WO2017204006A1 - 車両制御装置 - Google Patents

車両制御装置 Download PDF

Info

Publication number
WO2017204006A1
WO2017204006A1 PCT/JP2017/018014 JP2017018014W WO2017204006A1 WO 2017204006 A1 WO2017204006 A1 WO 2017204006A1 JP 2017018014 W JP2017018014 W JP 2017018014W WO 2017204006 A1 WO2017204006 A1 WO 2017204006A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance
vehicle
travel
inertial
running
Prior art date
Application number
PCT/JP2017/018014
Other languages
English (en)
French (fr)
Inventor
尚子 高田
飯星 洋一
太雪 谷道
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201780017827.5A priority Critical patent/CN109153384A/zh
Priority to US16/096,933 priority patent/US10875534B2/en
Priority to EP17802600.1A priority patent/EP3466788A4/en
Publication of WO2017204006A1 publication Critical patent/WO2017204006A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • B60W10/107Infinitely variable gearings with endless flexible members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/11Controlling the power contribution of each of the prime movers to meet required power demand using model predictive control [MPC] strategies, i.e. control methods based on models predicting performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/12Controlling the power contribution of each of the prime movers to meet required power demand using control strategies taking into account route information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/1005Driving resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0208Clutch engagement state, e.g. engaged or disengaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/16Driving resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/30Road curve radius
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/40Coefficient of friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/801Lateral distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/804Relative longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/60Traffic rules, e.g. speed limits or right of way
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/65Data transmitted between vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/021Clutch engagement state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0616Position of fuel or air injector
    • B60W2710/0627Fuel flow rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • B60W2710/065Idle condition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/103Speed profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2900/00Indexing codes relating to the purpose of, or problem solved of road vehicle drive control systems not otherwise provided for in groups B60W30/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to an automobile control device, and more particularly to an automobile control device having an automatic stop or restart function for automatically stopping and restarting an engine.
  • Patent Document 1 discloses a technique for calculating a required driving force based on information acquired from a map and calculating power consumption when the motor is operated at an optimum efficiency.
  • Patent Document 2 discloses a technique for estimating the current driving resistance and using it for prediction of the driving resistance of the road ahead in order to predict the required engine driving force with higher accuracy.
  • Patent Document 3 in order to improve fuel consumption, when a predetermined condition is satisfied during traveling, the engine is temporarily stopped and a clutch interposed between the automatic transmission and the engine is provided.
  • engine stop / inertia control A technique for canceling the engine stop state has been implemented. This improves fuel efficiency by performing inertial running with the clutch disengaged during traveling, and improves response and ensures drivability in situations where driving force is considered necessary.
  • inertial traveling cannot be started at an appropriate position with respect to an object to be decelerated such as a front intersection, and unnecessary driving is performed. There was a possibility that the fuel consumption effect that should have been originally obtained could not be obtained.
  • the slope resistance and the air resistance are predicted using the gradient obtained from the map and the own vehicle speed predicted from the road shape or the past running data of the own vehicle.
  • Other resistances are known and handled, and if the actual vehicle speed deviates from the prediction, the running resistance cannot be estimated accurately.
  • the running resistance is predicted on the assumption that the rolling resistance, the air resistance, and the acceleration resistance do not change. Considering that the acceleration resistance and the air resistance change with the inertial running. I'm not sure.
  • Patent Document 3 describes an end condition for engine stop inertia running, but there is no mention of the start, and it can be said that there is room for further improving fuel consumption.
  • the acceleration of the vehicle while coasting with the clutch disengaged is greatly influenced by the traveling resistance.
  • the fuel consumption effect that should be obtained may not be obtained unless coasting is started after the running resistance of the road to be run is accurately estimated over a long distance.
  • an object of the present invention is to improve the fuel efficiency due to inertial traveling by accurately calculating the running resistance during inertial traveling.
  • the present invention provides a first travel resistance acquisition unit that acquires a first travel resistance that is determined based on road information or outside world information, and a second travel resistance that is determined based on a result of actual vehicle travel.
  • a first travel resistance acquisition unit that acquires a first travel resistance that is determined based on road information or outside world information
  • a second travel resistance that is determined based on a result of actual vehicle travel.
  • the traveling resistance during inertial traveling is accurately calculated, and inertial traveling control is changed based on this, so that the fuel efficiency due to inertial traveling is improved.
  • FIG. 1 is a schematic configuration of a drive system of an automobile on which a vehicle control device according to an embodiment of the present invention is mounted.
  • working resistance estimation part shown in FIG. The typical flowchart of the vehicle control apparatus which concerns on embodiment of this invention.
  • FIG. 10 is a flowchart showing a running resistance estimation method according to the sixth embodiment.
  • FIG. 10 is a diagram illustrating a method for recording a travel resistance estimation result according to a sixth embodiment. The figure which shows the selection method of the inertial running control according to the correction result of the running resistance in Embodiment 6.
  • FIG. 1 is an example of a control block diagram for realizing a vehicle control apparatus according to an embodiment of the present invention.
  • An external information acquisition unit 102 that acquires information such as road intersections, curves, gradients, and vehicle speed limits from an external sensor such as a map or a camera, and a first traveling resistance that is a prediction result of the forward traveling resistance based on this information
  • a first travel resistance prediction unit (first travel resistance acquisition unit) 108 that calculates vehicle information
  • a host vehicle information acquisition unit 103 that acquires information such as the vehicle speed of the host vehicle, the state of the clutch and the transmission, and the host vehicle information
  • a second running resistance estimation unit (second running resistance acquisition unit) 109 that estimates the running resistance actually received by the host vehicle based on the information of the obtaining unit 103 is provided, and the value of the first running resistance and
  • Fig. 2 shows the schematic configuration of the drive system of an automobile.
  • An engine 304 as a driving power source, a torque converter 305 that adjusts the rotational force of the engine 304 by a transmission mechanism, a clutch 306, an automatic transmission 302, a control device 301 that controls these, and an automatic transmission 302 are transmitted.
  • the driving wheel 303 is driven by the driving force.
  • the vehicle includes a brake device, an external recognition device, and a communication device (not shown).
  • the external environment recognition device may be used in combination with one or more of laser radar, millimeter wave radar, mono camera, stereo camera, and the like.
  • the communication device communicates with a roadside communication device or other vehicle, and acquires information on roads and running resistance of the other vehicle.
  • FIG. 3 is an example of a block diagram of the first running resistance prediction unit 108.
  • a planned travel route acquisition unit 120 that predicts a planned travel route based on the shape of the intersection of the road ahead, and features that require deceleration such as a speed limit, temporary stop, curve, red signal, etc.
  • a target vehicle speed acquisition unit 121 that acquires the target vehicle speed of the planned travel route based on the information (hereinafter referred to as a deceleration target feature), a travel resistance prediction interval setting unit 122 that determines a minimum interval for predicting the travel resistance,
  • a running resistance prediction unit 123 that predicts running resistance based on information such as the gradient of the running resistance prediction section is provided.
  • FIG. 4 shows a flowchart of this embodiment.
  • a road shape obtained from a map or an external sensor is obtained for the planned travel route and information related thereto.
  • the vehicle course after the intersection may be referred to the turn signal
  • the route set in the navigation may be referred to, or predicted from the usual driver's route.
  • Acquires external information such as gradients, signals, temporary stops, curves, and position / speed relationships with other vehicles related to the planned travel route.
  • a first running resistance that is a predicted value of the running resistance ahead is calculated from the external world information obtained in S11.
  • the information used for predicting the first running resistance includes, for example, information on slope, curve curvature, road surface roughness from the map, and information on slope, curvature, road surface clothing, etc. from the external sensor.
  • own vehicle information such as own vehicle information such as own vehicle speed, torque sensor value, acceleration, tire radius, gear ratio, etc. is acquired.
  • an estimated value of running resistance at the current position of the own vehicle is obtained from the own vehicle information.
  • the second running resistance is calculated. Note that the running resistance prediction section is set to include one or more deceleration target features.
  • the difference between the first running resistance and the second running resistance is calculated. If the difference is greater than or equal to a predetermined value, the control content of inertial running is changed according to the difference. Specifically, the start and end positions of inertial running are changed.
  • the location of the target object to be decelerated is set as the end position, and the vehicle speed is calculated backward assuming that the target vehicle speed set according to the type of feature is reached at that position.
  • the location where the backward calculation vehicle speed intersects with the current vehicle speed is set as the start position (FIG. 5).
  • the second running resistance is smaller than the first running resistance, the inertia running is started on the near side. Further, when the target vehicle speed at the inertial end position is greater than 0 km / h and acceleration is performed thereafter, the end of inertial travel is postponed first.
  • the target vehicle speed is set to 0 km / h for a temporary stop or a red signal, and to a lower vehicle speed for a curve if the curvature is smaller.
  • the coasting plan planned in S15 is output and the process ends.
  • the following inertial traveling control content is determined. decide.
  • FIG. 7 shows a flowchart of this embodiment.
  • the target vehicle speed of the planned travel route is acquired in S21.
  • the target vehicle speed is information obtained by referring to the speed limit of the planned travel route and the information about the features to be decelerated referred to in the first embodiment, as well as the average speed of other vehicles or the set vehicle speed of the driver's ACC, etc.
  • the lowest vehicle speed is set as the target vehicle speed.
  • the target vehicle speed that does not collide with the preceding vehicle is created by reflecting the distance, speed difference, and acceleration difference with the preceding vehicle.
  • a minimum section for predicting the first running resistance is set.
  • the nearest position where the target vehicle speed takes the minimum value and the target vehicle speed at that time are obtained, and the inertia vehicle travel plan section is taken from the target vehicle speed to the position where the target vehicle speed is expected to become zero at the target vehicle speed minimum position. To do. This makes it possible to calculate the starting guide position and the stopping guide position of the inertia traveling where the inertia traveling duration is the longest in the procedure shown in FIG. 8 with higher accuracy.
  • the target lower limit speed is, for example, 95% of the target vehicle speed, or a value obtained by subtracting 5 km / h or 10 km / h from the target vehicle speed.
  • the target vehicle speed is a position where the target vehicle speed takes a minimum value
  • the vehicle speed is between the target vehicle speed and the target lower limit vehicle speed at the end reference position
  • the vehicle vehicle speed is set to a position where the trajectory of the coasting vehicle speed intersects (FIG. 8). Note that if the host vehicle speed is higher than the target lower limit speed at the minimum target vehicle speed position, it is not always necessary to end inertial driving at the minimum target vehicle speed position. Crossing and coasting can continue until the brakes or driving force needs to be regenerated (Fig. 9).
  • the inertial travel end position is not fixed at a position where the target vehicle speed becomes the minimum, and the vehicle speed intersects either the target vehicle speed or the target lower limit vehicle speed due to the balance between the acceleration of the target vehicle speed and the travel resistance.
  • the starting point and the ending point of inertial traveling that maximize the time until inertial traveling ends are adopted (FIG. 10).
  • the calculation of the start guide position and end guide position described above is carried out in two patterns: running with the clutch disengaged and running with the engine brake engaged, and the inertia running is longer when the clutch is disengaged. If it is possible, run the engine with inertia, and if the engine brake is longer, select engine braking.
  • This configuration can select a vehicle behavior that effectively improves fuel efficiency in accordance with the forward running resistance.
  • ⁇ aplus ⁇ anow ⁇ ⁇ ⁇ + ⁇ aplus ⁇ (1- ⁇ ) (Equation 2)
  • is a coefficient that changes depending on the clutch state, and is set so that the value during clutch release is larger than that during clutch engagement.
  • This configuration makes it less susceptible to sensor accuracy and other factors, makes it difficult to vary the predicted value, and makes it possible to evaluate the running resistance with high accuracy while there is no estimation error in engine torque or engine friction during clutch release. Can be improved.
  • a first inertia traveling plan is made based on the first traveling resistance.
  • the details of the planning method are the same as S23.
  • the process proceeds from S13 to S16 in the same manner as in the second embodiment, and in S32, a second inertia traveling plan is made based on the third traveling resistance.
  • FIGS. 13A and 13B show an example of a third inertial traveling control plan.
  • FIG. 13 (a) shows that when the vehicle is running with the engine driven in accordance with the first inertial travel plan, the engine stops inertial travel before the current point of the vehicle in the second inertial travel plan. It shows the case where it should have been planned. At this time, if the engine is stopped from the current position, the brake is required for the object to be decelerated. Therefore, as the third inertial travel plan, the engine brake travel is performed first, and the vehicle speed is the second inertial travel plan. If it matches the vehicle speed profile, the engine stops inertial running. Alternatively, if the vehicle has a configuration capable of regenerative power generation, the vehicle is first decelerated in the regenerative state, and if it matches the vehicle speed profile of the second inertial travel plan, engine stop inertial travel is performed.
  • FIG. 13B shows that when the vehicle is coasting with the engine stopped in accordance with the first coasting plan, the vehicle travels with the engine driving beyond the current point of the vehicle in the second coasting plan. Later, it shows the case where it was planned that coasting should have started. In this case, after continuing the inertial running to the target lower limit speed, the engine is driven at the highest efficiency point, accelerated until it matches the vehicle speed profile of the second inertial running plan, and the engine stop inertial running is started again. Create 3 coasting plan.
  • the vehicle is controlled based on the third inertial travel plan designed by the method as described above.
  • the vehicle is controlled based on the first inertia traveling plan.
  • the inertial driving control plan If it is actively controlling acceleration / deceleration, specifically when the vehicle speed is controlled using the accelerator pedal or brake pedal without using the automatic acceleration / deceleration function such as ACC, the inertial driving control plan If it is recommended to start driving, this is notified to the driver via the HMI.
  • the notification method may be displayed on the center screen of navigation, etc., may be displayed on the instrument panel, or may be presented by voice, displayed on the AI screen, or the pedal reaction force is increased. But it ’s okay.
  • the process After calculating the first travel resistance in S12 and the second travel resistance in S14, it is first determined in S41 whether the vehicle has suddenly accelerated or slipped. If neither rapid acceleration nor slip is detected, the process proceeds to S15, and ⁇ F, which is the difference between the first travel resistance and the second travel resistance, is calculated. If ⁇ F is less than the predetermined value, the flow is terminated. If ⁇ F is equal to or greater than a predetermined value, it is next determined in S42 whether the sign of the difference is different during acceleration and deceleration. If not, the vehicle weight is changed in S43. Specifically, if the second running resistance is smaller than the first running resistance during acceleration and the second running resistance is larger than the first running resistance during deceleration, the vehicle weight is corrected slightly.
  • the vehicle weight is corrected to a heavy value. There is no delimiter for the correction section.
  • the estimated value of the vehicle weight is averaged by a weighted average using the same formula as described above, and the value is always used.
  • Wt Wt ⁇ ⁇ + Wt ⁇ (1 - ⁇ ) However, ⁇ ⁇ 1
  • S44 it is determined whether or not the change amount of ⁇ F per unit time is within a predetermined value. If it is within the predetermined value, the process proceeds to S46. When the amount of change is equal to or greater than the predetermined value, that is, when ⁇ F changes suddenly, the process proceeds to S45 to correct the value of the gradient resistance.
  • the unit time is variable according to the vehicle speed, and the unit time is shorter as the vehicle speed is higher.
  • a value corresponding to the difference may be added to the entire prediction section, or it may be up to the next slope change point on the map. It is desirable to calculate the amount of gradient that causes the difference in gradient resistance, store it on the map, and use that value for the next run.
  • S46 it is determined whether the difference varies depending on the traveling direction.
  • the traveling direction with the difference is maximized and the direction different by 180 degrees is minimized, it is determined that the traveling resistance fluctuates due to wind, and the air resistance is corrected in S47.
  • the wind speed and the wind direction are calculated, and the air resistance received by the host vehicle is calculated along the route from the relationship between the own vehicle traveling direction and the wind direction of the planned route thereafter.
  • the air resistance coefficient (specifically, the product of air density, Cd value, and vehicle front area) is corrected in S49.
  • the air resistance coefficient is calculated as a weighted average weighted in the same manner as the vehicle weight. If it is less than the predetermined value, the rolling resistance is corrected in S50.
  • the weighted average is calculated in the same way as the vehicle weight and air resistance coefficient, and the average value is not affected by noise.
  • slope correction when the road surface condition is acquired with a camera, etc., and it can be detected that the road surface has changed suddenly due to entering a gravel road or a puddle, it occurs almost at the same time as entering the road surface.
  • the slope correction is not performed for sudden changes in ⁇ F.
  • the camera determines the density of obstacles around the route. Especially in places where the windward obstacle density is high, the estimated wind speed is inversely proportional to the density, width, or height of the obstacle. Multiply by a factor of 1 or less. Obstacle information may always be acquired with a camera or the like while driving, or information on previous driving on the road may be saved in a map owned by the vehicle or a map on the cloud side and used at the next driving.
  • the air resistance coefficient is recalculated by adding a small weight to the previous value when a difference occurs when starting after ignition or when the ignition is ON.
  • the change can be quickly adapted.
  • the correction value is recalculated with a small weight on the previous value. This makes it possible to quickly respond to changes in the rolling resistance coefficient due to tire pressure replenishment and the like.
  • the rolling resistance before and after the change is recorded on the map.
  • the map record and the difference are illuminated, and if the difference shows a value close to the value on the map this time, it is determined that the rolling resistance is specific to the location (for example, depending on the type of road surface covering) and Update the rolling resistance value.
  • the event based on the judgment is completed The estimated rolling resistance coefficient until this time is calculated and stored separately as a rainy day value.
  • a method for obtaining the running record of another vehicle using C2X communication will be described.
  • Each vehicle has information such as the estimated running resistance itself, the running direction, vehicle speed, tire slip, sensor accuracy, and the running resistance correction frequency that can be an indicator of the running resistance estimation accuracy of the vehicle if there is a margin in the communication network. Or stored on the cloud using a roadside communication device or the like.
  • a computer that manages the ECU or the cloud of the own vehicle calculates the average of the running resistance estimation values based on this information. This value is used as the second running resistance to correct the first running resistance.
  • calculating the second running resistance not a simple average but a weighted average that gives a large weight to the information on the vehicle and the vehicle close to the vehicle and the estimated running resistance of the vehicle with high sensor accuracy or estimation accuracy. May be.
  • the first and second running resistances can be compared even when the host vehicle is not running at all, and the running time in a state where the running resistance prediction accuracy is low is reduced, thereby making the fuel consumption more efficient. Improved vehicle control can be performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

本発明は、惰性走行中の走行抵抗を精度良く算出することで惰性走行による燃費を向上させることを目的とする。本発明は、道路情報又は外界情報に基づいて決定される第1の走行抵抗を取得する第1の走行抵抗取得部108と、車両が実際に走行した結果に基づいて決定される第2の走行抵抗を取得する第2の走行抵抗取得部109と、車両が実際に走行した所定の区間に対する第1の走行抵抗と第2の走行抵抗との比較結果に基づいて、車両が走行する際の惰性走行制御内容を決定する。

Description

車両制御装置
 本発明は自動車の制御装置に係り、特にエンジンを自動的に停止させて再始動する自動停止または再始動機能を備える自動車の制御装置に関するものである。
 燃費や運転性を向上させるために,前方道路の道路形状などの情報を得てエンジンや変速機の制御を行う技術が拡大している。特許文献1には,地図から取得した情報を基に必要な駆動力を算出し,モータを最適な効率で作動させた際の消費電力を算出する技術が開示されている。
 また特許文献2には,必要なエンジン駆動力をさらに精度良く予測するため,現在の走行抵抗を推定して前方道路の走行抵抗予測に活用する技術が開示されている。
 一方,特許文献3には、燃費を向上させるため,走行中に或る所定の条件が成立すると、エンジンを一時的に停止すると共に、自動変速機とエンジンの間に介装されているクラッチを切断して自動車を惰性で走行させ、その後に所定の条件が成立するとエンジンを再始動し、クラッチを再締結する制御(以下、エンジン停止/惰性走行制御と表記する)に関し,勾配が大きい場合にエンジン停止状態を中止する技術が実施されている。これは、走行中にクラッチを切った惰性走行を行なうことで燃費を向上するとともに,駆動力が必要と思われる状況ではレスポンスを向上させ,運転性を確保する。
WO13/094045号公報 特開平8-072591号公報 特開2014-84905号公報
 しかし従来の技術では惰性走行中の走行抵抗について十分な考慮がなされておらず、たとえば前方の交差点等の減速対象に対して,適切な位置で惰性走行を開始することができず,無駄な駆動出力をしてしまい,本来得られるはずの燃費効果が得られない恐れがあった。
 たとえば特許文献1の方法では,走行抵抗を算出するため,地図から得られる勾配と,道路形状または自車の過去の走行データから予測される自車速を用い,勾配抵抗と空気抵抗を予測する。これ以外の抵抗は既知で扱っている上,実際の車速が予測と乖離すると,走行抵抗を精度よく見積もることができない。
 特許文献2の方法では,走行抵抗の予測を転がり抵抗,空気抵抗,および加速抵抗が変化しない範囲の前提で行っており,惰性走行の実施に伴い加速抵抗や空気抵抗が変化することを考慮しきれていない。
 特許文献3では,エンジン停止惰性走行の終了条件について記載されているが,開始については言及がなく,さらに燃費を伸ばす余地があるといえる。
 このように、走行中にも所定の条件下でクラッチの切断、再締結をすることができる車両においては、クラッチを切断して惰性走行している間の車両の加速度は走行抵抗に大きく左右される。これから走る道路の走行抵抗を長距離に渡り精度よく推定したうえで惰性走行を開始しなければ、得られるはずの燃費効果が得られない場合がある。
 そこで、本発明は、惰性走行中の走行抵抗を精度良く算出することで惰性走行による燃費を向上させることを目的とする。
 本発明は、道路情報又は外界情報に基づいて決定される第1の走行抵抗を取得する第1の走行抵抗取得部と、車両が実際に走行した結果に基づいて決定される第2の走行抵抗を取得する第2の走行抵抗取得部と、車両が実際に走行した所定の区間に対する前記第1の走行抵抗と前記第2の走行抵抗との比較結果に基づいて、前記前方道路を走行する際の惰性走行制御内容を決定する。
 本発明によれば、惰性走行中の走行抵抗が精度良く算出され、これに基づいて惰性走行制御が変更されるため、惰性走行による燃費が向上する。
本発明の実施形態に係る車両制御装置を実現するためのブロック図の一例。 本発明の実施形態に係る車両制御装置が実装される自動車の駆動系の概略構成。 図1に示す第1の走行抵抗予測部の内部構成図。 本発明の実施形態に係る車両制御装置の代表的なフローチャート。 第3の走行抵抗の算出方法の一例。 惰性走行開始地点の定義方法の一例。 第1の走行抵抗より第2の走行抵抗のほうが小さい場合の惰性走行制御の決定内容の一例。 実施形態2における惰性走行計画立案フローを示すチャート図。 実施形態2における惰性走行終了位置の決定方法の一例。 実施形態2における惰性走行終了位置の決定方法の図9と異なる例。 実施形態2における惰性走行終了位置の決定方法のさらに別の例。 実施形態3において第1の惰性走行計画と第2の惰性走行計画の違いに応じて第3の惰性走行計画を立案する方法のフローチャート。 第3実施形態における第3の惰性走行制御計画の作成方法の一例。 第3実施形態における第3の惰性走行制御計画の作成方法の別の例。 実施形態6における走行抵抗の推定方法を示すフローチャート。 実施形態6における走行抵抗の推定結果の記録方法を示す図。 実施形態6における走行抵抗の修正結果に応じた惰性走行制御の選択方法を示す図。
 次に、本発明の実施例について図面を用いて詳細に説明するが、本発明は以下の実施例に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例をもその範囲に含むものである。
 [実施形態1]
  図1は本発明の実施形態に係る車両制御装置を実現するための制御ブロック図の一例である。道路の交差やカーブ,勾配,制限車速などの情報を地図またはカメラ等の外界センサから取得する外界情報取得部102と,この情報を基に前方の走行抵抗の予測結果である第1の走行抵抗を算出する第1の走行抵抗予測部(第1の走行抵抗取得部)108と,自車の車速やクラッチおよび変速機の状態等の情報を取得する自車情報取得部103と,自車情報取得部103の情報を基に自車が実際に受けている走行抵抗を推定する第2の走行抵抗推定部(第2の走行抵抗取得部)109を備え,この第1の走行抵抗の値と第2の走行抵抗の値に基づいて惰性走行制御の内容を決定する惰性走行制御内容決定部112を有する。この構成により,未だ自車が走行していない道路の走行抵抗を,現在の走行環境(自車状況,路面状況等)に即して予測することができる。
 図2に自動車の駆動系の概略構成を示す。走行用動力源としてのエンジン304と、エンジン304の回転力を変速機構によって調整するトルクコンバータ305,クラッチ306,自動変速機302と、これらを制御する制御装置301,そして自動変速機302から伝えられた駆動力によって駆動される駆動輪303を備えている。なお,車両はこのほかにも図示しないブレーキ装置,外界認識装置および通信装置を備えている。
 外界認識装置は、レーザーレーダーやミリ波レーダー、モノカメラ、ステレオカメラなどのうちの一つないし複数を組み合わせて使用してもよい。また、通信装置は路側通信機もしくは他車両と通信を行い,道路や他車両の走行抵抗に関する情報を取得する。
 図3は第1の走行抵抗予測部108のブロック図の一例である。前方の道路の交差有無等の形状を基に走行予定経路を予測する走行予定経路取得部120と,さらに走行予定経路の制限速度や,一時停止,カーブ,赤信号などの減速が必要な地物(以下減速対象地物と呼ぶ)の情報を基に走行予定経路の目標車速を取得する目標車速取得部121と,走行抵抗を予測する最低限の区間を定める走行抵抗予測区間設定部122と,走行抵抗予測区間の勾配等の情報を基に走行抵抗を予測する走行抵抗予測部123を備える。
 図4に本実施形態のフローチャートを示す。S11にて,走行予定経路とそれに関する情報を地図や外界センサから得られる道路形状を取得する。道路に交差がある場合,交差後の自車進路はウインカを参照したり,ナビで設定されたルートを参照したり,または普段のドライバの走行ルートから予測してもよい。走行予定経路に関する勾配,信号,一時停止,カーブ,他車との位置・速度関係などの外界情報を取得する。
  S12では,S11で得た外界情報から,前方の走行抵抗の予測値である第1の走行抵抗を算出する。第1の走行抵抗を予測するに当たり利用する情報は,例えば地図からは勾配やカーブ曲率,路面の粗さ,外界センサからは勾配,曲率,路面被服物の情報などを含む。S13で自車速,トルクセンサの値,加速度,タイヤ半径,ギア比等の自車情報などの自車情報を取得し,S14で,自車情報から自車の現在位置での走行抵抗の推定値である第2の走行抵抗を算出する。なお,走行抵抗の予測区間は1つ以上の減速対象地物を含むように設定する。
 S15にて,第1の走行抵抗と第2の走行抵抗の差分を算出する。差分が所定値以上である場合,差分に応じて惰性走行の制御内容を変更する。具体的には,惰性走行の開始,終了の位置を変更する。
 惰性走行開始位置,終了位置は,例えば終了位置については減速対象地物の場所を終了位置とし,その位置で地物の種類に応じて設定される目標車速に至ると仮定して自車速を逆算し,逆算自車速が現在自車速と交わる場所を開始位置とする(図5)。そして,第1の走行抵抗より第2の走行抵抗が小さいほど,惰性走行を手前で開始する。また,惰性終了位置の目標車速が0km/hより大きく,かつその後加速を行う場合,惰性走行の終了を先に延ばす。第1の走行抵抗より第2の走行抵抗が大きい場合は,惰性走行の開始を先延ばしし,かつ終了は手前で行う。なお,目標車速は,例えば一時停止や赤信号なら0km/h,カーブなら曲率が小さいほど低い車速となるよう設定する。
 差分が所定値以下の場合は,S15で立案した惰性走行計画を出力し,終了する。
 以上のように、走行前に地図等から取得する情報から算出する第1の走行抵抗と、走行時に得られた情報から算出する第2の走行抵抗とに基づいて、次の惰性走行制御内容を決定する。
 本構成により、図6に示すように,第2の走行抵抗(実際の走行抵抗)が第1の走行抵抗(予測した走行抵抗)より小さい場合,これに応じて惰性走行の開始を早めることができるので,燃費が向上する。また走行抵抗の変化による加速のしやすさ,しにくさを考慮した惰性走行の終了および加速の開始が行えるので,無駄な早期の加速開始や,要求した加速が出ないことで目標車速へ補正するための加速度増加を行わなくて済むので,やはり燃費の向上に寄与する。
 [実施形態2]
  走行予定経路における目標車速を利用し,惰性走行開始,終了位置を決定する方法を述べる。
 図7に本実施形態のフローチャートを示す。S11にて,走行予定経路に関する情報を得た後,S21において,走行予定経路の目標車速を取得する。目標車速は,実施形態1で参照した走行予定経路の制限速度や減速対象地物の情報のほかに,他車の平均速度,またはドライバのACC等の設定車速などを参照し,取得できた情報のうちで最も低い車速を目標車速とする。なお,直近の数秒間の目標車速の算出には,先行車との距離や速度差,加速度差も反映させ,先行車に追突することのない目標車速を作成する。
 つづいてS22において,第1の走行抵抗を予測する最低限の区間を設定する。目標車速が極小値を取る直近の位置とそのときの目標車速を取得し,目標車速極小位置にて,目標車速から惰性走行を行ない,車速がゼロとなると見込まれる位置までを惰性走行計画区間とする。これにより,後の図8に示す手順で惰性走行継続時間が最も長くなる惰性走行の開始目安位置および終了目安位置をより精度よく計算できるようになる。
 また,区間内の目標下限車速を設定する。目標下限速は,例えば目標車速の95%としたり,目標車速から5km/hや10km/h減算した値などとする。
 S12からS14は実施形態1と同様の処理を行う。
 S23において,S22で設定した区間内の惰性走行計画を立案する。
 惰性走行の開始,終了位置の決定処理を,図8,9,10を用いて説明する。
 終了目安位置は,たとえば目標車速が極小値を取る位置とし,開始目安位置は,終了目安位置において自車速が目標車速と目標下限車速の間となり,その位置まで惰性走行をするとした場合に,自車車速と惰性走行時車速の軌跡が交差する位置にする(図8)。なお,目標車速極小位置において自車速が目標下限速よりも高い値をとる場合,必ずしも目標車速極小位置で惰性走行を終了する必要はなく,惰性走行時車速が目標車速か目標下限速と交差し,ブレーキまたは駆動力の再発生が必要となるまで惰性走行を継続できる(図9)。
 もしくは対象区間において,惰性走行終了位置を目標車速が極小となる位置に固定せず,目標車速の加速度と走行抵抗の兼ね合いから,目標車速または目標下限車速のいずれか一方に自車速が交差して惰性走行を終了(ブレーキまたは再加速を実施)するまでの時間が極大となる惰性走行の始点と終点を採用する(図10)。
 惰性走行のモードは,上述した開始目安位置と終了目安位置の算出を,クラッチを切り離した走行とエンジンブレーキを利かせた状態の走行の2パターンそれぞれで行い,クラッチを切り離したほうが長く惰性走行をできる場合はエンジン停止惰性走行をし,エンジンブレーキを利かせたほうが長い場合はエンジンブレーキ走行を選択する。
 S16,17は実施形態1と同様に実施する。
 本構成により,前方の走行抵抗に即して効果的に燃費を向上させる車両挙動を選択できる。
 [実施形態3]
  実施形態1において,第1の走行抵抗と第2の走行抵抗とから第3の走行抵抗を算出し,これを制御に用いる方法を説明する。
 第3の走行抵抗を算出するために,区間内の第1の走行抵抗全体に,第2の走行抵抗との差分を上乗せする(図11)。なお,上乗せする際,常に現在の差分を上乗せすると,センサ精度などの影響を受けて予測値がばらつく恐れがある。そこで差分に以下のように重みを付けて変動をなました後,上乗せを行う。
  
  (α<1)Δaplus = Δanow × α + Δaplus ×(1 - α) ・・・(式1)
  
  また,時間的な重みを付けるだけでなく,惰性走行中,特にクラッチ開放中に取得した値の場合,さらに大きな重みを付けて上乗せする値を計算する。すなわち,
  
  Δaplus = Δanow × α× β+ Δaplus ×(1 - α)  ・・・(式2)
  
  ただしβはクラッチ状態により変化する係数で,クラッチ開放中のほうがクラッチ締結中より大きな値となるよう設定する。
 本構成により,センサ精度などの影響を受けにくくなり,予測値がばらつきにくくなるとともに,クラッチ開放中はエンジントルクやエンジンフリクションの推定誤差がなく高精度に走行抵抗を評価できるため,走行抵抗予測精度を向上させることができる。
 [実施形態4]
  図12を用い,第1の惰性走行計画と第2の惰性走行計画の違いに応じて第3の惰性走行計画を立案し,惰性走行計画の差分により,燃費が効果的に向上できない状況が発生することを防ぐ方法を説明する。
 S12まで実施形態2と同じように進めた後,S31にて,第1の走行抵抗を基に第1の惰性走行計画を立案する。立案方法の詳細はS23と同様である。その後,S13からS16まで実施形態2と同じく進め,S32にて,第3の走行抵抗を基に第2の惰性走行計画を立案する。
 S33にて第1と第2の惰性走行制御計画を比較し,第3の惰性走行制御計画を立案する。図13(a)(b)に第3の惰性走行制御計画の例を示す。
 図13(a)は自車が第1の惰性走行計画にしたがってエンジンを駆動させ走行しているときに,第2の惰性走行計画において,自車の現在地点より手前でエンジン停止惰性走行を開始すべきだったと計画された場合を示している。このとき,現在地点からエンジン停止惰性走行を行なうと減速対象物に対しブレーキが必要となるので,第3の惰性走行計画として,まずエンジンブレーキ走行を行ない,自車速が第2の惰性走行計画の車速プロフィールと一致すると,エンジン停止惰性走行を行なうようにする。または,回生発電が可能な構成の車両であれば,まず回生状態で減速を行い,第2の惰性走行計画の車速プロフィールと一致すると,エンジン停止惰性走行を行なうようにする。
 図13(b)は,自車が第1の惰性走行計画にしたがってエンジンを停止させ惰性走行しているときに,第2の惰性走行計画において,自車の現在地点より先までエンジン駆動で走行後,惰性走行を開始すべきだったと計画された場合を示している。この場合は,目標下限速度まで惰性走行を継続した後,エンジンを最高効率点で駆動し第2の惰性走行計画の車速プロフィールに合致するまで加速し,再度エンジン停止惰性走行を開始するように第3の惰性走行計画を作成する。
 この構成により,惰性走行計画の切り替わり時に,自車速が第2の惰性走行計画に合致していない場合でも,その状況下で最も燃費のよい走行計画を作成できる。
 以上のような方法で立案された第3の惰性走行計画に基づいて車両を制御する。なお,S15において,第1の走行抵抗と第2の走行抵抗の差分が所定値より小さいと判定された場合は,第1の惰性走行計画に基づいて車両を制御する。
 [実施形態5]
  ドライバが加減速を能動的に制御している,具体的にはACC等の自動加減速機能を使わず,アクセルペダルまたはブレーキペダルを使って車速を制御している場合,惰性走行制御計画において惰性走行を開始することが推奨される場合,その旨をHMI経由でドライバに通知する。通知方法はナビ等のセンター画面に出しても良いし,インストルメントパネルに表示しても良いし,または音声で提示したり,AI画面上に表示したり,あるいはペダル反力を高めるなどする方法でも良い。
 この構成により,ドライバ自身が運転している場合でも,走行抵抗の予測結果を用いて燃費を向上させることができる。
 [実施形態6]
  第3の走行抵抗のさらに別の算出方法と,その結果に合わせた惰性走行の制御方法を説明する。走行抵抗を変動させる因子は,主に空気抵抗,転がり抵抗,勾配抵抗,加速抵抗である。このうち,加速抵抗は車両の特性からおおよそ見積もることが出来るが,その他の因子については環境や車両重量等で変動する。変動の仕方は各因子に応じそれぞれ異なるので,図14に示すフローチャートにより,各因子を見積もり、図15に示す方法で、各因子の見積もり結果を記憶する。
 S12で第1の走行抵抗,S14で第2の走行抵抗を算出した後,S41にて,まず車両が急加速またはスリップしていないかを判断する。急加速もスリップもしていない場合,S15に進み,第1の走行抵抗と第2の走行抵抗の差分であるΔFを算出する。ΔFが所定値未満の場合,フローを終了する。ΔFが所定値以上であれば,次にS42にて,加速中と減速中で差分の符号が異なるかを判断する。異なる場合,S43にて車両重量を変更する。具体的には,加速中において第1の走行抵抗より第2の走行抵抗のほうが小さく,減速中において第1の走行抵抗より第2の走行抵抗のほうが大きい場合,車両重量を軽く修正する。逆の場合は,車両重量を重い値に修正する。修正区間の区切りは設けず,1トリップ中,車両重量の推定値を前述と同様の式を用いて加重平均により平均化し,常にその値を用いる。
  
  Wt = Wt × β + Wt ×(1 -β)
  ただし,β<<1

  S44では,ΔFの単位時間当たりの変化量が所定値以内であるかを判断する。所定値以内の場合,S46に進む。変化量が所定値以上,すなわちΔFが急変したときは,S45に進み,勾配抵抗の値を修正する。なお,このS44において単位時間は車速に応じ可変とし,車速が高いほど短い時間とする。
 勾配抵抗の値の修正の区間については,予測区間全域に差分に相当する値を上乗せしても良いし,または地図上の次の勾配の変化点までとしても良い。なお勾配抵抗の差分を招く勾配量を計算し,地図に格納し,次回走行時はその値を用いることが望ましい。
 S46では,差分が走行方向に依存して変動するかを判断する。差分がある走行方向を極大とし,180度異なる方向を極小としている場合,風による走行抵抗変動であると判断し,S47にて空気抵抗を修正する。具体的には,風速および風向を算出し,その後の予定経路の自車走行方向と風向の関係から,自車の受ける空気抵抗を経路に沿って計算する。
 最後に,なお残った差分が存在する場合,S48にて自車速が所定値以上か未満かを判断する。所定値以上の場合,S49で空気抵抗係数(具体的には空気密度,Cd値,車両前面面積の積)を修正する。空気抵抗係数は車両重量と同様重みをつけた加重平均を算出する。所定値未満の場合は,S50で転がり抵抗を修正する。車重や空気抵抗係数と同様に加重平均を計算し,ノイズ等の影響を受けない平均値を算出する。
 図16を用いて惰性走行の制御方法を説明する。ΔFの要因となっていた走行抵抗因子の種類により,ΔFがその後の車両挙動に及ぼす影響は変化する。例えば,車両重量が想定よりも重ければ,車両は加速しにくいが,同時に減速もしにくくなる。そこで車両重量が重い場合には,車両重量を修正しない場合に比べて惰性走行を早く始め,また早く終了し,さらに駆動力を発生させるタイミングよりも早くエンジンのみ始動し,クラッチをつながない事前始動を行うことで,必要な駆動力を遅れなく発生させられるようにする。一方,勾配を上り勾配と修正したり,向い風が吹いていると推定したり,空気抵抗係数または転がり抵抗係数を高い値に修正した場合は,加速しにくく,減速はしやすくなる。そこで惰性走行の開始は遅くし,惰性走行の終了は車重を大きい値に修正したときと同様に早める。
 [実施形態7]
  実施形態6の走行抵抗算出の例外処理について説明する。まず車両重量の修正について,停車後の発進時やイグニON時には,荷物や乗車人数の変動が発生している可能性があるため,前回値を記憶しておき,前回値と著しく異なる,つまり加速中と減速中の差分の差異が再発生した場合には,前回値に小さな重みをつけ,今回値以降に相対的に大きな重みを付ける。これにより,車両重量の変動にすばやく対応する。
 つづいて勾配修正について,カメラ等で路面状態を取得し,路面が砂利道に入ったり水溜りがあることで急変していることを検出できた場合,その路面への進入とほぼ同じタイミングで発生したΔFの急変に対しては,勾配修正を実施しない。
 風の修正に関しては,カメラで経路周辺の建物等の障害物密度を判定し,特に風上側の障害物密度が高い場所では,風速の推定値に,障害物の密度または幅または高さに反比例する1以下の係数を掛ける。障害物情報は走りながら常にカメラ等で取得しても良いし,以前その道を走ったときの情報を自車の保有するマップまたはクラウド側のマップに保存し,次回走行時に使用してもよい。
 空気抵抗係数は,停止後の発進時やイグニON時に差分が発生した場合に,前回値に小さな重みをつけて修正値を再計算する。これにより,例えばルーフに荷物を載せたりした場合にすばやくその変化に適応できる。
 転がり抵抗についても,停止後の発進時やイグニON時に差分が発生した場合に,前回値に小さな重みをつけて修正値を再計算する。これにより,タイヤの空気圧の補充等による転がり抵抗係数の変化にすばやく対応できるようにする。転がり抵抗係数の変化が停車やイグニOFFONと関係なく発生した場合は,地図に変化前後の転がり抵抗を記録する。次回走行時に地図の記録と差分を照らし,差分が地図の値と今回で近い値を示していれば,その場所特有の転がり抵抗(たとえば路面の被覆物の種別等による)と判断し,地図上の転がり抵抗の値を更新する。また,ワイパーが動いているか,カメラ等から路面がぬれていることが確認できるか,または炉車間通信等により走行地域で降雨が発生していると判断した場合は,判断根拠とした事象が終了するまでの間の転がり抵抗係数推定値は雨天時数値として別に算出,記憶する。
 なお,停止後の発進時やイグニON時において,前回の走行から時間が経っているほど,走行開始後長時間経過するまで各走行抵抗因子の推定を行わないようにする。これにより,タイヤの温度変化による走行抵抗変化の影響を受けないようにする。
 これらの構成により,走行抵抗の推定精度を向上させることができる。
 [実施形態8]
  第2の走行抵抗を得るにあたって,C2X通信を用いて他車両の走行実績を取得する方法を説明する。各車両は,推定した走行抵抗そのものか,通信網に余裕があれば走行方向,車速,タイヤスリップ有無,センサ精度,その車両の走行抵抗推定精度の指標となりうる走行抵抗修正頻度などの情報を周囲の車両に送信するか,または路側通信機器等を用いてクラウド上に格納する。自車のECUもしくはクラウドを管理するコンピュータがこの情報を基に走行抵抗推定値の平均を算出する。この値を第2の走行抵抗として,第1の走行抵抗の修正に用いる。なお,第2の走行抵抗算出時に,単純な平均でなく,自車や自車両に近い車両の情報や,センサ精度または推定精度の高い車両の推定した走行抵抗に大きな重みをつける加重平均を採用してもよい。
 この構成により,自車が全く走行していない状態でも,第1と第2の走行抵抗を比較することができ,走行抵抗予測精度が低い状態での走行時間を減らして,より効率的に燃費向上車両制御を行うことができる。
 [実施形態9]
  本実施形態は惰性走行に限定していたが,本走行抵抗修正結果をエンジン駆動力算出や緊急ブレーキ時の制動力算出等に用いても良い。
301  制御装置302  自動変速機303  駆動輪304  エンジン305  トルクコンバータ306  クラッチ

Claims (10)

  1.  道路情報又は外界情報に基づいて決定される第1の走行抵抗を取得する第1の走行抵抗取得部と、
     車両が実際に走行した結果に基づいて決定される第2の走行抵抗を取得する第2の走行抵抗取得部と、
     車両が実際に走行した所定の区間に対する前記第1の走行抵抗と前記第2の走行抵抗との比較結果に基づいて、前記車両が走行する際の惰性走行制御内容を決定する、
     走行制御装置。
  2.  前記惰性走行制御内容は,少なくとも燃料噴射の停止,クラッチの切断,締結,変速比のいずれかひとつを含む,請求項1に記載の車両制御装置。
  3.  前記惰性走行制御内容の計画に当たって,減速対象地物,上下限制限速度,先行車速,車間距離の少なくともいずれかひとつの情報を用いることを特徴とする,請求項1または2に記載の車両制御装置。
  4.  前記惰性走行制御内容は,前記第1の走行抵抗より前記第2の走行抵抗が小さい場合,第1の走行抵抗から算出される惰性走行開始タイミングよりも惰性走行開始タイミングを早くし,前記第1の走行抵抗より前記第2の走行抵抗が大きいと前記惰性走行開始タイミングを遅くすることを特徴とする,請求項1または2に記載の車両制御装置。
  5.  前記惰性走行制御内容は,第1の走行抵抗から作成した第1の惰性走行計画と,第2の走行抵抗から作成した第2の惰性走行計画をもとに第3の惰性走行計画を作成し,この計画に基づいて前記車両を制御する,請求項1または2に記載の車両制御装置。
  6.  前記第2の走行抵抗取得において,他車の算出した走行抵抗を利用することを特徴とする,請求項1から3のいずれか一項に記載の車両制御装置。
  7.  第1の走行抵抗と比較する第2の走行抵抗は,ある所定時間内の第2の走行抵抗の時系列において,時間的に近く,かつ惰性走行中であるほど大きな重みをつけて計算されることを特徴とする,請求項1から3のいずれか一項に記載の車両制御装置。
  8.  前記車両がハイブリッド車であるときは,惰性走行中,モータのみで走行しているとき,エンジンを駆動しているとき,の順で第2の走行抵抗算出時の重みをつけることを特徴とする,請求項1から4のいずれか一項に記載の車両制御装置。
  9.  前記車両がハイブリッド車であり,かつ所定時間または距離以上惰性走行を実施していないときは,第1または第3の走行計画に基づいて惰性走行を行なう前に,モータのみで駆動した走行を行なうことを特徴とする,請求項1から5のいずれか一項に記載の車両制御装置。
  10.  走行抵抗の補正が頻繁に行われる場所では,惰性走行時にエンジンをアイドル回転で維持することを特徴とする,請求項1から6のいずれか一項に記載の車両制御装置。
PCT/JP2017/018014 2016-05-27 2017-05-12 車両制御装置 WO2017204006A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780017827.5A CN109153384A (zh) 2016-05-27 2017-05-12 车辆控制装置
US16/096,933 US10875534B2 (en) 2016-05-27 2017-05-12 Vehicle control device
EP17802600.1A EP3466788A4 (en) 2016-05-27 2017-05-12 VEHICLE CONTROL DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-105758 2016-05-27
JP2016105758A JP6689136B2 (ja) 2016-05-27 2016-05-27 車両制御装置

Publications (1)

Publication Number Publication Date
WO2017204006A1 true WO2017204006A1 (ja) 2017-11-30

Family

ID=60411310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018014 WO2017204006A1 (ja) 2016-05-27 2017-05-12 車両制御装置

Country Status (5)

Country Link
US (1) US10875534B2 (ja)
EP (1) EP3466788A4 (ja)
JP (1) JP6689136B2 (ja)
CN (1) CN109153384A (ja)
WO (1) WO2017204006A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10451022B2 (en) 2016-11-02 2019-10-22 Paccar Inc Intermittent restart for automatic engine stop start system
US10690103B2 (en) 2017-09-26 2020-06-23 Paccar Inc Systems and methods for using an electric motor in predictive and automatic engine stop-start systems
US10487762B2 (en) * 2017-09-26 2019-11-26 Paccar Inc Systems and methods for predictive and automatic engine stop-start control
US10746255B2 (en) 2018-05-09 2020-08-18 Paccar Inc Systems and methods for reducing noise, vibration, and/or harshness during engine shutdown and restart
US10883566B2 (en) 2018-05-09 2021-01-05 Paccar Inc Systems and methods for reducing noise, vibration and/or harshness associated with cylinder deactivation in internal combustion engines
DE102018221264B4 (de) * 2018-12-07 2021-03-18 Volkswagen Aktiengesellschaft Verfahren und System zum Erfassen eines Windes in einem geografischen Bereich
DE102018221265B4 (de) * 2018-12-07 2023-02-09 Volkswagen Aktiengesellschaft Verfahren und System zum Erfassen eines auf ein Fahrzeug einwirkenden Windes
US11783701B2 (en) 2019-01-31 2023-10-10 Nec Corporation Communication control apparatus, communication system, communication control method, and non-transitory computer-readable medium
KR20200115835A (ko) * 2019-03-27 2020-10-08 현대자동차주식회사 차량의 변속 제어 장치 및 방법
JP7205440B2 (ja) * 2019-10-16 2023-01-17 株式会社デンソー 車両の制御装置
KR20210048619A (ko) * 2019-10-23 2021-05-04 현대자동차주식회사 자율주행 차량의 속도 프로파일 산출 시스템 및 방법
JP7375476B2 (ja) * 2019-11-01 2023-11-08 株式会社デンソー 車両の報知システム、プログラム
CN111038476B (zh) * 2019-11-27 2021-05-18 苏州智加科技有限公司 车辆行驶的控制方法、装置和自动驾驶设备
FI20205114A1 (fi) * 2020-02-04 2021-08-05 Roadcloud Oy Reittikohtaisen vierintävastustiedon määrittäminen ja käyttäminen ajoneuvojen ohjaamiseen
WO2023117031A1 (en) * 2021-12-20 2023-06-29 Volvo Truck Corporation Predictive heavy-duty vehicle motion management based on environment sensing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236714A (ja) * 2008-03-27 2009-10-15 Toyota Motor Corp 勾配情報演算装置、車両走行制御装置、ナビゲーションシステム
JP2012214181A (ja) * 2011-04-01 2012-11-08 Toyota Motor Corp 車両制御システム
JP2012219904A (ja) * 2011-04-07 2012-11-12 Toyota Motor Corp 車両制御システム
JP2014084905A (ja) * 2012-10-19 2014-05-12 Toyota Motor Corp 車両の走行制御装置
JP2014083895A (ja) * 2012-10-19 2014-05-12 Toyota Motor Corp 車両の走行制御装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3203976B2 (ja) 1994-09-05 2001-09-04 日産自動車株式会社 車両用駆動力制御装置
CN101663188B (zh) * 2007-04-20 2012-11-14 沃尔沃拉斯特瓦格纳公司 用于增加车辆自动自由滑行功能的开启持续时间的方法
JP2010183687A (ja) * 2009-02-04 2010-08-19 Hitachi Constr Mach Co Ltd 電動機駆動トラックの運転支援装置および方法
BR112014001906B1 (pt) * 2011-07-25 2021-04-06 Toyota Jidosha Kabushiki Kaisha Dispositivo de controle de veículo
CN102506890B (zh) * 2011-10-28 2013-11-06 广州汽车集团股份有限公司 一种车辆滑行距离的测量方法
DE102011119008A1 (de) 2011-11-11 2013-05-16 Volkswagen Aktiengesellschaft Verfahren zum Betreiben eines Fahrzeugs, Steuereinrichtung und Fahrzeug
WO2013094045A1 (ja) 2011-12-21 2013-06-27 パイオニア株式会社 消費エネルギー予測装置、消費エネルギー予測方法および消費エネルギー予測プログラム
JP5893953B2 (ja) * 2012-02-22 2016-03-23 日立建機株式会社 車両運行管理システム
KR101428184B1 (ko) * 2012-08-29 2014-08-07 현대자동차주식회사 전기자동차의 타행 주행 제어 방법
KR101713922B1 (ko) * 2012-10-02 2017-03-22 스카니아 씨브이 악티에볼라그 배기 후처리 시스템에서의 온도 조절
WO2014068727A1 (ja) * 2012-10-31 2014-05-08 トヨタ自動車株式会社 車両の走行制御装置
CN103847744B (zh) * 2012-12-05 2017-06-06 上海汽车集团股份有限公司 道路阻力判别方法及装置
US9771054B2 (en) * 2013-04-02 2017-09-26 Toyota Jidosha Kabushiki Kaisha Travel resistance arithmetic device
JP2015059639A (ja) * 2013-09-20 2015-03-30 三菱電機株式会社 車両用制御装置
JP2016182935A (ja) * 2015-03-27 2016-10-20 いすゞ自動車株式会社 走行制御装置および走行制御方法
US20170008525A1 (en) * 2015-07-09 2017-01-12 Sung-Suk KO Intelligent vehicle management system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236714A (ja) * 2008-03-27 2009-10-15 Toyota Motor Corp 勾配情報演算装置、車両走行制御装置、ナビゲーションシステム
JP2012214181A (ja) * 2011-04-01 2012-11-08 Toyota Motor Corp 車両制御システム
JP2012219904A (ja) * 2011-04-07 2012-11-12 Toyota Motor Corp 車両制御システム
JP2014084905A (ja) * 2012-10-19 2014-05-12 Toyota Motor Corp 車両の走行制御装置
JP2014083895A (ja) * 2012-10-19 2014-05-12 Toyota Motor Corp 車両の走行制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3466788A4 *

Also Published As

Publication number Publication date
EP3466788A1 (en) 2019-04-10
US10875534B2 (en) 2020-12-29
US20190100207A1 (en) 2019-04-04
EP3466788A4 (en) 2020-01-22
JP6689136B2 (ja) 2020-04-28
CN109153384A (zh) 2019-01-04
JP2017210171A (ja) 2017-11-30

Similar Documents

Publication Publication Date Title
WO2017204006A1 (ja) 車両制御装置
US10207699B2 (en) Hybrid vehicle propulsion systems and methods
US11524686B2 (en) Method of controlling a prime mover of a vehicle, apparatus for controlling a prime mover of a vehicle, and a vehicle comprising such an apparatus
US11279359B2 (en) Method and apparatus for assisting in the maintenance of a vehicle speed within a speed range, and a vehicle comprising such an apparatus
US9085301B2 (en) Vehicle control device
JP4858039B2 (ja) 車両制御装置
CN102834852B (zh) 车辆行驶辅助装置
JP3167987B2 (ja) カーブ進入制御装置
CN101952154B (zh) 驾驶支援装置、驾驶支援方法
JP4325626B2 (ja) ハイブリッド車両の運行制御システム
JP4710529B2 (ja) 走行制御装置
CN103918018A (zh) 驾驶支援装置
EP2219092B1 (en) Method for controlling the speed of a vehicle
JP2019188962A (ja) 車両の制御装置
JP2018520045A (ja) 車両速度の制御方法
JP2016182887A (ja) 走行制御装置、及び、走行制御方法
KR20170007362A (ko) 이동 경로를 따라 차량이 주행하는 중에 차량의 운행 효율을 개선하기 위한 시스템 및 방법
JP6337664B2 (ja) 車両の自動走行制御装置及び車両の自動走行制御方法
CN210126520U (zh) 车辆的控制装置
KR20190003096A (ko) 전기 모터를 구비하는 차량 및 그를 위한 코스팅 토크 제어 방법
JP5332993B2 (ja) 走行計画生成装置
CN113165654B (zh) 用于控制机动车辆动力系的方法
JP6232597B2 (ja) ハイブリッド車両の制御装置
JP7465212B2 (ja) 自動車両の車輪における最低トルクを計算するシステム、およびそのような計算システムを用いてアクセルから足を離す瞬間を決定するシステム
JP6079485B2 (ja) 車両制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017802600

Country of ref document: EP

Effective date: 20190102