WO2017203664A1 - 制御装置、蓄電池制御装置、制御システム、電池部制御装置、制御方法、蓄電池制御方法、電池部制御装置の動作方法及びプログラム - Google Patents

制御装置、蓄電池制御装置、制御システム、電池部制御装置、制御方法、蓄電池制御方法、電池部制御装置の動作方法及びプログラム Download PDF

Info

Publication number
WO2017203664A1
WO2017203664A1 PCT/JP2016/065619 JP2016065619W WO2017203664A1 WO 2017203664 A1 WO2017203664 A1 WO 2017203664A1 JP 2016065619 W JP2016065619 W JP 2016065619W WO 2017203664 A1 WO2017203664 A1 WO 2017203664A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
service
information
power
control device
Prior art date
Application number
PCT/JP2016/065619
Other languages
English (en)
French (fr)
Inventor
耕治 工藤
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2016/065619 priority Critical patent/WO2017203664A1/ja
Priority to JP2018518892A priority patent/JP6838792B2/ja
Publication of WO2017203664A1 publication Critical patent/WO2017203664A1/ja

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units

Definitions

  • the present invention relates to a control device, a storage battery control device, a control system, a battery unit control device, a control method, a storage battery control method, an operation method of the battery unit control device, and a program.
  • the power transmission and distribution company can request the power generation company to suppress the output (suppression of reverse power flow to the power system) when there is a possibility that the supply and demand operation of the power system may be hindered.
  • the power generation company that has received the request for output suppression requests the company that provides the service to charge the amount that needs to be suppressed during the time period when the output suppression is received.
  • the electric power generation company outputs as usual without performing output suppression also in the time slot
  • the provider providing the service controls the storage battery of the customer based on the above request, and charges the portion that needs to be suppressed during the time zone in which the output is suppressed.
  • This service is a service for power generation companies.
  • by paying a predetermined incentive to a consumer who provided a storage battery for the service it can be regarded as a service for the consumer.
  • Patent Document 1 discloses a server device that provides a charge / discharge control schedule of a storage battery to a consumer who owns the storage battery. Based on the charge / discharge control schedule, the control device that controls the storage battery predicts when the electricity rate is high if the rate difference between the time zone with the highest electricity rate and the time zone with the lowest electricity rate is more than a certain value. The storage battery is controlled so that power corresponding to power consumption is charged in the other time zone and discharged in a time zone when the electricity rate is high.
  • Patent Document 2 discloses an ancillary service providing apparatus that provides an ancillary service considering the life of a storage battery.
  • the charge / discharge control of the storage battery in the above prior art is not a control related to charge / discharge considering the rated output in the PCS (power conditioner system) of the storage battery, and therefore there is a problem that the storage battery and the PCS of the storage battery cannot be used efficiently. It was.
  • First processing means for generating, based on a rated output value in the storage battery, first information for specifying power to be charged or discharged to the storage battery in relation to the first service;
  • a communication means for transmitting the first information to a storage battery control device for controlling the storage battery;
  • a control device is provided.
  • First processing means for generating first information for identifying power to be charged or discharged to the storage battery in relation to the first service;
  • Second processing means for generating second information for identifying power to be charged or discharged to the storage battery in relation to a second service performed in parallel with the first service;
  • a control device is provided that includes at least a communication unit that transmits the first information to a storage battery control device that controls the storage battery.
  • Communication means for receiving first information for identifying power to be charged or discharged to the storage battery in relation to the first service; Calculation means for calculating second information for identifying power to be charged or discharged to the storage battery in relation to a second service based on the first information;
  • a storage battery control device having storage battery control means for controlling the storage battery based on the first information and the second information is provided.
  • Or communication means for receiving second information for specifying the power to be discharged
  • Storage battery control means for controlling the storage battery with the content calculated by the calculation means
  • a control system having the control device and the storage battery control device is provided.
  • First power to be charged or discharged to the battery unit for the first purpose is calculated, and the first power and second power to be charged or discharged to the battery unit for other purposes received from an external device.
  • a battery unit control device is provided.
  • Computer First processing means for generating, based on a rated output value in the storage battery, first information for specifying power to be charged or discharged to the storage battery in relation to the first service;
  • a communication means for transmitting the first information to a storage battery control device for controlling the storage battery;
  • a program is provided that functions as:
  • a method of operating a control device that performs is provided.
  • Computer First processing means for generating first information for identifying power to be charged or discharged to the storage battery in relation to the first service;
  • Second processing means for generating second information for identifying power to be charged or discharged to the storage battery in relation to a second service performed in parallel with the first service;
  • Communication means for transmitting at least the first information to a storage battery control device for controlling the storage battery;
  • Computer Communication means for receiving first information for identifying power to be charged or discharged to the storage battery in relation to the first service; Calculation means for calculating second information for identifying power to be charged or discharged to the storage battery in relation to a second service based on the first information; Storage battery control means for controlling the storage battery based on the first information and the second information;
  • Storage battery control means for controlling the storage battery with the content calculated by the calculation means
  • Computer First power to be charged or discharged to the battery unit for the first purpose is calculated, and the first power and second power to be charged or discharged to the battery unit for other purposes received from an external device.
  • the operation method of the battery unit control device for executing the above is provided.
  • Computer First power to be charged or discharged to the battery unit for the first purpose is calculated, and the first power and second power to be charged or discharged to the battery unit for other purposes received from an external device.
  • Calculating means for calculating the power to be charged or discharged to the battery unit by adding together Battery part control means for charging and discharging from the battery part with the content calculated by the calculating means;
  • a program is provided that functions as:
  • the utilization efficiency of the storage battery and the PCS of the storage battery can be increased.
  • a hardware configuration of a device (a control device 10, a storage battery control device 20, a storage battery 30, a power transmission / distribution company system 40, a retail electricity company system 50, etc.) according to the present embodiment will be described.
  • Each unit included in the apparatus of the present embodiment is stored in a CPU (Central Processing Unit), a memory, a program loaded into the memory, a storage unit such as a hard disk storing the program (from the stage of shipping the apparatus in advance).
  • storage media such as CDs (Compact Discs) and programs downloaded from servers on the Internet can also be stored.) Realized by any combination of hardware and software, centering on the network connection interface Is done. It will be understood by those skilled in the art that there are various modifications to the implementation method and apparatus.
  • FIG. 1 is a block diagram illustrating the hardware configuration of the apparatus according to the present embodiment.
  • the apparatus includes a processor 1A, a memory 2A, an input / output interface 3A, a peripheral circuit 4A, and a bus 5A.
  • the peripheral circuit 4A includes various modules. The peripheral circuit 4A may not be provided.
  • the bus 5A is a data transmission path through which the processor 1A, the memory 2A, the peripheral circuit 4A, and the input / output interface 3A transmit / receive data to / from each other.
  • the processor 1A is an arithmetic processing device such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit).
  • the memory 2A is a memory such as a RAM (Random Access Memory) or a ROM (Read Only Memory).
  • the input / output interface 3A is an interface for acquiring information from an input device (eg, keyboard, mouse, microphone, etc.), external device, external server, external sensor, etc., and an output device (eg, display, speaker, printer, mailer). Etc.), an interface for outputting information to an external device, an external server, etc.
  • the processor 1A can issue a command to each module and perform a calculation based on the calculation result.
  • acquisition means that the device itself obtains data or information stored in another device or a storage medium (active acquisition), for example, requests from other devices or Inquiring and receiving, accessing and reading other devices and storage media, etc., and inputting data or information output from other devices to the device (passive acquisition), eg, distribution It includes at least one of receiving data or information (or transmission, push notification, etc.). It also includes selecting and acquiring from received data or information, or selecting and receiving distributed data or information.
  • the control system of this embodiment includes a technique for causing a single storage battery to perform a plurality of services in parallel. That is, a technique is provided for causing one storage battery to perform charging and discharging corresponding to each of a plurality of services at the same timing. With this technology, the utilization efficiency of the storage battery and the PCS increases. Details will be described below.
  • FIG. 2 shows an example of a functional block diagram of the control system of the present embodiment.
  • the control system includes a control device 10, a storage battery control device 20, a storage battery 30, and a power transmission and distribution company system 40. An outline of each device will be described.
  • the storage battery 30 and the storage battery control device 20 are devices owned by consumers.
  • Storage battery 30 includes a PCS and a battery unit.
  • the PCS performs a discharging operation from the battery unit and a charging operation to the battery unit in accordance with an instruction signal from the storage battery control device 20.
  • the PCS may have a function of calculating the operation (charging / discharging) of the storage battery 30 in the storage battery control device 20.
  • the configuration of the storage battery 30 is not particularly limited, and any configuration can be adopted.
  • the storage battery control device 20 controls the operation (charging and discharging) of the storage battery 30.
  • the storage battery control device 20 inputs a predetermined instruction signal to the storage battery 30 based on the storage battery control signal received from the control device 10.
  • the configuration of the storage battery control device 20 will be described in detail below.
  • the power transmission / distribution company system 40 is a device that is owned by a company that manages the power transmission / distribution network.
  • the power transmission / distribution company system 40 monitors the state of the power transmission / distribution network (eg, frequency deviation, interconnection current, etc.) and adjusts the power supply to the power transmission / distribution network as necessary.
  • the power transmission / distribution company system 40 is supplied in the event of an emergency such as an LFC (lord frequency control) signal for adjusting fluctuations in a short cycle (eg, several minutes to several tens of minutes) or a failure or accident of a generator or the like.
  • a supply and demand control signal such as a reserve power signal for solving the power shortage is output.
  • a supply and demand control signal is transmitted from the power transmission and distribution company system 40 to the control device 10.
  • the control device 10 performs output adjustment (discharge and charge adjustment) of the storage battery 30 based on the supply and demand control signal.
  • the control device 10 is a device held by a provider (hereinafter referred to as “resource aggregator”) that provides a plurality of services using a plurality of storage batteries 30 registered in advance.
  • the resource aggregator provides an ancillary service and an energy management service.
  • Ancillary service is a service mainly for power transmission and distribution companies.
  • the control device 10 controls charging / discharging of the storage battery 30 in connection with the supply / demand balance adjustment of the power system. That is, in the case of excessive demand, the storage battery 30 is caused to perform an operation of discharging and supplying power to the power system. On the other hand, in the case of excessive supply, the storage battery 30 is caused to perform an operation of receiving and charging power from the power system.
  • An example of such control is LFC control.
  • the control device 10 receives a supply and demand control signal (LFC signal) from the power transmission and distribution company system 40, the control device 10 transmits a storage battery control signal for operating (charging and discharging) according to the content to the plurality of storage battery control devices 20.
  • LFC signal supply and demand control signal
  • the storage battery control device 20 controls the operation (charging and discharging) of the storage battery 30 based on the storage battery control signal received from the control device 10. Thereby, the supply and demand balance of the power transmission and distribution network is maintained.
  • the control device 10 can cause the storage battery 30 to perform an operation for GF (Governor-Free) control.
  • Energy management service is a service for consumers.
  • the control device 10 causes the storage battery 30 to perform a charge / discharge operation that charges power during a time zone when the power unit price is relatively low and discharges power during a time zone when the power unit price is relatively high. That is, the control device 10 generates a charge / discharge schedule that charges power during a time zone when the power unit price is relatively low and discharges power during a time zone when the power unit price is relatively high, or generates a charge / discharge schedule. Therefore, information necessary for this purpose (such as information on the power unit price for each time slot according to the service menu of the retail electricity supplier) is transmitted to the plurality of storage battery control devices 20.
  • the storage battery control device 20 operates (charges and discharges) the storage battery 30 based on the charge / discharge schedule received from the control device 10 or the charge / discharge schedule created by itself using information necessary for generating the charge / discharge schedule. ) To control. Thereby, the electricity bill which a consumer pays to an electric power company (a retail electric power company is included) can be suppressed.
  • an electric power company a retail electric power company is included
  • the operation (charging and discharging) corresponding to each of the ancillary service (first service) and the energy management service (second service) can be performed by one storage battery 30 at the same timing.
  • the control device 10 and the storage battery control device 20 have a characteristic configuration for performing such an operation. Hereinafter, configurations of the control device 10 and the storage battery control device 20 will be described.
  • FIG. 3 shows an example of a functional block diagram of the control device 10 of the present embodiment.
  • the control apparatus 10 includes a first service unit 1, a second service unit 2, a control unit 105, and a communication unit 106.
  • the communication unit 106 communicates with a plurality of storage battery control devices 20 to transmit and receive information.
  • the first service unit 1 is a functional unit that executes processing for an ancillary service.
  • the 1st service part 1 is the 1st receiving part 102 which receives the information (example: supply-and-demand control signal transmitted from the power transmission and distribution company system 40) for 1st services, and the control content of the storage battery 30.
  • a first processing unit 101 that generates information for specifying.
  • the 2nd service part 2 is a function part which performs the process for energy management services.
  • the second service unit 2 generates information for specifying the control content of the storage battery 30 and the second reception unit 104 that receives information for the second service (for example, unit price of power for each time zone).
  • a second processing unit 103 is a functional unit that executes processing for an ancillary service.
  • the control unit 105 controls the first service unit 1 and the second service unit 2.
  • the control unit 105 performs control so that the sum of the output (charging and discharging) for the ancillary service and the output (charging and discharging) for the energy management service does not exceed the rated output value of the PCS for the storage battery 30. To do.
  • control unit 105 acquires information on the storage battery 30 and control information indicating the upper limit of the output for the ancillary service and the upper limit of the output for the energy management service, or by itself. Set. The sum of the upper limit of the output for the ancillary service and the upper limit of the output for the energy management service is less than or equal to the rated output value of the PCS for the storage battery 30.
  • the first service unit 1 and the second service unit 2 cause each storage battery 30 to perform charging or discharging so as not to exceed the upper limit of the output for each service indicated by the control information.
  • the sum of the output (charging and discharging) for the ancillary service and the output (charging and discharging) for the energy management service exceeds the rated output value of the PCS for the storage battery 30.
  • the upper limit of the output for each service may be indicated, for example, in a ratio where the rated output value of the PCS for the storage battery 30 is 100%, or may be indicated as X [W].
  • the control information indicating the upper limit of output for each service may be common to all the storage batteries 30.
  • Control information may be individually set corresponding to each of the plurality of storage batteries 30.
  • the some storage battery 30 may be grouped according to the attribute, and common control information within a group may be set for every group.
  • the sum of the upper limits of the outputs for the first service may fall within a predetermined range, for example, may be set constant. In this case, the output for the first service can be stably secured regardless of the timing.
  • control information may be common content at all timings or may be different content for each time zone. In the latter case, for example, one day may be divided into a plurality of time zones, and the upper limit of output for each service may be determined for each time zone.
  • FIG. 4 schematically shows an example of the control information.
  • the horizontal axis indicates the time, and the vertical axis indicates the output of the storage battery 30 allocated to each service.
  • the output of the storage battery 30 is shown in a ratio where the rated output value of the PCS for the storage battery 30 is 100%.
  • FIG. 4 the contents for one day are shown.
  • the upper limit of the output for the ancillary service (first service) is 30% of the rated output value of the PCS for the storage battery 30 throughout the day, and the energy management service (second service). It can be seen that the upper limit of the output for is 70% of the rated output value of the PCS for the storage battery 30.
  • FIG. 5 schematically shows another example.
  • the upper limit of the output for each service differs between the time zone from 6 o'clock to 19 o'clock and the time zone from 19 o'clock to 6 o'clock.
  • the upper limit of the output of the storage battery 30 may be assigned to each service according to the attribute of each time zone. This time from 6 o'clock to 19 o'clock and from 19 o'clock to 6 o'clock is not limited to this, and it may be set at an electricity rate (electric power unit price) by time zone.
  • the upper limit of the output for each service is made different based on a time zone in which the electricity rate (power unit price) is relatively low and a time zone in which the electricity rate (power unit price) is relatively high.
  • FIG. 6 schematically shows another example.
  • the output secured for the ancillary service (first service) and the output secured for the energy management service (second service) are interchanged between the two services.
  • the output secured for the interchange between the two services is allocated to both services or one of the services according to a predetermined rule based on the status of each service at each timing (each time), the status of the storage battery 30, and the like.
  • the resource aggregator operator may set the control information as described above and input it to the control unit 105.
  • control unit 105 may set control information.
  • control part 105 may set the ratio of the output utilized by an ancillary service and an energy management service based on the contract with the consumer who installs the storage battery 30.
  • control unit 105 obtains information indicating whether to give priority to the ancillary service or the energy management service from each customer who owns the storage battery 30 and the ratio to be applied to each service at an appropriate timing. May be.
  • the control unit 105 may divide a day into a plurality of time zones, and acquire or set the above information (which one has priority, a ratio, etc.) for each time zone.
  • control part 105 may set control information for every storage battery 30 of each consumer based on the said information and a predetermined rule.
  • the control unit 105 can determine a larger output upper limit for the priority service.
  • the ratio in this case may be a predetermined ratio (for example, 7: 3, 6: 4, etc.).
  • the control unit 105 may determine the upper limit of the output of each service at the same ratio as the ratio applied to each service determined by the consumer.
  • the output excluding the output (predetermined value) for interchange between both services may be divided into both services at the above ratio. .
  • the upper limit of the output of each service can be set for each time, for example, in the same manner as described above.
  • control unit 105 may set the remaining output as the output for the first service (ancillary service) after setting the upper limit of the output for the second service (energy management service).
  • the control unit 105 may first set an upper limit of output for the energy management service based on a charge / discharge schedule for the energy management service on a certain day. For example, the control unit 105 divides a day into a plurality of time zones, and outputs (charges or discharges) scheduled based on the maximum value of the output (charging or discharging) in each time zone (power demand prediction of the consumer, etc.) And the specified maximum value or maximum value + ⁇ may be set as the output upper limit for the energy management service in each time zone. The remainder (a value obtained by subtracting the output upper limit for the energy management service in each time zone from the rated output value of the PCS for the storage battery 30) may be set as the output upper limit for the ancillary service.
  • control unit 105 may set the rest as the output for the second service (energy management service).
  • the means for setting the upper limit of output for the first service (ancillary service) is not particularly limited.
  • the charge / discharge schedule for the energy management service is designed to charge power during a time period when the power unit price is relatively low and to discharge power during a time period when the power unit price is relatively high.
  • the means for generating such a charge / discharge schedule is a design matter, and any technique can be adopted.
  • the storage battery 30 when the storage battery 30 performs two services in parallel, it is necessary to consider not only the adjustment of the output [W] used for each service but also the adjustment of the capacity [Wh] used for each service.
  • the two services implemented in parallel are an ancillary service and an energy management service, the necessity of adjusting the capacity [Wh] used in each service can be greatly reduced. This will be described below.
  • the storage battery 30 When the storage battery 30 is controlled in connection with the ancillary service, the storage battery 30 repeats the charging process and the discharging process with a relatively short cycle. It is rare to continue only one of them for a long time. For this reason, when the difference between the accumulated charge amount [Wh] and the accumulated discharge amount [Wh] in the ancillary service is observed in time series, the SOC (State (of ⁇ Charge) varies, but it is repeated at relatively short time intervals. When the difference becomes “0”, a point appears.
  • the integrated charge amount and the integrated discharge amount can be made equal. It is assumed that the operation includes bias control that compensates for the charge / discharge loss of the storage battery 30.
  • a predetermined amount of charging and a predetermined amount of discharging may be achieved in a relatively long time (over several hours). For this reason, in order to achieve the purpose of the energy management service (predetermined amount of charge and predetermined amount of discharge in a relatively long time), there is little change in the charged power amount and free capacity of the storage battery 30 due to the ancillary service. It does not affect. That is, in achieving the purpose of the energy management service, it can be said that there is little need to consider changes in the amount of charge power and free capacity of the storage battery 30 due to the ancillary service.
  • the ancillary service it is only necessary to discharge and charge at a predetermined power [W] at each timing in accordance with instructions from the power transmission and distribution company system 40.
  • the charging process and the discharging process are repeated at a relatively short cycle as described above, it is sufficient that both the relatively small free capacity and the relatively small charging power are secured in the storage battery 30.
  • the energy management service that repeats charging and discharging, the time zone in which the SOC is “0” and the SOC is “100%” is rare, and charging is sufficient for ancillary services in most time zones. Both the electric energy and the free capacity are secured in the storage battery 30. In other words, it can be said that there is little need to consider changes in the amount of charged power and free capacity of the storage battery 30 by the energy management service when implementing the ancillary service.
  • the capacity of the storage battery 30 that can be used in the energy management service may be determined in advance. For example, an upper limit of power that can be charged by the energy management service (e.g., charging up to SOC 95%) or an upper limit of power that can be discharged by the energy management service (e.g., discharging up to 5% of SOC) may be determined in advance.
  • the control unit 105 further acquires or sets information indicating an upper limit and a lower limit that can be charged and discharged by the energy management service. For example, the operator of the resource aggregator determines and inputs to the control unit 105. And the 2nd service part 2 controls operation
  • the operation in which the time zone where the SOC becomes “0” or “100%” is shifted little by little for each storage battery 30 is the second operation. If the service unit 2 performs (e.g., the second processing unit 103 generates the second information in which the time zone in which the SOC becomes 0 or 100% is shifted for each storage battery 30), it continues in all the time zones. Ancillary service can be implemented.
  • the first service unit 1 performs the operation (charging and charging) of the storage battery 30 based on the control information acquired or set by the control unit 105 and the supply and demand control signal (LFC signal or the like) received from the power transmission and distribution company system 40. Control).
  • the first service unit 1 controls the operation of the storage battery 30 so that the output power (charging power and discharging power) of each storage battery 30 does not exceed the upper limit of the output for the ancillary service specified by the control information.
  • LFC control and GF control performed in the ancillary service will be described.
  • the first processing unit 101 of the first service unit 1 specifies an output upper limit for the ancillary service for each storage battery 30 based on the control information acquired from the control unit 105. If there is an output that can be interchanged between services as shown in FIG. 6, the control unit 105 determines information to allocate to which service the output that accommodates the service is allocated (eg, contract for each customer). Service contents (all electrification etc.) and power demand forecast information for each customer) are collected, and allocation of the output is determined based on the information. Then, the control unit 105 transmits the determined content to the first service unit 1 and the second service unit 2. The first processing unit 101 specifies the output upper limit for the ancillary service based on the information transmitted from the control unit 105 in this way.
  • the first processing unit 101 specifies the output upper limit a max_n for the LFC control for each storage battery 30 (n is the serial number of the storage battery 30).
  • the a max_n may be indicated as a ratio with the rated output value of the PCS for the storage battery 30 being 100%, or may be indicated as x [W].
  • the upper limit a max_n may be an output upper limit for the ancillary service indicated by the control information, or a value obtained by allocating the output upper limit for the ancillary service to the LFC control (in consideration of the amount allocated to the GF control) Or a value obtained by multiplying these by a coefficient ⁇ n (where ⁇ n is 0 or more and 1 or less).
  • the coefficient ⁇ n is determined according to the state of each storage battery 30 (SOC, temperature, possibility of failure or abnormal operation). For example, when the SOC is within a predetermined range (for example, 20% or more and 80% or less), that is, when the balance between the charging power amount and the free space is good, a larger value is determined than when it is not included. Also good. Further, when the temperature is lower than the predetermined value, a larger value may be determined as compared with the case where the temperature is higher than the predetermined value. Further, when it is determined that the possibility of failure, operation abnormality, and communication abnormality is higher than a predetermined level, a smaller value may be determined as compared with a case where it is determined that the possibility is lower than the predetermined level. Details of the algorithm for determining the coefficient ⁇ n from the information indicating the state of each storage battery 30 is a design matter.
  • the communication unit 106 collects information indicating the state of each storage battery 30 from each of the plurality of storage battery control devices 20 at a predetermined cycle (for example, 5 minutes). And the 1st process part 101 determines coefficient (beta) n for every storage battery 30 with a predetermined period (example: 15 minutes) based on the said information, and determines upper limit amax_n using the determined coefficient (beta) n .
  • the first processing unit 101 calculates A max obtained by adding the a max_n of each of the plurality of storage batteries 30.
  • the A max is the upper limit of the output of the entire storage battery group that can be handled by the LFC control (ancillary service) provided by the control device 10.
  • the control device 10 notifies the Amax to the power transmission and distribution company system 40 at a predetermined cycle (for example, 15 minutes).
  • the control apparatus 10 transmits amax_n (storage battery control signal) determined corresponding to each storage battery 30 to the corresponding storage battery control apparatus 20 in a predetermined cycle (for example, 15 minutes).
  • the first receiving unit 102 receives the LFC signal from the power transmission and distribution company system 40 repeatedly at a predetermined cycle (eg, several seconds) or at an indefinite cycle.
  • the LFC signal includes a command value of power [W] that is charged or discharged by the plurality of storage batteries 30.
  • the power transmission / distribution company system 40 determines the command value within a range equal to or less than A max notified from the control device 10 and notifies the control device 10 of the command value.
  • the LFC signal can identify the operation content (charging and discharging). For example, a positive value may be indicated when charging and a negative value when discharging.
  • the first processing unit 101 sets the command value specified by the LFC signal to A max.
  • the value B divided by is calculated.
  • the communication unit 106 transmits the storage battery control signal including the calculated value B to the plurality of storage battery control devices 20 all at once.
  • the transmission of the storage battery control signal here is repeated at a predetermined cycle (eg, several seconds) or at an indefinite cycle.
  • a predetermined cycle e.g, several seconds
  • an indefinite cycle e.g., multicast, broadcast using FM communication, or other methods can be used.
  • the calculation unit 22 of each storage battery control device 20 receives a max_n that the communication unit 21 repeatedly receives at a predetermined cycle (for example, 15 minutes), and the communication unit 21 receives repeatedly or at an indefinite cycle at a predetermined cycle (for example, several seconds). Based on the value B, the control content of the corresponding storage battery 30 is calculated. Specifically, the calculation unit 22 of the storage battery control device 20 calculates the product of a max_n and B as the output value (charge or discharge) of the storage battery 30.
  • the calculation part 22 of the storage battery control apparatus 20 calculates the output (charge or discharge) of the storage battery 30 for the calculated LFC control, and the output (charge or discharge) of the storage battery 30 for the energy management service at each timing. By adding together, the content of the output (charge or discharge) of the storage battery 30 at each timing is determined.
  • the calculation unit 22 further determines the content of the output (charge or discharge) of the storage battery 30 at each timing by adding the output (charge or discharge) of the storage battery 30 for GF control described below. May be.
  • the storage battery control part 23 of the storage battery control apparatus 20 operates the storage battery 30 with the content which the calculation part 22 determined. In the adding process, one of the electric power to be charged and the electric power to be discharged can be represented by a positive value, and the other can be represented by a negative value (the same applies hereinafter).
  • the power transmission and distribution company system 40 replaces the LFC signal including the command value of the power [W] to be charged or discharged by the plurality of storage batteries 30 with a value B obtained by dividing the command value by Amax.
  • the included LFC signal may be transmitted to the control device 10.
  • the communication part 106 may transmit the storage battery control signal containing the said value B to the some storage battery control apparatus 20 simultaneously.
  • the storage battery control device 20 calculates the product of a max_n and B as the output value (charge or discharge) of the storage battery 30.
  • the communication unit 106 repeatedly transmits A max to a plurality of storage battery control devices 20 in addition to a max_n determined corresponding to each storage battery 30 at a predetermined period (for example, 15 minutes). Also good. And if the LFC signal containing the command value of the electric power [W] charged or discharged with the some storage battery 30 is received from the transmission / distribution company system 40, the communication part 106 will be set to the value B which divided the command value by Amax. Instead, the LFC signal including the command value may be simultaneously transmitted to the plurality of storage battery control devices 20. And each storage battery control apparatus 20 may calculate the output value (charge or discharge) of the storage battery 30 by multiplying the value B which divided the command value by Amax by amax_n .
  • the first processing section 101 the a Max_n determined in correspondence with the storage battery 30 may calculate the value d n divided by A max. Then, the communication unit 106 may repeatedly transmit dn to the plurality of storage battery control devices 20 at a predetermined cycle (for example, 15 minutes) instead of a max_n . And if the LFC signal containing the command value of the electric power [W] charged or discharged with the some storage battery 30 is received from the power transmission / distribution company system 40, the communication part 106 will transmit the LFC signal containing the said command value to several storage battery. You may broadcast to the control apparatus 20 simultaneously. Each battery controller 20, by multiplying the d n to the command value, may be calculated output value of the storage battery 30 (charge or discharge).
  • the first processing unit 101 of the first service unit 1 specifies an output upper limit for the ancillary service for each storage battery 30 based on the control information acquired from the control unit 105. If there is an output that can be interchanged between services as shown in FIG. 6, the control unit 105 determines information to allocate to which service the output that accommodates the service is allocated (eg, contract for each customer). Service contents (all electrification etc.) and power demand forecast information for each customer) are collected, and allocation of the output is determined based on the information. Then, the control unit 105 transmits the determined content to the first service unit 1 and the second service unit 2. The first processing unit 101 specifies the output upper limit for the ancillary service based on the information transmitted from the control unit 105 in this way.
  • the first processing unit 101 specifies the upper limit c max_n of the output for GF control for each storage battery 30 (n is the storage battery serial number).
  • c max — n may be indicated as a ratio where the rated output value of the PCS for the storage battery 30 is 100%, or may be indicated as x [W].
  • the upper limit c max — n may be the output upper limit for the ancillary service indicated by the control information, or the value assigned to the GF control for the output upper limit for the ancillary service (in consideration of the amount allocated to the LFC control) Or a value obtained by multiplying these by a coefficient ⁇ n (where ⁇ n is 0 or more and 1 or less).
  • the coefficient ⁇ n is determined according to the state of each storage battery 30 (SOC, temperature, possibility of failure or abnormal operation). For example, when the SOC is within a predetermined range (for example, 20% or more and 80% or less), that is, when the balance between the charging power amount and the free space is good, a larger value is determined than when it is not included. Also good. Further, when the temperature is lower than the predetermined value, a larger value may be determined as compared with the case where the temperature is higher than the predetermined value. Further, when it is determined that the possibility of failure, operation abnormality, and communication abnormality is higher than a predetermined level, a smaller value may be determined as compared with a case where it is determined that the possibility is lower than the predetermined level.
  • the details of the algorithm for determining the coefficient ⁇ n from the information indicating the state of each storage battery 30 is a design matter.
  • the communication unit 106 collects information indicating the state of each storage battery 30 from each of the plurality of storage battery control devices 20 at a predetermined cycle (for example, 5 minutes).
  • the first processing unit 101 based on the information, the predetermined period: in (Example 15 minutes) to determine the coefficient gamma n for each battery 30, determines the upper limit c Max_n using the determined coefficient gamma n.
  • the first processing unit 101 determines the content of GF control for each storage battery 30. Specifically, the first processing unit 101 determines GF control information (for example, the command value of the power [W] charged or discharged by each storage battery 30 according to the degree of deviation from the reference value of the system frequency) : Function, correspondence table, etc.). In the GF control information, the maximum output value is determined to be equal to or lower than the upper limit c max — n .
  • the communication unit 106 transmits GF control information corresponding to each of the plurality of storage battery control devices 20.
  • the communication unit 21 of each storage battery control device 20 receives GF control information from the control device 10.
  • the communication unit 21 of each storage battery control device 20 determines a measurement value of the system frequency from a measurement sensor (eg, a built-in sensor in the measuring instrument of FIG. 17 or the PCS of the storage battery 30) installed near the own device. Receive repeatedly at a period (eg, 0.4 seconds).
  • the calculation part 22 of each storage battery control apparatus 20 calculates repeatedly the deviation from the reference value of a system
  • the calculation part 22 of each storage battery control apparatus 20 specifies the command value of electric power [W] charged or discharged with the some storage battery 30 in each timing based on the calculated deviation and GF control information.
  • the calculation part 22 of the storage battery control apparatus 20 outputs the output (charge or discharge) of the storage battery 30 for the calculated GF control and the output (charge or discharge) of the storage battery 30 for the energy management service at each timing. By adding together, the content of the output (charge or discharge) of the storage battery 30 at each timing is determined.
  • the calculation unit 22 may further determine the content of the output (charge or discharge) of the storage battery 30 at each timing by adding the output (charge or discharge) of the storage battery 30 for LFC control described above. Good.
  • the storage battery control part 23 of the storage battery control apparatus 20 makes the storage battery 30 operate
  • the 2nd service part 2 determines the charging / discharging schedule (2nd information) of the storage battery 30 based on the control information which the control part 105 acquired or set by itself. For example, the second service unit 2 generates a charge / discharge schedule for the next day on the previous day (second processing unit 103). And the communication part 106 transmits the said charging / discharging schedule to each storage battery control apparatus 20.
  • the second processing unit 103 generates a charge / discharge schedule for charging and discharging within a range that satisfies the upper limit of the output for the energy management service.
  • the upper limit of the power that can be charged by the energy management service eg: chargeable up to SOC 95%) and the upper limit of the electric power that can be discharged (eg: dischargeable up to 5% of SOC) are determined, the range is satisfied.
  • a charge / discharge schedule for charging and discharging is generated.
  • the method for generating the charge / discharge schedule is not particularly limited, but an example will be described below.
  • the 2nd processing part 103 determines the time slot
  • the second processing unit 103 sets a time zone in which a power unit price is relatively high as a time zone for discharging and a time zone in which a power unit price is relatively low as a time zone for charging.
  • the second processing unit 103 may set a time zone in which the power unit price is higher than a predetermined value as a time zone for discharging and a time zone in which the power unit price is lower than the predetermined value as a time zone for charging.
  • the predetermined value is, for example, an average value (for example, “Y1 yen / kWh” from X1 to X2 and “Y2 yen / kWh” from X2 to X3, etc.) set for each time slot fixed. (Average value of Y1, Y2,%) Or a value given to the second processing unit 103 in advance.
  • the 2nd process part 103 produces
  • the accumulated charge amount be as large as possible within a range that does not exceed the upper limit of power that can be charged by the energy management service (eg, chargeable up to SOC 95%) with one day as a cycle.
  • the integrated discharge amount be as large as possible within a range that does not exceed the upper limit of power that can be discharged by the energy management service (eg, discharge is possible up to SOC 5%).
  • the second processing unit 103 generates second information corresponding to each of the plurality of storage batteries 30 so that the time period in which the SOC value is equal to or lower than the predetermined value or higher than the predetermined value is different for each storage battery 30. May be.
  • the communication unit 21 of each storage battery control device 20 receives the charge / discharge schedule (or receives information on the power unit price by time zone and information on the upper limit value of output by time zone for the energy management service, A schedule may be generated by the calculation unit 22. In that case, the generated schedule is transmitted from the communication unit 21 to the control device 10). And the calculation part 22 of the storage battery control apparatus 20 specifies the electric power which makes the storage battery 30 charge at each timing, and the electric power to discharge based on the said charging / discharging schedule. And the calculation part 22 of the storage battery control apparatus 20 adds the output (charge or discharge) of the storage battery 30 for the energy management service in each timing, and the output (charge or discharge) of the storage battery 30 for the ancillary service. By combining, the content of the output (charge or discharge) of the storage battery 30 at the timing is determined. And the storage battery control part 23 of the storage battery control apparatus 20 operates the storage battery 30 by the specified content.
  • a receiving unit (first receiving unit 102 and second receiving unit 104) is provided corresponding to each service unit (first service unit 1 and second service unit 2).
  • a common receiving unit may be provided in a plurality of service units.
  • the common communication unit 106 is provided for a plurality of service units.
  • a communication unit may be provided for each service unit. This assumption is the same in all the following embodiments.
  • FIG. 7 shows an example of a functional block diagram of the storage battery control device 20 of the present embodiment.
  • the storage battery control device 20 includes a communication unit 21, a calculation unit 22, and a storage battery control unit 23.
  • the communication unit 21 receives first information related to the ancillary service (first service) and second information related to the energy management service (second service).
  • the communication unit 21 a first information for identifying the power to charge or discharge the battery 30 with respect to the LFC control: receiving (eg a max_n, B, instruction value, A max, d n, etc.) can do.
  • the communication unit 21 can receive first information (eg, GF control information) for specifying power to be charged or discharged to the storage battery 30 in connection with GF control, system frequency, and the like.
  • first information eg, GF control information
  • the communication part 21 can receive a system
  • the communication unit 21 provides second information (information necessary for determining the charge / discharge schedule or the charge / discharge schedule) for specifying the power to be charged or discharged to the storage battery 30 in relation to the energy management service. Can be received.
  • the communication unit 21 may include a plurality of receiving units for receiving each of these pieces of information, or a single receiving unit may receive a plurality of pieces of information.
  • the communication unit 21 may include a plurality of transmission units for transmitting various types of information in order to avoid data congestion, and may transmit various types of information using a single transmission unit.
  • the calculation part 22 calculates the electric power which makes the storage battery 30 charge or discharge based on 1st information and 2nd information. Specifically, based on the first information, the calculation unit 22 specifies the power [W] to charge or discharge the storage battery 30 at each timing in relation to the ancillary service. Moreover, the calculation part 22 specifies electric power [W] which makes the storage battery 30 charge or discharge at each timing based on 2nd information regarding an energy management service. And the calculation part 22 specifies electric power [W] which makes the storage battery 30 charge or discharge at each timing by adding them.
  • FIG. 8 shows a graph in which time is plotted on the horizontal axis and power (PCS control rate) for charging or discharging the storage battery 30 is plotted on the vertical axis.
  • First in the figure indicates the power to be charged or discharged to the storage battery 30 in association with the ancillary service specified based on the first information.
  • Force 2nd shows the electric power which makes the storage battery 30 charge or discharge in relation to the energy management service specified based on 2nd information.
  • the calculation unit 22 sets the power to be charged in the storage battery 30 to a positive value and the power to be discharged to the storage battery 30 to a negative value (or vice versa), and causes the storage battery 30 to charge or discharge in relation to the ancillary service at each timing.
  • the power is calculated.
  • the power to charge or discharge the storage battery 30 is calculated in relation to the energy management service at each timing.
  • the power to be charged or discharged to the storage battery 30 at each timing is calculated. Since the output for each service is adjusted based on the control information, the sum of the values exceeds the control rate 100% of the charge output and the control rate 100% of the discharge output at any timing. (That is, the rated output of the PCS is not exceeded).
  • the storage battery control unit 23 controls (charges or discharges) the storage battery 30 with the content calculated by the calculation unit 22.
  • an ancillary service and an energy management service can be simultaneously performed in parallel in one storage battery 30. That is, charging and discharging corresponding to both services can be performed by one storage battery 30 at the same timing. With this technology, the utilization efficiency of the storage battery and the PCS increases.
  • the upper limit of the PCS output for each service is determined in advance. And the output in each service is made within the range which satisfies the upper limit. For this reason, it is possible to suppress the occurrence of inconvenience that the sum of outputs for each service exceeds the rated output value of the PCS for the storage battery 30.
  • the upper limit of the PCS output for each service can be changed for each time period. For this reason, a larger output can be given to the service to be prioritized in each time zone.
  • the determination of the upper limit value of the PCS output for each service may be performed on the control device 10 side, it is performed on the storage battery control device 20 side, and is performed by sending the contents to the control device 10. Also good.
  • the ancillary service and the energy management service are performed in parallel on one storage battery 30.
  • both services can be implemented in one storage battery 30 in parallel without inconvenience from the viewpoint of the amount of charge power and the free capacity of the storage battery 30.
  • the period in which the first timing appears and the period in which the second timing appear are different from each other. Specifically, the period in which the first timing appears is shorter than the period in which the second timing appears.
  • the first service and the second service having such a relationship are performed in parallel, there is no inconvenience in terms of the amount of charge power and the free capacity of the storage battery 30, and both services are performed in parallel.
  • One storage battery 30 can be implemented.
  • the control device 10 may not include the second service unit 2. Then, the first receiving unit 102 receives the rated output value [W] of the PCS for each storage battery 30, and the first processing unit 101 charges or discharges the storage battery 30 in relation to the first service.
  • the first information for specifying the power [W] may be generated based on the rated output value [W] of the PCS for each storage battery 30. In the first processing unit 101, the power [W] to be charged or discharged to the storage battery 30 in relation to the first service is less than the rated output value [W] of the PCS for each storage battery 30, for example, the rated output value [W].
  • First information is generated so as to be equal to or less than Q% (0 ⁇ Q ⁇ 100).
  • the first processing unit 101 sets the upper limit a max_n for LFC control of each storage battery 30 and the upper limit c max_n for GF control, and the sum of these is the rated output value [W] of the PCS for each storage battery 30 It is determined to be less than, for example, Q% (0 ⁇ Q ⁇ 100) or less of the rated output value [W]. Then, the communication unit 106 transmits the first information to the storage battery control device 20.
  • the storage battery control device 20 includes a communication unit 21, a calculation unit 22, and a storage battery control unit 23.
  • the communication unit 21 receives the first information.
  • the calculation part 22 specifies electric power [W] which makes the storage battery 30 charge or discharge in relation to a 1st service based on 1st information.
  • the calculation part 22 specifies electric power [W] which makes the storage battery 30 charge or discharge in relation to a 2nd service based on 1st information and the rated output value [W] of PCS for each storage battery 30. To do. Specifically, the calculation unit 22 obtains a value obtained by subtracting the power [W] to charge or discharge the storage battery 30 in relation to the first service from the rated output value [W] in relation to the second service. It is specified as the maximum value of the electric power [W] for charging or discharging the storage battery 30.
  • the calculation part 22 determines the electric power [W] which makes the storage battery 30 charge or discharge in relation to a 2nd service in the range below the said maximum value.
  • the calculation unit 22 determines the time zone for charging and the time zone for discharging by the same method as the second processing unit 103 described above. And in the time slot
  • the calculation unit 22 specifies the “power [W] to charge or discharge the storage battery 30 in relation to the first service” specified based on the first information, and the calculated “in relation to the second service”.
  • the power [W] for charging or discharging the storage battery 30 is calculated by adding together the power [W] for charging or discharging the storage battery 30.
  • the storage battery control unit 23 controls the storage battery 30 with the content calculated by the calculation unit 22.
  • the amount of information transmitted from the control device 10 to the plurality of storage battery control devices 20 can be reduced (the amount of not transmitting the second information).
  • Modification 2 Another modification will be described.
  • An example of a functional block diagram of the control device 10 of the present modification is shown in FIG.
  • the configurations of the first service unit 1, the second service unit 2, and the control unit 105 are as described above.
  • the communication unit 106 transmits the first information generated by the first service unit 1 to the storage battery control device 20, but transmits the second information generated by the second service unit 2 to the storage battery control device 20. do not do.
  • the configuration of the storage battery control device 20 of the modification is the same as the configuration of the storage battery control device 20 of the modification 1.
  • the amount of information transmitted from the control device 10 to the plurality of storage battery control devices 20 can be reduced (the amount of not transmitting the second information).
  • generated is managed within the control apparatus 10, and is utilized for grasping
  • Modification 3 Another modification will be described. An example of a functional block diagram of the control device 10 of the present modification is shown in FIG.
  • the control unit 105 acquires or sets control information that is information related to the storage battery 30 and that indicates at least one of the upper limit of the output for the first service and the upper limit of the output for the second service.
  • the control device 10 includes a process in which the first processing unit 101 of the first service unit 1 generates the first information based on the control information, and a second processing unit 103 of the second service unit 2 At least one of the processes for generating the second information based on the control information is performed.
  • the first processing unit 101 of the first service unit 1 generates the first information based on the control information
  • the second processing unit 103 of the second service unit 2 performs the second processing based on the control information. Details of the process of generating information are as described above.
  • the communication unit 106 transmits at least one of the first information and the second information (generated one) to the storage battery control device 20.
  • the configuration of the storage battery control device 20 of the modification is the same as the configuration of the storage battery control device 20 of the modification 1.
  • the storage battery control device 20 determines, based on the received first information or second information, “power [W] to charge or discharge the storage battery 30 in relation to the first service” and “second At least one of the electric power [W] to be charged or discharged by the storage battery 30 in relation to the service is specified.
  • the value obtained by subtracting the specified power from the rated output value of the PCS is specified as the maximum value of the power [W] that causes the storage battery 30 to be charged or discharged in relation to the other service.
  • the calculation part 22 determines the electric power [W] which makes the storage battery 30 charge or discharge in relation to the other service in the range below the maximum value.
  • the amount of information transmitted from the control device 10 to the plurality of storage battery control devices 20 can be reduced (the amount of not transmitting the second information).
  • the present embodiment is different from the first embodiment in that the ancillary service (first service) and the imbalance avoidance service (second service) are performed in one storage battery 30 in parallel.
  • the imbalance avoidance service is a service for retail electric utilities. If it is difficult to achieve the same amount for 30 minutes by adjusting its own system, the retail electric utility will make a predetermined timing for the storage battery owned by the consumer with which the retail electric enterprise has a power supply contract with the resource aggregator. Request a predetermined amount of charging or discharging. The resource aggregator controls the storage battery 30 based on the request, and performs a predetermined amount of charging or discharging at a predetermined timing.
  • FIG. 9 shows an example of a functional block diagram of the control system of the present embodiment. As shown in the figure, the control system of this embodiment is different from that of the first embodiment in that it includes a retail electric company system 50.
  • the retail electric company system 50 is a system owned by the retail electric company. When it is difficult to achieve the same amount for 30 minutes by adjusting the own system, the retail electric company system 50 requests the controller 10 to charge or discharge a predetermined amount at a predetermined timing.
  • FIG. 3 shows an example of a functional block diagram of the control device 10 of the present embodiment.
  • the control device 10 includes a first service unit 1, a second service unit 2, a control unit 105, and a communication unit 106.
  • the communication unit 106 communicates with a plurality of storage battery control devices 20 to transmit and receive information.
  • the first service unit 1 is a functional unit that executes processing for an ancillary service.
  • the 1st service part 1 is the 1st receiving part 102 which receives the information (example: supply-and-demand control signal transmitted from the power transmission and distribution company system 40) for 1st services, and the control content of the storage battery 30.
  • a first processing unit 101 that generates information for specifying.
  • the second service unit 2 is a functional unit that executes processing for an imbalance avoidance service.
  • the 2nd service part 2 specifies the control content of the 2nd receiving part 104 and the storage battery 30 which receive the information (example: charge / discharge request from the retail electricity supplier system 50) for 2nd services.
  • a second processing unit 103 that generates information for the purpose.
  • the control unit 105 controls the first service unit 1 and the second service unit 2.
  • the control unit 105 prevents the sum of the output (charging and discharging) for the ancillary service and the output (charging and discharging) for the imbalance avoidance service from exceeding the rated output value of the PCS for the storage battery 30. Can be controlled.
  • control unit 105 acquires information about the storage battery 30 and indicates control information indicating the upper limit of the output for the ancillary service and the upper limit of the output for the imbalance avoidance service, or by itself. Set with. The sum of the upper limit of the output for the ancillary service and the upper limit of the output for the imbalance avoidance service is equal to or lower than the rated output value of the PCS for the storage battery 30.
  • the first service unit 1 and the second service unit 2 charge or discharge each storage battery 30 so as not to exceed the upper limit of power to be charged or discharged to the storage battery 30 in relation to each service indicated by the control information. Is executed. As a result, it is possible to avoid the disadvantage that the sum of the output (charging and discharging) for the ancillary service and the output (charging and discharging) for the imbalance avoidance service exceeds the rated output value of the PCS for the storage battery 30.
  • control information are the same as in the first embodiment.
  • a resource aggregator operator may set control information and input it to the control unit 105.
  • control unit 105 may set control information.
  • the process in which the control unit 105 sets control information is the same as that in the first embodiment.
  • the storage battery 30 When the storage battery 30 is controlled in connection with the ancillary service, the storage battery 30 repeats the charging process and the discharging process with a relatively short cycle. It is rare to continue only one of them for a long time. For this reason, when the difference between the accumulated charge amount [Wh] and the accumulated discharge amount [Wh] in the ancillary service is observed in time series, although the SOC is varied, the difference is repeated in a relatively short time interval. A time point of “0” appears.
  • the integrated charge amount and the integrated discharge amount can be made equal. It is assumed that the operation includes bias control that compensates for the charge / discharge loss of the storage battery 30.
  • a predetermined amount of charging and a predetermined amount of discharging may be achieved in a relatively long time (for example, 30 minutes).
  • a relatively long time for example, 30 minutes.
  • the change in the charged power amount and free capacity of the storage battery 30 by the ancillary service is Almost no effect. That is, in achieving the purpose of the imbalance avoidance service, it can be said that there is little need to consider changes in the amount of charge power and free capacity of the storage battery 30 due to the ancillary service.
  • both free capacity and charge power are balanced so that both charge and discharge can be supported.
  • the ancillary service In the ancillary service, it is only necessary to discharge and charge at a predetermined power [W] at each timing in accordance with instructions from the power transmission and distribution company system 40. In the case of the ancillary service in which the charging process and the discharging process are repeated at a relatively short cycle as described above, it is sufficient that both the relatively small free capacity and the relatively small charging power are secured in the storage battery 30.
  • the capacity of the storage battery 30 that can be used in the imbalance avoidance service may be determined in advance. For example, an upper limit of power that can be charged by the imbalance avoidance service (e.g., chargeable up to SOC 85%) or an upper limit of power that can be discharged by the imbalance avoidance service (e.g., dischargeable to SOC 15%) may be determined in advance. .
  • an upper limit of power that can be charged by the imbalance avoidance service e.g., chargeable up to SOC 85%
  • an upper limit of power that can be discharged by the imbalance avoidance service e.g., dischargeable to SOC 15%
  • the control unit 105 displays information indicating an upper limit and a lower limit that can be charged / discharged by the imbalance avoidance service (the amount of power Wh that can be charged or discharged in 30 minutes from the scheduled time of implementation of the imbalance avoidance service and Further, an upper limit, a lower limit prediction / estimation value, and the like of the output W for realizing the electric energy are acquired.
  • the operator of the resource aggregator determines and inputs to the control unit 105. And the 2nd service part 2 controls operation
  • the operation in which the time zone where the SOC becomes “0” or “100%” is shifted little by little for each storage battery 30 is the second operation. If the service unit 2 performs (e.g., the second processing unit 103 generates the second information in which the time zone in which the SOC becomes 0 or 100% is shifted for each storage battery 30), it continues in all the time zones. Ancillary service can be implemented.
  • the configuration of the first service unit 1 is the same as that of the first embodiment.
  • the second service unit 2 controls the operation (charging and discharging) of the storage battery 30 based on the control information acquired or set by the control unit 105 and the request received from the retail electricity supplier system 50.
  • the second service unit 2 controls the operation of the storage battery 30 so that the output power (charging power and discharging power) of each storage battery 30 does not exceed the upper limit of the output for the imbalance avoidance service specified by the control information. Control.
  • the second processing unit 103 receives information indicating the state (e.g., SOC) of each storage battery 30 that is repeatedly received from the plurality of storage battery control devices 20 at a predetermined period, and the current power demand value (storage battery) of each consumer. And the latest value of the amount of power that can be charged by the imbalance avoidance service, the amount of power that can be discharged, and the future imbalance. The estimated value for every 30 minutes of each time zone in which the avoidance service is scheduled is grasped for each storage battery 30. And the 2nd process part 103 adds them, and the latest value of the electric energy which can be charged with the some storage battery 30 whole, the discharge amount which can be discharged, etc., and each future time Calculate the estimated value for the band. And the 2nd process part 103 considers the information of the baseline of each time slot
  • SOC state of each storage battery
  • the control device 10 transmits the result calculated by the second processing unit 103 to the retail electricity supplier system 50. Based on this information, the retail electricity supplier system 50 makes a request for avoiding imbalance (when, what Wh imbalance avoidance within a range not exceeding the upper limit of the electric energy [Wh] that can be expected for imbalance avoidance. Do you request the amount of power for?
  • the second processing unit 103 identifies the amount of electric power [Wh] to charge or discharge and the time zone based on the request received by the second receiving unit 104 from the retail electricity supplier system 50. Then, the second processing unit 103 selects the storage battery 30 to be charged or discharged based on the content of the request and the amount of power that can be charged and / or discharged by each storage battery 30 that is grasped. The amount of electric power [Wh] for charging or discharging the storage battery 30 is determined. And the 2nd process part 103 produces
  • the second processing unit 103 generates a charge / discharge schedule so that the power to be charged or discharged at each timing does not exceed the upper limit of the output for the imbalance avoidance service specified by the control information.
  • the communication unit 21 of each storage battery control device 20 receives the charge / discharge schedule and baseline power information for the imbalance avoidance service. And the calculation part 22 of the storage battery control apparatus 20 specifies the electric power which makes the storage battery 30 charge or discharge at each timing based on the said charging / discharging schedule.
  • the calculation part 22 of the storage battery control apparatus 20 outputs the output (charge or discharge) of the storage battery 30 for the imbalance avoidance service at each timing and the output (charge or discharge) of the storage battery 30 for the ancillary service. By adding together, the content of the output (charge or discharge) of the storage battery 30 at the timing is determined. And the storage battery control part 23 of the storage battery control apparatus 20 makes the storage battery 30 operate
  • FIG. 7 shows an example of a functional block diagram of the storage battery control device 20 of the present embodiment.
  • the storage battery control device 20 includes a communication unit 21, a calculation unit 22, and a storage battery control unit 23.
  • the communication unit 21 receives first information related to the ancillary service (first service) and second information related to the imbalance avoidance service (second service).
  • first service first information related to the ancillary service
  • second service second information related to the imbalance avoidance service
  • the first information regarding the ancillary service received by the communication unit 21 is the same as in the first embodiment.
  • the communication unit 21 intermittently (retails) the second information (charge / discharge schedule and baseline power information) for specifying the power to be charged or discharged to the storage battery 30 in relation to the imbalance avoidance service.
  • the second information charge / discharge schedule and baseline power information
  • the communication unit 21 may include a plurality of receiving units for receiving each of these pieces of information, or a single receiving unit may receive a plurality of pieces of information.
  • the structure of the calculation part 22 and the storage battery control part 23 is the same as that of 1st Embodiment.
  • an ancillary service and an imbalance avoidance service can be performed in parallel in one storage battery 30. That is, charging and discharging corresponding to both services can be performed by one storage battery 30 at the same timing. With this technology, the utilization efficiency of the storage battery and the PCS increases.
  • the upper limit of the PCS output for each service is determined in advance. And the output in each service is made within the range which satisfies the upper limit. For this reason, it is possible to suppress the occurrence of inconvenience that the sum of outputs for each service exceeds the rated output value of the PCS for the storage battery 30.
  • the upper limit of the PCS output for each service can be changed for each time period. For this reason, a larger output can be given to the service to be prioritized in each time zone.
  • the ancillary service and the imbalance avoidance service are performed in parallel on one storage battery 30.
  • both services can be implemented in one storage battery 30 in parallel without inconvenience from the viewpoint of the amount of charge power and the free capacity of the storage battery 30.
  • the storage battery control device 20 assumes that a malfunction occurs such that the breaker goes down when the storage battery 30 is charged because other devices will use power. Is transmitted from the arbitrary device on the consumer side to the control device 10 (for example, information indicating that the difference between the total power consumption in the customer and the predetermined value is smaller than the predetermined level). To do.
  • the control device 10 determines that the ancillary service in the imbalance avoidance service time zone is not to be performed by the storage battery 30 of the consumer, and the information is stored as the storage battery control device of the consumer. 20 is transmitted.
  • the storage battery control device 20 causes the storage battery 30 to perform only charging / discharging based on the imbalance avoidance service during the time period. At that time, the upper limit output for the imbalance avoidance service is increased to the rated output value of the PCS for the storage battery 30. In charge / discharge for avoiding imbalance, the storage battery control device 20 can determine the output while locally monitoring the power consumption of the load.
  • the charge / discharge output can be controlled within the range where the breaker does not fall, and the upper limit output can be increased.
  • the desired amount of Wh can be achieved within a predetermined time (30 minutes)
  • the desired Wh value can be achieved in a short time. It will be possible to stop and resume the ancillary service.
  • control unit 105 of the control device 10 can determine to stop the execution of one of the first service and the second service.
  • the communication part 106 can stop implementation of one of a 1st service and a 2nd service, and can transmit a signal to the storage battery control apparatus 20.
  • the control unit 105 it is possible to decide to stop the execution of one of the control unit 105, the first service, and the second service and raise the upper limit of the other output.
  • the first processing unit 101 can generate the first information based on the raised upper limit of the output.
  • the second processing unit 103 can generate the second information based on the raised upper limit of the output.
  • This embodiment is different from the first and second embodiments in that the ancillary service (first service) and the surplus power absorption service (second service) are performed in parallel by one storage battery 30. Different.
  • the surplus power absorption service is a service for power generation companies that own power generation devices that use natural energy (eg, sunlight).
  • the power generation company requests the resource aggregator to perform charging to avoid the output suppression.
  • the resource aggregator controls the storage battery 30 based on the request, and causes the battery to be charged at a predetermined timing.
  • the time period for suppression (for example, the next day is 1st, the next day from 13:00 to 16:00) is determined.
  • the amount of suppression may be the case where the output is “0”, or the case where the upper limit of output (XX% of the rated output) is determined for each unit time zone (eg, 30 minutes).
  • FIG. 10 shows an example of a functional block diagram of the control system of the present embodiment.
  • the control system of the present embodiment is different from the first embodiment in that it includes a power generation company system 60.
  • the power generation company system 60 is a system owned by the power generation company.
  • the power generation company system 60 receives the request for output suppression for the next day from the power transmission / distribution company system 40, it transmits it to the control device 10 and requests charging for the suppressed amount. Further, the power generation company system 60 may calculate the power generation prediction for the next day and transmit it to the control device 10.
  • the power generation prediction is calculated based on the attribute (weather, temperature, etc.) of the next day. The details of the calculation method of power generation prediction are design matters.
  • FIG. 3 shows an example of a functional block diagram of the control device 10 of the present embodiment.
  • the control device 10 includes a first service unit 1, a second service unit 2, a control unit 105, and a communication unit 106.
  • the communication unit 106 communicates with a plurality of storage battery control devices 20 to transmit and receive information.
  • the first service unit 1 is a functional unit that executes processing for an ancillary service.
  • the 1st service part 1 is the 1st receiving part 102 which receives the information (example: supply-and-demand control signal transmitted from the power transmission and distribution company system 40) for 1st services, and the control content of the storage battery 30.
  • a first processing unit 101 that generates information for specifying.
  • the second service unit 2 is a functional unit that executes processing for surplus power absorption service.
  • the 2nd service part 2 is the 2nd receiving part 104 which receives the information (example: charge request from power transmission / distribution company system 40, power generation prediction) for the 2nd service, and the control contents of storage battery 30
  • a second processing unit 103 that generates information for specifying.
  • the control unit 105 controls the first service unit 1 and the second service unit 2.
  • the control unit 105 prevents the sum of the output (charging and discharging) for the ancillary service and the output (charging and discharging) for the surplus power absorption service from exceeding the rated output value of the PCS for the storage battery 30. Can be controlled.
  • the control unit 105 is information on the storage battery 30 and acquires or sets control information indicating the upper limit of the output for the ancillary service and the upper limit of the output for the surplus power absorption service.
  • the sum of the upper limit of the output for the ancillary service and the upper limit of the output for the surplus power absorption service is equal to or less than the rated output value of the PCS for the storage battery 30.
  • the first service unit 1 and the second service unit 2 charge or discharge each storage battery 30 so as not to exceed the upper limit of power to be charged or discharged to the storage battery 30 in relation to each service indicated by the control information. Is executed. As a result, it is possible to avoid the disadvantage that the sum of the output (charging and discharging) for the ancillary service and the output (charging and discharging) for the surplus power absorption service exceeds the rated output value of the PCS for the storage battery 30.
  • control information are the same as in the first embodiment.
  • a resource aggregator operator may set control information and input it to the control unit 105.
  • control unit 105 may set control information.
  • the process in which the control unit 105 sets control information is the same as that in the first embodiment.
  • the storage battery 30 When the storage battery 30 is controlled in connection with the ancillary service, the storage battery 30 repeats the charging process and the discharging process with a relatively short cycle. It is rare to continue only one of them for a long time. For this reason, when the difference between the accumulated charge amount [Wh] and the accumulated discharge amount [Wh] in the ancillary service is observed in time series, although the SOC is varied, the difference is repeated in a relatively short time interval. A time point of “0” appears.
  • the integrated charge amount and the integrated discharge amount can be made equal. It is assumed that the operation includes bias control that compensates for the charge / discharge loss of the storage battery.
  • a predetermined amount of charging may be achieved in a relatively long time (for example, 1 hour). For this reason, in achieving the purpose of the surplus power absorption service (predetermined amount of charge in a relatively long time), changes in the amount of charge power and free capacity of the storage battery 30 due to the ancillary service have little effect. That is, in achieving the purpose of the surplus power absorption service, it can be said that there is little need to consider changes in the amount of charge power and free capacity of the storage battery 30 due to the ancillary service.
  • the ancillary service it is only necessary to discharge and charge at a predetermined power [W] at each timing in accordance with instructions from the power transmission and distribution company system 40.
  • the charging process and the discharging process are repeated at a relatively short cycle as described above, it is sufficient that both the relatively small free capacity and the relatively small charging power are secured in the storage battery 30.
  • the upper limit of the power that can be charged by the surplus power absorption service eg, charging up to SOC 95%)
  • the change in the free capacity of the storage battery 30 and the charge power due to the surplus power absorption service is ancillary service. It does not affect.
  • control unit 105 further acquires information indicating an upper limit that can be charged by the surplus power absorption service.
  • the operator of the resource aggregator determines and inputs to the control unit 105.
  • the 2nd service part 2 controls operation
  • the configuration of the first service unit 1 is the same as that of the first embodiment.
  • the second service unit 2 controls the operation (charging and discharging) of the storage battery 30 based on the control information acquired or set by the control unit 105 and the request received from the power generation company system 60.
  • the second service unit 2 controls the operation of the storage battery 30 so that the output power (charging power) of each storage battery 30 does not exceed the upper limit of the output for the surplus power absorption service specified by the control information.
  • the second processing unit 103 determines each timing based on the output suppression request transmitted from the power transmission / distribution company system 40 to the power generation company 60 and the power generation prediction received from each power generation company system 60 on the next day.
  • the electric power that needs to be suppressed at the time, that is, the electric power to be charged to the plurality of storage batteries 30 at each timing is calculated.
  • the 2nd process part 103 produces
  • control device 10 may calculate the power generation prediction by its own device instead of the process of receiving the power generation prediction from the power generation company system 60.
  • control apparatus 10 when the control apparatus 10 receives a request from each of the plurality of power generation company systems 60, after calculating power to be charged at each timing corresponding to each of the plurality of power generation companies, by adding them, It is possible to calculate the power to charge the plurality of storage batteries 30 at each timing. And the 2nd process part 103 can produce
  • the 2nd process part 103 determines the charging schedule of each storage battery 30 so that the electric power made to charge each storage battery 30 does not exceed the upper limit of the output for surplus power absorption service.
  • the communication unit 21 of each storage battery control device 20 receives a charging schedule for surplus power absorption service. And the calculation part 22 of the storage battery control apparatus 20 specifies the electric power made to charge the storage battery 30 at each timing based on the said charging schedule. And the calculation part 22 of the storage battery control apparatus 20 adds together the output (charge) of the storage battery 30 for the surplus power absorption service in each timing, and the output (charge or discharge) of the storage battery 30 for the ancillary service. Thus, the content of the output (charge or discharge) of the storage battery 30 at the timing is determined. And the storage battery control part 23 of the storage battery control apparatus 20 operates the storage battery 30 by the specified content.
  • FIG. 7 shows an example of a functional block diagram of the storage battery control device 20 of the present embodiment.
  • the storage battery control device 20 includes a communication unit 21, a calculation unit 22, and a storage battery control unit 23.
  • the communication unit 21 receives the first information related to the ancillary service (first service) and the second information related to the surplus power absorption service (second service).
  • the first information regarding the ancillary service received by the communication unit 21 is the same as in the first and second embodiments.
  • the communication unit 21 may repeatedly receive the second information (charging schedule) for specifying the power to be charged in the storage battery 30 in relation to the surplus power absorption service at a predetermined cycle (eg, 1 day). it can.
  • a predetermined cycle eg, 1 day
  • the communication unit 21 may include a plurality of receiving units for receiving each of these pieces of information, or a single receiving unit may receive a plurality of pieces of information.
  • the communication unit 21 may include a plurality of transmission units for transmitting various types of information in order to avoid data congestion, and may transmit various types of information using a single transmission unit.
  • the structure of the calculation part 22 and the storage battery control part 23 is the same as that of 1st and 2nd embodiment.
  • one storage battery 30 it is possible to cause one storage battery 30 to perform an ancillary service and a surplus power absorption service in parallel. That is, charging and discharging corresponding to both services can be performed by one storage battery 30 at the same timing. With this technology, the utilization efficiency of the storage battery and the PCS increases.
  • the upper limit of the PCS output for each service is determined in advance. And the output in each service is made within the range which satisfies the upper limit. For this reason, it is possible to suppress the occurrence of inconvenience that the sum of outputs for each service exceeds the rated output value of the PCS for the storage battery 30.
  • the upper limit of the PCS output for each service can be changed for each time period. For this reason, a larger output can be given to the service to be prioritized in each time zone.
  • the ancillary service and the surplus power absorption service are performed in parallel on one storage battery 30.
  • both services can be performed in parallel by the storage battery 30 at the position without any inconvenience from the viewpoint of the amount of charge power and the free capacity of the storage battery 30.
  • the second service to be performed in parallel with the ancillary service has been described as an energy management service, an imbalance avoidance service, and a surplus power absorption service.
  • the same effects can be realized as demand response of negative wattage such as power saving service and energy management service that performs peak cut.
  • the second receiving unit 104 includes an instantaneous value of power consumption [W] in a predetermined target (each power consumer, a power consumer group including a plurality of power consumers, etc.)
  • the monitoring target such as the power consumption [Wh] in the latest unit time, or the predicted value thereof, is received.
  • the 2nd process part 103 produces
  • the second processing unit 103 generates second information to be discharged when the monitoring target value exceeds a predetermined threshold.
  • the discharge power [W] may be determined according to the degree of exceeding a predetermined threshold.
  • an ancillary service (first service) and an energy management service (second service) are executed in parallel in one storage battery 30, and an energy management service (second service) is selected.
  • the third embodiment is different from the first to third embodiments in that an imbalance avoidance service (third service) is performed.
  • FIG. 9 shows an example of a functional block diagram of the control system of the present embodiment.
  • the storage battery control device 20 While there is no request for charging and discharging for imbalance avoidance service from the retail electricity supplier system 50, the storage battery control device 20 performs charging or discharging for ancillary service and charging or discharging for energy management service. Is implemented in the storage battery 30. During this time, charging and discharging for the imbalance avoidance service are not performed.
  • the storage battery control device 20 performs charging or discharging for the ancillary service and charging for the imbalance avoidance service. Alternatively, the storage battery 30 is discharged. During this time, charging and discharging for energy management services are not performed.
  • the energy management service (second service) is performed, and if there is such a request, the imbalance avoidance is performed.
  • the service (third service) is preferentially implemented.
  • the implementation of the ancillary service (first service) continues while any of these are being implemented.
  • FIG. 11 shows an example of a functional block diagram of the control device 10 of the present embodiment.
  • the control device 10 includes a first service unit 1, a second service unit 2, a third service unit 3, a control unit 105, and a communication unit 106.
  • the communication unit 106 communicates with a plurality of storage battery control devices 20 to transmit and receive information.
  • the first service unit 1 is a functional unit that executes processing for an ancillary service.
  • the 1st service part 1 is the 1st receiving part 102 which receives the information (example: supply-and-demand control signal transmitted from the power transmission and distribution company system 40) for 1st services, and the control content of the storage battery 30.
  • a first processing unit 101 that generates information for specifying.
  • the 2nd service part 2 is a function part which performs the process for energy management services.
  • the second service unit 2 generates information for specifying the control content of the storage battery 30 and the second reception unit 104 that receives information for the second service (for example, unit price of power for each time zone).
  • a second processing unit 103 is a functional unit that executes processing for an ancillary service.
  • the third service unit 3 is a functional unit that executes processing for an imbalance avoidance service.
  • the 3rd service part 3 specifies the control content of the 3rd receiving part 106 and the storage battery 30 which receive the information (example: charge / discharge request from the retail electricity supplier system 50) for 3rd services.
  • a third processing unit 107 that generates information for the purpose.
  • the control unit 105 controls the first service unit 1, the second service unit 2, and the third service unit 3.
  • the control unit 105 performs control so that the sum of the output (charging and discharging) for the ancillary service and the output (charging and discharging) for the energy management service does not exceed the rated output value of the PCS for the storage battery 30. can do. Further, the control unit 105 determines that the sum of the output for the ancillary service (charging and discharging) and the output for the imbalance avoidance service (charging and discharging) does not exceed the rated output value of the PCS for the storage battery 30. Can be controlled.
  • control unit 105 acquires information on the storage battery 30 and control information indicating the upper limit of the output for the ancillary service and the upper limit of the output for the energy management service, or by itself. Set. The sum of the upper limit of the output for the ancillary service and the upper limit of the output for the energy management service is less than or equal to the rated output value of the PCS for the storage battery 30.
  • the first service unit 1 and the second service unit 2 charge or discharge each storage battery 30 so as not to exceed the upper limit of power to be charged or discharged to the storage battery 30 in relation to each service indicated by the control information. Is executed. Moreover, the 3rd service part 3 charges each storage battery 30 so that the upper limit of the electric power charged or discharged to the storage battery 30 in relation to the energy management service (2nd service) shown by the said control information may not be exceeded. Or discharge is performed.
  • control information is the same as in the first to third embodiments.
  • a resource aggregator operator may set control information and input it to the control unit 105.
  • control unit 105 may set control information.
  • the process in which the control unit 105 sets control information is the same as in the first to third embodiments.
  • the configurations of the first service unit 1 and the second service unit 2 are the same as those in the first to third embodiments.
  • the third service unit 3 controls the operation (charging and discharging) of the storage battery 30 based on the control information acquired or set by the control unit 105 and the request received from the retail electricity supplier system 50.
  • the configuration of the third service unit 3 is the same as the configuration of the second service unit 2 described in the second embodiment.
  • the third processing unit 107 outputs the output (charge or discharge) for the imbalance avoidance service (third service) for the energy management service (second service) indicated by the control information.
  • a charge / discharge schedule (third information) is generated so as not to exceed the upper limit.
  • FIG. 7 shows an example of a functional block diagram of the storage battery control device 20 of the present embodiment.
  • the storage battery control device 20 includes a communication unit 21, a calculation unit 22, and a storage battery control unit 23.
  • the communication unit 21 includes first information related to the ancillary service (first service), second information related to the energy management service (second service), and third information related to the imbalance avoidance service (third service). Receive the information. Information regarding each service received by the communication unit 21 is as described in the above embodiment.
  • the communication unit 21 repeatedly receives the first information for specifying the power to be charged or discharged from the storage battery 30 in relation to the ancillary service at a predetermined period. And the calculation part 22 specifies repeatedly the electric power which makes the storage battery 30 charge or discharge in relation to an ancillary service based on the said 1st information.
  • the communication unit 21 receives second information (for example, a charge / discharge schedule for one day) for specifying the power to be charged or discharged to the storage battery 30 in relation to the energy management service.
  • the calculation part 22 specifies the electric power which makes the storage battery 30 charge or discharge at each timing in relation to an energy management service based on the said 2nd information.
  • the communication unit 21 includes third information (e.g., a charge / discharge schedule for a predetermined time shorter than one day) for specifying the power to be charged or discharged to the storage battery 30 in relation to the imbalance avoidance service.
  • third information e.g., a charge / discharge schedule for a predetermined time shorter than one day
  • the calculation part 22 specifies the electric power which makes the storage battery 30 charge or discharge in a predetermined time slot
  • the calculation unit 22 specifies the power to be charged or discharged to the storage battery 30 at each timing based on the power to be charged or discharged to the storage battery 30 in relation to each service specified based on the first to third information.
  • the storage battery is related to the ancillary service in the predetermined time zone.
  • the content of the output (charge or discharge) of the storage battery 30 at each timing is determined by adding the power to be charged or discharged to 30 and the power to be charged or discharged to the storage battery 30 in connection with the imbalance avoidance service.
  • the storage battery control part 23 makes the storage battery 30 operate
  • the calculation unit 22 is to have the power to be charged or discharged to the storage battery 30 in relation to the ancillary service;
  • the contents of the output (charge or discharge) of the storage battery 30 at each timing are determined by adding together the power to be charged or discharged to the storage battery 30 in relation to the energy management service.
  • the storage battery control part 23 makes the storage battery 30 operate
  • the calculation unit 22 receives the first information, the second information, and the third information for charging or discharging the storage battery 30 at the same timing, based on the first information and the third information, The electric power which makes the storage battery 30 charge or discharge at the said timing is calculated.
  • FIG. 12 shows the concept of processing by the calculation unit 22.
  • FIG. 12 shows a graph in which time is plotted on the horizontal axis and power (PCS control rate) for charging or discharging the storage battery 30 is plotted on the vertical axis.
  • First in the figure indicates the power to be charged or discharged to the storage battery 30 in association with the ancillary service specified based on the first information.
  • “For 2nd” shows the electric power which makes the storage battery 30 charge or discharge in relation to the energy management service specified based on 2nd information.
  • “For 3rd” indicates the power to be charged or discharged to the storage battery 30 in relation to the imbalance avoidance service specified based on the third information. From the figure, it can be seen that the ancillary service and the energy management service, the ancillary service and the imbalance avoidance service are executed in parallel, and the energy management service and the imbalance avoidance service are selectively executed.
  • control device 10 may determine which one is prioritized each time, and may prioritize the determined one. For example, the control device 10 may consider the revenue of the customer and the resource aggregator at the time of each service implementation, may give priority to those who can expect higher revenue on the resource aggregator side, or those that can be expected on the customer side The priority may be given, or the one determined based on the contract contents of the resource aggregator and the customer may be given priority.
  • the selection method is not limited to this.
  • control device 10 determines which of the second service and the third service is prioritized (control unit 105)
  • the control device 10 transmits the determined content to the storage battery control device 20 (communication unit 106).
  • the storage battery control device 20 determines the charge / discharge content of the storage battery 30 with priority given to the received determination content. That is, when the communication unit 21 receives the first information, the second information, and the third information for charging or discharging the storage battery 30 at the same timing, the calculation unit 22 gives priority to the first information. On the basis of information (second information or third information) on the other service, electric power to charge or discharge the storage battery 30 at the timing is calculated.
  • the same operational effects as those of the first to third embodiments can be realized.
  • the storage battery 30 can be made to implement three services at once. For this reason, the utilization efficiency of the storage battery 30 further increases.
  • the second processing unit 103 may regenerate (update) the second information (charge / discharge schedule) according to the implementation of the imbalance avoidance service. Specifically, the second processing unit 103 receives, for example, the information (the latest SOC of the storage battery 30, etc.) received from each storage battery control device 20, for example, the charging power amount and free capacity of the storage battery 30 at the end of the imbalance avoidance service. Based on And when the present time is a time slot to discharge, the charge / discharge schedule which discharges the charge energy of the present time is produced
  • the second processing unit 103 when the time when the imbalance avoidance service is finished is the discharge time period determined by the second information (charge / discharge schedule), when the imbalance avoidance service is finished.
  • a charge / discharge schedule (second information) is newly generated for discharging the amount of charge power of the storage battery 30 in the remaining discharge time zone.
  • the second processing unit 103 vacates the storage battery 30 at the time when the imbalance avoidance service is completed.
  • a charge / discharge schedule (second information) for newly charging the capacity in the remaining charging time zone is generated.
  • the second service may be the surplus power absorption service described in the third embodiment. Also in this case, the same effect can be realized.
  • the ancillary service (first service) and the energy management service (second service) are performed in parallel on one storage battery 30, and all other services are stopped alone.
  • the fourth embodiment is different from the first to fourth embodiments in that the emergency response service (fourth service) performed in the above is performed.
  • FIG. 2 shows an example of a functional block diagram of the control system of the present embodiment.
  • the power transmission / distribution company system 40 transmits a signal (reserve power signal) to be discharged from the storage battery 30 to the power system in an emergency (e.g., generator stoppage).
  • a signal reserve power signal
  • the control device 10 transmits it to the plurality of storage battery control devices 20.
  • the storage battery control device 20 receives the reserve power signal, the storage battery control device 20 stops the execution of other services and preferentially causes the storage battery 30 to perform discharge based on the reserve power signal.
  • FIG. 13 shows an example of a functional block diagram of the control device 10 of the present embodiment.
  • the control device 10 includes a first service unit 1, a second service unit 2, a fourth service unit 4, a control unit 105, and a communication unit 106.
  • the communication unit 106 communicates with a plurality of storage battery control devices 20 to transmit and receive information.
  • the first service unit 1 is a functional unit that executes processing for an ancillary service.
  • the 1st service part 1 is the 1st receiving part 102 which receives the information (example: supply-and-demand control signal transmitted from the power transmission and distribution company system 40) for 1st services, and the control content of the storage battery 30.
  • a first processing unit 101 that generates information for specifying.
  • the 2nd service part 2 is a function part which performs the process for energy management services.
  • the second service unit 2 generates information for specifying the control content of the storage battery 30 and the second reception unit 104 that receives information for the second service (for example, unit price of power for each time zone).
  • a second processing unit 103 is a functional unit that executes processing for an ancillary service.
  • the 4th service part 4 is a function part which performs the process for emergency response service.
  • the 4th service part 4 generates the 4th receiving part 110 which receives the information (example: reserve power signal) for the 4th service, and the 4th which generates the information for specifying the control contents of storage battery 30
  • the processing unit 109 is included.
  • the configurations of the first service unit 1 and the second service unit 2 are the same as those in the first to fourth embodiments.
  • the fourth service unit 4 controls the operation of the storage battery 30 so that the output power (charging power and discharging power) of each storage battery 30 does not exceed the rated output.
  • the fourth processing unit 109 receives information indicating the state (e.g., SOC) of each storage battery 30 that is repeatedly received from the plurality of storage battery control devices 20 at a predetermined period and information on the rated output of the PCS (an output that is less than the rated output). The amount of electric power that can be discharged by the emergency response service is grasped for each storage battery 30 based on the estimation of the duration of the discharge in the battery.
  • SOC state of each storage battery 30 that is repeatedly received from the plurality of storage battery control devices 20 at a predetermined period
  • information on the rated output of the PCS an output that is less than the rated output.
  • the amount of electric power that can be discharged by the emergency response service is grasped for each storage battery 30 based on the estimation of the duration of the discharge in the battery.
  • the 4th process part 109 calculates the electric energy which can be discharged with the some storage battery 30 by adding the said electric energy of each of the some storage battery 30 together. Thereafter, the fourth processing unit 109 calculates the maximum discharge output that can be handled by the plurality of storage batteries 30 and the duration based on the amount of electric power. Then, the control device 10 transmits the information to the power transmission and distribution company system 40.
  • the power transmission / distribution company system 40 discharges the storage system 30 from the storage battery 30 to the power system within a range that does not exceed the maximum discharge output and duration notified in advance (for example, generator stoppage). Is transmitted to the control device 10.
  • the reserve power signal for example, the output W value and the duration (the duration may be set in advance in the format of the reserve power signal. For example, in the format determined as the instantaneous reserve signal, 10 Minutes, 3 hours or the like in the format determined as the operation reserve signal).
  • the fourth processing unit 109 transmits a storage battery control signal for performing an operation according to the reserve power signal to each storage battery control device 20.
  • the storage battery control signal is, for example, an output W value to be discharged by each storage battery, and this W value is determined in consideration of the duration.
  • the storage battery control device 20 controls the operation of the storage battery 30 based on the storage battery control signal. This control is continued until a signal to stop the reserve power control is received.
  • the fourth processing unit 109 generates the fourth information for specifying the power to be charged or discharged to the storage battery 30 in relation to the emergency response service.
  • the fourth processing unit 109 can generate the fourth information using the rated output value of the PCS for the storage battery 30 as the upper limit of the output for the emergency response service.
  • the communication unit 106 transmits the fourth information to the storage battery control device 20.
  • FIG. 7 shows an example of a functional block diagram of the storage battery control device 20 of the present embodiment.
  • the storage battery control device 20 includes a communication unit 21, a calculation unit 22, and a storage battery control unit 23.
  • the communication unit 21 includes first information related to the ancillary service (first service), second information related to the energy management service (second service), and fourth information related to the emergency response service (fourth service). Receive information. Information regarding each service received by the communication unit 21 is as described above.
  • the calculation unit 22 charges or discharges the storage battery 30 at each timing. Is identified. Moreover, the calculation part 22 specifies the electric power which makes the storage battery 30 charge or discharge at each timing based on the 4th information regarding an emergency response service (4th service).
  • the communication unit 21 intermittently receives the fourth information related to the emergency response service. And when the communication part 21 receives 4th information, the calculation part 22 specifies the electric power which makes the storage battery 30 charge or discharge at each timing based on 4th information regarding a 4th service.
  • the calculation unit 22 adds the fourth information to the fourth information. Based on this, the electric power to charge or discharge the storage battery 30 at the timing is calculated. And the storage battery control part 23 makes the storage battery 30 operate
  • FIG. 14 shows the concept of processing by the calculation unit 22.
  • FIG. 14 shows a graph in which time is plotted on the horizontal axis and power (PCS control rate) for charging or discharging the storage battery 30 is plotted on the vertical axis.
  • “First” in the figure indicates the power to be charged or discharged to the storage battery 30 in association with the ancillary service specified based on the first information.
  • “For 2nd” shows the electric power which makes the storage battery 30 charge or discharge in relation to the energy management service specified based on 2nd information.
  • “For the fourth” indicates the power to be charged or discharged to the storage battery 30 in relation to the emergency response service specified based on the fourth information.
  • the figure shows that ancillary services and energy management services are implemented in parallel. It can also be seen that the ancillary service and the energy management service are suspended while the emergency response service is being implemented.
  • the same operational effects as those of the first to fourth embodiments can be realized.
  • the storage battery 30 can be made to implement three services at once. For this reason, the utilization efficiency of the storage battery 30 further increases.
  • the second service may be replaced with an imbalance avoidance service or a surplus power absorption service. Also in this case, the same effect can be realized.
  • an ancillary service (first service) and an energy management service (second service) are implemented in one storage battery 30 in parallel, and selectively with an energy management service (second service). 1 to 5 in that the system performs the imbalance avoidance service (third service) and the emergency response service (fourth service) that is performed independently with all other services stopped. Different from the embodiment.
  • FIG. 1 An example of a functional block diagram of the control system of the present embodiment is shown in FIG.
  • FIG. 15 shows an example of a functional block diagram of the control device 10 of the present embodiment.
  • the control device 10 includes a first service unit 1, a second service unit 2, a third service unit 3, a fourth service unit 4, a control unit 105, and a communication unit 106.
  • the communication unit 106 communicates with a plurality of storage battery control devices 20 to transmit and receive information.
  • the first service unit 1 is a functional unit that executes processing for an ancillary service.
  • the 1st service part 1 is the 1st receiving part 102 which receives the information (example: supply-and-demand control signal transmitted from the power transmission and distribution company system 40) for 1st services, and the control content of the storage battery 30.
  • a first processing unit 101 that generates information for specifying.
  • the 2nd service part 2 is a function part which performs the process for energy management services.
  • the second service unit 2 generates information for specifying the control content of the storage battery 30 and the second reception unit 104 that receives information for the second service (for example, unit price of power for each time zone).
  • a second processing unit 103 is a functional unit that executes processing for an ancillary service.
  • the third service unit 3 is a functional unit that executes processing for an imbalance avoidance service.
  • the 3rd service part 3 specifies the control content of the 3rd receiving part 106 and the storage battery 30 which receive the information (example: charge / discharge request from the retail electricity supplier system 50) for 3rd services.
  • a third processing unit 107 that generates information for the purpose.
  • the 4th service part 4 is a function part which performs the process for emergency response service.
  • the 4th service part 4 generates the 4th receiving part 110 which receives the information (example: reserve power signal) for the 4th service, and the 4th which generates the information for specifying the control contents of storage battery 30
  • the processing unit 109 is included.
  • the configuration of the first service unit 1 to the fourth service unit 4 is the same as that of the first to fifth embodiments.
  • FIG. 7 shows an example of a functional block diagram of the storage battery control device 20 of the present embodiment.
  • the storage battery control device 20 includes a communication unit 21, a calculation unit 22, and a storage battery control unit 23.
  • the communication unit 21 includes first information related to the ancillary service (first service), second information related to the energy management service (second service), and third information related to the imbalance avoidance service (third service). And the 4th information regarding an emergency response service (4th service) is received. Information regarding each service received by the communication unit 21 is as described above.
  • the calculation unit 22 charges or discharges the storage battery 30 at each timing. Is identified. In addition, the calculation unit 22 charges or charges the storage battery 30 at each timing based on the first information related to the ancillary service (first service) and the third information related to the imbalance avoidance service (third service). Specify the power to be discharged. And the storage battery control part 23 makes the storage battery 30 operate
  • the processing by the calculation unit 22 is as described in the fourth embodiment.
  • the communication unit 21 intermittently receives the fourth information related to the emergency response service. And when the communication part 21 receives 4th information, the calculation part 22 specifies the electric power which makes the storage battery 30 charge or discharge at each timing based on 4th information regarding a 4th service. That is, when the communication unit 21 receives the first information, the second information, the third information, and the fourth information for charging or discharging the storage battery 30 at the same timing, the calculation unit 22 Based on the fourth information, the power to be charged or discharged to the storage battery 30 at the timing is calculated. And the storage battery control part 23 makes the storage battery 30 operate
  • the calculation unit 22 receives the first information, the second information, and the third information for charging or discharging the storage battery 30 at the same timing, and receives or discharges the storage battery 30 at the same timing.
  • the electric power to charge or discharge the storage battery 30 at the timing is calculated based on the first information and the third information.
  • the calculation unit 22 receives the first information and the second information for charging or discharging the storage battery 30 at the same timing, and receives the third information and the second information for receiving or discharging the storage battery 30 at the timing.
  • the electric power to charge or discharge the storage battery 30 at the timing is calculated based on the first information and the second information.
  • FIG. 16 shows a concept of processing by the calculation unit 22.
  • FIG. 16 shows a graph in which time is plotted on the horizontal axis and electric power (PCS control rate) for charging or discharging the storage battery 30 is plotted on the vertical axis.
  • “First” in the figure indicates the power to be charged or discharged to the storage battery 30 in association with the ancillary service specified based on the first information.
  • “For 2nd” shows the electric power which makes the storage battery 30 charge or discharge in relation to the energy management service specified based on 2nd information.
  • Form 3rd indicates the power to be charged or discharged to the storage battery 30 in relation to the imbalance avoidance service specified based on the third information.
  • “For the fourth” indicates the power to be charged or discharged to the storage battery 30 in relation to the emergency response service specified based on the fourth information.
  • the ancillary service and energy management service are implemented in parallel, and the energy management service and imbalance avoidance service are selectively implemented. It can also be seen that the ancillary service, energy management service, and imbalance avoidance service are suspended while the emergency response service is being implemented.
  • the same operational effects as those of the first to fifth embodiments can be realized.
  • the four services can be performed by the storage battery 30 at a time. For this reason, the utilization efficiency of the storage battery 30 further increases.
  • the second service may be replaced with a surplus power absorption service. Also in this case, the same effect can be realized.
  • the present embodiment is different from the first to sixth embodiments in the configuration of the storage battery control device 20 and the storage battery 30 side.
  • the configuration of the control device 10 is the same as in the first to sixth embodiments.
  • FIG. 23 shows an example of a functional block diagram of the storage battery control device 20 and the storage battery 30 of the present embodiment.
  • the storage battery control device 20 includes a communication unit 21 and a transmission unit 24.
  • the configuration of the communication unit 21 is the same as in the first to sixth embodiments.
  • the transmission unit 24 uses the PCS (battery unit control device) 32 of the storage battery 30 for information received by the communication unit 21, that is, information used for “a process for calculating the power to charge or discharge the storage battery 30 by the calculation unit 22”. Send to.
  • PCS battery unit control device
  • the storage battery 30 includes a PCS 32 and a battery unit 33.
  • the battery unit 33 has a function of charging power and discharging power according to the control of the PCS 32.
  • the configuration of the battery unit 33 is not particularly limited, and any configuration can be adopted.
  • the PCS 32 includes a calculation unit 22 and a battery unit control unit 31.
  • the configuration of the calculation unit 22 is the same as the calculation unit 22 included in the storage battery control device 20 described in the first to sixth embodiments. That is, the calculation part 22 calculates the electric power which makes the battery part 33 (storage battery 30) charge or discharge based on the information transmitted from the storage battery control apparatus 20.
  • the battery unit control unit 31 charges and discharges from the battery unit 33 with the content calculated by the calculation unit 22.
  • the PCS 32 may measure the system frequency (measured value) for GF control with a built-in sensor in its own device, or directly from the measurement sensor (eg, the measuring instrument in FIG. 17) or via the storage battery control device 20. May be received.
  • PCS 32 may be provided in the storage battery control device 20.
  • This embodiment is different from the first to seventh embodiments in the configuration of the storage battery control device 20 and the storage battery 30 side.
  • the configuration of the control device 10 is the same as in the first to seventh embodiments.
  • FIG. 24 shows an example of a functional block diagram of the storage battery control device 20 and the storage battery 30 of the present embodiment.
  • the storage battery control device 20 includes a communication unit 21, a calculation unit 22-1 and a transmission unit 24.
  • the configuration of the communication unit 21 is the same as in the first to sixth embodiments.
  • the calculation unit 22-1 executes part of the processing performed by the calculation unit 22 described in the first to sixth embodiments.
  • the transmission unit 24 uses the PCS (battery unit control device) 32 of the storage battery 30 for information received by the communication unit 21, that is, information used for “a process for calculating the power to charge or discharge the storage battery 30 by the calculation unit 22”. Send to.
  • the transmission unit 24 transmits the result calculated by the calculation unit 22-1 to the PCS 32.
  • the storage battery 30 includes a PCS 32 and a battery unit 33.
  • the battery unit 33 has a function of charging power and discharging power according to the control of the PCS 32.
  • the configuration of the battery unit 33 is not particularly limited, and any configuration can be adopted.
  • the PCS 32 includes a calculation unit 22-2 and a battery unit control unit 31.
  • the calculation unit 22-2 executes part of the processing performed by the calculation unit 22 described in the first to sixth embodiments. That is, the calculation part 22 calculates the electric power which makes the battery part 33 (storage battery 30) charge or discharge based on the information transmitted from the storage battery control apparatus 20.
  • the battery unit control unit 31 charges and discharges from the battery unit 33 with the content calculated by the calculation unit 22.
  • the calculation process performed by the calculation unit 22 of the storage battery control device 20 in the first to sixth embodiments is performed by the calculation unit 22-1 of the storage battery control device 20 and the calculation unit 22-2 of the PCS 32. to share the load.
  • the calculation unit 22-2 calculates the power to be charged or discharged by the battery unit 33 (storage battery 30) in connection with the GF control of the ancillary service.
  • the PCS 32 may measure the system frequency (measured value) for GF control with a built-in sensor in its own device, or directly from the measurement sensor (eg, the measuring instrument in FIG. 17) or via the storage battery control device 20. May be received.
  • the calculation unit 22-1 calculates the power to be charged or discharged by the battery unit 33 (storage battery 30) in connection with the LFC control of the ancillary service. In addition, the calculation unit 22-1 calculates the power to be charged or discharged by the battery unit 33 (storage battery 30) in relation to the second to fourth services.
  • the calculation unit 22-2 in the PCS 32 is configured to charge or discharge the battery unit 33 (storage battery 30) calculated by the calculation unit 22-1 in the storage battery control device 20 (eg, power to be charged or discharged for LFC control). ) And the power to charge or discharge the battery unit 33 (storage battery 30) calculated by itself (for example, the power to charge or discharge for GF control), the battery unit 33 (storage battery 30) is charged. Alternatively, the electric power to be discharged is calculated.
  • the calculation unit 22-2 calculates the first electric power to charge or discharge the battery unit 33 (storage battery 30) for the first purpose (GF control).
  • the calculation unit 22-2 also uses the battery for other purposes (one or more of LFC control, second service, and third service) received by the PCS 32 from the external device (storage battery control device 20).
  • One or a plurality of second electric power to be charged or discharged by the unit 33 (storage battery 30) is acquired.
  • the calculation unit 22-2 calculates the power to charge or discharge the battery unit 33 (storage battery 30) by adding the first power and the one or more second powers.
  • the PCS 32 may be provided in the storage battery control device 20.
  • FIG. 17 shows an overview of the control system of the present embodiment.
  • “central power supply command station / renewable energy / monitoring control system” displayed corresponding to “general power transmission / distribution company” corresponds to power transmission / distribution company system 40 described in the above embodiment.
  • the “power supply / demand management / control system” displayed corresponding to “retail electricity supplier” corresponds to the retail electricity supplier system 50 described in the above embodiment.
  • the “demand / supply management system / demand / supply control system” displayed corresponding to “RA (resource aggregator)” corresponds to the control device 10 described in the above embodiment.
  • “edge terminal + local control device” displayed corresponding to “each customer” corresponds to the storage battery control device 20 described in the above embodiment.
  • the main information flow is shown.
  • the “local loop” shown in the figure information indicating the state (SOC, temperature, etc.) of the storage battery 30 is repeated at a predetermined cycle and acquired by the local control device.
  • the “global loop” information indicating the state (SOC, temperature, etc.) of the storage battery 30 is repeated at a predetermined cycle and transmitted from each customer to the RA.
  • the power transmission and distribution company system 40 repeatedly receives the ancillary service implementation information and reserve capacity (S10).
  • the ancillary service implementation information includes A max_n of each of the plurality of storage batteries 30 as A max , the maximum output for LFC control, the maximum output for GF control, performance information for LFC control and GF control (control accuracy and Information obtained by evaluating a delay or the like with an appropriate index).
  • the reserve capacity is the maximum discharge output and duration that can be handled by the plurality of storage batteries 30 described in the fifth embodiment.
  • the power transmission and distribution company system 40 transmits an LFC signal. That is, the power transmission / distribution provider system 40 generates an LFC signal based on the ancillary service implementation information and the state of the power transmission / distribution network (eg, information indicating frequency deviation, AR (area requirement), etc.), It transmits to the control apparatus 10.
  • the power transmission / distribution provider system 40 generates an LFC signal based on the ancillary service implementation information and the state of the power transmission / distribution network (eg, information indicating frequency deviation, AR (area requirement), etc.), It transmits to the control apparatus 10.
  • the power transmission / distribution company system 40 controls a reserve power signal that discharges power from the storage battery 30 (reverse power flow to the power distribution network) when an abnormality (generator stoppage, etc.) is detected (Yes in S12). It transmits to the apparatus 10 (S13).
  • the retail electricity supplier system 50 receives the predicted value of the power demand (or performs the power demand prediction by itself), while receiving the imbalance capacity.
  • the imbalance capacity is the latest value such as the amount of power that can be charged in the entire plurality of storage batteries 30 in relation to the imbalance avoidance service, the amount of discharge that can be discharged, and the estimated value in each future time zone. It is a calculation result of.
  • the process returns to S20 to obtain the latest value.
  • the retail electricity supplier system 50 determines whether to implement a request for imbalance suppression (S22). Specifically, the retail electricity supplier system 50 provides an incentive to pay to the consumer when the imbalance is avoided by using the magnitude of the difference calculated in S21, the penalty (fee) at the time of imbalance occurrence and the storage battery of the customer. (Fee) is compared, and based on the imbalance capacity or the like notified from the control device 10, it is determined whether or not the request is executed.
  • the retail electricity supplier system 50 transmits a request to charge or discharge a predetermined amount to the control device 10 in a predetermined time zone (S23).
  • the control device 10 receives an LFC signal from the retail electricity supplier system 50.
  • the control device 10 converts the LFC signal into a normalized value.
  • the process of converting the LFC signal into the normalized value corresponds to, for example, “a process of calculating the value B by dividing the command value specified by the LFC signal by A max ” described in the first embodiment.
  • the control device 10 transmits a standardized LFC signal to all the storage battery control devices 20. Transmission is irregular or has a transmission cycle Tb, and Tb is, for example, about several seconds.
  • control device 10 receives a reserve signal from the power transmission and distribution company system 40. In S43, the control device 10 transmits the reserve power signal to all the storage battery control devices 20.
  • control device 10 receives an imbalance suppression request from the retail electricity supplier system 50.
  • control apparatus 10 transmits the information for specifying the content to implement to the storage battery control apparatus 20 which implements the charge or discharge for imbalance suppression.
  • the content to be implemented is the content determined based on the imbalance suppression request.
  • the control device 10 repeatedly receives information indicating the state of the storage battery 30 (SOC and the like), power demand, and ancillary implementation information at a predetermined period Ta (eg, 5 minutes).
  • the control device 10 receives information indicating the state of the storage battery 30 from the storage battery control device 20.
  • the control apparatus 10 receives the electric power demand amount of each consumer from each consumer's apparatus.
  • the control device 10 receives ancillary service implementation information from the storage battery control device 20.
  • Ancillary service implementation information includes a max_n for each storage battery 30, maximum output for LFC, maximum output for GF, LFC and GF performance information (information evaluated with appropriate indicators such as control accuracy and delay), etc. It is.
  • control device 10 predicts the power demand of each consumer.
  • the prediction means is a design matter.
  • control apparatus 10 also predicts the power demand with respect to all the demands using the power demand of all the consumers obtained by adding together the power demand of each of several consumers.
  • control device 10 estimates the full charge / depletion time of the storage battery 30 of each customer. Based on the current SOC of storage battery 30 and the prediction result of the power demand of each consumer, control device 10 estimates a depletion time at which the depletion state (SOC 0%) is reached. Moreover, the control apparatus 10 estimates the full charge time which will be in a full charge state (SOC100%) based on the present SOC of the storage battery 30, a demand prediction result, a charge / discharge schedule, and the like.
  • the control device 10 calculates an optimization coefficient for LFC control of each storage battery 30.
  • the optimization coefficient of LFC control corresponds to a max_n described in the first embodiment.
  • control device 10 transmits the optimization coefficient to each of the plurality of storage battery control devices 20.
  • the transmission cycle Tc is, for example, 15 minutes.
  • the control device 10 calculates the reserve capacity of all the storage batteries 30.
  • the reserve capacity is the maximum discharge output and duration that can be handled by the plurality of storage batteries 30 described in the fifth embodiment.
  • the control device 10 transmits the reserve capacity to the power transmission and distribution company system 40.
  • the transmission cycle Ta is, for example, 5 minutes.
  • the reserve capacity includes an instantaneous reserve capacity with a discharge duration of about 10 minutes and an operating reserve capacity with a discharge duration of about 3 hours.
  • the control device 10 calculates the imbalance capacity of each storage battery 30 and all the storage batteries 30.
  • the control device 10 transmits the imbalance capacity to the retail electricity supplier system 50.
  • the transmission cycle Ta is, for example, 5 minutes.
  • the storage battery control device 20 determines whether or not a reserve power signal (fourth information) has been received. If it is determined that it has been received, the process proceeds to S56. If it is determined that it has not been received, the process proceeds to S51 and S52.
  • the storage battery control device 20 performs charge / discharge control of the storage battery 30 based on the reserve power signal (fourth information).
  • the storage battery control device 20 repeatedly receives the LFC signal from the control device 10 irregularly or at a predetermined cycle Tb (eg, about several seconds).
  • the storage battery control device 20 repeatedly receives an optimization coefficient for LFC control (and / or an optimization coefficient for GF control) from the control device 10 at a predetermined cycle Tc (for example, 15 minutes).
  • the storage battery control device 20 determines whether an imbalance suppression request (third information for specifying contents to be charged / discharged in connection with imbalance avoidance) has been received. If it is determined that it has been received, the process proceeds to S54. If it is determined that it has not been received, the process proceeds to S55.
  • an imbalance suppression request third information for specifying contents to be charged / discharged in connection with imbalance avoidance
  • the storage battery control device 20 plans imbalance suppression. Specifically, the storage battery control device 20 specifies the power to charge or discharge the storage battery 30 in relation to avoiding imbalance based on the third information.
  • the storage battery control device 20 calculates the power to charge or discharge the storage battery 30, and controls the storage battery 30 to operate with the content.
  • the storage battery control device 20 outputs the output value (charging power or discharging power) for the ancillary service specified based on the LFC signal, system frequency (deviation is used for GF control), optimization coefficient, etc. (first information). ) And the charge / discharge plan (second information) for the energy management service acquired from the control device 10 in advance, the power to be charged or discharged to the storage battery 30 at each timing is specified.
  • the storage battery control device 20 outputs the output value (charging power or discharging power) for the ancillary service specified based on the LFC signal, the system frequency (utilizing the deviation for GF control), the optimization coefficient, etc. (first information). ) And the power to be charged or discharged to the storage battery 30 in relation to the imbalance avoidance service calculated in S54, specify the power to be charged or discharged to the storage battery 30 at each timing.
  • the storage battery control device 20 transmits the ancillary implementation information and the status information of the storage battery 30 to the control device 10.
  • the transmission cycle Ta is, for example, 5 minutes.
  • the storage battery 30 having a PCS rating of 3 kW and a storage battery rating of 6 kWh is controlled, and night charging / daytime discharging is performed as an energy management service.
  • ⁇ 1.5 kW is secured as the maximum charge / discharge output value for the energy management service (note that the negative value is discharged and the positive value is charged).
  • the remaining output is used for ancillary services.
  • the discharge side output remains at -3 kW at night, and the charge side output remains at 3 kW during the day. For this reason, the remaining output for ancillary service is not simply calculated as ⁇ 1.5 kW.
  • an appropriate value is calculated according to the time zone.
  • E (t) is an adjustment power function related to the ancillary service and takes a value between ⁇ 1 and 1.
  • E (t) is assumed to be periodic.
  • the upper limit of the effective PCS discharge output is 1.5 kW
  • the PCS output in the time zone is 1.5F (t) + 1.5E (t).
  • F (t) is a demand function related to power demand, and takes a value between 0 and 1.
  • the upper limit of the PCS output for imbalance avoidance service is 0.75 kW in the time zone from 23:00 to 7:00. In the time zone from 7:00 to 23:00, the upper limit of the PCS output for the imbalance avoidance service is 1.5 kW.
  • the rated output value ⁇ 3 kW of the PCS for the storage battery 30 can be utilized to the maximum for the service.
  • the ancillary service (first service) is always implemented.
  • the energy management service (second service) and the imbalance avoidance service (third service) are selectively performed. In the normal state, the energy management service (second service) is performed, and when there is an imbalance avoidance request, the imbalance avoidance service (third service) is interrupted.
  • the retail electricity supplier participates in the spot market (one day before market) in the time zone from 8:00 to 9:30 on the previous day. And the electric power to generate or sell the next day is purchased.
  • the retail electric company creates a power generation plan for the next day based on the purchase results in the spot market between 10:00 and 12:00 on the previous day. Then, the power generation plan is submitted to the transmission / distribution company.
  • the retail electricity supplier will formulate a one-hour advance plan, and participate in the market one hour ago in a timely manner to adjust the supply-demand balance.
  • RA is requested to charge or discharge at a predetermined timing.
  • the request is output 30 minutes before 1 hour before actual demand after the market is closed one hour ago.
  • RA is based on the power demand information collected from each customer's smart meter 1 hour and 30 minutes ago, from the predicted power demand value and the current state of the storage battery 30 (eg, SOC, etc.)
  • the adjustment margin (power amount, free capacity, etc.) of the power demand using the storage battery 30 in the belt is always estimated.
  • the estimation result may be transmitted to a retail electric company. And a retail electric company may judge whether the said request is performed based on the estimated content.
  • the RA When the RA receives the above request from the retail electricity supplier, it temporarily stops the implementation of the energy management service (second service) at the requested charging or discharging timing, and the imbalance avoidance service (third service). Interrupt.
  • second service the energy management service
  • third service the imbalance avoidance service
  • First processing means for generating, based on a rated output value in the storage battery, first information for specifying power to be charged or discharged to the storage battery in relation to the first service; A communication means for transmitting the first information to a storage battery control device for controlling the storage battery; Control device.
  • First processing means for generating first information for identifying power to be charged or discharged to the storage battery in relation to the first service; Second processing means for generating second information for identifying power to be charged or discharged to the storage battery in relation to a second service performed in parallel with the first service;
  • the control apparatus which has a communication means which transmits at least said 1st information to the storage battery control apparatus which controls the said storage battery.
  • the communication means specifies the power to charge or discharge the storage battery in relation to the first information and the second service performed in parallel with the first service.
  • the first processing means performs at least one of processing for generating the first information based on the control information, and processing for generating the second information based on the control information by the second processing means.
  • the control device 4
  • the sum of the upper limit of the output for the first service and the upper limit of the output for the second service is equal to or less than a rated output value of the PCS for the storage battery. 6).
  • the control means acquires or sets the control information of different contents corresponding to each of the plurality of storage batteries, A control device in which a sum of upper limits of outputs for the first service at each timing indicated by the control information corresponding to each of the plurality of storage batteries falls within a predetermined range. 7).
  • the first service is an ancillary service related to at least one of LFC (lord frequency control) control and GF (Governor Free) control for controlling charge / discharge of the storage battery in relation to supply / demand balance adjustment of the power system
  • the second service is an energy management service in which the storage battery is charged and discharged in a time zone in which the power unit price is relatively low, and discharges power in a time zone in which the power unit price is relatively high.
  • the control means includes After setting the upper limit of the output of the second service, setting the upper limit of the output of the first service based on the upper limit of the output of the second service, or The control apparatus which sets the upper limit of the output of the second service based on the upper limit of the output of the first service after setting the upper limit of the output of the first service. 8).
  • the second processing means is a control device that generates the second information in which a time period during which the SOC value is equal to or lower than a predetermined value or higher than a predetermined value is different for each of the storage batteries.
  • Parallel to the first service and generates third information for specifying the power to charge or discharge the storage battery in relation to the third service selectively performed with the second service
  • the communication device is a control device that further transmits the third information to the storage battery control device. 10.
  • the control device subordinate to any one of 4 to 7, The control device for generating the third information, wherein the third processing means sets the upper limit of the output for the second service as the upper limit of the output for the third service.
  • the control means determines which of the second service and the third service is prioritized,
  • the said communication means is a control apparatus which transmits the information which shows which of the said 2nd service and the said 3rd service has priority to the said storage battery control apparatus.
  • the second processing means is a control device that updates the second information in accordance with execution of the third service. 13.
  • the second service is an energy management service in which the storage battery is charged and discharged in a time zone in which the power unit price is relatively low and discharges power in a time zone in which the power unit price is relatively high.
  • a schedule for the discharge time zone and the charge time zone is defined
  • the third service is an imbalance avoidance service that controls charging / discharging of the storage battery based on a request from a retail electric company.
  • the second processing means includes When the time point at which the third service is completed is in the discharge time zone defined by the second information, the amount of charging power of the storage battery at the time point at which the third service is ended is calculated as the discharge time.
  • the control apparatus which newly produces
  • the communication device is a control device that further transmits the fourth information to the storage battery control device. 15. 14.
  • the fourth processing means generates the fourth information by using the rated output value of the storage battery PCS as an upper limit of output for the fourth service. 16.
  • the first timing corresponding to the integrated amount of charging power to be charged to the storage battery specified by the first information and the integrated amount of discharge power to be discharged to the storage battery specified by the first information is repeated. Control device that appears. 17.
  • the control device according to 16 The second timing corresponding to the integrated amount of charging power to be charged in the storage battery specified by the second information and the integrated amount of discharge power to be discharged to the storage battery specified by the second information is repeated. Appear, A control device in which a cycle in which the first timing appears and a cycle in which the second timing appears are different. 18.
  • the control device determines to stop the implementation of one of the first service and the second service;
  • the said communication means is a control apparatus which transmits the signal which stops implementation of one of the said 1st service and the said 2nd service to the said storage battery control apparatus.
  • the control device decides to stop the implementation of one of the first service and the second service and raise the upper limit of the other output;
  • the first processing means or the second processing means for generating information for a service whose output upper limit has been increased is configured to generate the first information or the second information based on the increased output upper limit. Control device to generate. 21.
  • Communication means for receiving first information for identifying power to be charged or discharged to the storage battery in relation to the first service; Calculation means for calculating second information for identifying power to be charged or discharged to the storage battery in relation to a second service based on the first information;
  • a storage battery control device comprising storage battery control means for controlling the storage battery based on the first information and the second information. 22.
  • the said calculation means is a storage battery control apparatus which calculates said 2nd information based on the said 1st information and the rated output value in the said storage battery.
  • the communication means specifies a power for charging or discharging the storage battery in connection with a third service selectively performed with the second service in parallel with the first service.
  • the said calculation means is a storage battery control apparatus which calculates the electric power which makes the said storage battery charge or discharge based on said 1st information and said 3rd information.
  • the said calculation means is a storage battery control apparatus which calculates the electric power which makes the said storage battery charge or discharge at the said timing based on said 1st information and said 3rd information.
  • the communication means receives the first information, the second information, and the third information for charging or discharging the storage battery at the same timing, and the second service and the third information If you receive information indicating which service to prioritize, The calculation means calculates a power to charge or discharge the storage battery at the timing based on the first information and information on a service to be given priority among the second information and the third information. Control device. 27. In the storage battery control device according to any one of 21 to 26, The communication means stops all the services, receives fourth information for specifying power to charge or discharge the storage battery in relation to a fourth service performed independently, The said calculation means is a storage battery control apparatus which calculates the electric power which makes the said storage battery charge or discharge based on said 4th information. 28.
  • the said calculation means is a storage battery control apparatus which calculates the electric power which makes the said storage battery charge or discharge at the said timing based on the said 4th information. 29. 28.
  • the storage battery control device according to 28 When the communication means receives the fourth information and other information for charging or discharging the storage battery at the same timing, The storage battery control unit is a storage battery control device that stops charging / discharging for the other services and causes the storage battery to execute only charging / discharging for the fourth service. 30.
  • the first timing corresponding to the integrated amount of charging power to be charged to the storage battery specified by the first information and the integrated amount of discharge power to be discharged to the storage battery specified by the first information is repeated. Appearing storage battery controller. 31. In the storage battery control device according to 30, The second timing corresponding to the integrated amount of charging power to be charged in the storage battery specified by the second information and the integrated amount of discharge power to be discharged to the storage battery specified by the second information is repeated. Appear, A control device in which a cycle in which the first timing appears and a cycle in which the second timing appears are different. 32.
  • the storage battery control device in which the cycle in which the first timing appears is shorter than the cycle in which the second timing appears.
  • 33. The control device according to any one of 1 to 20, A storage battery control device according to any one of 21 to 32; Having a control system.
  • 34. First power to be charged or discharged to the battery unit for the first purpose is calculated, and the first power and second power to be charged or discharged to the battery unit for other purposes received from an external device. Calculating means for calculating the electric power to be charged or discharged to the battery unit by adding together; Battery part control means for charging and discharging from the battery part with the content calculated by the calculating means; A battery unit control device. 35. 34.
  • the battery unit control device according to 34,
  • the first object is GF control, and the other object is a battery unit control device including LFC control.
  • Computer A first processing step of generating first information for identifying power to be charged or discharged to the storage battery in relation to the first service based on a rated output value in the storage battery;
  • Computer First processing means for generating, based on a rated output value in the storage battery, first information for specifying power to be charged or discharged to the storage battery in relation to the first service;
  • a communication means for transmitting the first information to a storage battery control device for controlling the storage battery; Program to function as. 38.
  • Computer First processing means for generating first information for identifying power to be charged or discharged to the storage battery in relation to the first service;
  • Second processing means for generating second information for identifying power to be charged or discharged to the storage battery in relation to a second service performed in parallel with the first service;
  • Communication means for transmitting at least the first information to a storage battery control device for controlling the storage battery; Program to function as. 40.
  • Computer Communication means for receiving first information for identifying power to be charged or discharged to the storage battery in relation to the first service; Calculation means for calculating second information for identifying power to be charged or discharged to the storage battery in relation to a second service based on the first information; Storage battery control means for controlling the storage battery based on the first information and the second information; Program to function as. 42.
  • Or communication means for receiving second information for specifying the power to be discharged Calculation means for calculating electric power to charge or discharge the storage battery based on the first information and the second information
  • Storage battery control means for controlling the storage battery with the content calculated by the calculation means; Program to function as. 44.
  • Computer First power to be charged or discharged to the battery unit for the first purpose is calculated, and the first power and second power to be charged or discharged to the battery unit for other purposes received from an external device.
  • Computer First power to be charged or discharged to the battery unit for the first purpose is calculated, and the first power and second power to be charged or discharged to the battery unit for other purposes received from an external device.

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Secondary Cells (AREA)

Abstract

蓄電池の利用効率を高めることを課題とする。当該課題を解決するため、第1のサービスのために蓄電池に充電又は放電させる電力を特定するための第1の情報を生成する第1の処理部(101)と、第1のサービスと並行して行われる第2のサービスのために蓄電池に充電又は放電させる電力を特定するための第2の情報を生成する第2の処理部(103)と、蓄電池を制御する蓄電池制御装置に、第1の情報及び第2の情報を送信する通信部(106)と、を有する制御装置(10)を提供する。

Description

制御装置、蓄電池制御装置、制御システム、電池部制御装置、制御方法、蓄電池制御方法、電池部制御装置の動作方法及びプログラム
 本発明は、制御装置、蓄電池制御装置、制御システム、電池部制御装置、制御方法、蓄電池制御方法、電池部制御装置の動作方法及びプログラムに関する。
 需要家が保有する蓄電池の動作を制御する様々なサービスが検討されている。例えば、電気料金(電力単価)が相対的に安い時間帯に充電し、相対的に高い時間帯に放電するよう蓄電池の充放電を制御するサービスがある。当該サービスによれば、需要家は、電力会社に支払う電気料金を抑えることができる。
 その他、電力系統の需給バランス調整のために、蓄電池の充放電を制御するサービスがある。すなわち、需要家の蓄電池を電力系統の需給バランス調整のための調整力や予備力等として利用する。当該サービスは、送配電事業者に向けたサービスである。なお、当該サービスのために蓄電池を提供した需要家に所定のインセンティブを支払うことで、需要家に向けたサービスと捉えることもできる。
 その他、小売電気事業者からの依頼に基づき、蓄電池の充放電を制御するサービスが考えられる。小売電気事業者は、自システムの調整による30分同時同量の達成が困難な場合、当該サービスを提供する事業者に、小売電気事業者が電力供給契約している需要家の蓄電池に対して、所定のタイミングでの所定量の充電又は放電を依頼する。当該サービスを提供する事業者は、上記依頼に基づき需要家の蓄電池を制御し、所定のタイミングで所定量の充電又は放電を行わせる。当該サービスは、小売電気事業者に向けたサービスである。なお、当該サービスのために蓄電池を提供した需要家に所定のインセンティブを支払うことで、需要家に向けたサービスと捉えることもできる。
 その他、自然エネルギー(例:太陽光)を利用した発電装置等を保有する発電事業者からの依頼に基づき、蓄電池の充放電を制御するサービスが考えられる。送配電事業者は、電力系統の需給運用に支障を及ぼす可能性がある場合、発電事業者に出力抑制(電力系統への逆潮流の抑制)を要請できる。出力抑制の要請を受けた発電事業者は、当該サービスを提供する事業者に、出力抑制を受けた時間帯に抑制が必要な分を充電する依頼を行う。そして、発電事業者は、出力抑制を受けた時間帯においても、出力抑制を行うことなく通常通りの出力を行う。当該サービスを提供する事業者は、上記依頼に基づき需要家の蓄電池を制御し、出力抑制を受けた時間帯に抑制が必要な分を充電させる。当該サービスは、発電事業者に向けたサービスである。なお、当該サービスのために蓄電池を提供した需要家に所定のインセンティブを支払うことで、需要家に向けたサービスと捉えることもできる。
 関連する技術が、特許文献1及び2に開示されている。特許文献1には、蓄電池を保有する需要家に対して、蓄電池の充放電制御スケジュールを提供するサーバ装置が開示されている。蓄電池を制御する制御装置は、当該充放電制御スケジュールを基に、電気料金レートが最も高い時間帯と最も低い時間帯との料金差が一定以上である場合、その電気料金が高い時間帯の予想消費電力に相当する電力を他方の時間帯に充電し、電気料金が高い時間帯において放電するよう蓄電池を制御する。
 特許文献2には、蓄電池の寿命を考慮したアンシラリーサービスを提供するアンシラリーサービス提供装置が開示されている。
特開2014-236627号公報 特開2012-60833号公報
 上記先行文献における蓄電池の充放電制御は、蓄電池のPCS(power conditioner system)における定格出力を考慮した充放電に関する制御ではないため、蓄電池及び蓄電池のPCSを効率よく利用することができないという問題があった。
 本発明によれば、
 第1のサービスに関連して蓄電池に充電又は放電させる電力を特定するための第1の情報を、前記蓄電池における定格出力値に基づいて生成する第1の処理手段と、
 前記蓄電池を制御する蓄電池制御装置に、前記第1の情報を送信する通信手段と、
を有する制御装置が提供される。
 また、本発明によれば、
 第1のサービスに関連して蓄電池に充電又は放電させる電力を特定するための第1の情報を生成する第1の処理手段と、
 前記第1のサービスと並行して行われる第2のサービスに関連して前記蓄電池に充電又は放電させる電力を特定するための第2の情報を生成する第2の処理手段と、
 前記蓄電池を制御する蓄電池制御装置に、少なくとも前記第1の情報を送信する通信手段と、を有する制御装置が提供される。
 また、本発明によれば、
 第1のサービスに関連して蓄電池に充電又は放電させる電力を特定するための第1の情報を受信する通信手段と、
 前記第1の情報に基づいて、第2のサービスに関連して前記蓄電池に充電又は放電させる電力を特定するための第2の情報を算出する算出手段と、
 前記第1の情報と前記第2の情報とに基づいて前記蓄電池を制御する蓄電池制御手段とを有する蓄電池制御装置が提供される。
 また、本発明によれば、
 第1のサービスに関連して蓄電池に充電又は放電させる電力を特定するための第1の情報、及び、前記第1のサービスと並行して行われる第2のサービスに関連して前記蓄電池に充電又は放電させる電力を特定するための第2の情報を受信する通信手段と、
 前記第1の情報及び前記第2の情報に基づき、前記蓄電池に充電又は放電させる電力を算出する算出手段と、
 前記算出手段により算出された内容で前記蓄電池を制御する蓄電池制御手段と、
を有する蓄電池制御装置が提供される。
 また、本発明によれば、
 前記制御装置と、前記蓄電池制御装置と、を有する制御システムが提供される。
 また、本発明によれば、
 第1の目的で電池部に充電又は放電させる第1の電力を算出し、前記第1の電力と、外部装置から受信した他の目的で前記電池部に充電又は放電させる第2の電力とを足し合わせることで、前記電池部に充電又は放電させる電力を算出する算出手段と、
 前記算出手段により算出された内容で前記電池部から充放電させる電池部制御手段と、
を有する電池部制御装置が提供される。
 また、本発明によれば、
 コンピュータが、
 第1のサービスに関連して蓄電池に充電又は放電させる電力を特定するための第1の情報を、前記蓄電池における定格出力値に基づいて生成する第1の処理工程と、
 前記蓄電池を制御する蓄電池制御装置に、前記第1の情報を送信する通信工程と、
を実行する制御装置の動作方法が提供される。
 また、本発明によれば、
 コンピュータを、
 第1のサービスに関連して蓄電池に充電又は放電させる電力を特定するための第1の情報を、前記蓄電池における定格出力値に基づいて生成する第1の処理手段、
 前記蓄電池を制御する蓄電池制御装置に、前記第1の情報を送信する通信手段、
として機能させるプログラムが提供される。
 また、本発明によれば、
 コンピュータが、
 第1のサービスに関連して蓄電池に充電又は放電させる電力を特定するための第1の情報を生成する第1の処理工程と、
 前記第1のサービスと並行して行われる第2のサービスに関連して前記蓄電池に充電又は放電させる電力を特定するための第2の情報を生成する第2の処理工程と、
 前記蓄電池を制御する蓄電池制御装置に、少なくとも前記第1の情報を送信する通信工程と、
を実行する制御装置の動作方法が提供される。
 また、本発明によれば、
 コンピュータを、
 第1のサービスに関連して蓄電池に充電又は放電させる電力を特定するための第1の情報を生成する第1の処理手段、
 前記第1のサービスと並行して行われる第2のサービスに関連して前記蓄電池に充電又は放電させる電力を特定するための第2の情報を生成する第2の処理手段、
 前記蓄電池を制御する蓄電池制御装置に、少なくとも前記第1の情報を送信する通信手段、
として機能させるプログラムが提供される。
 また、本発明によれば、
 コンピュータが、
 第1のサービスに関連して蓄電池に充電又は放電させる電力を特定するための第1の情報を受信する通信工程と、
 前記第1の情報に基づいて、第2のサービスに関連して前記蓄電池に充電又は放電させる電力を特定するための第2の情報を算出する算出工程と、
 前記第1の情報と前記第2の情報とに基づいて前記蓄電池を制御する蓄電池制御工程と、
を実行する蓄電池制御装置の動作方法。
 また、本発明によれば、
 コンピュータを、
 第1のサービスに関連して蓄電池に充電又は放電させる電力を特定するための第1の情報を受信する通信手段、
 前記第1の情報に基づいて、第2のサービスに関連して前記蓄電池に充電又は放電させる電力を特定するための第2の情報を算出する算出手段、
 前記第1の情報と前記第2の情報とに基づいて前記蓄電池を制御する蓄電池制御手段、
として機能させるプログラムが提供される。
 また、本発明によれば、
 コンピュータが、
 第1のサービスに関連して蓄電池に充電又は放電させる電力を特定するための第1の情報、及び、前記第1のサービスと並行して行われる第2のサービスに関連して前記蓄電池に充電又は放電させる電力を特定するための第2の情報を受信する通信工程と、
 前記第1の情報及び前記第2の情報に基づき、前記蓄電池に充電又は放電させる電力を算出する算出工程と、
 前記算出工程で算出された内容で前記蓄電池を制御する蓄電池制御工程と、
を実行する蓄電池制御装置の動作方法が提供される。
 また、本発明によれば、
 コンピュータを、
 第1のサービスに関連して蓄電池に充電又は放電させる電力を特定するための第1の情報、及び、前記第1のサービスと並行して行われる第2のサービスに関連して前記蓄電池に充電又は放電させる電力を特定するための第2の情報を受信する通信手段、
 前記第1の情報及び前記第2の情報に基づき、前記蓄電池に充電又は放電させる電力を算出する算出手段、
 前記算出手段により算出された内容で前記蓄電池を制御する蓄電池制御手段、
として機能させるプログラムが提供される。
 また、本発明によれば、
 コンピュータが、
 第1の目的で電池部に充電又は放電させる第1の電力を算出し、前記第1の電力と、外部装置から受信した他の目的で前記電池部に充電又は放電させる第2の電力とを足し合わせることで、前記電池部に充電又は放電させる電力を算出する算出工程と、
 前記算出工程で算出された内容で前記電池部から充放電させる電池部制御工程と、
を実行する電池部制御装置の動作方法が提供される。
 また、本発明によれば、
 コンピュータを、
 第1の目的で電池部に充電又は放電させる第1の電力を算出し、前記第1の電力と、外部装置から受信した他の目的で前記電池部に充電又は放電させる第2の電力とを足し合わせることで、前記電池部に充電又は放電させる電力を算出する算出手段、
 前記算出手段により算出された内容で前記電池部から充放電させる電池部制御手段、
として機能させるプログラムが提供される。
 本発明によれば、蓄電池及び蓄電池のPCSの利用効率を高めることができる。
 上述した目的、および、その他の目的、特徴及び利点は、以下に述べる好適な実施の形態、および、それに付随する以下の図面によって、さらに明らかになる。
本実施形態の装置のハードウエア構成の一例を概念的に示す図である。 本実施形態の制御システムの機能ブロック図の一例である。 本実施形態の制御装置の機能ブロック図の一例である。 本実施形態の制御情報の一例を概念的に示す図である。 本実施形態の制御情報の一例を概念的に示す図である。 本実施形態の制御情報の一例を概念的に示す図である。 本実施形態の蓄電池制御装置の機能ブロック図の一例である。 本実施形態の蓄電池の制御例を説明するための図である。 本実施形態の制御システムの機能ブロック図の一例である。 本実施形態の制御システムの機能ブロック図の一例である。 本実施形態の制御装置の機能ブロック図の一例である。 本実施形態の蓄電池の制御例を説明するための図である。 本実施形態の制御装置の機能ブロック図の一例である。 本実施形態の蓄電池の制御例を説明するための図である。 本実施形態の制御装置の機能ブロック図の一例である。 本実施形態の蓄電池の制御例を説明するための図である。 実施例の制御システムの機能ブロック図の一例である。 本実施例の送配電事業者システムの処理の流れの一例を示すフローチャートである。 本実施例の小売電気事業者システムの処理の流れの一例を示すフローチャートである。 本実施例の制御装置の処理の流れの一例を示すフローチャートである。 本実施例の蓄電池制御装置の処理の流れの一例を示すフローチャートである。 インバランス回避サービスの実施タイミングを説明するための図である。 本実施形態の蓄電池制御装置及び蓄電池の機能ブロック図の一例である。 本実施形態の蓄電池制御装置及び蓄電池の機能ブロック図の一例である。 本実施形態の制御装置の機能ブロック図の一例である。
 まず、本実施形態の装置(制御装置10、蓄電池制御装置20、蓄電池30、送配電事業者システム40、小売電気事業者システム50等)のハードウエア構成の一例について説明する。本実施形態の装置が備える各部は、任意のコンピュータのCPU(Central Processing Unit)、メモリ、メモリにロードされるプログラム、そのプログラムを格納するハードディスク等の記憶ユニット(あらかじめ装置を出荷する段階から格納されているプログラムのほか、CD(Compact Disc)等の記憶媒体やインターネット上のサーバ等からダウンロードされたプログラムをも格納できる)、ネットワーク接続用インターフェイスを中心にハードウエアとソフトウエアの任意の組合せによって実現される。そして、その実現方法、装置にはいろいろな変形例があることは、当業者には理解されるところである。
 図1は、本実施形態の装置のハードウエア構成を例示するブロック図である。図1に示すように、装置は、プロセッサ1A、メモリ2A、入出力インターフェイス3A、周辺回路4A、バス5Aを有する。周辺回路4Aには、様々なモジュールが含まれる。なお、周辺回路4Aを有さなくてもよい。
 バス5Aは、プロセッサ1A、メモリ2A、周辺回路4A及び入出力インターフェイス3Aが相互にデータを送受信するためのデータ伝送路である。プロセッサ1Aは、例えばCPU(Central Processing Unit) やGPU(Graphics Processing Unit)などの演算処理装置である。メモリ2Aは、例えばRAM(Random Access Memory)やROM(Read Only Memory)などのメモリである。入出力インターフェイス3Aは、入力装置(例:キーボード、マウス、マイク等)、外部装置、外部サーバ、外部センサー等から情報を取得するためのインターフェイスや、出力装置(例:ディスプレイ、スピーカ、プリンター、メーラ等)、外部装置、外部サーバ等に情報を出力するためのインターフェイスなどを含む。プロセッサ1Aは、各モジュールに指令を出し、それらの演算結果をもとに演算を行うことができる。
 以下、本実施の形態について説明する。なお、以下の実施形態の説明において利用する機能ブロック図は、ハードウエア単位の構成ではなく、機能単位のブロックを示している。これらの図においては、各装置は1つの機器により実現されるよう記載されているが、その実現手段はこれに限定されない。すなわち、物理的に分かれた構成であっても、論理的に分かれた構成であっても構わない。なお、同一の構成要素には同一の符号を付し、適宜説明を省略する。
 また、本明細書において、「取得」とは、自装置が他の装置や記憶媒体に格納されているデータまたは情報を取りに行くこと(能動的な取得)、たとえば、他の装置にリクエストまたは問い合わせして受信すること、他の装置や記憶媒体にアクセスして読み出すこと等、および、自装置に他の装置から出力されるデータまたは情報を入力すること(受動的な取得)、たとえば、配信(または、送信、プッシュ通知等)されるデータまたは情報を受信すること等、の少なくともいずれか一方を含む。また、受信したデータまたは情報の中から選択して取得すること、または、配信されたデータまたは情報を選択して受信することも含む。
<第1の実施形態>
 本実施形態の制御システムは、一の蓄電池に複数のサービスを並行して実施させるための技術を備える。すなわち、複数のサービス各々に対応した充電及び放電を、同タイミングで一の蓄電池に行わせるための技術を備える。当該技術により、蓄電池及びPCSの利用効率が高まる。以下、詳細に説明する。
 最初に、本実施形態の制御システムの全体像及び概要を説明する。図2に本実施形態の制御システムの機能ブロック図の一例を示す。図示するように、制御システムは、制御装置10と、蓄電池制御装置20と、蓄電池30と、送配電事業者システム40とを有する。各装置の概要を説明する。
 蓄電池30、及び、蓄電池制御装置20は、需要家に保有される装置である。蓄電池30は、PCS及び電池部を含む。PCSは、蓄電池制御装置20からの指示信号に従い、電池部からの放電動作及び電池部への充電動作を行う。PCSは、蓄電池制御装置20における蓄電池30の動作(充放電)を演算する機能を備えてもいい。蓄電池30の構成は特段制限されず、あらゆる構成を採用できる。
 蓄電池制御装置20は、蓄電池30の動作(充電及び放電)を制御する。蓄電池制御装置20は、制御装置10から受信した蓄電池制御信号に基づき、所定の指示信号を蓄電池30に入力する。蓄電池制御装置20の構成は、以下で詳細に説明する。
 送配電事業者システム40は、電力の送配電網を管理する事業者に保有される装置である。送配電事業者システム40は、送配電網の状態(例:周波数偏差や連系線潮流等)を監視し、必要に応じて送配電網への電力供給を調整する。送配電事業者システム40は、例えば短周期(例:数分から十数分程度)の変動分を調整するためのLFC(lord frequency control)信号や、発電機等の故障や事故などの非常時に供給力不足を解消するための予備力信号等の需給制御信号を出力する。
 これらの需給制御信号に基づき、火力発電や水力発電等の発電装置の出力調整がなされる。また、本実施形態では、需給制御信号が送配電事業者システム40から制御装置10に送信される。制御装置10は、需給制御信号に基づき蓄電池30の出力調整(放電及び充電の調整)を行う。
 制御装置10は、事前に登録されている複数の蓄電池30を利用した複数のサービスを提供する事業者(以下、「リソースアグリゲータ」という))に保有される装置である。本実施形態では、リソースアグリゲータは、アンシラリーサービス、及び、エネルギーマネジメントサービスを提供する。
 アンシラリーサービスは、主として送配電事業者に向けたサービスである。制御装置10は、電力系統の需給バランス調整に関連して、蓄電池30の充放電を制御する。すなわち、需要過多の場合には、放電し、電力系統に電力を供給する動作を蓄電池30に実行させる。一方、供給過多の場合には、電力系統から受電し、充電する動作を蓄電池30に実行させる。このような制御の一例として、LFC制御が挙げられる。制御装置10は、送配電事業者システム40から需給制御信号(LFC信号)を受信すると、それに応じた内容で動作(充電及び放電)させるための蓄電池制御信号を、複数の蓄電池制御装置20に送信する。蓄電池制御装置20は、制御装置10から受信した蓄電池制御信号に基づき、蓄電池30の動作(充電及び放電)を制御する。これにより、送配電網の需給バランスが保たれる。その他、制御装置10は、GF(Governor Free)制御のための動作を蓄電池30に実行させることができる。
 エネルギーマネジメントサービスは、需要家に向けたサービスである。制御装置10は、電力単価が相対的に安い時間帯に電力を充電し、電力単価が相対的に高い時間帯に電力を放電する充放電動作を蓄電池30に実行させる。すなわち、制御装置10は、電力単価が相対的に安い時間帯に電力を充電し、電力単価が相対的に高い時間帯に電力を放電する充放電スケジュールを生成、若しくは、充放電スケジュールを生成するために必要な情報(小売電気事業者のサービスメニューに応じた時間帯毎の電力単価の情報等)を、複数の蓄電池制御装置20に送信する。蓄電池制御装置20は、制御装置10から受信した充放電スケジュール、若しくは、充放電スケジュールを生成するために必要な情報を用いて自身で作成した充放電スケジュールに基づき、蓄電池30の動作(充電及び放電)を制御する。これにより、需要家が電力会社(小売電気事業者を含む)に支払う電気料金を抑えることができる。
 本実施形態では、アンシラリーサービス(第1のサービス)、及び、エネルギーマネジメントサービス(第2のサービス)各々に対応した動作(充電及び放電)を同タイミングで一の蓄電池30に行わせることができる。制御装置10及び蓄電池制御装置20が、このような動作を行わせるための特徴的な構成を備える。以下、制御装置10及び蓄電池制御装置20の構成を説明する。
 まず、本実施形態の制御装置10の構成を説明する。図3に本実施形態の制御装置10の機能ブロック図の一例を示す。図示するように、制御装置10は、第1のサービス部1と、第2のサービス部2と、制御部105と、通信部106とを有する。
 通信部106は、複数の蓄電池制御装置20と通信し、情報の送受信を行う。
 第1のサービス部1は、アンシラリーサービスのための処理を実行する機能部である。第1のサービス部1は、第1のサービスのための情報(例:送配電事業者システム40から送信される需給制御信号)を受信する第1の受信部102と、蓄電池30の制御内容を特定するための情報を生成する第1の処理部101とを有する。第2のサービス部2は、エネルギーマネジメントサービスのための処理を実行する機能部である。第2のサービス部2は、第2のサービスのための情報(例:時間帯毎の電力単価)を受信する第2の受信部104と、蓄電池30の制御内容を特定するための情報を生成する第2の処理部103とを有する。
 制御部105は、第1のサービス部1及び第2のサービス部2を制御する。制御部105は、アンシラリーサービスのための出力(充電及び放電)と、エネルギーマネジメントサービスのための出力(充電及び放電)との和が蓄電池30用のPCSの定格出力値を超えないように制御する。
 当該制御を実現するため、制御部105は、蓄電池30に関する情報であって、アンシラリーサービスのための出力の上限、及び、エネルギーマネジメントサービスのための出力の上限を示す制御情報を取得または自身で設定する。アンシラリーサービスのための出力の上限と、エネルギーマネジメントサービスのための出力の上限との和は、蓄電池30用のPCSの定格出力値以下である。
 第1のサービス部1及び第2のサービス部2は、当該制御情報で示される各サービスのための出力の上限を超えないように、各蓄電池30に充電又は放電を実行させる。結果、アンシラリーサービスのための出力(充電及び放電)と、エネルギーマネジメントサービスのための出力(充電及び放電)との和が蓄電池30用のPCSの定格出力値を超える不都合を回避できる。
 各サービスのための出力の上限は、例えば、蓄電池30用のPCSの定格出力値を100%とした割合で示されてもよいし、X[W]のように示されてもよい。
 各サービスのための出力の上限を示す制御情報は、すべての蓄電池30に共通であってもよい。また、制御情報は、複数の蓄電池30各々に対応して個別に設定されてもよい。その他、複数の蓄電池30をその属性に応じてグループ化し、グループ毎にグループ内で共通の制御情報が設定されてもよい。複数の蓄電池30各々に対応して個別に設定する場合、また、グループ毎にグループ内で共通の制御情報を設定する場合においては、複数の蓄電池30各々に対応する制御情報で示される各タイミングでの第1のサービスのための出力の上限の和が所定範囲に収まる、例えば一定となるように設定してもよい。このようにした場合、タイミングに関わらず、第1のサービスのための出力を安定的に確保できる。
 また、制御情報は、すべてのタイミングにおいて共通の内容であってもよいし、時間帯毎に異なる内容であってもよい。後者の場合、例えば1日を複数の時間帯に分割し、時間帯毎に各サービスのための出力の上限が決定されてもよい。
 図4に、制御情報の一例を模式的に示す。横軸に時刻、縦軸に各サービスに割り振られた蓄電池30の出力を示す。蓄電池30の出力は、蓄電池30用のPCSの定格出力値を100%とした割合で示している。
 図4では、1日分の内容が示されている。図4に示す例の場合、終日、アンシラリーサービス(第1のサービス)のための出力の上限は蓄電池30用のPCSの定格出力値の30%であり、エネルギーマネジメントサービス(第2のサービス)のための出力の上限は蓄電池30用のPCSの定格出力値の70%であることが分かる。
 図5に、他の一例を模式的に示す。図5に示す例の場合、6時から19時までの時間帯と、19時から6時までの時間帯との間で、各サービスのための出力の上限が異なっている。このように、各時間帯の属性に応じて、各サービスに蓄電池30の出力の上限を割り振ってもよい。この6時から19時や19時から6時は、これに限定されず時間帯別の電気料金(電力単価)にて設定してもよい。具体的には、電気料金(電力単価)が相対的に安い時間帯と、電気料金(電力単価)が相対的に高い時間帯とに基づいて、各サービスのための出力の上限を異ならせる。
 図6に、他の一例を模式的に示す。図6に示す例の場合、アンシラリーサービス(第1のサービス)用に確保された出力と、エネルギーマネジメントサービス(第2のサービス)用に確保された出力と、両サービス間で融通し合うために確保された出力とが存在する。両サービス間で融通し合うために確保された出力は、各タイミング(各時刻)における各サービスの状態や蓄電池30の状態等に基づき、所定のルールに従い両サービスまたはいずれかのサービスに割り振られる。
 例えば、リソースアグリゲータのオペレータが上述のような制御情報を設定し、制御部105に入力してもよい。
 その他、制御部105が制御情報を設定してもよい。例えば、制御部105は、蓄電池30を設置する需要家との契約に基づき、アンシラリーサービス及びエネルギーマネジメントサービスで利用する出力の比率を設定してもよい。また、例えば、制御部105は、蓄電池30を保有する各需要家から、アンシラリーサービス及びエネルギーマネジメントサービスのいずれを優先するか、また、各サービスにかける比率等を示す情報を適当なタイミングで取得してもよい。なお、制御部105は、1日を複数の時間帯に分け、時間帯毎に上述のような情報(いずれを優先するか、比率等)を取得または設定してもよい。
 そして、制御部105は、当該情報、及び、予め定められたルールに基づき、各需要家の蓄電池30ごとに制御情報を設定してもよい。例えば、制御部105は、優先される方のサービスに、より大きい出力上限を決定することができる。この場合の比率は、予め定められたもの(例えば、7:3、6:4等)であってもよい。その他、制御部105は、需要家が決定した各サービスにかける比率と同じ比率で、各サービスの出力の上限を決定してもよい。なお、図6に示すような制御情報を設定する場合、例えば、両サービス間で融通し合うための出力(予め定められた値)を除いた出力を、上記比率で両サービスに分けてもよい。時間帯毎に上述のような情報(いずれを優先するか、比率等)が取得されている場合、当該時間毎に、例えば上記と同様にして各サービスの出力の上限を設定することができる。
 また、制御部105は、第2のサービス(エネルギーマネジメントサービス)のための出力の上限を設定した後に、残りの出力を、第1のサービス(アンシラリーサービス)のための出力に設定してもよい。例えば、制御部105は、まず、ある日のエネルギーマネジメントサービスのための充放電スケジュールに基づき、エネルギーマネジメントサービスのための出力の上限を設定してもよい。例えば、制御部105は、1日を複数の時間帯に分け、各時間帯における出力(充電又は放電)の最大値(需要家の電力需要予測等に基づきスケジュールされている出力(充電又は放電)の最大値)を特定し、特定した最大値、又は、最大値+αを、各時間帯のエネルギーマネジメントサービスのための出力上限として設定してもよい。そして、残り(蓄電池30用のPCSの定格出力値から各時間帯におけるエネルギーマネジメントサービスのための出力上限を引いた値)を、アンシラリーサービスのための出力上限として設定してもよい。
 逆に、制御部105は、第1のサービス(アンシラリーサービス)のための出力の上限を設定した後に、残りを、第2のサービス(エネルギーマネジメントサービス)のための出力に設定してもよい。第1のサービス(アンシラリーサービス)のための出力の上限を設定する手段は特段制限されない。
 なお、上記エネルギーマネジメントサービスのための充放電スケジュールは、電力単価が相対的に安い時間帯に電力を充電し、電力単価が相対的に高い時間帯に電力を放電するよう設計される。このような充放電スケジュールを生成する手段は設計的事項であり、あらゆる技術を採用できる。
 ところで、蓄電池30に2つのサービスを並行して実施させる場合、各サービスで用いる出力[W]の調整のみならず、各サービスで用いる容量[Wh]の調整をも検討する必要がある。しかし、並行して実施される2つのサービスが、アンシラリーサービス及びエネルギーマネジメントサービスである本実施形態の場合、各サービスで用いる容量[Wh]の調整を行う必要性を大幅に低減できる。以下、説明する。
 アンシラリーサービスに関連して蓄電池30を制御した場合、蓄電池30は充電処理及び放電処理を比較的短い周期で繰り返すこととなる。いずれか一方のみを長時間にわたって継続することは稀である。このため、アンシラリーサービスでの積算充電量[Wh]と積算放電量[Wh]との差を時系列に観察すると、SOC(State of Charge)の変動は伴うものの、比較的短い時間間隔で繰り返し、当該差が「0」となる時点が現れる。例えば、SOCの変動幅として±15%程度のゆらぎ(つまり、充電側に+15%程度の範囲でうごき、また放電側に-15%程度の範囲でうごくといった動作)はあるものの、平均的には積算充電量と積算放電量とを等しくすることができる。なお、蓄電池30の充放電損失分を補償するようなバイアス制御を含む運用を前提としている。
 そして、エネルギーマネジメントサービスにおいては、比較的長い時間(数時間かけて)で、所定量の充電、及び、所定量の放電を達成すればよい。このため、エネルギーマネジメントサービスの目的(比較的長い時間での所定量の充電、及び、所定量の放電)を達成する上で、アンシラリーサービスによる蓄電池30の充電電力量及び空き容量の変化はほとんど影響しない。すなわち、エネルギーマネジメントサービスの目的を達成する上で、アンシラリーサービスによる蓄電池30の充電電力量及び空き容量の変化を考慮する必要性は少ないと言える。
 また、アンシラリーサービスにおいては、送配電事業者システム40からの指示に従い各タイミングで所定電力[W]での放電及び充電を行えればよい。上述の通り充電処理及び放電処理を比較的短い周期で繰り返すアンシラリーサービスの場合、比較的小さい空き容量と、比較的小さい充電電力の両方が蓄電池30に確保されていれば足りる。そして、充電及び放電を繰り返すエネルギーマネジメントサービスにおいては、SOC「0」、及び、SOC「100%」となる時間帯は稀であり、大部分の時間帯で、アンシラリーサービスのために十分な充電電力量と空き容量の両方が蓄電池30に確保されている。すなわち、アンシラリーサービスを実施する上で、エネルギーマネジメントサービスによる蓄電池30の充電電力量及び空き容量の変化を考慮する必要性は少ないと言える。
 このため、並行して実施される2つのサービスがアンシラリーサービス及びエネルギーマネジメントサービスである本実施形態の場合、2つのサービス間での蓄電池30の容量の調整等は基本的に不要である。
 なお、理論上、エネルギーマネジメントサービスにより、蓄電池30の容量が、SOC「0」や「100%」となるタイミングが存在し得る。SOC「0」の場合、アンシラリーサービスでの放電制御が不可となり、SOC「100%」の場合、アンシラリーサービスでの充電制御が不可となる。
 このような状況を回避するため、エネルギーマネジメントサービスで利用可能な蓄電池30の容量を予め定めておいてもよい。例えば、エネルギーマネジメントサービスで充電できる電力の上限(例:SOC95%まで充電可能)や、エネルギーマネジメントサービスで放電できる電力の上限(例:SOC5%まで放電可能)を予め定めておいてもよい。かかる場合、制御部105は、エネルギーマネジメントサービスで充放電できる上限及び下限を示す情報をさらに取得または自身で設定する。例えば、リソースアグリゲータのオペレータが決定し、制御部105に入力する。そして、第2のサービス部2は、当該情報に基づき、蓄電池30の動作を制御する。加えて、複数台の蓄電池30を用いてアンシラリーサービスを実施する場合は、SOC「0」又は「100%」になる時間帯を、蓄電池30毎に少しずつ、ずらすような運用を第2のサービス部2が行えば(例:第2の処理部103は、SOCが0又は100%になる時間帯が蓄電池30毎にずれる第2の情報を生成する。)、全ての時間帯で、継続的にアンシラリーサービスを実施することができる。
 次に、第1のサービス部1(図3参照)の構成について説明する。第1のサービス部1は、制御部105が取得または自身で設定した制御情報、及び、送配電事業者システム40から受信した需給制御信号(LFC信号等)に基づき、蓄電池30の動作(充電及び放電)を制御する。第1のサービス部1は、各蓄電池30の出力電力(充電電力及び放電電力)が、制御情報で特定されるアンシラリーサービスのための出力の上限を超えないように、蓄電池30の動作を制御する。以下、アンシラリーサービスで実施されるLFC制御及びGF制御の一例を説明する。
「LFC制御の一例」
 第1のサービス部1の第1の処理部101は、制御部105から取得した制御情報に基づき、蓄電池30ごとに、アンシラリーサービスのための出力上限を特定する。なお、図6に示すようにサービス間で融通する出力が存在する場合、制御部105は、サービス間で融通する出力をいずれのサービスに割り振るか決定するための情報(例:需要家毎の契約サービス内容(オール電化等)や、需要家毎の電力需要予測情報等)を収集し、当該情報に基づき当該出力の割り振りを決定する。そして、制御部105は、決定した内容を第1のサービス部1及び第2のサービス部2に送信する。第1の処理部101は、このように制御部105から送信されてきた情報に基づき、アンシラリーサービスのための出力上限を特定する。
 第1の処理部101は、アンシラリーサービスのための出力上限を特定した後、蓄電池30ごとに、LFC制御のための出力の上限amax_nを特定する(nは蓄電池30の通番)。amax_nは、蓄電池30用のPCSの定格出力値を100%とした割合で示されてもよいし、x[W]のように示されてもよい。
 上限amax_nは、制御情報で示されるアンシラリーサービスのための出力上限であってもよいし、アンシラリーサービスのための出力上限をLFC制御に割り振った値(GF制御に割り振る分を考慮して)であってもよいし、これらに係数β(βは0以上1以下)を掛けた値であってもよい。
 係数βは、各蓄電池30の状態(SOC、温度、故障や動作異常の起こる可能性)に応じて定まる。例えば、SOCが所定範囲(例:20%以上80%以下)に入っている場合、すなわち充電電力量と空き容量のバランスが良好である場合、入っていない場合に比べて大きい値を決定してもよい。また、温度が所定値より低い場合、所定値より高い場合に比べて大きい値を決定してもよい。また、故障や動作異常及び通信異常の起こる可能性が所定レベルより高いと判断される場合、所定レベルより低いと判断される場合に比べて小さい値を決定してもよい。各蓄電池30の状態を示す情報から係数βを決定するアルゴリズムの詳細は設計的事項である。
 通信部106は、複数の蓄電池制御装置20各々から所定周期(例:5分)で、各蓄電池30の状態を示す情報を収集する。そして、第1の処理部101は、当該情報に基づき、所定周期(例:15分)で蓄電池30ごとに係数βを決定し、決定した係数βを用いて上限amax_nを決定する。
 各蓄電池30の上限amax_nを決定した後、第1の処理部101は、複数の蓄電池30各々のamax_nを足し合わせたAmaxを算出する。当該Amaxが、制御装置10により提供されるLFC制御(アンシラリーサービス)で対応可能な蓄電池群全体での出力の上限となる。制御装置10は、所定周期(例:15分)で当該Amaxを送配電事業者システム40に通知する。また、制御装置10は、所定周期(例:15分)で、各蓄電池30に対応して決定したamax_n(蓄電池制御信号)を、対応する蓄電池制御装置20に送信する。
 また、第1の受信部102は、送配電事業者システム40からLFC信号を所定周期(例:数秒)で繰り返しまたは不定周期で受信する。LFC信号には、複数の蓄電池30で充電又は放電する電力[W]の指令値が含まれる。送配電事業者システム40は、制御装置10から通知されたAmax以下の範囲で上記指令値を決定し、制御装置10に通知する。なお、LFC信号は、動作内容(充電及び放電)を識別可能になっている。例えば、充電の時は正の値、放電の時は負の値で示されてもよい。
 LFC信号がAmax以下の範囲での電力[W]の値として送られてくる場合、LFC信号の受信に応じて、第1の処理部101は、LFC信号で特定される指令値をAmaxで割った値Bを算出する。そして、通信部106は、算出された当該値Bを含む蓄電池制御信号を、複数の蓄電池制御装置20に一斉送信する。ここでの蓄電池制御信号の送信は、所定周期(例:数秒)で繰り返しまたは不定周期で行われる。一斉送信の実現手段としては、例えばマルチキャスト、FM通信等を用いたブロードキャスト、その他の手法を用いることもできる。
 各蓄電池制御装置20の算出部22は、通信部21が所定周期(例:15分)で繰り返し受信するamax_nと、通信部21が所定周期(例:数秒)で繰り返しまたは不定周期で受信する値Bとに基づき、対応する蓄電池30の制御内容を算出する。具体的には、蓄電池制御装置20の算出部22は、amax_nとBとの積を、蓄電池30の出力値(充電又は放電)として算出する。
 そして、蓄電池制御装置20の算出部22は、算出したLFC制御のための蓄電池30の出力(充電又は放電)と、各タイミングにおけるエネルギーマネジメントサービスのための蓄電池30の出力(充電又は放電)とを足し合わせることで、各タイミングにおける蓄電池30の出力(充電又は放電)の内容を決定する。なお、算出部22は、さらに、以下で説明するGF制御のための蓄電池30の出力(充電又は放電)を足し合わせることで、各タイミングにおける蓄電池30の出力(充電又は放電)の内容を決定してもよい。そして、蓄電池制御装置20の蓄電池制御部23は、算出部22が決定した内容で蓄電池30を動作させる。足し合わせる処理においては、充電させる電力及び放電させる電力の一方を正の値で表し、他方を負の値で表すことができる(以下同様)。
 当該例の変形例として、送配電事業者システム40は、複数の蓄電池30で充電又は放電する電力[W]の指令値を含むLFC信号に代えて、指令値をAmaxで割った値Bを含むLFC信号を制御装置10に送信してもよい。そして、通信部106は、当該値Bを含む蓄電池制御信号を、複数の蓄電池制御装置20に一斉送信してもよい。この場合、蓄電池制御装置20は、amax_nとBとの積を、蓄電池30の出力値(充電又は放電)として算出する。
 他の変形例として、通信部106は、複数の蓄電池制御装置20に、各蓄電池30に対応して決定したamax_nに加えて、Amaxを所定周期(例:15分)で繰り返し送信してもよい。そして、送配電事業者システム40から、複数の蓄電池30で充電又は放電する電力[W]の指令値を含むLFC信号を受信すると、通信部106は、指令値をAmaxで割った値Bに代えて、当該指令値を含むLFC信号を複数の蓄電池制御装置20に一斉送信してもよい。そして、各蓄電池制御装置20が、指令値をAmaxで割った値Bにamax_nを掛けて、蓄電池30の出力値(充電又は放電)を算出してもよい。
 他の変形例として、第1の処理部101は、各蓄電池30に対応して決定したamax_nを、Amaxで割った値dを算出してもよい。そして、通信部106は、amax_nに代えて、dを、複数の蓄電池制御装置20に所定周期(例:15分)で繰り返し送信してもよい。そして、送配電事業者システム40から、複数の蓄電池30で充電又は放電する電力[W]の指令値を含むLFC信号を受信すると、通信部106は、当該指令値を含むLFC信号を複数の蓄電池制御装置20に一斉送信してもよい。そして、各蓄電池制御装置20が、指令値にdを掛けて、蓄電池30の出力値(充電又は放電)を算出してもよい。
「GF制御の一例」
 第1のサービス部1の第1の処理部101は、制御部105から取得した制御情報に基づき、蓄電池30ごとに、アンシラリーサービスのための出力上限を特定する。なお、図6に示すようにサービス間で融通する出力が存在する場合、制御部105は、サービス間で融通する出力をいずれのサービスに割り振るか決定するための情報(例:需要家毎の契約サービス内容(オール電化等)や、需要家毎の電力需要予測情報等)を収集し、当該情報に基づき当該出力の割り振りを決定する。そして、制御部105は、決定した内容を第1のサービス部1及び第2のサービス部2に送信する。第1の処理部101は、このように制御部105から送信されてきた情報に基づき、アンシラリーサービスのための出力上限を特定する。
 第1の処理部101は、アンシラリーサービスのための出力上限を特定した後、蓄電池30ごとに、GF制御のための出力の上限cmax_nを特定する(nは蓄電池の通番)。cmax_nは、蓄電池30用のPCSの定格出力値を100%とした割合で示されてもよいし、x[W]のように示されてもよい。
 上限cmax_nは、制御情報で示されるアンシラリーサービスのための出力上限であってもよいし、アンシラリーサービスのための出力上限をGF制御に割り振った値(LFC制御に割り振る分を考慮して)であってもよいし、これらに係数γ(γは0以上1以下)を掛けた値であってもよい。
 係数γは、各蓄電池30の状態(SOC、温度、故障や動作異常の起こる可能性)に応じて定まる。例えば、SOCが所定範囲(例:20%以上80%以下)に入っている場合、すなわち充電電力量と空き容量のバランスが良好である場合、入っていない場合に比べて大きい値を決定してもよい。また、温度が所定値より低い場合、所定値より高い場合に比べて大きい値を決定してもよい。また、故障や動作異常及び通信異常の起こる可能性が所定レベルより高いと判断される場合、所定レベルより低いと判断される場合に比べて小さい値を決定してもよい。各蓄電池30の状態を示す情報から係数γを決定するアルゴリズムの詳細は設計的事項である。
 通信部106は、複数の蓄電池制御装置20各々から所定周期(例:5分)で、各蓄電池30の状態を示す情報を収集する。そして、第1の処理部101は、当該情報に基づき、所定周期(例:15分)で蓄電池30ごとに係数γを決定し、決定した係数γを用いて上限cmax_nを決定する。
 各蓄電池30の上限cmax_nを決定した後、第1の処理部101は、蓄電池30ごとに、GF制御の内容を決定する。具体的には、第1の処理部101は、各蓄電池30で充電又は放電する電力[W]の指令値を、系統周波数の基準値からの乖離の程度に応じて定めたGF制御情報(例:関数、対応テーブル等)を生成する。GF制御情報においては、出力の最大値が、上限cmax_n以下となるように定められる。通信部106は、複数の蓄電池制御装置20各々に、各々に対応したGF制御情報を送信する。
 各蓄電池制御装置20の通信部21は、制御装置10からGF制御情報を受信する。また、各蓄電池制御装置20の通信部21は、自装置の近くに設置された測定サンサー(例:図17の計量器や蓄電池30のPCS内の内蔵センサー)から、系統周波数の測定値を所定周期(例:0.4秒)で繰り返し受信する。そして、各蓄電池制御装置20の算出部22は、当該測定値と、予め与えられていた基準値とに基づき、系統周波数の基準値からの乖離を繰り返し算出する。また、各蓄電池制御装置20の算出部22は、算出した乖離と、GF制御情報とに基づき、各タイミングにおける複数の蓄電池30で充電又は放電する電力[W]の指令値を特定する。
 そして、蓄電池制御装置20の算出部22は、算出したGF制御のための蓄電池30の出力(充電又は放電)と、各タイミングにおけるエネルギーマネジメントサービスのための蓄電池30の出力(充電又は放電)とを足し合わせることで、各タイミングにおける蓄電池30の出力(充電又は放電)の内容を決定する。なお、算出部22は、さらに、上述したLFC制御のための蓄電池30の出力(充電又は放電)を足し合わせることで、各タイミングにおける蓄電池30の出力(充電又は放電)の内容を決定してもよい。そして、蓄電池制御装置20の蓄電池制御部23は、決定した内容で蓄電池30に動作させる。
 次に、第2のサービス部2の構成について説明する。第2のサービス部2は、制御部105が取得又は自身で設定した制御情報に基づき、蓄電池30の充放電スケジュール(第2の情報)を決定する。例えば、第2のサービス部2は、前日に、翌日1日分の充放電スケジュールを生成する(第2の処理部103)。そして、通信部106は、当該充放電スケジュールを各蓄電池制御装置20に送信する。
 第2の処理部103は、エネルギーマネジメントサービスのための出力の上限以下を満たす範囲で、充電及び放電させる充放電スケジュールを生成する。また、エネルギーマネジメントサービスで充電可能な電力の上限(例:SOC95%まで充電可能)、及び、放電可能な電力の上限(例:SOC5%まで放電可能)が定まっている場合、これを満たす範囲で、充電及び放電させる充放電スケジュールを生成する。
 充放電スケジュールの生成方法は特段制限されないが、以下一例を説明する。まず、第2の処理部103は、時間帯毎の電力単価(各需要家が電力会社から購入する場合の電力単価。翌日分。)に基づき、充電させる時間帯及び放電させる時間帯を決定することができる。
 第2の処理部103は、電力単価が相対的に高い時間帯を放電させる時間帯とし、電力単価が相対的に低い時間帯を充電させる時間帯とする。例えば、第2の処理部103は、電力単価が所定値より高い時間帯を放電させる時間帯とし、当該所定値以下の時間帯を充電させる時間帯としてもよい。所定値は、例えば、時間帯ごとに設定された電力単価(例:X1時からX2時「Y1円/kWh」、X2時からX3時「Y2円/kWh」、・・・)の平均値(Y1、Y2、・・・の平均値)であってもよいし、予め第2の処理部103に与えられた値であってもよい。
 そして、第2の処理部103は、エネルギーマネジメントサービスのための出力の上限以下を満たす範囲で、充電させる時間帯に充電させ、かつ、放電させる時間帯に放電させる充放電スケジュールを生成する。なお、これら充放電では、1日をサイクルとして、エネルギーマネジメントサービスで充電可能な電力の上限(例:SOC95%まで充電可能)を超えない範囲で、積算充電量ができるだけ大きくなるのが好ましい。また、エネルギーマネジメントサービスで放電可能な電力の上限(例:SOC5%まで放電可能)を超えない範囲で、積算放電量ができるだけ大きくなるのが好ましい。なお、第2の処理部103は、SOCの値が所定の値以下又は所定の値以上になる時間帯が蓄電池30ごとに異なるように、複数の蓄電池30各々に対応する第2の情報を生成してもよい。
 各蓄電池制御装置20の通信部21は、上記充放電スケジュールを受信する(または、時間帯別電力単価の情報やエネルギーマネジメントサービスのための時間帯別の出力の上限値の情報を受信して、算出部22でスケジュールを生成しても良い。その場合は、生成したスケジュールを、通信部21から、制御装置10に送信する)。そして、蓄電池制御装置20の算出部22は、当該充放電スケジュールに基づき、各タイミングで蓄電池30に充電させる電力、及び、放電させる電力を特定する。そして、蓄電池制御装置20の算出部22は、各タイミングにおけるエネルギーマネジメントサービスのための蓄電池30の出力(充電又は放電)と、アンシラリーサービスのための蓄電池30の出力(充電又は放電)とを足し合わせることで、当該タイミングにおける蓄電池30の出力(充電又は放電)の内容を決定する。そして、蓄電池制御装置20の蓄電池制御部23は、特定した内容で蓄電池30を動作させる。
 ここで、制御装置10の変形例を説明する。図3に示す例では、各サービス部(第1のサービス部1及び第2のサービス部2)に対応して受信部(第1の受信部102及び第2の受信部104)を設けているが、これに代えて、複数のサービス部に共通の受信部を設けてもよい。また、図3に示す例では、複数のサービス部に共通の通信部106を設けているが、各サービス部に対応して通信部を設けてもよい。当該前提は、以下のすべての実施形態において同様である。
 次に、本実施形態の蓄電池制御装置20の構成を説明する。図7に本実施形態の蓄電池制御装置20の機能ブロック図の一例を示す。図示するように、蓄電池制御装置20は、通信部21と、算出部22と、蓄電池制御部23とを有する。
 通信部21は、アンシラリーサービス(第1のサービス)に関する第1の情報、及び、エネルギーマネジメントサービス(第2のサービス)に関する第2の情報を受信する。
 例えば、通信部21は、LFC制御に関連して蓄電池30に充電又は放電させる電力を特定するための第1の情報(例:amax_n、B、指令値、Amax、d等)を受信することができる。
 また、通信部21は、GF制御に関連して蓄電池30に充電又は放電させる電力を特定するための第1の情報(例:GF制御情報)や、系統周波数等を受信することができる。例えば、通信部21は、自装置の近くに設置された測定サンサー(例:図17の計量器や蓄電池30のPCS内の内蔵センサー)から系統周波数を受信することができる。
 また、通信部21は、エネルギーマネジメントサービスに関連して蓄電池30に充電又は放電させる電力を特定するための第2の情報(充放電スケジュール、若しくは充放電スケジュールを決定するために必要な情報)を受信することができる。
 なお、通信部21は、データの輻輳を回避するため、これらの情報各々を受信するための複数の受信部を備えてもよいし、1つの受信部で複数の情報を受信してもよい。また、通信部21は、データの輻輳を回避するため、各種情報を送信するための複数の送信部を備えてもよいし、1つの送信部で各種情報を送信してもよい。
 算出部22は、第1の情報及び第2の情報に基づき、蓄電池30に充電又は放電させる電力を算出する。具体的には、算出部22は、第1の情報に基づき、アンシラリーサービスに関連して各タイミングで蓄電池30に充電又は放電させる電力[W]を特定する。また、算出部22は、第2の情報に基づき、エネルギーマネジメントサービスに関連して各タイミングで蓄電池30に充電又は放電させる電力[W]を特定する。そして、算出部22は、それらを足し合わせることで、各タイミングで蓄電池30に充電又は放電させる電力[W]を特定する。
 図8を用いて算出部22による処理の概念を説明する。図8では、横軸に時刻、縦軸に蓄電池30に充電又は放電させる電力(PCSの制御率)を取ったグラフを示している。図中の「第1向け」は、第1の情報に基づき特定された、アンシラリーサービスに関連して蓄電池30に充電又は放電させる電力を示す。「第2向け」は、第2の情報に基づき特定された、エネルギーマネジメントンサービスに関連して蓄電池30に充電又は放電させる電力を示す。
 算出部22は、蓄電池30に充電させる電力をプラスの値、蓄電池30に放電させる電力をマイナスの値とし(逆でもよい)、各タイミングでアンシラリーサービスに関連して蓄電池30に充電又は放電させる電力を算出している。また、同様にして、各タイミングでエネルギーマネジメントサービスに関連して蓄電池30に充電又は放電させる電力を算出している。各タイミングで各サービスに関連して蓄電池30に充電又は放電させる電力を足し合わせることで、各タイミングで蓄電池30に充電又は放電させる電力が算出される。なお、制御情報に基づき各サービスのための出力が調整されているため、いずれのタイミングにおいても、足し合わせた値が、充電出力の制御率100%、及び、放電出力の制御率100%を超えることはない(つまり、PCSの定格出力を超えることは無い)。
 蓄電池制御部23は、算出部22により算出された内容で蓄電池30を制御する(充電又は放電させる)。
 以上説明した本実施形態によれば、一の蓄電池30にアンシラリーサービスとエネルギーマネジメントサービスとを並行して同時に実施させることができる。すなわち、両サービス各々に対応した充電及び放電を、同タイミングで一の蓄電池30に行わせることができる。当該技術により、蓄電池及びPCSの利用効率が高まる。
 また、本実施形態では、事前に、各サービスのためのPCSの出力の上限が定められる。そして、当該上限を満たす範囲で、各サービスでの出力がなされる。このため、各サービスのための出力の和が、蓄電池30用のPCSの定格出力値を超えるという不都合の発生を抑制できる。
 また、本実施形態では、各サービスのためのPCSの出力の上限を、時間帯毎に変更することができる。このため、各時間帯において優先すべきサービスに、より大きい出力を与えることができる。なお、各サービスのためのPCS出力の上限値の決定は、制御装置10側で実施しても良いが、蓄電池制御装置20側で実施し、その内容を制御装置10に送る形で実施してもよい。
 また、本実施形態では、アンシラリーサービスと、エネルギーマネジメントサービスとを、一の蓄電池30に並行して実施させる。上述の通り、これら2つのサービスを組み合わせた本実施形態の場合、蓄電池30の充電電力量及び空き容量の観点においても不都合なく、両サービスを並行して一の蓄電池30に実施させることができる。
 なお、時系列に第1の情報を観察すると、第1の情報で特定される「蓄電池30に充電させる充電電力[W]の積算量[Wh]」と、第1の情報で特定される「蓄電池30に放電させる放電電力[W]の積算量[Wh]」とが対応する(互いの値が等しくなる)第1のタイミングが繰り返し現れる。
 また、時系列に第2の情報を観察すると、第2の情報で特定される「蓄電池30に充電させる充電電力[W]の積算量[Wh]」と、第2の情報で特定される「蓄電池30に放電させる放電電力[W]の積算量[Wh]」とが対応する(互いの値が等しくなる)第2のタイミングも繰り返し現れる。
 そして、第1のタイミングが現れる周期と、第2のタイミングが現れる周期とは互いに異なる。具体的には、第1のタイミングが現れる周期は、第2のタイミングが現れる周期よりも短い。このような関係となる第1のサービスと第2のサービスとを並行して実施させる本実施形態においては、蓄電池30の充電電力量及び空き容量の観点においても不都合なく、両サービスを並行して一の蓄電池30に実施させることができる。
 ここで、本実施形態の変形例を説明する。なお、当該変形例は以下の実施形態において適用されてもよい。
「変形例1」
 図25に示すように、制御装置10は、第2のサービス部2を有さなくてもよい。そして、第1の受信部102は、各蓄電池30用のPCSの定格出力値[W]を受信し、第1の処理部101は、第1のサービスに関連して蓄電池30に充電又は放電させる電力[W]を特定するための第1の情報を、各蓄電池30用のPCSの定格出力値[W]に基づいて生成してもよい。第1の処理部101は、第1のサービスに関連して蓄電池30に充電又は放電させる電力[W]が各蓄電池30用のPCSの定格出力値[W]未満、例えば定格出力値[W]のQ%(0<Q<100)以下となるように、第1の情報を生成する。例えば、第1の処理部101は、各蓄電池30のLFC制御のための上限amax_n及びGF制御のための上限cmax_nを、これらの和が各蓄電池30用のPCSの定格出力値[W]未満、例えば定格出力値[W]のQ%(0<Q<100)以下となるように決定する。そして、通信部106は、当該第1の情報を蓄電池制御装置20に送信する。
 蓄電池制御装置20は、図7に示すように、通信部21と、算出部22と、蓄電池制御部23とを有する。通信部21は、第1の情報を受信する。算出部22は、第1の情報に基づいて、第1のサービスに関連して蓄電池30に充電又は放電させる電力[W]を特定する。
 また、算出部22は、第1の情報及び各蓄電池30用のPCSの定格出力値[W]に基づいて、第2のサービスに関連して蓄電池30に充電又は放電させる電力[W]を特定する。具体的には、算出部22は、定格出力値[W]から第1のサービスに関連して蓄電池30に充電又は放電させる電力[W]を引いた値を、第2のサービスに関連して蓄電池30に充電又は放電させる電力[W]の最大値として特定する。
 そして、算出部22は、第2のサービスに関連して蓄電池30に充電又は放電させる電力[W]を、当該最大値以下の範囲で決定する。例えば、算出部22は、上述した第2の処理部103と同様の方法で、充電させる時間帯及び放電させる時間帯を決定する。そして、充電させる時間帯においては、上記最大値又はそれに準ずる値で蓄電池30に充電させることを決定する。一方、放電させる時間帯においては、上記最大値以下の範囲で、「所定の測定センサーで測定されたその時点の負荷の総消費電力[W]」を、蓄電池30に放電させることを決定する。
 そして、算出部22は、第1の情報に基づいて特定した「第1のサービスに関連して蓄電池30に充電又は放電させる電力[W]」と、算出した「第2のサービスに関連して蓄電池30に充電又は放電させる電力[W]」とを足し合わせることで、蓄電池30に充電又は放電させる電力[W]を算出する。
 蓄電池制御部23は、算出部22により算出された内容で蓄電池30を制御する。
 当該変形例の場合、制御装置10から複数の蓄電池制御装置20に送信する情報の量を減らす(第2の情報を送信しない分)ことができる。
「変形例2」
 他の変形例を説明する。本変形例の制御装置10の機能ブロック図の一例は、図3で示される。第1のサービス部1、第2のサービス部2及び制御部105の構成は、上述の通りである。通信部106は、第1のサービス部1で生成された第1の情報を蓄電池制御装置20に送信するが、第2のサービス部2で生成された第2の情報を蓄電池制御装置20に送信しない。
 当該変形例の蓄電池制御装置20の構成は、変形例1の蓄電池制御装置20の構成と同様である。
 当該変形例の場合、制御装置10から複数の蓄電池制御装置20に送信する情報の量を減らす(第2の情報を送信しない分)ことができる。なお、第2のサービス部2が生成した第2の情報は制御装置10内で管理され、各蓄電池制御装置20の制御内容の把握(推測)等に利用される。
「変形例3」
 他の変形例を説明する。本変形例の制御装置10の機能ブロック図の一例は、図3で示される。
 制御部105は、蓄電池30に関する情報であって、第1のサービスのための出力の上限及び第2のサービスのための出力の上限の少なくとも一方を示す制御情報を取得又は設定する。そして、制御装置10は、第1のサービス部1の第1の処理部101が制御情報に基づき第1の情報を生成する処理、及び、第2のサービス部2の第2の処理部103が制御情報に基づき第2の情報を生成する処理の少なくとも一方を行う。第1のサービス部1の第1の処理部101が制御情報に基づき第1の情報を生成する処理、及び、第2のサービス部2の第2の処理部103が制御情報に基づき第2の情報を生成する処理の詳細は、上述の通りである。
 通信部106は、第1の情報及び第2の情報の少なくとも一方(生成された方)を蓄電池制御装置20に送信する。
 当該変形例の蓄電池制御装置20の構成は、変形例1の蓄電池制御装置20の構成と同様である。すなわち、蓄電池制御装置20は、受信した第1の情報又は第2の情報に基づき、「第1のサービスに関連して蓄電池30に充電又は放電させる電力[W]」、及び、「第2のサービスに関連して蓄電池30に充電又は放電させる電力[W]」の少なくとも一方を特定する。そして、PCSの定格出力値から特定した電力を引いた値を、他方のサービスに関連して蓄電池30に充電又は放電させる電力[W]の最大値として特定する。その後、算出部22は、他方のサービスに関連して蓄電池30に充電又は放電させる電力[W]を、当該最大値以下の範囲で決定する。
 当該変形例の場合、制御装置10から複数の蓄電池制御装置20に送信する情報の量を減らす(第2の情報を送信しない分)ことができる。
<第2の実施形態>
 本実施形態は、アンシラリーサービス(第1のサービス)、及び、インバランス回避サービス(第2のサービス)を並行して一の蓄電池30に実施させる点で、第1の実施形態と異なる。
 インバランス回避サービスは、小売電気事業者に向けたサービスである。小売電気事業者は、自システムの調整による30分同時同量の達成が困難な場合、リソースアグリゲータに、小売電気事業者が電力供給契約している需要家の有する蓄電池に対して、所定のタイミングで所定量の充電又は放電を依頼する。リソースアグリゲータは、上記依頼に基づき蓄電池30を制御し、所定のタイミングで所定量の充電又は放電を行わせる。
 ここで、本実施形態の制御システムの全体像を説明する。図9に本実施形態の制御システムの機能ブロック図の一例を示す。図示するように、本実施形態の制御システムは、小売電気事業者システム50を有する点で第1の実施形態と異なる。
 小売電気事業者システム50は、小売電気事業者に保有されるシステムである。小売電気事業者システム50は、自システムの調整による30分同時同量の達成が困難な場合、制御装置10に、所定のタイミングでの所定量の充電又は放電を依頼する。
 図3に、本実施形態の制御装置10の機能ブロック図の一例を示す。図示するように、制御装置10は、第1のサービス部1と、第2のサービス部2と、制御部105、通信部106とを有する。
 通信部106は、複数の蓄電池制御装置20と通信し、情報の送受信を行う。
 第1のサービス部1は、アンシラリーサービスのための処理を実行する機能部である。第1のサービス部1は、第1のサービスのための情報(例:送配電事業者システム40から送信される需給制御信号)を受信する第1の受信部102と、蓄電池30の制御内容を特定するための情報を生成する第1の処理部101とを有する。第2のサービス部2は、インバランス回避サービスのための処理を実行する機能部である。第2のサービス部2は、第2のサービスのための情報(例:小売電気事業者システム50からの充放電依頼)を受信する第2の受信部104と、蓄電池30の制御内容を特定するための情報を生成する第2の処理部103とを有する。
 制御部105は、第1のサービス部1及び第2のサービス部2を制御する。制御部105は、アンシラリーサービスのための出力(充電及び放電)と、インバランス回避サービスのための出力(充電及び放電)との和が蓄電池30用のPCSの定格出力値を超えないように制御することができる。
 当該制御を実現するため、制御部105は、蓄電池30に関する情報であって、アンシラリーサービスのための出力の上限、及び、インバランス回避サービスのための出力の上限を示す制御情報を取得または自身で設定する。アンシラリーサービスのための出力の上限と、インバランス回避サービスのための出力の上限との和は、蓄電池30用のPCSの定格出力値以下である。
 第1のサービス部1及び第2のサービス部2は、当該制御情報で示される各サービスに関連して蓄電池30に充電又は放電させる電力の上限を超えないように、各蓄電池30の充電又は放電を実行させる。結果、アンシラリーサービスのための出力(充電及び放電)と、インバランス回避サービスのための出力(充電及び放電)との和が蓄電池30用のPCSの定格出力値を超える不都合を回避できる。
 制御情報の内容は、第1の実施形態と同様である。例えば、リソースアグリゲータのオペレータが制御情報を設定し、制御部105に入力してもよい。その他、制御部105が制御情報を設定してもよい。制御部105が制御情報を設定する処理は、第1の実施形態と同様である。
 ところで、蓄電池30に2つのサービスを並行して実施させる場合、各サービスで用いる出力[W]の調整のみならず、各サービスで用いる容量[Wh]の調整をも検討する必要がある。しかし、並行して実施される2つのサービスが、アンシラリーサービス及びインバランス回避サービスである本実施形態の場合、各サービスで用いる容量[Wh]の調整を行う必要性を大幅に低減できる。以下、説明する。
 アンシラリーサービスに関連して蓄電池30を制御した場合、蓄電池30は充電処理及び放電処理を比較的短い周期で繰り返すこととなる。いずれか一方のみを長時間にわたって継続することは稀である。このため、アンシラリーサービスでの積算充電量[Wh]と積算放電量[Wh]との差を時系列に観察すると、SOCの変動は伴うものの、比較的短い時間間隔で繰り返し、当該差が「0」となる時点が現れる。例えば、SOCの変動幅として±15%程度のゆらぎ(つまり、充電側に+15%程度の範囲でうごき、また放電側に-15%程度の範囲でうごくといった動作)はあるものの、平均的には積算充電量と積算放電量とを等しくすることができる。なお、蓄電池30の充放電損失分を補償するようなバイアス制御を含む運用を前提としている。
 そして、インバランス回避サービスにおいては、比較的長い時間(例えば30分間)で、所定量の充電、及び、所定量の放電を達成すればよい。このため、インバランス回避サービスの目的(比較的長い時間での所定量の充電、及び、所定量の放電)を達成する上で、アンシラリーサービスによる蓄電池30の充電電力量及び空き容量の変化はほとんど影響しない。すなわち、インバランス回避サービスの目的を達成する上で、アンシラリーサービスによる蓄電池30の充電電力量及び空き容量の変化を考慮する必要性は少ないと言える。
 また、インバランス回避サービスにおいては、SOC「0」、及び、SOC「100%」とする必要性は低く、むしろ、充電及び放電の両方に対応できるよう、空き容量と充電電力の両方がバランスよく存在するのが好ましい。これは、アンシラリーサービスにおいても同様である。アンシラリーサービスにおいては、送配電事業者システム40からの指示に従い各タイミングで所定電力[W]での放電及び充電を行えればよい。上述の通り充電処理及び放電処理を比較的短い周期で繰り返すアンシラリーサービスの場合、比較的小さい空き容量と、比較的小さい充電電力の両方が蓄電池30に確保されていれば足りる。
 すなわち、インバランス回避サービスのために好ましい充電電力量及び空き容量のバランスを保っておけば、アンシラリーサービスにおいて特段不都合はない。このため、アンシラリーサービスの目的を達成する上で、インバランス回避サービスによる蓄電池30の充電電力量及び空き容量の変化を考慮する必要性は少ないと言える。
 なお、理論上、インバランス回避サービスにより、蓄電池30の容量が、SOC「0」や「100%」となるタイミングが存在し得る。SOC「0」の場合、アンシラリーサービスでの放電制御が不可となり、SOC「100%」の場合、アンシラリーサービスでの充電制御が不可となる。
 このような状況を回避するため、インバランス回避サービスで利用可能な蓄電池30の容量を予め定めておいてもよい。例えば、インバランス回避サービスで充電できる電力の上限(例:SOC85%まで充電可能)や、インバランス回避サービスで放電できる電力の上限(例:SOC15%まで放電可能)を予め定めておいてもよい。かかる場合、制御部105は、インバランス回避サービスで充放電できる上限及び下限を示す情報(インバランス回避サービスの実施が予定される時刻を起点に30分間で充電、又は放電できる電力量Whとその電力量を実現するための出力Wの上限、下限の予測・推定値など)をさらに取得する。例えば、リソースアグリゲータのオペレータが決定し、制御部105に入力する。そして、第2のサービス部2は、当該情報に基づき、蓄電池30の動作を制御する。加えて、複数台の蓄電池30を用いてアンシラリーサービスを実施する場合は、SOC「0」又は「100%」になる時間帯を、蓄電池30毎に少しずつ、ずらすような運用を第2のサービス部2が行えば(例:第2の処理部103は、SOCが0又は100%になる時間帯が蓄電池30毎にずれる第2の情報を生成する。)、全ての時間帯で、継続的にアンシラリーサービスを実施することができる。
 次に、第1のサービス部1及び第2のサービス部2の構成を説明する。第1のサービス部1の構成は、第1の実施形態と同様である。
 第2のサービス部2は、制御部105が取得または自身で設定した制御情報、及び、小売電気事業者システム50から受信する依頼に基づき、蓄電池30の動作(充電及び放電)を制御する。第2のサービス部2は、各蓄電池30の出力電力(充電電力及び放電電力)が、制御情報で特定されるインバランス回避サービスのための出力の上限を超えないように、蓄電池30の動作を制御する。
 例えば、第2の処理部103は、複数の蓄電池制御装置20から所定周期で繰り返し受信する各蓄電池30の状態(例:SOC)を示す情報や、各需要家の現在の電力需要の値(蓄電池の充放電出力を含む)、及び将来の電力需要予測等に基づき、インバランス回避サービスで充電させることができる電力量や放電させることができる電力量等の最新の値、また、将来のインバランス回避サービスの実施が予定される各時間帯の30分毎の推定値を蓄電池30ごとに把握する。そして、第2の処理部103は、それらを足し合わせることで、複数の蓄電池30全体で充電させることができる電力量や放電させることができる放電量等の最新の値、また、将来の各時間帯における推定値を算出する。そして、第2の処理部103は、各需要家の各時間帯のベースラインの情報を考慮し、全蓄電池群で実施可能なインバランス回避用の電力量[Wh]の上限値を、各時間帯に対して、算出する。
 制御装置10は、第2の処理部103が算出した上記結果を小売電気事業者システム50に送信する。小売電気事業者システム50は、当該情報に基づき、インバランス回避用に期待できる電力量[Wh]の上限を超えない範囲で、インバランス回避のための依頼(いつ、何Wh分のインバランス回避用の電力量を要求するか)を行う。
 第2の処理部103は、第2の受信部104が小売電気事業者システム50から受信した依頼に基づき、充電又は放電を行う電力量[Wh]、及び、時間帯を特定する。そして、第2の処理部103は、依頼の内容、及び、把握している各蓄電池30で充電及び/又は放電できる電力量等に基づき、充電又は放電を行わせる蓄電池30を選択するとともに、各蓄電池30に充電又は放電させる電力量[Wh]を決定する。そして、第2の処理部103は、決定された電力量を、上記時間帯の中で充電又は放電させる充放電スケジュール(第2の情報)を生成する。そして、通信部106は、当該充放電スケジュールを、ベースライン電力の情報とともに、各蓄電池制御装置20に送信する。
 なお、第2の処理部103は、各タイミングにおける充電又は放電させる電力が、制御情報で特定されるインバランス回避サービスのための出力の上限を超えないように、充放電スケジュールを生成する。
 各蓄電池制御装置20の通信部21は、インバランス回避サービスのための充放電スケジュール及びベースライン電力の情報を受信する。そして、蓄電池制御装置20の算出部22は、当該充放電スケジュールに基づき、各タイミングで蓄電池30に充電又は放電させる電力を特定する。なお、充放電スケジュールとしては、例えば、13:00-13:30にベースライン電力(例:1.2kW)を基準に、差分として1kWhの充電がスケジュールされていたような場合、{(需要家の負荷が消費する電力+蓄電池の充電電力)-(ベースライン電力)}×30分=1kWh、となるように、蓄電池の充電電力を制御するというスケジュールである。そして、蓄電池制御装置20の算出部22は、各タイミングにおけるインバランス回避サービスのための蓄電池30の出力(充電又は放電)と、アンシラリーサービスのための蓄電池30の出力(充電又は放電)とを足し合わせることで、当該タイミングにおける蓄電池30の出力(充電又は放電)の内容を決定する。そして、蓄電池制御装置20の蓄電池制御部23は、特定した内容で蓄電池30に動作させる。
 次に、本実施形態の蓄電池制御装置20の構成を説明する。図7に本実施形態の蓄電池制御装置20の機能ブロック図の一例を示す。図示するように、蓄電池制御装置20は、通信部21と、算出部22と、蓄電池制御部23とを有する。
 通信部21は、アンシラリーサービス(第1のサービス)に関する第1の情報、及び、インバランス回避サービス(第2のサービス)に関する第2の情報を受信する。通信部21が受信するアンシラリーサービスに関する第1の情報は、第1の実施形態と同様である。
 例えば、通信部21は、インバランス回避サービスに関連して蓄電池30に充電又は放電させる電力を特定するための第2の情報(充放電スケジュール及びベースライン電力の情報)を、間欠的に(小売電気事業者システム50から依頼がある都度)、繰り返し受信することができる。
 なお、通信部21は、データの輻輳を回避するため、これらの情報各々を受信するための複数の受信部を備えてもよいし、1つの受信部で複数の情報を受信してもよい。
 算出部22及び蓄電池制御部23の構成は、第1の実施形態と同様である。
 以上説明した本実施形態によれば、一の蓄電池30にアンシラリーサービスとインバランス回避サービスとを並行して実施させることができる。すなわち、両サービス各々に対応した充電及び放電を、同タイミングで一の蓄電池30に行わせることができる。当該技術により、蓄電池及びPCSの利用効率が高まる。
 また、本実施形態では、事前に、各サービスのためのPCSの出力の上限が定められる。そして、当該上限を満たす範囲で、各サービスでの出力がなされる。このため、各サービスのための出力の和が、蓄電池30用のPCSの定格出力値を超えるという不都合の発生を抑制できる。
 また、本実施形態では、各サービスのためのPCSの出力の上限を、時間帯毎に変更することができる。このため、各時間帯において優先すべきサービスに、より大きい出力を与えることができる。
 また、本実施形態では、アンシラリーサービスと、インバランス回避サービスとを、一の蓄電池30に並行して実施させる。上述の通り、これら2つのサービスを組み合わせた本実施形態の場合、蓄電池30の充電電力量及び空き容量の観点においても不都合なく、両サービスを並行して一の蓄電池30に実施させることができる。
 なお、本実施形態では、アンシラリーサービス用のPCSの出力を必ず確保する手法を説明したが、時間帯に応じたサービスの優先順位の状況や需要家の負荷の状態によっては、どちらか一方の出力を止めたり、一方を止めたうえで、止めなかった方のサービス用の出力を増したりすることも可能である。
 例えば、インバランス回避サービスを実施する時間帯において、蓄電池制御装置20が、他の機器が電力を使用するであろうため、蓄電池30の充電を増やすとブレーカが落ちるといった不具合を想定した際、それが起きる可能性を示す情報(例:需要家内の総消費電力と、所定値との差が所定レベルより小さくなったことを示す情報)を、需要家側の任意の装置から制御装置10へ送信するようにする。
 当該情報の受信に応じて、制御装置10は、インバランス回避サービス時間帯での、アンシラリーサービスを当該需要家の蓄電池30では実施しないことを決定し、その情報を当該需要家の蓄電池制御装置20へ送信する。蓄電池制御装置20は、当該情報に従い、当該時間帯ではインバランス回避サービスに基づいた充放電のみを蓄電池30に実施させる。その際、インバランス回避サービス用の上限出力を蓄電池30用のPCSの定格出力値まで上昇させる。インバランス回避用の充放電では、蓄電池制御装置20がローカルに負荷の電力消費をモニタしながら出力を決定できるため、ブレーカが落ちない範囲で、充放電出力を制御でき、上限出力を上げることで、所定の時間内(30分)で、所望のWhの電力量を達成すれば良いという、インバランス回避において、所望のWh値を、短時間で達成できるため、その後は、インバランス回避サービスを停止し、アンシラリーサービスを再開することが可能になる。
 このように、制御装置10の制御部105は、第1のサービス及び第2のサービスの内の一方の実施を停止させることを決定することができる。そして、通信部106は、第1のサービス及び第2のサービスの内の一方の実施を停止させ信号を蓄電池制御装置20に送信することができる。
 また、制御部105、第1のサービス及び第2のサービスの内の一方の実施を停止させ、他方の出力の上限を引き上げることを決定することができる。そして、第1のサービスの出力の上限を引き上げられた場合、第1の処理部101は、引き上げられた出力の上限に基づき第1の情報を生成することができる。一方、第2のサービスの出力の上限を引き上げられた場合、第2の処理部103は、引き上げられた出力の上限に基づき第2の情報を生成することができる。
<第3の実施形態>
 本実施形態は、アンシラリーサービス(第1のサービス)、及び、余剰電力吸収サービス(第2のサービス)を並行して一の蓄電池30に実施させる点で、第1及び第2の実施形態と異なる。
 余剰電力吸収サービスは、自然エネルギー(例:太陽光)を利用した発電装置等を保有する発電事業者に向けたサービスである。発電事業者は、送配電事業者から出力抑制の要請(電力系統への逆潮流の抑制)を受けると、リソースアグリゲータに、当該出力抑制を回避するための充電を依頼する。リソースアグリゲータは、上記依頼に基づき蓄電池30を制御し、所定のタイミングで充電を行わせる。
 出力抑制の要請では、抑制する時間帯(例:翌日1日、翌日の13時から16時等)が定められる。抑制する量は、例えば、出力「0」である場合や、出力の上限(定格出力の○○%)を単位時間帯(例:30分)毎に定められる場合などが考えらえる。
 ここで、本実施形態の制御システムの全体像を説明する。図10に本実施形態の制御システムの機能ブロック図の一例を示す。図示するように、本実施形態の制御システムは、発電事業者システム60を有する点で第1の実施形態と異なる。
 発電事業者システム60は、発電事業者に保有されるシステムである。発電事業者システム60は、送配電事業者システム40から翌日分の出力抑制の要請を受信すると、それを制御装置10に送信し、抑制された分の充電を依頼する。また、発電事業者システム60は、翌日分の発電予測を算出し、制御装置10に送信してもよい。発電予測は、翌日の属性(天気、気温等)等に基づき算出される。発電予測の算出方法の詳細は設計的事項である。
 図3に、本実施形態の制御装置10の機能ブロック図の一例を示す。図示するように、制御装置10は、第1のサービス部1と、第2のサービス部2と、制御部105、通信部106とを有する。
 通信部106は、複数の蓄電池制御装置20と通信し、情報の送受信を行う。
 第1のサービス部1は、アンシラリーサービスのための処理を実行する機能部である。第1のサービス部1は、第1のサービスのための情報(例:送配電事業者システム40から送信される需給制御信号)を受信する第1の受信部102と、蓄電池30の制御内容を特定するための情報を生成する第1の処理部101とを有する。第2のサービス部2は、余剰電力吸収サービスのための処理を実行する機能部である。第2のサービス部2は、第2のサービスのための情報(例:送配電事業者システム40からの充電依頼、発電予測)を受信する第2の受信部104と、蓄電池30の制御内容を特定するための情報を生成する第2の処理部103とを有する。
 制御部105は、第1のサービス部1及び第2のサービス部2を制御する。制御部105は、アンシラリーサービスのための出力(充電及び放電)と、余剰電力吸収サービスのための出力(充電及び放電)との和が蓄電池30用のPCSの定格出力値を超えないように制御することができる。
 制御部105は、蓄電池30に関する情報であって、アンシラリーサービスのための出力の上限、及び、余剰電力吸収サービスのための出力の上限を示す制御情報を取得又は自身で設定する。アンシラリーサービスのための出力の上限と、余剰電力吸収サービスのための出力の上限との和は、蓄電池30用のPCSの定格出力値以下である。
 第1のサービス部1及び第2のサービス部2は、当該制御情報で示される各サービスに関連して蓄電池30に充電又は放電させる電力の上限を超えないように、各蓄電池30の充電又は放電を実行させる。結果、アンシラリーサービスのための出力(充電及び放電)と、余剰電力吸収サービスのための出力(充電及び放電)との和が蓄電池30用のPCSの定格出力値を超える不都合を回避できる。
 制御情報の内容は、第1の実施形態と同様である。例えば、リソースアグリゲータのオペレータが制御情報を設定し、制御部105に入力してもよい。その他、制御部105が制御情報を設定してもよい。制御部105が制御情報を設定する処理は、第1の実施形態と同様である。
 ところで、蓄電池30に2つのサービスを並行して実施させる場合、各サービスで用いる出力[W]の調整のみならず、各サービスで用いる容量[Wh]の調整をも検討する必要がある。しかし、並行して実施される2つのサービスが、アンシラリーサービス及び余剰電力吸収サービスである本実施形態の場合、各サービスで用いる容量[Wh]の調整を行う必要性を大幅に低減できる。以下、説明する。
 アンシラリーサービスに関連して蓄電池30を制御した場合、蓄電池30は充電処理及び放電処理を比較的短い周期で繰り返すこととなる。いずれか一方のみを長時間にわたって継続することは稀である。このため、アンシラリーサービスでの積算充電量[Wh]と積算放電量[Wh]との差を時系列に観察すると、SOCの変動は伴うものの、比較的短い時間間隔で繰り返し、当該差が「0」となる時点が現れる。例えば、SOCの変動幅として±15%程度のゆらぎ(つまり、充電側に+15%程度の範囲でうごき、また放電側に-15%程度の範囲でうごくといった動作)はあるものの、平均的には積算充電量と積算放電量とを等しくすることができる。なお、蓄電池の充放電損失分を補償するようなバイアス制御を含む運用を前提としている。
 そして、余剰電力吸収サービスにおいては、比較的長い時間(例えば1時間)で、所定量の充電を達成すればよい。このため、余剰電力吸収サービスの目的(比較的長い時間での所定量の充電)を達成する上で、アンシラリーサービスによる蓄電池30の充電電力量及び空き容量の変化はほとんど影響しない。すなわち、余剰電力吸収サービスの目的を達成する上で、アンシラリーサービスによる蓄電池30の充電電力量及び空き容量の変化を考慮する必要性は少ないと言える。
 また、アンシラリーサービスにおいては、送配電事業者システム40からの指示に従い各タイミングで所定電力[W]での放電及び充電を行えればよい。上述の通り充電処理及び放電処理を比較的短い周期で繰り返すアンシラリーサービスの場合、比較的小さい空き容量と、比較的小さい充電電力の両方が蓄電池30に確保されていれば足りる。例えば、余剰電力吸収サービスで充電可能な電力の上限を予め定めておく(例:SOC95%まで充電可能)ことで、余剰電力吸収サービスによる蓄電池30の空き容量及び充電電力の変化はアンシラリーサービスに影響しない。この例の場合、制御部105は、余剰電力吸収サービスで充電できる上限を示す情報をさらに取得する。例えば、リソースアグリゲータのオペレータが決定し、制御部105に入力する。そして、第2のサービス部2は、当該情報に基づき、蓄電池30の動作を制御する。
 次に、第1のサービス部1及び第2のサービス部2の構成を説明する。第1のサービス部1の構成は、第1の実施形態と同様である。
 第2のサービス部2は、制御部105が取得または自身で設定した制御情報、及び、発電事業者システム60から受信する依頼に基づき、蓄電池30の動作(充電及び放電)を制御する。第2のサービス部2は、各蓄電池30の出力電力(充電電力)が、制御情報で特定される余剰電力吸収サービスのための出力の上限を超えないように、蓄電池30の動作を制御する。
 例えば、第2の処理部103は、送配電事業者システム40から発電事業者60に送信された出力抑制の要請、及び、各発電事業者システム60から受信した翌日の発電予測に基づき、各タイミングで抑制する必要がある電力、すなわち各タイミングで複数の蓄電池30に充電させる電力を算出する。そして、第2の処理部103は、各タイミングで複数の蓄電池30に充電させる電力を複数の蓄電池30に割り振ることで、複数の蓄電池30各々の充電スケジュールを生成する。
 なお、制御装置10は、発電事業者システム60から発電予測を受信する処理に代えて、自装置で発電予測を算出してもよい。
 また、制御装置10は、複数の発電事業者システム60各々から依頼を受けた場合、複数の発電事業者各々に対応して各タイミングで充電させる電力を算出した後、それらを足し合わせることで、各タイミングで複数の蓄電池30に充電させる電力を算出することができる。そして、第2の処理部103は、各タイミングで複数の蓄電池30に充電させる電力を複数の蓄電池30に割り振ることで、複数の蓄電池30各々の充電スケジュールを生成することができる。
 なお、第2の処理部103は、各蓄電池30に充電させる電力が、余剰電力吸収サービスのための出力の上限を超えないように、各蓄電池30の充電スケジュールを決定する。
 各蓄電池制御装置20の通信部21は、余剰電力吸収サービスのための充電スケジュールを受信する。そして、蓄電池制御装置20の算出部22は、当該充電スケジュールに基づき、各タイミングで蓄電池30に充電させる電力を特定する。そして、蓄電池制御装置20の算出部22は、各タイミングにおける余剰電力吸収サービスのための蓄電池30の出力(充電)と、アンシラリーサービスのための蓄電池30の出力(充電又は放電)とを足し合わせることで、当該タイミングにおける蓄電池30の出力(充電又は放電)の内容を決定する。そして、蓄電池制御装置20の蓄電池制御部23は、特定した内容で蓄電池30を動作させる。
 次に、本実施形態の蓄電池制御装置20の構成を説明する。図7に本実施形態の蓄電池制御装置20の機能ブロック図の一例を示す。図示するように、蓄電池制御装置20は、通信部21と、算出部22と、蓄電池制御部23とを有する。
 通信部21は、アンシラリーサービス(第1のサービス)に関する第1の情報、及び、余剰電力吸収サービス(第2のサービス)に関する第2の情報を受信する。通信部21が受信するアンシラリーサービスに関する第1の情報は、第1及び第2の実施形態と同様である。
 例えば、通信部21は、余剰電力吸収サービスに関連して蓄電池30に充電させる電力を特定するための第2の情報(充電スケジュール)を、所定周期(例:1日)で繰り返し受信することができる。
 なお、通信部21は、データの輻輳を回避するため、これらの情報各々を受信するための複数の受信部を備えてもよいし、1つの受信部で複数の情報を受信してもよい。また、通信部21は、データの輻輳を回避するため、各種情報を送信するための複数の送信部を備えてもよいし、1つの送信部で各種情報を送信してもよい。
 算出部22及び蓄電池制御部23の構成は、第1及び第2の実施形態と同様である。
 以上説明した本実施形態によれば、一の蓄電池30にアンシラリーサービスと余剰電力吸収サービスとを並行して実施させることができる。すなわち、両サービス各々に対応した充電及び放電を、同じタイミングで一の蓄電池30に行わせることができる。当該技術により、蓄電池及びPCSの利用効率が高まる。
 また、本実施形態では、事前に、各サービスのためのPCSの出力の上限が定められる。そして、当該上限を満たす範囲で、各サービスでの出力がなされる。このため、各サービスのための出力の和が、蓄電池30用のPCSの定格出力値を超えるという不都合の発生を抑制できる。
 また、本実施形態では、各サービスのためのPCSの出力の上限を、時間帯毎に変更することができる。このため、各時間帯において優先すべきサービスに、より大きい出力を与えることができる。
 また、本実施形態では、アンシラリーサービスと、余剰電力吸収サービスとを、一の蓄電池30に並行して実施させる。上述の通り、これら2つのサービスを組み合わせた本実施形態の場合、蓄電池30の充電電力量及び空き容量の観点においても不都合なく、両サービスを並行して位置の蓄電池30に実施させることができる。
 なお、第1乃至第3の実施形態において、アンシラリーサービスと並行して行わせる第2のサービスを、エネルギーマネジメントサービス、インバランス回避サービス及び余剰電力吸収サービスとする例を説明したが、その他、節電サービス等ネガワットのデマンドレスポンスや、ピークカットを行うエネルギーマネジメントサービス等としても同様の作用効果を実現できる。
 ピークカットを行うエネルギーマネジメントサービスにおいては、第2の受信部104は、所定の対象(各電力需要家、複数の電力需要家を含む電力需要家群等)における消費電力[W]の瞬時値や、直近の単位時間における消費電力量[Wh]、又は、これらの予測値等である監視対象を受信する。そして、第2の処理部103は、監視対象の値に基づき、蓄電池30に所定電力[W]で放電させる第2の情報を生成する。例えば、第2の処理部103は、監視対象の値が所定の閾値を超えた場合、放電させる第2の情報を生成する。放電電力[W]は、所定の閾値を上回った程度に応じて決定してもよい。
<第4の実施形態>
 本実施形態は、アンシラリーサービス(第1のサービス)、及び、エネルギーマネジメントサービス(第2のサービス)を並行して一の蓄電池30に実施させるとともに、エネルギーマネジメントサービス(第2のサービス)と選択的にインバランス回避サービス(第3のサービス)を実施させる点で、第1乃至第3の実施形態と異なる。
 ここで、本実施形態の制御システムの全体像を説明する。図9に本実施形態の制御システムの機能ブロック図の一例を示す。
 小売電気事業者システム50からインバランス回避サービスのための充電及び放電の依頼がない間、蓄電池制御装置20は、アンシラリーサービスのための充電又は放電と、エネルギーマネジメントサービスのための充電又は放電とを蓄電池30に実施させる。この間、インバランス回避サービスのための充電及び放電は実施されない。
 そして、小売電気事業者システム50からインバランス回避サービスのための充電又は放電の依頼があると、蓄電池制御装置20は、アンシラリーサービスのための充電又は放電と、インバランス回避サービスのための充電又は放電とを蓄電池30に実施させる。この間、エネルギーマネジメントサービスのための充電及び放電は実施されない。
 このように、小売電気事業者システム50からインバランス回避サービスのための充電及び放電の依頼がない間は、エネルギーマネジメントサービス(第2のサービス)を実施させ、当該依頼があると、インバランス回避サービス(第3のサービス)を優先的に実施させる。いずれが実施させられている間も、アンシラリーサービス(第1のサービス)の実施は継続する。
 図11に、本実施形態の制御装置10の機能ブロック図の一例を示す。図示するように、制御装置10は、第1のサービス部1と、第2のサービス部2と、第3のサービス部3と、制御部105、通信部106とを有する。
 通信部106は、複数の蓄電池制御装置20と通信し、情報の送受信を行う。
 第1のサービス部1は、アンシラリーサービスのための処理を実行する機能部である。第1のサービス部1は、第1のサービスのための情報(例:送配電事業者システム40から送信される需給制御信号)を受信する第1の受信部102と、蓄電池30の制御内容を特定するための情報を生成する第1の処理部101とを有する。第2のサービス部2は、エネルギーマネジメントサービスのための処理を実行する機能部である。第2のサービス部2は、第2のサービスのための情報(例:時間帯毎の電力単価)を受信する第2の受信部104と、蓄電池30の制御内容を特定するための情報を生成する第2の処理部103とを有する。第3のサービス部3は、インバランス回避サービスのための処理を実行する機能部である。第3のサービス部3は、第3のサービスのための情報(例:小売電気事業者システム50からの充放電依頼)を受信する第3の受信部106と、蓄電池30の制御内容を特定するための情報を生成する第3の処理部107とを有する。
 制御部105は、第1のサービス部1、第2のサービス部2及び第3のサービス部3を制御する。制御部105は、アンシラリーサービスのための出力(充電及び放電)と、エネルギーマネジメントサービスのための出力(充電及び放電)との和が蓄電池30用のPCSの定格出力値を超えないように制御することができる。また、制御部105は、アンシラリーサービスのための出力(充電及び放電)と、インバランス回避サービスのための出力(充電及び放電)との和が蓄電池30用のPCSの定格出力値を超えないように制御することができる。
 当該制御を実現するため、制御部105は、蓄電池30に関する情報であって、アンシラリーサービスのための出力の上限、及び、エネルギーマネジメントサービスのための出力の上限を示す制御情報を取得または自身で設定する。アンシラリーサービスのための出力の上限と、エネルギーマネジメントサービスのための出力の上限との和は、蓄電池30用のPCSの定格出力値以下である。
 第1のサービス部1及び第2のサービス部2は、当該制御情報で示される各サービスに関連して蓄電池30に充電又は放電させる電力の上限を超えないように、各蓄電池30の充電又は放電を実行させる。また、第3のサービス部3は、当該制御情報で示されるエネルギーマネジメントサービス(第2のサービス)に関連して蓄電池30に充電又は放電させる電力の上限を超えないように、各蓄電池30に充電又は放電を実行させる。
 結果、アンシラリーサービスのための出力(充電及び放電)と、エネルギーマネジメントサービスのための出力(充電及び放電)との和が蓄電池30用のPCSの定格出力値を超える不都合を回避できる。また、アンシラリーサービスのための出力(充電及び放電)と、インバランス回避サービスのための出力(充電及び放電)との和が蓄電池30用のPCSの定格出力値を超える不都合を回避できる。
 制御情報の内容は、第1乃至第3の実施形態と同様である。例えば、リソースアグリゲータのオペレータが制御情報を設定し、制御部105に入力してもよい。その他、制御部105が制御情報を設定してもよい。制御部105が制御情報を設定する処理は、第1乃至第3の実施形態と同様である。
 第1のサービス部1及び第2のサービス部2の構成は、第1乃至第3の実施形態と同様である。
 第3のサービス部3は、制御部105が取得または自身で設定した制御情報、及び、小売電気事業者システム50から受信する依頼に基づき、蓄電池30の動作(充電及び放電)を制御する。第3のサービス部3の構成は、第2の実施形態で説明した第2のサービス部2の構成と同様である。なお、第3の処理部107は、インバランス回避サービス(第3のサービス)のための出力(充電又は放電)が、制御情報で示されるエネルギーマネジメントサービス(第2のサービス)のための出力の上限を超えないように、充放電スケジュール(第3の情報)を生成する。
 図7に本実施形態の蓄電池制御装置20の機能ブロック図の一例を示す。図示するように、蓄電池制御装置20は、通信部21と、算出部22と、蓄電池制御部23とを有する。
 通信部21は、アンシラリーサービス(第1のサービス)に関する第1の情報、エネルギーマネジメントサービス(第2のサービス)に関する第2の情報、及び、インバランス回避サービス(第3のサービス)に関する第3の情報を受信する。通信部21が受信する各サービスに関する情報は、上記実施形態で説明した通りである。
 通信部21は、アンシラリーサービスに関連して蓄電池30に充電又は放電させる電力を特定するための第1の情報を、所定周期で繰り返し受信する。そして、算出部22は、当該第1の情報に基づき、アンシラリーサービスに関連して蓄電池30に充電又は放電させる電力を繰り返し特定する。
 また、通信部21は、エネルギーマネジメントサービスに関連して蓄電池30に充電又は放電させる電力を特定するための第2の情報(例:1日分の充放電スケジュール)を受信する。そして、算出部22は、当該第2の情報に基づき、エネルギーマネジメントサービスに関連して各タイミングで蓄電池30に充電又は放電させる電力を特定する。
 また、通信部21は、インバランス回避サービスに関連して蓄電池30に充電又は放電させる電力を特定するための第3の情報(例:1日よりも短い所定時間分の充放電スケジュール)を、間欠的に受信する。そして、算出部22は、当該第3の情報に基づき、インバランス回避サービスに関連して所定時間帯に蓄電池30に充電又は放電させる電力を特定する。
 算出部22は、上記第1乃至第3の情報に基づき特定した各サービスに関連して蓄電池30に充電又は放電させる電力に基づき、各タイミングで蓄電池30に充電又は放電させる電力を特定する。
 具体的には、算出部22は、インバランス回避サービスに関連して所定時間帯に蓄電池30に充電又は放電させる電力を特定した場合、当該所定時間帯においては、アンシラリーサービスに関連して蓄電池30に充電又は放電させる電力と、インバランス回避サービスに関連して蓄電池30に充電又は放電させる電力とを足し合わせることで、各タイミングにおける蓄電池30の出力(充電又は放電)の内容を決定する。そして、蓄電池制御部23は、決定した内容で蓄電池30に動作させる。
 一方、算出部22は、インバランス回避サービスに関連して蓄電池30に充電又は放電させる電力が特定されていない時間帯においては、アンシラリーサービスに関連して蓄電池30に充電又は放電させる電力と、エネルギーマネジメントサービスに関連して蓄電池30に充電又は放電させる電力とを足し合わせることで、各タイミングにおける蓄電池30の出力(充電又は放電)の内容を決定する。そして、蓄電池制御部23は、決定した内容で蓄電池30に動作させる。
 すなわち、算出部22は、同じタイミングで蓄電池30に充電又は放電させるための第1の情報、第2の情報及び第3の情報を受信した場合、第1の情報及び第3の情報に基づき、当該タイミングで蓄電池30に充電又は放電させる電力を算出する。
 図12に、算出部22による処理の概念を示す。図12では、横軸に時刻、縦軸に蓄電池30に充電又は放電させる電力(PCSの制御率)を取ったグラフを示している。図中の「第1向け」は、第1の情報に基づき特定された、アンシラリーサービスに関連して蓄電池30に充電又は放電させる電力を示す。「第2向け」は、第2の情報に基づき特定された、エネルギーマネジメントンサービスに関連して蓄電池30に充電又は放電させる電力を示す。「第3向け」は、第3の情報に基づき特定された、インバランス回避サービスに関連して蓄電池30に充電又は放電させる電力を示す。図より、アンシラリーサービスとエネルギーマネジメントサービス、及び、アンシラリーサービスとインバランス回避サービスは並行して実施され、エネルギーマネジメントサービスとインバランス回避サービスは選択的に実施されることが分かる。
 なお、ここでは、第3のサービスを優先的に実施させる例を説明したが、制御装置10は、その都度、いずれを優先させるか決定し、決定した方を優先させてもよい。例えば、制御装置10は、各サービス実施時の需要家やリソースアグリゲータの収益を考慮し、より高い収益がリソースアグリゲータ側で期待できる方を優先させてもよいし、需要家側で期待できる方を優先させてもよいし、又は、リソースアグリゲータと需要家の契約内容にも基づき定まる方を優先させてもよい。しかし、選択の手法はこれに限ったものではない。
 例えば、制御装置10は、第2のサービス及び第3のサービスいずれを優先させるか決定すると(制御部105)、決定内容を蓄電池制御装置20に送信する(通信部106)。蓄電池制御装置20は、受信した決定内容で優先される方を優先して、蓄電池30の充放電の内容を決定する。すなわち、通信部21が同じタイミングで蓄電池30に充電又は放電させるための第1の情報、第2の情報及び第3の情報を受信した場合、算出部22は、第1の情報と、優先させる方のサービスに関する情報(第2の情報又は第3の情報)に基づき、当該タイミングで蓄電池30に充電又は放電させる電力を算出する。
 以上説明した本実施形態によれば、第1乃至第3の実施形態と同様の作用効果を実現できる。また、本実施形態によれば、3つのサービスを一度に蓄電池30に実施させることができる。このため、蓄電池30の利用効率がさらに高まる。
 本実施形態の変形例を説明する。インバランス回避サービスが実施されると、蓄電池30の充電電力量及び空き容量が変化する。当該変化は、エネルギーマネジメントサービスに影響し得る。そこで、第2の処理部103は、インバランス回避サービスの実施に応じて、第2の情報(充放電スケジュール)を生成し直してもよい(更新する)。具体的には、第2の処理部103は、インバランス回避サービス終了時点の蓄電池30の充電電力量及び空き容量を、例えば各蓄電池制御装置20から受信した情報(蓄電池30の最新のSOC等)に基づき把握する。そして、現時点が放電させる時間帯である場合、放電させる時間帯の残りの時間で、現時点の充電電力量を放電させる充放電スケジュールを生成する。一方、現時点が充電させる時間帯である場合、充電させる時間帯の残りの時間で、現時点の空き容量分を充電させる充放電スケジュールを生成する。
 すなわち、第2の処理部103は、インバランス回避サービスの実施が終了した時点が第2の情報(充放電スケジュール)で定められる放電時間帯である場合、インバランス回避サービスの実施が終了した時点の蓄電池30の充電電力量を残りの放電時間帯で放電する充放電スケジュール(第2の情報)を新たに生成する。
 また、第2の処理部103は、インバランス回避サービスの実施が終了した時点が第2の情報で定められる充電時間帯である場合、インバランス回避サービスの実施が終了した時点の蓄電池30の空き容量分を残りの充電時間帯で充電する充放電スケジュール(第2の情報)を新たに生成する。
 当該変形例によれば、インバランス回避サービスの実施による蓄電池30の充電電力量及び空き容量の変化がエネルギーマネジメントサービスに及ぼす影響を軽減することができる。
 また、本実施形態の変形例として、第2のサービスを第3の実施形態で説明した余剰電力吸収サービスとしてもよい。この場合も、同様の作用効果を実現できる。
<第5の実施形態>
 本実施形態は、アンシラリーサービス(第1のサービス)、及び、エネルギーマネジメントサービス(第2のサービス)を並行して一の蓄電池30に実施させるとともに、他のすべてのサービスを停止した状態で単独で行われる緊急対応サービス(第4のサービス)を実施させる点で、第1乃至第4の実施形態と異なる。
 ここで、本実施形態の制御システムの全体像を説明する。図2に本実施形態の制御システムの機能ブロック図の一例を示す。
 送配電事業者システム40は、緊急時(例:発電機停止等)に、蓄電池30から電力系統に放電させる信号(予備力信号)を送信する。制御装置10は、送配電事業者システム40から予備力信号を受信すると、それを複数の蓄電池制御装置20に送信する。蓄電池制御装置20は、予備力信号を受信すると、他のサービスの実施を停止し、優先的に、予備力信号に基づいた放電を蓄電池30に行わせる。
 図13に、本実施形態の制御装置10の機能ブロック図の一例を示す。図示するように、制御装置10は、第1のサービス部1と、第2のサービス部2と、第4のサービス部4と、制御部105、通信部106とを有する。
 通信部106は、複数の蓄電池制御装置20と通信し、情報の送受信を行う。
 第1のサービス部1は、アンシラリーサービスのための処理を実行する機能部である。第1のサービス部1は、第1のサービスのための情報(例:送配電事業者システム40から送信される需給制御信号)を受信する第1の受信部102と、蓄電池30の制御内容を特定するための情報を生成する第1の処理部101とを有する。第2のサービス部2は、エネルギーマネジメントサービスのための処理を実行する機能部である。第2のサービス部2は、第2のサービスのための情報(例:時間帯毎の電力単価)を受信する第2の受信部104と、蓄電池30の制御内容を特定するための情報を生成する第2の処理部103とを有する。第4のサービス部4は、緊急対応サービスのための処理を実行する機能部である。第4のサービス部4は、第4のサービスのための情報(例:予備力信号)を受信する第4の受信部110と、蓄電池30の制御内容を特定するための情報を生成する第4の処理部109とを有する。
 第1のサービス部1及び第2のサービス部2の構成は、第1乃至第4の実施形態と同様である。
 第4のサービス部4は、各蓄電池30の出力電力(充電電力及び放電電力)が、定格出力を超えないように、蓄電池30の動作を制御する。
 例えば、第4の処理部109は、複数の蓄電池制御装置20から所定周期で繰り返し受信する各蓄電池30の状態(例:SOC)を示す情報とPCSの定格出力の情報(定格出力以下のある出力での放電での継続時間を推定する)に基づき、緊急対応サービスで放電させることができる電力量を蓄電池30ごとに把握する。
 そして、第4の処理部109は、複数の蓄電池30各々の上記電力量を足し合わせることで、複数の蓄電池30で放電させることができる電力量を算出する。その後、第4の処理部109は、当該電力量に基づき、複数の蓄電池30で対応可能な最大放電出力と、継続時間を算出する。そして、制御装置10は、当該情報を送配電事業者システム40に送信する。
 送配電事業者システム40は、緊急時(例:発電機停止等)、事前に通知された最大放電出力及び継続時間を超えない範囲で、蓄電池30から電力系統に放電させる信号(予備力信号)を制御装置10に送信する。予備力信号としては例えば、出力W値と、継続時間である(継続時間は、予備力信号の形式であらかじめ設定しておいてもよい。例えば、瞬動予備力信号として定めた形式では、10分、運転予備力信号として定めた形式では3時間等である)。第4の処理部109は、当該予備力信号に従った動作を行わせる蓄電池制御信号を各蓄電池制御装置20に送信する。蓄電池制御信号としては例えば、各蓄電池で放電すべき出力W値であり、このW値は、上記継続時間を考慮して決定される。蓄電池制御装置20は、蓄電池制御信号に基づき、蓄電池30の動作を制御する。この制御は、予備力制御を停止する旨の信号がくるまで継続する。
 このように、第4の処理部109は、緊急対応サービスに関連して蓄電池30に充電又は放電させる電力を特定するための第4の情報を生成する。例えば、第4の処理部109は、蓄電池30用のPCSの定格出力値を緊急対応サービスのための出力の上限として、第4の情報を生成することができる。そして、通信部106は、蓄電池制御装置20に、第4の情報を送信する。
 図7に本実施形態の蓄電池制御装置20の機能ブロック図の一例を示す。図示するように、蓄電池制御装置20は、通信部21と、算出部22と、蓄電池制御部23とを有する。
 通信部21は、アンシラリーサービス(第1のサービス)に関する第1の情報、エネルギーマネジメントサービス(第2のサービス)に関する第2の情報、及び、緊急対応サービス(第4のサービス)に関する第4の情報を受信する。通信部21が受信する各サービスに関する情報は、上述の通りである。
 算出部22は、アンシラリーサービス(第1のサービス)に関する第1の情報、及び、エネルギーマネジメントサービス(第2のサービス)に関する第2の情報に基づき、各タイミングで蓄電池30に充電又は放電させる電力を特定する。また、算出部22は、緊急対応サービス(第4のサービス)に関する第4の情報に基づき、各タイミングで蓄電池30に充電又は放電させる電力を特定する。
 通信部21は、緊急対応サービスに関する第4の情報を、間欠的に受信する。そして、算出部22は、通信部21が第4の情報を受信した場合、第4のサービスに関する第4の情報に基づき、各タイミングで蓄電池30に充電又は放電させる電力を特定する。
 すなわち、通信部21が、同じタイミングで蓄電池30に充電又は放電させるための第1の情報、第2の情報、及び、第4の情報を受信した場合、算出部22は、第4の情報に基づき、当該タイミングで蓄電池30に充電又は放電させる電力を算出する。そして、蓄電池制御部23は、決定した内容で蓄電池30に動作させる。すなわち、蓄電池制御部23は、他のサービスのための充放電を停止し、第4のサービスのための充放電のみを蓄電池30に実行させる。
 図14に、算出部22による処理の概念を示す。図14では、横軸に時刻、縦軸に蓄電池30に充電又は放電させる電力(PCSの制御率)を取ったグラフを示している。図中の「第1向け」は、第1の情報に基づき特定された、アンシラリーサービスに関連して蓄電池30に充電又は放電させる電力を示す。「第2向け」は、第2の情報に基づき特定された、エネルギーマネジメントンサービスに関連して蓄電池30に充電又は放電させる電力を示す。「第4向け」は、第4の情報に基づき特定された、緊急対応サービスに関連して蓄電池30に充電又は放電させる電力を示す。図より、アンシラリーサービスとエネルギーマネジメントサービスは並行して実施されることが分かる。また、緊急対応サービスが実施されている間は、アンシラリーサービス及びエネルギーマネジメントサービスが停止することが分かる。
 以上説明した本実施形態によれば、第1乃至第4の実施形態と同様の作用効果を実現できる。また、本実施形態によれば、3つのサービスを一度に蓄電池30に実施させることができる。このため、蓄電池30の利用効率がさらに高まる。
 本実施形態の変形例として、第2のサービスを、インバランス回避サービス又は余剰電力吸収サービスに置き代えてもよい。この場合も、同様の作用効果を実現できる。
<第6の実施形態>
 本実施形態は、アンシラリーサービス(第1のサービス)、及び、エネルギーマネジメントサービス(第2のサービス)を並行して一の蓄電池30に実施させ、エネルギーマネジメントサービス(第2のサービス)と選択的にインバランス回避サービス(第3のサービス)を実施させるとともに、他のすべてのサービスを停止した状態で単独で行われる緊急対応サービス(第4のサービス)を実施させる点で、第1乃至第5の実施形態と異なる。
 ここで、本実施形態の制御システムの機能ブロック図の一例は図9で示される。
 図15に、本実施形態の制御装置10の機能ブロック図の一例を示す。図示するように、制御装置10は、第1のサービス部1と、第2のサービス部2と、第3のサービス部3と、第4のサービス部4と、制御部105、通信部106とを有する。
 通信部106は、複数の蓄電池制御装置20と通信し、情報の送受信を行う。
 第1のサービス部1は、アンシラリーサービスのための処理を実行する機能部である。第1のサービス部1は、第1のサービスのための情報(例:送配電事業者システム40から送信される需給制御信号)を受信する第1の受信部102と、蓄電池30の制御内容を特定するための情報を生成する第1の処理部101とを有する。第2のサービス部2は、エネルギーマネジメントサービスのための処理を実行する機能部である。第2のサービス部2は、第2のサービスのための情報(例:時間帯毎の電力単価)を受信する第2の受信部104と、蓄電池30の制御内容を特定するための情報を生成する第2の処理部103とを有する。
 第3のサービス部3は、インバランス回避サービスのための処理を実行する機能部である。第3のサービス部3は、第3のサービスのための情報(例:小売電気事業者システム50からの充放電依頼)を受信する第3の受信部106と、蓄電池30の制御内容を特定するための情報を生成する第3の処理部107とを有する。第4のサービス部4は、緊急対応サービスのための処理を実行する機能部である。第4のサービス部4は、第4のサービスのための情報(例:予備力信号)を受信する第4の受信部110と、蓄電池30の制御内容を特定するための情報を生成する第4の処理部109とを有する。
 第1のサービス部1乃至第4のサービス部4の構成は、第1乃至第5の実施形態と同様である。
 図7に本実施形態の蓄電池制御装置20の機能ブロック図の一例を示す。図示するように、蓄電池制御装置20は、通信部21と、算出部22と、蓄電池制御部23とを有する。
 通信部21は、アンシラリーサービス(第1のサービス)に関する第1の情報、エネルギーマネジメントサービス(第2のサービス)に関する第2の情報、インバランス回避サービス(第3のサービス)に関する第3の情報、及び、緊急対応サービス(第4のサービス)に関する第4の情報を受信する。通信部21が受信する各サービスに関する情報は、上述の通りである。
 算出部22は、アンシラリーサービス(第1のサービス)に関する第1の情報、及び、エネルギーマネジメントサービス(第2のサービス)に関する第2の情報に基づき、各タイミングで蓄電池30に充電又は放電させる電力を特定する。また、算出部22は、アンシラリーサービス(第1のサービス)に関する第1の情報、及び、インバランス回避サービス(第3のサービス)に関する第3の情報に基づき、各タイミングで蓄電池30に充電又は放電させる電力を特定する。そして、蓄電池制御部23は、決定した内容で蓄電池30に動作させる。算出部22による当該処理は、第4の実施形態で説明した通りである。
 通信部21は、緊急対応サービスに関する第4の情報を、間欠的に受信する。そして、算出部22は、通信部21が第4の情報を受信した場合、第4のサービスに関する第4の情報に基づき、各タイミングで蓄電池30に充電又は放電させる電力を特定する。すなわち、通信部21が、同じタイミングで蓄電池30に充電又は放電させるための第1の情報、第2の情報、第3の情報、及び、第4の情報を受信した場合、算出部22は、第4の情報に基づき、当該タイミングで蓄電池30に充電又は放電させる電力を算出する。そして、蓄電池制御部23は、決定した内容で蓄電池30に動作させる。すなわち、蓄電池制御部23は、他のサービスのための充放電を停止し、第4のサービスのための充放電のみを蓄電池30に実行させる。
 また、算出部22は、同じタイミングで蓄電池30に充電又は放電させるための第1の情報、第2の情報及び第3の情報を受信し、当該タイミングで蓄電池30に受電又は放電させるための第4の情報を受信していない場合、第1の情報及び第3の情報に基づき、当該タイミングで蓄電池30に充電又は放電させる電力を算出する。
 また、算出部22は、同じタイミングで蓄電池30に充電又は放電させるための第1の情報及び第2の情報を受信し、当該タイミングで蓄電池30に受電又は放電させるための第3の情報及び第4の情報を受信していない場合、第1の情報及び第2の情報に基づき、当該タイミングで蓄電池30に充電又は放電させる電力を算出する。
 図16に、算出部22による処理の概念を示す。図16では、横軸に時刻、縦軸に蓄電池30に充電又は放電させる電力(PCSの制御率)を取ったグラフを示している。図中の「第1向け」は、第1の情報に基づき特定された、アンシラリーサービスに関連して蓄電池30に充電又は放電させる電力を示す。「第2向け」は、第2の情報に基づき特定された、エネルギーマネジメントンサービスに関連して蓄電池30に充電又は放電させる電力を示す。
 「第3向け」は、第3の情報に基づき特定された、インバランス回避サービスに関連して蓄電池30に充電又は放電させる電力を示す。「第4向け」は、第4の情報に基づき特定された、緊急対応サービスに関連して蓄電池30に充電又は放電させる電力を示す。
 図より、アンシラリーサービスとエネルギーマネジメントサービス、及び、アンシラリーサービスとインバランス回避サービスは並行して実施され、エネルギーマネジメントサービスとインバランス回避サービスは選択的に実施されることが分かる。また、緊急対応サービスが実施されている間は、アンシラリーサービス、エネルギーマネジメントサービス及びインバランス回避サービスが停止することが分かる。
 以上説明した本実施形態によれば、第1乃至第5の実施形態と同様の作用効果を実現できる。また、本実施形態によれば、4つのサービスを一度に蓄電池30に実施させることができる。このため、蓄電池30の利用効率がさらに高まる。
 本実施形態の変形例として、第2のサービスを、余剰電力吸収サービスに置き代えてもよい。この場合も、同様の作用効果を実現できる。
<第7の実施形態>
 本実施形態は、蓄電池制御装置20及び蓄電池30側の構成が第1乃至第6の実施形態と異なる。制御装置10の構成は、第1乃至第6の実施形態と同様である。
 図23に、本実施形態の蓄電池制御装置20及び蓄電池30の機能ブロック図の一例を示す。蓄電池制御装置20は、通信部21及び送信部24を有する。
 通信部21の構成は、第1乃至第6の実施形態と同様である。送信部24は、通信部21が受信した情報、すなわち、「算出部22による蓄電池30に充電又は放電させる電力を算出する処理」に用いられる情報を、蓄電池30のPCS(電池部制御装置)32に送信する。
 蓄電池30は、PCS32と電池部33とを有する。電池部33は、PCS32の制御に従い、電力を充電し、また、電力を放電する機能を有する。電池部33の構成は特段制限されず、あらゆる構成を採用できる。
 PCS32は、算出部22と電池部制御部31とを有する。算出部22の構成は、第1乃至第6の実施形態で説明した蓄電池制御装置20が備える算出部22と同様である。すなわち、算出部22は、蓄電池制御装置20から送信されてきた情報に基づき、電池部33(蓄電池30)に充電又は放電させる電力を算出する。電池部制御部31は、算出部22が算出した内容で、電池部33から充放電させる。PCS32は、GF制御のための系統周波数(測定値)を、自装置内の内蔵センサーで測定してもよいし、測定センサー(例:図17の計量器)から直接又は蓄電池制御装置20を経由して受信してもよい。
 なお、PCS32は、蓄電池制御装置20内に備えられてもよい。
 以上説明した本実施形態によれば、第1乃至第6の実施形態と同様な作用効果を実現できる。
<第8の実施形態>
 本実施形態は、蓄電池制御装置20及び蓄電池30側の構成が第1乃至第7の実施形態と異なる。制御装置10の構成は、第1乃至第7の実施形態と同様である。
 図24に、本実施形態の蓄電池制御装置20及び蓄電池30の機能ブロック図の一例を示す。蓄電池制御装置20は、通信部21、算出部22-1及び送信部24を有する。
 通信部21の構成は、第1乃至第6の実施形態と同様である。算出部22-1は、第1乃至第6の実施形態で説明した算出部22が行う処理の一部を実行する。送信部24は、通信部21が受信した情報、すなわち、「算出部22による蓄電池30に充電又は放電させる電力を算出する処理」に用いられる情報を、蓄電池30のPCS(電池部制御装置)32に送信する。また、送信部24は、算出部22-1が算出した結果をPCS32に送信する。
 蓄電池30は、PCS32と電池部33とを有する。電池部33は、PCS32の制御に従い、電力を充電し、また、電力を放電する機能を有する。電池部33の構成は特段制限されず、あらゆる構成を採用できる。
 PCS32は、算出部22-2と電池部制御部31とを有する。算出部22-2は、第1乃至第6の実施形態で説明した算出部22が行う処理の一部を実行する。すなわち、算出部22は、蓄電池制御装置20から送信されてきた情報に基づき、電池部33(蓄電池30)に充電又は放電させる電力を算出する。電池部制御部31は、算出部22が算出した内容で、電池部33から充放電させる。
 本実施形態では、第1乃至第6の実施形態で蓄電池制御装置20の算出部22が行っていた算出処理を、蓄電池制御装置20の算出部22-1とPCS32の算出部22-2とで分担する。
 例えば、算出部22-2は、アンシラリーサービスのGF制御に関連して電池部33(蓄電池30)に充電又は放電させる電力を算出する。PCS32は、GF制御のための系統周波数(測定値)を、自装置内の内蔵センサーで測定してもよいし、測定センサー(例:図17の計量器)から直接又は蓄電池制御装置20を経由して受信してもよい。
 そして、算出部22-1は、アンシラリーサービスのLFC制御に関連して電池部33(蓄電池30)に充電又は放電させる電力を算出する。また、算出部22-1は、第2乃至第4のサービスに関連して電池部33(蓄電池30)に充電又は放電させる電力を算出する。
 そして、PCS32における算出部22-2は、蓄電池制御装置20における算出部22-1が算出した電池部33(蓄電池30)に充電又は放電させる電力(例:LFC制御のための充電又は放電させる電力)と、自身が算出した電池部33(蓄電池30)に充電又は放電させる電力(例:GF制御のための充電又は放電させる電力)とを足し合わせることで、電池部33(蓄電池30)に充電又は放電させる電力を算出する。
 すなわち、算出部22-2は、第1の目的(GF制御)で電池部33(蓄電池30)に充電又は放電させる第1の電力を算出する。また、算出部22-2は、PCS32が外部装置(蓄電池制御装置20)から受信した他の目的(LFC制御、第2のサービス、及び、第3のサービスの中の1つまたは複数)で電池部33(蓄電池30)に充電又は放電させる1つ又は複数の第2の電力を取得する。そして、算出部22-2は、第1の電力と、1つ又は複数の第2の電力とを足し合わせることで、電池部33(蓄電池30)に充電又は放電させる電力を算出する。
 なお、ここで例示した分担方法はあくまで一例であり、その他の態様で算出処理を分担してもよい。また、PCS32は、蓄電池制御装置20内に備えられてもよい。
 以上説明した本実施形態によれば、第1乃至第7の実施形態と同様な作用効果を実現できる。
<実施例>
 図17に、本実施例の制御システムの全体像を示す。図中、「一般送配電事業者」に対応して表示されている「中央給電指令所・再エネ・監視制御システム」が、上記実施形態で説明した送配電事業者システム40に対応する。また、「小売電気事業者」に対応して表示されている「電力需給管理・制御システム」が、上記実施形態で説明した小売電気事業者システム50に対応する。また、「RA(リソースアグリゲータ)」に対応して表示されている「需給管理システム・需給制御システム」が、上記実施形態で説明した制御装置10に対応する。また、「各需要家」に対応して表示されている「エッジ端末+ローカル制御装置」が、上記実施形態で説明した蓄電池制御装置20に対応する。
 図中、主たる情報の流れを示している。図示する「ローカルループ」では、蓄電池30の状態(SOC、温度等)を示す情報が所定周期で繰り返し、ローカル制御装置に取得される。また、「グローバルループ」では、蓄電池30の状態(SOC、温度等)を示す情報が所定周期で繰り返し、各需要家からRAに送信される。
 図18のフローチャートを用いて、中央給電指令所・再エネ・監視制御システム(送配電事業者システム40)の処理の流れの一例を説明する。
 S10では、送配電事業者システム40は、アンシラリーサービスの実施情報や予備力容量を繰り返し受信する(S10)。アンシラリーサービスの実施情報は、複数の蓄電池30各々のamax_nを足し合わせたAmaxとして、LFC制御向けの最大出力やGF制御向けの最大出力、LFC制御やGF制御のパフォーマンス情報(制御精度や遅延等を適当な指標で評価した情報)等である。予備力容量は、第5の実施形態で説明した複数の蓄電池30で対応可能な最大放電出力と継続時間等である。
 S11では、送配電事業者システム40は、LFC信号を送信する。すなわち、送配電事業者システム40は、アンシラリーサービスの実施情報や送配電網の状態(例:周波数偏差等を示す情報やAR(エリアリクワイアメント)等)に基づき、LFC信号を生成し、制御装置10に送信する。
 また、送配電事業者システム40は、異常(発電機停止等)の発生を検知した場合(S12のYes)、蓄電池30から電力を放電させる(送配電網に逆潮流させる)予備力信号を制御装置10に送信する(S13)。
 図19のフローチャートを用いて、小売電気事業者システム50の処理の流れの一例を説明する。
 S20では、小売電気事業者システム50は、電力需要の予測値を受信(または自身で電力需要予測を実施)し、一方でインバランス容量を受信する。インバランス容量は、インバランス回避サービスに関連して複数の蓄電池30全体で充電させることができる電力量や放電させることができる放電量等の最新の値、また、将来の各時間帯における推定値の算出結果である。
 S21では、小売電気事業者システム50は、電力需要予測結果と電力需要計画値とを比較し、所定値以上の差(=インバランス量)があるか判断する(S21)。
 所定値以上の差がない場合(S21のNo)、S20に戻り最新の値を取得する。所定値以上の差がある場合(S21のYes)、小売電気事業者システム50はインバランス抑制の依頼を実施するか判断する(S22)。具体的には、小売電気事業者システム50は、S21で算出した差の大きさや、インバランス発生時のペナルティ(料金)と需要家の蓄電池を用いてインバランス回避した際に需要家へ支払うインセンティブ(料金)とを比較し、制御装置10から通知されているインバランス容量等に基づき、依頼を実施するか否かを判断する。
 実施しない場合(S22のNo)、S20に戻り処理を繰り返す。実施する場合(S22のYes)、小売電気事業者システム50は、所定の時間帯に所定量を充電又は放電する依頼を制御装置10に送信する(S23)。
 図20のフローチャートを用いて、制御装置10の処理の流れの一例を説明する。
 S30では、制御装置10は、小売電気事業者システム50からLFC信号を受信する。S31では、制御装置10は、LFC信号を規格化値へ変換する。LFC信号を規格化値へ変換する処理は、例えば、第1の実施形態で説明した「LFC信号で特定される指令値をAmaxで割り、値Bを算出する処理」に相当する。S32では、制御装置10は、すべての蓄電池制御装置20に規格化LFC信号を送信する。送信は不定期、若しくは送信周期TbでありTbは、例えば数秒程度である。
 S42では、制御装置10は、送配電事業者システム40から予備力信号を受信する。S43では、制御装置10は、当該予備力信号をすべての蓄電池制御装置20に送信する。
 S44では、制御装置10は、小売電気事業者システム50からインバランス抑制依頼を受信する。S45では、制御装置10は、インバランス抑制のための充電又は放電を実施させる蓄電池制御装置20に、実施させる内容を特定するための情報を送信する。実施させる内容は、インバランス抑制依頼に基づき決定された内容である。
 S33では、制御装置10は、蓄電池30の状態(SOC等)を示す情報、電力需要量、及び、アンシラリーの実施情報を所定周期Ta(例:5分)で繰り返し受信する。制御装置10は、蓄電池制御装置20から蓄電池30の状態を示す情報を受信する。また、制御装置10は、各需要家の装置から、各需要家の電力需要量を受信する。また、制御装置10は、蓄電池制御装置20からアンシラリーサービスの実施情報を受信する。アンシラリーサービスの実施情報は、各蓄電池30のamax_nとして、LFC向けの最大出力やGF向けの最大出力、LFCやGFのパフォーマンス情報(制御精度や遅延等を適当な指標で評価した情報)等である。
 S34では、制御装置10は、各需要家の電力需要を予測する。予測手段は設計的事項である。また、制御装置10は、複数の需要家各々の電力需要を足し合わせることで得た全需要家の電力需要量を用いて、全需要量に対する電力需要も予測する。
 S35では、制御装置10は、各需要家の蓄電池30の満充電・枯渇時刻を推定する。制御装置10は、蓄電池30の現在のSOC、及び、各需要家の電力需要の予測結果に基づき、枯渇状態(SOC0%)になる枯渇時刻を推定する。また、制御装置10は、蓄電池30の現在のSOC、及び、需要予測結果と充放電スケジュール等に基づき、満充電状態(SOC100%)になる満充電時刻を推定する。
 S36では、制御装置10は、各蓄電池30のLFC制御の最適化係数を算出する。LFC制御の最適化係数は、第1の実施形態で説明したamax_n等に相当する。
 S37では、制御装置10は、最適化係数を複数の蓄電池制御装置20各々に送信する。送信周期Tcは、例えば15分である。
 S38では、制御装置10は、全蓄電池30の予備力容量を算出する。予備力容量は、第5の実施形態で説明した複数の蓄電池30で対応可能な最大放電出力と継続時間である。S39では、制御装置10は、予備力容量を送配電事業者システム40に送信する。送信周期Taは、例えば5分である。なお、予備力容量としては、放電継続時間10分程度の瞬動予備力容量と、放電継続時間3時間程度の運転予備力容量がある。
 S40では、制御装置10は、各蓄電池30、及び、全蓄電池30のインバランス容量を算出する。S41では、制御装置10は、インバランス容量を小売電気事業者システム50に送信する。送信周期Taは、例えば5分である。
 図21のフローチャートを用いて、蓄電池制御装置20の処理の流れの一例を説明する。
 S50では、蓄電池制御装置20は、予備力信号(第4の情報)を受信したか判断する。受信したと判断した場合、S56に進む。受信していないと判断した場合、S51及びS52に進む。
 S56では、蓄電池制御装置20は、予備力信号(第4の情報)に基づき蓄電池30の充放電制御を行う。
 S51では、蓄電池制御装置20は、制御装置10から不定期若しくは所定周期Tb(例:数秒程度)でLFC信号を繰り返し受信する。S52では、蓄電池制御装置20は、制御装置10から所定周期Tc(例:15分)でLFC制御のための最適化係数(及び/又はGF制御のための最適化係数)を繰り返し受信する。
 S53では、蓄電池制御装置20は、インバランス抑制依頼(インバランス回避に関連して充放電させる内容を特定するための第3の情報)を受信したか判断する。受信したと判断した場合、S54に進む。受信していないと判断した場合、S55に進む。
 S54では、蓄電池制御装置20は、インバランス抑制を計画する。具体的には、蓄電池制御装置20は、第3の情報に基づき、インバランス回避に関連して蓄電池30に充電又は放電させる電力を特定する。
 S55では、蓄電池制御装置20は、蓄電池30に充電又は放電させる電力を算出し、当該内容で動作するよう蓄電池30を制御する。
 例えば、蓄電池制御装置20は、LFC信号、系統周波数(偏差をGF制御に利用する)、最適化係数等(第1の情報)に基づき特定したアンシラリーサービス用の出力値(充電電力又は放電電力)と、予め制御装置10から取得したエネルギーマネジメントサービス用の充放電計画(第2の情報)とに基づき、各タイミングで蓄電池30に充電又は放電させる電力を特定する。
 または、蓄電池制御装置20は、LFC信号、系統周波数(偏差をGF制御に利用する)、最適化係数等(第1の情報)に基づき特定したアンシラリーサービス用の出力値(充電電力又は放電電力)と、S54で算出したインバランス回避サービスに関連して蓄電池30に充電又は放電させる電力とに基づき、各タイミングで蓄電池30に充電又は放電させる電力を特定する。
 S57では、蓄電池制御装置20は、アンシラリーの実施情報や、蓄電池30の状態情報を制御装置10に送信する。送信周期Taは例えば5分である。
 次に、本実施例の制御システムの具体的な処理例を説明する。
 例えば、PCS定格3kW、蓄電池定格6kWhの蓄電池30を制御対象に、エネルギーマネジメントサービスとして、夜間充電・昼間放電を行うとする。このエネルギーマネジメントサービス用の充放電出力最大値として、±1.5kWを確保する(なお、マイナス側の値を放電とし、プラス側の値を充電とする)。残った出力を、アンシラリーサービスに充てるとする。但し、図16に示すように、夜間は放電側出力がまるまる-3kW残り、昼間は、充電側出力がまるまる3kW残る。このため、アンシラリーサービス用となる残った出力は、単純に±1.5kWと算出されない。以下に示すように、時間帯に応じて適切な値が算出される。
 今、エネルギーマネジメントサービスとして、例えば23時から7時までに6kWhを満充電させるためには、実効的なPCS充電出力0.75kW(=6kWh/8h)が必要となる。この場合、当該時間帯においては、エネルギーマネジメントサービス用のPCS出力を0.75kWとし、アンシラリーサービス用のPCS出力の上限を2.25kW(=3kW-0.75kW)とする。結果、当該時間帯のPCS出力は、0.75+2.25E(t)となる。なお、E(t)はアンシラリーサービスに関する調整力関数であり、-1から1の間の値をとる。E(t)には周期性が想定される。
 一方、7時から23時の時間帯においては、実効的なPCS放電出力の上限を1.5kWとし、アンシラリーサービス用のPCS出力の上限を1.5kW(=3kW-1.5kW)とする。結果、当該時間帯のPCS出力は、1.5F(t)+1.5E(t)となる。なお、F(t)は電力需要に関する需要関数であり、0から1の間の値をとる。
 また、途中でイベントとしてインバランス回避依頼が入った場合、23時から7時の時間帯においては、インバランス回避サービス用のPCS出力の上限は0.75kWとなる。そして、7時から23時の時間帯においては、インバランス回避サービス用のPCS出力の上限は1.5kWとなる。
 このような制御により、蓄電池30用のPCSの定格出力値±3kWを、サービス向けに最大限活用することができる。
 次に、図22を用いて、インバランス回避サービスの実施タイミングを説明する。図示するように、アンシラリーサービス(第1のサービス)は常に実施される。また、エネルギーマネジメントサービス(第2のサービス)とインバランス回避サービス(第3のサービス)は選択的に実施される。なお、通常状態においては、エネルギーマネジメントサービス(第2のサービス)が実施され、インバランス回避依頼があると、インバランス回避サービス(第3のサービス)が割り込まれる。
 小売電気事業者は、例えば前日の8時から9時30分の時間帯においてスポット市場(1日前市場)に参加する。そして、翌日に発電又は販売する電力を購入する。
 また、小売電気事業者は、例えば前日の10時から12時の間に、スポット市場での購入実績に基づいて翌日の発電計画を作成する。そして、当該発電計画を送配電事業者に提出する。
 また、小売電気事業者は、1時間前計画を策定し、適時、1時間前市場へ参加して需給バランスを調整する。そして、30分同時同量の達成が困難な場合には、RAに所定のタイミングでの充電又は放電を依頼する。当該依頼は、1時間前市場が閉鎖された後、実需用の1時間前から30分前に出力される。
 RAは、各需要家のスマートメータから収集された1時間30分前の電力需要情報に基づき、電力需要予測値、及び、現在の蓄電池30の状態(例:SOC等)から、将来の各時間帯における蓄電池30を用いた電力需要の調整余力(電力量、空き容量等)を常に推定している。なお、当該推定結果は、小売電気事業者に送信されてもよい。そして、小売電気事業者は、推定内容に基づき、上記依頼を行うか否かを判断してもよい。
 RAは、小売電気事業者から上記依頼を受けると、依頼された充電又は放電のタイミングにおいて、エネルギーマネジメントサービス(第2のサービス)の実施を一旦停止し、インバランス回避サービス(第3のサービス)を割り込ませる。
 以下、参考形態の例を付記する。
1. 第1のサービスに関連して蓄電池に充電又は放電させる電力を特定するための第1の情報を、前記蓄電池における定格出力値に基づいて生成する第1の処理手段と、
 前記蓄電池を制御する蓄電池制御装置に、前記第1の情報を送信する通信手段と、
を有する制御装置。
2. 第1のサービスに関連して蓄電池に充電又は放電させる電力を特定するための第1の情報を生成する第1の処理手段と、
 前記第1のサービスと並行して行われる第2のサービスに関連して前記蓄電池に充電又は放電させる電力を特定するための第2の情報を生成する第2の処理手段と、
 前記蓄電池を制御する蓄電池制御装置に、少なくとも前記第1の情報を送信する通信手段と、を有する制御装置。
3. 1又は2に記載の制御装置において、
 前記通信手段は、前記蓄電池制御装置に、前記第1の情報と、前記第1のサービスと並行して行われる第2のサービスに関連して前記蓄電池に充電又は放電させる電力を特定するための第2の情報とを送信する制御装置。
4. 2又は3に記載の制御装置において、
 前記蓄電池に関する情報であって、前記第1のサービスのための出力の上限及び前記第2のサービスのための出力の上限の少なくとも一方を示す制御情報を取得又は設定する制御手段をさらに有し、
 前記第1の処理手段が前記制御情報に基づき前記第1の情報を生成する処理、及び、前記第2の処理手段が前記制御情報に基づき前記第2の情報を生成する処理の少なくとも一方を行う制御装置。
5. 4に記載の制御装置において、
 前記第1のサービスのための出力の上限と、前記第2のサービスのための出力の上限との和は、前記蓄電池用のPCSの定格出力値以下である制御装置。
6. 4又は5に記載の制御装置において、
 前記制御手段は、複数の前記蓄電池各々に対応して異なる内容の前記制御情報を取得又は設定し、
 複数の前記蓄電池各々に対応する前記制御情報で示される各タイミングでの前記第1のサービスのための出力の上限の和は所定範囲に収まる制御装置。
7. 4から6のいずれかに記載の制御装置において、
 前記第1のサービスは、電力系統の需給バランス調整に関連して前記蓄電池の充放電を制御するLFC(lord frequency control)制御及びGF(Governor Free)制御の少なくとも一方に関するアンシラリーサービスであり、
 前記第2のサービスは、電力単価が相対的に安い時間帯に電力を充電し、電力単価が相対的に高い時間帯に電力を放電する充放電動作を前記蓄電池に実行させるエネルギーマネジメントサービス、ピークカットを行うエネルギーマネジメントサービス、小売電気事業者からの依頼に基づき前記蓄電池の充放電を制御するインバランス回避サービス、及び、発電事業者からの依頼に基づき前記蓄電池の充放電を制御する余剰電力吸収サービスの中のいずれかであり、
 前記制御手段は、
  前記第2のサービスの出力の上限を設定した後、前記第2のサービスの出力の上限に基づき前記第1のサービスの出力の上限を設定する、または、
  前記第1のサービスの出力の上限を設定した後、前記第1のサービスの出力の上限に基づき前記第2のサービスの出力の上限を設定する制御装置。
8. 2から7のいずれかに記載の制御装置において、
 前記第2の処理手段は、SOCの値が所定の値以下または所定の値以上になる時間帯が前記蓄電池毎に異なる前記第2の情報を生成する制御装置。
9. 2から8のいずれかに記載の制御装置において、
 前記第1のサービスと並行し、前記第2のサービスとの間で選択的に行われる第3のサービスに関連して前記蓄電池に充電又は放電させる電力を特定するための第3の情報を生成する第3の処理手段をさらに有し、
 前記通信手段は、前記蓄電池制御装置に前記第3の情報をさらに送信する制御装置。
10. 4から7のいずれかに従属する9に記載の制御装置において、
 前記第3の処理手段は、前記第2のサービスのための出力の上限を、前記第3のサービスのための出力の上限として、前記第3の情報を生成する制御装置。
11. 4から7のいずれかに従属する9又は10に記載の制御装置において、
 前記制御手段は、前記第2のサービス及び前記第3のサービスのいずれを優先させるかを決定し、
 前記通信手段は、前記第2のサービス及び前記第3のサービスのいずれを優先させるか示す情報を、前記蓄電池制御装置に送信する制御装置。
12. 9から11のいずれかに記載の制御装置において、
 前記第2の処理手段は、前記第3のサービスの実施に応じて、前記第2の情報を更新する制御装置。
13. 9から12のいずれかに記載の制御装置において、
 前記第2のサービスは、電力単価が相対的に安い時間帯に電力を充電し、電力単価が相対的に高い時間帯に電力を放電する充放電動作を前記蓄電池に実行させるエネルギーマネジメントサービスであり、前記第2の情報では、放電時間帯及び充電時間帯のスケジュールが定められており、
 前記第3のサービスは、小売電気事業者からの依頼に基づき前記蓄電池の充放電を制御するインバランス回避サービスであり、
 前記第2の処理手段は、
  前記第3のサービスの実施が終了した時点が前記第2の情報で定められる前記放電時間帯である場合、前記第3のサービスの実施が終了した時点の前記蓄電池の充電電力量を前記放電時間帯で放電する前記第2の情報を新たに生成し、
  前記第3のサービスの実施が終了した時点が前記第2の情報で定められる前記充電時間帯である場合、前記第3のサービスの実施が終了した時点の前記蓄電池の空き容量分を前記充電時間帯で充電する前記第2の情報を新たに生成する制御装置。
14. 2から13のいずれかに記載の制御装置において、
 すべての前記サービスを停止した状態で単独で行われる第4のサービスに関連して前記蓄電池に充電又は放電させる電力を特定するための第4の情報を生成する第4の処理手段をさらに有し、
 前記通信手段は、前記蓄電池制御装置に前記第4の情報をさらに送信する制御装置。
15. 14に記載の制御装置において、
 前記第4の処理手段は、前記蓄電池用のPCSの定格出力値を、前記第4のサービスのための出力の上限として、前記第4の情報を生成する制御装置。
16. 2から15のいずれかに記載の制御装置において、
 前記第1の情報で特定される前記蓄電池に充電させる充電電力の積算量と、前記第1の情報で特定される前記蓄電池に放電させる放電電力の積算量とが対応する第1のタイミングが繰り返し現れる制御装置。
17. 16に記載の制御装置において、
 前記第2の情報で特定される前記蓄電池に充電させる充電電力の積算量と、前記第2の情報で特定される前記蓄電池に放電させる放電電力の積算量とが対応する第2のタイミングが繰り返し現れ、
 前記第1のタイミングが現れる周期と、前記第2のタイミングが現れる周期とは異なる制御装置。
18. 17に記載の制御装置において、
 前記第1のタイミングが現れる周期は、前記第2のタイミングが現れる周期よりも短い制御装置。
19. 2に記載の制御装置において、
 前記制御手段は、前記第1のサービス及び前記第2のサービスの内の一方の実施を停止させることを決定し、
 前記通信手段は、前記第1のサービス及び前記第2のサービスの内の一方の実施を停止させる信号を前記蓄電池制御装置に送信する制御装置。
20. 19に記載の制御装置において、
 前記制御手段は、前記第1のサービス及び前記第2のサービスの内の一方の実施を停止させ、他方の出力の上限を引き上げることを決定し、
 出力の上限を引き上げられたサービスのための情報を生成する前記第1の処理手段又は前記第2の処理手段は、引き上げられた出力の上限に基づき前記第1の情報又は前記第2の情報を生成する制御装置。
21. 第1のサービスに関連して蓄電池に充電又は放電させる電力を特定するための第1の情報を受信する通信手段と、
 前記第1の情報に基づいて、第2のサービスに関連して前記蓄電池に充電又は放電させる電力を特定するための第2の情報を算出する算出手段と、
 前記第1の情報と前記第2の情報とに基づいて前記蓄電池を制御する蓄電池制御手段とを有する蓄電池制御装置。
22. 21に記載の蓄電池制御装置において、
 前記算出手段は、前記第1の情報と前記蓄電池における定格出力値とに基づいて、前記第2の情報を算出する蓄電池制御装置。
23. 第1のサービスに関連して蓄電池に充電又は放電させる電力を特定するための第1の情報、及び、前記第1のサービスと並行して行われる第2のサービスに関連して前記蓄電池に充電又は放電させる電力を特定するための第2の情報を受信する通信手段と、
 前記第1の情報及び前記第2の情報に基づき、前記蓄電池に充電又は放電させる電力を算出する算出手段と、
 前記算出手段により算出された内容で前記蓄電池を制御する蓄電池制御手段と、
を有する蓄電池制御装置。
24. 21から23のいずれかに記載の蓄電池制御装置において、
 前記通信手段は、前記第1のサービスと並行し、前記第2のサービスとの間で選択的に行われる第3のサービスに関連して前記蓄電池に充電又は放電させる電力を特定するための第3の情報を受信し、
 前記算出手段は、前記第1の情報及び前記第3の情報に基づき、前記蓄電池に充電又は放電させる電力を算出する蓄電池制御装置。
25. 24に記載の蓄電池制御装置において、
 前記通信手段が、同じタイミングで前記蓄電池に充電又は放電させるための前記第1の情報、前記第2の情報及び前記第3の情報を受信した場合、
 前記算出手段は、前記第1の情報及び前記第3の情報に基づき、前記タイミングで前記蓄電池に充電又は放電させる電力を算出する蓄電池制御装置。
26. 24又は25に記載の蓄電池制御装置において、
 前記通信手段が、同じタイミングで前記蓄電池に充電又は放電させるための前記第1の情報、前記第2の情報及び前記第3の情報を受信し、かつ、前記第2のサービス及び前記第3のサービスいずれを優先させるか示す情報を受信した場合、
 前記算出手段は、前記第1の情報と、第2の情報及び第3の情報の内の優先させる方のサービスに関する情報とに基づき、前記タイミングで前記蓄電池に充電又は放電させる電力を算出する蓄電池制御装置。
27. 21から26のいずれかに記載の蓄電池制御装置において、
 前記通信手段は、すべての前記サービスを停止し、単独で行われる第4のサービスに関連して前記蓄電池に充電又は放電させる電力を特定するための第4の情報を受信し、
 前記算出手段は、前記第4の情報に基づき、前記蓄電池に充電又は放電させる電力を算出する蓄電池制御装置。
28. 27に記載の蓄電池制御装置において、
 前記通信手段が、同じタイミングで前記蓄電池に充電又は放電させるための前記第4の情報及びその他の情報を受信した場合、
 前記算出手段は、前記第4の情報に基づき、前記タイミングで前記蓄電池に充電又は放電させる電力を算出する蓄電池制御装置。
29. 28に記載の蓄電池制御装置において、
 前記通信手段が、同じタイミングで前記蓄電池に充電又は放電させるための前記第4の情報及びその他の情報を受信した場合、
 前記蓄電池制御手段は、他の前記サービスのための充放電を停止し、前記第4のサービスのための充放電のみを前記蓄電池に実行させる蓄電池制御装置。
30. 21から29のいずれかに記載の蓄電池制御装置において、
 前記第1の情報で特定される前記蓄電池に充電させる充電電力の積算量と、前記第1の情報で特定される前記蓄電池に放電させる放電電力の積算量とが対応する第1のタイミングが繰り返し現れる蓄電池制御装置。
31. 30に記載の蓄電池制御装置において、
 前記第2の情報で特定される前記蓄電池に充電させる充電電力の積算量と、前記第2の情報で特定される前記蓄電池に放電させる放電電力の積算量とが対応する第2のタイミングが繰り返し現れ、
 前記第1のタイミングが現れる周期と、前記第2のタイミングが現れる周期とは異なる制御装置。
32. 31に記載の蓄電池制御装置において、
 前記第1のタイミングが現れる周期は、前記第2のタイミングが現れる周期よりも短い蓄電池制御装置。
33. 1から20のいずれかに記載の制御装置と、
 21から32のいずれかに記載の蓄電池制御装置と、
を有する制御システム。
34. 第1の目的で電池部に充電又は放電させる第1の電力を算出し、前記第1の電力と、外部装置から受信した他の目的で前記電池部に充電又は放電させる第2の電力とを足し合わせることで、前記電池部に充電又は放電させる電力を算出する算出手段と、
 前記算出手段により算出された内容で前記電池部から充放電させる電池部制御手段と、
を有する電池部制御装置。
35. 34に記載の電池部制御装置において、
 前記第1の目的はGF制御であり、前記他の目的はLFC制御を含む電池部制御装置。
36. コンピュータが、
 第1のサービスに関連して蓄電池に充電又は放電させる電力を特定するための第1の情報を、前記蓄電池における定格出力値に基づいて生成する第1の処理工程と、
 前記蓄電池を制御する蓄電池制御装置に、前記第1の情報を送信する通信工程と、
を実行する制御装置の動作方法。
37. コンピュータを、
 第1のサービスに関連して蓄電池に充電又は放電させる電力を特定するための第1の情報を、前記蓄電池における定格出力値に基づいて生成する第1の処理手段、
 前記蓄電池を制御する蓄電池制御装置に、前記第1の情報を送信する通信手段、
として機能させるプログラム。
38. コンピュータが、
 第1のサービスに関連して蓄電池に充電又は放電させる電力を特定するための第1の情報を生成する第1の処理工程と、
 前記第1のサービスと並行して行われる第2のサービスに関連して前記蓄電池に充電又は放電させる電力を特定するための第2の情報を生成する第2の処理工程と、
 前記蓄電池を制御する蓄電池制御装置に、少なくとも前記第1の情報を送信する通信工程と、
を実行する制御装置の動作方法。
39. コンピュータを、
 第1のサービスに関連して蓄電池に充電又は放電させる電力を特定するための第1の情報を生成する第1の処理手段、
 前記第1のサービスと並行して行われる第2のサービスに関連して前記蓄電池に充電又は放電させる電力を特定するための第2の情報を生成する第2の処理手段、
 前記蓄電池を制御する蓄電池制御装置に、少なくとも前記第1の情報を送信する通信手段、
として機能させるプログラム。
40. コンピュータが、
 第1のサービスに関連して蓄電池に充電又は放電させる電力を特定するための第1の情報を受信する通信工程と、
 前記第1の情報に基づいて、第2のサービスに関連して前記蓄電池に充電又は放電させる電力を特定するための第2の情報を算出する算出工程と、
 前記第1の情報と前記第2の情報とに基づいて前記蓄電池を制御する蓄電池制御工程と、
を実行する蓄電池制御装置の動作方法。
41. コンピュータを、
 第1のサービスに関連して蓄電池に充電又は放電させる電力を特定するための第1の情報を受信する通信手段、
 前記第1の情報に基づいて、第2のサービスに関連して前記蓄電池に充電又は放電させる電力を特定するための第2の情報を算出する算出手段、
 前記第1の情報と前記第2の情報とに基づいて前記蓄電池を制御する蓄電池制御手段、
として機能させるプログラム。
42. コンピュータが、
 第1のサービスに関連して蓄電池に充電又は放電させる電力を特定するための第1の情報、及び、前記第1のサービスと並行して行われる第2のサービスに関連して前記蓄電池に充電又は放電させる電力を特定するための第2の情報を受信する通信工程と、
 前記第1の情報及び前記第2の情報に基づき、前記蓄電池に充電又は放電させる電力を算出する算出工程と、
 前記算出工程で算出された内容で前記蓄電池を制御する蓄電池制御工程と、
を実行する蓄電池制御装置の動作方法。
43. コンピュータを、
 第1のサービスに関連して蓄電池に充電又は放電させる電力を特定するための第1の情報、及び、前記第1のサービスと並行して行われる第2のサービスに関連して前記蓄電池に充電又は放電させる電力を特定するための第2の情報を受信する通信手段、
 前記第1の情報及び前記第2の情報に基づき、前記蓄電池に充電又は放電させる電力を算出する算出手段、
 前記算出手段により算出された内容で前記蓄電池を制御する蓄電池制御手段、
として機能させるプログラム。
44. コンピュータが、
 第1の目的で電池部に充電又は放電させる第1の電力を算出し、前記第1の電力と、外部装置から受信した他の目的で前記電池部に充電又は放電させる第2の電力とを足し合わせることで、前記電池部に充電又は放電させる電力を算出する算出工程と、
 前記算出工程で算出された内容で前記電池部から充放電させる電池部制御工程と、
を実行する電池部制御装置の動作方法。
45. コンピュータを、
 第1の目的で電池部に充電又は放電させる第1の電力を算出し、前記第1の電力と、外部装置から受信した他の目的で前記電池部に充電又は放電させる第2の電力とを足し合わせることで、前記電池部に充電又は放電させる電力を算出する算出手段、
 前記算出手段により算出された内容で前記電池部から充放電させる電池部制御手段、
として機能させるプログラム。

Claims (45)

  1.  第1のサービスに関連して蓄電池に充電又は放電させる電力を特定するための第1の情報を、前記蓄電池における定格出力値に基づいて生成する第1の処理手段と、
     前記蓄電池を制御する蓄電池制御装置に、前記第1の情報を送信する通信手段と、
    を有する制御装置。
  2.  第1のサービスに関連して蓄電池に充電又は放電させる電力を特定するための第1の情報を生成する第1の処理手段と、
     前記第1のサービスと並行して行われる第2のサービスに関連して前記蓄電池に充電又は放電させる電力を特定するための第2の情報を生成する第2の処理手段と、
     前記蓄電池を制御する蓄電池制御装置に、少なくとも前記第1の情報を送信する通信手段と、を有する制御装置。
  3.  請求項1又は2に記載の制御装置において、
     前記通信手段は、前記蓄電池制御装置に、前記第1の情報と、前記第1のサービスと並行して行われる第2のサービスに関連して前記蓄電池に充電又は放電させる電力を特定するための第2の情報とを送信する制御装置。
  4.  請求項2又は3に記載の制御装置において、
     前記蓄電池に関する情報であって、前記第1のサービスのための出力の上限及び前記第2のサービスのための出力の上限の少なくとも一方を示す制御情報を取得又は設定する制御手段をさらに有し、
     前記第1の処理手段が前記制御情報に基づき前記第1の情報を生成する処理、及び、前記第2の処理手段が前記制御情報に基づき前記第2の情報を生成する処理の少なくとも一方を行う制御装置。
  5.  請求項4に記載の制御装置において、
     前記第1のサービスのための出力の上限と、前記第2のサービスのための出力の上限との和は、前記蓄電池用のPCSの定格出力値以下である制御装置。
  6.  請求項4又は5に記載の制御装置において、
     前記制御手段は、複数の前記蓄電池各々に対応して異なる内容の前記制御情報を取得又は設定し、
     複数の前記蓄電池各々に対応する前記制御情報で示される各タイミングでの前記第1のサービスのための出力の上限の和は所定範囲に収まる制御装置。
  7.  請求項4から6のいずれか1項に記載の制御装置において、
     前記第1のサービスは、電力系統の需給バランス調整に関連して前記蓄電池の充放電を制御するLFC(lord frequency control)制御及びGF(Governor Free)制御の少なくとも一方に関するアンシラリーサービスであり、
     前記第2のサービスは、電力単価が相対的に安い時間帯に電力を充電し、電力単価が相対的に高い時間帯に電力を放電する充放電動作を前記蓄電池に実行させるエネルギーマネジメントサービス、ピークカットを行うエネルギーマネジメントサービス、小売電気事業者からの依頼に基づき前記蓄電池の充放電を制御するインバランス回避サービス、及び、発電事業者からの依頼に基づき前記蓄電池の充放電を制御する余剰電力吸収サービスの中のいずれかであり、
     前記制御手段は、
      前記第2のサービスの出力の上限を設定した後、前記第2のサービスの出力の上限に基づき前記第1のサービスの出力の上限を設定する、または、
      前記第1のサービスの出力の上限を設定した後、前記第1のサービスの出力の上限に基づき前記第2のサービスの出力の上限を設定する制御装置。
  8.  請求項2から7のいずれか1項に記載の制御装置において、
     前記第2の処理手段は、SOCの値が所定の値以下または所定の値以上になる時間帯が前記蓄電池毎に異なる前記第2の情報を生成する制御装置。
  9.  請求項2から8のいずれか1項に記載の制御装置において、
     前記第1のサービスと並行し、前記第2のサービスとの間で選択的に行われる第3のサービスに関連して前記蓄電池に充電又は放電させる電力を特定するための第3の情報を生成する第3の処理手段をさらに有し、
     前記通信手段は、前記蓄電池制御装置に前記第3の情報をさらに送信する制御装置。
  10.  請求項4から7のいずれかに従属する請求項9に記載の制御装置において、
     前記第3の処理手段は、前記第2のサービスのための出力の上限を、前記第3のサービスのための出力の上限として、前記第3の情報を生成する制御装置。
  11.  請求項4から7のいずれかに従属する請求項9又は10に記載の制御装置において、
     前記制御手段は、前記第2のサービス及び前記第3のサービスのいずれを優先させるかを決定し、
     前記通信手段は、前記第2のサービス及び前記第3のサービスのいずれを優先させるか示す情報を、前記蓄電池制御装置に送信する制御装置。
  12.  請求項9から11のいずれか1項に記載の制御装置において、
     前記第2の処理手段は、前記第3のサービスの実施に応じて、前記第2の情報を更新する制御装置。
  13.  請求項9から12のいずれか1項に記載の制御装置において、
     前記第2のサービスは、電力単価が相対的に安い時間帯に電力を充電し、電力単価が相対的に高い時間帯に電力を放電する充放電動作を前記蓄電池に実行させるエネルギーマネジメントサービスであり、前記第2の情報では、放電時間帯及び充電時間帯のスケジュールが定められており、
     前記第3のサービスは、小売電気事業者からの依頼に基づき前記蓄電池の充放電を制御するインバランス回避サービスであり、
     前記第2の処理手段は、
      前記第3のサービスの実施が終了した時点が前記第2の情報で定められる前記放電時間帯である場合、前記第3のサービスの実施が終了した時点の前記蓄電池の充電電力量を前記放電時間帯で放電する前記第2の情報を新たに生成し、
      前記第3のサービスの実施が終了した時点が前記第2の情報で定められる前記充電時間帯である場合、前記第3のサービスの実施が終了した時点の前記蓄電池の空き容量分を前記充電時間帯で充電する前記第2の情報を新たに生成する制御装置。
  14.  請求項2から13のいずれか1項に記載の制御装置において、
     すべての前記サービスを停止した状態で単独で行われる第4のサービスに関連して前記蓄電池に充電又は放電させる電力を特定するための第4の情報を生成する第4の処理手段をさらに有し、
     前記通信手段は、前記蓄電池制御装置に前記第4の情報をさらに送信する制御装置。
  15.  請求項14に記載の制御装置において、
     前記第4の処理手段は、前記蓄電池用のPCSの定格出力値を、前記第4のサービスのための出力の上限として、前記第4の情報を生成する制御装置。
  16.  請求項2から15のいずれか1項に記載の制御装置において、
     前記第1の情報で特定される前記蓄電池に充電させる充電電力の積算量と、前記第1の情報で特定される前記蓄電池に放電させる放電電力の積算量とが対応する第1のタイミングが繰り返し現れる制御装置。
  17.  請求項16に記載の制御装置において、
     前記第2の情報で特定される前記蓄電池に充電させる充電電力の積算量と、前記第2の情報で特定される前記蓄電池に放電させる放電電力の積算量とが対応する第2のタイミングが繰り返し現れ、
     前記第1のタイミングが現れる周期と、前記第2のタイミングが現れる周期とは異なる制御装置。
  18.  請求項17に記載の制御装置において、
     前記第1のタイミングが現れる周期は、前記第2のタイミングが現れる周期よりも短い制御装置。
  19.  請求項2に記載の制御装置において、
     前記制御手段は、前記第1のサービス及び前記第2のサービスの内の一方の実施を停止させることを決定し、
     前記通信手段は、前記第1のサービス及び前記第2のサービスの内の一方の実施を停止させる信号を前記蓄電池制御装置に送信する制御装置。
  20.  請求項19に記載の制御装置において、
     前記制御手段は、前記第1のサービス及び前記第2のサービスの内の一方の実施を停止させ、他方の出力の上限を引き上げることを決定し、
     出力の上限を引き上げられたサービスのための情報を生成する前記第1の処理手段又は前記第2の処理手段は、引き上げられた出力の上限に基づき前記第1の情報又は前記第2の情報を生成する制御装置。
  21.  第1のサービスに関連して蓄電池に充電又は放電させる電力を特定するための第1の情報を受信する通信手段と、
     前記第1の情報に基づいて、第2のサービスに関連して前記蓄電池に充電又は放電させる電力を特定するための第2の情報を算出する算出手段と、
     前記第1の情報と前記第2の情報とに基づいて前記蓄電池を制御する蓄電池制御手段とを有する蓄電池制御装置。
  22.  請求項21に記載の蓄電池制御装置において、
     前記算出手段は、前記第1の情報と前記蓄電池における定格出力値とに基づいて、前記第2の情報を算出する蓄電池制御装置。
  23.  第1のサービスに関連して蓄電池に充電又は放電させる電力を特定するための第1の情報、及び、前記第1のサービスと並行して行われる第2のサービスに関連して前記蓄電池に充電又は放電させる電力を特定するための第2の情報を受信する通信手段と、
     前記第1の情報及び前記第2の情報に基づき、前記蓄電池に充電又は放電させる電力を算出する算出手段と、
     前記算出手段により算出された内容で前記蓄電池を制御する蓄電池制御手段と、
    を有する蓄電池制御装置。
  24.  請求項21から23のいずれか1項に記載の蓄電池制御装置において、
     前記通信手段は、前記第1のサービスと並行し、前記第2のサービスとの間で選択的に行われる第3のサービスに関連して前記蓄電池に充電又は放電させる電力を特定するための第3の情報を受信し、
     前記算出手段は、前記第1の情報及び前記第3の情報に基づき、前記蓄電池に充電又は放電させる電力を算出する蓄電池制御装置。
  25.  請求項24に記載の蓄電池制御装置において、
     前記通信手段が、同じタイミングで前記蓄電池に充電又は放電させるための前記第1の情報、前記第2の情報及び前記第3の情報を受信した場合、
     前記算出手段は、前記第1の情報及び前記第3の情報に基づき、前記タイミングで前記蓄電池に充電又は放電させる電力を算出する蓄電池制御装置。
  26.  請求項24又は25に記載の蓄電池制御装置において、
     前記通信手段が、同じタイミングで前記蓄電池に充電又は放電させるための前記第1の情報、前記第2の情報及び前記第3の情報を受信し、かつ、前記第2のサービス及び前記第3のサービスいずれを優先させるか示す情報を受信した場合、
     前記算出手段は、前記第1の情報と、第2の情報及び第3の情報の内の優先させる方のサービスに関する情報とに基づき、前記タイミングで前記蓄電池に充電又は放電させる電力を算出する蓄電池制御装置。
  27.  請求項21から26のいずれか1項に記載の蓄電池制御装置において、
     前記通信手段は、すべての前記サービスを停止し、単独で行われる第4のサービスに関連して前記蓄電池に充電又は放電させる電力を特定するための第4の情報を受信し、
     前記算出手段は、前記第4の情報に基づき、前記蓄電池に充電又は放電させる電力を算出する蓄電池制御装置。
  28.  請求項27に記載の蓄電池制御装置において、
     前記通信手段が、同じタイミングで前記蓄電池に充電又は放電させるための前記第4の情報及びその他の情報を受信した場合、
     前記算出手段は、前記第4の情報に基づき、前記タイミングで前記蓄電池に充電又は放電させる電力を算出する蓄電池制御装置。
  29.  請求項28に記載の蓄電池制御装置において、
     前記通信手段が、同じタイミングで前記蓄電池に充電又は放電させるための前記第4の情報及びその他の情報を受信した場合、
     前記蓄電池制御手段は、他の前記サービスのための充放電を停止し、前記第4のサービスのための充放電のみを前記蓄電池に実行させる蓄電池制御装置。
  30.  請求項21から29のいずれか1項に記載の蓄電池制御装置において、
     前記第1の情報で特定される前記蓄電池に充電させる充電電力の積算量と、前記第1の情報で特定される前記蓄電池に放電させる放電電力の積算量とが対応する第1のタイミングが繰り返し現れる蓄電池制御装置。
  31.  請求項30に記載の蓄電池制御装置において、
     前記第2の情報で特定される前記蓄電池に充電させる充電電力の積算量と、前記第2の情報で特定される前記蓄電池に放電させる放電電力の積算量とが対応する第2のタイミングが繰り返し現れ、
     前記第1のタイミングが現れる周期と、前記第2のタイミングが現れる周期とは異なる制御装置。
  32.  請求項31に記載の蓄電池制御装置において、
     前記第1のタイミングが現れる周期は、前記第2のタイミングが現れる周期よりも短い蓄電池制御装置。
  33.  請求項1から20のいずれか1項に記載の制御装置と、
     請求項21から32のいずれか1項に記載の蓄電池制御装置と、
    を有する制御システム。
  34.  第1の目的で電池部に充電又は放電させる第1の電力を算出し、前記第1の電力と、外部装置から受信した他の目的で前記電池部に充電又は放電させる第2の電力とを足し合わせることで、前記電池部に充電又は放電させる電力を算出する算出手段と、
     前記算出手段により算出された内容で前記電池部から充放電させる電池部制御手段と、
    を有する電池部制御装置。
  35.  請求項34に記載の電池部制御装置において、
     前記第1の目的はGF制御であり、前記他の目的はLFC制御を含む電池部制御装置。
  36.  コンピュータが、
     第1のサービスに関連して蓄電池に充電又は放電させる電力を特定するための第1の情報を、前記蓄電池における定格出力値に基づいて生成する第1の処理工程と、
     前記蓄電池を制御する蓄電池制御装置に、前記第1の情報を送信する通信工程と、
    を実行する制御装置の動作方法。
  37.  コンピュータを、
     第1のサービスに関連して蓄電池に充電又は放電させる電力を特定するための第1の情報を、前記蓄電池における定格出力値に基づいて生成する第1の処理手段、
     前記蓄電池を制御する蓄電池制御装置に、前記第1の情報を送信する通信手段、
    として機能させるプログラム。
  38.  コンピュータが、
     第1のサービスに関連して蓄電池に充電又は放電させる電力を特定するための第1の情報を生成する第1の処理工程と、
     前記第1のサービスと並行して行われる第2のサービスに関連して前記蓄電池に充電又は放電させる電力を特定するための第2の情報を生成する第2の処理工程と、
     前記蓄電池を制御する蓄電池制御装置に、少なくとも前記第1の情報を送信する通信工程と、
    を実行する制御装置の動作方法。
  39.  コンピュータを、
     第1のサービスに関連して蓄電池に充電又は放電させる電力を特定するための第1の情報を生成する第1の処理手段、
     前記第1のサービスと並行して行われる第2のサービスに関連して前記蓄電池に充電又は放電させる電力を特定するための第2の情報を生成する第2の処理手段、
     前記蓄電池を制御する蓄電池制御装置に、少なくとも前記第1の情報を送信する通信手段、
    として機能させるプログラム。
  40.  コンピュータが、
     第1のサービスに関連して蓄電池に充電又は放電させる電力を特定するための第1の情報を受信する通信工程と、
     前記第1の情報に基づいて、第2のサービスに関連して前記蓄電池に充電又は放電させる電力を特定するための第2の情報を算出する算出工程と、
     前記第1の情報と前記第2の情報とに基づいて前記蓄電池を制御する蓄電池制御工程と、
    を実行する蓄電池制御装置の動作方法。
  41.  コンピュータを、
     第1のサービスに関連して蓄電池に充電又は放電させる電力を特定するための第1の情報を受信する通信手段、
     前記第1の情報に基づいて、第2のサービスに関連して前記蓄電池に充電又は放電させる電力を特定するための第2の情報を算出する算出手段、
     前記第1の情報と前記第2の情報とに基づいて前記蓄電池を制御する蓄電池制御手段、
    として機能させるプログラム。
  42.  コンピュータが、
     第1のサービスに関連して蓄電池に充電又は放電させる電力を特定するための第1の情報、及び、前記第1のサービスと並行して行われる第2のサービスに関連して前記蓄電池に充電又は放電させる電力を特定するための第2の情報を受信する通信工程と、
     前記第1の情報及び前記第2の情報に基づき、前記蓄電池に充電又は放電させる電力を算出する算出工程と、
     前記算出工程で算出された内容で前記蓄電池を制御する蓄電池制御工程と、
    を実行する蓄電池制御装置の動作方法。
  43.  コンピュータを、
     第1のサービスに関連して蓄電池に充電又は放電させる電力を特定するための第1の情報、及び、前記第1のサービスと並行して行われる第2のサービスに関連して前記蓄電池に充電又は放電させる電力を特定するための第2の情報を受信する通信手段、
     前記第1の情報及び前記第2の情報に基づき、前記蓄電池に充電又は放電させる電力を算出する算出手段、
     前記算出手段により算出された内容で前記蓄電池を制御する蓄電池制御手段、
    として機能させるプログラム。
  44.  コンピュータが、
     第1の目的で電池部に充電又は放電させる第1の電力を算出し、前記第1の電力と、外部装置から受信した他の目的で前記電池部に充電又は放電させる第2の電力とを足し合わせることで、前記電池部に充電又は放電させる電力を算出する算出工程と、
     前記算出工程で算出された内容で前記電池部から充放電させる電池部制御工程と、
    を実行する電池部制御装置の動作方法。
  45.  コンピュータを、
     第1の目的で電池部に充電又は放電させる第1の電力を算出し、前記第1の電力と、外部装置から受信した他の目的で前記電池部に充電又は放電させる第2の電力とを足し合わせることで、前記電池部に充電又は放電させる電力を算出する算出手段、
     前記算出手段により算出された内容で前記電池部から充放電させる電池部制御手段、
    として機能させるプログラム。
PCT/JP2016/065619 2016-05-26 2016-05-26 制御装置、蓄電池制御装置、制御システム、電池部制御装置、制御方法、蓄電池制御方法、電池部制御装置の動作方法及びプログラム WO2017203664A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/065619 WO2017203664A1 (ja) 2016-05-26 2016-05-26 制御装置、蓄電池制御装置、制御システム、電池部制御装置、制御方法、蓄電池制御方法、電池部制御装置の動作方法及びプログラム
JP2018518892A JP6838792B2 (ja) 2016-05-26 2016-05-26 制御装置、制御システム、制御装置の動作方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/065619 WO2017203664A1 (ja) 2016-05-26 2016-05-26 制御装置、蓄電池制御装置、制御システム、電池部制御装置、制御方法、蓄電池制御方法、電池部制御装置の動作方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2017203664A1 true WO2017203664A1 (ja) 2017-11-30

Family

ID=60411259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065619 WO2017203664A1 (ja) 2016-05-26 2016-05-26 制御装置、蓄電池制御装置、制御システム、電池部制御装置、制御方法、蓄電池制御方法、電池部制御装置の動作方法及びプログラム

Country Status (2)

Country Link
JP (1) JP6838792B2 (ja)
WO (1) WO2017203664A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020010478A (ja) * 2018-07-05 2020-01-16 株式会社東芝 作成装置、作成方法及び情報処理システム
WO2020017428A1 (ja) * 2018-07-20 2020-01-23 京セラ株式会社 電力管理サーバ、エネルギー蓄積装置及び電力管理方法
JP2020137368A (ja) * 2019-02-25 2020-08-31 日本電気株式会社 上位装置、制御装置、端末装置、充放電制御システム、蓄電池群監視制御システム、制御方法およびプログラム
JP2020167798A (ja) * 2019-03-28 2020-10-08 株式会社Ihi 電力需給管理システム、電力需給管理装置、及び電力需給管理方法
JP2021078327A (ja) * 2019-11-13 2021-05-20 京セラ株式会社 電力制御システム、電力制御装置、電力制御方法およびプログラム
JP2021516941A (ja) * 2018-03-15 2021-07-08 リイケンネヴィルタ オイ / ヴィルタ リミテッド 複数信号に基づいたエネルギ管理
JP6930648B1 (ja) * 2020-10-23 2021-09-01 富士電機株式会社 電力安定化装置
WO2023148918A1 (ja) * 2022-02-04 2023-08-10 日本電気株式会社 制御装置、制御方法および記録媒体
WO2023152820A1 (ja) * 2022-02-09 2023-08-17 日本電気株式会社 計画装置、計画方法および記録媒体
WO2024058039A1 (ja) * 2022-09-13 2024-03-21 京セラ株式会社 通信装置、分散電源及び通信方法
JP7468478B2 (ja) 2021-07-16 2024-04-16 トヨタ自動車株式会社 制御システム、及び電力調整方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006094648A (ja) * 2004-09-24 2006-04-06 Kansai Electric Power Co Inc:The 二次電池を用いた電力系統制御方法及び電力系統制御装置
JP2014527789A (ja) * 2012-07-20 2014-10-16 パナソニック株式会社 エネルギー貯蔵システムの制御方法
JP2014236600A (ja) * 2013-06-03 2014-12-15 東北電力株式会社 系統用蓄電池の複数目的制御装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3738227B2 (ja) * 2002-03-20 2006-01-25 関西電力株式会社 二次電池を用いたアンシラリーサービス提供方法およびシステム
JP2014220975A (ja) * 2013-05-10 2014-11-20 パナソニック株式会社 蓄電池管理装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006094648A (ja) * 2004-09-24 2006-04-06 Kansai Electric Power Co Inc:The 二次電池を用いた電力系統制御方法及び電力系統制御装置
JP2014527789A (ja) * 2012-07-20 2014-10-16 パナソニック株式会社 エネルギー貯蔵システムの制御方法
JP2014236600A (ja) * 2013-06-03 2014-12-15 東北電力株式会社 系統用蓄電池の複数目的制御装置

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021516941A (ja) * 2018-03-15 2021-07-08 リイケンネヴィルタ オイ / ヴィルタ リミテッド 複数信号に基づいたエネルギ管理
JP6999046B2 (ja) 2018-03-15 2022-01-18 リイケンネヴィルタ オイ / ヴィルタ リミテッド 複数信号に基づいたエネルギ管理
JP2020010478A (ja) * 2018-07-05 2020-01-16 株式会社東芝 作成装置、作成方法及び情報処理システム
WO2020017428A1 (ja) * 2018-07-20 2020-01-23 京セラ株式会社 電力管理サーバ、エネルギー蓄積装置及び電力管理方法
JP7322425B2 (ja) 2019-02-25 2023-08-08 日本電気株式会社 制御装置、端末装置、充放電制御システムおよび蓄電池群監視制御システム
JP2020137368A (ja) * 2019-02-25 2020-08-31 日本電気株式会社 上位装置、制御装置、端末装置、充放電制御システム、蓄電池群監視制御システム、制御方法およびプログラム
JP2020167798A (ja) * 2019-03-28 2020-10-08 株式会社Ihi 電力需給管理システム、電力需給管理装置、及び電力需給管理方法
JP7151591B2 (ja) 2019-03-28 2022-10-12 株式会社Ihi 電力需給管理システム、電力需給管理装置、及び電力需給管理方法
JP2021078327A (ja) * 2019-11-13 2021-05-20 京セラ株式会社 電力制御システム、電力制御装置、電力制御方法およびプログラム
JP7444584B2 (ja) 2019-11-13 2024-03-06 京セラ株式会社 電力制御システム、電力制御装置、電力制御方法およびプログラム
JP2022069150A (ja) * 2020-10-23 2022-05-11 富士電機株式会社 電力安定化装置
JP6930648B1 (ja) * 2020-10-23 2021-09-01 富士電機株式会社 電力安定化装置
JP7468478B2 (ja) 2021-07-16 2024-04-16 トヨタ自動車株式会社 制御システム、及び電力調整方法
WO2023148918A1 (ja) * 2022-02-04 2023-08-10 日本電気株式会社 制御装置、制御方法および記録媒体
WO2023152820A1 (ja) * 2022-02-09 2023-08-17 日本電気株式会社 計画装置、計画方法および記録媒体
WO2024058039A1 (ja) * 2022-09-13 2024-03-21 京セラ株式会社 通信装置、分散電源及び通信方法
JP7511613B2 (ja) 2022-09-13 2024-07-05 京セラ株式会社 通信装置、分散電源及び通信方法

Also Published As

Publication number Publication date
JPWO2017203664A1 (ja) 2018-12-13
JP6838792B2 (ja) 2021-03-03

Similar Documents

Publication Publication Date Title
WO2017203664A1 (ja) 制御装置、蓄電池制御装置、制御システム、電池部制御装置、制御方法、蓄電池制御方法、電池部制御装置の動作方法及びプログラム
JP7460701B2 (ja) 電力供給システムおよび電力供給方法
JP7179500B2 (ja) 蓄電池管理装置、蓄電池管理方法および蓄電池管理プログラム
JP6659602B2 (ja) 電力管理装置
JP6996494B2 (ja) 電力制御装置、電力制御方法、およびプログラム
JP6701965B2 (ja) 処理装置、処理方法及びプログラム
JP2012152093A (ja) 電力制御装置
Tsagkou et al. Stacking grid services with energy storage techno-economic analysis
JPWO2016143239A1 (ja) 電力調整装置、電力流通システム及びプログラム
WO2020173609A1 (en) Grid-edge controllers for uninterruptible power supplies and methods of operating the same
JP2003199249A (ja) 電力供給網の運用方法とそのシステム
WO2017149724A1 (ja) 電力管理システム
JP2022050126A (ja) 分散型エネルギーリソース管理装置、分散型エネルギーリソース管理方法、および、分散型エネルギーリソース管理プログラム
JP2021184682A (ja) 蓄電池管理装置、蓄電池管理方法および蓄電池管理プログラム
JP2021013231A (ja) 情報処理装置、情報処理方法及びプログラム
WO2017163934A1 (ja) 電力制御システム、制御装置、制御方法およびコンピュータプログラム
JP6922570B2 (ja) 処理装置、処理方法及びプログラム
JP7322425B2 (ja) 制御装置、端末装置、充放電制御システムおよび蓄電池群監視制御システム
KR101744576B1 (ko) 중소형 분산 에너지 저장장치를 활용한 소비 전력 운영 시스템
KR102018875B1 (ko) 에너지 저장장치의 전력관리장치 및 전력관리방법
JP6996550B2 (ja) 電力管理装置、電力管理方法、及び、プログラム
JP2020048370A (ja) 電力管理方法および電力管理システム
JP6143420B2 (ja) 料金請求を生成するためのシステムおよび方法
JP7363924B2 (ja) サービス管理装置、パワーコンディショニングシステム、分散電源システム、電力制御システムおよびプログラム
JP7003509B2 (ja) 処理装置、制御装置、pcs、処理方法、制御方法及びプログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018518892

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16903145

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16903145

Country of ref document: EP

Kind code of ref document: A1