WO2017203779A1 - ピストン及びその製造方法 - Google Patents

ピストン及びその製造方法 Download PDF

Info

Publication number
WO2017203779A1
WO2017203779A1 PCT/JP2017/007934 JP2017007934W WO2017203779A1 WO 2017203779 A1 WO2017203779 A1 WO 2017203779A1 JP 2017007934 W JP2017007934 W JP 2017007934W WO 2017203779 A1 WO2017203779 A1 WO 2017203779A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
iron
piston
boundary
crown
Prior art date
Application number
PCT/JP2017/007934
Other languages
English (en)
French (fr)
Inventor
隆将 森
貴行 下山田
良重 岩▲崎▼
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2018519100A priority Critical patent/JPWO2017203779A1/ja
Priority to CN201780031591.0A priority patent/CN109154250A/zh
Priority to US16/301,612 priority patent/US20190218996A1/en
Publication of WO2017203779A1 publication Critical patent/WO2017203779A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/16Pistons  having cooling means
    • F02F3/20Pistons  having cooling means the means being a fluid flowing through or along piston
    • F02F3/22Pistons  having cooling means the means being a fluid flowing through or along piston the fluid being liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/0015Multi-part pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/0015Multi-part pistons
    • F02F3/003Multi-part pistons the parts being connected by casting, brazing, welding or clamping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/0084Pistons  the pistons being constructed from specific materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/16Pistons  having cooling means
    • F02F3/20Pistons  having cooling means the means being a fluid flowing through or along piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/26Pistons  having combustion chamber in piston head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J1/00Pistons; Trunk pistons; Plungers
    • F16J1/01Pistons; Trunk pistons; Plungers characterised by the use of particular materials

Definitions

  • the present invention relates to a piston for an internal combustion engine and a method for manufacturing the same.
  • Some pistons of internal combustion engines are formed from different materials in terms of rigidity, weight reduction, heat resistance, and cooling loss (see, for example, Patent Documents 1 to 3).
  • heat resistance and rigidity are increased by using an iron-based material for the crown portion, cooling loss is reduced, and weight reduction is performed by using an aluminum-based material for the skirt portion.
  • the iron-based material and the aluminum-based material are bonded together by forging pressure bonding, friction stir welding, or lamination of the other material on the surface of one material.
  • an object of the present invention is to suppress the destruction of the interface where each material is bonded to each other in a piston including different materials. It is another object of the present invention to provide a method for manufacturing such a piston.
  • an aspect of the present invention is a piston (1) of an internal combustion engine, which includes a first portion (20, 20, 21) including a first material, and a second portion different from the first material.
  • a second portion (21, 25) containing a material, the first material and the second material, and having a predetermined thickness between the first portion and the second portion;
  • a boundary portion (22, 26, 27) that joins the second portion, and the proportion of the first material gradually decreases from the first portion side to the second portion side in the boundary portion.
  • the ratio of the second material gradually increases.
  • the boundary portion exists between the first portion and the second portion, and the ratio of the first material and the second material gradually changes in the boundary portion. Stress caused by the difference in thermal expansion coefficient hardly occurs. Thereby, it is hard to produce damage to a boundary part.
  • the ratio of the first material gradually decreases and the ratio of the second material increases gradually from the first portion side to the second portion side. May be.
  • the ratio of the first material may gradually decrease linearly and the ratio of the second material may gradually increase linearly from the first portion side to the second portion side.
  • the ratio change of the first material and the second material in the boundary portion becomes smooth, and stress due to the difference in the thermal expansion coefficient between the first material and the second material is hardly generated.
  • the ratio of the first material gradually decreases stepwise and the ratio of the second material gradually increases stepwise from the first portion side to the second portion side. May be.
  • the boundary portion can be easily formed.
  • the first material may be an iron-based material
  • the second material may be an aluminum-based material
  • the first material may be an aluminum material or an iron material
  • the second material may be a resin material
  • rigidity, heat resistance, and wear resistance can be improved by using an iron-based material or an aluminum-based material for the high temperature portion and the sliding portion of the piston.
  • weight reduction can be achieved by using a resin material for the low temperature part of the piston.
  • the first portion is provided on the combustion chamber side in the axial direction of the piston, and the second portion is a side opposite to the combustion chamber side with respect to the first portion in the axial direction. It is good to be provided.
  • the high temperature portion of the piston is made of a material having high rigidity and heat resistance
  • the low temperature portion of the piston is made of a light material
  • the first portion may be provided outside the piston in the radial direction
  • the second portion may be provided inside the first portion in the radial direction
  • the portion of the piston that is in sliding contact with the wall surface of the cylinder is made of a material having high wear resistance
  • the portion of the piston that is not in sliding contact with the wall surface of the cylinder is made of a lightweight material.
  • a crown portion (2) that defines a lower portion of the combustion chamber, a pair of pin boss portions (3) that protrude from the crown portion to a side opposite to the combustion chamber and receive a piston pin
  • a piston (1) of an internal combustion engine that protrudes from the crown portion to the side opposite to the combustion chamber and has a pair of skirt portions (4) connected to the pin boss portions, and includes iron-based material
  • a system part (20) an aluminum system part (21) including an aluminum system material, the iron system material and the aluminum system material, and having a predetermined thickness between the iron system part and the aluminum system part
  • An iron-aluminum boundary portion (22) that connects the iron-based portion and the aluminum-based portion, and the iron-aluminum boundary portion extends from the iron-based portion side to the aluminum-based portion side, Of the iron-based material
  • the proportion of the aluminum-based material gradually increases, the iron-based part constitutes at least a part of the crown part, and the aluminum-based part constitutes at least a part of the skirt part.
  • the crown portion that is relatively high in the piston is made of the iron-based material, rigidity, heat resistance, and wear resistance are improved, and cooling loss is reduced.
  • the skirt part which becomes comparatively low temperature in a piston is comprised with an aluminum-type material, weight reduction is attained.
  • the iron-based part may constitute a part that defines the combustion chamber of the crown part.
  • the highest temperature portion of the piston is made of the iron-based material, rigidity, heat resistance, and wear resistance are improved, and cooling loss is reduced. Further, the height of the top land of the piston can be reduced. Thereby, the surface area of the outer peripheral surface of the top land of the piston is reduced, and the surface area of the piston on the combustion chamber side is reduced. When the surface area is reduced, the heat transfer from the combustion gas to the piston is suppressed, and the cooling loss is further reduced.
  • the first compression ring groove (11), the second compression ring groove (12), and the oil ring groove (13) that extend in the circumferential direction and form an annular shape are formed in the outer peripheral portion of the crown portion.
  • the iron-based portion defines a portion defining the first compression ring groove
  • the aluminum-based portion defines the second compression ring groove and the oil ring groove.
  • the iron-aluminum boundary portion may extend between the first compression ring groove and the second compression ring groove.
  • the wear resistance of the portion defining the first compression ring groove is improved.
  • the aluminum-based part may constitute the entire region of the pin boss part.
  • the weight of the piston can be reduced.
  • the iron-based part may constitute the entire region of the pin boss part.
  • the diameter of the pin hole into which the piston pin and the piston pin are inserted can be reduced.
  • the diameter of the pin hole it is possible to reduce the compression height of the piston. If the compression height is reduced, the weight of the piston can be reduced. Further, the side force of the piston is reduced, and the frictional force generated between the skirt portion and the cylinder inner wall is reduced.
  • the iron-based portion may constitute a portion on the crown portion side of the pin boss portion
  • the aluminum-based portion may constitute a portion on the side opposite to the crown portion side of the pin boss portion.
  • the pin boss part has a pin hole (16) into which the piston pin is inserted
  • the iron-based part includes a pin hole edge part (3A) that defines the pin hole, and It is good to comprise the part by the side of the said crown part of a pin boss
  • the pin boss portion has a pin hole (16) into which the piston pin is inserted, and the iron-based portion constitutes a pin hole edge portion (3A) that defines the pin hole.
  • the aluminum-based part may constitute the other part excluding the pin hole edge part of the pin boss part.
  • the pin boss portion has a pin hole (16) into which the piston pin is inserted, and the iron-based portion includes a pin hole edge portion (3A) that defines the pin hole and the pin boss portion at the pin boss portion. It is preferable that a connecting portion extending from the hole edge portion to the crown portion is formed, and the aluminum-based portion is configured to constitute other portions excluding the pin hole edge portion and the connecting portion of the pin boss portion.
  • the pin hole can be reduced, and the compression height can be reduced.
  • the aluminum part constitutes a part having a small influence on the rigidity in the pin boss part, the weight can be reduced.
  • the iron-based portion may constitute an outer peripheral portion of the crown portion
  • the aluminum-based portion may constitute a central portion of the crown portion, the pin boss portion, and the skirt portion.
  • the wear resistance is improved by forming the portion requiring wear resistance with the iron-based material, and the weight can be reduced by forming the other portion with the aluminum-based material.
  • a cooling channel (14) extending in a circumferential direction is formed on an outer peripheral portion of the crown portion, and the aluminum-based portion is burned at the channel edge (2E) that defines the cooling channel.
  • a portion on the side opposite to the chamber side may be configured.
  • the portion having relatively low rigidity required in the crown portion is constituted by the aluminum-based portion, the weight of the piston can be reduced.
  • the oil jetted from the oil jet toward the back side of the piston is likely to come into contact with the aluminum-based portion, heat conduction from the piston to the oil is promoted, and cooling of the piston is promoted.
  • the resin portion (25) including a resin material, the iron-based material and the resin material are provided with a predetermined thickness between the iron-based portion and the resin portion,
  • An iron-resin boundary part (26) for joining the iron-based part and the resin part, and a cooling channel extending in the circumferential direction is formed in the outer peripheral part of the crown part, It is preferable that a channel edge portion that defines a cooling channel is formed, and the iron-based portion is a portion other than the channel edge portion in the outer peripheral portion of the crown portion.
  • the portion having relatively low rigidity required in the crown portion is constituted by the resin portion, the weight of the piston can be reduced.
  • the resin part (25) including a resin material, the aluminum material and the resin material, and provided with a predetermined thickness between the aluminum part and the resin part, And an aluminum-resin boundary portion (27) for joining the aluminum portion and the resin portion, the aluminum portion constituting an outer peripheral side portion of the skirt portion, and the resin portion being the skirt portion. It is good to comprise the inner peripheral side part.
  • the portion having relatively low rigidity required in the skirt portion is constituted by the resin portion, the weight of the piston can be reduced.
  • a boundary portion (22, 26) that includes one material and the second material, is provided with a predetermined thickness between the first portion and the second portion, and connects the first portion and the second portion; 27), and the boundary part is a piston manufacturing method in which the ratio of the first material gradually decreases and the ratio of the second material gradually increases from the first part side to the second part side.
  • the boundary portion is formed by stacking layers formed by melting the first material and the second material at a predetermined ratio and changing the ratio between the first material and the second material. It is formed by the additive manufacturing method.
  • the first portion is molded as a single body by melt molding or machining
  • the boundary portion is formed on the surface of the first portion
  • the second portion is the surface of the boundary portion. It may be formed by an additive manufacturing method in which layers formed by melting the second material are laminated.
  • the first portion is formed as a single unit by melt molding or machining
  • the boundary portion is formed on the surface of the first portion
  • the second portion is formed as a single unit by melt molding or machining. After that, it may be coupled to the boundary portion.
  • the first portion is formed as a single body by melt molding or machining
  • the second portion is formed as a single body by melt molding or machining
  • the boundary portion is formed as a single body, and then the first portion is formed. It may be coupled to one part and the second part.
  • the manufacturing time is shortened.
  • the piston including different materials it is possible to suppress the destruction of the interface where the materials are bonded to each other. Moreover, the manufacturing method of such a piston can be provided.
  • the piston 1 of the internal combustion engine according to the first embodiment protrudes downward from a crown portion 2 (top land portion) that defines a lower portion of the combustion chamber and a lower surface 2D of the crown portion 2, And a pair of skirt portions 4 projecting downward from the outer peripheral edge of the lower surface 2D of the crown portion 2 and connected to the pin boss portions 3 on both sides.
  • the crown portion 2 is formed in a disc shape, and the upper surface 2A defines a combustion chamber in cooperation with the wall portion of the cylinder of the internal combustion engine. Specifically, the upper surface 2A of the crown portion 2 defines the lower portion of the combustion chamber. A cavity 2B that is recessed downward is formed at the center of the upper surface 2A of the crown portion 2. A first compression ring groove 11, a second compression ring groove 12, and an oil ring groove 13 that are recessed inward in the radial direction and extend in the circumferential direction to form an annular shape are formed on the outer peripheral surface 2C of the crown portion 2 on the upper side ( It is formed in order from the combustion chamber side). A first compression ring is attached to the first compression ring groove 11, a second compression ring is attached to the second compression ring groove 12, and an oil ring is attached to the oil ring groove 13.
  • the cooling channel 14 is disposed radially outward of the cavity 2 ⁇ / b> B and radially inward of the first compression ring groove 11, the second compression ring groove 12, and the oil ring groove 13.
  • a passage 14 ⁇ / b> A that extends downward from the lower portion of the cooling channel 14 and opens to the lower surface 2 ⁇ / b> D of the crown portion 2 is formed in the lower portion of the crown portion 2.
  • the pair of pin bosses 3 project downward from the lower surface 2D of the crown 2 respectively.
  • the pin boss portions 3 face each other at a distance.
  • Each pin boss portion 3 is formed with a pin hole 16 which is a through hole having a circular cross section and is coaxial with each other.
  • the pin hole edge 3 ⁇ / b> A that defines the pin hole 16 protrudes in a cylindrical shape in the axial direction of the pin hole 16. That is, in the pin boss portion 3, the pin hole edge portion 3 ⁇ / b> A is formed to be thicker than other portions.
  • a piston pin is inserted into the pin hole 16, and the piston pin rotatably supports the small end portion of the connecting rod.
  • the pair of skirt portions 4 protrude downward from the outer peripheral edge of the lower surface 2D of the crown portion 2, extend in the circumferential direction along the outer peripheral edge of the crown portion 2, and both ends in the circumferential direction are connected to the pin boss portions 3, respectively.
  • the outer surface 4 ⁇ / b> A of the intermediate portion in the circumferential direction of each skirt portion 4 is formed on a circumferential surface centered on the axis of the piston 1.
  • the piston 1 includes an iron-based portion 20 (a thin dot portion in FIG. 1 and the like) including an iron-based material, an aluminum-based portion 21 (a white portion in FIG. 1 and the like) including an aluminum-based material, an iron-based material, and an aluminum-based material. And an iron-aluminum boundary portion 22 that is provided (boundary) between the iron-based portion 20 and the aluminum-based portion 21 and connects the iron-based portion 20 and the aluminum-based portion 21 (the dark dot portion in FIG. 1 and the like) And have.
  • the iron-based material is a material containing an iron element as a main component, and is an iron alloy such as steel or cast iron.
  • the aluminum-based material is a material containing an aluminum element as a main component, and is an aluminum alloy containing at least one of copper, silicon, magnesium, and nickel and aluminum.
  • the aluminum-based material may be, for example, an aluminum-silicon alloy such as Lo-Ex.
  • the piston 1 has a plurality of portions made of different materials.
  • the proportion of the iron-based material gradually decreases and the proportion of the aluminum-based material gradually increases from the iron-based portion 20 side to the aluminum-based portion 21 side.
  • the ratio of the iron-based material gradually decreases and the ratio of the aluminum-based material continuously increases from the iron-based portion 20 side to the aluminum-based portion 21 side. May be.
  • the ratio of the iron-based material may gradually decrease linearly and the ratio of the aluminum-based material gradually increases linearly from the iron-based portion 20 side to the aluminum-based portion 21 side.
  • the iron-aluminum boundary portion 22 gradually decreases in the ratio of the iron-based material in a curved line and gradually increases in the ratio of the aluminum-based material from the iron-based portion 20 side to the aluminum-based portion 21 side. May be. Further, as shown in FIG. 3, in the iron-aluminum boundary portion 22, the ratio of the iron-based material gradually decreases in a stepped manner from the iron-based portion 20 side to the aluminum-based portion 21 side, and the ratio of the aluminum-based material decreases in a stepped manner. You may increase gradually.
  • the thickness of the iron-aluminum boundary portion 22 is not limited to this, but may be, for example, not less than 0.5 mm and not more than 30 mm.
  • the iron-based portion 20 constitutes the combustion chamber side portion (the upper half portion of the outer peripheral portion) of the central portion and the outer peripheral portion of the crown portion 2, and the aluminum-based portion 21 is the outer peripheral portion of the crown portion 2.
  • a portion opposite to the combustion chamber side (the lower half of the outer peripheral portion), the entire region of the pin boss portion 3, and the entire region of the skirt portion 4 are formed.
  • the iron-aluminum boundary portion 22 is provided at the boundary between the iron-based portion 20 and the aluminum-based portion 21 on the outer peripheral portion of the crown portion 2.
  • the iron-based portion 20 constitutes a portion that defines the first compression ring groove 11 at the outer peripheral portion of the crown portion 2, and the aluminum-based portion 21 includes the second compression ring groove 12 and the oil ring groove 13 at the outer peripheral portion of the crown portion 2. Is defined. That is, in the present embodiment, the iron-based portion 20 is provided on the combustion chamber side in the axial direction of the piston 1, and the aluminum-based portion 21 is provided on the side opposite to the combustion chamber side with respect to the iron-based portion 20 in the axial direction. It has been.
  • the iron-aluminum boundary portion 22 extends from the outer peripheral surface 2C of the crown portion 2 through the portion between the first compression ring groove 11 and the second compression ring groove 12 to the outer peripheral side of the cooling channel 14, and The lower portion of the channel 14 extends to the lower surface 2D of the crown portion 2. Further, the iron-aluminum boundary portion 22 extends along the boundary between the crown portion 2 and the pin boss portion 3.
  • the portion of the piston 1 formed by the iron-based portion 20 and the aluminum-based portion 21 is different from that of the piston 1 according to the first embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the iron-based portion 20 constitutes the combustion chamber side portion of the central portion and the outer peripheral portion of the crown portion 2 and the entire region of the pin boss portion 3, and the aluminum-based portion 21. Constitutes a portion of the outer peripheral portion of the crown portion 2 on the side opposite to the combustion chamber side and the entire region of the skirt portion 4.
  • the iron-based portion 20 constitutes a portion that defines the first compression ring groove 11 at the outer peripheral portion of the crown portion 2, and the aluminum-based portion 21 includes the second compression ring groove 12 and the oil ring groove 13 at the outer peripheral portion of the crown portion 2. Is defined.
  • the iron-aluminum boundary portion 22 is provided at the boundary between the iron-based portion 20 and the aluminum-based portion 21, and is between the first compression ring groove 11 and the second compression ring groove 12 from the outer peripheral surface 2 ⁇ / b> C of the crown portion 2. It passes through the portion and extends to the outer peripheral side of the cooling channel 14, and extends from the lower portion of the cooling channel 14 to the lower surface 2 ⁇ / b> D of the crown portion 2. Further, the iron-aluminum boundary portion 22 extends along the boundary between the skirt portion 4 and the pin boss portion 3.
  • the iron-based portion 20 includes a combustion chamber side portion of the center portion and the outer peripheral portion of the crown portion 2, and a combustion chamber side portion of the pin boss portion 3 (the upper half of the pin boss portion 3. Part of the outer periphery of the crown part 2 on the side opposite to the combustion chamber side, the entire area of the skirt part 4, and the side opposite to the combustion chamber side of the pin boss part 3 A portion (lower half of the pin boss 3) is formed.
  • the iron-based portion 20 constitutes a portion that defines the first compression ring groove 11 at the outer peripheral portion of the crown portion 2, and the aluminum-based portion 21 includes the second compression ring groove 12 and the oil ring groove 13 at the outer peripheral portion of the crown portion 2. Is defined.
  • the iron-aluminum boundary portion 22 is provided at the boundary between the iron-based portion 20 and the aluminum-based portion 21, and is between the first compression ring groove 11 and the second compression ring groove 12 from the outer peripheral surface 2 ⁇ / b> C of the crown portion 2. It passes through the portion and extends to the outer peripheral side of the cooling channel 14, and extends from the lower portion of the cooling channel 14 to the lower surface 2 ⁇ / b> D of the crown portion 2. Further, the iron-aluminum boundary portion 22 extends along the boundary between the upper half portion of the skirt portion 4 and the upper half portion of the pin boss portion 3, and along an imaginary line dividing the pin boss portion 3 into two vertically from the lower end thereof. The pin hole 16 extends.
  • the iron-based portion 20 includes a combustion chamber side portion of the center portion and the outer peripheral portion of the crown portion 2, a combustion chamber side portion of the pin boss portion 3, and a pin hole edge portion 3 ⁇ / b> A.
  • hub part 3 is comprised.
  • a portion excluding the edge 3A is formed.
  • the iron-based portion 20 constitutes a portion that defines the first compression ring groove 11 at the outer peripheral portion of the crown portion 2, and the aluminum-based portion 21 includes the second compression ring groove 12 and the oil ring groove 13 at the outer peripheral portion of the crown portion 2. Is defined.
  • the iron-aluminum boundary portion 22 is provided at the boundary between the iron-based portion 20 and the aluminum-based portion 21, and is between the first compression ring groove 11 and the second compression ring groove 12 from the outer peripheral surface 2 ⁇ / b> C of the crown portion 2. It passes through the portion and extends to the outer peripheral side of the cooling channel 14, and extends from the lower portion of the cooling channel 14 to the lower surface 2 ⁇ / b> D of the crown portion 2.
  • the iron-aluminum boundary portion 22 extends along the boundary between the upper half portion of the skirt portion 4 and the upper half portion of the pin boss portion 3, and at the outer peripheral edge of the lower half portion of the pin hole edge portion 3A in the pin boss portion 3. Extending along.
  • the iron-based portion 20 constitutes the central portion and outer peripheral portion of the crown portion 2 and the combustion chamber side portion of the crown portion 2, and the pin hole edge portion 3 ⁇ / b> A of the pin boss portion 3.
  • the system portion 21 constitutes a portion excluding the portion of the outer peripheral portion of the crown portion 2 opposite to the combustion chamber side, the entire region of the skirt portion 4, and the pin hole edge portion 3 ⁇ / b> A of the pin boss portion 3.
  • the iron-based portion 20 constitutes a portion that defines the first compression ring groove 11 at the outer peripheral portion of the crown portion 2, and the aluminum-based portion 21 includes the second compression ring groove 12 and the oil ring groove 13 at the outer peripheral portion of the crown portion 2. Is defined.
  • the iron-aluminum boundary portion 22 is provided at the boundary between the iron-based portion 20 and the aluminum-based portion 21, and is between the first compression ring groove 11 and the second compression ring groove 12 from the outer peripheral surface 2 ⁇ / b> C of the crown portion 2. It passes through the portion and extends to the outer peripheral side of the cooling channel 14, and extends from the lower portion of the cooling channel 14 to the lower surface 2 ⁇ / b> D of the crown portion 2. Further, the iron-aluminum boundary portion 22 extends along the outer peripheral edge of the pin hole edge portion 3A in the pin boss portion 3.
  • the iron-based portion 20 includes the center portion and the outer peripheral portion of the crown portion 2 on the combustion chamber side portion, the pin hole edge portion 3 ⁇ / b> A of the pin boss portion 3, and the pin boss portion 3.
  • a connecting portion 3B extending from the pin hole edge portion 3A to the crown portion 2, and a portion where the aluminum-based portion 21 is opposite to the combustion chamber side of the outer peripheral portion of the crown portion 2, and the entire area of the skirt portion 4,
  • a portion excluding the pin hole edge portion 3A and the connection portion 3B of the pin boss portion 3 is configured.
  • the iron-based portion 20 constitutes a portion that defines the first compression ring groove 11 at the outer peripheral portion of the crown portion 2, and the aluminum-based portion 21 includes the second compression ring groove 12 and the oil ring groove 13 at the outer peripheral portion of the crown portion 2. Is defined.
  • the connecting portion 3B extends along the boundary with the skirt portion 4 in the pin boss portion 3. In other embodiments, the position and the number of the connecting portions 3B may be arbitrarily set. For example, the connecting portions 3B may extend linearly up and down the center of the pin boss portion 3.
  • the iron-aluminum boundary portion 22 is provided at the boundary between the iron-based portion 20 and the aluminum-based portion 21, and is between the first compression ring groove 11 and the second compression ring groove 12 from the outer peripheral surface 2 ⁇ / b> C of the crown portion 2. It passes through the portion and extends to the outer peripheral side of the cooling channel 14, and extends from the lower portion of the cooling channel 14 to the lower surface 2 ⁇ / b> D of the crown portion 2. Further, the iron-aluminum boundary portion 22 extends along the outer peripheral edge of the pin hole edge portion 3A and the both side edges of the connection portion 3B in the pin boss portion 3.
  • the iron-based portion 20 constitutes the outer peripheral portion of the crown portion 2
  • the aluminum-based portion 21 is the central portion of the crown portion 2
  • the entire area of the skirt portion 4 The entire region of the pin boss part 3 is configured.
  • the iron-based portion 20 is provided outside the piston 1 in the radial direction
  • the aluminum-based portion 21 is provided inside the iron-based portion 20 in the radial direction.
  • the iron-aluminum boundary portion 22 is provided at the boundary between the iron-based portion 20 and the aluminum-based portion 21, extends from the upper surface 2A to the lower surface 2D in the crown portion 2, and extends in an annular shape around the axis of the piston 1. . Further, the iron-aluminum boundary portion 22 extends along the boundary between the crown portion 2 and the skirt portion 4.
  • the iron-based portion 20 constitutes a combustion chamber side portion in the outer peripheral portion of the crown portion 2, and the aluminum-based portion 21 is a combustion chamber side portion in the outer peripheral portion of the crown portion 2. And the central portion, the entire region of the skirt portion 4, and the entire region of the pin boss portion 3.
  • the iron-based portion 20 constitutes a portion that defines the first compression ring groove 11 at the outer peripheral portion of the crown portion 2, and the aluminum-based portion 21 includes the second compression ring groove 12 and the oil ring groove 13 at the outer peripheral portion of the crown portion 2. Is defined.
  • the iron-aluminum boundary portion 22 is provided at the boundary between the iron-based portion 20 and the aluminum-based portion 21, and is provided at the boundary between the iron-based portion 20 and the aluminum-based portion 21. From the outer peripheral surface 2C of the crown portion 2, It passes through a portion between the first compression ring groove 11 and the second compression ring groove 12 and extends to the outer peripheral side of the cooling channel 14, and extends from the upper part of the cooling channel 14 to the upper surface 2 ⁇ / b> A of the crown portion 2.
  • the iron-based portion 20 includes a central portion of the crown portion 2, a portion excluding a portion defining a lower portion of the cooling channel 14 in the outer peripheral portion, an entire region of the skirt portion 4, and The entire region of the pin boss portion 3 is formed, and the aluminum-based portion 21 forms a portion that defines the lower portion of the cooling channel 14 in the outer peripheral portion of the crown portion 2.
  • the iron-aluminum boundary portion 22 is provided at the boundary between the iron-based portion 20 and the aluminum-based portion 21, and the side surface of the aluminum-based portion 21 at the lower portion of the outer peripheral portion of the crown portion 2 extends from the wall surface constituting the lower portion of the cooling channel 14.
  • the crown portion 2 extends to the lower surface 2D portion.
  • the piston 1 includes, in addition to the iron-based portion 20 and the aluminum-based portion 21, a resin portion 25 including a resin material, an iron-based material, and a resin material.
  • An iron-resin boundary portion 26 provided between the portion 20 and the resin portion 25 with a predetermined thickness and connecting the iron-based portion 20 and the resin portion 25; an aluminum-based material and a resin material;
  • An aluminum-resin boundary portion 27 is provided between the resin portion 25 and the resin portion 25 with a predetermined thickness and joins the aluminum-based portion 21 and the resin portion 25 together.
  • the resin material is a heat-resistant resin material, and may be, for example, a polyimide resin, a polyamideimide resin, an epoxy resin, a nylon-6 resin, a nylon-6,6 resin, or the like.
  • the iron-resin boundary portion 26 is provided with a predetermined thickness between the iron-based portion 20 and the resin portion 25, and the ratio of the iron-based material gradually decreases from the iron-based portion 20 side to the resin portion 25 side.
  • the proportion of material increases gradually.
  • the change in the ratio of the iron-based material and the resin material at the iron-resin boundary portion 26 may be continuous or stepped.
  • the aluminum-resin boundary portion 27 is provided with a predetermined thickness between the aluminum-based portion 21 and the resin portion 25, and the ratio of the aluminum-based material gradually decreases from the aluminum-based portion 21 side to the resin portion 25 side.
  • the proportion of material increases gradually.
  • the change in the ratio of the aluminum-based material and the resin material at the aluminum-resin boundary portion 27 may be continuous or stepped.
  • the thickness of the iron-resin boundary portion 26 and the thickness of the aluminum-resin boundary portion 27 are not limited to this, but may be, for example, not less than 0.5 mm and not more than 30 mm
  • the iron-based portion 20 constitutes the central portion of the crown portion 2 and the combustion chamber side portion of the outer peripheral portion of the crown portion 2 excluding the channel edge portion 2E that defines the cooling channel 14.
  • the aluminum-based portion 21 constitutes a portion of the outer peripheral portion of the crown portion 2 excluding the channel edge portion 2E that is opposite to the combustion chamber side, the entire region of the pin boss portion 3, and the outer peripheral side portion of the skirt portion 4.
  • the resin portion 25 constitutes the channel edge portion 2E and the inner peripheral side portion of the skirt portion 4.
  • the iron-based portion 20 constitutes a portion that defines the first compression ring groove 11 at the outer peripheral portion of the crown portion 2, and the aluminum-based portion 21 includes the second compression ring groove 12 and the oil ring groove 13 at the outer peripheral portion of the crown portion 2. Is defined.
  • the channel edge portion 2E has a predetermined width from the wall surface of the cooling channel 14 to the outside in the radial direction of the cooling channel 14, and has a cylindrical shape.
  • the iron-resin boundary portion 26 is provided at the boundary between the iron-based portion 20 and the resin portion 25 and extends along the upper portion of the outer peripheral edge of the channel edge portion 2E.
  • the aluminum-resin boundary portion 27 is provided at the boundary between the aluminum-based portion 21 and the resin portion 25, and extends along the lower portion of the outer peripheral edge of the channel edge 2E. Further, the aluminum-resin boundary portion 27 extends vertically in the skirt portion 4 so as to divide the skirt portion 4 in the thickness direction.
  • the piston 1 according to the first to tenth embodiments is manufactured by the following manufacturing method.
  • the iron-aluminum boundary portion 22, the iron-resin boundary portion 26, and the aluminum-resin boundary portion 27 are formed using a known additive manufacturing method.
  • members are formed by stacking layers. Therefore, by changing the composition of each layer, the composition of the material can be changed in the stacking direction.
  • the additive manufacturing method may be a powder lamination method such as a selective laser melting method (Selective Laser Melting: SLM) or a selective laser sintering method (SLS).
  • FIG. 13 is an example of a 3D printer 30 that performs molding by the additive manufacturing method.
  • the 3D printer 30 includes a case 31 that opens upward, a stage 32 that supports a molded product in the case 31, a nozzle 33 that supplies a powder material, and a powder material that is supplied. And a laser device 34 for melting by irradiation with laser light.
  • the stage 32 is rotatable in the vertical direction and a predetermined axial direction.
  • the stage 32 has a plurality of work areas partitioned in the circumferential direction, and can change the work areas by rotating.
  • the shaped object can be formed for each work area.
  • the stage 32 can maintain the position where a material is laminated
  • the nozzle 33 has a first nozzle that supplies powder of iron-based material, a second nozzle that supplies powder of aluminum-based material, and a third nozzle that supplies powder of resin material.
  • Each of the first to third nozzles has a throttle valve, and the amount of material to be supplied can be adjusted. By changing the amount of each material supplied from the first to third nozzles, the ratio (composition ratio) of the material supplied to an arbitrary position can be changed.
  • the nozzle 33 and the laser device 34 are supported by a moving device 35 including, for example, a guide rail and a motor, and can move forward and backward and left and right with respect to the stage 32.
  • the 3D printer 30 controls the nozzle 33 based on the three-dimensional data relating to the shape of the iron-aluminum boundary portion 22, the iron-resin boundary portion 26, the aluminum-resin boundary portion 27, and the composition ratio of the material of each part, A material having a specific composition ratio is supplied to the position, and the laser device 34 is controlled to selectively irradiate the material at the specific position with a laser beam to melt the material at that portion, thereby laminating the material layer.
  • Each of the iron-based portion 20, the aluminum-based portion 21, and the resin portion 25 may be formed as a single body by melt molding or machining, or may be formed by the additive manufacturing method described above. Melt molding includes casting and injection molding, and machining includes cutting and forging.
  • one of the iron-based portion 20 and the aluminum-based portion 21 is first melt-molded or machined. Form as a single unit.
  • the iron-aluminum boundary portion 22 and the other of the iron-based portion 20 and the aluminum-based portion 21 are formed on one surface of the formed iron-based portion 20 and the aluminum-based portion 21 by an additive manufacturing method.
  • one of the iron-based portion 20 and the aluminum-based portion 21 is first melt-molded or machined. Form as a single unit.
  • an iron-aluminum boundary portion 22 is formed on one surface of the formed iron-based portion 20 and aluminum-based portion 21 by the additive manufacturing method.
  • the other of the iron-based portion 20 and the aluminum-based portion 21 is formed as a single body by melt molding or machining, and is bonded to the iron-aluminum boundary portion 22 by a known bonding method such as welding, friction stir welding, or pressure bonding by forging.
  • the iron-based portion 20 and the aluminum-based portion 21 are respectively melt-molded or machined.
  • the iron-aluminum boundary portion 22 is formed by an additive manufacturing method.
  • the iron-aluminum boundary portion 22 is bonded to the iron-based portion 20 and the aluminum-based portion 21 by a known bonding method such as welding, friction stir welding, or pressure bonding by forging.
  • the iron-based portion 20, the aluminum-based portion 21, and the iron-aluminum boundary portion are formed by additive manufacturing. 22 is formed integrally.
  • the additive manufacturing method is used.
  • the iron-based portion 20, the aluminum-based portion 21, the resin portion 25, the iron-aluminum boundary portion 22, the iron-resin boundary portion 26, and the aluminum-resin boundary portion 27 may be integrally formed.
  • a part of the iron-based portion 20, the aluminum-based portion 21, and the resin portion 25 may be formed in advance as a single body, and other portions may be stacked on the surface by an additive manufacturing method.
  • the effect of the piston 1 according to the above embodiment will be described.
  • the composition ratios of the materials of the iron-resin boundary portion 26 provided between the iron-based portion 20 and the resin portion 25 and the aluminum-resin boundary portion 27 provided between the aluminum-based portion 21 and the resin portion 25 are also similar. Mitigates the change and suppresses damage caused by differences in thermal expansion coefficients.
  • the heat resistance and rigidity of the crown portion 2 are improved as compared with the case where the crown portion 2 is configured by the aluminum-based portion 21. Moreover, the cooling loss is reduced by improving the heat storage performance of the crown portion 2.
  • the portion defining the first compression ring groove 11 of the crown portion 2 is configured by the iron-based portion 20, so that the wear resistance is improved as compared with the case where the crown portion 2 is configured by the aluminum-based portion 21. Wear due to the compression ring is suppressed. Since the portion that defines the second compression ring groove 12 and the oil ring groove 13 of the crown portion 2 has lower requirements for wear resistance and heat resistance than the portion that defines the first compression ring groove 11, this portion is made of aluminum. By constituting the portion 21, the weight of the piston 1 can be reduced.
  • the portion defining the first compression ring groove 11 of the crown portion 2 is constituted by the iron-based portion 20, whereby the top land of the piston 1 (the portion from the upper surface 2 ⁇ / b> A of the piston 1 to the first compression ring groove 11). Can be reduced in height. Thereby, the surface area of the outer peripheral surface of the top land of the piston 1 is reduced, and the surface area of the piston 1 on the combustion chamber side is reduced. When the surface area is reduced, the heat transfer from the combustion gas to the piston 1 is suppressed, and the cooling loss is further reduced. Further, since the volume of the gap formed between the outer peripheral surface of the top land and the cylinder wall surface is reduced, the amount of gas staying in this portion is reduced and the squish is strengthened. Thereby, the gas flow in the combustion chamber is promoted, and the combustion efficiency is improved.
  • the portion defining the side opposite to the combustion chamber side of the cooling channel 14 suffices with relatively low rigidity and heat resistance. Can be planned.
  • the aluminum-based portion 21 may be replaced with the resin portion 25.
  • the weight can be reduced as compared with the case where the skirt portion 4 is configured by the iron-based portion 20. Further, by configuring the outer peripheral portion of the skirt portion 4 with the aluminum-based portion 21 and configuring the inner peripheral portion of the skirt portion 4 with the resin portion 25, further weight reduction can be achieved.
  • the pin boss part 3 When the pin boss part 3 is constituted by the iron part 20, the rigidity is improved as compared with the case where the pin boss part 3 is constituted by the aluminum part 21. Therefore, the diameters of the piston pin and the pin hole 16 can be reduced. Thereby, the compression height of the piston 1 is reduced, and the weight can be reduced. Further, by reducing the compression height, the side force generated in the piston 1 is reduced, and the friction between the skirt portion 4 and the cylinder wall surface is reduced.
  • the pin boss part 3 can improve rigidity by configuring the pin hole edge part 3 ⁇ / b> A and the upper part with the iron-based part 20. For this reason, the lower part of the pin boss part 3 is constituted by the aluminum part 21, thereby reducing the weight.
  • the pin hole edge portion 3A and the crown portion 2 are connected by the iron-based portion 20, the rigidity is efficiently improved. Therefore, the pin hole edge portion 3A and the crown portion 2 are connected by the connection portion 3B constituted by the iron-based portion 20. May be.
  • the thickness of the iron-aluminum boundary portion 22 is preferably thicker from the viewpoint of reducing the rate of change in the amount of thermal expansion from the iron-based portion 20 side to the aluminum-based portion 21 side.
  • the thickness of the iron-aluminum boundary portion 22 is, for example, 0.5 mm or more, the rate of change in composition per unit length from the iron-based portion 20 side to the aluminum-based portion 21 side becomes sufficiently small, and thermal expansion occurs.
  • the difference in the amount of expansion at the time can be suitably reduced. This makes it difficult for stress to concentrate on the iron-aluminum boundary portion 22 in a high-temperature environment, and damage is preferably prevented.
  • the thickness of the iron-aluminum boundary portion 22 is preferably smaller from the viewpoint of manufacturing time and manufacturing cost. Since the iron-aluminum boundary portion 22 needs to be formed by the layered manufacturing method described above, the manufacturing time and the manufacturing cost increase as the thickness increases. For this reason, the thickness of the iron-aluminum boundary portion 22 is preferably 0.5 mm or more and 30 mm or less from the viewpoint of reducing the rate of change in the amount of thermal expansion, the manufacturing time, and the manufacturing cost.
  • the piston has a structure having at least two of the iron-based portion 20, the aluminum-based portion 21, and the resin portion 25.
  • the number of materials used is four or more. Also good.
  • a boundary portion corresponding to each material may be formed according to the number of portions made of each material.
  • the piston according to the present invention can be applied to various known internal combustion engines such as a gasoline engine, a diesel engine, and an HCCI engine.
  • Piston 2 Crown part 2E: Channel edge part 3: Pin boss part 3A: Pin hole edge part 3B: Connection part 4: Skirt part 11: 1st compression ring groove 12: 2nd compression ring groove 13: Oil ring groove 14 : Cooling channel 16: Pin hole 20: Iron system part 21: Aluminum system part 22: Aluminum boundary part 25: Resin part 26: Resin boundary part 27: Resin boundary part 30: 3D printer

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

【課題】 異なる材料を含むピストンにおいて、各材料が互いに結合された界面の破壊を抑制する。また、そのようなピストンの製造方法を提供する。 【解決手段】 内燃機関のピストン1であって、第1材料を含む第1部分20、20・21と、第1材料と異なる第2材料を含む第2部分21、25と、第1材料及び第2材料を含み、第1部分と第2部分との間に所定の厚さをもって設けられ、第1部分と第2部分とを結合する境界部分22、(26、27)とを有し、境界部分は、第1部分側から第2部分側にかけて、第1材料の割合が漸減すると共に第2材料の割合が漸増することを特徴とする。境界部分は、積層造形法によって形成する。

Description

ピストン及びその製造方法
 本発明は、内燃機関のピストン及びその製造方法に関する。
 内燃機関のピストンとして、剛性や軽量化、耐熱性、冷却損失の観点から、ピストンの各部を異なる材料から形成したものがある(例えば、特許文献1~3参照)。このようなピストンでは、クラウン部に鉄系材料を用いることによって耐熱性及び剛性を高めると共に冷却損失を低減し、スカート部にアルミ系材料を用いることによって軽量化を行っている。鉄系材料とアルミ系材料とは、鍛造による圧着や摩擦撹拌接合、又は一方の材料の表面上への他方の材料の積層化によって結合されている。
米国特許出願公開第US2014/0299091号明細書 特開平9-310639号公報 特開2010-5687号公報
 しかしながら、異なる材料が互いに結合された界面では各材料の熱膨張率の差に起因して、界面破壊が生じる虞がある。
 本発明は、以上の背景を鑑み、異なる材料を含むピストンにおいて、各材料が互いに結合された界面の破壊を抑制することを課題とする。また、そのようなピストンの製造方法を提供することを課題とする。
 上記課題を解決するために本発明の一態様は、内燃機関のピストン(1)であって、第1材料を含む第1部分(20、20・21)と、前記第1材料と異なる第2材料を含む第2部分(21、25)と、前記第1材料及び前記第2材料を含み、前記第1部分と前記第2部分との間に所定の厚さをもって設けられ、前記第1部分と前記第2部分とを結合する境界部分(22、26・27)とを有し、前記境界部分は、前記第1部分側から前記第2部分側にかけて、前記第1材料の割合が漸減すると共に前記第2材料の割合が漸増することを特徴とする。
 この態様によれば、第1部分と第2部分との間に境界部分が存在し、境界部分では第1材料及び第2材料の割合が徐々に変化するため、第1材料及び第2材料の熱膨張率の差に起因する応力が生じ難い。これにより、境界部分に損傷が生じ難い。
 また、上記の態様において、前記境界部分は、前記第1部分側から前記第2部分側にかけて、前記第1材料の割合が連続的に漸減すると共に前記第2材料の割合が連続的に漸増してもよい。また、前記境界部分は、前記第1部分側から前記第2部分側にかけて、前記第1材料の割合が直線状に漸減すると共に前記第2材料の割合が直線状に漸増してもよい。
 これらの態様によれば、境界部分における第1材料及び第2材料の割合変化が滑らかになり、第1材料及び第2材料の熱膨張率の差に起因する応力が生じ難い。
 また、上記の態様において、前記境界部分は、前記第1部分側から前記第2部分側にかけて、前記第1材料の割合が階段状に漸減すると共に前記第2材料の割合が階段状に漸増してもよい。
 この態様によれば、境界部分の形成が容易になる。
 また、上記の態様において、前記第1材料は鉄系材料であり、前記第2材料はアルミ系材料であるとよい。
 この態様によれば、ピストンの高温部及び摺動部に鉄系材料を使用することによって、剛性、耐熱性、耐摩耗性を向上させることができると共に冷却損失の低減を図ることができる。また、ピストンの低温部にアルミ系材料を使用することによって、軽量化を図ることができる。
 また、上記の態様において、前記第1材料はアルミ系材料又は鉄系材料であり、前記第2材料は樹脂材料であるとよい。
 この態様によれば、ピストンの高温部及び摺動部に鉄系材料又はアルミ系材料を使用することによって、剛性、耐熱性、耐摩耗性を向上させることができる。また、ピストンの低温部に樹脂材料を使用することによって、軽量化を図ることができる。
 また、上記の態様において、前記第1部分は、当該ピストンの軸線方向における燃焼室側に設けられ、前記第2部分は、前記軸線方向において前記第1部分に対して燃焼室側と相反する側に設けられているとよい。
 この態様によれば、ピストンにおいて高温となる部分が、剛性、耐熱性が高い材料によって構成され、ピストンにおいて低温となる部分が軽量な材料によって構成される。
 また、上記の態様において、前記第1部分は、当該ピストンの径方向における外側に設けられ、前記第2部分は、前記径方向において前記第1部分に対して内側に設けられているとよい。
 この態様によれば、ピストンにおいてシリンダの壁面と摺接する部分が、耐摩耗性が高い材料によって構成され、ピストンにおいてシリンダの壁面と摺接しない部分が軽量な材料によって構成される。
 また、本発明の他の側面は、燃焼室の下部を画定するクラウン部(2)、前記クラウン部から前記燃焼室と相反する側に突出し、ピストンピンを受容する一対のピンボス部(3)、前記クラウン部から前記燃焼室と相反する側に突出すると共に、前記ピンボス部のそれぞれに繋がった一対のスカート部(4)を有する内燃機関のピストン(1)であって、鉄系材料を含む鉄系部分(20)と、アルミ系材料を含むアルミ系部分(21)と、前記鉄系材料及び前記アルミ系材料を含み、前記鉄系部分と前記アルミ系部分との間に所定の厚さをもって設けられ、前記鉄系部分と前記アルミ系部分とを結合する鉄-アルミ境界部分(22)とを有し、前記鉄-アルミ境界部分は、前記鉄系部分側から前記アルミ系部分側にかけて、前記鉄系材料の割合が漸減すると共に前記アルミ系材料の割合が漸増し、前記鉄系部分は、前記クラウン部の少なくとも一部を構成し、前記アルミ系部分は、前記スカート部の少なくとも一部を構成することを特徴とする。
 この態様によれば、ピストンの内で比較的高温になるクラウン部が鉄系材料によって構成されるため、剛性、耐熱性、耐摩耗性が向上すると共に、冷却損失が低減する。また、ピストンの内で比較的低温になるスカート部がアルミ系材料によって構成されるため、軽量化が可能になる。
 また、上記の態様において、前記鉄系部分は、前記クラウン部の前記燃焼室を画定する部分を構成するとよい。
 この態様によれば、ピストンの内で最も高温になる部分が鉄系材料によって構成されるため、剛性、耐熱性、耐摩耗性が向上すると共に、冷却損失が低減する。また、ピストンのトップランドの高さの縮小が可能になる。これにより、ピストンのトップランドの外周面の表面積が小さくなり、ピストンの燃焼室側の表面積が縮小する。表面積が縮小すると、燃焼ガスからピストンへの熱の移動が抑制され、冷却損失が一層低減する。また、トップランドの外周面とシリンダ壁面との間に形成される隙間の体積が縮小されるため、この部分に滞留するガス量が低減され、ピストンの上昇時にピストンの上面(冠面)の外周側か燃焼室の中心側に流れるガスの流れ(いわゆる、スキッシュ)が強化される。これにより、燃焼室内のガス流動が促進され、燃焼効率が向上する。
 また、上記の態様において、前記クラウン部の外周部には、それぞれ周方向に延びて環状をなす、第1コンプレッションリング溝(11)、第2コンプレッションリング溝(12)、及びオイルリング溝(13)が前記燃焼室側から順に形成され、前記鉄系部分は、前記第1コンプレッションリング溝を画定する部分を構成し、前記アルミ系部分は、前記第2コンプレッションリング溝及び前記オイルリング溝を画定する部分を構成し、前記鉄-アルミ境界部分は、前記第1コンプレッションリング溝と前記第2コンプレッションリング溝との間を通過して延びるとよい。
 この態様によれば、第1コンプレッションリング溝を画定する部分の耐摩耗性が向上する。
 また、上記の態様において、前記アルミ系部分は、前記ピンボス部の全領域を構成するとよい。
 この態様によれば、ピストンの軽量化が図れる。
 また、上記の態様において、 前記鉄系部分は、前記ピンボス部の全領域を構成するとよい。
 この態様によれば、ピンボス部の剛性が向上するため、ピストンピン及びピストンピンが挿入されるピン孔の径を小さくすることが可能になる。ピン孔の径が小さくなることによって、ピストンのコンプレッションハイトを小さくすることが可能になる。コンプレッションハイトが小さくなると、ピストンの軽量化が可能になる。また、ピストンのサイドフォースが低減され、スカート部とシリンダ内壁との間に生じる摩擦力が低減される。
 また、上記の態様において、前記鉄系部分は、前記ピンボス部の前記クラウン部側の部分を構成し、前記アルミ系部分は、前記ピンボス部の前記クラウン部側と相反する側の部分を構成するとよい。また、上記の態様において、前記ピンボス部は、前記ピストンピンが挿入されるピン孔(16)を有し、前記鉄系部分は、前記ピン孔を画定するピン孔縁部(3A)と、前記ピンボス部の前記クラウン部側の部分とを構成し、前記アルミ系部分は、前記ピン孔縁部を除き、前記ピンボス部の前記クラウン部側と相反する側の部分を構成するとよい。また、上記の態様において、前記ピンボス部は、前記ピストンピンが挿入されるピン孔(16)を有し、前記鉄系部分は、前記ピン孔を画定するピン孔縁部(3A)を構成し、前記アルミ系部分は、前記ピンボス部の前記ピン孔縁部を除く他の部分を構成するとよい。また、前記ピンボス部は、前記ピストンピンが挿入されるピン孔(16)を有し、前記鉄系部分は、前記ピン孔を画定するピン孔縁部(3A)と、前記ピンボス部において前記ピン孔縁部から前記クラウン部に延びる接続部とを構成し、前記アルミ系部分は、前記ピンボス部の前記ピン孔縁部及び前記接続部を除く他の部分を構成するとよい。
 これらの態様によれば、ピンボス部に形成されるピン孔の周囲の剛性が向上するため、ピン孔の縮小が可能になり、コンプレッションハイトの縮小が可能になる。また、アルミ系部分がピンボス部において剛性への影響が小さい部分を構成するため、軽量化が図れる。
 また、上記の態様において、前記鉄系部分は、前記クラウン部の外周部を構成し、前記アルミ系部分は、前記クラウン部の中央部、前記ピンボス部、及び前記スカート部を構成するとよい。
 この態様によれば、耐摩耗性が要求される部分が鉄系材料によって構成されることによって耐摩耗性が向上し、他の部分がアルミ系材料に構成されることによって軽量化が図れる。
 また、上記の態様において、前記クラウン部の外周部には周方向に延びるクーリングチャンネル(14)が形成され、前記アルミ系部分は、前記クーリングチャンネルを画定するチャンネル縁部(2E)において、前記燃焼室側と相反する側の部分を構成するとよい。
 この態様によれば、クラウン部において比較的要求される剛性が低い部位がアルミ系部分によって構成されるため、ピストンの軽量化が図れる。また、オイルジェットからピストンの裏面側に向けて噴射されるオイルがアルミ系部分に接触し易くなるため、ピストンからオイルへの熱伝導が促進され、ピストンの冷却が促進される。
 また、上記の態様において、樹脂材料を含む樹脂部分(25)と、前記鉄系材料及び前記樹脂材料を含み、前記鉄系部分と前記樹脂部分との間に所定の厚さをもって設けられ、前記鉄系部分と前記樹脂部分とを結合する鉄-樹脂境界部分(26)とを更に有し、前記クラウン部の前記外周部には周方向に延びるクーリングチャンネルが形成され、前記樹脂部分は、前記クーリングチャンネルを画定するチャンネル縁部を構成し、前記鉄系部分は、前記クラウン部の前記外周部において前記チャンネル縁部を除く他の部分を構成するとよい。
 この態様によれば、クラウン部において比較的要求される剛性が低い部位が樹脂部分によって構成されるため、ピストンの軽量化が図れる。
 また、上記の態様において、樹脂材料を含む樹脂部分(25)と、前記アルミ系材料及び前記樹脂材料を含み、前記アルミ系部分と前記樹脂部分との間に所定の厚さをもって設けられ、前記アルミ系部分と前記樹脂部分とを結合するアルミ-樹脂境界部分(27)とを更に有し、前記アルミ系部分は、前記スカート部の外周側部分を構成し、前記樹脂部分は、前記スカート部の内周側部分を構成するとよい。
 この態様によれば、スカート部において比較的要求される剛性が低い部位が樹脂部分によって構成されるため、ピストンの軽量化が図れる。
 また、本発明の他の態様は、第1材料を含む第1部分(20、20・21)と、前記第1材料と異なる第2材料を含む第2部分(21、25)と、前記第1材料及び前記第2材料を含み、前記第1部分と前記第2部分との間に所定の厚さをもって設けられ、前記第1部分と前記第2部分とを結合する境界部分(22、26・27)とを有し、前記境界部分は、前記第1部分側から前記第2部分側にかけて、前記第1材料の割合が漸減すると共に前記第2材料の割合が漸増するピストンの製造方法であって、前記境界部分は、前記第1材料と前記第2材料とを所定の割合にし、溶融させることによって形成した層を、前記第1材料と前記第2材料と割合を変化させながら積層する積層造形法によって形成されることを特徴とする。
 この態様によれば、境界部分を備えたピストンの製造が可能になる。
 また、上記の態様において、前記第1部分は、溶融成形又は機械加工によって単体として成形され、前記境界部分は、前記第1部分の表面に形成され、前記第2部分は、前記境界部分の表面に前記第2材料を溶融させることによって形成した層を積層する積層造形法によって形成されるとよい。また、前記第1部分は、溶融成形又は機械加工によって単体として成形され、前記境界部分は、前記第1部分の表面に形成され、前記第2部分は、溶融成形又は機械加工によって単体として成形された後に、前記境界部分に結合されるとよい。また、前記第1部分は、溶融成形又は機械加工によって単体として成形され、前記第2部分は、溶融成形又は機械加工によって単体として成形され、前記境界部分は、単体として形成された後に、前記第1部分及び前記第2部分に結合されるとよい。
 これらの態様によれば、積層造形法によって形成する部分が限定されるため、製造時間が短縮される。
 以上の構成によれば、異なる材料を含むピストンにおいて、各材料が互いに結合された界面の破壊を抑制することができる。また、そのようなピストンの製造方法を提供することができる。
第1実施形態に係るピストンの断面図 鉄系部分、鉄-アルミ境界部分、アルミ系部分の材料の組成比を示すグラフ 鉄系部分、鉄-アルミ境界部分、アルミ系部分の材料の組成比を示すグラフの他の例 第2実施形態に係るピストンの断面図 第3実施形態に係るピストンの断面図 第4実施形態に係るピストンの断面図 第5実施形態に係るピストンの断面図 第6実施形態に係るピストンの断面図 第7実施形態に係るピストンの断面図 第8実施形態に係るピストンの断面図 第9実施形態に係るピストンの断面図 第10実施形態に係るピストンの断面図 3Dプリンタの概略図
 以下、図面を参照して、本発明に係る内燃機関のピストンの各実施形態について説明する。
 (第1実施形態)
 図1に示すように、第1実施形態に係る内燃機関のピストン1は、燃焼室の下部を画定するクラウン部2(トップランド部)と、クラウン部2の下面2Dから下方に突出し、ピストンピンを受容する一対のピンボス部3と、クラウン部2の下面2Dにおける外周縁から下方に突出すると共に、両側部においてピンボス部3のそれぞれに繋がった一対のスカート部4を有する。
 クラウン部2は、円板形に形成され、その上面2Aは内燃機関のシリンダの壁部と協働して燃焼室を画定する。具体的には、クラウン部2の上面2Aは、燃焼室の下部を画定する。クラウン部2の上面2Aの中央部に下方に向けて凹んだキャビティ2Bが形成されている。クラウン部2の外周面2Cには、径方向内方に向けて凹むと共に、周方向に延びて環状をなす第1コンプレッションリング溝11、第2コンプレッションリング溝12、及びオイルリング溝13が上側(燃焼室側)から順に形成されている。第1コンプレッションリング溝11には第1コンプレッションリングが装着され、第2コンプレッションリング溝12には第2コンプレッションリングが装着され、オイルリング溝13にはオイルリングが装着される。
 クラウン部2の外周部には、ピストン1の軸線を中心として環状に形成された通路であるクーリングチャンネル14が形成されている。クーリングチャンネル14は、キャビティ2Bの径方向外方、かつ第1コンプレッションリング溝11、第2コンプレッションリング溝12、及びオイルリング溝13の径方向内方に配置されている。クラウン部2の下部には、前記クーリングチャンネル14の下部から下方に延びてクラウン部2の下面2Dに開口する通路14Aが形成されている。
 一対のピンボス部3は、それぞれクラウン部2の下面2Dから下方へと突設されている。各ピンボス部3は、互いに距離をおいて対向している。各ピンボス部3には、断面円形の貫通孔であり、互いに同軸となるピン孔16がそれぞれ形成されている。ピン孔16を画成するピン孔縁部3Aは、ピン孔16の軸線方向に筒形に突出している。すなわち、ピンボス部3において、ピン孔縁部3Aは他の部分に対して厚みが大きく形成されている。ピン孔16には、ピストンピンが挿入され、ピストンピンはコンロッドの小端部を回転可能に支持する。
 一対のスカート部4は、それぞれクラウン部2の下面2Dの外周縁から下方に突出し、クラウン部2の外周縁に沿って周方向に延び、周方向における両端がそれぞれピンボス部3に繋がっている。各スカート部4の周方向における中間部の外面4Aは、ピストン1の軸線を中心とした円周面に形成されている。
 ピストン1は、鉄系材料を含む鉄系部分20(図1等の薄いドット部分)と、アルミ系材料を含むアルミ系部分21(図1等の白色部分)と、鉄系材料及びアルミ系材料を含み、鉄系部分20とアルミ系部分21との間(境界)に設けられ、鉄系部分20とアルミ系部分21とを結合する鉄-アルミ境界部分22(図1等の濃いドット部分)とを有する。鉄系材料は、鉄元素を主成分として含む材料であり、鋼や鋳鉄等の鉄合金である。アルミ系材料は、アルミニウム元素を主成分として含む材料であり、銅、シリコン、マグネシウム、及びニッケルの少なくとも1つとアルミニウムとを含むアルミニウム合金である。アルミ系材料は、例えばローエックス(Lo-Ex)等のアルミニウム-ケイ素合金であってよい。このように、ピストン1は、互いに異なる材料からなる複数の部分を有する。
 鉄-アルミ境界部分22は、鉄系部分20側からアルミ系部分21側にかけて、鉄系材料の割合が漸減すると共にアルミ系材料の割合が漸増する。図2に示すように、鉄-アルミ境界部分22は、鉄系部分20側からアルミ系部分21側にかけて、鉄系材料の割合が連続的に漸減すると共にアルミ系材料の割合が連続的に漸増してもよい。また、鉄-アルミ境界部分22は、鉄系部分20側からアルミ系部分21側にかけて、鉄系材料の割合が直線状に漸減すると共にアルミ系材料の割合が直線状に漸増してもよい。また、図示しないが、鉄-アルミ境界部分22は、鉄系部分20側からアルミ系部分21側にかけて、鉄系材料の割合が曲線状に漸減すると共にアルミ系材料の割合が曲線状に漸増してもよい。また、図3に示すように、鉄-アルミ境界部分22は、鉄系部分20側からアルミ系部分21側にかけて、鉄系材料の割合が階段状に漸減すると共にアルミ系材料の割合が階段状に漸増してもよい。鉄-アルミ境界部分22の厚さは、これに限定されるものではないが、例えば0.5mm以上30mm以下であるとよい。
 第1実施形態では、鉄系部分20が、クラウン部2の中央部及び外周部の燃焼室側部分(外周部の上半部)を構成し、アルミ系部分21がクラウン部2の外周部の燃焼室側と相反する側の部分(外周部の下半部)と、ピンボス部3の全領域と、スカート部4の全領域とを構成する。鉄-アルミ境界部分22は、クラウン部2の外周部において、鉄系部分20とアルミ系部分21との境界に設けられている。鉄系部分20は、クラウン部2の外周部において第1コンプレッションリング溝11を画定する部分を構成し、アルミ系部分21はクラウン部2の外周部において第2コンプレッションリング溝12及びオイルリング溝13を画定する部分を構成している。すなわち、本実施形態では、鉄系部分20はピストン1の軸線方向における燃焼室側に設けられ、アルミ系部分21は、軸線方向において鉄系部分20に対して燃焼室側と相反する側に設けられている。
 鉄-アルミ境界部分22は、クラウン部2の外周面2Cから、第1コンプレッションリング溝11と第2コンプレッションリング溝12との間の部分を通過してクーリングチャンネル14の外周側に延びると共に、クーリングチャンネル14の下部からクラウン部2の下面2Dに延びている。また、鉄-アルミ境界部分22は、クラウン部2とピンボス部3の境界に沿って延びている。
 以下の第2~第10実施形態では、第1実施形態に係るピストン1と比較して、鉄系部分20、アルミ系部分21、が構成するピストン1の部位が異なる。以下の各実施形態に係る説明では、第1実施形態と同様の構成については同一の符号を付して説明を省略する。
 (第2実施形態)
 図4に示すように、第2実施形態では、鉄系部分20が、クラウン部2の中央部及び外周部の燃焼室側部分と、ピンボス部3の全領域とを構成し、アルミ系部分21がクラウン部2の外周部の燃焼室側と相反する側の部分と、スカート部4の全領域とを構成する。鉄系部分20は、クラウン部2の外周部において第1コンプレッションリング溝11を画定する部分を構成し、アルミ系部分21はクラウン部2の外周部において第2コンプレッションリング溝12及びオイルリング溝13を画定する部分を構成している。
 鉄-アルミ境界部分22は、鉄系部分20とアルミ系部分21との境界に設けられ、クラウン部2の外周面2Cから、第1コンプレッションリング溝11と第2コンプレッションリング溝12との間の部分を通過してクーリングチャンネル14の外周側に延びると共に、クーリングチャンネル14の下部からクラウン部2の下面2Dに延びている。また、鉄-アルミ境界部分22は、スカート部4とピンボス部3の境界に沿って延びている。
 (第3実施形態)
 図5に示すように、第3実施形態では、鉄系部分20が、クラウン部2の中央部及び外周部の燃焼室側部分と、ピンボス部3の燃焼室側部分(ピンボス部3の上半部)とを構成し、アルミ系部分21がクラウン部2の外周部の燃焼室側と相反する側の部分と、スカート部4の全領域と、ピンボス部3の燃焼室側と相反する側の部分(ピンボス部3の下半部)を構成する。鉄系部分20は、クラウン部2の外周部において第1コンプレッションリング溝11を画定する部分を構成し、アルミ系部分21はクラウン部2の外周部において第2コンプレッションリング溝12及びオイルリング溝13を画定する部分を構成している。
 鉄-アルミ境界部分22は、鉄系部分20とアルミ系部分21との境界に設けられ、クラウン部2の外周面2Cから、第1コンプレッションリング溝11と第2コンプレッションリング溝12との間の部分を通過してクーリングチャンネル14の外周側に延びると共に、クーリングチャンネル14の下部からクラウン部2の下面2Dに延びている。また、鉄-アルミ境界部分22は、スカート部4の上半部とピンボス部3の上半部の境界に沿って延びると共に、その下端からピンボス部3を上下に2分割する仮想線に沿ってピン孔16に延びている。
 (第4実施形態)
 図6に示すように、第4実施形態では、鉄系部分20が、クラウン部2の中央部及び外周部の燃焼室側部分と、ピンボス部3の燃焼室側部分及びピン孔縁部3Aを構成し、アルミ系部分21がクラウン部2の外周部の燃焼室側と相反する側の部分と、スカート部4の全領域と、ピンボス部3の燃焼室側と相反する側の部分のピン孔縁部3Aを除く部分を構成する。鉄系部分20は、クラウン部2の外周部において第1コンプレッションリング溝11を画定する部分を構成し、アルミ系部分21はクラウン部2の外周部において第2コンプレッションリング溝12及びオイルリング溝13を画定する部分を構成している。
 鉄-アルミ境界部分22は、鉄系部分20とアルミ系部分21との境界に設けられ、クラウン部2の外周面2Cから、第1コンプレッションリング溝11と第2コンプレッションリング溝12との間の部分を通過してクーリングチャンネル14の外周側に延びると共に、クーリングチャンネル14の下部からクラウン部2の下面2Dに延びている。また、鉄-アルミ境界部分22は、スカート部4の上半部とピンボス部3の上半部の境界に沿って延びると共に、ピンボス部3においてピン孔縁部3Aの下半部の外周縁に沿って延びている。
 (第5実施形態)
 図7に示すように、第5実施形態では、鉄系部分20が、クラウン部2の中央部及び外周部の燃焼室側部分と、ピンボス部3のピン孔縁部3Aとを構成し、アルミ系部分21がクラウン部2の外周部の燃焼室側と相反する側の部分と、スカート部4の全領域と、ピンボス部3のピン孔縁部3Aを除く部分を構成する。鉄系部分20は、クラウン部2の外周部において第1コンプレッションリング溝11を画定する部分を構成し、アルミ系部分21はクラウン部2の外周部において第2コンプレッションリング溝12及びオイルリング溝13を画定する部分を構成している。
 鉄-アルミ境界部分22は、鉄系部分20とアルミ系部分21との境界に設けられ、クラウン部2の外周面2Cから、第1コンプレッションリング溝11と第2コンプレッションリング溝12との間の部分を通過してクーリングチャンネル14の外周側に延びると共に、クーリングチャンネル14の下部からクラウン部2の下面2Dに延びている。また、鉄-アルミ境界部分22は、ピンボス部3においてピン孔縁部3Aの外周縁に沿って延びている。
 (第6実施形態)
 図8に示すように、第6実施形態では、鉄系部分20が、クラウン部2の中央部及び外周部の燃焼室側部分と、ピンボス部3のピン孔縁部3Aと、ピンボス部3においてピン孔縁部3Aからクラウン部2に延びる接続部3Bとを構成し、アルミ系部分21がクラウン部2の外周部の燃焼室側と相反する側の部分と、スカート部4の全領域と、ピンボス部3のピン孔縁部3A及び接続部3Bを除く部分を構成する。鉄系部分20は、クラウン部2の外周部において第1コンプレッションリング溝11を画定する部分を構成し、アルミ系部分21はクラウン部2の外周部において第2コンプレッションリング溝12及びオイルリング溝13を画定する部分を構成している。接続部3Bは、ピンボス部3におけるスカート部4との境界に沿って延びている。他の実施形態では、接続部3Bの位置及び数は任意に設定してよく、例えば接続部3Bはピンボス部3の中央を上下に直線状に延びてもよい。
 鉄-アルミ境界部分22は、鉄系部分20とアルミ系部分21との境界に設けられ、クラウン部2の外周面2Cから、第1コンプレッションリング溝11と第2コンプレッションリング溝12との間の部分を通過してクーリングチャンネル14の外周側に延びると共に、クーリングチャンネル14の下部からクラウン部2の下面2Dに延びている。また、鉄-アルミ境界部分22は、ピンボス部3においてピン孔縁部3Aの外周縁、及び接続部3Bの両側縁に沿って延びている。
 (第7実施形態)
 図9に示すように、第7実施形態では、鉄系部分20が、クラウン部2の外周部を構成し、アルミ系部分21がクラウン部2の中央部と、スカート部4の全領域と、ピンボス部3の全領域とを構成する。鉄系部分20はピストン1の径方向における外側に設けられ、アルミ系部分21は径方向において鉄系部分20に対して内側に設けられている。
 鉄-アルミ境界部分22は、鉄系部分20とアルミ系部分21との境界に設けられ、クラウン部2において上面2Aから下面2Dに延びると共に、ピストン1の軸線を中心とした環状に延びている。また、鉄-アルミ境界部分22は、クラウン部2とスカート部4との境界に沿って延びている。
 (第8実施形態)
 図10に示すように、第8実施形態では、鉄系部分20が、クラウン部2の外周部における燃焼室側部分を構成し、アルミ系部分21がクラウン部2の外周部における燃焼室側部と相反する側の部分、及び中央部と、スカート部4の全領域と、ピンボス部3の全領域とを構成する。鉄系部分20は、クラウン部2の外周部において第1コンプレッションリング溝11を画定する部分を構成し、アルミ系部分21はクラウン部2の外周部において第2コンプレッションリング溝12及びオイルリング溝13を画定する部分を構成している。
 鉄-アルミ境界部分22は、鉄系部分20とアルミ系部分21との境界に設けられ、鉄系部分20とアルミ系部分21との境界に設けられ、クラウン部2の外周面2Cから、第1コンプレッションリング溝11と第2コンプレッションリング溝12との間の部分を通過してクーリングチャンネル14の外周側に延びると共に、クーリングチャンネル14の上部からクラウン部2の上面2Aに延びている。
 (第9実施形態)
 図11に示すように、第9実施形態では、鉄系部分20が、クラウン部2の中央部、外周部におけるクーリングチャンネル14の下部を画定する部分を除く部分、スカート部4の全領域、及びピンボス部3の全領域を構成し、アルミ系部分21がクラウン部2の外周部におけるクーリングチャンネル14の下部を画定する部分を構成する。
 鉄-アルミ境界部分22は、鉄系部分20とアルミ系部分21との境界に設けられ、クラウン部2の外周部の下部におけるアルミ系部分21の側面をクーリングチャンネル14の下部を構成する壁面からクラウン部2の下面2D部に延びている。
 (第10実施形態)
 図12に示すように、第10実施形態に係るピストン1は、鉄系部分20及びアルミ系部分21に加えて、樹脂材料を含む樹脂部分25と、鉄系材料及び樹脂材料を含み、鉄系部分20と樹脂部分25との間に所定の厚さをもって設けられ、鉄系部分20と樹脂部分25とを結合する鉄-樹脂境界部分26と、アルミ系材料及び樹脂材料を含み、アルミ系部分21と樹脂部分25との間に所定の厚さをもって設けられ、アルミ系部分21と樹脂部分25とを結合するアルミ-樹脂境界部分27とを有する。樹脂材料は、耐熱性の樹脂材料であり、例えばポリイミド樹脂、ポリアミドイミド樹脂、エポキシ樹脂、ナイロン-6樹脂、ナイロン-6,6樹脂等であってよい。
 鉄-樹脂境界部分26は、鉄系部分20と樹脂部分25との間に所定の厚さをもって設けられ、鉄系部分20側から樹脂部分25側にかけて、鉄系材料の割合が漸減すると共に樹脂材料の割合が漸増する。鉄-樹脂境界部分26における鉄系材料及び樹脂材料の割合の変化は連続的、或は階段状であってよい。アルミ-樹脂境界部分27は、アルミ系部分21と樹脂部分25との間に所定の厚さをもって設けられ、アルミ系部分21側から樹脂部分25側にかけて、アルミ系材料の割合が漸減すると共に樹脂材料の割合が漸増する。アルミ-樹脂境界部分27におけるアルミ系材料及び樹脂材料の割合の変化は連続的、或は階段状であってよい。鉄-樹脂境界部分26の厚さ、及びアルミ-樹脂境界部分27の厚さは、これに限定されるものではないが、それぞれ例えば0.5mm以上30mm以下であるとよい。
 鉄系部分20は、クラウン部2の中央部と、クーリングチャンネル14を画定する部分であるチャンネル縁部2Eを除いたクラウン部2の外周部の燃焼室側部分とを構成する。アルミ系部分21は、チャンネル縁部2Eを除いたクラウン部2の外周部の燃焼室側と相反する側の部分と、ピンボス部3の全領域と、スカート部4の外周側部分とを構成する。樹脂部分25は、チャンネル縁部2Eと、スカート部4の内周側部分とを構成する。鉄系部分20は、クラウン部2の外周部において第1コンプレッションリング溝11を画定する部分を構成し、アルミ系部分21はクラウン部2の外周部において第2コンプレッションリング溝12及びオイルリング溝13を画定する部分を構成している。チャンネル縁部2Eは、クーリングチャンネル14の壁面からクーリングチャンネル14の径方向外方に所定の幅の範囲をいい、筒形をなす。
 鉄-樹脂境界部分26は、鉄系部分20と樹脂部分25との境界に設けられ、チャンネル縁部2Eの外周縁の上部に沿って延びている。アルミ-樹脂境界部分27は、アルミ系部分21と樹脂部分25との境界に設けられ、チャンネル縁部2Eの外周縁の下部に沿って延びている。また、アルミ-樹脂境界部分27は、スカート部4において、スカート部4を厚み方向に分割するように上下に延びている。
 (ピストンの製造方法)
 上記の第1~第10実施形態に係るピストン1は、以下の製造方法によって製造される。鉄-アルミ境界部分22、鉄-樹脂境界部分26、アルミ-樹脂境界部分27は、公知の積層造形法を用いて形成される。積層造形法は、層を積層することによって部材を形成するため、各層の組成を変化させることによって、積層方向に材料の組成を変化させることができる。積層造形法は、例えば選択的レーザー溶融法(Selective Laser Melting:SLM)や選択的レーザー焼結法(Selective Laser Sintering:SLS)等の粉末積層法であってよい。
 一例として、選択的レーザー溶融法を使用してピストン1を製造する例を以下に示す。図13は、積層造形法により成形を行う3Dプリンタ30の一例である。図13に示すように、3Dプリンタ30は、上方に向けて開口したケース31と、ケース31内において成形物を支持するステージ32と、粉末材料を供給するノズル33と、供給された粉末材料にレーザー光を照射して溶融させるレーザー装置34とを有する。ステージ32は、上下方向及び所定の軸線方向に回転可能になっている。ステージ32は、周方向に区画された複数の作業領域を有し、回転することによって作業領域を変更することができる。造形物は、作業領域毎に成形可能となっている。また、ステージ32は、ステージ32に支持された造形物の積層が進むに従って下方に移動することによって、材料が積層される位置を上下方向において一定に維持することができる。
 ノズル33は、鉄系材料の粉末を供給する第1ノズルと、アルミ系材料の粉末を供給する第2ノズルと、樹脂材料の粉末を供給する第3ノズルとを有する。第1~第3ノズルのそれぞれは、絞り弁を有しており、供給する材料量の調節が可能となっている。第1~第3ノズルから供給する各材料の量を変化させることによって、任意の位置に供給される材料の割合(組成比)を変化させることができる。ノズル33及びレーザー装置34は、例えばガイドレール及びモータを備えた移動装置35に支持され、ステージ32に対して前後及び左右に移動可能になっている。
 3Dプリンタ30は、鉄-アルミ境界部分22、鉄-樹脂境界部分26、アルミ-樹脂境界部分27の形状及び各部の材料の組成比に関する3次元データに基づいて、ノズル33を制御して特定の位置に特定の組成比の材料を供給し、レーザー装置34を制御して特定の位置の材料に選択的にレーザー光を照射してその部分の材料を溶融させ、材料層を積層させる。
 鉄系部分20、アルミ系部分21、及び樹脂部分25のそれぞれは、溶融成形又は機械加工によって単体として形成されてよく、上記の積層造形法によって形成されてもよい。溶融成形は鋳造や射出成形を含み、機械加工は切削加工や鍛造を含む。
 鉄系部分20、アルミ系部分21、鉄-アルミ境界部分22を含むピストン1の製造方法の第1の例では、最初に鉄系部分20及びアルミ系部分21の一方を溶融成形又は機械加工によって単体として形成する。次に、形成された鉄系部分20及びアルミ系部分21の一方の表面上に積層造形法によって鉄-アルミ境界部分22、及び鉄系部分20及びアルミ系部分21の他方を形成する。
 鉄系部分20、アルミ系部分21、鉄-アルミ境界部分22を含むピストン1の製造方法の第2の例では、最初に鉄系部分20及びアルミ系部分21の一方を溶融成形又は機械加工によって単体として形成する。次に、形成された鉄系部分20及びアルミ系部分21の一方の表面上に積層造形法によって鉄-アルミ境界部分22を形成する。鉄系部分20及びアルミ系部分21の他方は、溶融成形又は機械加工によって単体として形成し、溶接や摩擦撹拌接合、鍛造による圧着等の公知の結合方法によって鉄-アルミ境界部分22に結合する。
 鉄系部分20、アルミ系部分21、鉄-アルミ境界部分22を含むピストン1の製造方法の第3の例では、最初に、鉄系部分20及びアルミ系部分21を、それぞれ溶融成形又は機械加工によって単体として形成し、鉄-アルミ境界部分22を積層造形法によって形成する。次に、溶接や摩擦撹拌接合、鍛造による圧着等の公知の結合方法によって鉄-アルミ境界部分22を鉄系部分20及びアルミ系部分21に結合する。
 鉄系部分20、アルミ系部分21、鉄-アルミ境界部分22を含むピストン1の製造方法の第4の例では、積層造形法によって、鉄系部分20、アルミ系部分21、鉄-アルミ境界部分22を一体に形成する。
 鉄系部分20、アルミ系部分21、樹脂部分25、鉄-アルミ境界部分22、鉄-樹脂境界部分26、アルミ-樹脂境界部分27を含むピストン1の製造方法の例では、積層造形法によって、鉄系部分20、アルミ系部分21、樹脂部分25、鉄-アルミ境界部分22、鉄-樹脂境界部分26、アルミ-樹脂境界部分27を一体に形成するとよい。また、鉄系部分20、アルミ系部分21、樹脂部分25の一部を、予め単体として形成し、その表面に積層造形法によって他の部分を積層してもよい。
 次に上記の実施形態に係るピストン1の効果について説明する。鉄系部分20とアルミ系部分21との間に鉄-アルミ境界部分22が存在し、鉄-アルミ境界部分22では鉄系材料及びアルミ系材料の割合が徐々に変化するため、鉄系材料及びアルミ系材料の熱膨張率の差に起因する応力が生じ難い。これにより、鉄-アルミ境界部分22に損傷が生じ難い。鉄系部分20と樹脂部分25との間に設けられる鉄-樹脂境界部分26、アルミ系部分21と樹脂部分25との間に設けられるアルミ-樹脂境界部分27についても同様に材料の組成比の変化を緩和して熱膨張率の差に起因する損傷を抑制する。
 クラウン部2が鉄系部分20によって構成されることによって、クラウン部2がアルミ系部分21によって構成される場合よりも、クラウン部2の耐熱性及び剛性が向上する。また、クラウン部2の蓄熱性が向上することによって、冷却損失が低減される。
 クラウン部2の第1コンプレッションリング溝11を画定する部分が鉄系部分20によって構成されることによって、クラウン部2がアルミ系部分21によって構成される場合よりも耐摩耗性が向上し、第1コンプレッションリングによる摩耗が抑制される。クラウン部2の第2コンプレッションリング溝12及びオイルリング溝13を画定する部分は、第1コンプレッションリング溝11を画定する部分よりも耐摩耗性及び耐熱性の要求が低いため、この部分をアルミ系部分21によって構成することによって、ピストン1の軽量化が可能になる。
 また、クラウン部2の第1コンプレッションリング溝11を画定する部分が鉄系部分20によって構成されることによって、ピストン1のトップランド(ピストン1の上面2Aから第1コンプレッションリング溝11までの部分)の高さの縮小が可能になる。これにより、ピストン1のトップランドの外周面の表面積が小さくなり、ピストン1の燃焼室側の表面積が縮小する。表面積が縮小すると、燃焼ガスからピストン1への熱の移動が抑制され、冷却損失が一層低減する。また、トップランドの外周面とシリンダ壁面との間に形成される隙間の体積が縮小されるため、この部分に滞留するガス量が低減され、スキッシュが強化される。これにより、燃焼室内のガス流動が促進され、燃焼効率が向上する。
 また、クラウン部2において、クーリングチャンネル14を画定するチャンネル縁部2Eが樹脂部分25によって構成されると、クラウン部2の冷却が抑制され、冷却損失が低減される。また、クラウン部2において、クーリングチャンネル14の燃焼室側と相反する側を画定する部分は、比較的低い剛性及び耐熱性で足りるため、アルミ系部分21によって構成することによって、ピストン1の軽量化が図れる。また、オイルジェットからピストン1の裏面側に向けて噴射されるオイルがアルミ系部分21に接触し易くなるため、ピストン1からオイルへの熱伝導が促進され、ピストン1の冷却が促進される。なお、他の実施形態において、冷却効率を抑制したい場合には、アルミ系部分21を樹脂部分25に置換してもよい。
 スカート部4がアルミ系部分21によって構成されることによって、スカート部4が鉄系部分20によって構成される場合よりも軽量化が可能になる。また、スカート部4の外周部をアルミ系部分21によって構成し、スカート部4の内周部を樹脂部分25によって構成することによって、一層の軽量化が可能になる。
 ピンボス部3が鉄系部分20によって構成されることによって、アルミ系部分21によって構成された場合よりも剛性が向上する。そのため、ピストンピン及びピン孔16の径を小さくすることができる。これにより、ピストン1のコンプレッションハイトが縮小され、軽量化が可能になる。また、コンプレッションハイトが縮小されることによって、ピストン1に生じるサイドフォースが低減され、スカート部4とシリンダ壁面との摩擦が低減される。ピンボス部3は、ピン孔縁部3Aや上部を鉄系部分20によって構成することによって剛性を向上させることができる。そのため、ピンボス部3の下部をアルミ系部分21によって構成することによって、軽量化が可能になる。ピン孔縁部3Aとクラウン部2とを鉄系部分20によって接続すると剛性が効率良く向上するため、鉄系部分20によって構成される接続部3Bによってピン孔縁部3Aとクラウン部2とを接続してもよい。
 鉄-アルミ境界部分22の厚さは、鉄系部分20側からアルミ系部分21側にかけての熱膨張量の変化率を小さくするという観点では厚い方が好ましい。鉄-アルミ境界部分22の厚さが、例えば0.5mm以上であると、鉄系部分20側からアルミ系部分21側にかけての単位長さ当りの組成の変化率が十分に小さくなり、熱膨張時の膨張量の差を好適に低減させることができる。これにより、高温環境下で鉄-アルミ境界部分22に応力が集中し難くなり、損傷が好適に防止される。一方、鉄-アルミ境界部分22の厚さは、製造時間及び製造コストの観点では小さい方が好ましい。鉄-アルミ境界部分22は、上述した積層造形法によって形成する必要があるため、厚みが大きくなると、製造時間及び製造コストが増加する。そのため、熱膨張量の変化率を小さくするという観点と、製造時間及び製造コストの観点から、鉄-アルミ境界部分22の厚さは、0.5mm以上30mm以下が好適となる。
 以上で具体的実施形態の説明を終えるが、本発明は上記実施形態に限定されることなく幅広く変形実施することができる。例えば、上記の実施形態では、ピストンは、鉄系部分20、アルミ系部分21、樹脂部分25の少なくとも2つを有する構造としたが、他の実施形態では使用する材料の数を4以上にしてもよい。この場合、各材料からなる部分の数に応じて各材料に対応した境界部分を形成するとよい。また、本発明に係るピストンは、ガソリンエンジンやディーゼルエンジン、HCCIエンジン等の公知の様々な内燃機関に適用することができる。
1   :ピストン
2   :クラウン部
2E  :チャンネル縁部
3   :ピンボス部
3A  :ピン孔縁部
3B  :接続部
4   :スカート部
11  :第1コンプレッションリング溝
12  :第2コンプレッションリング溝
13  :オイルリング溝
14  :クーリングチャンネル
16  :ピン孔
20  :鉄系部分
21  :アルミ系部分
22  :アルミ境界部分
25  :樹脂部分
26  :樹脂境界部分
27  :樹脂境界部分
30  :3Dプリンタ

Claims (25)

  1.  内燃機関のピストンであって、
     第1材料を含む第1部分と、
     前記第1材料と異なる第2材料を含む第2部分と、
     前記第1材料及び前記第2材料を含み、前記第1部分と前記第2部分との間に所定の厚さをもって設けられ、前記第1部分と前記第2部分とを結合する境界部分とを有し、
     前記境界部分は、前記第1部分側から前記第2部分側にかけて、前記第1材料の割合が漸減すると共に前記第2材料の割合が漸増することを特徴とするピストン。
  2.  前記境界部分は、前記第1部分側から前記第2部分側にかけて、前記第1材料の割合が連続的に漸減すると共に前記第2材料の割合が連続的に漸増することを特徴とする請求項1に記載のピストン。
  3.  前記境界部分は、前記第1部分側から前記第2部分側にかけて、前記第1材料の割合が直線状に漸減すると共に前記第2材料の割合が直線状に漸増することを特徴とする請求項2に記載のピストン。
  4.  前記境界部分は、前記第1部分側から前記第2部分側にかけて、前記第1材料の割合が階段状に漸減すると共に前記第2材料の割合が階段状に漸増することを特徴とする請求項1に記載のピストン。
  5.  前記第1材料は鉄系材料であり、前記第2材料はアルミ系材料であることを特徴とする請求項1~請求項4のいずれか1つの項に記載のピストン。
  6.  前記第1材料はアルミ系材料又は鉄系材料であり、前記第2材料は樹脂材料であることを特徴とする請求項1~請求項4のいずれか1つの項に記載のピストン。
  7.  前記第1部分は、当該ピストンの軸線方向における燃焼室側に設けられ、
     前記第2部分は、前記軸線方向において前記第1部分に対して燃焼室側と相反する側に設けられていることを特徴とする請求項5又は請求項6に記載のピストン。
  8.  前記第1部分は、当該ピストンの径方向における外側に設けられ、
     前記第2部分は、前記径方向において前記第1部分に対して内側に設けられていることを特徴とする請求項5~請求項7のいずれか1つの項に記載のピストン。
  9.  燃焼室の下部を画定するクラウン部、前記クラウン部から前記燃焼室と相反する側に突出し、ピストンピンを受容する一対のピンボス部、前記クラウン部から前記燃焼室と相反する側に突出すると共に、前記ピンボス部のそれぞれに繋がった一対のスカート部を有する内燃機関のピストンであって、
     鉄系材料を含む鉄系部分と、
     アルミ系材料を含むアルミ系部分と、
     前記鉄系材料及び前記アルミ系材料を含み、前記鉄系部分と前記アルミ系部分との間に所定の厚さをもって設けられ、前記鉄系部分と前記アルミ系部分とを結合する鉄-アルミ境界部分とを有し、
     前記鉄-アルミ境界部分は、前記鉄系部分側から前記アルミ系部分側にかけて、前記鉄系材料の割合が漸減すると共に前記アルミ系材料の割合が漸増し、
     前記鉄系部分は、前記クラウン部の少なくとも一部を構成し、
     前記アルミ系部分は、前記スカート部の少なくとも一部を構成することを特徴とするピストン。
  10.  前記鉄系部分は、前記クラウン部の前記燃焼室を画定する部分を構成することを特徴とする請求項9に記載のピストン。
  11.  前記クラウン部の外周部には、それぞれ周方向に延びて環状をなす、第1コンプレッションリング溝、第2コンプレッションリング溝、及びオイルリング溝が前記燃焼室側から順に形成され、
     前記鉄系部分は、前記第1コンプレッションリング溝を画定する部分を構成し、
     前記アルミ系部分は、前記第2コンプレッションリング溝及び前記オイルリング溝を画定する部分を構成し、
     前記鉄-アルミ境界部分は、前記第1コンプレッションリング溝と前記第2コンプレッションリング溝との間を通過して延びることを特徴とする請求項10に記載のピストン。
  12.  前記アルミ系部分は、前記ピンボス部の全領域を構成することを特徴とする請求項9~請求項11のいずれか1つの項に記載のピストン。
  13.  前記鉄系部分は、前記ピンボス部の全領域を構成することを特徴とする請求項9~請求項11のいずれか1つの項に記載のピストン。
  14.  前記鉄系部分は、前記ピンボス部の前記クラウン部側の部分を構成し、
     前記アルミ系部分は、前記ピンボス部の前記クラウン部側と相反する側の部分を構成することを特徴とする請求項9~請求項11のいずれか1つの項に記載のピストン。
  15.  前記ピンボス部は、前記ピストンピンが挿入されるピン孔を有し、
     前記鉄系部分は、前記ピン孔を画定するピン孔縁部と、前記ピンボス部の前記クラウン部側の部分とを構成し、
     前記アルミ系部分は、前記ピン孔縁部を除き、前記ピンボス部の前記クラウン部側と相反する側の部分を構成することを特徴とする請求項9~請求項11のいずれか1つの項に記載のピストン。
  16.  前記ピンボス部は、前記ピストンピンが挿入されるピン孔を有し、
     前記鉄系部分は、前記ピン孔を画定するピン孔縁部を構成し、
     前記アルミ系部分は、前記ピンボス部の前記ピン孔縁部を除く他の部分を構成することを特徴とする請求項9~請求項11のいずれか1つの項に記載のピストン。
  17.  前記ピンボス部は、前記ピストンピンが挿入されるピン孔を有し、
     前記鉄系部分は、前記ピン孔を画定するピン孔縁部と、前記ピンボス部において前記ピン孔縁部から前記クラウン部に延びる接続部とを構成し、
     前記アルミ系部分は、前記ピンボス部の前記ピン孔縁部及び前記接続部を除く他の部分を構成することを特徴とする請求項9~請求項11のいずれか1つの項に記載のピストン。
  18.  前記鉄系部分は、前記クラウン部の外周部を構成し、
     前記アルミ系部分は、前記クラウン部の中央部、前記ピンボス部、及び前記スカート部を構成することを特徴とする請求項9~請求項11のいずれか1つの項に記載のピストン。
  19.  前記クラウン部の外周部には周方向に延びるクーリングチャンネルが形成され、
     前記アルミ系部分は、前記クーリングチャンネルを画定するチャンネル縁部において、前記燃焼室側と相反する側の部分を構成することを特徴とする請求項9~請求項11のいずれか1つの項に記載のピストン。
  20.  樹脂材料を含む樹脂部分と、
     前記鉄系材料及び前記樹脂材料を含み、前記鉄系部分と前記樹脂部分との間に所定の厚さをもって設けられ、前記鉄系部分と前記樹脂部分とを結合する鉄-樹脂境界部分とを更に有し、
     前記クラウン部の前記外周部には周方向に延びるクーリングチャンネルが形成され、
     前記樹脂部分は、前記クーリングチャンネルを画定するチャンネル縁部を構成し、
     前記鉄系部分は、前記クラウン部の前記外周部において前記チャンネル縁部を除く他の部分を構成することを特徴とする請求項9~請求項11に記載のピストン。
  21.  樹脂材料を含む樹脂部分と、
     前記アルミ系材料及び前記樹脂材料を含み、前記アルミ系部分と前記樹脂部分との間に所定の厚さをもって設けられ、前記アルミ系部分と前記樹脂部分とを結合するアルミ-樹脂境界部分とを更に有し、
     前記アルミ系部分は、前記スカート部の外周側部分を構成し、
     前記樹脂部分は、前記スカート部の内周側部分を構成することを特徴とする請求項9~請求項11に記載のピストン。
  22.  第1材料を含む第1部分と、前記第1材料と異なる第2材料を含む第2部分と、前記第1材料及び前記第2材料を含み、前記第1部分と前記第2部分との間に所定の厚さをもって設けられ、前記第1部分と前記第2部分とを結合する境界部分とを有し、前記境界部分は、前記第1部分側から前記第2部分側にかけて、前記第1材料の割合が漸減すると共に前記第2材料の割合が漸増するピストンの製造方法であって、
     前記境界部分は、前記第1材料と前記第2材料とを所定の割合にし、溶融させることによって形成した層を、前記第1材料と前記第2材料と割合を変化させながら積層する積層造形法によって形成されることを特徴とするピストンの製造方法。
  23.  前記第1部分は、溶融成形又は機械加工によって単体として成形され、
     前記境界部分は、前記第1部分の表面に形成され、
     前記第2部分は、前記境界部分の表面に前記第2材料を溶融させることによって形成した層を積層する積層造形法によって形成されることを特徴とする請求項22に記載のピストンの製造方法。
  24.  前記第1部分は、溶融成形又は機械加工によって単体として成形され、
     前記境界部分は、前記第1部分の表面に形成され、
     前記第2部分は、溶融成形又は機械加工によって単体として成形された後に、前記境界部分に結合されることを特徴とする請求項22に記載のピストンの製造方法。
  25.  前記第1部分は、溶融成形又は機械加工によって単体として成形され、
     前記第2部分は、溶融成形又は機械加工によって単体として成形され、
     前記境界部分は、単体として形成された後に、前記第1部分及び前記第2部分に結合されることを特徴とする請求項22に記載のピストンの製造方法。
PCT/JP2017/007934 2016-05-27 2017-02-28 ピストン及びその製造方法 WO2017203779A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018519100A JPWO2017203779A1 (ja) 2016-05-27 2017-02-28 ピストン及びその製造方法
CN201780031591.0A CN109154250A (zh) 2016-05-27 2017-02-28 活塞及其制造方法
US16/301,612 US20190218996A1 (en) 2016-05-27 2017-02-28 Piston and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-106335 2016-05-27
JP2016106335 2016-05-27

Publications (1)

Publication Number Publication Date
WO2017203779A1 true WO2017203779A1 (ja) 2017-11-30

Family

ID=60411213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007934 WO2017203779A1 (ja) 2016-05-27 2017-02-28 ピストン及びその製造方法

Country Status (4)

Country Link
US (1) US20190218996A1 (ja)
JP (1) JPWO2017203779A1 (ja)
CN (1) CN109154250A (ja)
WO (1) WO2017203779A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110185550A (zh) * 2018-02-23 2019-08-30 曼卡车和巴士股份公司 用于制造构件特别是车辆构件的方法和相应地制造的构件
CN110671191A (zh) * 2018-07-03 2020-01-10 通用汽车环球科技运作有限责任公司 具有高磨损寿命的铰接接头

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017207005A1 (de) * 2017-04-26 2018-10-31 Federal-Mogul Nürnberg GmbH Einteiliger, gegossener Kolben für einen Verbrennungsmotor
DE102020207512A1 (de) * 2020-06-17 2021-12-23 Mahle International Gmbh Verfahren zur Herstellung eines Kolbens
CN113931761B (zh) * 2021-09-27 2023-04-18 北京科技大学 一种轻质高强耐高温钛合金点阵结构活塞及制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04303166A (ja) * 1991-03-30 1992-10-27 Isuzu Motors Ltd 燃焼室の構造及びその製造法
JPH062613A (ja) * 1992-06-17 1994-01-11 Izumi Ind Ltd 内燃機関用ピストンおよびその製造方法
JPH07301148A (ja) * 1994-04-30 1995-11-14 Isuzu Motors Ltd 内燃機関のピストン
JPH08303297A (ja) * 1995-05-01 1996-11-19 Suzuki Motor Corp 内燃機関のピストン及びその製造方法
JPH10288085A (ja) * 1997-04-10 1998-10-27 Yamaha Motor Co Ltd 内燃機関用ピストン
JP2000170912A (ja) * 1998-12-09 2000-06-23 Art Metal Mfg Co Ltd 内燃機関用ピストン
JP2004308661A (ja) * 2003-04-08 2004-11-04 Federal-Mogul Nuernberg Gmbh 内燃機関のピストンを製造する方法、ならびに内燃機関のピストン
JP2012507651A (ja) * 2008-11-04 2012-03-29 カーエス コルベンシュミット ゲゼルシャフト ミット ベシュレンクテル ハフツング 内燃機関の、クーリングチャンネルを閉鎖する閉鎖エレメントを備えたクーリングチャンネル付きピストン
JP2012237229A (ja) * 2011-05-11 2012-12-06 Nissan Motor Co Ltd ピストン構造
JP2013213446A (ja) * 2012-04-02 2013-10-17 Toyota Motor Corp 内燃機関とその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58211552A (ja) * 1982-06-02 1983-12-09 Toyota Central Res & Dev Lab Inc 内燃機関のピストンおよびその製造方法
GB8606998D0 (en) * 1986-03-20 1986-04-23 Ae Plc Pistons
GB8622538D0 (en) * 1986-09-18 1986-10-22 Ae Plc Pistons
JP2016519738A (ja) * 2013-04-05 2016-07-07 フェデラル−モーグル コーポレイション 付加的な製造技術を使用して作製されるピストン
JP2015189085A (ja) * 2014-03-28 2015-11-02 トヨタ自動車株式会社 積層造形方法、及び積層造形装置
US10876475B2 (en) * 2015-11-20 2020-12-29 Tenneco Inc. Steel piston crown and/or combustion engine components with dynamic thermal insulation coating and method of making and using such a coating
US10544752B2 (en) * 2017-07-14 2020-01-28 Hyundai Motor Company Aluminum foam core piston with coaxial laser bonded aerogel/ceramic head

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04303166A (ja) * 1991-03-30 1992-10-27 Isuzu Motors Ltd 燃焼室の構造及びその製造法
JPH062613A (ja) * 1992-06-17 1994-01-11 Izumi Ind Ltd 内燃機関用ピストンおよびその製造方法
JPH07301148A (ja) * 1994-04-30 1995-11-14 Isuzu Motors Ltd 内燃機関のピストン
JPH08303297A (ja) * 1995-05-01 1996-11-19 Suzuki Motor Corp 内燃機関のピストン及びその製造方法
JPH10288085A (ja) * 1997-04-10 1998-10-27 Yamaha Motor Co Ltd 内燃機関用ピストン
JP2000170912A (ja) * 1998-12-09 2000-06-23 Art Metal Mfg Co Ltd 内燃機関用ピストン
JP2004308661A (ja) * 2003-04-08 2004-11-04 Federal-Mogul Nuernberg Gmbh 内燃機関のピストンを製造する方法、ならびに内燃機関のピストン
JP2012507651A (ja) * 2008-11-04 2012-03-29 カーエス コルベンシュミット ゲゼルシャフト ミット ベシュレンクテル ハフツング 内燃機関の、クーリングチャンネルを閉鎖する閉鎖エレメントを備えたクーリングチャンネル付きピストン
JP2012237229A (ja) * 2011-05-11 2012-12-06 Nissan Motor Co Ltd ピストン構造
JP2013213446A (ja) * 2012-04-02 2013-10-17 Toyota Motor Corp 内燃機関とその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110185550A (zh) * 2018-02-23 2019-08-30 曼卡车和巴士股份公司 用于制造构件特别是车辆构件的方法和相应地制造的构件
US11498126B2 (en) 2018-02-23 2022-11-15 Man Truck & Bus Ag Method for producing a component, in particular vehicle component, and correspondingly produced component
CN110671191A (zh) * 2018-07-03 2020-01-10 通用汽车环球科技运作有限责任公司 具有高磨损寿命的铰接接头

Also Published As

Publication number Publication date
US20190218996A1 (en) 2019-07-18
JPWO2017203779A1 (ja) 2019-02-21
CN109154250A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
WO2017203779A1 (ja) ピストン及びその製造方法
JP6466510B2 (ja) 冷却通路を有するスチールピストン
JP2020076409A (ja) 付加的な製造技術を使用して作製されるピストン
US9856820B2 (en) Piston assembly
US20090020007A1 (en) Single-piece forged-steel piston with inner oil cooling chamber and a method for manufacturing thereof
US20150196971A1 (en) Method for the Regenerative Production of a Turbine Wheel with a Shroud
US9903309B2 (en) Welded piston assembly
JP6246124B2 (ja) レーザ溶接したピストンアセンブリおよび当該ピストンの組み立て接合方法
US20120037113A1 (en) Piston for an internal combustion engine and method for its production
KR20180042258A (ko) 연소 기관을 위한 강철 또는 알루미늄 피스톤 및 연소 기관을 위한 강철 또는 알루미늄 피스톤의 적어도 일부를 제조하기 위한 방법
JP2020115014A (ja) 内燃機関の製造方法および内燃機関
EP2821626B1 (en) Piston assembly
CN1201081C (zh) 制造压缩机活塞的方法
US10449621B2 (en) Magnetic arc welded piston assembly
JP4746874B2 (ja) 軽合金製シリンダライナの組成体
US10711732B2 (en) Reduced height piston
JP2021080921A (ja) ガス交換弁の弁座リング及びガス交換弁
JP2005534498A (ja) 軽金属合金からなる中空形材の鋳造結合体
JP3796473B2 (ja) クローズドデッキ型シリンダブロックおよびその製造方法
KR101615274B1 (ko) 피스톤 제조용 에코 금형 장치와 피스톤 제조용 금형 장치 및 피스톤 제조 방법
JP2015025424A (ja) エンジン
CN110621868B (zh) 内燃机用活塞及其制造方法
JP2001329305A (ja) 多孔質金属焼結体よりなる耐摩環
JP2006090158A (ja) 内燃機関用ピストン
CN112610351A (zh) 一种强化一环槽冷却的活塞结构

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018519100

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17802381

Country of ref document: EP

Kind code of ref document: A1