe 34 is referred to as “organic solvent upstream portion 41”.
  • the first branch position 38 is set at a position close to the upper end of the organic solvent pipe 34. Therefore, in the state where the organic solvent does not exist in the organic solvent downstream portion 40, the time until the organic solvent reaches the second nozzle 11 (second discharge port 10) after opening the first organic solvent valve 35 is Longer (eg about 3 seconds).
  • the organic solvent from the organic solvent supply source is supplied to the second organic solvent valve 36.
  • the organic solvent supplied to the second organic solvent valve 36 is discharged from the first discharge port 8 toward the center of the upper surface of the substrate W.
  • the predetermined first detection position 42 upstream of the position where the second organic solvent valve 36 is interposed is located inside the organic solvent downstream portion 40.
  • a first liquid detection sensor 43 for detecting the presence or absence of the liquid is disposed.
  • the first liquid detection sensor 43 detects the presence / absence of liquid inside the organic solvent pipe 34 at the first detection position 42, and sends a signal corresponding to the detection result to the control device 3.
  • the tip of the liquid in the organic solvent pipe 34 is advanced from the first detection position 42 (positioned on the first nozzle 9 side)
  • the liquid is detected by the first liquid detection sensor 43. Is done.
  • the tip of the liquid inside the organic solvent pipe 34 is retracted from the first detection position 42 (positioned on the organic solvent supply source side), depending on the first liquid detection sensor 43, the liquid is Not detected.
  • the predetermined second detection position 44 on the downstream side of the position where the second organic solvent valve 36 is interposed is located inside the organic solvent downstream portion 40.
  • a second liquid detection sensor 45 for detecting the presence or absence of the liquid is disposed.
  • the second liquid detection sensor 45 detects the presence or absence of the liquid inside the organic solvent pipe 34 at the second detection position 44 and sends a signal corresponding to the detection result to the control device 3.
  • the tip of the liquid in the organic solvent pipe 34 is advanced from the second detection position 44 (positioned on the first nozzle 9 side)
  • the liquid is detected by the second liquid detection sensor 45. Is done.
  • the tip of the liquid in the organic solvent pipe 34 is retracted from the second detection position 44 (positioned on the organic solvent supply source side), depending on the second liquid detection sensor 45, the liquid may be Not detected.
  • Each of the first liquid detection sensor 43 and the second liquid detection sensor 45 is, for example, a fiber sensor for liquid detection (for example, FU95S manufactured by Keyence Corporation), and is directly attached to the outer peripheral wall of the organic solvent pipe 34. Or they are placed close together.
  • the first liquid detection sensor 43 and / or the second liquid detection sensor 45 may be constituted by, for example, a capacitive sensor.
  • water for example, carbonated water
  • a first water valve 46 for opening and closing the first water pipe 39 is interposed in the middle of the first water pipe 39.
  • the water supplied from the first water pipe 39 to the organic solvent pipe 34 is, for example, carbonated water.
  • the first water pipe 39 and the first water valve 46 are included in a replacement water supply unit (first water supply unit) 47.
  • the second branch position 48 set in the middle of the first water pipe 39 (that is, between the first branch position 38 and the first water valve 46) is suctioned.
  • a pipe 49 is branched and connected.
  • the downstream portion 50 downstream of the second branch position 48 in the first water pipe 39 is referred to as “water downstream portion 50”.
  • a suction valve 51 for opening and closing the suction pipe 49 is interposed in the middle of the suction pipe 49.
  • a suction device 52 is connected to the tip of the suction pipe 49.
  • the suction device 52 includes a vacuum generator 53 and a drive valve 54 for operating the vacuum generator 53.
  • the suction device 52 is not limited to a device that generates a suction force by generating a vacuum, and may be an aspirator, for example.
  • the suction device 52 in the operating state of the suction device 52 (vacuum generator 53), the first organic solvent valve 35 and the first water valve 46 are closed and the second organic solvent valve 36 is opened.
  • the suction valve 51 is opened in the state, the function of the suction device 52 is activated, the inside of the organic solvent downstream portion 40 and the water downstream portion 50 is exhausted, and the organic solvent downstream portion 40 and the water downstream portion 50 are exhausted.
  • the liquid (water or organic solvent) contained in is drawn into the suction pipe 49.
  • the suction device 52 and the suction valve 51 are included in the suction unit 55.
  • the rinsing water supply unit 13 is connected to the second nozzle 11, and opens and closes the second water pipe 56 that communicates with the second discharge port 10 and the second water pipe 56.
  • the 2nd water valve 57 which switches supply and stop of supply of the water from the 2nd water piping 56 to the 2nd nozzle 11 is included.
  • the second water valve 57 is opened, water from the water supply source is supplied to the second water pipe 56 and discharged from the second discharge port 10 toward the center of the upper surface of the substrate W.
  • the processing unit 2 further includes an inert gas pipe 58 that supplies an inert gas to a cylindrical space between the outer periphery of the casing 30 and the inner periphery of the shielding plate 26, and an inert gas. And an inert gas valve 59 interposed in the pipe 58. When the inert gas valve 59 is opened, the inert gas from the inert gas supply source passes between the outer periphery of the casing 30 and the inner periphery of the blocking plate 26 and is discharged downward from the center of the lower surface of the blocking plate 26. Is done.
  • the inert gas valve 59 when the inert gas valve 59 is opened in a state where the shielding plate 26 is disposed in the proximity position, the inert gas discharged from the center of the lower surface of the shielding plate 26 is the upper surface of the substrate W and the substrate of the shielding plate 26.
  • the space between the opposing surfaces 6 spreads outward (in the direction away from the rotation axis A1), and the air between the substrate W and the shielding plate 26 is replaced with an inert gas.
  • the inert gas flowing through the inert gas pipe 58 is, for example, nitrogen gas.
  • the inert gas is not limited to nitrogen gas, but may be other inert gas such as helium gas or argon gas.
  • the sulfuric acid-containing liquid supply unit 14 includes a sulfuric acid-containing liquid nozzle 60, a sulfuric acid-containing liquid pipe 61 connected to the sulfuric acid-containing liquid nozzle 60, and a sulfuric acid-containing liquid pipe 61 interposed in the sulfuric acid-containing liquid pipe 61.
  • a liquid valve 62 and a first nozzle moving unit 63 that moves the sulfuric acid-containing liquid nozzle 60 are included.
  • the first nozzle moving unit 63 includes a motor and the like.
  • the first nozzle moving unit 63 is coupled with a nozzle retraction sensor 64 for detecting that the sulfuric acid-containing liquid nozzle 60 is in the retreat position.
  • the nozzle retract sensor 64 can detect whether or not the sulfuric acid-containing liquid nozzle 60 is in the retract position.
  • the sulfuric acid-containing liquid nozzle 60 is, for example, a straight nozzle that discharges liquid in a continuous flow state.
  • the sulfuric acid-containing liquid pipe 61 is supplied with a sulfuric acid-containing liquid from a sulfuric acid-containing liquid supply source.
  • the sulfuric acid-containing liquid pipe 61 is supplied with a high temperature (for example, about 170 ° C. to about 200 ° C.) sulfuric acid / hydrogen peroxide mixture (SPM) as a sulfuric acid-containing liquid.
  • SPM sulfuric acid / hydrogen peroxide mixture
  • the first nozzle moving unit 63 includes a processing position where the high-temperature SPM discharged from the sulfuric acid-containing liquid nozzle 60 is supplied to the upper surface of the substrate W, and the sulfuric acid-containing liquid nozzle 60 on the side of the spin chuck 5 in plan view. The sulfuric acid-containing liquid nozzle 60 is moved between the retracted position and the retracted position.
  • the cleaning chemical liquid supply unit 15 includes a cleaning chemical liquid nozzle 65, a cleaning chemical liquid pipe 66 connected to the cleaning chemical liquid nozzle 65, a cleaning chemical liquid valve 67 interposed in the cleaning chemical liquid pipe 66, and a cleaning And a second nozzle moving unit 68 that moves the chemical nozzle 65.
  • the cleaning chemical liquid nozzle 65 is, for example, a straight nozzle that discharges liquid in a continuous flow state.
  • the cleaning chemical liquid pipe 66 is supplied with a cleaning chemical liquid (for example, SC1) from a cleaning chemical liquid supply source.
  • the second nozzle moving unit 68 includes a processing position where SC1 discharged from the cleaning chemical solution nozzle 65 is supplied to the upper surface of the substrate W, and a retreat position where the cleaning chemical solution nozzle 65 is retracted to the side of the spin chuck 5 in plan view. Between them, the cleaning chemical nozzle 65 is moved.
  • the second nozzle moving unit 68 includes a central position where the cleaning chemical liquid discharged from the cleaning chemical liquid nozzle 65 lands on the central portion of the upper surface of the substrate W, and the cleaning chemical liquid discharged from the cleaning chemical liquid nozzle 65 on the substrate W.
  • the cleaning chemical liquid nozzle 65 is moved horizontally between the peripheral position where the liquid is deposited on the peripheral surface of the upper surface.
  • the center position and the peripheral position are both processing positions.
  • FIG. 2C is an illustrative sectional view showing an enlarged configuration example of the lower part of the processing unit 2.
  • the processing cup 16 surrounds the spin chuck 5 and receives first and second guards 71 and 72 for receiving the processing liquid (cleaning chemical liquid and rinsing liquid) scattered around the substrate W.
  • a guard lifting / lowering unit 73 that lifts and lowers the individual guards 71 and 72 independently.
  • the guard lifting / lowering unit 73 lifts and lowers the individual guards 71 and 72 independently.
  • the guard lifting unit 73 includes a ball screw mechanism, for example.
  • the processing cup 16 can be accommodated so as to overlap in the vertical direction, and when the guard lifting / lowering unit 73 moves up and down at least one of the two guards 71 and 72, the processing cup 16 is expanded and accommodated.
  • the inner first guard 71 surrounds the periphery of the spin chuck 5 and has a substantially rotationally symmetric shape with respect to the rotation axis A 1 of the substrate W by the spin chuck 5.
  • the first guard 71 has an annular bottom 74 in plan view, a cylindrical inner wall 75 rising upward from the inner periphery of the bottom 74, and an upper periphery from the outer periphery of the bottom 74.
  • the guide portion 77 has a cylindrical main body portion 78 rising from the bottom portion 74, and a cylindrical upper end portion 79 extending obliquely upward on the center side (in the direction approaching the rotation axis A1) while drawing a smooth arc from the upper end of the main body portion 78. Including.
  • a first drain groove 80 for collecting and draining the processing liquid (sulfuric acid-containing liquid, cleaning chemical liquid, and water) used for processing the substrate W is defined between the inner wall portion 75 and the guide portion 77. ing.
  • An exhaust liquid pipe 81 extending from a negative pressure source (not shown) is connected to the lowest portion of the bottom of the first drain groove 80.
  • the inside of the first drainage groove 80 is forcibly exhausted, and the treatment liquid collected in the first drainage groove 80 and the atmosphere in the first drainage groove 80 are changed to the exhaust liquid pipe 81. It is discharged through.
  • the processing liquid discharged together with the atmosphere is separated from the atmosphere by a gas-liquid separator 97 interposed in the middle of the exhaust liquid pipe 81.
  • a plurality of drainage branch pipes (sulfuric acid-containing liquid branch pipes 82, cleaning chemical liquid branch pipes 83, and water branch pipes 84) are connected to the exhaust liquid pipe 81 through a gas-liquid separator 97.
  • a valve 85 is connected.
  • Each drainage branch valve 85 includes a second valve closing sensor 95 that detects that the drainage branch valve 85 is closed.
  • step S3 in FIG. 4 only the drainage branch valve 85 for the sulfuric acid-containing liquid branch pipe 82 among the drainage branch valves 85 is opened and flows through the exhaust liquid pipe 81.
  • the processing liquid to be supplied is supplied to the branch pipe 82 for sulfuric acid-containing liquid, and then sent to a processing apparatus (not shown) for draining the sulfuric acid-containing liquid.
  • step S4 and step S6 in FIG. 4 only the drainage branch valve 85 for the water branch pipe 84 among the drainage branch valves 85 is opened.
  • the processing liquid flowing through the exhaust liquid pipe 81 is supplied to the water branch pipe 84 and then sent to a processing apparatus (not shown) for draining water.
  • step S5 in FIG. 4 only the drainage branch valve 85 for the cleaning chemical solution branch pipe 83 among the drainage branch valve 85 is opened and flows through the exhaust liquid pipe 81.
  • the processing liquid to be supplied is supplied to the branch pipe 83 for cleaning chemical liquid, and then sent to a processing apparatus (not shown) for draining the cleaning chemical liquid.
  • a space between the guide portion 77 and the outer wall portion 76 is a second drainage groove 86 for collecting and collecting the organic solvent used for processing the substrate W.
  • the second drainage groove 86 for example, one end of an exhaust pipe 87 is connected to the bottom. Thereby, the inside of the second drainage groove 86 is forcibly exhausted, and the atmosphere in the second drainage groove 86 is exhausted through the exhaust pipe 87.
  • the other end of the exhaust pipe 87 is connected to a negative pressure source (not shown).
  • An exhaust valve 101 for opening and closing the exhaust pipe 87 is interposed in the exhaust pipe 87.
  • the exhaust valve 101 is provided with a valve open sensor 21 that detects that the exhaust valve 101 is in an open state.
  • the outer second guard 72 has a substantially rotationally symmetric shape with respect to the rotation axis A1.
  • the second guard 72 surrounds the spin chuck 5 on the outside of the guide portion 77 of the first guard 71.
  • An opening 89 having a diameter larger than that of the substrate W held by the spin chuck 5 is formed at the upper end 88 of the second guard 72, and the upper end 90 of the second guard 72 is an opening that defines the opening 89. It is the end.
  • the second guard 72 has a lower end 91 that is coaxial with the guide portion 77, and a cylindrical shape that extends obliquely upward from the upper end of the lower end 91 while drawing a smooth arc on the center side (in the direction approaching the rotation axis A1). It has the upper end part 88 and the folding
  • the lower end portion 91 is located on the second drainage groove 86 and is formed to have a length that can be accommodated in the second drainage groove 86 with the first guard 71 and the second guard 72 being closest to each other.
  • the upper end portion 88 is provided so as to overlap the upper end portion 79 of the guide portion 77 of the first guard 71 in the vertical direction, and the first guard 71 and the second guard 72 are in the state of being closest to each other. It is formed so as to be close to the upper end 79 of the portion 77 with a very small gap.
  • the folded portion 92 is formed so as to overlap the upper end portion 79 of the guide portion 77 in the horizontal direction in a state where the first guard 71 and the second guard 72 are closest to each other.
  • the guard lifting / lowering unit 73 includes each guard between an upper position where the upper end of the guard is located above the substrate W and a lower position where the upper end of the guard is located below the substrate W. 71 and 72 are moved up and down. The guard lifting / lowering unit 73 can hold the guards 71 and 72 at an arbitrary position between the upper position and the lower position. The supply of the processing liquid to the substrate W and the drying of the substrate W are performed in a state where any one of the guards 71 and 72 is opposed to the peripheral end surface of the substrate W.
  • both the first and second guards 71 and 72 are arranged at the upper position. In this state, the folded portion 92 overlaps the upper end portion 79 of the guide portion 77 in the horizontal direction.
  • a guard upper position sensor 93 for detecting the upper position of the first guard 71 and a guard for detecting the upper position of the first guard 71.
  • a lower position sensor 94 is provided.
  • FIG. 71 is arranged at the lower position.
  • FIG. 3 is a block diagram for explaining the electrical configuration of the main part of the substrate processing apparatus 1.
  • the control device 3 is configured using, for example, a microcomputer.
  • the control device 3 includes an arithmetic unit such as a CPU, a fixed memory device, a storage unit such as a hard disk drive, and an input / output unit.
  • the storage unit stores a program executed by the arithmetic unit.
  • the control device 3 includes a first organic solvent valve 35, a second organic solvent valve 36, a first water valve 46, a suction valve 51, a drive valve 54, a second water valve 57, an inert gas valve 59, The sulfuric acid-containing liquid valve 62, the cleaning chemical liquid valve 67, the drainage branch valve 85, and the like are opened and closed.
  • control device 3 includes a detection output of the first valve opening sensor 21, a detection output of the blocking plate proximity position sensor 33, a detection output of the valve closing sensor 37, a detection output of the first liquid detection sensor 43, and a second output.
  • the detection output of the liquid detection sensor 45, the detection output of the nozzle retraction sensor 64, the detection output of the guard upper position sensor 93, the detection output of the guard lower position sensor 94, the detection output of the second valve closing sensor 95, and the like are input. It is like that.
  • FIG. 4 is a flowchart for explaining a first substrate processing example by the processing unit 2.
  • 5A to 5H are schematic views for explaining a first substrate processing example.
  • the first substrate processing example is a resist removal process for removing the resist formed on the upper surface of the substrate W.
  • the sulfuric acid-containing liquid and the organic solvent are a combination of a chemical fluid (chemical liquid or gas containing a chemical component) that is dangerous to contact (in this case, a rapid reaction).
  • the substrate W after the ion implantation processing at a high dose is carried into the processing chamber 4 (step S1 in FIG. 4). It is assumed that the loaded substrate W has not been subjected to a process for ashing the resist. A fine pattern with a fine and high aspect ratio is formed on the surface of the substrate W.
  • the opposing member 7 that is, the blocking plate 26 and the central axis nozzle 29
  • all the moving nozzles that is, the sulfuric acid-containing liquid nozzle 60 and the cleaning chemical liquid nozzle 65.
  • the upper ends of the first and second guards 71 and 72 are both disposed below the holding position of the substrate W.
  • the substrate W becomes its surface (resist formation surface). Is delivered to the spin chuck 5 with the side facing upward. Thereafter, the substrate W is held on the spin chuck 5 (substrate holding step).
  • the control device 3 starts the rotation of the substrate W by the spin motor 22.
  • the substrate W is raised to a predetermined liquid processing speed (within a range of 1 to 500 rpm, for example, about 100 rpm) and maintained at the liquid processing speed.
  • the control device 3 controls the guard lifting / lowering unit 73 to raise the first and second guards 71 and 72 to the upper position, respectively, so that the first guard 71 faces the peripheral end surface of the substrate W.
  • a neutralization step (step S2 in FIG. 4) is performed in which carbonated water is supplied to the upper surface of the substrate W to neutralize the substrate W.
  • the control device 3 opens the second water valve 57.
  • carbonated water is discharged from the second discharge port 10 of the second nozzle 11 toward the center of the upper surface of the substrate W.
  • the carbonated water discharged from the second nozzle 11 is deposited on the center of the upper surface of the substrate W and flows on the upper surface of the substrate W toward the peripheral portion of the substrate W under the centrifugal force generated by the rotation of the substrate W.
  • the static elimination step S2 is performed not only by discharging carbonated water from the second nozzle 11, but also by discharging carbonated water from the first discharge port 8 of the first nozzle 9.
  • the charge removal step S2 includes a first water replacement step T1 that replaces the inside of the organic solvent pipe 34 with carbonated water.
  • the control device 3 synchronizes with the start of the static elimination step S2 while opening the second organic solvent valve 36 and closing the first organic solvent valve 35 and the suction valve 51, and the first water valve Open 46. Thereby, carbonated water from the first water pipe 39 is supplied to the organic solvent downstream portion 40.
  • the IPA droplets used in the previous resist removal process adhere to the inner wall of the organic solvent downstream portion 40, the IPA droplets are replaced with carbonated water.
  • the carbonated water supplied to the downstream portion 40 of the organic solvent is discharged from the first nozzle 9 and lands on the center of the upper surface of the substrate W, receives the centrifugal force due to the rotation of the substrate W, and moves on the upper surface of the substrate W. It flows toward the peripheral edge of the substrate W. Also, when the IPA atmosphere used in the previous resist removal process is mixed in the pipe of the organic solvent downstream portion 40, it is removed by carbonated water.
  • the carbonated water supplied to the upper surface of the substrate W is scattered from the peripheral edge of the substrate W toward the side of the substrate W and is received by the inner wall of the first guard 71.
  • the carbonated water flowing down along the inner wall of the first guard 71 is collected in the first drain groove 80 and then guided to the exhaust pipe 81.
  • the drainage branch valve 85 for the water branch pipe 84 is opened, and the drainage branch valve 85 for the sulfuric acid-containing liquid branch pipe 82 and the drainage branch valve 85 for the cleaning chemical liquid branch pipe 83 are opened.
  • the flow destination of the liquid passing through the exhaust pipe 81 is set to the water branch pipe 84.
  • the carbonated water led to the exhaust liquid pipe 81 is led to a treatment device (not shown) for draining the carbonated water through the water branch pipe 84. If the IPA droplet used in the previous resist removal process adheres to the inner wall of the first guard 71, the first drain groove 80, and the exhaust pipe 81, this IPA droplet is used. Is washed away with carbonated water.
  • the static elimination step S2 includes the first water replacement step T1
  • the entire process of removing the resist is compared with the case where the first water replacement step T1 is performed at a different timing from the static elimination step S2. Time can be shortened.
  • the control device 3 closes the first water valve 46 while maintaining the second water valve 57 open, as shown in FIG. 5B.
  • the discharge of carbonated water from the first nozzle 9 is stopped while maintaining the discharge of carbonated water from the second nozzle 11.
  • a first water suction step T2 (first suction step) for sucking carbonated water in the organic solvent pipe 34 is executed.
  • the carbonated water present in the organic solvent pipe 34 after the first water replacement step T1 is sucked by the suction unit 55.
  • the control device 3 opens the second organic solvent valve 36 and closes the first organic solvent valve 35 and the first water valve 46 after the completion of the first water replacement step T1. Open the valve 51. Thereby, the inside of the organic solvent downstream portion 40 and the water downstream portion 50 is exhausted, and as shown in FIG. 5B, the carbonated water present in the organic solvent downstream portion 40 and the water downstream portion 50 is sucked. It is drawn into the pipe 49 (suction). The suction of carbonated water is performed until the front end surface of the carbonated water moves backward to a predetermined standby position in the pipe (for example, set to the suction pipe 49 or the downstream water portion 50). When the front end surface of the carbonated water is retracted to the standby position, the control device 3 closes the suction valve 51. Thereby, the first water replacement step T1 ends.
  • the carbonated water does not exist inside the organic solvent pipe 34 after the first water suction step T2. Thereby, the fall of carbonated water from the 1st nozzle 9 after completion
  • finish of 1st water substitution process T1 can be suppressed or prevented.
  • control device 3 closes the first water valve 46 and stops discharging carbonated water from the second nozzle 11. Thereby, static elimination process S2 is complete
  • the first water suction step T2 and part of the charge removal step S2 discharge of carbonated water from the second nozzle 9 are performed in parallel, the first water suction step T2 is performed. As compared with a case where the process is separately performed after the charge removal step S2, the entire processing time of the resist removal process can be shortened.
  • control device 3 performs a sulfuric acid-containing liquid process (second processing process, step S3 in FIG. 4) for supplying high-temperature SPM to the upper surface of the substrate W.
  • second processing process step S3 in FIG. 4
  • the control device 3 supplies the high-temperature SPM from the sulfuric acid-containing liquid nozzle 60 to the center of the upper surface of the substrate W in order to peel the resist from the surface of the substrate W.
  • the control device 3 controls the first nozzle moving unit 63 to move the sulfuric acid-containing liquid nozzle 60 from the retracted position to the central position. As a result, the sulfuric acid-containing liquid nozzle 60 is disposed above the central portion of the substrate W. Thereafter, the control device 3 opens the sulfuric acid-containing liquid valve 62. As a result, high-temperature (for example, about 170 ° C. to about 200 ° C.) SPM is supplied from the sulfuric acid-containing liquid pipe 61 to the sulfuric acid-containing liquid nozzle 60, and high-temperature SPM is discharged from the discharge port of the sulfuric acid-containing liquid nozzle 60.
  • high-temperature for example, about 170 ° C. to about 200 ° C.
  • the high-temperature SPM discharged from the sulfuric acid-containing liquid nozzle 60 is deposited on the center of the upper surface of the substrate W, receives centrifugal force due to the rotation of the substrate W, and flows outward along the upper surface of the substrate W. As a result, as shown in FIG. 5C, the entire upper surface of the substrate W is covered with the liquid film of SPM. The resist is peeled off from the surface of the substrate W and removed from the surface of the substrate W by the high temperature SPM.
  • the SPM supplied to the upper surface of the substrate W is scattered from the peripheral edge of the substrate W toward the side of the substrate W and is received by the inner wall of the first guard 71.
  • the SPM flowing down along the inner wall of the first guard 71 is collected in the first drainage groove 80 and then guided to the exhaust pipe 81.
  • the drainage branch valve 85 for the sulfuric acid-containing liquid branch pipe 82 is opened, and the drainage branch valve 85 for the cleaning chemical branch pipe 83 and the drain branch valve for the water branch pipe 84 are opened.
  • the distribution destination of the liquid passing through the exhaust liquid pipe 81 is set to the sulfuric acid-containing liquid branch pipe 82.
  • the SPM guided to the exhaust liquid pipe 81 is guided to a treatment apparatus (not shown) for draining the sulfuric acid-containing liquid through the sulfuric acid-containing liquid branch pipe 82. Therefore, SPM droplets adhere to the inner wall of the first guard 71, the first drain groove 80, and the pipe wall of the exhaust pipe 81 after the sulfuric acid-containing liquid step S3.
  • the sulfuric acid-containing liquid process S ⁇ b> 3 a large amount of SPM mist is generated around the upper surface of the substrate W by supplying the high-temperature SPM to the substrate W.
  • the blocking plate 26 and the central shaft nozzle 29 are retracted (for example, the substrate facing surface 6 of the blocking plate 26 is spaced apart from the upper surface of the spin base 24 by a sufficient distance (for example, about 150 mm)).
  • the SPM used in the sulfuric acid-containing liquid process S3 is extremely high temperature (for example, about 170 ° C. to about 200 ° C.), a large amount of SPM mist is generated in the sulfuric acid-containing liquid process S3.
  • the SPM mist enters the organic solvent pipe 34 from the first discharge port 8 and enters the organic solvent pipe 34 (deeply).
  • the sulfuric acid-containing liquid process S3 when the IPA used in the previous resist removal process remains in the organic solvent pipe 34 (including adhesion of IPA droplets to the inside of the organic solvent pipe 34), the sulfuric acid-containing liquid process S3.
  • the SPM mist that has entered the organic solvent pipe 34 may come into contact with the IPA inside the organic solvent pipe 34.
  • the mist of SPM comes into contact with IPA inside the organic solvent pipe 34, particles are generated, and the inside of the organic solvent pipe 34 may become a particle generation source.
  • IPA remains in the organic solvent pipe 34 at the start of the sulfuric acid-containing liquid step S3. Absent. Accordingly, even if SPM mist enters the organic solvent pipe 34 in the sulfuric acid-containing liquid process S3, it does not come into contact with the IPA inside the organic solvent pipe 34. Therefore, the contact between the IPA and the SPM can be prevented in the sulfuric acid-containing liquid process S3, whereby the inside of the organic solvent pipe 34 can be suppressed or prevented from becoming a particle generation source.
  • the sulfuric acid-containing liquid process S3 ends when a predetermined period has elapsed from the start of high-temperature SPM discharge. Specifically, the control device 3 closes the sulfuric acid-containing liquid valve 62 to stop the discharge of high-temperature SPM from the sulfuric acid-containing liquid nozzle 60, and then controls the first nozzle moving unit 63 to control the sulfuric acid. The containing liquid nozzle 60 is retracted to the retracted position.
  • a first rinsing process for supplying carbonated water as a rinsing liquid to the upper surface of the substrate W is performed.
  • the control device 3 opens the second water valve 57. Accordingly, as shown in FIG. 5D, carbonated water is discharged from the second discharge port 10 of the second nozzle 11 toward the center of the upper surface of the substrate W.
  • the carbonated water discharged from the second nozzle 11 is deposited on the center of the upper surface of the substrate W and flows on the upper surface of the substrate W toward the peripheral portion of the substrate W under the centrifugal force generated by the rotation of the substrate W.
  • the first rinsing step S4 not only discharges carbonated water from the second nozzle 11, but also discharges carbonated water from the first discharge port 8 of the first nozzle 9. It is realized by doing. That is, the first rinsing step S4 includes a second water replacement step T3 in which the inside of the organic solvent pipe 34 is replaced with carbonated water in parallel with the discharge of carbonated water from the second nozzle 11. Specifically, the control device 3 opens the second organic solvent valve 36 and closes the first organic solvent valve 35 and the suction valve 51 in synchronization with the start of the first rinsing step S4. Open the water valve 46.
  • carbonated water from the first water pipe 39 is supplied to the organic solvent downstream portion 40, and SPM droplets adhering to the inner wall of the organic solvent downstream portion 40 are replaced with carbonated water.
  • the carbonated water supplied to the downstream portion 40 of the organic solvent is discharged from the first nozzle 9 and lands on the center of the upper surface of the substrate W, receives the centrifugal force due to the rotation of the substrate W, and moves on the upper surface of the substrate W. It flows toward the peripheral edge of the substrate W.
  • the carbonated water supplied to the upper surface of the substrate W is scattered from the peripheral edge of the substrate W toward the side of the substrate W and is received by the inner wall of the first guard 71.
  • the carbonated water flowing down along the inner wall of the first guard 71 is collected in the first drain groove 80 and then guided to the exhaust pipe 81.
  • the drainage branch valve 85 for the water branch pipe 84 is opened, and the drainage branch valve 85 for the sulfuric acid-containing liquid branch pipe 82 and the drainage branch for the cleaning chemical liquid branch pipe 83 are opened.
  • the valve 85 By closing the valve 85, the flow destination of the liquid passing through the exhaust liquid pipe 81 is set to the water branch pipe 84.
  • the carbonated water led to the exhaust liquid pipe 81 is led to a treatment device (not shown) for draining water through the water branch pipe 84.
  • a treatment device not shown
  • the SPM droplet used in the sulfuric acid-containing liquid process S3 is attached to the inner wall of the first guard 71, the first drain groove 80, or the tube wall of the exhaust pipe 81, the SPM droplet. Is washed away with carbonated water.
  • the carbonated water supplied to the upper surface of the substrate W causes the SPM on the substrate W to flow outward and is discharged around the substrate W, and the liquid film of SPM on the substrate W covers the entire upper surface of the substrate W. Replaced by a liquid film of water. That is, the SPM is washed away from the upper surface of the substrate W by carbonated water as a rinse liquid. Then, when a predetermined time has elapsed from the start of discharge of carbonated water, the control device 3 closes the first water valve 46 and the second water valve 57, respectively, and outputs from the first nozzle 9 and the second nozzle 11. Stop discharging carbonated water. Thereby, the 1st rinse process is completed.
  • the first rinsing step S4 since the first rinsing step S4 includes the second water replacement step T3, the first water replacement step T1 is compared with the case where it is performed at a different timing from the first rinsing step S4. Thus, the processing time of the entire resist removal process can be shortened.
  • the first rinsing step S ⁇ b> 4 it is not necessary to synchronize the stop of discharge of carbonated water from the first nozzle 9 and the stop of discharge of carbonated water from the second nozzle 11.
  • the discharge of carbonated water may be stopped prior to the stop of discharge of carbonated water from the second nozzle 11.
  • the control device 3 After stopping the discharge of carbonated water from the first nozzle 9 and the second nozzle 11, the control device 3 performs a cleaning chemical solution process (first processing process; step S5 in FIG. 4) for supplying SC1 to the upper surface of the substrate W. I do.
  • the controller 3 removes the SC1 from the cleaning chemical solution nozzle 65 on the upper surface of the substrate W in order to remove the resist residue existing on the surface of the substrate W after the sulfuric acid-containing solution step S3. Supply.
  • the control device 3 controls the second nozzle moving unit 68 to move the cleaning chemical solution nozzle 65 from the retracted position to the processing position. Thereafter, the control device 3 opens the cleaning chemical liquid valve 67. As a result, as shown in FIG. 5E, SC1 is supplied from the cleaning chemical solution pipe 66 to the cleaning chemical solution nozzle 65, and SC1 is discharged from the discharge port of the cleaning chemical solution nozzle 65. Further, the control device 3 controls the second nozzle moving unit 68 to reciprocate the cleaning chemical solution nozzle 65 between the central position and the peripheral position in parallel with the discharge of SC1 from the cleaning chemical solution nozzle 65. (Half scan).
  • the SC1 liquid landing position from the cleaning chemical liquid nozzle 65 can be reciprocated between the center of the upper surface of the substrate W and the peripheral edge of the upper surface of the substrate W.
  • the entire upper surface of the substrate W can be scanned.
  • the resist residue can be removed from the surface of the substrate W.
  • the SC 1 supplied to the upper surface of the substrate W is scattered from the peripheral edge of the substrate W toward the side of the substrate W and is received by the inner wall of the first guard 71.
  • the SC1 flowing down along the inner wall of the first guard 71 is collected in the first drainage groove 80 and then guided to the exhaust pipe 81.
  • the cleaning chemical liquid step S5 the drainage branch valve 85 for the cleaning chemical liquid branch pipe 83 is opened, and the drainage branch valve 85 for the sulfuric acid-containing liquid branch pipe 82 and the drainage branch valve 85 for the water branch pipe 84 are used. Is closed, the flow destination of the liquid passing through the exhaust liquid pipe 81 is set to the cleaning chemical liquid branch pipe 83. Therefore, SC1 led to the exhaust liquid pipe 81 is led to a processing apparatus (not shown) for draining the cleaning chemical liquid through the cleaning chemical liquid branch pipe 83.
  • a second water suction process T4 (first suction process) for sucking carbonated water in the organic solvent pipe 34 is performed.
  • first suction process for sucking carbonated water in the organic solvent pipe 34.
  • the control device 3 opens the second organic solvent valve 36 and closes the first organic solvent valve 35 and the first water valve 46 while performing suction. Open the valve 51. Thereby, the insides of the organic solvent downstream portion 40 and the water downstream portion 50 are exhausted, and as shown in FIG. 5E, the carbonated water present in the organic solvent downstream portion 40 and the water downstream portion 50 is sucked. It is drawn into the pipe 49 (suction). The suction of carbonated water is performed until the front end surface of the carbonated water moves backward to a predetermined standby position in the pipe (for example, set to the suction pipe 49 or the downstream water portion 50). When the front end surface of the carbonated water is retracted to the standby position, the control device 3 closes the suction valve 51. Thereby, the second water suction step T4 ends.
  • the second water suction step T4 is executed in parallel with the cleaning chemical solution step S5. Therefore, the second water suction step T4 is compared with the case where the second water suction step T4 is performed at a different timing from the cleaning chemical solution step S5. Thus, the processing time of the entire resist removal process can be shortened.
  • the cleaning chemical solution step S5 is completed. Specifically, the control device 3 closes the cleaning chemical solution valve 67 to stop the discharge of SC1 from the cleaning chemical solution nozzle 65, and then controls the second nozzle moving unit 68 to control the cleaning chemical solution nozzle 65. Treatment to the retreat position.
  • a second rinsing process for supplying carbonated water as a rinsing liquid to the upper surface of the substrate W is performed.
  • the control device 3 opens the second water valve 57. Accordingly, as shown in FIG. 5F, carbonated water is discharged from the second discharge port 10 of the second nozzle 11 toward the center of the upper surface of the substrate W.
  • the carbonated water discharged from the second nozzle 11 is deposited on the center of the upper surface of the substrate W and flows on the upper surface of the substrate W toward the peripheral portion of the substrate W under the centrifugal force generated by the rotation of the substrate W.
  • the carbonated water supplied to the upper surface of the substrate W is scattered from the peripheral edge of the substrate W toward the side of the substrate W and is received by the inner wall of the first guard 71.
  • the carbonated water flowing down along the inner wall of the first guard 71 is collected in the first drain groove 80 and then guided to the exhaust pipe 81.
  • the drainage branch valve 85 for the water branch pipe 84 is opened, and the drainage branch valve 85 for the sulfuric acid-containing liquid branch pipe 82 and the drainage branch for the cleaning chemical liquid branch pipe 83 are opened.
  • the flow destination of the liquid passing through the exhaust liquid pipe 81 is set to the water branch pipe 84. Therefore, in the second rinsing step S ⁇ b> 6, the carbonated water led to the exhaust liquid pipe 81 is led to a treatment device (not shown) for draining water through the water branch pipe 84.
  • the carbonated water supplied to the upper surface of the substrate W causes the SC1 on the substrate W to flow outward and is discharged around the substrate W, and the liquid film of SC1 on the substrate W covers the entire upper surface of the substrate W. Replaced by a liquid film of water. That is, SC1 is washed away from the upper surface of the substrate W by carbonated water as a rinse liquid.
  • the control device 3 closes the second water valve 57 and stops the discharge of carbonated water from the second nozzle 11. Thereby, 2nd rinse process S6 is complete
  • step S7 in FIG. 4 an organic solvent process for supplying IPA as an organic solvent to the upper surface of the substrate W is performed.
  • the control device 3 controls the shield plate lifting / lowering unit 32 to place the shield plate 26 in the proximity position.
  • the blocking plate 26 blocks the upper surface of the substrate W from the surrounding space.
  • control device 3 controls the guard lifting / lowering unit 73 so that the first guard 71 remains at the lower position, the second guard 72 is disposed at the upper position, and the second guard 72 is placed around the substrate W. Opposite to the end face. Further, the control device 3 decelerates the rotation of the substrate W to a predetermined paddle speed. This paddle speed means that when the substrate W is rotated at the paddle speed, the centrifugal force acting on the liquid on the upper surface of the substrate W is smaller than the surface tension acting between the rinse liquid and the upper surface of the substrate W, Alternatively, the speed is such that the centrifugal force and the surface tension almost antagonize.
  • the control device 3 opens the first organic solvent valve 35 while opening the second organic solvent valve 36 and closing the first water valve 46 and the suction valve 51.
  • IPA from the organic solvent supply source is supplied to the second nozzle 11, and IPA is discharged from the second nozzle 11 to land on the upper surface of the substrate W.
  • the SPM mist that has entered the organic solvent pipe 34 is liquefied by condensation to form SPM droplets. If SPM droplets exist in the organic solvent pipe 34 before the start of the organic solvent process S7, the IPA supplied to the organic solvent pipe 34 in the organic solvent process S7 is converted into the SPM inside the organic solvent pipe 34. There is a risk of contact. When IPA comes into contact with SPM droplets inside the organic solvent pipe 34, particles are generated, and the inside of the organic solvent pipe 34 may become a particle generation source.
  • the carbonated water contained in the liquid film on the upper surface of the substrate W is sequentially replaced with IPA by the discharge of IPA from the first nozzle 9.
  • the IPA liquid film covering the entire upper surface of the substrate W is held on the upper surface of the substrate W in a paddle shape.
  • the supply of IPA to the upper surface of the substrate W is continued. Therefore, IPA is discharged from the peripheral edge of the substrate W.
  • IPA discharged from the peripheral edge of the substrate W is received by the inner wall of the second guard 72.
  • the IPA flowing down along the inner wall of the second guard 72 is collected in the second drainage groove 86 and then guided to the exhaust pipe 87. Therefore, after the organic solvent step S 7, IPA droplets adhere to the inner wall of the second guard 72, the second drainage groove 86, and the pipe wall of the exhaust pipe 87.
  • the control device 3 closes the first organic solvent valve 35 and stops the discharge of IPA from the first nozzle 9. Thereby, organic solvent process S7 is complete
  • a spin dry process for drying the substrate W is performed.
  • the control device 3 controls the shield plate lifting / lowering unit 32 to place the shield plate 26 in the proximity position. Further, in this state, the control device 3 controls the spin motor 22, and as shown in FIG. 5H, a drying rotation speed larger than the rotation speed in each process from the sulfuric acid-containing liquid process S 3 to the organic solvent process S 7 ( For example, the substrate W is accelerated to several thousand rpm), and the substrate W is rotated at the drying rotation speed. Thereby, a large centrifugal force is applied to the liquid on the substrate W, and the liquid adhering to the substrate W is shaken off around the substrate W. In this way, the liquid is removed from the substrate W, and the substrate W is dried. Further, the control device 3 controls the blocking plate rotating unit 31 to rotate the blocking plate 26 in the rotation direction of the substrate W at a high speed.
  • an organic solvent suction step T5 (second suction step) for sucking the organic solvent in the organic solvent pipe 34 is executed.
  • the organic solvent suction step T5 the organic solvent present in the organic solvent pipe 34 after the organic solvent step S7 is sucked by the suction unit 55.
  • the control device 3 opens the suction valve 51 while opening the second organic solvent valve 36 and closing the first organic solvent valve 35 and the first water valve 46 after completion of the organic solvent step S7. open. Thereby, the insides of the organic solvent downstream portion 40 and the water downstream portion 50 are exhausted, and as shown in FIG. 5H, the IPA present in the organic solvent downstream portion 40 and the water downstream portion 50 is sucked into the suction pipe. It is drawn to 49 (suction). The suction of the IPA is performed until the tip surface of the IPA moves backward to a predetermined standby position in the pipe (for example, set in the suction pipe 49 or the water downstream side portion 50). When the tip surface of the IPA is retracted to the standby position, the control device 3 closes the suction valve 51.
  • a predetermined standby position in the pipe for example, set in the suction pipe 49 or the water downstream side portion 50.
  • control device 3 controls the spin motor 22 to stop the rotation of the substrate W by the spin chuck 5 and controls the blocking plate rotating unit 31 to rotate the blocking plate 26. Stop.
  • the substrate W is unloaded from the processing chamber 4 (step S9 in FIG. 4). Specifically, the control device 3 places the blocking plate 26 in the retracted position, lowers the second guard 72 to the lower position, and moves the first and second guards 71 and 72 to the holding position of the substrate W. Arrange below. Thereafter, the control device 3 causes the hand H of the substrate transport robot CR to enter the processing chamber 4. Then, the control device 3 causes the hand of the substrate transport robot CR to hold the substrate W on the spin chuck 5 and retracts the hand H of the substrate transport robot CR from the processing chamber 4. Thereby, the substrate W from which the resist is removed from the surface is carried out of the processing chamber 4.
  • an organic solvent pre-dispense for replacing the organic solvent pipe 34 with a new IPA is performed prior to the start of the organic solvent suction step T5.
  • the IPA tip surface of the organic solvent pipe 34 is located in the organic solvent upstream portion 41.
  • the IPA in the organic solvent pipe 34 may change over time (temperature change or component change).
  • the control device 3 When performing the organic solvent pre-dispensing, the control device 3 opens the first organic solvent valve 35 and the suction valve 51 while closing the second organic solvent valve 36 and the first water valve 46, and from the organic solvent supply source. Is drawn into the suction pipe 49 through the organic solvent upstream portion 41 and the water downstream portion 50 (suction). As a result, the IPA that has changed with time and is present in the upstream portion 41 of the organic solvent is replaced with fresh IPA. When a predetermined period has elapsed since the opening of the first organic solvent valve 35, the control device 3 closes the first organic solvent valve 35 and the suction valve 51.
  • FIG. 6 is an illustrative view for explaining a monitoring state by the first liquid detection sensor 43 and the second liquid detection sensor 45 in the main process of the first substrate processing example.
  • the control device 3 detects the detection output of the first liquid detection sensor 43 disposed on the upstream side of the second organic solvent valve 36, Neither is it referring to the detection output of the second liquid detection sensor 45 disposed downstream of the second organic solvent valve 36. In other words, in the organic solvent step S ⁇ b> 7, the control device 3 ignores the presence or absence of liquid at both the first detection position 42 and the second detection position 44.
  • the control device 3 detects the detection output of the first liquid detection sensor 43 disposed on the upstream side of the second organic solvent valve 36, and the second organic solvent. Both detection outputs of the second liquid detection sensor 45 arranged downstream of the solvent valve 36 are referred to. In other words, the control device 3 monitors the presence or absence of liquid at both the first detection position 42 and the second detection position 44. In the organic solvent suction step T5, based on the detection outputs from both the first liquid detection sensor 43 and the second liquid detection sensor 45, the liquid (that is, both the first detection position 42 and the second detection position 44). When it is detected that IPA) does not exist, the control device 3 detects that the suction of IPA is completed.
  • control device 3 performs not only the organic solvent suction step T5 but also other suction steps (for example, the first water suction step T2 and the second water suction step T4).
  • the presence or absence of liquid is monitored at both the detection position 42 and the second detection position 44.
  • the control device 3 refers only to the detection output of the second liquid detection sensor 45 disposed upstream of the second organic solvent valve 36, and the second organic solvent.
  • the detection output of the first liquid detection sensor 43 disposed on the downstream side of the valve 36 is not referred to.
  • the control device 3 monitors the presence / absence of the liquid at the second detection position 44, but ignores the presence / absence of the liquid at the first detection position 42.
  • the second organic solvent valve 36 is controlled to be in the closed state, the presence of the liquid (that is, IPA) at the second detection position 44 is detected by the second liquid detection sensor 45.
  • the control device 3 can detect an outflow error on the assumption that the organic solvent (that is, IPA) is leaking from the second organic solvent valve 36.
  • the control device 3 only outputs the detection output of the second liquid detection sensor 45 arranged on the downstream side of the second organic solvent valve 36, except for the respective processes specifically mentioned. Reference is not made to the detection output of the first liquid detection sensor 43 arranged on the upstream side of the second organic solvent valve 36. In other words, the control device 3 monitors the presence / absence of the liquid at the second detection position 44, but ignores the presence / absence of the liquid at the first detection position 42. Even though the second organic solvent valve 36 is controlled to be in the closed state, the presence of the liquid (that is, IPA) at the second detection position 44 is detected by the second liquid detection sensor 45. As shown in FIG. 6, the control device 3 can detect an outflow error on the assumption that the organic solvent (that is, IPA) is leaking from the second organic solvent valve 36.
  • FIG. 7 is a diagram for explaining hard interlock in the first substrate processing example.
  • This interlock process is executed at the start of each process in a process in which a series of substrate processes are performed in accordance with a recipe stored in the memory of the control device 3.
  • the control device 3 prohibits the opening operation of the sulfuric acid-containing liquid valve 62.
  • Such a hard interlock can reliably prevent the contact between the IPA and the SPM in the processing chamber 4 when the discharge of the IPA from the first nozzle 9 is started.
  • the control device 3 prohibits the opening operation of the first organic solvent valve 35. .
  • the control device 3 prohibits the opening operation of the first organic solvent valve 35.
  • the second valve closing sensor 95 corresponding to the drainage branch valve 85 for the sulfuric acid-containing liquid branch pipe 82 the detection output of the second valve closing sensor 95 corresponding to the drainage branch valve 85 for the cleaning chemical branch pipe 83 is examined.
  • the sulfuric acid-containing liquid process S3 the second valve closing sensor 95 corresponding to the drainage branch valve 85 for the cleaning chemical solution branch pipe 83 and the second drainage branch valve 85 corresponding to the water branch pipe 84 are used. Each detection output of the valve closing sensor 95 is examined.
  • the second valve closing sensor 95 corresponding to the drainage branch valve 85 for the sulfuric acid-containing liquid branch pipe 82 and the second drainage branch valve 85 corresponding to the water branch pipe 84 are used. Each detection output of the valve closing sensor 95 is examined.
  • the control device 3 sets the discharge open / close valve (ie, the first water valve 46, sulfuric acid) corresponding to the treatment liquid to be discharged at the start of each step S2 to S6. Any one of the contained liquid valve 62 and the cleaning chemical liquid valve 67) is opened. That is, when the condition (7) is not satisfied, the control device 3 prohibits the opening operation of the valves 46, 62, and 67.
  • the discharge open / close valve ie, the first water valve 46, sulfuric acid
  • the first water replacement step T1 is performed prior to the sulfuric acid-containing liquid step S3. If the IPA used in the previous resist removal process remains in the organic solvent pipe 34 before the start of the sulfuric acid-containing liquid process S3, the SPM that has entered the organic solvent pipe 34 in the sulfuric acid-containing liquid process S3. Mist may come into contact with the IPA inside the organic solvent pipe 34. However, by replacing the inside of the organic solvent pipe 34 with carbonated water prior to the sulfuric acid-containing liquid process S3, IPA does not remain inside the organic solvent pipe 34 at the start of the sulfuric acid-containing liquid process S3.
  • the second water replacement step T3 is performed prior to the organic solvent step S7. If the SPM droplets that have entered the organic solvent pipe 34 in the sulfuric acid-containing liquid process S3 and are liquefied by condensation are present inside the organic solvent pipe 34 before the start of the organic solvent process S7, the organic solvent process S7. The IPA supplied to the organic solvent pipe 34 may come into contact with the SPM inside the organic solvent pipe 34. However, by replacing the inside of the organic solvent pipe 34 with carbonated water prior to the organic solvent process S7, no SPM droplets remain in the organic solvent pipe 34 at the start of the organic solvent process S7.
  • FIG. 8 is an illustrative view for explaining a second substrate processing example by the processing unit 2.
  • FIG. 9 is an illustrative view for explaining a third substrate processing example by the processing unit 2.
  • the second and third substrate processing examples are different from the first substrate processing example shown in FIG. 4 and the like in that IPA is supplied to the first nozzle 9 prior to the end of the second rinsing step S6. ing. In other respects, the second and third substrate processing examples are not different from the first substrate processing example.
  • the control device 3 opens the second organic solvent valve 36 while the second rinsing step S6 is being performed (in parallel with the second rinsing step S6).
  • the first organic solvent valve 35 is opened.
  • IPA from the organic solvent supply source is supplied toward the first nozzle 9.
  • the control device 3 closes the second water valve 57 at a timing immediately before the IPA is discharged from the first discharge port 8.
  • IPA is not discharged from the first discharge port 8. That is, during the execution of the second rinsing step S6, IPA is not discharged from the first discharge port 8, and the inside of the organic solvent downstream portion 40 and the inside of the nozzle pipe of the first nozzle 9 are made of IPA. Filled.
  • the control device 3 opens the first organic solvent valve 35, whereby the first nozzle from the organic solvent supply source is opened.
  • the supply of IPA to 9 is restarted, and IPA is discharged from the first discharge port 8.
  • IPA can be discharged from the first discharge port 8 immediately after the end of the second rinsing step S6. That is, the organic solvent step S7 can be started immediately after the end of the second rinsing step S6. Thereby, the processing time of the entire resist removing process can be shortened as compared with the first substrate processing example.
  • control device 3 performs the second rinsing step S6 (in parallel with the second rinsing step S6). IPA is discharged from the first discharge port 8.
  • control device 3 opens the first organic solvent valve 35 while opening the second organic solvent valve 36 during the execution of the second rinsing step S6. Thereby, IPA from the organic solvent supply source is supplied toward the first nozzle 9 and discharged from the first discharge port 8. That is, the control device 3 starts the organic solvent step S7 before the end of the second rinsing step S6.
  • the discharge flow rate of IPA from the first discharge port 8 is smaller than the discharge flow rate of carbonated water from the second discharge port 10 (for example, about 1/10). . Therefore, there is almost no adverse effect on the rinsing process on the substrate W.
  • the third substrate processing example as in the second substrate processing example, there is no interval from the end of the second rinsing step S6 to the start of the organic solvent step S7. Thus, the processing time of the entire resist removal process can be shortened.
  • the carbonated water is sucked until the front end surface of the carbonated water is retracted to the suction pipe 49 or the water downstream side portion 50.
  • the front end surface of the carbonated water after suction may be located inside the organic solvent pipe 34.
  • the first water replacement step T1 may be performed at a different timing from the static elimination step S2. Further, the second water replacement step T3 may be performed at a timing different from that of the first rinse step S4. You may perform 1st water suction process T2 after completion
  • the organic solvent step S7 is performed.
  • the water replacement step may be performed at least once before and / or after execution of the organic solvent step S7 and / or before and / or after execution of the sulfuric acid-containing liquid step S3. .
  • hydrogen peroxide solution (H 2 O 2 ) is applied to the upper surface (surface) of the substrate W prior to the execution of the cleaning chemical solution step S5 or after the execution of the cleaning chemical solution step S5. You may perform the hydrogen peroxide solution supply process supplied to.
  • SPM is exemplified as the sulfuric acid-containing liquid used as an example of the first chemical fluid, but sulfuric acid or SOM (sulfuric acid ozone) can also be used as the sulfuric acid-containing liquid.
  • the gas and liquid of the atmosphere and the processing liquid are used as the processing cup by using an external gas-liquid separator (gas-liquid separator 97) without performing gas-liquid separation between the atmosphere and the processing liquid inside.
  • gas-liquid separator 97 gas-liquid separator 97
  • the case where the processing cup 16 of the type which performs separation has been described.
  • a type of processing cup capable of performing gas-liquid separation between the atmosphere and the processing liquid inside may be used.
  • This type of processing cup includes one or a plurality of cups arranged so as to surround the spin chuck 5 and drainage pipes connected to each cup. Further, in the processing chamber 4 having this type of processing cup, an exhaust port is opened at the bottom of the side wall of the partition wall 18 or at the bottom of the partition wall 18, and the inside of the exhaust port is formed by an exhaust duct connected to the exhaust port. By being sucked, the atmosphere in the lower space of the processing chamber 4 is exhausted.
  • a common drainage groove (drainage groove 80) for draining a plurality of types of treatment liquids is provided.
  • the distribution destination of the drainage (treatment liquid) is switched between the plurality of drainage branch pipes 82 to 84 in accordance with the type of the drainage (treatment liquid).
  • a drain groove may be provided for each type of processing liquid in a one-to-one correspondence. That is, a drainage groove for sulfuric acid-containing liquid, a drainage groove for cleaning chemicals, and a drainage groove for water may be provided individually. In this case, it is not necessary to switch the flow destination of the drainage (treatment liquid) between the plurality of drainage branch pipes.
  • IPA is exemplified as an example of the organic solvent used as an example of the second chemical fluid, but methanol, ethanol, HFE (hydrofluoroether), acetone, and the like are exemplified as the organic solvent. it can.
  • the organic solvent may be a liquid mixed with other components as well as a case where it is composed of only a single component.
  • a mixed solution of IPA and acetone or a mixed solution of IPA and methanol may be used.
  • the combination of a sulfuric acid-containing liquid such as SPM and an organic solvent such as IPA has been exemplified as a combination of chemical liquids that are dangerous to contact, but other combinations such as aqua regia and sulfuric acid can be contacted. It can be illustrated as a combination that involves danger.
  • the present invention is also widely applicable to combinations that produce a product (for example, a salt) by contact, such as combinations of acids and alkalis described above, that is, combinations of drug fluids that are not suitable for contact.
  • a product for example, a salt
  • combinations of acids and alkalis described above that is, combinations of drug fluids that are not suitable for contact.
  • the first drug fluid (fluid containing the drug component) has been described as a liquid (ie, liquid containing the drug component).
  • the first drug fluid ie, gas containing the drug component
  • the first drug fluid ie, gas containing the drug component
  • the second drug fluid has been described as being a liquid, a gas may be employed as the second drug fluid.
  • carbonated water was illustrated as water which substitutes the inside of chemical
  • DIW Deionized water
  • electrolytic ion water electrolytic ion water
  • hydrogen water ozone It may be either water or hydrochloric acid water having a diluted concentration (for example, about 10 ppm to 100 ppm).

Abstract

This substrate processing apparatus includes: a processing chamber; a substrate retention unit which is disposed within the processing chamber, and which retains a substrate; and a first nozzle which has a discharge port for discharging a fluid toward a main surface of the substrate being retained by the substrate retention unit. This substrate processing apparatus executes: a first processing step for subjecting the substrate to a process using a first chemical fluid by discharging the first chemical fluid from the first nozzle toward the main surface of the substrate; a second processing step for subjecting the substrate to a process using a second chemical fluid by supplying the second chemical fluid to the main surface of the substrate; and a water replacement step for replacing what is inside of a chemical fluid pipe with water by supplying water from a first water supply unit to the chemical fluid pipe before and/or after the execution of the first processing step, and/or before and/or after the execution of the second processing step.

Description

基板処理装置および基板処理方法Substrate processing apparatus and substrate processing method
 この発明は、第1の薬剤流体および第2の薬剤流体を用いて基板を処理する基板処理装置および基板処理方法に関する。前記基板の例には、半導体ウエハ、液晶表示装置用基板、プラズマディスプレイ用基板、FED(Field Emission Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板などが含まれる。 The present invention relates to a substrate processing apparatus and a substrate processing method for processing a substrate using a first chemical fluid and a second chemical fluid. Examples of the substrate include a semiconductor wafer, a liquid crystal display substrate, a plasma display substrate, an FED (Field 基板 Emission Display) substrate, an optical disk substrate, a magnetic disk substrate, a magneto-optical disk substrate, a photomask substrate, Ceramic substrates, solar cell substrates and the like are included.
 半導体装置や液晶表示装置の製造工程には、半導体ウエハや液晶表示パネル用ガラス基板などの基板の表面に薬液による処理を施すために、基板を一枚ずつ処理する枚葉式の基板処理装置が用いられることがある。枚葉式の基板処理装置は、隔壁により区画された処処理チャンバの内部に、基板をほぼ水平に保持して回転させるスピンチャックと、スピンチャックに保持されている基板の上面に第1の薬液を供給するための第1の薬液ノズルと、スピンチャックに保持されている基板の上面に第2の薬液を供給するための第2の薬液ノズルとを備えている。第1の薬液ノズルは吐出口を有し、第1の薬液ノズルには、薬液供給源からの薬液を第1の薬液ノズルに供給するための薬液配管が接続されている。 In the manufacturing process of a semiconductor device or a liquid crystal display device, a single-wafer type substrate processing apparatus that processes substrates one by one in order to perform processing with a chemical on the surface of a substrate such as a semiconductor wafer or a glass substrate for a liquid crystal display panel Sometimes used. The single-wafer type substrate processing apparatus includes a spin chuck that rotates a substrate held substantially horizontally inside a processing chamber partitioned by a partition, and a first chemical solution on the upper surface of the substrate held by the spin chuck. And a second chemical nozzle for supplying the second chemical liquid to the upper surface of the substrate held by the spin chuck. The first chemical liquid nozzle has a discharge port, and a chemical liquid pipe for supplying chemical liquid from a chemical liquid supply source to the first chemical liquid nozzle is connected to the first chemical liquid nozzle.
 このような基板処理装置において、第1の薬液と第2の薬液とが接触に危険を伴うような組合せ(すなわち、接触に適さないような組合せ)であることがある。このような接触に適さないような組合せの薬液を用いた処理を一つの処理チャンバで行う場合、処理チャンバの内部で接触しないように、一方の薬液の供給時に他方の薬液用のバルブの新規開成を禁止したり、基板の回転速度の検出値が回転数範囲外になると薬液用のバルブの開成を禁止したりするインターロック処理の実行が提案されている(たとえば特許文献1,2参照)。 In such a substrate processing apparatus, there is a case where the first chemical solution and the second chemical solution are a combination in which contact is dangerous (that is, a combination not suitable for contact). When processing using a combination of chemicals that is not suitable for such contact is performed in one processing chamber, a new valve for the other chemical solution is opened when one chemical solution is supplied so as not to contact inside the processing chamber. It has been proposed to execute an interlock process that prohibits the opening of a chemical solution valve when the detected value of the rotation speed of the substrate is outside the rotation speed range (see, for example, Patent Documents 1 and 2).
特許第4917469号公報Japanese Patent No. 4917469 特許第4917470号公報Japanese Patent No. 4917470
 しかしながら、第2の薬剤流体(第2の薬液)を用いた処理中に、スピンチャックの周辺に第1のノズルが配置されていると、第2の薬剤流体を含む雰囲気が、吐出口を介して薬剤流体配管(薬液配管)に進入するおそれがある。薬剤流体配管の内部への第2の薬剤流体を含む雰囲気の進入は、第1の薬剤流体と第2の薬剤流体との接触の原因になり得る。 However, if the first nozzle is disposed around the spin chuck during the processing using the second chemical fluid (second chemical solution), the atmosphere containing the second chemical fluid is passed through the discharge port. May enter the chemical fluid piping (chemical fluid piping). The entry of the atmosphere containing the second drug fluid into the drug fluid piping may cause contact between the first drug fluid and the second drug fluid.
 そこで、この発明の目的は、基板処理に用いられる複数種の薬剤流体の組合せが接触に適さないような組合せであっても、薬剤流体配管の内部におけるそれらの薬剤流体の接触の発生を防止しながら、当該複数種の薬剤流体を用いた処理を一つの処理チャンバにおいて完遂できる基板処理装置および基板処理方法を提供することである。 Accordingly, an object of the present invention is to prevent the occurrence of contact of these chemical fluids inside the chemical fluid piping even if the combination of a plurality of types of chemical fluids used for substrate processing is not suitable for contact. However, it is an object of the present invention to provide a substrate processing apparatus and a substrate processing method capable of completing processing using the plurality of types of chemical fluids in one processing chamber.
 この発明は、処理チャンバと、前記処理チャンバ内に配置されて、基板を保持する基板保持ユニットと、前記基板保持ユニットに保持されている基板の主面に向けて流体を吐出するための吐出口を有する第1のノズルと、前記第1のノズルに接続され、内部が前記吐出口に連通する薬剤流体配管と、前記薬剤流体配管に、第1の薬剤流体を供給するための第1の薬剤流体供給ユニットと、前記薬剤流体配管に水を供給するための第1の水供給ユニットと、前記基板保持ユニットに保持されている基板の主面に、前記第1の薬剤流体とは種類の異なる流体である第2の薬剤流体を供給するための第2の薬剤流体供給ユニットと、前記第1の薬剤流体供給ユニット、前記第2の薬剤流体供給ユニットおよび前記第1の水供給ユニットを制御する制御装置とを含み、前記制御装置は、前記第1の薬剤流体を前記薬剤流体配管に供給することにより前記第1のノズルから前記基板の主面に向けて前記第1の薬剤流体を吐出して、前記第1の薬剤流体を用いた処理を前記基板に施す第1の処理工程と、前記第2の薬剤流体を前記基板の主面に供給して、前記第2の薬剤流体を用いた処理を前記基板に施す第2の処理工程と、前記第1の処理工程の実行前および/もしくは実行後、ならびに/または、前記第2の処理工程の実行前および/もしくは実行後において、前記第1の水供給ユニットからの水を前記薬剤流体配管に供給して、前記薬剤流体配管の内部を前記水で置換する水置換工程とを実行する、基板処理装置を提供する。 The present invention includes a processing chamber, a substrate holding unit that is disposed in the processing chamber and holds a substrate, and a discharge port for discharging a fluid toward the main surface of the substrate held by the substrate holding unit A first fluid nozzle connected to the first nozzle and having an inside communicating with the discharge port, and a first medicine for supplying the first fluid to the medicine fluid pipe A fluid supply unit, a first water supply unit for supplying water to the chemical fluid pipe, and a main surface of a substrate held by the substrate holding unit are different from the first chemical fluid. A second drug fluid supply unit for supplying a second drug fluid, which is a fluid, and the first drug fluid supply unit, the second drug fluid supply unit, and the first water supply unit; And the controller discharges the first drug fluid from the first nozzle toward the main surface of the substrate by supplying the first drug fluid to the drug fluid pipe. Then, a first processing step of applying a treatment using the first chemical fluid to the substrate, and supplying the second chemical fluid to the main surface of the substrate, using the second chemical fluid. Before and / or after execution of the second processing step and / or after execution of the first processing step, and / or before and / or after execution of the second processing step. Provided is a substrate processing apparatus for performing a water replacement step of supplying water from one water supply unit to the chemical fluid pipe and replacing the inside of the chemical fluid pipe with the water.
 この構成によれば、第1の薬剤流体を用いる第1の処理工程、および第2の薬剤流体を用いる第2薬液供給工程が、共通の処理チャンバ内において実行される。第1の処理工程では、第1の薬剤流体を薬剤流体配管に供給することにより、第1のノズルから基板の主面に向けて第1の薬剤流体を吐出される。 According to this configuration, the first processing step using the first chemical fluid and the second chemical liquid supply step using the second chemical fluid are performed in the common processing chamber. In the first processing step, the first chemical fluid is discharged from the first nozzle toward the main surface of the substrate by supplying the first chemical fluid to the chemical fluid piping.
 また、第1の処理工程の実行前および/もしくは実行後、ならびに/または、前記第2の処理工程の実行前および/もしくは実行後において、薬剤流体配管の内部を水で置換する水置換工程が実行される。 In addition, a water replacement step of replacing the inside of the chemical fluid piping with water before and / or after execution of the first processing step and / or before and / or after execution of the second processing step. Executed.
 第1の処理工程の終了後および/または第2の処理工程の開始前に、薬剤流体配管の内部に第1の薬剤流体が残留していることがある。この場合、第1の処理工程の終了後および/または第2の処理工程の開始前において薬剤流体配管の内部を水で置換することにより、薬剤流体配管から、第1の薬剤流体を除去できる。そのため、第2の処理工程の開始時には、薬剤流体配管の内部に第1の薬剤流体は残留していない。したがって、当該第2の処理工程において第2の薬剤流体が薬剤流体配管内に進入しても、当該第2の薬剤流体は第1の薬剤流体と接触しない。これにより、薬剤流体配管の内部における第1の薬剤流体と第2の薬剤流体との接触を防止できる。 The first chemical fluid may remain inside the chemical fluid piping after the end of the first processing step and / or before the start of the second processing step. In this case, the first drug fluid can be removed from the drug fluid pipe by replacing the inside of the drug fluid pipe with water after the end of the first process step and / or before the start of the second process step. Therefore, at the start of the second processing step, the first chemical fluid does not remain inside the chemical fluid piping. Therefore, even if the second drug fluid enters the drug fluid piping in the second processing step, the second drug fluid does not come into contact with the first drug fluid. Thereby, the contact with the 1st chemical fluid and the 2nd chemical fluid in the inside of chemical fluid piping can be prevented.
 また、第1の処理工程の開始前および/または第2の処理工程の終了後に、薬剤流体配管の内部に第2の薬剤流体が付着していることがある。この場合、第1の処理工程の開始前および/または第2の処理工程の終了後において薬剤流体配管の内部を水で置換することにより、薬剤流体配管から、第2の薬剤流体を除去できる。そのため、第1の処理工程の開始時には、薬剤流体配管の内部に第2の薬剤流体は残留していない。したがって、当該第1の処理工程において第1の薬剤流体が薬剤流体配管内に供給されても、当該第1の薬剤流体は第2の薬剤流体と接触しない。これにより、薬剤流体配管の内部における第1の薬剤流体と第2の薬剤流体との接触を防止できる。 Also, the second chemical fluid may adhere to the inside of the chemical fluid piping before the start of the first processing step and / or after the end of the second processing step. In this case, the second drug fluid can be removed from the drug fluid pipe by replacing the inside of the drug fluid pipe with water before the start of the first process step and / or after the end of the second process step. Therefore, at the start of the first processing step, the second chemical fluid does not remain inside the chemical fluid piping. Therefore, even if the first drug fluid is supplied into the drug fluid pipe in the first processing step, the first drug fluid does not come into contact with the second drug fluid. Thereby, the contact with the 1st chemical fluid and the 2nd chemical fluid in the inside of chemical fluid piping can be prevented.
 以上により、基板処理に用いられる複数種の薬剤流体(第1の薬剤流体および第2の薬剤流体)の組合せが接触に適さないような組合せであっても、薬剤流体配管の内部におけるそれらの薬剤流体の接触の発生を防止しながら、当該複数種の薬剤流体を用いた処理を一つの処理チャンバにおいて完遂できる基板処理装置を提供できる。 As described above, even if the combination of a plurality of types of chemical fluids (first chemical fluid and second chemical fluid) used for substrate processing is not suitable for contact, those chemicals inside the chemical fluid piping are used. It is possible to provide a substrate processing apparatus capable of completing the processing using the plurality of types of chemical fluids in one processing chamber while preventing the occurrence of fluid contact.
 また、この明細書において、「接触に適さないような組合せ」であるとは、「接触に危険が伴うような組合せ」だけでなく、「接触により生成物を生成するような組合せ」も含む趣旨である。「接触により生成物を生成するような組合せ」には、酸とアルカリとの組合せも含む。 Further, in this specification, “a combination that is not suitable for contact” includes not only “a combination that is dangerous to contact” but also “a combination that generates a product by contact”. It is. “Combination that produces a product by contact” includes a combination of an acid and an alkali.
 この発明の一実施形態では、前記基板保持ユニットに保持されている基板の主面に対向する基板対向面を有する対向部材をさらに含み、前記第1のノズルの前記吐出口は、前記基板対向面に開口している。 In one embodiment of the present invention, the substrate holding unit further includes a facing member having a substrate facing surface facing the main surface of the substrate held by the substrate holding unit, and the discharge port of the first nozzle has the substrate facing surface. Is open.
 この構成によれば、基板の主面に対向する対向部材が設けられており、対向部材の基板対向面に、第1のノズルの吐出口が開口している。そのため、第2の処理工程において、基板の主面への第2の薬剤流体の供給に伴って第2の薬剤流体が、吐出口から薬剤流体配管の内部に進入するおそれがある。薬剤流体配管の内部への第2の薬剤流体を含む雰囲気の進入は、第1の薬剤流体と第2の薬剤流体との接触の原因になり得る。 According to this configuration, the facing member that faces the main surface of the substrate is provided, and the discharge port of the first nozzle is opened on the surface of the facing member that faces the substrate. Therefore, in the second processing step, the second chemical fluid may enter the inside of the chemical fluid piping from the discharge port with the supply of the second chemical fluid to the main surface of the substrate. The entry of the atmosphere containing the second drug fluid into the drug fluid piping may cause contact between the first drug fluid and the second drug fluid.
 しかしながら、第1の処理工程の実行前および/もしくは実行後、ならびに/または、前記第2の処理工程の実行前および/もしくは実行後において、薬剤流体配管の内部が水で置換される。そのため、基板の主面に対向する対向部材が設けられ、この対向部材の基板対向面に第1のノズルの吐出口が開口している場合であっても、薬剤流体配管の内部における第1の薬剤流体と第2の薬剤流体との接触を防止できる。 However, before and / or after the execution of the first processing step and / or before and / or after the execution of the second processing step, the inside of the chemical fluid piping is replaced with water. Therefore, even if a counter member facing the main surface of the substrate is provided and the discharge port of the first nozzle is open on the substrate counter surface of the counter member, the first inside the drug fluid piping is provided. Contact between the drug fluid and the second drug fluid can be prevented.
 また、前記基板処理装置は、前記薬剤流体配管の内部を吸引するための吸引ユニットをさらに含んでいてもよい。前記制御装置は前記吸引ユニットをさらに制御して、前記水置換工程の終了後、前記薬剤流体配管の内部を吸引する第1の吸引工程をさらに実行してもよい。 The substrate processing apparatus may further include a suction unit for sucking the inside of the chemical fluid piping. The control device may further control the suction unit to further execute a first suction step of sucking the inside of the drug fluid piping after the water replacement step is completed.
 この構成によれば、水置換工程の終了後、薬剤流体配管の内部が吸引される。この吸引によって、薬剤流体配管の内部から水が除去され、吸引後には薬剤流体配管の内部に水が残存しないか、あるいは薬剤流体配管の内部に残存する水の量は少ない。これにより、水置換工程の終了後における第1のノズルからの水の落液を抑制または防止でき、ゆえに、基板の主面のパーティクル汚染を抑制または防止できる。 According to this configuration, the inside of the chemical fluid piping is sucked after the water replacement step is completed. By this suction, water is removed from the inside of the chemical fluid piping, and after suction, no water remains inside the chemical fluid piping, or the amount of water remaining inside the chemical fluid piping is small. Thereby, it is possible to suppress or prevent water falling from the first nozzle after the completion of the water replacement step, and hence it is possible to suppress or prevent particle contamination on the main surface of the substrate.
 前記制御装置は、前記第1の処理工程を、前記第2の処理工程の終了後に開始してもよい。前記制御装置は、前記第2の処理工程に先立って実行される第1の水置換工程を、前記水置換工程として実行してもよい。 The control device may start the first processing step after the end of the second processing step. The said control apparatus may perform the 1st water replacement process performed prior to a said 2nd process process as the said water replacement process.
 この構成によれば、第2の処理工程に先立って第1の水置換工程が実行される。第2の処理工程の開始前には、前回の処理で用いられた第1の薬剤流体が薬剤流体配管の内部に残存しているおそれがある。しかしながら、第2の処理工程に先立って薬剤流体配管の内部を水で置換することにより、第2の処理工程の開始時には、薬剤流体配管の内部に第1の薬剤流体は残留していない。したがって、当該第2の処理工程において第2の薬剤流体が薬剤流体配管内に進入しても、薬剤流体配管の内部で第1の薬剤流体と接触しない。これにより、第2の処理工程において、薬剤流体配管の内部における第1の薬剤流体と第2の薬剤流体との接触を防止できる。 According to this configuration, the first water replacement step is executed prior to the second treatment step. Before the start of the second processing step, there is a possibility that the first drug fluid used in the previous process remains in the drug fluid piping. However, by replacing the inside of the drug fluid pipe with water prior to the second process step, the first drug fluid does not remain inside the drug fluid pipe at the start of the second process step. Therefore, even if the second drug fluid enters the drug fluid pipe in the second processing step, it does not contact the first drug fluid inside the drug fluid pipe. Thereby, in a 2nd process process, the contact with the 1st chemical fluid and the 2nd chemical fluid in the inside of chemical fluid piping can be prevented.
 また、前記制御装置は、前記第1の処理工程を、前記第2の処理工程の終了後に開始してもよい。前記制御装置は、前記第2の処理工程の後かつ前記第1の処理工程に先立って実行される第2の水置換工程を、前記水置換工程として実行してもよい。 Further, the control device may start the first processing step after the second processing step is completed. The control device may execute a second water replacement step executed after the second processing step and prior to the first processing step as the water replacement step.
 この構成によれば、第2の処理工程の後、第1の処理工程に先立って第2の水置換工程が実行される。第2の処理工程の終了後でかつ第1の処理工程の開始前には、第2の処理工程において用いられた第2の薬剤流体が薬剤流体配管内に進入し、当該薬剤流体配管の内部に残存しているおそれがある。しかしながら、第1の処理工程に先立って薬剤流体配管の内部を水で置換することにより、第1の処理工程の開始時には、薬剤流体配管の内部に第2の薬剤流体は残留していない。したがって、当該第1の処理工程において薬剤流体配管に第1の薬剤流体が供給されても、第2の薬剤流体と接触しない。これにより、第1の処理工程において、薬剤流体配管の内部における第1の薬剤流体と第2の薬剤流体との接触を防止できる。 According to this configuration, after the second processing step, the second water replacement step is executed prior to the first processing step. After the end of the second processing step and before the start of the first processing step, the second chemical fluid used in the second processing step enters the chemical fluid piping, and the inside of the chemical fluid piping May remain. However, by replacing the inside of the drug fluid pipe with water prior to the first process step, the second drug fluid does not remain inside the drug fluid pipe at the start of the first process step. Therefore, even if the first drug fluid is supplied to the drug fluid pipe in the first processing step, it does not come into contact with the second drug fluid. Thereby, in a 1st process process, the contact with the 1st chemical fluid and the 2nd chemical fluid in the inside of chemical fluid piping can be prevented.
 また、前記制御装置は、前記第2の処理工程の後において前記基板の主面から前記第2の薬剤流体を水で洗い流すべく、前記第1の処理工程に先立って、前記基板の主面に水を供給する第1の水供給工程をさらに実行してもよい。前記制御装置は、前記第1の水供給工程において前記第2の水置換工程を実行してもよい。 In addition, the control device may be disposed on the main surface of the substrate prior to the first processing step so that the second chemical fluid is washed away from the main surface of the substrate with water after the second processing step. You may further perform the 1st water supply process which supplies water. The control device may execute the second water replacement step in the first water supply step.
 この構成によれば、第2の処理工程の後において基板の主面から第2の薬剤流体を水で洗い流す第1の水供給工程に並行して、薬剤流体配管の内部を水で置換する第2の水置換工程を実行する。これにより、第1の水供給工程を、第2の水置換工程とタイミングで行う場合と比較して、全体の処理時間を短縮できる。 According to this configuration, in parallel with the first water supply step in which the second chemical fluid is washed away from the main surface of the substrate with water after the second processing step, the inside of the chemical fluid piping is replaced with water. 2 water displacement steps are performed. Thereby, compared with the case where a 1st water supply process is performed at a timing with a 2nd water substitution process, the whole processing time can be shortened.
 また、前記基板処理装置は、前記第1のノズルとは別のノズルであって、前記基板保持ユニットに保持されている基板の主面に向けて流体を吐出するための第2のノズルと、前記第2のノズルに水を供給するための第2の水供給ユニットとをさらに含んでいてもよい。前記制御装置は前記第2の水供給ユニットをさらに制御するものであってもよい。前記制御装置は、前記第1の処理工程を、前記第2の処理工程の終了後に開始し、かつ、前記第2の処理工程の後かつ前記第1の処理工程の開始に先立って、前記第2のノズルに水を供給することにより前記第2のノズルから前記基板の主面に向けて水を吐出開始する第2の水供給工程を実行してもよい。前記制御装置は、前記第1の処理工程における前記薬剤流体配管への前記第1の薬剤流体の供給を、前記第2の水供給工程の終了に先立って開始してもよい。 Further, the substrate processing apparatus is a nozzle different from the first nozzle, and a second nozzle for discharging a fluid toward the main surface of the substrate held by the substrate holding unit; And a second water supply unit for supplying water to the second nozzle. The control device may further control the second water supply unit. The control device starts the first processing step after the end of the second processing step, and after the second processing step and before the start of the first processing step, the first processing step. You may perform the 2nd water supply process which starts discharge of water toward the main surface of the said board | substrate from the said 2nd nozzle by supplying water to 2 nozzles. The control device may start the supply of the first chemical fluid to the chemical fluid piping in the first processing step prior to the end of the second water supply step.
 この構成によれば、第2の水供給の終了後直ちに第1の薬剤流体を吐出口から吐出することができる。すなわち、第2の水供給工程の終了後直ちに第1の処理工程を開始できる。これにより、全体の処理時間を短縮できる。 According to this configuration, the first chemical fluid can be discharged from the discharge port immediately after the end of the second water supply. That is, the first treatment process can be started immediately after the end of the second water supply process. Thereby, the whole processing time can be shortened.
 また、前記制御装置は、前記第2の水供給工程の終了前に、前記第1の処理工程を開始してもよい。 Further, the control device may start the first treatment process before the end of the second water supply process.
 この構成によれば、第2の水供給工程の終了前から、第1の薬剤流体を吐出口から吐出することができる。これにより、全体の処理時間をより一層短縮できる。 According to this configuration, the first chemical fluid can be discharged from the discharge port before the end of the second water supply step. Thereby, the whole processing time can be further shortened.
 また、前記制御装置は、前記1の処理工程における前記第1のノズルからの第1の薬剤流体の吐出終了後に、前記薬剤流体配管の内部を吸引する第2の吸引工程をさらに実行してもよい。 Further, the control device may further execute a second suction step of sucking the inside of the chemical fluid pipe after the discharge of the first chemical fluid from the first nozzle in the first processing step. Good.
 また、前記洗浄液は、炭酸水を含んでいてもよい。 Further, the cleaning liquid may contain carbonated water.
 また、前記第1の薬剤流体は、硫酸含有液を含み、前記第2の薬剤流体は、有機溶剤を含んでいてもよい。 Further, the first chemical fluid may contain a sulfuric acid-containing liquid, and the second chemical fluid may contain an organic solvent.
 この発明は、処理チャンバ内で基板を保持する基板保持工程と、第1の薬剤流体を、第1のノズルに接続された薬剤流体配管に供給することにより前記第1のノズルから前記基板の主面に向けて前記第1の薬剤流体を吐出して、前記第1の薬剤流体を用いた処理を前記基板に施す第1の処理工程と、前記第1の薬剤流体とは種類の異なる流体である第2の薬剤流体を前記基板の主面に供給して、前記第2の薬剤流体を用いた処理を前記基板に施す第2の処理工程と、前記第1の処理工程の実行前および/もしくは実行後、ならびに/または、前記第2の処理工程の実行前および/もしくは実行後において、前記第1の水供給ユニットからの水を前記薬剤流体配管に供給して、前記薬剤流体配管の内部を前記水で置換する水置換工程とを含む、基板処理方法を提供する。 The present invention provides a substrate holding step for holding a substrate in a processing chamber, and supplying a first chemical fluid to a chemical fluid pipe connected to the first nozzle, thereby supplying the main substrate from the first nozzle. A first processing step in which the first chemical fluid is ejected toward the surface and a treatment using the first chemical fluid is performed on the substrate; and the first chemical fluid is a different type of fluid. A second processing step in which a second chemical fluid is supplied to the main surface of the substrate and a treatment using the second chemical fluid is performed on the substrate; and before the execution of the first processing step and / or Alternatively, after the execution and / or before and / or after the execution of the second processing step, the water from the first water supply unit is supplied to the chemical fluid pipe, and the inside of the chemical fluid pipe A water replacement step of replacing the water with the water To provide a substrate processing method.
 この方法によれば、第1の薬剤流体を用いる第1の処理工程、および第2の薬剤流体を用いる第2薬液供給工程が、共通の処理チャンバ内において実行される。第1の処理工程では、第1の薬剤流体を薬剤流体配管に供給することにより、第1のノズルから基板の主面に向けて第1の薬剤流体を吐出される。 According to this method, the first processing step using the first chemical fluid and the second chemical liquid supply step using the second chemical fluid are performed in the common processing chamber. In the first processing step, the first chemical fluid is discharged from the first nozzle toward the main surface of the substrate by supplying the first chemical fluid to the chemical fluid piping.
 また、第1の処理工程の実行前および/もしくは実行後、ならびに/または、前記第2の処理工程の実行前および/もしくは実行後において、薬剤流体配管の内部を水で置換する水置換工程が実行される。 In addition, a water replacement step of replacing the inside of the chemical fluid piping with water before and / or after execution of the first processing step and / or before and / or after execution of the second processing step. Executed.
 第1の処理工程の終了後および/または第2の処理工程の開始前に、薬剤流体配管の内部に第1の薬剤流体が残留していることがある。この場合、第1の処理工程の終了後および/または第2の処理工程の開始前において薬剤流体配管の内部を水で置換することにより、薬剤流体配管から、第1の薬剤流体を除去できる。そのため、第2の処理工程の開始時には、薬剤流体配管の内部に第1の薬剤流体は残留していない。したがって、当該第2の処理工程において第2の薬剤流体が薬剤流体配管内に進入しても、当該第2の薬剤流体は第1の薬剤流体と接触しない。これにより、薬剤流体配管の内部における第1の薬剤流体と第2の薬剤流体との接触を防止できる。 The first chemical fluid may remain inside the chemical fluid piping after the end of the first processing step and / or before the start of the second processing step. In this case, the first drug fluid can be removed from the drug fluid pipe by replacing the inside of the drug fluid pipe with water after the end of the first process step and / or before the start of the second process step. Therefore, at the start of the second processing step, the first chemical fluid does not remain inside the chemical fluid piping. Therefore, even if the second drug fluid enters the drug fluid piping in the second processing step, the second drug fluid does not come into contact with the first drug fluid. Thereby, the contact with the 1st chemical fluid and the 2nd chemical fluid in the inside of chemical fluid piping can be prevented.
 また、第1の処理工程の開始前および/または第2の処理工程の終了後に、薬剤流体配管の内部に第2の薬剤流体が付着していることがある。この場合、第1の処理工程の開始前および/または第2の処理工程の終了後において薬剤流体配管の内部を水で置換することにより、薬剤流体配管から、第2の薬剤流体を除去できる。そのため、第1の処理工程の開始時には、薬剤流体配管の内部に第2の薬剤流体は残留していない。したがって、当該第1の処理工程において第1の薬剤流体が薬剤流体配管内に供給されても、当該第1の薬剤流体は第2の薬剤流体と接触しない。これにより、薬剤流体配管の内部における第1の薬剤流体と第2の薬剤流体との接触を防止できる。 Also, the second chemical fluid may adhere to the inside of the chemical fluid piping before the start of the first processing step and / or after the end of the second processing step. In this case, the second drug fluid can be removed from the drug fluid pipe by replacing the inside of the drug fluid pipe with water before the start of the first process step and / or after the end of the second process step. Therefore, at the start of the first processing step, the second chemical fluid does not remain inside the chemical fluid piping. Therefore, even if the first drug fluid is supplied into the drug fluid pipe in the first processing step, the first drug fluid does not come into contact with the second drug fluid. Thereby, the contact with the 1st chemical fluid and the 2nd chemical fluid in the inside of chemical fluid piping can be prevented.
 以上により、基板処理に用いられる複数種の薬剤流体(第1の薬剤流体および第2の薬剤流体)の組合せが接触に適さないような組合せであっても、薬剤流体配管の内部におけるそれらの薬剤流体の接触の発生を防止しながら、当該複数種の薬剤流体を用いた処理を一つの処理チャンバにおいて完遂できる基板処理装置を提供できる。 As described above, even if the combination of a plurality of types of chemical fluids (first chemical fluid and second chemical fluid) used for substrate processing is not suitable for contact, those chemicals inside the chemical fluid piping are used. It is possible to provide a substrate processing apparatus capable of completing the processing using the plurality of types of chemical fluids in one processing chamber while preventing the occurrence of fluid contact.
 また、この明細書において、「接触に適さないような組合せ」であるとは、「接触に危険が伴うような組合せ」だけでなく、「接触により生成物を生成するような組合せ」も含む趣旨である。「接触により生成物を生成するような組合せ」には、酸とアルカリとの組合せも含む。 Further, in this specification, “a combination that is not suitable for contact” includes not only “a combination that is dangerous to contact” but also “a combination that generates a product by contact”. It is. “Combination that produces a product by contact” includes a combination of an acid and an alkali.
 この発明の一実施形態では、前記基板処理方法は、前記水置換工程の終了後、前記薬剤流体配管の内部を吸引する第1の吸引工程をさらに含む。 In one embodiment of the present invention, the substrate processing method further includes a first suction step of sucking the inside of the chemical fluid piping after completion of the water replacement step.
 この方法によれば、水置換工程の終了後、薬剤流体配管の内部が吸引される。この吸引によって、薬剤流体配管の内部から水が除去され、吸引後には薬剤流体配管の内部に水が残存しないか、あるいは薬剤流体配管の内部に残存する水の量は少ない。これにより、水置換工程の終了後における第1のノズルからの水の落液を抑制または防止でき、ゆえに、基板の主面のパーティクル汚染を抑制または防止できる。 According to this method, the inside of the chemical fluid piping is sucked after the water replacement step is completed. By this suction, water is removed from the inside of the chemical fluid piping, and after suction, no water remains inside the chemical fluid piping, or the amount of water remaining inside the chemical fluid piping is small. Thereby, it is possible to suppress or prevent water falling from the first nozzle after the completion of the water replacement step, and hence it is possible to suppress or prevent particle contamination on the main surface of the substrate.
 また、前記第1の処理工程は、前記第2の処理工程の終了後に開始する工程を含んでいてもよい。前記水置換工程は、前記第2の処理工程に先立って実行される第1の水置換工程を含んでいてもよい。 Further, the first processing step may include a step that starts after the end of the second processing step. The water replacement step may include a first water replacement step that is performed prior to the second treatment step.
 この方法によれば、第2の処理工程に先立って第1の水置換工程が実行される。第2の処理工程の開始前には、前回の処理で用いられた第1の薬剤流体が薬剤流体配管の内部に残存しているおそれがある。しかしながら、第2の処理工程に先立って薬剤流体配管の内部を水で置換することにより、第2の処理工程の開始時には、薬剤流体配管の内部に第1の薬剤流体は残留していない。したがって、当該第2の処理工程において第2の薬剤流体が薬剤流体配管内に進入しても、薬剤流体配管の内部で第1の薬剤流体と接触しない。これにより、第2の処理工程において、薬剤流体配管の内部における第1の薬剤流体と第2の薬剤流体との接触を防止できる。 According to this method, the first water replacement step is performed prior to the second treatment step. Before the start of the second processing step, there is a possibility that the first drug fluid used in the previous process remains in the drug fluid piping. However, by replacing the inside of the drug fluid pipe with water prior to the second process step, the first drug fluid does not remain inside the drug fluid pipe at the start of the second process step. Therefore, even if the second drug fluid enters the drug fluid pipe in the second processing step, it does not contact the first drug fluid inside the drug fluid pipe. Thereby, in a 2nd process process, the contact with the 1st chemical fluid and the 2nd chemical fluid in the inside of chemical fluid piping can be prevented.
 また、前記第1の処理工程は、前記第2の処理工程の終了後に開始する工程を含んでいてもよい。前記水置換工程は、前記第2の処理工程の後かつ前記第1の処理工程に先立って実行される第2の水置換工程を含んでいてもよい。 Further, the first processing step may include a step that starts after the end of the second processing step. The water replacement step may include a second water replacement step that is performed after the second processing step and prior to the first processing step.
 この方法によれば、第2の処理工程の後、第1の処理工程に先立って第2の水置換工程が実行される。第2の処理工程の終了後でかつ第1の処理工程の開始前には、第2の処理工程において用いられた第2の薬剤流体が薬剤流体配管内に進入し、当該薬剤流体配管の内部に残存しているおそれがある。しかしながら、第1の処理工程に先立って薬剤流体配管の内部を水で置換することにより、第1の処理工程の開始時には、薬剤流体配管の内部に第2の薬剤流体は残留していない。したがって、当該第1の処理工程において薬剤流体配管に第1の薬剤流体が供給されても、第2の薬剤流体と接触しない。これにより、第1の処理工程において、薬剤流体配管の内部における第1の薬剤流体と第2の薬剤流体との接触を防止できる。 According to this method, after the second treatment step, the second water replacement step is performed prior to the first treatment step. After the end of the second processing step and before the start of the first processing step, the second chemical fluid used in the second processing step enters the chemical fluid piping, and the inside of the chemical fluid piping May remain. However, by replacing the inside of the drug fluid pipe with water prior to the first process step, the second drug fluid does not remain inside the drug fluid pipe at the start of the first process step. Therefore, even if the first drug fluid is supplied to the drug fluid pipe in the first processing step, it does not come into contact with the second drug fluid. Thereby, in a 1st process process, the contact with the 1st chemical fluid and the 2nd chemical fluid in the inside of chemical fluid piping can be prevented.
 また、前記基板処理方法は、前記第2の処理工程の後において前記基板の主面から前記第2の薬剤流体を水で洗い流すべく、前記第1の処理工程に先立って、前記基板の主面に水を供給する第1の水供給工程をさらに含んでいてもよい。前記第1の水供給工程は、前記第2の水置換工程を含んでいてもよい。 In addition, the substrate processing method may include the main surface of the substrate prior to the first processing step so that the second chemical fluid is washed away from the main surface of the substrate with water after the second processing step. A first water supply step for supplying water to the liquid may be further included. The first water supply step may include the second water replacement step.
 この方法によれば、第2の処理工程の後において基板の主面から第2の薬剤流体を水で洗い流す第1の水供給工程に並行して、薬剤流体配管の内部を水で置換する第2の水置換工程を実行する。これにより、第1の水供給工程を、第2の水置換工程とタイミングで行う場合と比較して、全体の処理時間を短縮できる。 According to this method, in parallel with the first water supply step in which the second chemical fluid is washed away from the main surface of the substrate with water after the second processing step, the inside of the chemical fluid piping is replaced with water. 2 water displacement steps are performed. Thereby, compared with the case where a 1st water supply process is performed at a timing with a 2nd water substitution process, the whole processing time can be shortened.
 また、前記第1の処理工程は、前記第2の処理工程の終了後に開始する工程を含んでいてもよい。前記基板処理方法は、前記第2の処理工程の後かつ前記第1の処理工程に先立って、前記第1のノズルとは別のノズルである第2のノズルから前記基板の主面に向けて水を吐出する第2の水供給工程をさらに含んでいてもよい。前記第1の処理工程は、前記薬剤流体配管への前記第1の薬剤流体の供給を、前記第2の水供給工程の終了に先立って実行開始してもよい。 Further, the first processing step may include a step that starts after the end of the second processing step. In the substrate processing method, after the second processing step and prior to the first processing step, the second nozzle which is a nozzle different from the first nozzle is directed to the main surface of the substrate. A second water supply step for discharging water may be further included. In the first treatment step, the supply of the first chemical fluid to the chemical fluid piping may be started prior to the end of the second water supply step.
 この方法によれば、第2の水供給工程の終了後直ちに第1の薬剤流体を吐出口から吐出することができる。すなわち、第2の水供給工程の終了後直ちに第1の処理工程を開始できる。これにより、全体の処理時間を短縮できる。 According to this method, the first chemical fluid can be discharged from the discharge port immediately after the end of the second water supply step. That is, the first treatment process can be started immediately after the end of the second water supply process. Thereby, the whole processing time can be shortened.
 また、前記基板処理方法は、前記第2の処理工程の後、前記第2のノズルから水を前記基板の主面に供給する第2の水供給工程をさらに含んでいてもよい。前記基板処理方法は、前記第2の水供給工程に並行して、前記第1の処理工程を実行してもよい。 Further, the substrate processing method may further include a second water supply step of supplying water from the second nozzle to the main surface of the substrate after the second processing step. The substrate processing method may execute the first processing step in parallel with the second water supply step.
 この方法によれば、第2の水供給工程の終了前から、第1の薬剤流体を吐出口から吐出することができる。これにより、全体の処理時間をより一層短縮できる。 According to this method, the first chemical fluid can be discharged from the discharge port before the end of the second water supply step. Thereby, the whole processing time can be further shortened.
 また、前記基板処理方法は、前記1の処理工程における前記第1のノズルからの第1の薬剤流体の吐出終了後に、前記薬剤流体配管の内部を吸引する第2の吸引工程をさらに含んでいてもよい。 The substrate processing method further includes a second suction step of sucking the inside of the chemical fluid piping after the discharge of the first chemical fluid from the first nozzle in the first processing step. Also good.
 また、前記洗浄液は、炭酸水を含んでいてもよい。 Further, the cleaning liquid may contain carbonated water.
 また、前記第1の薬剤流体は、硫酸含有液を含み、前記第2の薬剤流体は、有機溶剤を含んでいてもよい。 Further, the first chemical fluid may contain a sulfuric acid-containing liquid, and the second chemical fluid may contain an organic solvent.
 本発明における前述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。 The above-described or other objects, features, and effects of the present invention will be clarified by the following description of embodiments with reference to the accompanying drawings.
図1は、本発明の一実施形態に係る基板処理装置の内部のレイアウトを説明するための図解的な平面図である。FIG. 1 is an illustrative plan view for explaining an internal layout of a substrate processing apparatus according to an embodiment of the present invention. 図2Aは、前記基板処理装置に備えられた処理ユニットの構成例を説明するための図解的な断面図である。FIG. 2A is a schematic cross-sectional view for explaining a configuration example of a processing unit provided in the substrate processing apparatus. 図2Bは、前記処理ユニットに含まれる対向部材の周辺の構成を具体的に説明するための図である。FIG. 2B is a diagram for specifically explaining a configuration around a counter member included in the processing unit. 図2Cは、前記処理ユニットの下部の構成例を拡大して示す図解的な断面図である。FIG. 2C is an illustrative cross-sectional view showing an enlarged configuration example of the lower portion of the processing unit. 図3は、前記基板処理装置の主要部の電気的構成を説明するためのブロック図である。FIG. 3 is a block diagram for explaining an electrical configuration of a main part of the substrate processing apparatus. 図4は、前記処理ユニットによる第1の基板処理例を説明するための流れ図である。FIG. 4 is a flowchart for explaining a first substrate processing example by the processing unit. 図5A-5Bは、前記第1の基板処理例を説明するための図解的な図である。5A-5B are schematic diagrams for explaining the first substrate processing example. FIG. 図5C-5Dは、図5Bに続く工程を説明するための図解的な図である。5C-5D are schematic diagrams for explaining the process following FIG. 5B. 図5E-5Fは、図5Dに続く工程を説明するための図解的な図である。5E-5F are schematic diagrams for explaining the process following FIG. 5D. 図5G-5Hは、図5Fに続く工程を説明するための図解的な図である。FIGS. 5G to 5H are schematic diagrams for explaining the process following FIG. 5F. 図6は、前記第1の基板処理例の主要な工程における、第1の液体検知センサおよび第2の液体検知センサによる監視状況を説明するための図解的な図である。FIG. 6 is an illustrative view for explaining a monitoring state by the first liquid detection sensor and the second liquid detection sensor in the main process of the first substrate processing example. 図7は、前記第1の基板処理例における、ハードインターロックを説明するための図である。FIG. 7 is a view for explaining hard interlock in the first substrate processing example. 図8は、前記処理ユニットによる第2の基板処理例を説明するための図解的な図である。FIG. 8 is an illustrative view for explaining a second substrate processing example by the processing unit. 図9は、前記処理ユニットによる第3の基板処理例を説明するための図解的な図である。FIG. 9 is an illustrative view for explaining a third substrate processing example by the processing unit.
 図1は、本発明の第1の実施形態に係る基板処理装置1の内部のレイアウトを説明するための図解的な平面図である。基板処理装置1は、シリコンウエハなどの基板Wを一枚ずつ処理する枚葉式の装置である。この実施形態では、基板Wは、円板状の基板である。基板処理装置1は、処理液で基板Wを処理する複数の処理ユニット2と、処理ユニット2で処理される複数枚の基板Wを収容するキャリヤCが載置されるロードポートLPと、ロードポートLPと処理ユニット2との間で基板Wを搬送する搬送ロボットIRおよびCRと、基板処理装置1を制御する制御装置3とを含む。搬送ロボットIRは、キャリヤCと基板搬送ロボットCRとの間で基板Wを搬送する。基板搬送ロボットCRは、搬送ロボットIRと処理ユニット2との間で基板Wを搬送する。複数の処理ユニット2は、たとえば、同様の構成を有している。 FIG. 1 is an illustrative plan view for explaining an internal layout of a substrate processing apparatus 1 according to a first embodiment of the present invention. The substrate processing apparatus 1 is a single wafer processing apparatus that processes substrates W such as silicon wafers one by one. In this embodiment, the substrate W is a disk-shaped substrate. The substrate processing apparatus 1 includes a plurality of processing units 2 that process a substrate W with a processing liquid, a load port LP on which a carrier C that houses a plurality of substrates W processed by the processing unit 2 is placed, a load port It includes transfer robots IR and CR that transfer the substrate W between the LP and the processing unit 2, and a control device 3 that controls the substrate processing apparatus 1. The transfer robot IR transfers the substrate W between the carrier C and the substrate transfer robot CR. The substrate transfer robot CR transfers the substrate W between the transfer robot IR and the processing unit 2. The plurality of processing units 2 have the same configuration, for example.
 図2Aは、処理ユニット2の構成例を説明するための図解的な断面図である。 FIG. 2A is a schematic cross-sectional view for explaining a configuration example of the processing unit 2.
 処理ユニット2は、箱形の処理チャンバ4と、処理チャンバ4内で一枚の基板Wを水平な姿勢で保持して、基板Wの中心を通る鉛直な回転軸線A1まわりに基板Wを回転させるスピンチャック(基板保持ユニット)5と、スピンチャック5に保持されている基板Wの上面(主面)に対向する基板対向面6を有する対向部材7とを含む。対向部材7は、スピンチャック5に保持されている基板Wの上面の中央部に向けて流体を吐出するための第1の吐出口(吐出口)8を有する第1のノズル9と、スピンチャック5に保持されている基板Wの上面の中央部に向けて流体を吐出するための第2の吐出口10を有する第2のノズル11と、第1の薬剤流体としての液体の有機溶剤(低表面張力を有する有機溶剤)の一例のイソプロピルアルコール(isopropyl alcohol:IPA)を第1のノズル9に供給するための有機溶剤供給ユニット(第1の薬剤流体供給ユニット)12と、第2のノズル11に、リンス液としての水(たとえば炭酸水)を供給するためのリンス用水供給ユニット(第2の水供給ユニット)13と、スピンチャック5に保持されている基板Wの上面に、第2の薬剤流体としての硫酸含有液の一例の硫酸過酸化水素水混合液(sulfuric acid/hydrogen peroxide mixture:SPM)を供給するための硫酸含有液供給ユニット(第2の薬剤流体供給ユニット)14と、スピンチャック5に保持されている基板Wの上面に、洗浄薬液の一例のSC1(NHOHおよびHを含む液体)を供給するための洗浄薬液供給ユニット15と、スピンチャック5を取り囲む筒状の処理カップ16とを含む。 The processing unit 2 holds the box-shaped processing chamber 4 and a single substrate W in the processing chamber 4 in a horizontal posture, and rotates the substrate W about a vertical rotation axis A1 passing through the center of the substrate W. A spin chuck (substrate holding unit) 5 and a facing member 7 having a substrate facing surface 6 facing the upper surface (main surface) of the substrate W held by the spin chuck 5 are included. The opposing member 7 includes a first nozzle 9 having a first discharge port (discharge port) 8 for discharging a fluid toward the central portion of the upper surface of the substrate W held by the spin chuck 5, and a spin chuck. A second nozzle 11 having a second discharge port 10 for discharging a fluid toward the center of the upper surface of the substrate W held by the substrate 5, and a liquid organic solvent (low An organic solvent supply unit (first chemical fluid supply unit) 12 for supplying isopropyl alcohol (IPA), which is an example of an organic solvent having surface tension, to the first nozzle 9, and a second nozzle 11 In addition, a rinsing water supply unit (second water supply unit) 13 for supplying water (for example, carbonated water) as a rinsing liquid and a second chemical on the upper surface of the substrate W held by the spin chuck 5 fluid A sulfuric acid-containing liquid supply unit (second chemical fluid supply unit) 14 for supplying a sulfuric acid / hydrogen peroxide mixture (SPM) as an example of the sulfuric acid-containing liquid, and a spin chuck A cleaning chemical solution supply unit 15 for supplying SC1 (a liquid containing NH 4 OH and H 2 O 2 ) as an example of a cleaning chemical solution to the upper surface of the substrate W held by 5, and a cylindrical shape surrounding the spin chuck 5 And the processing cup 16.
 処理チャンバ4は、スピンチャック5やノズルを収容する箱状の隔壁18と、隔壁18の上部から隔壁18内に清浄空気(フィルタによってろ過された空気)を送る送風ユニットとしてのFFU(ファン・フィルタ・ユニット)19とを含む。 The processing chamber 4 includes a box-shaped partition wall 18 that houses the spin chuck 5 and nozzles, and an FFU (fan filter) as a blower unit that sends clean air (air filtered by a filter) from the upper part of the partition wall 18 into the partition wall 18. -Unit) 19 is included.
 FFU19は、隔壁18の上方に配置されており、隔壁18の天井に取り付けられている。FFU19は、隔壁18の天井から処理チャンバ4内に下向きに清浄空気を送る。また、処理カップ16の底部には、排気液配管81が接続されており、排気液配管81は、基板処理装置1が設置される工場に設けられた排気処理設備に向けて処理チャンバ4内の気体を導出する。したがって、処理チャンバ4内を下方に流れるダウンフロー(下降流)が、FFU19および排気液配管81によって形成される。基板Wの処理は、処理チャンバ4内にダウンフローが形成されている状態で行われる。 The FFU 19 is disposed above the partition wall 18 and attached to the ceiling of the partition wall 18. The FFU 19 sends clean air downward from the ceiling of the partition wall 18 into the processing chamber 4. Further, an exhaust liquid pipe 81 is connected to the bottom of the processing cup 16, and the exhaust liquid pipe 81 is disposed in the processing chamber 4 toward an exhaust processing facility provided in a factory where the substrate processing apparatus 1 is installed. Deriving gas. Therefore, a downflow (downflow) that flows downward in the processing chamber 4 is formed by the FFU 19 and the exhaust liquid pipe 81. The processing of the substrate W is performed in a state where a down flow is formed in the processing chamber 4.
 スピンチャック5として、基板Wを水平方向に挟んで基板Wを水平に保持する挟持式のチャックが採用されている。具体的には、スピンチャック5は、スピンモータ22と、このスピンモータ22の駆動軸と一体化された下スピン軸23と、下スピン軸23の上端に略水平に取り付けられた円板状のスピンベース24とを含む。 As the spin chuck 5, a clamping chuck that holds the substrate W horizontally with the substrate W held in the horizontal direction is employed. Specifically, the spin chuck 5 includes a spin motor 22, a lower spin shaft 23 integrated with a drive shaft of the spin motor 22, and a disk-like shape attached to the upper end of the lower spin shaft 23 substantially horizontally. A spin base 24.
 スピンベース24の上面には、その周縁部に複数個(3個以上。たとえば6個)の挟持部材25が配置されている。複数個の挟持部材25は、スピンベース24の上面周縁部において、基板Wの外周形状に対応する円周上で適当な間隔を空けて配置されている。 On the upper surface of the spin base 24, a plurality of (three or more, for example, six) clamping members 25 are disposed on the peripheral edge thereof. The plurality of clamping members 25 are arranged at appropriate intervals on the circumference corresponding to the outer peripheral shape of the substrate W at the peripheral edge of the upper surface of the spin base 24.
 また、スピンチャック5としては、挟持式のものに限らず、たとえば、基板Wの裏面を真空吸着することにより、基板Wを水平な姿勢で保持し、さらにその状態で鉛直な回転軸線まわりに回転することにより、スピンチャック5に保持されている基板Wを回転させる真空吸着式のもの(バキュームチャック)が採用されてもよい。 Further, the spin chuck 5 is not limited to a sandwich type, and for example, the substrate W is held in a horizontal posture by vacuum-sucking the back surface of the substrate W, and further rotated around a vertical rotation axis in that state. By doing so, a vacuum suction type (vacuum chuck) that rotates the substrate W held on the spin chuck 5 may be employed.
 図2Bは、処理ユニット2に含まれる対向部材7の周辺の構成を具体的に説明するための図である。 FIG. 2B is a diagram for specifically explaining the configuration around the opposing member 7 included in the processing unit 2.
 図2A,2Bに示すように、対向部材7は、遮断板26と、遮断板26に同軸に設けられた上スピン軸27とを含む。遮断板26は、基板Wとほぼ同じ径またはそれ以上の径を有する円板状である。基板対向面6は、遮断板26の下面を形成しており、基板Wの上面全域に対向する円形である。 As shown in FIGS. 2A and 2B, the facing member 7 includes a blocking plate 26 and an upper spin shaft 27 provided coaxially with the blocking plate 26. The blocking plate 26 has a disk shape having a diameter substantially equal to or larger than that of the substrate W. The substrate facing surface 6 forms a lower surface of the blocking plate 26 and has a circular shape facing the entire upper surface of the substrate W.
 基板対向面6の中央部には、遮断板26および上スピン軸27を上下に貫通する円筒状の貫通穴28が形成されている。貫通穴28の内周壁は、円筒面によって区画されている。貫通穴28の内部には、第1のノズル9および第2のノズル11が挿通されている。第1および第2のノズル9,11は、それぞれ、上スピン軸27の回転軸線A2(回転軸線A1と同軸)に沿って上下方向に延びている。 In the central part of the substrate facing surface 6, a cylindrical through hole 28 is formed that vertically penetrates the blocking plate 26 and the upper spin shaft 27. The inner peripheral wall of the through hole 28 is partitioned by a cylindrical surface. The first nozzle 9 and the second nozzle 11 are inserted into the through hole 28. The first and second nozzles 9 and 11 extend in the vertical direction along the rotation axis A2 (coaxial with the rotation axis A1) of the upper spin shaft 27, respectively.
 具体的には、貫通穴28の内部には、遮断板26の回転軸線A2に沿って上下に延びる中心軸ノズル29が挿通している。中心軸ノズル29は、図2Bに示すように、第1および第2のノズル9,11と、第1および第2のノズル9,11を取り囲む筒状のケーシング30とを含む。この実施形態では、第1および第2のノズル9,11は、それぞれ、インナーチューブである。第1の吐出口8は、第1のノズル9の下端に形成されている。第2の吐出口10は、第2のノズル11の下端に形成されている。ケーシング30は、回転軸線A2に沿って上下方向に延びている。ケーシング30は、貫通穴28の内部に非接触状態で挿入されている。したがって、遮断板26の内周は、径方向に間隔を空けてケーシング30の外周を取り囲んでいる。 Specifically, a central axis nozzle 29 extending vertically along the rotation axis A2 of the blocking plate 26 is inserted into the through hole 28. As shown in FIG. 2B, the central axis nozzle 29 includes first and second nozzles 9 and 11 and a cylindrical casing 30 that surrounds the first and second nozzles 9 and 11. In this embodiment, each of the first and second nozzles 9 and 11 is an inner tube. The first discharge port 8 is formed at the lower end of the first nozzle 9. The second discharge port 10 is formed at the lower end of the second nozzle 11. The casing 30 extends in the vertical direction along the rotation axis A2. The casing 30 is inserted into the through hole 28 in a non-contact state. Therefore, the inner periphery of the blocking plate 26 surrounds the outer periphery of the casing 30 with a gap in the radial direction.
 図2Aに示すように、上スピン軸27には、遮断板回転ユニット31が結合されている。遮断板回転ユニット31は、遮断板26ごと上スピン軸27を回転軸線A2まわりに回転させる。遮断板26には、電動モータ、ボールねじ等を含む構成の遮断板昇降ユニット32が結合されている。遮断板昇降ユニット32は、中心軸ノズル29ごと遮断板26を鉛直方向に昇降する。遮断板昇降ユニット32は、遮断板26の基板対向面6がスピンチャック5に保持されている基板Wの上面に近接する近接位置(図5A等参照)と、近接位置の上方に設けられた退避位置(図2Aや図5G等参照)の間で、遮断板26および中心軸ノズル29を昇降させる。遮断板昇降ユニット32は、近接位置と退避位置との間の各位置で遮断板26を保持可能である。 As shown in FIG. 2A, the upper spin shaft 27 is coupled to a shield plate rotating unit 31. The blocking plate rotating unit 31 rotates the upper spin shaft 27 together with the blocking plate 26 around the rotation axis A2. A shield plate lifting / lowering unit 32 including an electric motor, a ball screw, and the like is coupled to the shield plate 26. The blocking plate lifting / lowering unit 32 moves the blocking plate 26 together with the central axis nozzle 29 in the vertical direction. The blocking plate lifting / lowering unit 32 includes a proximity position (see FIG. 5A and the like) where the substrate facing surface 6 of the blocking plate 26 is close to the upper surface of the substrate W held by the spin chuck 5 and a retreat provided above the proximity position. Between the positions (see FIG. 2A, FIG. 5G, etc.), the blocking plate 26 and the central shaft nozzle 29 are moved up and down. The shield plate lifting / lowering unit 32 can hold the shield plate 26 at each position between the proximity position and the retracted position.
 また、遮断板26に関連して、遮断板26の近接位置への配置を検出するための遮断板近接位置センサ33(図2A~2Cで図示しない)が設けられている。 Further, in relation to the blocking plate 26, a blocking plate proximity position sensor 33 (not shown in FIGS. 2A to 2C) for detecting the arrangement of the blocking plate 26 in the proximity position is provided.
 図2Bに示すように、有機溶剤供給ユニット12は、第1のノズル9に接続され、内部が第1の吐出口8に連通する有機溶剤配管(薬剤流体配管)34と、有機溶剤配管34に介装され、有機溶剤を開閉する第1の有機溶剤バルブ35と、第1の有機溶剤バルブ35よりも下流側の有機溶剤配管34に介装され、有機溶剤を開閉する第2の有機溶剤バルブ36と、第1の有機溶剤バルブ35が閉状態にあることを検知するバルブ閉センサ37とを含む。 As shown in FIG. 2B, the organic solvent supply unit 12 is connected to the first nozzle 9, and an organic solvent pipe (chemical fluid pipe) 34 whose inside communicates with the first discharge port 8 and an organic solvent pipe 34. A first organic solvent valve 35 that opens and closes the organic solvent, and a second organic solvent valve that opens and closes the organic solvent interposed in the organic solvent pipe 34 downstream of the first organic solvent valve 35. 36 and a valve closing sensor 37 for detecting that the first organic solvent valve 35 is in a closed state.
 図2Bに示すように、有機溶剤配管34において第1の有機溶剤バルブ35と第2の有機溶剤バルブ36との間に設定された第1の分岐位置38には、第1の水配管39が分岐接続されている。以降の説明において、有機溶剤配管34における第1の分岐位置38よりも下流側の下流側部分40を、「有機溶剤下流側部分40」という。有機溶剤配管34における第1の分岐位置38よりも上流側の上流側部分41を、「有機溶剤上流側部分41」という。この実施形態では、第1の分岐位置38は、有機溶剤配管34の上端に近い位置に設定されている。そのため、有機溶剤下流側部分40に有機溶剤が存在しない状態において、第1の有機溶剤バルブ35の開成後第2のノズル11(第2の吐出口10)に有機溶剤が到達するまでの時間は長くなる(たとえば約3秒)。 As shown in FIG. 2B, a first water pipe 39 is provided at a first branch position 38 set between the first organic solvent valve 35 and the second organic solvent valve 36 in the organic solvent pipe 34. Branch connected. In the following description, the downstream portion 40 downstream of the first branch position 38 in the organic solvent pipe 34 is referred to as “organic solvent downstream portion 40”. The upstream portion 41 upstream of the first branch position 38 in the organic solvent pipe 34 is referred to as “organic solvent upstream portion 41”. In this embodiment, the first branch position 38 is set at a position close to the upper end of the organic solvent pipe 34. Therefore, in the state where the organic solvent does not exist in the organic solvent downstream portion 40, the time until the organic solvent reaches the second nozzle 11 (second discharge port 10) after opening the first organic solvent valve 35 is Longer (eg about 3 seconds).
 第1の有機溶剤バルブ35が開かれると、有機溶剤供給源からの有機溶剤が、第2の有機溶剤バルブ36へと供給される。この状態で第2の有機溶剤バルブ36が開かれると、第2の有機溶剤バルブ36に供給された有機溶剤が、第1の吐出口8から基板Wの上面中央部に向けて吐出される。 When the first organic solvent valve 35 is opened, the organic solvent from the organic solvent supply source is supplied to the second organic solvent valve 36. When the second organic solvent valve 36 is opened in this state, the organic solvent supplied to the second organic solvent valve 36 is discharged from the first discharge port 8 toward the center of the upper surface of the substrate W.
 図2Bに示すように、有機溶剤下流側部分40において、第2の有機溶剤バルブ36の介装位置よりも上流側の所定の第1の検出位置42には、有機溶剤下流側部分40の内部の液体の存否を検出するための第1の液体検知センサ43が配置されている。第1の液体検知センサ43は、第1の検出位置42における有機溶剤配管34の内部の液体の存否を検出し、その検出結果に応じた信号を制御装置3に送出する。有機溶剤配管34の内部の液体の先端が、第1の検出位置42よりも前進している(第1のノズル9側に位置している)とき、第1の液体検知センサ43によって液体が検出される。有機溶剤配管34の内部の液体の先端が、第1の検出位置42よりも後退している(有機溶剤供給源側に位置している)とき、第1の液体検知センサ43によっては、液体は検出されない。 As shown in FIG. 2B, in the organic solvent downstream portion 40, the predetermined first detection position 42 upstream of the position where the second organic solvent valve 36 is interposed is located inside the organic solvent downstream portion 40. A first liquid detection sensor 43 for detecting the presence or absence of the liquid is disposed. The first liquid detection sensor 43 detects the presence / absence of liquid inside the organic solvent pipe 34 at the first detection position 42, and sends a signal corresponding to the detection result to the control device 3. When the tip of the liquid in the organic solvent pipe 34 is advanced from the first detection position 42 (positioned on the first nozzle 9 side), the liquid is detected by the first liquid detection sensor 43. Is done. When the tip of the liquid inside the organic solvent pipe 34 is retracted from the first detection position 42 (positioned on the organic solvent supply source side), depending on the first liquid detection sensor 43, the liquid is Not detected.
 図2Bに示すように、有機溶剤下流側部分40において、第2の有機溶剤バルブ36の介装位置よりも下流側の所定の第2の検出位置44には、有機溶剤下流側部分40の内部の液体の存否を検出するための第2の液体検知センサ45が配置されている。第2の液体検知センサ45は、第2の検出位置44における有機溶剤配管34の内部の液体の存否を検出し、その検出結果に応じた信号を制御装置3に送出する。有機溶剤配管34の内部の液体の先端が、第2の検出位置44よりも前進している(第1のノズル9側に位置している)とき、第2の液体検知センサ45によって液体が検出される。有機溶剤配管34の内部の液体の先端が、第2の検出位置44よりも後退している(有機溶剤供給源側に位置している)とき、第2の液体検知センサ45によっては、液体は検出されない。 As shown in FIG. 2B, in the organic solvent downstream portion 40, the predetermined second detection position 44 on the downstream side of the position where the second organic solvent valve 36 is interposed is located inside the organic solvent downstream portion 40. A second liquid detection sensor 45 for detecting the presence or absence of the liquid is disposed. The second liquid detection sensor 45 detects the presence or absence of the liquid inside the organic solvent pipe 34 at the second detection position 44 and sends a signal corresponding to the detection result to the control device 3. When the tip of the liquid in the organic solvent pipe 34 is advanced from the second detection position 44 (positioned on the first nozzle 9 side), the liquid is detected by the second liquid detection sensor 45. Is done. When the tip of the liquid in the organic solvent pipe 34 is retracted from the second detection position 44 (positioned on the organic solvent supply source side), depending on the second liquid detection sensor 45, the liquid may be Not detected.
 第1の液体検知センサ43および第2の液体検知センサ45は、それぞれ、たとえば液検知用のファイバセンサ(たとえば(株)キーエンス社製FU95S)であり、有機溶剤配管34の外周壁に直付け配置または近接配置されている。第1の液体検知センサ43および/または第2の液体検知センサ45は、たとえば静電容量型のセンサによって構成されていてもよい。 Each of the first liquid detection sensor 43 and the second liquid detection sensor 45 is, for example, a fiber sensor for liquid detection (for example, FU95S manufactured by Keyence Corporation), and is directly attached to the outer peripheral wall of the organic solvent pipe 34. Or they are placed close together. The first liquid detection sensor 43 and / or the second liquid detection sensor 45 may be constituted by, for example, a capacitive sensor.
 図2Bに示すように、第1の水配管39には、水供給源からの水(たとえば炭酸水)が供給されるようになっている。第1の水配管39の途中部には、第1の水配管39を開閉するための第1の水バルブ46が介装されている。第1の水バルブ46が開かれると、第1の水配管39から有機溶剤下流側部分40へと供給される。また、第1の水バルブ46が閉じられると、第1の水配管39から有機溶剤下流側部分40への水の供給が停止される。第1の水配管39から有機溶剤配管34へと供給される水は、たとえば炭酸水である。第1の水配管39および第1の水バルブ46は、置換用水供給ユニット(第1の水供給ユニット)47に含まれている。 As shown in FIG. 2B, water (for example, carbonated water) from a water supply source is supplied to the first water pipe 39. A first water valve 46 for opening and closing the first water pipe 39 is interposed in the middle of the first water pipe 39. When the first water valve 46 is opened, it is supplied from the first water pipe 39 to the organic solvent downstream portion 40. In addition, when the first water valve 46 is closed, the supply of water from the first water pipe 39 to the organic solvent downstream portion 40 is stopped. The water supplied from the first water pipe 39 to the organic solvent pipe 34 is, for example, carbonated water. The first water pipe 39 and the first water valve 46 are included in a replacement water supply unit (first water supply unit) 47.
 図2Bに示すように、第1の水配管39の途中部(すなわち、第1の分岐位置38と第1の水バルブ46との間)に設定された第2の分岐位置48には、吸引配管49が分岐接続されている。以降の説明において、第1の水配管39における第2の分岐位置48よりも下流側の下流側部分50を、「水下流側部分50」という。 As shown in FIG. 2B, the second branch position 48 set in the middle of the first water pipe 39 (that is, between the first branch position 38 and the first water valve 46) is suctioned. A pipe 49 is branched and connected. In the following description, the downstream portion 50 downstream of the second branch position 48 in the first water pipe 39 is referred to as “water downstream portion 50”.
 図2Bに示すように、吸引配管49の途中部には、吸引配管49を開閉するための吸引バルブ51が介装されている。吸引配管49の先端には吸引装置52が接続されている。吸引装置52は、たとえば、図2Aに示すように、真空発生器53と、真空発生器53を作動させるための駆動バルブ54とを含む。吸引装置52は、真空発生により吸引力を発生させるものに限られず、たとえば、アスピレータ等であってもよい。 As shown in FIG. 2B, a suction valve 51 for opening and closing the suction pipe 49 is interposed in the middle of the suction pipe 49. A suction device 52 is connected to the tip of the suction pipe 49. For example, as shown in FIG. 2A, the suction device 52 includes a vacuum generator 53 and a drive valve 54 for operating the vacuum generator 53. The suction device 52 is not limited to a device that generates a suction force by generating a vacuum, and may be an aspirator, for example.
 図2Bに示すように、吸引装置52(真空発生器53)の作動状態において、第1の有機溶剤バルブ35および第1の水バルブ46が閉じられかつ第2の有機溶剤バルブ36が開かれた状態で吸引バルブ51が開かれると、吸引装置52の働きが有効化され、有機溶剤下流側部分40および水下流側部分50の内部が排気され、有機溶剤下流側部分40および水下流側部分50に含まれる液体(水または有機溶剤)が、吸引配管49へと引き込まれる。吸引装置52および吸引バルブ51は、吸引ユニット55に含まれている。 As shown in FIG. 2B, in the operating state of the suction device 52 (vacuum generator 53), the first organic solvent valve 35 and the first water valve 46 are closed and the second organic solvent valve 36 is opened. When the suction valve 51 is opened in the state, the function of the suction device 52 is activated, the inside of the organic solvent downstream portion 40 and the water downstream portion 50 is exhausted, and the organic solvent downstream portion 40 and the water downstream portion 50 are exhausted. The liquid (water or organic solvent) contained in is drawn into the suction pipe 49. The suction device 52 and the suction valve 51 are included in the suction unit 55.
 図2Bに示すように、リンス用水供給ユニット13は、第2のノズル11に接続され、内部が第2の吐出口10に連通する第2の水配管56と、第2の水配管56を開閉して、第2の水配管56から第2のノズル11への水の供給および供給停止を切り替える第2の水バルブ57とを含む。第2の水バルブ57が開かれると、水供給源からの水が、第2の水配管56へと供給され、第2の吐出口10から基板Wの上面中央部に向けて吐出される。 As shown in FIG. 2B, the rinsing water supply unit 13 is connected to the second nozzle 11, and opens and closes the second water pipe 56 that communicates with the second discharge port 10 and the second water pipe 56. And the 2nd water valve 57 which switches supply and stop of supply of the water from the 2nd water piping 56 to the 2nd nozzle 11 is included. When the second water valve 57 is opened, water from the water supply source is supplied to the second water pipe 56 and discharged from the second discharge port 10 toward the center of the upper surface of the substrate W.
 図2Aに示すように、処理ユニット2は、さらに、ケーシング30の外周と遮断板26の内周との間の筒状の空間に不活性ガスを供給する不活性ガス配管58と、不活性ガス配管58に介装された不活性ガスバルブ59とを含む。不活性ガスバルブ59が開かれると、不活性ガス供給源からの不活性ガスが、ケーシング30の外周と遮断板26の内周との間を通って、遮断板26の下面中央部から下方に吐出される。したがって、遮断板26が近接位置に配置されている状態で、不活性ガスバルブ59が開かれると、遮断板26の下面中央部から吐出された不活性ガスが基板Wの上面と遮断板26の基板対向面6との間を外方に(回転軸線A1から離れる方向に)広がり、基板Wと遮断板26との空気が不活性ガスに置換される。不活性ガス配管58内を流れる不活性ガスは、たとえば窒素ガスである。不活性ガスは、窒素ガスに限らず、ヘリウムガスやアルゴンガスなどの他の不活性ガスであってもよい。 As shown in FIG. 2A, the processing unit 2 further includes an inert gas pipe 58 that supplies an inert gas to a cylindrical space between the outer periphery of the casing 30 and the inner periphery of the shielding plate 26, and an inert gas. And an inert gas valve 59 interposed in the pipe 58. When the inert gas valve 59 is opened, the inert gas from the inert gas supply source passes between the outer periphery of the casing 30 and the inner periphery of the blocking plate 26 and is discharged downward from the center of the lower surface of the blocking plate 26. Is done. Therefore, when the inert gas valve 59 is opened in a state where the shielding plate 26 is disposed in the proximity position, the inert gas discharged from the center of the lower surface of the shielding plate 26 is the upper surface of the substrate W and the substrate of the shielding plate 26. The space between the opposing surfaces 6 spreads outward (in the direction away from the rotation axis A1), and the air between the substrate W and the shielding plate 26 is replaced with an inert gas. The inert gas flowing through the inert gas pipe 58 is, for example, nitrogen gas. The inert gas is not limited to nitrogen gas, but may be other inert gas such as helium gas or argon gas.
 図2Aに示すように、硫酸含有液供給ユニット14は、硫酸含有液ノズル60と、硫酸含有液ノズル60に接続された硫酸含有液配管61と、硫酸含有液配管61に介装された硫酸含有液バルブ62と、硫酸含有液ノズル60を移動させる第1のノズル移動ユニット63とを含む。第1のノズル移動ユニット63は、モータ等を含む。第1のノズル移動ユニット63には、硫酸含有液ノズル60が退避位置にあること検出するためのノズル退避センサ64が結合されている。 As shown in FIG. 2A, the sulfuric acid-containing liquid supply unit 14 includes a sulfuric acid-containing liquid nozzle 60, a sulfuric acid-containing liquid pipe 61 connected to the sulfuric acid-containing liquid nozzle 60, and a sulfuric acid-containing liquid pipe 61 interposed in the sulfuric acid-containing liquid pipe 61. A liquid valve 62 and a first nozzle moving unit 63 that moves the sulfuric acid-containing liquid nozzle 60 are included. The first nozzle moving unit 63 includes a motor and the like. The first nozzle moving unit 63 is coupled with a nozzle retraction sensor 64 for detecting that the sulfuric acid-containing liquid nozzle 60 is in the retreat position.
 第1のノズル移動ユニット63が、たとえばステッピングモータによって構成されている場合、当該ステッピングモータを制御するための、モータ制御部から出力される、硫酸含有液ノズル60の移動量(アームの揺動角度)に応じたエンコーダ信号を参照して、ノズル退避センサ64は、硫酸含有液ノズル60が退避位置にあるか否かを検出できる。 When the first nozzle moving unit 63 is constituted by, for example, a stepping motor, the moving amount of the sulfuric acid-containing liquid nozzle 60 output from the motor control unit for controlling the stepping motor (the swing angle of the arm) ), The nozzle retract sensor 64 can detect whether or not the sulfuric acid-containing liquid nozzle 60 is in the retract position.
 硫酸含有液ノズル60は、たとえば、連続流の状態で液を吐出するストレートノズルである。硫酸含有液配管61には、硫酸含有液供給源からの硫酸含有液が供給されている。この実施形態では、硫酸含有液配管61には、硫酸含有液として、高温(たとえば約170℃~約200℃)の硫酸過酸化水素水混合液(sulfuric acid/hydrogen peroxide mixture:SPM)が供給される。硫酸と過酸化水素水との反応熱により、前記の高温まで昇温されたSPMが硫酸含有液配管61に供給されている。 The sulfuric acid-containing liquid nozzle 60 is, for example, a straight nozzle that discharges liquid in a continuous flow state. The sulfuric acid-containing liquid pipe 61 is supplied with a sulfuric acid-containing liquid from a sulfuric acid-containing liquid supply source. In this embodiment, the sulfuric acid-containing liquid pipe 61 is supplied with a high temperature (for example, about 170 ° C. to about 200 ° C.) sulfuric acid / hydrogen peroxide mixture (SPM) as a sulfuric acid-containing liquid. The The SPM heated to the high temperature by the reaction heat between sulfuric acid and hydrogen peroxide is supplied to the sulfuric acid-containing liquid pipe 61.
 硫酸含有液バルブ62が開かれると、硫酸含有液配管61から硫酸含有液ノズル60に供給された高温のSPMが、硫酸含有液ノズル60から下方に吐出される。硫酸含有液バルブ62が閉じられると、硫酸含有液ノズル60からの、高温のSPMの吐出が停止される。第1のノズル移動ユニット63は、硫酸含有液ノズル60から吐出された高温のSPMが基板Wの上面に供給される処理位置と、硫酸含有液ノズル60が平面視でスピンチャック5の側方に退避した退避位置との間で、硫酸含有液ノズル60を移動させる。 When the sulfuric acid-containing liquid valve 62 is opened, the high-temperature SPM supplied from the sulfuric acid-containing liquid pipe 61 to the sulfuric acid-containing liquid nozzle 60 is discharged downward from the sulfuric acid-containing liquid nozzle 60. When the sulfuric acid-containing liquid valve 62 is closed, the discharge of high-temperature SPM from the sulfuric acid-containing liquid nozzle 60 is stopped. The first nozzle moving unit 63 includes a processing position where the high-temperature SPM discharged from the sulfuric acid-containing liquid nozzle 60 is supplied to the upper surface of the substrate W, and the sulfuric acid-containing liquid nozzle 60 on the side of the spin chuck 5 in plan view. The sulfuric acid-containing liquid nozzle 60 is moved between the retracted position and the retracted position.
 図2Aに示すように、洗浄薬液供給ユニット15は、洗浄薬液ノズル65と、洗浄薬液ノズル65に接続された洗浄薬液配管66と、洗浄薬液配管66に介装された洗浄薬液バルブ67と、洗浄薬液ノズル65を移動させる第2のノズル移動ユニット68とを含む。洗浄薬液ノズル65は、たとえば、連続流の状態で液を吐出するストレートノズルである。洗浄薬液配管66には、洗浄薬液供給源からの洗浄薬液(たとえばSC1)が供給されている。 As shown in FIG. 2A, the cleaning chemical liquid supply unit 15 includes a cleaning chemical liquid nozzle 65, a cleaning chemical liquid pipe 66 connected to the cleaning chemical liquid nozzle 65, a cleaning chemical liquid valve 67 interposed in the cleaning chemical liquid pipe 66, and a cleaning And a second nozzle moving unit 68 that moves the chemical nozzle 65. The cleaning chemical liquid nozzle 65 is, for example, a straight nozzle that discharges liquid in a continuous flow state. The cleaning chemical liquid pipe 66 is supplied with a cleaning chemical liquid (for example, SC1) from a cleaning chemical liquid supply source.
 洗浄薬液バルブ67が開かれると、洗浄薬液配管66から洗浄薬液ノズル65に供給されたSC1が、洗浄薬液ノズル65から下方に吐出される。洗浄薬液バルブ67が閉じられると、洗浄薬液ノズル65からの洗浄薬液の吐出が停止される。第2のノズル移動ユニット68は、洗浄薬液ノズル65から吐出されたSC1が基板Wの上面に供給される処理位置と、洗浄薬液ノズル65が平面視でスピンチャック5の側方に退避した退避位置との間で、洗浄薬液ノズル65を移動させる。さらに、第2のノズル移動ユニット68は、洗浄薬液ノズル65から吐出された洗浄薬液が基板Wの上面中央部に着液する中央位置と、洗浄薬液ノズル65から吐出された洗浄薬液が基板Wの上面周縁部に着液する周縁位置との間で、洗浄薬液ノズル65を水平に移動させる。中央位置および周縁位置は、いずれも処理位置である。 When the cleaning chemical solution valve 67 is opened, the SC 1 supplied from the cleaning chemical solution pipe 66 to the cleaning chemical solution nozzle 65 is discharged downward from the cleaning chemical solution nozzle 65. When the cleaning chemical liquid valve 67 is closed, the discharge of the cleaning chemical liquid from the cleaning chemical liquid nozzle 65 is stopped. The second nozzle moving unit 68 includes a processing position where SC1 discharged from the cleaning chemical solution nozzle 65 is supplied to the upper surface of the substrate W, and a retreat position where the cleaning chemical solution nozzle 65 is retracted to the side of the spin chuck 5 in plan view. Between them, the cleaning chemical nozzle 65 is moved. Further, the second nozzle moving unit 68 includes a central position where the cleaning chemical liquid discharged from the cleaning chemical liquid nozzle 65 lands on the central portion of the upper surface of the substrate W, and the cleaning chemical liquid discharged from the cleaning chemical liquid nozzle 65 on the substrate W. The cleaning chemical liquid nozzle 65 is moved horizontally between the peripheral position where the liquid is deposited on the peripheral surface of the upper surface. The center position and the peripheral position are both processing positions.
 図2Cは、処理ユニット2の下部の構成例を拡大して示す図解的な断面図である。 FIG. 2C is an illustrative sectional view showing an enlarged configuration example of the lower part of the processing unit 2.
 図2A,2Cに示すように、処理カップ16は、スピンチャック5を取り囲む、基板Wの周囲に飛散した処理液(洗浄薬液およびリンス液)を受け止めるための第1および第2のガード71,72と、個々のガード71,72を独立して昇降させるガード昇降ユニット73とを含む。ガード昇降ユニット73は、個々のガード71,72を独立して昇降させる。なお、ガード昇降ユニット73は、たとえはボールねじ機構を含む構成である。 As shown in FIGS. 2A and 2C, the processing cup 16 surrounds the spin chuck 5 and receives first and second guards 71 and 72 for receiving the processing liquid (cleaning chemical liquid and rinsing liquid) scattered around the substrate W. And a guard lifting / lowering unit 73 that lifts and lowers the individual guards 71 and 72 independently. The guard lifting / lowering unit 73 lifts and lowers the individual guards 71 and 72 independently. Note that the guard lifting unit 73 includes a ball screw mechanism, for example.
 処理カップ16は上下方向に重なるように収容可能であり、ガード昇降ユニット73が2つのガード71,72のうちの少なくとも一つを昇降させることにより、処理カップ16の展開および収容が行われる。  The processing cup 16 can be accommodated so as to overlap in the vertical direction, and when the guard lifting / lowering unit 73 moves up and down at least one of the two guards 71 and 72, the processing cup 16 is expanded and accommodated.
 内側の第1のガード71は、スピンチャック5の周囲を取り囲み、スピンチャック5による基板Wの回転軸線A1に対してほぼ回転対称な形状を有している。図2Cに示すように、第1のガード71は、平面視において円環状をなす底部74と、この底部74の内周縁から上方に立ち上がる円筒状の内壁部75と、底部74の外周縁から上方に立ち上がる円筒状の外壁部76と、内周縁と外周縁との間に対応する底部74の一部から上方に立ち上がる円筒状の案内部77とを一体的に備えている。 The inner first guard 71 surrounds the periphery of the spin chuck 5 and has a substantially rotationally symmetric shape with respect to the rotation axis A 1 of the substrate W by the spin chuck 5. As shown in FIG. 2C, the first guard 71 has an annular bottom 74 in plan view, a cylindrical inner wall 75 rising upward from the inner periphery of the bottom 74, and an upper periphery from the outer periphery of the bottom 74. Are integrally provided with a cylindrical outer wall portion 76 that rises upward and a cylindrical guide portion 77 that rises upward from a part of the bottom 74 corresponding to the inner peripheral edge and the outer peripheral edge.
 案内部77は、底部74から立ち上がる円筒状の本体部78と、この本体部78の上端から滑らかな円弧を描きつつ中心側(回転軸線A1に近づく方向)斜め上方に延びる筒状の上端部79とを含む。 The guide portion 77 has a cylindrical main body portion 78 rising from the bottom portion 74, and a cylindrical upper end portion 79 extending obliquely upward on the center side (in the direction approaching the rotation axis A1) while drawing a smooth arc from the upper end of the main body portion 78. Including.
 内壁部75と案内部77との間は、基板Wの処理に使用された処理液(硫酸含有液、洗浄薬液および水)を集めて排液するための第1の排液溝80が区画されている。第1の排液溝80の底部の最も低い箇所には、図示しない負圧源から延びる排気液配管81が接続されている。これにより、第1の排液溝80の内部が強制的に排気され、第1の排液溝80に集められた処理液、および第1の排液溝80内の雰囲気が、排気液配管81を介して排出される。雰囲気とともに排出される処理液は、排気液配管81の途中部に介装された気液分離器97によって雰囲気から分離される。排気液配管81には、気液分離器97を介して、複数の排液分岐配管(硫酸含有液用分岐配管82、洗浄薬液用分岐配管83および水用分岐配管84)が、それぞれ排液分岐バルブ85が介して接続されている。個々の排液分岐バルブ85には、当該排液分岐バルブ85が閉状態にあることを検知する第2のバルブ閉センサ95とを含む。 A first drain groove 80 for collecting and draining the processing liquid (sulfuric acid-containing liquid, cleaning chemical liquid, and water) used for processing the substrate W is defined between the inner wall portion 75 and the guide portion 77. ing. An exhaust liquid pipe 81 extending from a negative pressure source (not shown) is connected to the lowest portion of the bottom of the first drain groove 80. As a result, the inside of the first drainage groove 80 is forcibly exhausted, and the treatment liquid collected in the first drainage groove 80 and the atmosphere in the first drainage groove 80 are changed to the exhaust liquid pipe 81. It is discharged through. The processing liquid discharged together with the atmosphere is separated from the atmosphere by a gas-liquid separator 97 interposed in the middle of the exhaust liquid pipe 81. A plurality of drainage branch pipes (sulfuric acid-containing liquid branch pipes 82, cleaning chemical liquid branch pipes 83, and water branch pipes 84) are connected to the exhaust liquid pipe 81 through a gas-liquid separator 97. A valve 85 is connected. Each drainage branch valve 85 includes a second valve closing sensor 95 that detects that the drainage branch valve 85 is closed.
 後述する硫酸含有液工程(図4のステップS3)では、排液分岐バルブ85のうち、硫酸含有液用分岐配管82用の排液分岐バルブ85のみが開かれており、排気液配管81を流通する処理液は、硫酸含有液用分岐配管82へと供給され、その後、硫酸含有液を排液処理するための処理装置(図示しない)に送られる。 In the sulfuric acid-containing liquid process (step S3 in FIG. 4) to be described later, only the drainage branch valve 85 for the sulfuric acid-containing liquid branch pipe 82 among the drainage branch valves 85 is opened and flows through the exhaust liquid pipe 81. The processing liquid to be supplied is supplied to the branch pipe 82 for sulfuric acid-containing liquid, and then sent to a processing apparatus (not shown) for draining the sulfuric acid-containing liquid.
 また、後述する第1および第2のリンス工程(図4のステップS4およびステップS6)では、排液分岐バルブ85のうち、水用分岐配管84用の排液分岐バルブ85のみが開かれており、排気液配管81を流通する処理液は、水用分岐配管84へと供給され、その後、水を排液処理するための処理装置(図示しない)に送られる。 Further, in the first and second rinsing steps (step S4 and step S6 in FIG. 4) described later, only the drainage branch valve 85 for the water branch pipe 84 among the drainage branch valves 85 is opened. The processing liquid flowing through the exhaust liquid pipe 81 is supplied to the water branch pipe 84 and then sent to a processing apparatus (not shown) for draining water.
 また、後述する洗浄薬液工程(図4のステップS5)では、排液分岐バルブ85のうち、洗浄薬液用分岐配管83用の排液分岐バルブ85のみが開かれており、排気液配管81を流通する処理液は、洗浄薬液用分岐配管83へと供給され、その後、洗浄薬液を排液処理するための処理装置(図示しない)に送られる。 Further, in the cleaning chemical solution process (step S5 in FIG. 4) to be described later, only the drainage branch valve 85 for the cleaning chemical solution branch pipe 83 among the drainage branch valve 85 is opened and flows through the exhaust liquid pipe 81. The processing liquid to be supplied is supplied to the branch pipe 83 for cleaning chemical liquid, and then sent to a processing apparatus (not shown) for draining the cleaning chemical liquid.
 また、案内部77と外壁部76との間は、基板Wの処理に使用された有機溶剤を集めて回収するための第2の排液溝86とされている。第2の排液溝86において、たとえば底部には、排気配管87の一端が接続されている。これにより、第2の排液溝86の内部が強制的に排気され、第2の排液溝86内の雰囲気が、排気配管87を介して排出される。 Further, a space between the guide portion 77 and the outer wall portion 76 is a second drainage groove 86 for collecting and collecting the organic solvent used for processing the substrate W. In the second drainage groove 86, for example, one end of an exhaust pipe 87 is connected to the bottom. Thereby, the inside of the second drainage groove 86 is forcibly exhausted, and the atmosphere in the second drainage groove 86 is exhausted through the exhaust pipe 87.
 排気配管87の他端は、図示しない負圧源に接続されている。排気配管87には、排気配管87を開閉するための排気バルブ101が介装されている。排気バルブ101には、当該排気バルブ101が開状態にあることを検知するバルブ開センサ21が設けられている。 The other end of the exhaust pipe 87 is connected to a negative pressure source (not shown). An exhaust valve 101 for opening and closing the exhaust pipe 87 is interposed in the exhaust pipe 87. The exhaust valve 101 is provided with a valve open sensor 21 that detects that the exhaust valve 101 is in an open state.
 外側の第2のガード72は、回転軸線A1に対してほぼ回転対称な形状を有している。第2のガード72は、第1のガード71の案内部77の外側においてスピンチャック5の周囲を取り囲んでいる。第2のガード72の上端部88には、スピンチャック5によって保持された基板Wよりも直径が大きい開口89が形成されており、第2のガード72の上端90は、開口89を区画する開口端となっている。 The outer second guard 72 has a substantially rotationally symmetric shape with respect to the rotation axis A1. The second guard 72 surrounds the spin chuck 5 on the outside of the guide portion 77 of the first guard 71. An opening 89 having a diameter larger than that of the substrate W held by the spin chuck 5 is formed at the upper end 88 of the second guard 72, and the upper end 90 of the second guard 72 is an opening that defines the opening 89. It is the end.
 第2のガード72は、案内部77と同軸円筒状をなす下端部91と、下端部91の上端から滑らかな円弧を描きつつ中心側(回転軸線A1に近づく方向)斜め上方に延びる筒状の上端部88と、上端部88の先端部を下方に折り返して形成された折返し部92とを有している。 The second guard 72 has a lower end 91 that is coaxial with the guide portion 77, and a cylindrical shape that extends obliquely upward from the upper end of the lower end 91 while drawing a smooth arc on the center side (in the direction approaching the rotation axis A1). It has the upper end part 88 and the folding | turning part 92 formed by folding down the front-end | tip part of the upper end part 88 below.
 下端部91は、第2の排液溝86上に位置し、第1のガード71と第2のガード72が最も近接した状態で、第2の排液溝86に収容される長さに形成されている。また、上端部88は、第1のガード71の案内部77の上端部79と上下方向に重なるように設けられ、第1のガード71と第2のガード72とが最も近接した状態で、案内部77の上端部79に対してごく微少な隙間を保って近接するように形成されている。折返し部92は、第1のガード71と第2のガード72とが最も近接した状態で、案内部77の上端部79と水平方向に重なるように形成されている。 The lower end portion 91 is located on the second drainage groove 86 and is formed to have a length that can be accommodated in the second drainage groove 86 with the first guard 71 and the second guard 72 being closest to each other. Has been. The upper end portion 88 is provided so as to overlap the upper end portion 79 of the guide portion 77 of the first guard 71 in the vertical direction, and the first guard 71 and the second guard 72 are in the state of being closest to each other. It is formed so as to be close to the upper end 79 of the portion 77 with a very small gap. The folded portion 92 is formed so as to overlap the upper end portion 79 of the guide portion 77 in the horizontal direction in a state where the first guard 71 and the second guard 72 are closest to each other.
 図2Aに示すように、ガード昇降ユニット73は、ガードの上端部が基板Wより上方に位置する上位置と、ガードの上端部が基板Wより下方に位置する下位置との間で、各ガード71,72を昇降させる。ガード昇降ユニット73は、上位置と下位置との間の任意の位置で各ガード71,72を保持可能である。基板Wへの処理液の供給や基板Wの乾燥は、いずれかのガード71,72が基板Wの周端面に対向している状態で行われる。 As shown in FIG. 2A, the guard lifting / lowering unit 73 includes each guard between an upper position where the upper end of the guard is located above the substrate W and a lower position where the upper end of the guard is located below the substrate W. 71 and 72 are moved up and down. The guard lifting / lowering unit 73 can hold the guards 71 and 72 at an arbitrary position between the upper position and the lower position. The supply of the processing liquid to the substrate W and the drying of the substrate W are performed in a state where any one of the guards 71 and 72 is opposed to the peripheral end surface of the substrate W.
 内側の第1のガード71を基板Wの周端面に対向させる場合には、図5A等に示すように、第1および第2のガード71,72のいずれもが上位置に配置される。この状態では、折返し部92が案内部77の上端部79と水平方向に重なっている。 When the inner first guard 71 is opposed to the peripheral end surface of the substrate W, as shown in FIG. 5A and the like, both the first and second guards 71 and 72 are arranged at the upper position. In this state, the folded portion 92 overlaps the upper end portion 79 of the guide portion 77 in the horizontal direction.
 第1のガード71に関連して、第1のガード71の上位置への配置を検出するためのガード上位置センサ93と、第1のガード71の上位置への配置を検出するためのガード下位置センサ94とが設けられている。 In relation to the first guard 71, a guard upper position sensor 93 for detecting the upper position of the first guard 71 and a guard for detecting the upper position of the first guard 71. A lower position sensor 94 is provided.
 一方、外側の第2のガード72を基板Wの周端面に対向させる場合には、図2Aや図5G等に示すように、第2のガード72が上位置に配置され、かつ第1のガード71が下位置に配置される。 On the other hand, when the outer second guard 72 is opposed to the peripheral end surface of the substrate W, as shown in FIG. 2A, FIG. 71 is arranged at the lower position.
 図3は、基板処理装置1の主要部の電気的構成を説明するためのブロック図である。 FIG. 3 is a block diagram for explaining the electrical configuration of the main part of the substrate processing apparatus 1.
 制御装置3は、たとえばマイクロコンピュータを用いて構成されている。制御装置3はCPU等の演算ユニット、固定メモリデバイス、ハードディスクドライブ等の記憶ユニット、および入出力ユニットを有している。記憶ユニットには、演算ユニットが実行するプログラムが記憶されている。 The control device 3 is configured using, for example, a microcomputer. The control device 3 includes an arithmetic unit such as a CPU, a fixed memory device, a storage unit such as a hard disk drive, and an input / output unit. The storage unit stores a program executed by the arithmetic unit.
 第2のノズル移動ユニット63,68、遮断板回転ユニット31、遮断板昇降ユニット32およびガード昇降ユニット73等の動作を制御する。また、制御装置3は、第1の有機溶剤バルブ35、第2の有機溶剤バルブ36、第1の水バルブ46、吸引バルブ51、駆動バルブ54、第2の水バルブ57、不活性ガスバルブ59、硫酸含有液バルブ62、洗浄薬液バルブ67、排液分岐バルブ85等を開閉する。さらに、制御装置3には、第1のバルブ開センサ21の検出出力、遮断板近接位置センサ33の検出出力、バルブ閉センサ37の検出出力、第1の液体検知センサ43の検出出力、第2の液体検知センサ45の検出出力、ノズル退避センサ64の検出出力、ガード上位置センサ93の検出出力、ガード下位置センサ94の検出出力、第2のバルブ閉センサ95の検出出力等が入力されるようになっている。 The operation of the second nozzle moving units 63 and 68, the blocking plate rotating unit 31, the blocking plate lifting / lowering unit 32, the guard lifting / lowering unit 73 and the like are controlled. The control device 3 includes a first organic solvent valve 35, a second organic solvent valve 36, a first water valve 46, a suction valve 51, a drive valve 54, a second water valve 57, an inert gas valve 59, The sulfuric acid-containing liquid valve 62, the cleaning chemical liquid valve 67, the drainage branch valve 85, and the like are opened and closed. Further, the control device 3 includes a detection output of the first valve opening sensor 21, a detection output of the blocking plate proximity position sensor 33, a detection output of the valve closing sensor 37, a detection output of the first liquid detection sensor 43, and a second output. The detection output of the liquid detection sensor 45, the detection output of the nozzle retraction sensor 64, the detection output of the guard upper position sensor 93, the detection output of the guard lower position sensor 94, the detection output of the second valve closing sensor 95, and the like are input. It is like that.
 図4は、処理ユニット2による第1の基板処理例を説明するための流れ図である。図5A~5Hは、第1の基板処理例を説明するための図解的な図である。 FIG. 4 is a flowchart for explaining a first substrate processing example by the processing unit 2. 5A to 5H are schematic views for explaining a first substrate processing example.
 以下、図2A~図4を参照しながら、第1の基板処理例について説明する。図5A~5Hについては適宜参照する。第1の基板処理例は、基板Wの上面に形成されたレジストを除去するためのレジスト除去処理である。以下で述べるように、第1の基板処理例は、SPM等の硫酸含有液を用いて基板Wを処理する硫酸含有液工程S3と、IPA等の液体の有機溶剤を用いて基板Wを処理する有機溶剤工程S7とを含む。硫酸含有液と有機溶剤とは、接触に危険(この場合、急激な反応)が伴うような薬剤流体(薬液、または薬剤成分を含む気体)の組合せである。 Hereinafter, a first substrate processing example will be described with reference to FIGS. 2A to 4. 5A to 5H will be referred to as appropriate. The first substrate processing example is a resist removal process for removing the resist formed on the upper surface of the substrate W. As described below, in the first substrate processing example, the sulfuric acid-containing liquid process S3 for processing the substrate W using a sulfuric acid-containing liquid such as SPM, and the substrate W is processed using a liquid organic solvent such as IPA. And organic solvent step S7. The sulfuric acid-containing liquid and the organic solvent are a combination of a chemical fluid (chemical liquid or gas containing a chemical component) that is dangerous to contact (in this case, a rapid reaction).
 処理ユニット2によってレジスト除去処理が基板Wに施されるときには、処理チャンバ4の内部に、高ドーズでのイオン注入処理後の基板Wが搬入される(図4のステップS1)。搬入される基板Wは、レジストをアッシングするための処理を受けていないものとする。また、基板Wの表面には、微細で高アスペクト比の微細パターンが形成されている。 When the resist removal processing is performed on the substrate W by the processing unit 2, the substrate W after the ion implantation processing at a high dose is carried into the processing chamber 4 (step S1 in FIG. 4). It is assumed that the loaded substrate W has not been subjected to a process for ashing the resist. A fine pattern with a fine and high aspect ratio is formed on the surface of the substrate W.
 具体的には、制御装置3は、対向部材7(すなわち、遮断板26および中心軸ノズル29)が退避位置に退避し、全ての移動ノズル(すなわち、硫酸含有液ノズル60および洗浄薬液ノズル65)がスピンチャック5の上方から退避し、かつ第1および第2のガード71,72が下位置に下げられる。その結果、第1および第2のガード71,72の上端がいずれも基板Wの保持位置よりも下方に配置される。この状態で、基板Wを保持している基板搬送ロボットCR(図1参照)のハンドH(図1参照)を処理チャンバ4の内部に進入させることにより、基板Wがその表面(レジスト形成面)を上方に向けた状態でスピンチャック5に受け渡される。その後、スピンチャック5に基板Wが保持される(基板保持工程)。 Specifically, in the control device 3, the opposing member 7 (that is, the blocking plate 26 and the central axis nozzle 29) is retracted to the retracted position, and all the moving nozzles (that is, the sulfuric acid-containing liquid nozzle 60 and the cleaning chemical liquid nozzle 65). Is retracted from above the spin chuck 5 and the first and second guards 71 and 72 are lowered to the lower position. As a result, the upper ends of the first and second guards 71 and 72 are both disposed below the holding position of the substrate W. In this state, when the hand H (see FIG. 1) of the substrate transfer robot CR (see FIG. 1) holding the substrate W is caused to enter the inside of the processing chamber 4, the substrate W becomes its surface (resist formation surface). Is delivered to the spin chuck 5 with the side facing upward. Thereafter, the substrate W is held on the spin chuck 5 (substrate holding step).
 その後、制御装置3は、スピンモータ22によって基板Wの回転を開始させる。基板Wは予め定める液処理速度(1~500rpmの範囲内で、たとえば約100rpm)まで上昇させられ、その液処理速度に維持される。また、制御装置3は、ガード昇降ユニット73を制御して、第1および第2のガード71,72をそれぞれ上位置まで上昇させて、第1のガード71を基板Wの周端面に対向させる。 Thereafter, the control device 3 starts the rotation of the substrate W by the spin motor 22. The substrate W is raised to a predetermined liquid processing speed (within a range of 1 to 500 rpm, for example, about 100 rpm) and maintained at the liquid processing speed. Further, the control device 3 controls the guard lifting / lowering unit 73 to raise the first and second guards 71 and 72 to the upper position, respectively, so that the first guard 71 faces the peripheral end surface of the substrate W.
 基板Wの回転速度が液処理速度に達すると、次いで、炭酸水を基板Wの上面に供給して基板Wを除電する除電工程(図4のステップS2)が行われる。具体的には、制御装置3は、第2の水バルブ57を開く。これにより、図5Aに示すように、第2のノズル11の第2の吐出口10から、基板Wの上面中央部に向けて炭酸水が吐出される。第2のノズル11から吐出された炭酸水は、基板Wの上面中央部に着液し、基板Wの回転による遠心力を受けて基板Wの上面上を基板Wの周縁部に向けて流れる。 When the rotation speed of the substrate W reaches the liquid processing speed, a neutralization step (step S2 in FIG. 4) is performed in which carbonated water is supplied to the upper surface of the substrate W to neutralize the substrate W. Specifically, the control device 3 opens the second water valve 57. Thereby, as shown in FIG. 5A, carbonated water is discharged from the second discharge port 10 of the second nozzle 11 toward the center of the upper surface of the substrate W. The carbonated water discharged from the second nozzle 11 is deposited on the center of the upper surface of the substrate W and flows on the upper surface of the substrate W toward the peripheral portion of the substrate W under the centrifugal force generated by the rotation of the substrate W.
 また、この実施形態では、除電工程S2は、第2のノズル11からの炭酸水の吐出だけでなく、併せて、第1のノズル9の第1の吐出口8から炭酸水を吐出することによって実現される。つまり、除電工程S2は、有機溶剤配管34の内部を炭酸水で置換する第1の水置換工程T1を含む。具体的には、制御装置3は、除電工程S2の開始と同期して、第2の有機溶剤バルブ36を開きかつ第1の有機溶剤バルブ35および吸引バルブ51を閉じながら、第1の水バルブ46を開く。これにより、第1の水配管39からの炭酸水が、有機溶剤下流側部分40に供給される。有機溶剤下流側部分40の内壁に、前回のレジスト除去処理時に使用したIPAの液滴が付着している場合には、このIPAの液滴が炭酸水によって置換される。有機溶剤下流側部分40に供給された炭酸水は、第1のノズル9から吐出されて基板Wの上面中央部に着液し、基板Wの回転による遠心力を受けて基板Wの上面上を基板Wの周縁部に向けて流れる。また、有機溶剤下流側部分40の管内に前回のレジスト除去処理時に使用したIPA雰囲気が混入している場合も、炭酸水により除去される。 Further, in this embodiment, the static elimination step S2 is performed not only by discharging carbonated water from the second nozzle 11, but also by discharging carbonated water from the first discharge port 8 of the first nozzle 9. Realized. That is, the charge removal step S2 includes a first water replacement step T1 that replaces the inside of the organic solvent pipe 34 with carbonated water. Specifically, the control device 3 synchronizes with the start of the static elimination step S2 while opening the second organic solvent valve 36 and closing the first organic solvent valve 35 and the suction valve 51, and the first water valve Open 46. Thereby, carbonated water from the first water pipe 39 is supplied to the organic solvent downstream portion 40. If the IPA droplets used in the previous resist removal process adhere to the inner wall of the organic solvent downstream portion 40, the IPA droplets are replaced with carbonated water. The carbonated water supplied to the downstream portion 40 of the organic solvent is discharged from the first nozzle 9 and lands on the center of the upper surface of the substrate W, receives the centrifugal force due to the rotation of the substrate W, and moves on the upper surface of the substrate W. It flows toward the peripheral edge of the substrate W. Also, when the IPA atmosphere used in the previous resist removal process is mixed in the pipe of the organic solvent downstream portion 40, it is removed by carbonated water.
 基板Wの上面に供給された炭酸水は、基板Wの周縁部から基板Wの側方に向けて飛散し、第1のガード71の内壁に受け止められる。そして、第1のガード71の内壁を伝って流下する炭酸水は、第1の排液溝80に集められた後排気液配管81に導かれる。除電工程S2では、水用分岐配管84用の排液分岐バルブ85を開き、かつ硫酸含有液用分岐配管82用の排液分岐バルブ85および洗浄薬液用分岐配管83用の排液分岐バルブ85を閉じることにより、排気液配管81を通る液体の流通先が水用分岐配管84に設定されている。そのため、除電工程S2では、排気液配管81に導かれた炭酸水は、水用分岐配管84を通して、炭酸水を排液処理するための処理装置(図示しない)へと導かれる。前回のレジスト除去処理時に使用したIPAの液滴が第1のガード71の内壁や第1の排液溝80、排気液配管81の管壁に付着している場合には、このIPAの液滴が炭酸水によって洗い流される。 The carbonated water supplied to the upper surface of the substrate W is scattered from the peripheral edge of the substrate W toward the side of the substrate W and is received by the inner wall of the first guard 71. The carbonated water flowing down along the inner wall of the first guard 71 is collected in the first drain groove 80 and then guided to the exhaust pipe 81. In the static elimination step S2, the drainage branch valve 85 for the water branch pipe 84 is opened, and the drainage branch valve 85 for the sulfuric acid-containing liquid branch pipe 82 and the drainage branch valve 85 for the cleaning chemical liquid branch pipe 83 are opened. By closing, the flow destination of the liquid passing through the exhaust pipe 81 is set to the water branch pipe 84. Therefore, in the static elimination process S2, the carbonated water led to the exhaust liquid pipe 81 is led to a treatment device (not shown) for draining the carbonated water through the water branch pipe 84. If the IPA droplet used in the previous resist removal process adheres to the inner wall of the first guard 71, the first drain groove 80, and the exhaust pipe 81, this IPA droplet is used. Is washed away with carbonated water.
 基板Wの上面への炭酸水の供給により、基板W上の上面に炭酸水の液膜が形成される。炭酸水の液膜が基板Wの上面に接液することにより、スピンチャック5に保持されている基板Wが除電される。この実施形態では、除電工程S2が第1の水置換工程T1を含むので、第1の水置換工程T1を、除電工程S2と別のタイミングで行う場合と比較して、レジスト除去処理全体の処理時間を短縮できる。 By supplying carbonated water to the upper surface of the substrate W, a liquid film of carbonated water is formed on the upper surface of the substrate W. When the carbonated liquid film comes into contact with the upper surface of the substrate W, the substrate W held by the spin chuck 5 is neutralized. In this embodiment, since the static elimination step S2 includes the first water replacement step T1, the entire process of removing the resist is compared with the case where the first water replacement step T1 is performed at a different timing from the static elimination step S2. Time can be shortened.
 そして、炭酸水の吐出開始から所定時間が経過すると、制御装置3は、図5Bに示すように、第2の水バルブ57を開いた状態に維持しながら第1の水バルブ46を閉じて、第2のノズル11からの炭酸水の吐出を維持しながら第1のノズル9からの炭酸水の吐出を停止させる。 Then, when a predetermined time has elapsed from the start of discharging carbonated water, the control device 3 closes the first water valve 46 while maintaining the second water valve 57 open, as shown in FIG. 5B. The discharge of carbonated water from the first nozzle 9 is stopped while maintaining the discharge of carbonated water from the second nozzle 11.
 第1のノズル9からの炭酸水の吐出停止後、有機溶剤配管34の内の炭酸水を吸引する第1の水吸引工程T2(第1の吸引工程)が実行される。この第1の水吸引工程T2は、第1の水置換工程T1後に有機溶剤配管34の内部に存在している炭酸水を、吸引ユニット55によって吸引するものである。 After the discharge of carbonated water from the first nozzle 9 is stopped, a first water suction step T2 (first suction step) for sucking carbonated water in the organic solvent pipe 34 is executed. In the first water suction step T2, the carbonated water present in the organic solvent pipe 34 after the first water replacement step T1 is sucked by the suction unit 55.
 具体的には、制御装置3は、第1の水置換工程T1の終了後、第2の有機溶剤バルブ36を開きかつ第1の有機溶剤バルブ35および第1の水バルブ46を閉じながら、吸引バルブ51を開く。これにより、有機溶剤下流側部分40および水下流側部分50の内部が排気され、図5Bに示すように、有機溶剤下流側部分40および水下流側部分50に存在している炭酸水が、吸引配管49へと引き込まれる(吸引)。炭酸水の吸引は、炭酸水の先端面が配管内の所定の待機位置(たとえば吸引配管49または水下流側部分50に設定)に後退するまで行われる。炭酸水の先端面が、待機位置まで後退すると、制御装置3は吸引バルブ51を閉じる。これにより、第1の水置換工程T1が終了する。 Specifically, the control device 3 opens the second organic solvent valve 36 and closes the first organic solvent valve 35 and the first water valve 46 after the completion of the first water replacement step T1. Open the valve 51. Thereby, the inside of the organic solvent downstream portion 40 and the water downstream portion 50 is exhausted, and as shown in FIG. 5B, the carbonated water present in the organic solvent downstream portion 40 and the water downstream portion 50 is sucked. It is drawn into the pipe 49 (suction). The suction of carbonated water is performed until the front end surface of the carbonated water moves backward to a predetermined standby position in the pipe (for example, set to the suction pipe 49 or the downstream water portion 50). When the front end surface of the carbonated water is retracted to the standby position, the control device 3 closes the suction valve 51. Thereby, the first water replacement step T1 ends.
 第1の水置換工程T1の終了後に第1の水吸引工程T2が実行されることにより、第1の水吸引工程T2の実行後には、有機溶剤配管34の内部に炭酸水が存在しない。これにより、第1の水置換工程T1の終了後における第1のノズル9からの炭酸水の落液を抑制または防止できる。 When the first water suction step T2 is executed after the first water replacement step T1, the carbonated water does not exist inside the organic solvent pipe 34 after the first water suction step T2. Thereby, the fall of carbonated water from the 1st nozzle 9 after completion | finish of 1st water substitution process T1 can be suppressed or prevented.
 炭酸水の吐出開始から所定時間が経過すると、制御装置3は、第1の水バルブ46を閉じて、第2のノズル11からの炭酸水の吐出を停止させる。これにより、除電工程S2が終了する。 When a predetermined time has elapsed from the start of discharging carbonated water, the control device 3 closes the first water valve 46 and stops discharging carbonated water from the second nozzle 11. Thereby, static elimination process S2 is complete | finished.
 また、この実施形態では、第1の水吸引工程T2と、除電工程S2の一部(第2のノズル9からの炭酸水の吐出)とを並行して行うので、第1の水吸引工程T2を、除電工程S2の終了後に別途行う場合と比較して、レジスト除去処理全体の処理時間を短縮できる。    In this embodiment, since the first water suction step T2 and part of the charge removal step S2 (discharge of carbonated water from the second nozzle 9) are performed in parallel, the first water suction step T2 is performed. As compared with a case where the process is separately performed after the charge removal step S2, the entire processing time of the resist removal process can be shortened. *
 次いで、制御装置3は、高温のSPMを基板Wの上面に供給する硫酸含有液工程(第2の処理工程。図4のステップS3)を行う。硫酸含有液工程S3では、基板Wの表面からレジストを剥離すべく、制御装置3は、硫酸含有液ノズル60からの高温のSPMを、基板Wの上面中央部に供給する。 Next, the control device 3 performs a sulfuric acid-containing liquid process (second processing process, step S3 in FIG. 4) for supplying high-temperature SPM to the upper surface of the substrate W. In the sulfuric acid-containing liquid process S <b> 3, the control device 3 supplies the high-temperature SPM from the sulfuric acid-containing liquid nozzle 60 to the center of the upper surface of the substrate W in order to peel the resist from the surface of the substrate W.
 具体的には、硫酸含有液工程S3において、制御装置3は、第1のノズル移動ユニット63を制御することにより、硫酸含有液ノズル60を退避位置から中央位置に移動させる。これにより、硫酸含有液ノズル60が基板Wの中央部の上方に配置される。その後、制御装置3は、硫酸含有液バルブ62を開く。これにより、高温(たとえば約170℃~約200℃)のSPMが硫酸含有液配管61から硫酸含有液ノズル60に供給され、この硫酸含有液ノズル60の吐出口から高温のSPMが吐出される。硫酸含有液ノズル60から吐出された高温のSPMは、基板Wの上面の中央部に着液し、基板Wの回転による遠心力を受けて、基板Wの上面に沿って外方に流れる。これにより、図5Cに示すように、基板Wの上面全域がSPMの液膜によって覆われる。高温のSPMにより、基板Wの表面からレジストが剥離されて、当該基板Wの表面から除去される。 Specifically, in the sulfuric acid-containing liquid step S3, the control device 3 controls the first nozzle moving unit 63 to move the sulfuric acid-containing liquid nozzle 60 from the retracted position to the central position. As a result, the sulfuric acid-containing liquid nozzle 60 is disposed above the central portion of the substrate W. Thereafter, the control device 3 opens the sulfuric acid-containing liquid valve 62. As a result, high-temperature (for example, about 170 ° C. to about 200 ° C.) SPM is supplied from the sulfuric acid-containing liquid pipe 61 to the sulfuric acid-containing liquid nozzle 60, and high-temperature SPM is discharged from the discharge port of the sulfuric acid-containing liquid nozzle 60. The high-temperature SPM discharged from the sulfuric acid-containing liquid nozzle 60 is deposited on the center of the upper surface of the substrate W, receives centrifugal force due to the rotation of the substrate W, and flows outward along the upper surface of the substrate W. As a result, as shown in FIG. 5C, the entire upper surface of the substrate W is covered with the liquid film of SPM. The resist is peeled off from the surface of the substrate W and removed from the surface of the substrate W by the high temperature SPM.
 基板Wの上面に供給されたSPMは、基板Wの周縁部から基板Wの側方に向けて飛散し、第1のガード71の内壁に受け止められる。そして、第1のガード71の内壁を伝って流下するSPMは、第1の排液溝80に集められた後排気液配管81に導かれる。硫酸含有液工程S3では、硫酸含有液用分岐配管82用の排液分岐バルブ85を開き、かつ洗浄薬液用分岐配管83用の排液分岐バルブ85および水用分岐配管84用の排液分岐バルブ85を閉じることにより、排気液配管81を通る液体の流通先が硫酸含有液用分岐配管82に設定されている。そのため、除電工程S2では、排気液配管81に導かれたSPMは、硫酸含有液用分岐配管82を通して、硫酸含有液を排液処理するための処理装置(図示しない)へと導かれる。そのため、硫酸含有液工程S3の後には、第1のガード71の内壁や第1の排液溝80、排気液配管81の管壁にSPMの液滴が付着している。 The SPM supplied to the upper surface of the substrate W is scattered from the peripheral edge of the substrate W toward the side of the substrate W and is received by the inner wall of the first guard 71. The SPM flowing down along the inner wall of the first guard 71 is collected in the first drainage groove 80 and then guided to the exhaust pipe 81. In the sulfuric acid-containing liquid process S3, the drainage branch valve 85 for the sulfuric acid-containing liquid branch pipe 82 is opened, and the drainage branch valve 85 for the cleaning chemical branch pipe 83 and the drain branch valve for the water branch pipe 84 are opened. By closing 85, the distribution destination of the liquid passing through the exhaust liquid pipe 81 is set to the sulfuric acid-containing liquid branch pipe 82. Therefore, in the static elimination step S2, the SPM guided to the exhaust liquid pipe 81 is guided to a treatment apparatus (not shown) for draining the sulfuric acid-containing liquid through the sulfuric acid-containing liquid branch pipe 82. Therefore, SPM droplets adhere to the inner wall of the first guard 71, the first drain groove 80, and the pipe wall of the exhaust pipe 81 after the sulfuric acid-containing liquid step S3.
 硫酸含有液工程S3では、高温のSPMの基板Wへの供給により、基板Wの上面の周囲に大量のSPMのミストが発生する。硫酸含有液工程S3では、遮断板26および中心軸ノズル29は退避位置(たとえば、遮断板26の基板対向面6がスピンベース24の上面から上方に十分な間隔(たとえば約150mm)を隔てられているのであるが、硫酸含有液工程S3において使用されるSPMが極めて高温(たとえば約170℃~約200℃)であるため、硫酸含有液工程S3では大量のSPMのミストが発生し、その結果、このSPMのミストが第1の吐出口8から有機溶剤配管34の内部に入り込み、有機溶剤配管34の内部に(奥深くまで)進入する。 In the sulfuric acid-containing liquid process S <b> 3, a large amount of SPM mist is generated around the upper surface of the substrate W by supplying the high-temperature SPM to the substrate W. In the sulfuric acid-containing liquid process S3, the blocking plate 26 and the central shaft nozzle 29 are retracted (for example, the substrate facing surface 6 of the blocking plate 26 is spaced apart from the upper surface of the spin base 24 by a sufficient distance (for example, about 150 mm)). However, since the SPM used in the sulfuric acid-containing liquid process S3 is extremely high temperature (for example, about 170 ° C. to about 200 ° C.), a large amount of SPM mist is generated in the sulfuric acid-containing liquid process S3. The SPM mist enters the organic solvent pipe 34 from the first discharge port 8 and enters the organic solvent pipe 34 (deeply).
 この場合、前回のレジスト除去処理で用いられたIPAが有機溶剤配管34の内部に残存していると(有機溶剤配管34の内部へのIPAの液滴の付着も含む)、硫酸含有液工程S3において、有機溶剤配管34内に進入したSPMのミストが、有機溶剤配管34の内部でIPAと接触するおそれがある。有機溶剤配管34の内部でSPMのミストがIPAと接触するとパーティクルが発生し、有機溶剤配管34の内部が、パーティクル発生源になるおそれがある。 In this case, when the IPA used in the previous resist removal process remains in the organic solvent pipe 34 (including adhesion of IPA droplets to the inside of the organic solvent pipe 34), the sulfuric acid-containing liquid process S3. In this case, the SPM mist that has entered the organic solvent pipe 34 may come into contact with the IPA inside the organic solvent pipe 34. When the mist of SPM comes into contact with IPA inside the organic solvent pipe 34, particles are generated, and the inside of the organic solvent pipe 34 may become a particle generation source.
 しかしながら、この実施形態では、硫酸含有液工程S3に先立って第1の水置換工程T1を実行しているから、硫酸含有液工程S3の開始時には、有機溶剤配管34の内部にIPAは残留していない。したがって、硫酸含有液工程S3においてSPMのミストが有機溶剤配管34内に進入しても、有機溶剤配管34の内部でIPAと接触しない。そのため、硫酸含有液工程S3においてIPAとSPMとの接触を防止でき、これにより、有機溶剤配管34の内部がパーティクル発生源になることを抑制または防止できる。 However, in this embodiment, since the first water replacement step T1 is performed prior to the sulfuric acid-containing liquid step S3, IPA remains in the organic solvent pipe 34 at the start of the sulfuric acid-containing liquid step S3. Absent. Accordingly, even if SPM mist enters the organic solvent pipe 34 in the sulfuric acid-containing liquid process S3, it does not come into contact with the IPA inside the organic solvent pipe 34. Therefore, the contact between the IPA and the SPM can be prevented in the sulfuric acid-containing liquid process S3, whereby the inside of the organic solvent pipe 34 can be suppressed or prevented from becoming a particle generation source.
 硫酸含有液工程S3において、高温のSPMの吐出開始から予め定める期間が経過すると、硫酸含有液工程S3が終了する。具体的には、制御装置3は、硫酸含有液バルブ62を閉じて、硫酸含有液ノズル60からの高温のSPMの吐出を停止させ、その後、第1のノズル移動ユニット63を制御して、硫酸含有液ノズル60を退避位置まで退避させる。 In the sulfuric acid-containing liquid process S3, the sulfuric acid-containing liquid process S3 ends when a predetermined period has elapsed from the start of high-temperature SPM discharge. Specifically, the control device 3 closes the sulfuric acid-containing liquid valve 62 to stop the discharge of high-temperature SPM from the sulfuric acid-containing liquid nozzle 60, and then controls the first nozzle moving unit 63 to control the sulfuric acid. The containing liquid nozzle 60 is retracted to the retracted position.
 次いで、リンス液としての炭酸水を基板Wの上面に供給する第1のリンス工程(図4のステップS4)が行われる。具体的には、制御装置3は、第2の水バルブ57を開く。これにより、図5Dに示すように、第2のノズル11の第2の吐出口10から、基板Wの上面中央部に向けて炭酸水が吐出される。第2のノズル11から吐出された炭酸水は、基板Wの上面中央部に着液し、基板Wの回転による遠心力を受けて基板Wの上面上を基板Wの周縁部に向けて流れる。 Next, a first rinsing process (step S4 in FIG. 4) for supplying carbonated water as a rinsing liquid to the upper surface of the substrate W is performed. Specifically, the control device 3 opens the second water valve 57. Accordingly, as shown in FIG. 5D, carbonated water is discharged from the second discharge port 10 of the second nozzle 11 toward the center of the upper surface of the substrate W. The carbonated water discharged from the second nozzle 11 is deposited on the center of the upper surface of the substrate W and flows on the upper surface of the substrate W toward the peripheral portion of the substrate W under the centrifugal force generated by the rotation of the substrate W.
 また、この実施形態では、第1のリンス工程S4は、第2のノズル11からの炭酸水の吐出だけでなく、併せて、第1のノズル9の第1の吐出口8から炭酸水を吐出することによって実現される。つまり、第1のリンス工程S4は、第2のノズル11からの炭酸水の吐出に並行して、有機溶剤配管34の内部を炭酸水で置換する第2の水置換工程T3を含む。具体的には、制御装置3は、第1のリンス工程S4の開始と同期して、第2の有機溶剤バルブ36を開きかつ第1の有機溶剤バルブ35および吸引バルブ51を閉じながら、第1の水バルブ46を開く。これにより、第1の水配管39からの炭酸水が、有機溶剤下流側部分40に供給され、有機溶剤下流側部分40の内壁に付着しているSPMの液滴が炭酸水によって置換される。有機溶剤下流側部分40に供給された炭酸水は、第1のノズル9から吐出されて基板Wの上面中央部に着液し、基板Wの回転による遠心力を受けて基板Wの上面上を基板Wの周縁部に向けて流れる。 In this embodiment, the first rinsing step S4 not only discharges carbonated water from the second nozzle 11, but also discharges carbonated water from the first discharge port 8 of the first nozzle 9. It is realized by doing. That is, the first rinsing step S4 includes a second water replacement step T3 in which the inside of the organic solvent pipe 34 is replaced with carbonated water in parallel with the discharge of carbonated water from the second nozzle 11. Specifically, the control device 3 opens the second organic solvent valve 36 and closes the first organic solvent valve 35 and the suction valve 51 in synchronization with the start of the first rinsing step S4. Open the water valve 46. Thereby, carbonated water from the first water pipe 39 is supplied to the organic solvent downstream portion 40, and SPM droplets adhering to the inner wall of the organic solvent downstream portion 40 are replaced with carbonated water. The carbonated water supplied to the downstream portion 40 of the organic solvent is discharged from the first nozzle 9 and lands on the center of the upper surface of the substrate W, receives the centrifugal force due to the rotation of the substrate W, and moves on the upper surface of the substrate W. It flows toward the peripheral edge of the substrate W.
 基板Wの上面に供給された炭酸水は、基板Wの周縁部から基板Wの側方に向けて飛散し、第1のガード71の内壁に受け止められる。そして、第1のガード71の内壁を伝って流下する炭酸水は、第1の排液溝80に集められた後排気液配管81に導かれる。第1のリンス工程S4では、水用分岐配管84用の排液分岐バルブ85を開き、かつ硫酸含有液用分岐配管82用の排液分岐バルブ85および洗浄薬液用分岐配管83用の排液分岐バルブ85を閉じることにより、排気液配管81を通る液体の流通先が水用分岐配管84に設定されている。そのため、排気液配管81に導かれた炭酸水は、水用分岐配管84を通して、水を排液処理するための処理装置(図示しない)へと導かれる。硫酸含有液工程S3において使用したSPMの液滴が第1のガード71の内壁や第1の排液溝80、排気液配管81の管壁に付着している場合には、このSPMの液滴が炭酸水によって洗い流される。 The carbonated water supplied to the upper surface of the substrate W is scattered from the peripheral edge of the substrate W toward the side of the substrate W and is received by the inner wall of the first guard 71. The carbonated water flowing down along the inner wall of the first guard 71 is collected in the first drain groove 80 and then guided to the exhaust pipe 81. In the first rinsing step S4, the drainage branch valve 85 for the water branch pipe 84 is opened, and the drainage branch valve 85 for the sulfuric acid-containing liquid branch pipe 82 and the drainage branch for the cleaning chemical liquid branch pipe 83 are opened. By closing the valve 85, the flow destination of the liquid passing through the exhaust liquid pipe 81 is set to the water branch pipe 84. Therefore, the carbonated water led to the exhaust liquid pipe 81 is led to a treatment device (not shown) for draining water through the water branch pipe 84. When the SPM droplet used in the sulfuric acid-containing liquid process S3 is attached to the inner wall of the first guard 71, the first drain groove 80, or the tube wall of the exhaust pipe 81, the SPM droplet. Is washed away with carbonated water.
 基板Wの上面に供給される炭酸水によって、基板W上のSPMが外方に押し流され、基板Wの周囲に排出され、基板W上のSPMの液膜が、基板Wの上面全域を覆う炭酸水の液膜に置換される。すなわち、リンス液としての炭酸水によって、基板Wの上面からSPM洗い流される。そして、炭酸水の吐出開始から所定時間が経過すると、制御装置3は、第1の水バルブ46および第2の水バルブ57をそれぞれ閉じて、第1のノズル9および第2のノズル11からの炭酸水の吐出を停止させる。これにより、第1のリンス工程が終了する。 The carbonated water supplied to the upper surface of the substrate W causes the SPM on the substrate W to flow outward and is discharged around the substrate W, and the liquid film of SPM on the substrate W covers the entire upper surface of the substrate W. Replaced by a liquid film of water. That is, the SPM is washed away from the upper surface of the substrate W by carbonated water as a rinse liquid. Then, when a predetermined time has elapsed from the start of discharge of carbonated water, the control device 3 closes the first water valve 46 and the second water valve 57, respectively, and outputs from the first nozzle 9 and the second nozzle 11. Stop discharging carbonated water. Thereby, the 1st rinse process is completed.
 また、この実施形態では、第1のリンス工程S4が第2の水置換工程T3を含むので、第1の水置換工程T1を、第1のリンス工程S4と別のタイミングで行う場合と比較して、レジスト除去処理全体の処理時間を短縮できる。 Further, in this embodiment, since the first rinsing step S4 includes the second water replacement step T3, the first water replacement step T1 is compared with the case where it is performed at a different timing from the first rinsing step S4. Thus, the processing time of the entire resist removal process can be shortened.
 また、第1のリンス工程S4において、第1のノズル9からの炭酸水の吐出停止と、第2のノズル11からの炭酸水の吐出停止とを同期させる必要はなく、第1のノズル9からの炭酸水の吐出停止を、第2のノズル11からの炭酸水の吐出停止に先立って行うようにしてもよい。 Further, in the first rinsing step S <b> 4, it is not necessary to synchronize the stop of discharge of carbonated water from the first nozzle 9 and the stop of discharge of carbonated water from the second nozzle 11. The discharge of carbonated water may be stopped prior to the stop of discharge of carbonated water from the second nozzle 11.
 第1のノズル9および第2のノズル11からの炭酸水の吐出停止後、制御装置3は、SC1を基板Wの上面に供給する洗浄薬液工程(第1の処理工程。図4のステップS5)を行う。洗浄薬液工程S5では、硫酸含有液工程S3後に基板Wの表面に存在するレジスト残渣を基板Wの表面から除去すべく、制御装置3は、洗浄薬液ノズル65からのSC1を、基板Wの上面に供給する。 After stopping the discharge of carbonated water from the first nozzle 9 and the second nozzle 11, the control device 3 performs a cleaning chemical solution process (first processing process; step S5 in FIG. 4) for supplying SC1 to the upper surface of the substrate W. I do. In the cleaning chemical solution step S5, the controller 3 removes the SC1 from the cleaning chemical solution nozzle 65 on the upper surface of the substrate W in order to remove the resist residue existing on the surface of the substrate W after the sulfuric acid-containing solution step S3. Supply.
 具体的には、洗浄薬液工程S5において、制御装置3は、第2のノズル移動ユニット68を制御することにより、洗浄薬液ノズル65を退避位置から処理位置に移動させる。その後、制御装置3は、洗浄薬液バルブ67を開く。これにより、図5Eに示すように、洗浄薬液配管66から洗浄薬液ノズル65にSC1が供給され、洗浄薬液ノズル65の吐出口からSC1が吐出される。また、制御装置3は、洗浄薬液ノズル65からのSC1の吐出に並行して、第2のノズル移動ユニット68を制御して、洗浄薬液ノズル65を中央位置と周縁位置との間で往復移動させる(ハーフスキャン)。これにより、洗浄薬液ノズル65からのSC1の着液位置を、基板Wの上面中央部と基板Wの上面周縁部との間で往復移動させることができ、これにより、SC1の着液位置を、基板Wの上面の全域を走査させることができる。基板Wの上面にSC1が供給されることにより、レジスト残渣を、基板Wの表面から除去できる。 Specifically, in the cleaning chemical solution step S5, the control device 3 controls the second nozzle moving unit 68 to move the cleaning chemical solution nozzle 65 from the retracted position to the processing position. Thereafter, the control device 3 opens the cleaning chemical liquid valve 67. As a result, as shown in FIG. 5E, SC1 is supplied from the cleaning chemical solution pipe 66 to the cleaning chemical solution nozzle 65, and SC1 is discharged from the discharge port of the cleaning chemical solution nozzle 65. Further, the control device 3 controls the second nozzle moving unit 68 to reciprocate the cleaning chemical solution nozzle 65 between the central position and the peripheral position in parallel with the discharge of SC1 from the cleaning chemical solution nozzle 65. (Half scan). Thereby, the SC1 liquid landing position from the cleaning chemical liquid nozzle 65 can be reciprocated between the center of the upper surface of the substrate W and the peripheral edge of the upper surface of the substrate W. The entire upper surface of the substrate W can be scanned. By supplying SC1 to the upper surface of the substrate W, the resist residue can be removed from the surface of the substrate W.
 基板Wの上面に供給されたSC1は、基板Wの周縁部から基板Wの側方に向けて飛散し、第1のガード71の内壁に受け止められる。そして、第1のガード71の内壁を伝って流下するSC1は、第1の排液溝80に集められた後排気液配管81に導かれる。洗浄薬液工程S5では、洗浄薬液用分岐配管83用の排液分岐バルブ85を開き、かつ硫酸含有液用分岐配管82用の排液分岐バルブ85および水用分岐配管84用の排液分岐バルブ85を閉じることにより、排気液配管81を通る液体の流通先が洗浄薬液用分岐配管83に設定されている。そのため、排気液配管81に導かれたSC1は、洗浄薬液用分岐配管83を通して、洗浄薬液を排液処理するための処理装置(図示しない)へと導かれる。 The SC 1 supplied to the upper surface of the substrate W is scattered from the peripheral edge of the substrate W toward the side of the substrate W and is received by the inner wall of the first guard 71. The SC1 flowing down along the inner wall of the first guard 71 is collected in the first drainage groove 80 and then guided to the exhaust pipe 81. In the cleaning chemical liquid step S5, the drainage branch valve 85 for the cleaning chemical liquid branch pipe 83 is opened, and the drainage branch valve 85 for the sulfuric acid-containing liquid branch pipe 82 and the drainage branch valve 85 for the water branch pipe 84 are used. Is closed, the flow destination of the liquid passing through the exhaust liquid pipe 81 is set to the cleaning chemical liquid branch pipe 83. Therefore, SC1 led to the exhaust liquid pipe 81 is led to a processing apparatus (not shown) for draining the cleaning chemical liquid through the cleaning chemical liquid branch pipe 83.
 また、洗浄薬液工程S5に並行して、有機溶剤配管34の内の炭酸水を吸引する第2の水吸引工程T4(第1の吸引工程)が実行される。この第2の水吸引工程T4は、有機溶剤工程S7後に有機溶剤配管34の内部に存在している炭酸水を、吸引ユニット55によって吸引するものである。 In parallel with the cleaning chemical liquid process S5, a second water suction process T4 (first suction process) for sucking carbonated water in the organic solvent pipe 34 is performed. In the second water suction step T4, carbonated water present in the organic solvent pipe 34 after the organic solvent step S7 is sucked by the suction unit 55.
 具体的には、制御装置3は、第2の水置換工程T3の終了後、第2の有機溶剤バルブ36を開きかつ第1の有機溶剤バルブ35および第1の水バルブ46を閉じながら、吸引バルブ51を開く。これにより、有機溶剤下流側部分40および水下流側部分50の内部が排気され、図5Eに示すように、有機溶剤下流側部分40および水下流側部分50に存在している炭酸水が、吸引配管49へと引き込まれる(吸引)。炭酸水の吸引は、炭酸水の先端面が配管内の所定の待機位置(たとえば吸引配管49または水下流側部分50に設定)に後退するまで行われる。炭酸水の先端面が、待機位置まで後退すると、制御装置3は吸引バルブ51を閉じる。これにより、第2の水吸引工程T4が終了する。 Specifically, after the completion of the second water replacement step T3, the control device 3 opens the second organic solvent valve 36 and closes the first organic solvent valve 35 and the first water valve 46 while performing suction. Open the valve 51. Thereby, the insides of the organic solvent downstream portion 40 and the water downstream portion 50 are exhausted, and as shown in FIG. 5E, the carbonated water present in the organic solvent downstream portion 40 and the water downstream portion 50 is sucked. It is drawn into the pipe 49 (suction). The suction of carbonated water is performed until the front end surface of the carbonated water moves backward to a predetermined standby position in the pipe (for example, set to the suction pipe 49 or the downstream water portion 50). When the front end surface of the carbonated water is retracted to the standby position, the control device 3 closes the suction valve 51. Thereby, the second water suction step T4 ends.
 第2の水置換工程T3の終了後に第2の水吸引工程T4が実行されることにより、第2の水吸引工程T4の実行後には、有機溶剤配管34の内部に炭酸水が存在しない。これにより、第2の水置換工程T3の終了後における第1のノズル9からの炭酸水の落液を抑制または防止できる。 When the second water suction step T4 is executed after the second water replacement step T3 is completed, carbonated water does not exist inside the organic solvent pipe 34 after the second water suction step T4 is executed. Thereby, the fall of carbonated water from the 1st nozzle 9 after completion | finish of 2nd water substitution process T3 can be suppressed or prevented.
 また、この実施形態では、第2の水吸引工程T4を、洗浄薬液工程S5に並行して実行するので、第2の水吸引工程T4を、洗浄薬液工程S5と別のタイミングで行う場合と比較して、レジスト除去処理全体の処理時間を短縮できる。 In this embodiment, the second water suction step T4 is executed in parallel with the cleaning chemical solution step S5. Therefore, the second water suction step T4 is compared with the case where the second water suction step T4 is performed at a different timing from the cleaning chemical solution step S5. Thus, the processing time of the entire resist removal process can be shortened.
 SC1の吐出開始から予め定める期間が経過すると、洗浄薬液工程S5が終了する。具体的には、制御装置3は、洗浄薬液バルブ67を閉じて、洗浄薬液ノズル65からのSC1の吐出を停止させ、その後、第2のノズル移動ユニット68を制御して、洗浄薬液ノズル65を退避位置まで退避させる。 When the predetermined period has elapsed from the start of the SC1 discharge, the cleaning chemical solution step S5 is completed. Specifically, the control device 3 closes the cleaning chemical solution valve 67 to stop the discharge of SC1 from the cleaning chemical solution nozzle 65, and then controls the second nozzle moving unit 68 to control the cleaning chemical solution nozzle 65. Retreat to the retreat position.
 次いで、リンス液としての炭酸水を基板Wの上面に供給する第2のリンス工程(図4のステップS6)が行われる。具体的には、制御装置3は、第2の水バルブ57を開く。これにより、図5Fに示すように、第2のノズル11の第2の吐出口10から、基板Wの上面中央部に向けて炭酸水が吐出される。第2のノズル11から吐出された炭酸水は、基板Wの上面中央部に着液し、基板Wの回転による遠心力を受けて基板Wの上面上を基板Wの周縁部に向けて流れる。 Next, a second rinsing process (step S6 in FIG. 4) for supplying carbonated water as a rinsing liquid to the upper surface of the substrate W is performed. Specifically, the control device 3 opens the second water valve 57. Accordingly, as shown in FIG. 5F, carbonated water is discharged from the second discharge port 10 of the second nozzle 11 toward the center of the upper surface of the substrate W. The carbonated water discharged from the second nozzle 11 is deposited on the center of the upper surface of the substrate W and flows on the upper surface of the substrate W toward the peripheral portion of the substrate W under the centrifugal force generated by the rotation of the substrate W.
 基板Wの上面に供給された炭酸水は、基板Wの周縁部から基板Wの側方に向けて飛散し、第1のガード71の内壁に受け止められる。そして、第1のガード71の内壁を伝って流下する炭酸水は、第1の排液溝80に集められた後排気液配管81に導かれる。第2のリンス工程S6では、水用分岐配管84用の排液分岐バルブ85を開き、かつ硫酸含有液用分岐配管82用の排液分岐バルブ85および洗浄薬液用分岐配管83用の排液分岐バルブ85を閉じることにより、排気液配管81を通る液体の流通先が水用分岐配管84に設定されている。そのため、第2のリンス工程S6では、排気液配管81に導かれた炭酸水は、水用分岐配管84を通して、水を排液処理するための処理装置(図示しない)へと導かれる。 The carbonated water supplied to the upper surface of the substrate W is scattered from the peripheral edge of the substrate W toward the side of the substrate W and is received by the inner wall of the first guard 71. The carbonated water flowing down along the inner wall of the first guard 71 is collected in the first drain groove 80 and then guided to the exhaust pipe 81. In the second rinsing step S6, the drainage branch valve 85 for the water branch pipe 84 is opened, and the drainage branch valve 85 for the sulfuric acid-containing liquid branch pipe 82 and the drainage branch for the cleaning chemical liquid branch pipe 83 are opened. By closing the valve 85, the flow destination of the liquid passing through the exhaust liquid pipe 81 is set to the water branch pipe 84. Therefore, in the second rinsing step S <b> 6, the carbonated water led to the exhaust liquid pipe 81 is led to a treatment device (not shown) for draining water through the water branch pipe 84.
 基板Wの上面に供給される炭酸水によって、基板W上のSC1が外方に押し流され、基板Wの周囲に排出され、基板W上のSC1の液膜が、基板Wの上面全域を覆う炭酸水の液膜に置換される。すなわち、リンス液としての炭酸水によって、基板Wの上面からSC1が洗い流される。そして、第2の水バルブ57が開かれてから所定時間が経過すると、制御装置3は、第2の水バルブ57を閉じて、第2のノズル11からの炭酸水の吐出を停止させる。これにより、第2のリンス工程S6が終了する。 The carbonated water supplied to the upper surface of the substrate W causes the SC1 on the substrate W to flow outward and is discharged around the substrate W, and the liquid film of SC1 on the substrate W covers the entire upper surface of the substrate W. Replaced by a liquid film of water. That is, SC1 is washed away from the upper surface of the substrate W by carbonated water as a rinse liquid. When a predetermined time elapses after the second water valve 57 is opened, the control device 3 closes the second water valve 57 and stops the discharge of carbonated water from the second nozzle 11. Thereby, 2nd rinse process S6 is complete | finished.
 次いで、有機溶剤としてのIPAを基板Wの上面に供給する有機溶剤工程(図4のステップS7)が行われる。具体的には、制御装置3は、遮断板昇降ユニット32を制御して、遮断板26を近接位置に配置する。遮断板26が近接位置にあるときには、遮断板26が、基板Wの上面をその周囲の空間から遮断する。 Next, an organic solvent process (step S7 in FIG. 4) for supplying IPA as an organic solvent to the upper surface of the substrate W is performed. Specifically, the control device 3 controls the shield plate lifting / lowering unit 32 to place the shield plate 26 in the proximity position. When the blocking plate 26 is in the proximity position, the blocking plate 26 blocks the upper surface of the substrate W from the surrounding space.
 また、制御装置3は、ガード昇降ユニット73を制御して、第1のガード71を下位置のまま、第2のガード72を上位置に配置して、第2のガード72を基板Wの周端面に対向させる。また、制御装置3は、基板Wの回転を所定のパドル速度に減速する。このパドル速度とは、基板Wをパドル速度で回転させたときに、基板Wの上面の液体に作用する遠心力がリンス液と基板Wの上面との間で作用する表面張力よりも小さいか、あるいは前記の遠心力と前記の表面張力とがほぼ拮抗するような速度をいう。 Further, the control device 3 controls the guard lifting / lowering unit 73 so that the first guard 71 remains at the lower position, the second guard 72 is disposed at the upper position, and the second guard 72 is placed around the substrate W. Opposite to the end face. Further, the control device 3 decelerates the rotation of the substrate W to a predetermined paddle speed. This paddle speed means that when the substrate W is rotated at the paddle speed, the centrifugal force acting on the liquid on the upper surface of the substrate W is smaller than the surface tension acting between the rinse liquid and the upper surface of the substrate W, Alternatively, the speed is such that the centrifugal force and the surface tension almost antagonize.
 そして、制御装置3は、第2の有機溶剤バルブ36を開きかつ第1の水バルブ46および吸引バルブ51を閉じながら、第1の有機溶剤バルブ35を開く。これにより、図5Gに示すように、有機溶剤供給源からのIPAが、第2のノズル11に供給され、第2のノズル11からIPAが吐出されて基板Wの上面に着液する。 Then, the control device 3 opens the first organic solvent valve 35 while opening the second organic solvent valve 36 and closing the first water valve 46 and the suction valve 51. As a result, as shown in FIG. 5G, IPA from the organic solvent supply source is supplied to the second nozzle 11, and IPA is discharged from the second nozzle 11 to land on the upper surface of the substrate W.
 硫酸含有液工程S3において有機溶剤配管34内に進入したSPMのミストが凝縮により液化してSPMの液滴を形成する。有機溶剤工程S7の開始前に有機溶剤配管34の内部にSPMの液滴が存在していると、有機溶剤工程S7において有機溶剤配管34に供給されたIPAが、有機溶剤配管34の内部でSPMと接触するおそれがある。有機溶剤配管34の内部でIPAがSPMの液滴と接触するとパーティクルが発生し、有機溶剤配管34の内部が、パーティクル発生源になるおそれがある。 In the sulfuric acid-containing liquid process S3, the SPM mist that has entered the organic solvent pipe 34 is liquefied by condensation to form SPM droplets. If SPM droplets exist in the organic solvent pipe 34 before the start of the organic solvent process S7, the IPA supplied to the organic solvent pipe 34 in the organic solvent process S7 is converted into the SPM inside the organic solvent pipe 34. There is a risk of contact. When IPA comes into contact with SPM droplets inside the organic solvent pipe 34, particles are generated, and the inside of the organic solvent pipe 34 may become a particle generation source.
 しかしながら、この実施形態では、有機溶剤工程S7に先立って第2の水置換工程T3を実行しているから、有機溶剤工程S7の開始時には、有機溶剤配管34の内部にSPMの液滴は残留していない。したがって、当該有機溶剤工程S7において有機溶剤配管34にIPAが供給されても、有機溶剤配管34の内部でSPMと接触しない。そのため、IPAとSPMとの接触に伴うパーティクルの発生を効果的に抑制または防止でき、これにより、有機溶剤配管34の内部がパーティクル発生源になることを抑制または防止できる。 However, in this embodiment, since the second water replacement step T3 is performed prior to the organic solvent step S7, SPM droplets remain in the organic solvent pipe 34 at the start of the organic solvent step S7. Not. Therefore, even if IPA is supplied to the organic solvent pipe 34 in the organic solvent process S7, the organic solvent pipe 34 does not come into contact with the SPM. Therefore, it is possible to effectively suppress or prevent the generation of particles due to the contact between the IPA and the SPM, thereby suppressing or preventing the inside of the organic solvent pipe 34 from becoming a particle generation source.
 有機溶剤工程S7では、第1のノズル9からのIPAの吐出により、基板Wの上面の液膜に含まれる炭酸水がIPAに順次置換されていく。これにより、基板Wの上面に、基板Wの上面全域を覆うIPAの液膜がパドル状に保持される。基板Wの上面全域の液膜がほぼIPAの液膜に置換された後も、基板Wの上面へのIPAの供給は続行される。そのため、基板Wの周縁部からIPAが排出される。 In the organic solvent step S7, the carbonated water contained in the liquid film on the upper surface of the substrate W is sequentially replaced with IPA by the discharge of IPA from the first nozzle 9. As a result, the IPA liquid film covering the entire upper surface of the substrate W is held on the upper surface of the substrate W in a paddle shape. Even after the liquid film on the entire upper surface of the substrate W is replaced with the IPA liquid film, the supply of IPA to the upper surface of the substrate W is continued. Therefore, IPA is discharged from the peripheral edge of the substrate W.
 基板Wの周縁部から排出されるIPAは、第2のガード72の内壁に受け止められる。そして、第2のガード72の内壁を伝って流下するIPAは、第2の排液溝86に集められた後排気配管87に導かれる。そのため、有機溶剤工程S7の後には、第2のガード72の内壁や第2の排液溝86、排気配管87の管壁にIPAの液滴が付着している。 IPA discharged from the peripheral edge of the substrate W is received by the inner wall of the second guard 72. The IPA flowing down along the inner wall of the second guard 72 is collected in the second drainage groove 86 and then guided to the exhaust pipe 87. Therefore, after the organic solvent step S 7, IPA droplets adhere to the inner wall of the second guard 72, the second drainage groove 86, and the pipe wall of the exhaust pipe 87.
 IPAの吐出開始から予め定める期間が経過すると、制御装置3は、第1の有機溶剤バルブ35を閉じて、第1のノズル9からのIPAの吐出を停止させる。これにより、有機溶剤工程S7が終了する。 When a predetermined period has elapsed from the start of IPA discharge, the control device 3 closes the first organic solvent valve 35 and stops the discharge of IPA from the first nozzle 9. Thereby, organic solvent process S7 is complete | finished.
 次いで、基板Wを乾燥させるスピンドライ工程(図4のステップS8)が行われる。具体的には、制御装置3は、遮断板昇降ユニット32を制御して、遮断板26を近接位置に配置する。また、この状態で、制御装置3はスピンモータ22を制御することにより、図5Hに示すように、硫酸含有液工程S3から有機溶剤工程S7までの各工程における回転速度よりも大きい乾燥回転速度(たとえば数千rpm)まで基板Wを加速させ、その乾燥回転速度で基板Wを回転させる。これにより、大きな遠心力が基板W上の液体に加わり、基板Wに付着している液体が基板Wの周囲に振り切られる。このようにして、基板Wから液体が除去され、基板Wが乾燥する。また、制御装置3は、遮断板回転ユニット31を制御して、遮断板26を基板Wの回転方向に高速で回転させる。 Next, a spin dry process (step S8 in FIG. 4) for drying the substrate W is performed. Specifically, the control device 3 controls the shield plate lifting / lowering unit 32 to place the shield plate 26 in the proximity position. Further, in this state, the control device 3 controls the spin motor 22, and as shown in FIG. 5H, a drying rotation speed larger than the rotation speed in each process from the sulfuric acid-containing liquid process S 3 to the organic solvent process S 7 ( For example, the substrate W is accelerated to several thousand rpm), and the substrate W is rotated at the drying rotation speed. Thereby, a large centrifugal force is applied to the liquid on the substrate W, and the liquid adhering to the substrate W is shaken off around the substrate W. In this way, the liquid is removed from the substrate W, and the substrate W is dried. Further, the control device 3 controls the blocking plate rotating unit 31 to rotate the blocking plate 26 in the rotation direction of the substrate W at a high speed.
 また、スピンドライ工程S8に並行して、有機溶剤配管34の内の有機溶剤を吸引する有機溶剤吸引工程T5(第2の吸引工程)が実行される。この有機溶剤吸引工程T5は、有機溶剤工程S7後に有機溶剤配管34の内部に存在している有機溶剤を、吸引ユニット55によって吸引するものである。 In parallel with the spin dry step S8, an organic solvent suction step T5 (second suction step) for sucking the organic solvent in the organic solvent pipe 34 is executed. In the organic solvent suction step T5, the organic solvent present in the organic solvent pipe 34 after the organic solvent step S7 is sucked by the suction unit 55.
 具体的には、制御装置3は、有機溶剤工程S7の終了後、第2の有機溶剤バルブ36を開きかつ第1の有機溶剤バルブ35および第1の水バルブ46を閉じながら、吸引バルブ51を開く。これにより、有機溶剤下流側部分40および水下流側部分50の内部が排気され、図5Hに示すように、有機溶剤下流側部分40および水下流側部分50に存在しているIPAが、吸引配管49へと引き込まれる(吸引)。IPAの吸引は、IPAの先端面が配管内の所定の待機位置(たとえば吸引配管49または水下流側部分50に設定)に後退するまで行われる。IPAの先端面が待機位置まで後退すると、制御装置3は吸引バルブ51を閉じる。 Specifically, the control device 3 opens the suction valve 51 while opening the second organic solvent valve 36 and closing the first organic solvent valve 35 and the first water valve 46 after completion of the organic solvent step S7. open. Thereby, the insides of the organic solvent downstream portion 40 and the water downstream portion 50 are exhausted, and as shown in FIG. 5H, the IPA present in the organic solvent downstream portion 40 and the water downstream portion 50 is sucked into the suction pipe. It is drawn to 49 (suction). The suction of the IPA is performed until the tip surface of the IPA moves backward to a predetermined standby position in the pipe (for example, set in the suction pipe 49 or the water downstream side portion 50). When the tip surface of the IPA is retracted to the standby position, the control device 3 closes the suction valve 51.
 基板Wの加速から所定時間が経過すると、制御装置3は、スピンモータ22を制御してスピンチャック5による基板Wの回転を停止させ、かつ遮断板回転ユニット31を制御して遮断板26の回転を停止させる。 When a predetermined time has elapsed since the acceleration of the substrate W, the control device 3 controls the spin motor 22 to stop the rotation of the substrate W by the spin chuck 5 and controls the blocking plate rotating unit 31 to rotate the blocking plate 26. Stop.
 その後、処理チャンバ4内から基板Wが搬出される(図4のステップS9)。具体的には、制御装置3は、遮断板26を退避位置に配置させ、かつ第2のガード72を下位置に下げて、第1および第2のガード71,72を、基板Wの保持位置よりも下方に配置する。その後、制御装置3は、基板搬送ロボットCRのハンドHを処理チャンバ4の内部に進入させる。そして、制御装置3は、基板搬送ロボットCRのハンドにスピンチャック5上の基板Wを保持させ、基板搬送ロボットCRのハンドHを処理チャンバ4内から退避させる。これにより、表面からレジストが除去された基板Wが処理チャンバ4から搬出される。 Thereafter, the substrate W is unloaded from the processing chamber 4 (step S9 in FIG. 4). Specifically, the control device 3 places the blocking plate 26 in the retracted position, lowers the second guard 72 to the lower position, and moves the first and second guards 71 and 72 to the holding position of the substrate W. Arrange below. Thereafter, the control device 3 causes the hand H of the substrate transport robot CR to enter the processing chamber 4. Then, the control device 3 causes the hand of the substrate transport robot CR to hold the substrate W on the spin chuck 5 and retracts the hand H of the substrate transport robot CR from the processing chamber 4. Thereby, the substrate W from which the resist is removed from the surface is carried out of the processing chamber 4.
 また、図4に二点鎖線で示すように、有機溶剤吸引工程T5の開始に先立って、有機溶剤配管34を新しいIPAに置換する有機溶剤プリディスペンス(図4のステップS10)が実行されることがある。有機溶剤吸引工程T5の開始前には、有機溶剤配管34のIPAの先端面が有機溶剤上流側部分41内に位置している。このとき、有機溶剤配管34内(有機溶剤上流側部分41内)のIPAが経時変化(温度変化または成分変化)していることがある。 Further, as shown by a two-dot chain line in FIG. 4, prior to the start of the organic solvent suction step T5, an organic solvent pre-dispense (step S10 in FIG. 4) for replacing the organic solvent pipe 34 with a new IPA is performed. There is. Prior to the start of the organic solvent suction step T5, the IPA tip surface of the organic solvent pipe 34 is located in the organic solvent upstream portion 41. At this time, the IPA in the organic solvent pipe 34 (in the organic solvent upstream portion 41) may change over time (temperature change or component change).
 有機溶剤プリディスペンスを行う場合、制御装置3は、第2の有機溶剤バルブ36および第1の水バルブ46を閉じながら、第1の有機溶剤バルブ35および吸引バルブ51を開き、有機溶剤供給源からのIPAが、有機溶剤上流側部分41および水下流側部分50を通って、吸引配管49へと引き込まれる(吸引)。これにより、有機溶剤上流側部分41に存在する、経時変化したIPAが、新鮮なIPAに置換される。第1の有機溶剤バルブ35の開成から予め定める期間が経過すると、制御装置3は、第1の有機溶剤バルブ35および吸引バルブ51を閉じる。 When performing the organic solvent pre-dispensing, the control device 3 opens the first organic solvent valve 35 and the suction valve 51 while closing the second organic solvent valve 36 and the first water valve 46, and from the organic solvent supply source. Is drawn into the suction pipe 49 through the organic solvent upstream portion 41 and the water downstream portion 50 (suction). As a result, the IPA that has changed with time and is present in the upstream portion 41 of the organic solvent is replaced with fresh IPA. When a predetermined period has elapsed since the opening of the first organic solvent valve 35, the control device 3 closes the first organic solvent valve 35 and the suction valve 51.
 図6は、第1の基板処理例の主要な工程における、第1の液体検知センサ43および第2の液体検知センサ45による監視状況を説明するための図解的な図である。 FIG. 6 is an illustrative view for explaining a monitoring state by the first liquid detection sensor 43 and the second liquid detection sensor 45 in the main process of the first substrate processing example.
 図6に示すように、有機溶剤工程S7(有機溶剤吐出中)において、制御装置3は、第2の有機溶剤バルブ36よりも上流側に配置された第1の液体検知センサ43の検出出力、および第2の有機溶剤バルブ36よりも下流側に配置された第2の液体検知センサ45の検出出力の双方を参照していない。換言すると、有機溶剤工程S7において、制御装置3は、第1の検出位置42および第2の検出位置44の双方における液体の存否を無視している。 As shown in FIG. 6, in the organic solvent step S7 (during organic solvent discharge), the control device 3 detects the detection output of the first liquid detection sensor 43 disposed on the upstream side of the second organic solvent valve 36, Neither is it referring to the detection output of the second liquid detection sensor 45 disposed downstream of the second organic solvent valve 36. In other words, in the organic solvent step S <b> 7, the control device 3 ignores the presence or absence of liquid at both the first detection position 42 and the second detection position 44.
 図6に示すように、有機溶剤吸引工程T5において、制御装置3は、第2の有機溶剤バルブ36よりも上流側に配置された第1の液体検知センサ43の検出出力、および第2の有機溶剤バルブ36よりも下流側に配置された第2の液体検知センサ45の検出出力の双方を参照している。換言すると、制御装置3は、第1の検出位置42および第2の検出位置44の双方における液体の存否を監視している。有機溶剤吸引工程T5において、第1の液体検知センサ43および第2の液体検知センサ45の双方からの検出出力に基づき、第1の検出位置42および第2の検出位置44の双方において液体(すなわちIPA)が存在していないことを検出した場合には、制御装置3は、IPAの吸引が完了したと検知する。 As shown in FIG. 6, in the organic solvent suction step T5, the control device 3 detects the detection output of the first liquid detection sensor 43 disposed on the upstream side of the second organic solvent valve 36, and the second organic solvent. Both detection outputs of the second liquid detection sensor 45 arranged downstream of the solvent valve 36 are referred to. In other words, the control device 3 monitors the presence or absence of liquid at both the first detection position 42 and the second detection position 44. In the organic solvent suction step T5, based on the detection outputs from both the first liquid detection sensor 43 and the second liquid detection sensor 45, the liquid (that is, both the first detection position 42 and the second detection position 44). When it is detected that IPA) does not exist, the control device 3 detects that the suction of IPA is completed.
 また、制御装置3は、第1の基板処理例において、有機溶剤吸引工程T5だけでなくその他の吸引工程(たとえば第1の水吸引工程T2や第2の水吸引工程T4)においても、第1の検出位置42および第2の検出位置44の双方における液体の存否を監視している。 In addition, in the first substrate processing example, the control device 3 performs not only the organic solvent suction step T5 but also other suction steps (for example, the first water suction step T2 and the second water suction step T4). The presence or absence of liquid is monitored at both the detection position 42 and the second detection position 44.
 また、有機溶剤プリディスペンス工程S10において、制御装置3は、第2の有機溶剤バルブ36よりも上流側に配置された第2の液体検知センサ45の検出出力のみを参照し、第2の有機溶剤バルブ36よりも下流側に配置された第1の液体検知センサ43の検出出力は参照しない。換言すると、制御装置3は、第2の検出位置44における液体の存否を監視しているが、第1の検出位置42における液体の存否は無視している。第2の有機溶剤バルブ36が閉状態に制御されているにも拘らず、第2の液体検知センサ45によって第2の検出位置44における液体(すなわちIPA)の存在が検出された場合には、制御装置3は、図6に示すように、第2の有機溶剤バルブ36から有機溶剤(すなわちIPA)が漏れているとして、出流れエラーを検知できる。 In addition, in the organic solvent pre-dispensing step S10, the control device 3 refers only to the detection output of the second liquid detection sensor 45 disposed upstream of the second organic solvent valve 36, and the second organic solvent. The detection output of the first liquid detection sensor 43 disposed on the downstream side of the valve 36 is not referred to. In other words, the control device 3 monitors the presence / absence of the liquid at the second detection position 44, but ignores the presence / absence of the liquid at the first detection position 42. Even though the second organic solvent valve 36 is controlled to be in the closed state, the presence of the liquid (that is, IPA) at the second detection position 44 is detected by the second liquid detection sensor 45. As shown in FIG. 6, the control device 3 can detect an outflow error on the assumption that the organic solvent (that is, IPA) is leaking from the second organic solvent valve 36.
 また、第1の基板処理例において、特に言及した各工程を除き、制御装置3は、第2の有機溶剤バルブ36よりも下流側に配置された第2の液体検知センサ45の検出出力のみを参照し、第2の有機溶剤バルブ36よりも上流側に配置された第1の液体検知センサ43の検出出力は参照しない。換言すると、制御装置3は、第2の検出位置44における液体の存否を監視しているが、第1の検出位置42における液体の存否は無視している。第2の有機溶剤バルブ36が閉状態に制御されているにも拘らず、第2の液体検知センサ45によって第2の検出位置44における液体(すなわちIPA)の存在が検出された場合には、制御装置3は、図6に示すように、第2の有機溶剤バルブ36から有機溶剤(すなわちIPA)が漏れているとして、出流れエラーを検知できる。 Further, in the first substrate processing example, the control device 3 only outputs the detection output of the second liquid detection sensor 45 arranged on the downstream side of the second organic solvent valve 36, except for the respective processes specifically mentioned. Reference is not made to the detection output of the first liquid detection sensor 43 arranged on the upstream side of the second organic solvent valve 36. In other words, the control device 3 monitors the presence / absence of the liquid at the second detection position 44, but ignores the presence / absence of the liquid at the first detection position 42. Even though the second organic solvent valve 36 is controlled to be in the closed state, the presence of the liquid (that is, IPA) at the second detection position 44 is detected by the second liquid detection sensor 45. As shown in FIG. 6, the control device 3 can detect an outflow error on the assumption that the organic solvent (that is, IPA) is leaking from the second organic solvent valve 36.
 図7は、第1の基板処理例における、ハードインターロックを説明するための図である。 FIG. 7 is a diagram for explaining hard interlock in the first substrate processing example.
 このインターロック処理は、制御装置3のメモリに保持されたレシピに従って一連の基板処理が行われる過程において、各工程の開始時に実行される。 This interlock process is executed at the start of each process in a process in which a series of substrate processes are performed in accordance with a recipe stored in the memory of the control device 3.
 硫酸含有液工程S3の開始時には、(3)ガード下位置センサ94の検出出力がオンであるか、すなわち第1のガード71が下位置に配置されているか、(5)第1および第2の液体検知センサ43,45の検出出力がオフであるか、すなわち、IPAの先端面が吸引配管49または水下流側部分50まで後退しているか、および(6)バルブ閉センサ37の検出出力がオンであるか、すなわち、第1の有機溶剤バルブ35が閉状態にあるか、がそれぞれ調べられる。これら(3)、(5)および(6)の条件を全て満たす場合には、制御装置3は、硫酸含有液バルブ62の開動作を許容する。つまり、(3)、(5)および(6)の条件のうち一つでも条件を満たさない場合には、制御装置3は、硫酸含有液バルブ62の開動作を禁止する。このようなハードインターロックにより、第1のノズル9からのIPAの吐出開始時に処理チャンバ4内においてIPAとSPMとの接触が発生することを確実に防止できる。 At the start of the sulfuric acid-containing liquid process S3, (3) whether the detection output of the guard lower position sensor 94 is on, that is, the first guard 71 is disposed at the lower position, or (5) the first and second Whether the detection outputs of the liquid detection sensors 43 and 45 are off, that is, whether the tip surface of the IPA is retracted to the suction pipe 49 or the downstream water portion 50, and (6) the detection output of the valve closing sensor 37 is on. That is, whether the first organic solvent valve 35 is in the closed state. When all of the conditions (3), (5), and (6) are satisfied, the control device 3 allows the sulfuric acid-containing liquid valve 62 to open. That is, if any one of the conditions (3), (5), and (6) is not satisfied, the control device 3 prohibits the opening operation of the sulfuric acid-containing liquid valve 62. Such a hard interlock can reliably prevent the contact between the IPA and the SPM in the processing chamber 4 when the discharge of the IPA from the first nozzle 9 is started.
 また、有機溶剤工程S7の開始時には、(1)遮断板近接位置センサ33の検出出力がオンであるか、すなわち遮断板26が近接位置に配置されているか、(2)ノズル退避センサ64の検出出力がオンであるか、すなわち硫酸含有液ノズル60が退避位置にあるか、(4)ガード上位置センサ93の検出出力がオンであるか、すなわち第1のガード71が上位置に配置されているか、および(8)第1のバルブ開センサ21の検出出力がオンであるか、すなわち排気配管100を開閉する排気バルブ101が開状態にあるか、がそれぞれ調べられる。これら(1)、(2)、(4)および(8)の条件を全て満たす場合には、制御装置3は、第1の有機溶剤バルブ35の開動作を許容する。つまり、(1)、(2)、(4)および(8)の条件のうち一つでも条件を満たさない場合には、制御装置3は、第1の有機溶剤バルブ35の開動作を禁止する。このようなハードインターロックにより、硫酸含有液ノズル60からのSPMの吐出開始時に処理チャンバ4内に
おいてSPMとIPAとの接触が発生することを確実に防止できる。
At the start of the organic solvent process S7, (1) whether the detection output of the blocking plate proximity position sensor 33 is on, that is, whether the blocking plate 26 is located in the proximity position, or (2) detection of the nozzle retraction sensor 64. Whether the output is on, that is, whether the sulfuric acid-containing liquid nozzle 60 is in the retracted position, or (4) whether the detection output of the guard upper position sensor 93 is on, that is, the first guard 71 is disposed at the upper position. And (8) whether the detection output of the first valve opening sensor 21 is on, that is, whether the exhaust valve 101 that opens and closes the exhaust pipe 100 is open. When all of the conditions (1), (2), (4), and (8) are satisfied, the control device 3 allows the opening operation of the first organic solvent valve 35. That is, when any one of the conditions (1), (2), (4), and (8) is not satisfied, the control device 3 prohibits the opening operation of the first organic solvent valve 35. . By such a hard interlock, it is possible to reliably prevent the contact between the SPM and the IPA in the processing chamber 4 when the discharge of the SPM from the sulfuric acid-containing liquid nozzle 60 is started.
 また、除電工程S2の開始時、硫酸含有液工程S3の開始時、第1のリンス工程S4の開始時、洗浄薬液工程S5の開始時、または第2のリンス工程S6の開始時には、(7)吐出対象の処理液以外の処理に対応する第2のバルブ閉センサ95の検出出力が全てオンであるか、すなわち、吐出対象の処理液以外の処理に対応する排液分岐バルブ85が閉じられているかが調べられる。 Further, at the start of the static elimination process S2, at the start of the sulfuric acid-containing liquid process S3, at the start of the first rinse process S4, at the start of the cleaning chemical liquid process S5, or at the start of the second rinse process S6, (7) Whether the detection outputs of the second valve closing sensor 95 corresponding to processing other than the processing liquid to be discharged are all on, that is, the drainage branch valve 85 corresponding to processing other than the processing liquid to be discharged is closed. It is investigated whether it is.
 具体的には、除電工程S2、第1のリンス工程S4および第2のリンス工程S6では、硫酸含有液用分岐配管82用の排液分岐バルブ85に対応する第2のバルブ閉センサ95、および洗浄薬液用分岐配管83用の排液分岐バルブ85に対応する第2のバルブ閉センサ95の検出出力がそれぞれ調べられる。硫酸含有液工程S3では、洗浄薬液用分岐配管83用の排液分岐バルブ85に対応する第2のバルブ閉センサ95、および水用分岐配管84用の排液分岐バルブ85に対応する第2のバルブ閉センサ95の検出出力がそれぞれ調べられる。洗浄薬液工程S5では、硫酸含有液用分岐配管82用の排液分岐バルブ85に対応する第2のバルブ閉センサ95、および水用分岐配管84用の排液分岐バルブ85に対応する第2のバルブ閉センサ95の検出出力がそれぞれ調べられる。 Specifically, in the static elimination step S2, the first rinsing step S4 and the second rinsing step S6, the second valve closing sensor 95 corresponding to the drainage branch valve 85 for the sulfuric acid-containing liquid branch pipe 82, and The detection output of the second valve closing sensor 95 corresponding to the drainage branch valve 85 for the cleaning chemical branch pipe 83 is examined. In the sulfuric acid-containing liquid process S3, the second valve closing sensor 95 corresponding to the drainage branch valve 85 for the cleaning chemical solution branch pipe 83 and the second drainage branch valve 85 corresponding to the water branch pipe 84 are used. Each detection output of the valve closing sensor 95 is examined. In the cleaning chemical solution step S5, the second valve closing sensor 95 corresponding to the drainage branch valve 85 for the sulfuric acid-containing liquid branch pipe 82 and the second drainage branch valve 85 corresponding to the water branch pipe 84 are used. Each detection output of the valve closing sensor 95 is examined.
 この条件(7)を満たす場合には、制御装置3は、各工程S2~S6の開始時において、吐出対象の処理液に対応する吐出開閉用のバルブ(すなわち、第1の水バルブ46、硫酸含有液バルブ62および洗浄薬液バルブ67のうちのいずれか1つ)を開く。つまり、(7)の条件を満たさない場合には、制御装置3は、バルブ46,62,67の開動作を禁止する。 When this condition (7) is satisfied, the control device 3 sets the discharge open / close valve (ie, the first water valve 46, sulfuric acid) corresponding to the treatment liquid to be discharged at the start of each step S2 to S6. Any one of the contained liquid valve 62 and the cleaning chemical liquid valve 67) is opened. That is, when the condition (7) is not satisfied, the control device 3 prohibits the opening operation of the valves 46, 62, and 67.
 以上により、この実施形態によれば、硫酸含有液工程S3に先立って第1の水置換工程T1が実行される。硫酸含有液工程S3の開始前に、前回のレジスト除去処理で用いられたIPAが有機溶剤配管34の内部に残存していると、硫酸含有液工程S3において、有機溶剤配管34内に進入したSPMのミストが、有機溶剤配管34の内部でIPAと接触するおそれがある。しかしながら、硫酸含有液工程S3に先立って有機溶剤配管34の内部を炭酸水で置換することにより、硫酸含有液工程S3の開始時には、有機溶剤配管34の内部にIPAは残留していない。したがって、硫酸含有液工程S3においてSPMのミストが有機溶剤配管34内に進入しても、有機溶剤配管34の内部でIPAと接触しない。そのため、硫酸含有液工程S3においてIPAとSPMとの接触を防止でき、これにより、有機溶剤配管34の内部がパーティクル発生源になることを抑制または防止できる。 As described above, according to this embodiment, the first water replacement step T1 is performed prior to the sulfuric acid-containing liquid step S3. If the IPA used in the previous resist removal process remains in the organic solvent pipe 34 before the start of the sulfuric acid-containing liquid process S3, the SPM that has entered the organic solvent pipe 34 in the sulfuric acid-containing liquid process S3. Mist may come into contact with the IPA inside the organic solvent pipe 34. However, by replacing the inside of the organic solvent pipe 34 with carbonated water prior to the sulfuric acid-containing liquid process S3, IPA does not remain inside the organic solvent pipe 34 at the start of the sulfuric acid-containing liquid process S3. Accordingly, even if SPM mist enters the organic solvent pipe 34 in the sulfuric acid-containing liquid process S3, it does not come into contact with the IPA inside the organic solvent pipe 34. Therefore, the contact between the IPA and the SPM can be prevented in the sulfuric acid-containing liquid process S3, whereby the inside of the organic solvent pipe 34 can be suppressed or prevented from becoming a particle generation source.
 また、硫酸含有液工程S3の後、有機溶剤工程S7に先立って第2の水置換工程T3が実行される。硫酸含有液工程S3において有機溶剤配管34内に進入し、凝縮により液化したSPMの液滴が、有機溶剤工程S7の開始前に有機溶剤配管34の内部に存在していると、有機溶剤工程S7において、有機溶剤配管34に供給されたIPAが、有機溶剤配管34の内部でSPMと接触するおそれがある。しかしながら、有機溶剤工程S7に先立って有機溶剤配管34の内部を炭酸水で置換することにより、有機溶剤工程S7の開始時には、有機溶剤配管34の内部にSPMの液滴は残留していない。したがって、当該有機溶剤工程S7において有機溶剤配管34にIPAが供給されても、有機溶剤配管34の内部でSPMと接触しない。そのため、IPAとSPMとの接触に伴うパーティクルの発生を効果的に抑制または防止でき、これにより、有機溶剤配管34の内部がパーティクル発生源になることを抑制または防止できる。 Also, after the sulfuric acid-containing liquid step S3, the second water replacement step T3 is performed prior to the organic solvent step S7. If the SPM droplets that have entered the organic solvent pipe 34 in the sulfuric acid-containing liquid process S3 and are liquefied by condensation are present inside the organic solvent pipe 34 before the start of the organic solvent process S7, the organic solvent process S7. The IPA supplied to the organic solvent pipe 34 may come into contact with the SPM inside the organic solvent pipe 34. However, by replacing the inside of the organic solvent pipe 34 with carbonated water prior to the organic solvent process S7, no SPM droplets remain in the organic solvent pipe 34 at the start of the organic solvent process S7. Therefore, even if IPA is supplied to the organic solvent pipe 34 in the organic solvent process S7, the organic solvent pipe 34 does not come into contact with the SPM. Therefore, it is possible to effectively suppress or prevent the generation of particles due to the contact between the IPA and the SPM, thereby suppressing or preventing the inside of the organic solvent pipe 34 from becoming a particle generation source.
 図8は、処理ユニット2による第2の基板処理例を説明するための図解的な図である。図9は、処理ユニット2による第3の基板処理例を説明するための図解的な図である。第2および第3の基板処理例は、第2のリンス工程S6の終了に先立って、第1のノズル9にIPAを供給する点で、図4等に示す第1の基板処理例と相違している。それ以外の点では、第2および第3の基板処理例は、第1の基板処理例と相違するところがない。 FIG. 8 is an illustrative view for explaining a second substrate processing example by the processing unit 2. FIG. 9 is an illustrative view for explaining a third substrate processing example by the processing unit 2. The second and third substrate processing examples are different from the first substrate processing example shown in FIG. 4 and the like in that IPA is supplied to the first nozzle 9 prior to the end of the second rinsing step S6. ing. In other respects, the second and third substrate processing examples are not different from the first substrate processing example.
 図8に示す第2の基板処理例において、制御装置3は、第2のリンス工程S6の実行中に(第2のリンス工程S6に並行して)、第2の有機溶剤バルブ36を開きながら第1の有機溶剤バルブ35を開く。これにより、有機溶剤供給源からのIPAが第1のノズル9に向けて供給される。但し、第1の吐出口8からIPAが吐出される直前のタイミングで、制御装置3は第2の水バルブ57を閉じる。これにより、第1の吐出口8からはIPAは吐出されない。すなわち、第2のリンス工程S6の実行中においては、第1の吐出口8からIPAが吐出されず、かつ有機溶剤下流側部分40の内部および第1のノズル9のノズル配管の内部がIPAによって充填されている。 In the second substrate processing example shown in FIG. 8, the control device 3 opens the second organic solvent valve 36 while the second rinsing step S6 is being performed (in parallel with the second rinsing step S6). The first organic solvent valve 35 is opened. Thereby, IPA from the organic solvent supply source is supplied toward the first nozzle 9. However, the control device 3 closes the second water valve 57 at a timing immediately before the IPA is discharged from the first discharge port 8. Thereby, IPA is not discharged from the first discharge port 8. That is, during the execution of the second rinsing step S6, IPA is not discharged from the first discharge port 8, and the inside of the organic solvent downstream portion 40 and the inside of the nozzle pipe of the first nozzle 9 are made of IPA. Filled.
 その後、第2のリンス工程S6が終了し、有機溶剤工程S7を開始するタイミングになると、制御装置3は、第1の有機溶剤バルブ35を開く、これにより、有機溶剤供給源から第1のノズル9へのIPAの供給が再開され、第1の吐出口8からIPAが吐出される。 Thereafter, when the second rinsing step S6 is finished and the timing for starting the organic solvent step S7 is reached, the control device 3 opens the first organic solvent valve 35, whereby the first nozzle from the organic solvent supply source is opened. The supply of IPA to 9 is restarted, and IPA is discharged from the first discharge port 8.
 この第2の基板処理例によれば、第2のリンス工程S6の終了後直ちに第1の吐出口8からIPAを吐出できる。すなわち、第2のリンス工程S6の終了後直ちに有機溶剤工程S7を開始できる。これにより、第1の基板処理例と比較して、レジスト除去処理全体の処理時間を短縮できる。 According to this second substrate processing example, IPA can be discharged from the first discharge port 8 immediately after the end of the second rinsing step S6. That is, the organic solvent step S7 can be started immediately after the end of the second rinsing step S6. Thereby, the processing time of the entire resist removing process can be shortened as compared with the first substrate processing example.
 図9に示す第3の基板処理例では、図8に示す第2の基板処理例と異なり、制御装置3は、第2のリンス工程S6の実行中に(第2のリンス工程S6に並行して)、第1の吐出口8からIPAを吐出する。 In the third substrate processing example shown in FIG. 9, unlike the second substrate processing example shown in FIG. 8, the control device 3 performs the second rinsing step S6 (in parallel with the second rinsing step S6). IPA is discharged from the first discharge port 8.
 具体的には、制御装置3は、第2のリンス工程S6の実行中に、第2の有機溶剤バルブ36を開きながら第1の有機溶剤バルブ35を開く。これにより、有機溶剤供給源からのIPAが第1のノズル9に向けて供給され、第1の吐出口8から吐出される。すなわち、制御装置3は、第2のリンス工程S6の終了前に有機溶剤工程S7を開始する。 Specifically, the control device 3 opens the first organic solvent valve 35 while opening the second organic solvent valve 36 during the execution of the second rinsing step S6. Thereby, IPA from the organic solvent supply source is supplied toward the first nozzle 9 and discharged from the first discharge port 8. That is, the control device 3 starts the organic solvent step S7 before the end of the second rinsing step S6.
 第3の基板処理例では、第1の吐出口8からのIPAの吐出流量は、第2の吐出口10からの炭酸水の吐出流量と比較して小流量(たとえば約1/10)である。そのため、基板Wへのリンス処理に悪影響はほとんどない。第3の基板処理例においても、第2の基板処理例と同様、第2のリンス工程S6の終了後から有機溶剤工程S7の開始までにインターバルが存在しないから、第1の基板処理例と比較して、レジスト除去処理全体の処理時間を短縮できる。 In the third substrate processing example, the discharge flow rate of IPA from the first discharge port 8 is smaller than the discharge flow rate of carbonated water from the second discharge port 10 (for example, about 1/10). . Therefore, there is almost no adverse effect on the rinsing process on the substrate W. In the third substrate processing example, as in the second substrate processing example, there is no interval from the end of the second rinsing step S6 to the start of the organic solvent step S7. Thus, the processing time of the entire resist removal process can be shortened.
 以上、この発明の一実施形態について説明したが、本発明はさらに他の形態で実施することもできる。 Although one embodiment of the present invention has been described above, the present invention can also be implemented in other forms.
 たとえば、第1~第3の基板処理例の第1および第2の水吸引工程T2,T4において、炭酸水の先端面が吸引配管49または水下流側部分50まで後退するまで炭酸水の吸引を行うとして説明したが、吸引後の炭酸水の先端面が、有機溶剤配管34の内部に位置してもよい。 For example, in the first and second water suction steps T2 and T4 of the first to third substrate processing examples, the carbonated water is sucked until the front end surface of the carbonated water is retracted to the suction pipe 49 or the water downstream side portion 50. As described above, the front end surface of the carbonated water after suction may be located inside the organic solvent pipe 34.
 第1~第3の基板処理例において、第1の水置換工程T1を、除電工程S2と別のタイミングで行ってもよい。また、第2の水置換工程T3を、第1のリンス工程S4と別のタイミングで行ってもよい。第1の水吸引工程T2を、除電工程S2の終了後に行ってもよい。第2の水吸引工程T4を、洗浄薬液工程S5と別のタイミングで行ってもよい。 In the first to third substrate processing examples, the first water replacement step T1 may be performed at a different timing from the static elimination step S2. Further, the second water replacement step T3 may be performed at a timing different from that of the first rinse step S4. You may perform 1st water suction process T2 after completion | finish of static elimination process S2. The second water suction step T4 may be performed at a different timing from the cleaning chemical solution step S5.
 また、第1~第3の基板処理例において、水置換工程として、硫酸含有液工程S3に先立って実行される第1の水置換工程T1と、硫酸含有液工程S3の後、有機溶剤工程S7に先立って実行される第2の水置換工程T3とを実行している。しかしながら、水置換工程は、有機溶剤工程S7の実行前および/もしくは実行後、ならびに/または、硫酸含有液工程S3の実行前および/もしくは実行後において少なくとも1回以降実行されるものであればよい。 In the first to third substrate processing examples, as the water replacement step, after the first water replacement step T1 performed prior to the sulfuric acid-containing liquid step S3 and the sulfuric acid-containing liquid step S3, the organic solvent step S7 is performed. The second water replacement step T3, which is performed prior to the second water replacement step, is performed. However, the water replacement step may be performed at least once before and / or after execution of the organic solvent step S7 and / or before and / or after execution of the sulfuric acid-containing liquid step S3. .
 また、第1~第3の基板処理例において、洗浄薬液工程S5の実行に先立って、または洗浄薬液工程S5の実行後に、過酸化水素水(H)を基板Wの上面(表面)に供給する過酸化水素水供給工程を行ってもよい。 In the first to third substrate processing examples, hydrogen peroxide solution (H 2 O 2 ) is applied to the upper surface (surface) of the substrate W prior to the execution of the cleaning chemical solution step S5 or after the execution of the cleaning chemical solution step S5. You may perform the hydrogen peroxide solution supply process supplied to.
 また、前述の実施形態では、第1の薬剤流体の一例として用いられる硫酸含有液としてSPMを例示したが、硫酸含有液としてその他に、硫酸やSOM(硫酸オゾン)を用いることができる。 In the above-described embodiment, SPM is exemplified as the sulfuric acid-containing liquid used as an example of the first chemical fluid, but sulfuric acid or SOM (sulfuric acid ozone) can also be used as the sulfuric acid-containing liquid.
 前述の実施形態では、処理カップとして、内部で雰囲気と処理液との気液分離を行なわずに、外部の気液分離器(気液分離器97)を用いて雰囲気と処理液との気液分離を行うタイプの処理カップ16を用いた場合を説明した。しかしながら、処理カップとして、雰囲気と処理液との気液分離を内部で行うことが可能なタイプの処理カップを用いてもよい。 In the above-described embodiment, the gas and liquid of the atmosphere and the processing liquid are used as the processing cup by using an external gas-liquid separator (gas-liquid separator 97) without performing gas-liquid separation between the atmosphere and the processing liquid inside. The case where the processing cup 16 of the type which performs separation has been described. However, as a processing cup, a type of processing cup capable of performing gas-liquid separation between the atmosphere and the processing liquid inside may be used.
 このタイプの処理カップは、スピンチャック5を取り囲むように配置された1または複数のカップと、各カップに接続された排液配管とを含む。また、このタイプの処理カップを有する処理チャンバ4では、隔壁18の側壁下部または隔壁18の底部に排気口が開口しており、この排気口の内部が、当該排気口に接続された排気ダクトにより吸引されることにより、処理チャンバ4の下部空間の雰囲気が排気される。 This type of processing cup includes one or a plurality of cups arranged so as to surround the spin chuck 5 and drainage pipes connected to each cup. Further, in the processing chamber 4 having this type of processing cup, an exhaust port is opened at the bottom of the side wall of the partition wall 18 or at the bottom of the partition wall 18, and the inside of the exhaust port is formed by an exhaust duct connected to the exhaust port. By being sucked, the atmosphere in the lower space of the processing chamber 4 is exhausted.
 また、前述の実施形態では、複数の種類の処理液(硫酸含有液、洗浄薬液および水)を排液するための共通の排液溝(排液溝80)を設け、排液溝80からの排液(処理液)の流通先を、当該排液(処理液)の種類に応じて複数の排液分岐配管82~84の間で切り換えるようにした。 In the above-described embodiment, a common drainage groove (drainage groove 80) for draining a plurality of types of treatment liquids (sulfuric acid-containing liquid, cleaning chemical liquid, and water) is provided. The distribution destination of the drainage (treatment liquid) is switched between the plurality of drainage branch pipes 82 to 84 in accordance with the type of the drainage (treatment liquid).
 しかしながら、処理カップ16において、各種類の処理液に1対1対応で排液溝が設けられていてもよい。すなわち、硫酸含有液の排液溝、洗浄薬液用の排液溝および水用の排液溝が個別に設けられていてもよい。この場合、排液(処理液)の流通先を複数の排液分岐配管の間で切り換える必要がない。 However, in the processing cup 16, a drain groove may be provided for each type of processing liquid in a one-to-one correspondence. That is, a drainage groove for sulfuric acid-containing liquid, a drainage groove for cleaning chemicals, and a drainage groove for water may be provided individually. In this case, it is not necessary to switch the flow destination of the drainage (treatment liquid) between the plurality of drainage branch pipes.
 また、前述の実施形態では、第2の薬剤流体の一例として用いられる有機溶剤の一例としてIPAを例示したが、有機溶剤としてその他に、メタノール、エタノール、HFE(ハイドロフロロエーテル)、アセトン等を例示できる。また、有機溶剤としては、単体成分のみからなる場合だけでなく、他の成分と混合した液体であってもよい。たとえば、IPAとアセトンの混合液であってもよいし、IPAとメタノールの混合液であってもよい。 In the above-described embodiment, IPA is exemplified as an example of the organic solvent used as an example of the second chemical fluid, but methanol, ethanol, HFE (hydrofluoroether), acetone, and the like are exemplified as the organic solvent. it can. Further, the organic solvent may be a liquid mixed with other components as well as a case where it is composed of only a single component. For example, a mixed solution of IPA and acetone or a mixed solution of IPA and methanol may be used.
 前述の実施形態において、SPM等の硫酸含有液およびIPA等の有機溶剤の組合せを、接触に危険が伴うような薬液の組合せとして例示したが、その他、王水および硫酸の組合せ等を、接触に危険が伴うような組合せとして例示できる。 In the above-described embodiment, the combination of a sulfuric acid-containing liquid such as SPM and an organic solvent such as IPA has been exemplified as a combination of chemical liquids that are dangerous to contact, but other combinations such as aqua regia and sulfuric acid can be contacted. It can be illustrated as a combination that involves danger.
 また、本発明は、前述の酸とアルカリとの組合せのような、接触により生成物(たとえば塩)を生成する組合せ、すなわち、接触に適さないような薬剤流体の組合せに対しても広く適用される。 The present invention is also widely applicable to combinations that produce a product (for example, a salt) by contact, such as combinations of acids and alkalis described above, that is, combinations of drug fluids that are not suitable for contact. The
 前述の説明では、第1の薬剤流体(薬剤成分を含む流体)が液体(すなわち、薬剤成分を含む液体)であるとして説明したが、第1の薬剤流体として気体(すなわち、薬剤成分を含む気体)を採用してもよい。 In the above description, the first drug fluid (fluid containing the drug component) has been described as a liquid (ie, liquid containing the drug component). However, as the first drug fluid (ie, gas containing the drug component) ) May be adopted.
 また、第2の薬剤流体が液体であるとして説明したが、第2の薬剤流体として気体を採用してもよい。 In addition, although the second drug fluid has been described as being a liquid, a gas may be employed as the second drug fluid.
 また、薬剤流体配管(有機溶剤配管34)の内部を置換する水として炭酸水を例示したが、この水は、炭酸水に限らず、脱イオン水(DIW)、電解イオン水、水素水、オゾン水および希釈濃度(たとえば、10ppm~100ppm程度)の塩酸水のいずれかであってもよい。 Moreover, although carbonated water was illustrated as water which substitutes the inside of chemical | medical fluid piping (organic solvent piping 34), this water is not restricted to carbonated water, Deionized water (DIW), electrolytic ion water, hydrogen water, ozone It may be either water or hydrochloric acid water having a diluted concentration (for example, about 10 ppm to 100 ppm).
 本発明の実施形態について詳細に説明してきたが、これらは本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の範囲は添付の請求の範囲によってのみ限定される。 Although the embodiments of the present invention have been described in detail, these are merely specific examples used to clarify the technical contents of the present invention, and the present invention is construed to be limited to these specific examples. Rather, the scope of the present invention is limited only by the accompanying claims.
 この出願は、2016年5月25日に日本国特許庁に提出された特願2016-104600号に対応しており、この出願の全開示はここに引用により組み込まれるものとする。 This application corresponds to Japanese Patent Application No. 2016-104600 filed with the Japan Patent Office on May 25, 2016, and the entire disclosure of this application is incorporated herein by reference.
1   :基板処理装置
4   :処理チャンバ
5   :スピンチャック(基板保持ユニット)
6   :基板対向面
7   :対向部材
8   :第1の吐出口
9   :第1のノズル
11  :第2のノズル
12  :有機溶剤供給ユニット(第1の薬剤流体供給ユニット)
13  :リンス用水供給ユニット(第2の水供給ユニット)
14  :硫酸含有液供給ユニット(第2の薬剤流体供給ユニット)
15  :洗浄薬液供給ユニット
16  :処理カップ
34  :有機溶剤配管(薬剤流体配管)
35  :第1の有機溶剤バルブ
36  :第2の有機溶剤バルブ
37  :バルブ閉センサ
39  :第1の水配管
40  :有機溶剤下流側部分
43  :第1の液体検知センサ
45  :第2の液体検知センサ
46  :第1の水バルブ
47  :置換用水供給ユニット(第1の水供給ユニット)
49  :吸引配管
51  :吸引バルブ
52  :吸引装置
53  :真空発生器
54  :駆動バルブ
55  :吸引ユニット
56  :第2の水配管
57  :第2の水バルブ
A1  :回転軸線
A2  :回転軸線
W   :基板
1: substrate processing apparatus 4: processing chamber 5: spin chuck (substrate holding unit)
6: substrate facing surface 7: facing member 8: first discharge port 9: first nozzle 11: second nozzle 12: organic solvent supply unit (first chemical fluid supply unit)
13: Rinsing water supply unit (second water supply unit)
14: Sulfuric acid-containing liquid supply unit (second chemical fluid supply unit)
15: Cleaning chemical supply unit 16: Processing cup 34: Organic solvent piping (chemical fluid piping)
35: first organic solvent valve 36: second organic solvent valve 37: valve closing sensor 39: first water piping 40: organic solvent downstream portion 43: first liquid detection sensor 45: second liquid detection Sensor 46: First water valve 47: Replacement water supply unit (first water supply unit)
49: Suction piping 51: Suction valve 52: Suction device 53: Vacuum generator 54: Drive valve 55: Suction unit 56: Second water piping 57: Second water valve A1: Rotating axis A2: Rotating axis W: Substrate

Claims (21)

  1.  処理チャンバと、
     前記処理チャンバ内に配置されて、基板を保持する基板保持ユニットと、
     前記基板保持ユニットに保持されている基板の主面に向けて流体を吐出するための吐出口を有する第1のノズルと、
     前記第1のノズルに接続され、内部が前記吐出口に連通する薬剤流体配管を有し、前記薬剤流体配管を介して前記第1のノズルに第1の薬剤流体を供給するための第1の薬剤流体供給ユニットと、
     前記薬剤流体配管に分岐接続された水配管を有し、前記水配管を介して前記薬剤流体配管に水を供給するための第1の水供給ユニットと、
     前記基板保持ユニットに保持されている基板の主面に、前記第1の薬剤流体とは種類の異なる流体である第2の薬剤流体を供給するための第2の薬剤流体供給ユニットと、
     前記第1の薬剤流体供給ユニット、前記第2の薬剤流体供給ユニットおよび前記第1の水供給ユニットを制御する制御装置とを含み、
     前記制御装置は、
     前記第1の薬剤流体を前記薬剤流体配管に供給することにより前記第1のノズルから前記基板の主面に向けて前記第1の薬剤流体を吐出して、前記第1の薬剤流体を用いた処理を前記基板に施す第1の処理工程と、
     前記第2の薬剤流体を前記基板の主面に供給して、前記第2の薬剤流体を用いた処理を前記基板に施す第2の処理工程と、
     前記第1の処理工程の実行前および/もしくは実行後、ならびに/または、前記第2の処理工程の実行前および/もしくは実行後において、前記第1の水供給ユニットからの水を前記薬剤流体配管に供給して、前記薬剤流体配管の内部を水で置換する水置換工程とを実行する、基板処理装置。
    A processing chamber;
    A substrate holding unit disposed in the processing chamber and holding a substrate;
    A first nozzle having a discharge port for discharging a fluid toward the main surface of the substrate held by the substrate holding unit;
    A first fluid channel connected to the first nozzle and having a drug fluid pipe connected to the discharge port, the first drug fluid being supplied to the first nozzle via the drug fluid pipe; A chemical fluid supply unit;
    A first water supply unit having a water pipe branched and connected to the drug fluid pipe, and supplying water to the drug fluid pipe via the water pipe;
    A second drug fluid supply unit for supplying a second drug fluid, which is a fluid different from the first drug fluid, to the main surface of the substrate held by the substrate holding unit;
    A controller for controlling the first drug fluid supply unit, the second drug fluid supply unit, and the first water supply unit;
    The control device includes:
    The first drug fluid was discharged from the first nozzle toward the main surface of the substrate by supplying the first drug fluid to the drug fluid pipe, and the first drug fluid was used. A first processing step for performing processing on the substrate;
    Supplying a second chemical fluid to the main surface of the substrate, and performing a treatment using the second chemical fluid on the substrate;
    Before and / or after execution of the first treatment step and / or before and / or after execution of the second treatment step, water from the first water supply unit is supplied to the chemical fluid piping. And a water replacement step of replacing the inside of the chemical fluid piping with water.
  2.  前記基板保持ユニットに保持されている基板の主面に対向する基板対向面を有する対向部材をさらに含み、
     前記第1のノズルの前記吐出口は、前記基板対向面に設けられている、請求項1に記載の基板処理装置。
    A counter member having a substrate facing surface facing the main surface of the substrate held by the substrate holding unit;
    The substrate processing apparatus according to claim 1, wherein the discharge port of the first nozzle is provided on the substrate facing surface.
  3.  前記薬剤流体配管の内部を吸引するための吸引ユニットをさらに含み、
     前記制御装置は前記吸引ユニットをさらに制御するものであり、
     前記制御装置は、前記水置換工程の終了後、前記薬剤流体配管の内部を吸引する第1の吸引工程をさらに実行する、請求項1または2に記載の基板処理装置。
    A suction unit for sucking the inside of the drug fluid piping;
    The control device further controls the suction unit;
    The substrate processing apparatus according to claim 1, wherein the control device further executes a first suction step of sucking the inside of the chemical fluid piping after the water replacement step.
  4.  前記制御装置は、前記第1の処理工程を、前記第2の処理工程の終了後に開始し、
     前記制御装置は、前記第2の処理工程に先立って実行される第1の水置換工程を、前記水置換工程として実行する、請求項1または2に記載の基板処理装置。
    The control device starts the first processing step after the end of the second processing step,
    The substrate processing apparatus according to claim 1, wherein the control device executes a first water replacement step that is executed prior to the second processing step as the water replacement step.
  5.  前記制御装置は、前記第1の処理工程を、前記第2の処理工程の終了後に開始し、
     前記制御装置は、前記第2の処理工程の後かつ前記第1の処理工程に先立って実行される第2の水置換工程を、前記水置換工程として実行する、請求項1または2に記載の基板処理装置。
    The control device starts the first processing step after the end of the second processing step,
    3. The control device according to claim 1, wherein the control device executes, as the water replacement step, a second water replacement step executed after the second processing step and prior to the first processing step. 4. Substrate processing equipment.
  6.  前記制御装置は、前記第2の処理工程の後において前記基板の主面から前記第2の薬剤流体を水で洗い流すべく、前記第1の処理工程に先立って、前記基板の主面に水を供給する第1の水供給工程をさらに実行し、
     前記制御装置は、前記第1の水供給工程として前記第2の水置換工程を実行する、請求項5に記載の基板処理装置。
    Prior to the first processing step, the control device supplies water to the main surface of the substrate to wash away the second chemical fluid from the main surface of the substrate with water after the second processing step. Further executing a first water supply step of supplying,
    The substrate processing apparatus according to claim 5, wherein the control device executes the second water replacement step as the first water supply step.
  7.  前記第1のノズルとは別のノズルであって、前記基板保持ユニットに保持されている基板の主面に向けて流体を吐出するための第2のノズルと、
     前記第2のノズルに水を供給するための第2の水供給ユニットとをさらに含み、
     前記制御装置は前記第2の水供給ユニットをさらに制御するものであり、
     前記制御装置は、前記第1の処理工程を、前記第2の処理工程の終了後に開始し、かつ、前記第2の処理工程の後かつ前記第1の処理工程の開始に先立って、前記第2のノズルに水を供給することにより前記第2のノズルから前記基板の主面に向けて水を吐出開始する第2の水供給工程を実行し、
     前記制御装置は、前記第1の処理工程における前記薬剤流体配管への前記第1の薬剤流体の供給を、前記第2の水供給工程の終了に先立って開始する、請求項1または2に記載の基板処理装置。
    A second nozzle for discharging a fluid toward the main surface of the substrate held by the substrate holding unit, the nozzle being different from the first nozzle;
    A second water supply unit for supplying water to the second nozzle,
    The control device further controls the second water supply unit,
    The control device starts the first processing step after the end of the second processing step, and after the second processing step and before the start of the first processing step, the first processing step. Performing a second water supply step of starting discharge of water from the second nozzle toward the main surface of the substrate by supplying water to the nozzles of the two;
    The said control apparatus starts supply of the said 1st chemical fluid to the said chemical fluid piping in the said 1st process process prior to completion | finish of the said 2nd water supply process. Substrate processing equipment.
  8.  前記制御装置は、前記第2の水供給工程の終了前に、前記第1の処理工程を開始する、請求項1または2に記載の基板処理装置。 3. The substrate processing apparatus according to claim 1, wherein the control device starts the first processing step before the end of the second water supply step.
  9.  前記制御装置は、前記1の処理工程における前記第1のノズルからの第1の薬剤流体の吐出終了後に、前記薬剤流体配管の内部を吸引する第2の吸引工程をさらに実行する、請求項1または2に記載の基板処理装置。 The said control apparatus further performs the 2nd suction process which attracts | sucks the inside of the said chemical fluid piping after completion | finish of discharge of the 1st chemical fluid from the said 1st nozzle in a said 1 process process. Or the substrate processing apparatus of 2.
  10.  前記洗浄液は、炭酸水を含む、請求項1または2に記載の基板処理装置。 The substrate processing apparatus according to claim 1, wherein the cleaning liquid includes carbonated water.
  11.  前記第1の薬剤流体は、硫酸含有液を含み、
     前記第2の薬剤流体は、有機溶剤を含む、請求項1または2に記載の基板処理装置。
    The first drug fluid includes a sulfuric acid-containing liquid,
    The substrate processing apparatus according to claim 1, wherein the second chemical fluid includes an organic solvent.
  12.  処理チャンバ内で基板を保持する基板保持工程と、
     第1の薬剤流体を、第1のノズルに接続された薬剤流体配管を介して前記第1のノズルに供給することにより前記第1のノズルから前記基板の主面に向けて前記第1の薬剤流体を吐出して、前記第1の薬剤流体を用いた処理を前記基板に施す第1の処理工程と、
     前記第1の薬剤流体とは種類の異なる流体である第2の薬剤流体を前記基板の主面に供給して、前記第2の薬剤流体を用いた処理を前記基板に施す第2の処理工程と、
     前記第1の処理工程の実行前および/もしくは実行後、ならびに/または、前記第2の処理工程の実行前および/もしくは実行後において前記薬剤流体配管に分岐接続された水配管を介して、前記薬剤流体配管に水を供給して、前記薬剤流体配管の内部を水で置換する水置換工程とを含む、基板処理方法。
    A substrate holding step for holding the substrate in the processing chamber;
    The first drug fluid is supplied from the first nozzle toward the main surface of the substrate by supplying the first drug fluid to the first nozzle through a drug fluid pipe connected to the first nozzle. A first processing step of discharging a fluid and applying a treatment using the first chemical fluid to the substrate;
    A second processing step in which a second chemical fluid, which is a fluid different from the first chemical fluid, is supplied to the main surface of the substrate, and a process using the second chemical fluid is performed on the substrate; When,
    Before and / or after the execution of the first processing step and / or before and / or after the execution of the second processing step, via a water pipe branched and connected to the drug fluid pipe A substrate replacement method comprising: a water replacement step of supplying water to the drug fluid pipe and replacing the inside of the drug fluid pipe with water.
  13.  前記水置換工程の終了後、前記薬剤流体配管の内部を吸引する第1の吸引工程をさらに含む、請求項12に記載の基板処理方法。 13. The substrate processing method according to claim 12, further comprising a first suction step of sucking the inside of the chemical fluid piping after the water replacement step.
  14.  前記第1の処理工程は、前記第2の処理工程の終了後に開始する工程を含み、
     前記水置換工程は、前記第2の処理工程に先立って実行される第1の水置換工程を含む、請求項12または13に記載の基板処理方法。
    The first processing step includes a step of starting after the end of the second processing step,
    14. The substrate processing method according to claim 12, wherein the water replacement step includes a first water replacement step that is performed prior to the second processing step.
  15.  前記第1の処理工程は、前記第2の処理工程の終了後に開始する工程を含み、
     前記水置換工程は、前記第2の処理工程の後かつ前記第1の処理工程に先立って実行される第2の水置換工程を含む、請求項12または13に記載の基板処理方法。
    The first processing step includes a step of starting after the end of the second processing step,
    14. The substrate processing method according to claim 12, wherein the water replacement step includes a second water replacement step that is performed after the second processing step and prior to the first processing step.
  16.  前記第2の処理工程の後において前記基板の主面から前記第2の薬剤流体を水で洗い流すべく、前記第1の処理工程に先立って、前記基板の主面に水を供給する第1の水供給工程をさらに含み、
     前記第1の水供給工程は、前記第2の水置換工程を含む、請求項15に記載の基板処理方法。
    A first supply of water to the main surface of the substrate prior to the first processing step to wash away the second chemical fluid from the main surface of the substrate with water after the second processing step. A water supply step,
    The substrate processing method according to claim 15, wherein the first water supply step includes the second water replacement step.
  17.  前記第1の処理工程は、前記第2の処理工程の終了後に開始する工程を含み、
     前記第2の処理工程の後かつ前記第1の処理工程に先立って、前記第1のノズルとは別のノズルである第2のノズルに水を供給することにより前記第2のノズルから前記基板の主面に向けて水を吐出する第2の水供給工程をさらに含み、
     前記第1の処理工程は、前記薬剤流体配管への前記第1の薬剤流体の供給を、前記第2の水供給工程の終了に先立って実行開始する、請求項12または13に記載の基板処理方法。
    The first processing step includes a step of starting after the end of the second processing step,
    After the second processing step and prior to the first processing step, water is supplied to a second nozzle that is a nozzle different from the first nozzle, thereby the substrate from the second nozzle. A second water supply step of discharging water toward the main surface of
    The substrate processing according to claim 12 or 13, wherein in the first processing step, the supply of the first chemical fluid to the chemical fluid piping is started before the end of the second water supply step. Method.
  18.  前記第2の処理工程の後、前記第2のノズルから水を前記基板の主面に供給する第2の水供給工程をさらに含み、
     前記第2の水供給工程に並行して、前記第1の処理工程を実行する、請求項12または13に記載の基板処理方法。
    A second water supply step of supplying water from the second nozzle to the main surface of the substrate after the second treatment step;
    The substrate processing method according to claim 12, wherein the first processing step is executed in parallel with the second water supply step.
  19.  前記1の処理工程における前記第1のノズルからの第1の薬剤流体の吐出終了後に、前記薬剤流体配管の内部を吸引する第2の吸引工程をさらに含む、請求項12または13に記載の基板処理方法。 14. The substrate according to claim 12, further comprising a second suction step of sucking the inside of the chemical fluid piping after completion of the discharge of the first chemical fluid from the first nozzle in the first processing step. Processing method.
  20.  前記洗浄液は、炭酸水を含む、請求項12または13に記載の基板処理方法。 The substrate processing method according to claim 12 or 13, wherein the cleaning liquid contains carbonated water.
  21.  前記第1の薬剤流体は、硫酸含有液を含み、
     前記第2の薬剤流体は、有機溶剤を含む、請求項12または13に記載の基板処理方法。
    The first drug fluid includes a sulfuric acid-containing liquid,
    The substrate processing method according to claim 12, wherein the second chemical fluid includes an organic solvent.
PCT/JP2017/018735 2016-05-25 2017-05-18 Substrate processing apparatus and substrate processing method WO2017204088A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780026979.1A CN109155247B (en) 2016-05-25 2017-05-18 Substrate processing apparatus and substrate processing method
KR1020207032614A KR102223972B1 (en) 2016-05-25 2017-05-18 Substrate processing apparatus and substrate processing method
KR1020187031267A KR20180128957A (en) 2016-05-25 2017-05-18 Substrate processing apparatus and substrate processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016104600A JP2017212335A (en) 2016-05-25 2016-05-25 Wafer processing device and wafer processing method
JP2016-104600 2016-05-25

Publications (1)

Publication Number Publication Date
WO2017204088A1 true WO2017204088A1 (en) 2017-11-30

Family

ID=60412259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018735 WO2017204088A1 (en) 2016-05-25 2017-05-18 Substrate processing apparatus and substrate processing method

Country Status (5)

Country Link
JP (1) JP2017212335A (en)
KR (2) KR102223972B1 (en)
CN (1) CN109155247B (en)
TW (1) TWI643259B (en)
WO (1) WO2017204088A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7446073B2 (en) * 2019-09-27 2024-03-08 株式会社Screenホールディングス Substrate processing equipment
JP7460448B2 (en) * 2020-05-29 2024-04-02 株式会社Screenホールディングス SUBSTRATE PROCESSING METHOD AND SUBSTRATE PROCESSING APPARATUS

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013030559A (en) * 2011-07-27 2013-02-07 Tokyo Electron Ltd Liquid processing apparatus, control method of the same, computer program, computer readable storage medium
JP2016042517A (en) * 2014-08-15 2016-03-31 株式会社Screenホールディングス Substrate processing device
JP2016063049A (en) * 2014-09-17 2016-04-25 株式会社Screenホールディングス Substrate processing apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4917469B1 (en) 1970-05-28 1974-05-01
JPS4917470B1 (en) 1970-12-25 1974-05-01
JP4763563B2 (en) * 2006-09-20 2011-08-31 大日本スクリーン製造株式会社 Substrate processing method
JP5031671B2 (en) * 2008-06-03 2012-09-19 東京エレクトロン株式会社 Liquid processing apparatus, liquid processing method, and storage medium
JP6032878B2 (en) * 2011-09-29 2016-11-30 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
JP5963075B2 (en) * 2012-03-29 2016-08-03 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus
TWI630652B (en) * 2014-03-17 2018-07-21 斯克林集團公司 Substrate processing apparatus and substrate processing method using substrate processing apparatus
US9460944B2 (en) * 2014-07-02 2016-10-04 SCREEN Holdings Co., Ltd. Substrate treating apparatus and method of treating substrate
US9601358B2 (en) * 2014-08-15 2017-03-21 SCREEN Holdings Co., Ltd. Substrate treatment apparatus, and substrate treatment method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013030559A (en) * 2011-07-27 2013-02-07 Tokyo Electron Ltd Liquid processing apparatus, control method of the same, computer program, computer readable storage medium
JP2016042517A (en) * 2014-08-15 2016-03-31 株式会社Screenホールディングス Substrate processing device
JP2016063049A (en) * 2014-09-17 2016-04-25 株式会社Screenホールディングス Substrate processing apparatus

Also Published As

Publication number Publication date
CN109155247A (en) 2019-01-04
CN109155247B (en) 2023-07-21
KR102223972B1 (en) 2021-03-05
TW201806019A (en) 2018-02-16
KR20180128957A (en) 2018-12-04
JP2017212335A (en) 2017-11-30
TWI643259B (en) 2018-12-01
KR20200130515A (en) 2020-11-18

Similar Documents

Publication Publication Date Title
TWI546881B (en) Substrate treatment apparatus, and substrate treatment method
TWI635556B (en) Substrate processing method
TWI728346B (en) Substrate processing device and substrate processing method
KR20140113339A (en) Substrate processing apparatus
TWI652754B (en) Substrate processing device
CN107871692B (en) Recovery pipe cleaning method and substrate processing apparatus
KR102189980B1 (en) Substrate processing method and substrate processing apparatus
KR20180132021A (en) Substrate processing apparatus
KR20160033358A (en) Substrate treating apparatus
JP6432824B2 (en) Substrate processing equipment
JP6929652B2 (en) Substrate processing equipment and gap cleaning method
KR20160108232A (en) Substrate processing method and substrate processing apparatus
WO2017204088A1 (en) Substrate processing apparatus and substrate processing method
JP5308211B2 (en) Substrate processing equipment
JP6429314B2 (en) Substrate processing system
JP6502037B2 (en) Substrate processing apparatus and substrate processing method
JP7002605B2 (en) Board processing equipment and board processing method
JP6499472B2 (en) Substrate processing apparatus and substrate processing method
WO2019230612A1 (en) Substrate processing method and substrate processing device
JP5967948B2 (en) Substrate processing apparatus and substrate processing method
TWI836216B (en) Substrate processing method and substrate processing apparatus
JP2013157354A (en) Device and method for processing substrate
KR102240493B1 (en) Substrate processing method and substrate processing apparatus
JP2016012629A (en) Substrate processing method and substrate processing apparatus

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187031267

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802680

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17802680

Country of ref document: EP

Kind code of ref document: A1