WO2017202285A1 - 防火板及使用该防火板的防火门 - Google Patents

防火板及使用该防火板的防火门 Download PDF

Info

Publication number
WO2017202285A1
WO2017202285A1 PCT/CN2017/085445 CN2017085445W WO2017202285A1 WO 2017202285 A1 WO2017202285 A1 WO 2017202285A1 CN 2017085445 W CN2017085445 W CN 2017085445W WO 2017202285 A1 WO2017202285 A1 WO 2017202285A1
Authority
WO
WIPO (PCT)
Prior art keywords
fireproof
resistant layer
flame
porous
flame resistant
Prior art date
Application number
PCT/CN2017/085445
Other languages
English (en)
French (fr)
Inventor
杨孔硕
郭明庆
Original Assignee
贵扬科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 贵扬科技股份有限公司 filed Critical 贵扬科技股份有限公司
Publication of WO2017202285A1 publication Critical patent/WO2017202285A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B5/00Doors, windows, or like closures for special purposes; Border constructions therefor
    • E06B5/10Doors, windows, or like closures for special purposes; Border constructions therefor for protection against air-raid or other war-like action; for other protective purposes
    • E06B5/16Fireproof doors or similar closures; Adaptations of fixed constructions therefor

Definitions

  • the invention relates to a fireproof board, in particular to a fireproof board suitable as a door core and a fireproof door using the same.
  • the fire resistance of buildings is an issue that is highly valued today, and the relevant fire protection regulations are becoming increasingly strict.
  • the requirements for fire door specifications have changed from Integrity to Integrity and Insulation.
  • the European Union's fire safety rating specification BSEN1634-1 has required both flame and heat resistance.
  • the fire rating of fire doors mainly depends on the Fire Resistance Period (FRP), that is, the fire doors can continue to meet the requirements of the regulations on the flame retardancy and heat resistance requirements for the longest time.
  • FRP Fire Resistance Period
  • the main component of a group of fire doors is the door panel, and the fireproof performance of the door panel is mainly from the door core, so the door core design will affect the fireproofing effect of the fire door.
  • the door core accounts for at least 50% to 70% of the overall weight of the fire door panel, or even higher.
  • the current common fire door cores are mainly made of wood or inorganic sheets.
  • the fireproof door core made of wood is generally made of solid wood. However, due to the high density of solid wood, the fireproof door core made of solid wood has the disadvantage of high weight.
  • today's solid wood door cores are marketed under the mainstream regulations (such as BSEN1634-1), which can only achieve 1 hour FRP.
  • the fireproof door core made of inorganic sheet material is usually made of calcium silicate or calcium carbonate board, and its price is cheaper, but the weight is heavier than solid wood.
  • the commercial products of the fireproof door core made of these inorganic plates can only reach 1 hour FRP. If it is desired to reach FRP of 2 hours or more, it is necessary to superimpose 5-6 pieces of silicic acid or calcium carbonate plate, so that The overall weight of the fire door made is more than 100 kg, and it takes 6 people to complete the installation. This not only installs labor costs, but also the heavy fire door is not conducive to fire escape.
  • lighter inorganic foam materials are currently used as door cores, there are no lightweight fire doors available for 2 hour FRP requirements.
  • the inventors of the present invention have found that the main reason for the difficulty of passing the fire-resistant door core of the conventional solid wood or inorganic sheet through the 2-hour FRP is that after the rigid sheet contacts the high heat for a period of time, it is easy to cause thermal stress concentration in the weaker part of the sheet structure, causing deformation or It is a crack on the plate, so that the high-heat flame or hot gas has an opportunity to pass through the gap opened by the deformation or crack to reach the back of the plate (that is, the non-heated surface during the fire test), so that the flame and/or Heat resistance failed.
  • a fireproof panel comprising pre-formed slits and filling the slits with an intumescent flame retardant material, so that the thermal stress generated by the heat of the fireproof panel is filled with flame retardant
  • the gap of the material is absorbed. That is to say, by means of the intentionally formed gap, the structurally weak position is actively formed on the predetermined position on the board, so that the thermal stress can be concentrated to the gap in the shortest time once it is generated. At this time, the gap may be deformed due to thermal stress or the potential for cracking, but the intumescent flame-retardant material filled in the gap may form a soft foam which is several times to several tens of times larger when heated.
  • the carbon layer is expanded, so that even if the slit is deformed or cracked, the expanded carbon layer can continue to fill the gap in accordance with the shape of the slit to maintain the integrity of the sheet and block the penetration of flame or hot gas.
  • these strategically distributed gaps on the sheet combined with the intumescent flame-retardant material filled in it, can actively absorb thermal stress without cracking, thus protecting other locations on the fireproof board from cracking.
  • the integrity of the fireproof board is maintained when it is heated, so as to solve the problem that the conventional fireproof door core is defective due to heat deformation, and the flame or hot air gap can be multiplied.
  • the present invention provides a fireproof panel comprising: a porous flame resistant layer having a first major surface, an opposite second major surface, and at least one slit, and the Forming an opening in at least one of the first main surface and the second main surface; and an intumescent flame-retardant material filled in the at least one slit and forming expanded carbon when heated Floor.
  • the porous flame-resistant layer forms the main body of the fireproof board, and provides fire blocking and heat insulating functions when the fireproof board is heated.
  • the porous flame-resistant layer physically blocks the flame or the hot gas from contacting the second main surface, and absorbs the high heat brought by the flame or the hot gas as much as possible.
  • the time required for the long high heat to pass to the second main surface is to delay the temperature rise of the second main surface.
  • the fireproof board When the fireproof board is heated, according to the material mechanics principle, the heat deformation stress randomly generated by the porous flame-resistant layer will naturally concentrate on the pre-formed gaps, and the intumescent flame-retardant material in the gap will begin to expand due to heat.
  • the expanded carbon layer is not rigid because the expanded carbon layer is soft, and as long as the heat source persists, the intumescent flame retardant material will continue to expand, that is, the expanded carbon layer will continue to grow under heat, so the fireproof board When deformed by thermal stress, regardless of the shape and size of the gap caused by the deformation, the expanded carbon layer can adapt to the change and fill the gap, and maintain the integrity of the porous flame-resistant layer to block the flame or hot gas from passing through.
  • the Fire Resistance Period (FRP) of the fire board is effectively extended to achieve a 2-hour FRP fire prevention performance.
  • the intumescent flame retardant material is not subject to any particular limitation as long as it forms an expanded carbon layer when it is heated to fill the gap of the porous flame resistant layer.
  • the intumescent flame retardant material may be selected from a soft, flexible object such as a paste or paste material. Examples thereof include, but are not limited to, an intumescent fireproof mud, an intumescent flame retardant adhesive, or an intumescent flame retardant paint.
  • the material of the porous flame-resistant layer is preferably an inorganic foaming material, more preferably a closed-cell type inorganic foaming material, and an open-cell type porous inorganic material such as rock wool.
  • the closed-cell type inorganic foaming material can reduce the weight of the fireproof board because it contains a lot of air and has a low density.
  • the inorganic material has a flame-resistant property, and the heat conductivity of the air contained in the inner portion is low, and the high heat can be delayed from the heat-receiving surface of the fireproof board to the non-heat-receiving surface, so that the fireproofing effect of the fireproof board can be improved.
  • the fireproof board of the present invention can be used as a door core board to produce a fireproof door which has both light weight and 2 hours FRP fireproof performance.
  • the present invention is fireproof compared to a conventional fire door having a silicic acid or a calcium carbonate plate as a door core
  • the overall weight of the fire door made of the board can be reduced to about 40 kg, so the installation can be reduced to 2 people, which solves the problem of high labor costs of the conventional fire door installation, and improves the conventional fire door due to excessive weight.
  • the closed-cell type inorganic foaming material includes, but is not limited to, foamed cement, foamed glass, foamed ceramic, or a combination thereof.
  • the closed-cell type inorganic foamed sheet can also be directly selected from the external wall insulation materials commonly available on the market. Since the porosity of the closed-cell type inorganic foaming material is higher, the more air is contained in the fireproof board, the lighter the quality, the better the heat insulation, so the porosity of the closed-cell type inorganic foaming material is preferably not less than 50. %, preferably no less than 90%. In addition, the closed cell rate of the closed-cell inorganic foam material is higher, the inner air is less likely to convect with the outside, and the heat insulation is better, so the closed cell rate of the closed-cell inorganic foam material is preferably not less than 50%, preferably not Less than 90%.
  • the geometry, depth, arrangement, opening shape, opening size, and the like of the at least one slit are not particularly limited as long as it is advantageous for absorbing thermal stress generated by the porous flame-resistant layer, wherein geometric examples include , but not limited to straight lines, arcs, dots, irregular shapes (convenient in some processing conditions) or a combination thereof, and examples of opening shapes include, but are not limited to, circular arc, square, trapezoidal, triangular, irregular Shaped grooves or a combination thereof.
  • one embodiment of the present invention is to form slits that are not staggered and have a depth less than the thickness of the porous flame resistant layer, while another embodiment forms slits that are interdigitated and have a depth equal to the thickness of the porous flame resistant layer.
  • the porous flame resistant layer may actually be regarded as composed of a plurality of porous flame resistant segments, and the porous flame resistant segments are interposed by the At least one slit is spaced apart from each other.
  • the porous flame-resistant layer has a plurality of porous flame-resistant segments in the lateral direction and the longitudinal direction, that is, the porous flame-resistant segments are stacked into an NxM array (N and M are positive integers, N ⁇ 2, M ⁇ 2).
  • the distance between the slit adjacent to the edge and the edge, or the spacing between any two adjacent slits preferably does not exceed
  • the porous flame-resistant layer has a length of 1/2 on either side.
  • the slits may be longitudinal slits parallel to the longitudinal edges of the porous flame resistant layer, and the distance between the longitudinal slits closest to the longitudinal edges and the longitudinal edges, or the spacing between any two adjacent slits, preferably does not exceed Porosity resistance 1/2 of the shortest side length of the fired layer; likewise, the slits may be transverse slits parallel to the lateral edges of the porous flame resistant layer, and the distance between the transverse slits closest to the lateral edges and the lateral edges, or The spacing between two adjacent slits preferably does not exceed 1/2 of the shortest side length of the porous flame resistant layer; or, the partial slit is a longitudinal slit parallel to the longitudinal edge of the porous flame resistant layer, and the other slits are parallel to a transverse slit of the transverse edge of the porous flame resistant layer, wherein the longitudinal slit and the transverse slit are interlaced or non-interlaced (eg, when the slit shape
  • the fireproofing plate may further include: a flame resistant fire barrier layer covering the first main surface or/and the second main surface of the porous flame resistant layer, and avoiding direct contact of the open flame with the open flame
  • the flame-retardant layer reduces the probability of high heat damage to the door core material, which is beneficial to prolong the fire aging.
  • the flame resistant fire barrier layer may be a rigid or non-rigid material, preferably a material having good thermal conductivity, such as glass fiber, ceramic fiber, silica, carbon fiber, metal or a combination thereof, whereby the flame resistant fire barrier layer is not only
  • the porous flame-resistant layer is prevented from directly contacting the open flame, and the porous flame-resistant layer is evenly heated, thereby reducing the probability of thermal stress caused by uneven heating.
  • the flame resistant fire barrier layer may be fixed or attached to the porous flame resistant layer by any means.
  • the porous flame-resistant layer can be soaked by water glass to increase the strength of the porous flame-resistant layer, so as to facilitate the mechanical external force encountered in the subsequent fire door manufacturing or installation, such as the upper nail.
  • FIG. 1 is a perspective view of a fireproof panel according to a first embodiment of the present invention
  • FIG. 2 is an explanatory view showing a slit configuration of a fireproof panel of the present invention
  • FIG. 3 is a schematic exploded view of a fireproof panel according to a second embodiment of the present invention.
  • FIG. 4 is a perspective view of a fireproof panel according to a third embodiment of the present invention.
  • Figure 5 is a perspective view of a fireproof panel according to a fourth embodiment of the present invention.
  • Fig. 6 is a schematic exploded view of a fireproof panel according to a fifth embodiment of the present invention.
  • FIG. 1 is a perspective view of a fireproof panel 100 according to a first embodiment of the present invention.
  • a plurality of slits 11 are formed on the first main surface 101 of the porous flame resistant layer 10 , and the slit 11 is filled with an expansion resistor. Burning material 20.
  • the present embodiment is exemplified by linear slits 11 arranged in parallel intervals, wherein the depths of the slits 11 are smaller than the thickness of the porous flame resistant layer 10, and each slit 11 is in the porous flame resistant layer 10.
  • the first major face 101 forms a square opening. Since the main function of the slit 11 is to absorb the thermal deformation stress generated in the porous flame-resistant layer 10, the geometry, depth, opening shape, and opening size of the slit 11 are not particularly limited as long as it is advantageous for making the porous flame-resistant.
  • the heat deformation stress generated by the layer 10 may be concentrated to the slit 11.
  • the geometry and opening shape of the slit 11 are not limited to the embodiment shown in this embodiment, and the depth and opening size of the slit 11 are not limited. Further, in order to ensure that the thermal deformation stress generated in the porous flame-resistant layer 10 can be quickly concentrated to the slit 11, the slit 11 formed in the present embodiment preferably conforms to the 1/2 principle described below.
  • the pitch D3 of 12 is preferably not more than 1/2 of the length of one side of the porous flame-resistant layer 10 (including the shortest side length). For example, in FIG.
  • the porous flame-resistant layer 10 has a long side length L and a short side length W, wherein the distance D1 between the slit 11 and the lower edge adjacent to the lower edge is smaller than the long side length L and 1/2 of the short side length W (consistent with the 1/2 principle; due to less than the short side
  • the length 1/2 of the length W is less than 1/2 of the length L of the long side, so only the short side length W is considered below to simplify the text description, and the spacing D3 between the slits 11 and 12 is also smaller than the short side.
  • the distance D2 between the slit 12 and the upper edge adjacent to the upper edge is larger than 1/2 of the length W of the short side (not conforming to the 1/2 principle), so The thermal stress between the upper edge and the slit 12 may not be quickly absorbed by the slit 12 and accumulated directly at the stress generation.
  • the thermal deformation stress generated by the heat can be naturally and quickly concentrated to fill the gap of the flame-retardant material 20 and be absorbed.
  • the intumescent flame retardant material 20 can be any suitable intumescent flame retardant material.
  • the intumescent flame retardant material may be selected from a soft, flexible object such as a paste or paste material. Examples thereof include, but are not limited to, an intumescent fireproof mud, an intumescent flame retardant adhesive, or an intumescent flame retardant paint.
  • the expansion capacity of the intumescent flame retardant material is generally between ten and tens of times, and as long as the heat source persists, the intumescent flame retardant material will continue to expand, that is, the softness formed by the heat.
  • the foamy expanded carbon layer will continue to grow and not stop when the heat source persists, thus ensuring that the gap is continuously filled.
  • the first main surface 101 of the porous flame-resistant layer 10 of FIG. 1 is used as the heat receiving surface (ie, the front surface), the flame and the hot air are less likely to pass from the first main surface 101 through the fireproof panel 100 to the second main surface 102 ( That is, the back side, thereby achieving the purpose of improving the fire resistance period (FRP) of the fire board.
  • FRP fire resistance period
  • the porous flame-resistant layer 10 is preferably a closed-cell type inorganic foamed sheet, and examples thereof include, but are not limited to, foamed cement, foamed glass, foamed ceramic, or a combination thereof.
  • the closed-cell type inorganic foamed sheet material can directly select an external wall heat insulating material which is common in the market, and has the advantage of reducing cost. For example, in areas with colder climates in northern China, the exterior walls of buildings must be covered with insulation materials, so there are many types of such products, sufficient supply, and when the building is refurbished or refurbished, it can be recycled and reused as a fire door core. At the same time, solve the waste problem and do both.
  • the closed-cell type inorganic foamed sheet contains a lot of air and has a low density, the weight of the fireproof board can be reduced. Moreover, the inorganic material is resistant to burning, and the contained air has a low thermal conductivity, so that high heat transfer to the non-heated surface can be delayed, and the fireproofing effect of the fireproof panel is improved. Furthermore, the higher the porosity of the closed-cell inorganic foamed sheet, the more air is contained in the fireproof panel, the lighter the quality, the better the heat insulation, so the closed-cell inorganic
  • the porosity of the foamed sheet is preferably not less than 50%, more preferably not less than 90%.
  • the closed cell ratio of the closed-cell inorganic foamed sheet is higher, the inner air is less likely to convect with the outside, and the heat insulation is better, so the closed cell rate of the closed-cell inorganic foamed sheet is preferably not less than 50%, preferably not Less than 90%.
  • FIG. 3 is a schematic exploded view of a fireproof panel 200 according to a second embodiment of the present invention, which is substantially the same as that described in Embodiment 1, except that the fireproof panel 200 of the present embodiment further includes a fire resistant fire barrier layer. 30, and the present embodiment is exemplified by the oblique straight slit 11.
  • the flame resistant fire barrier layer 30 covers the first main surface 101 of the porous flame resistant layer 10 to prevent the porous flame resistant layer 10 from coming into direct contact with an open flame.
  • the material of the porous flame-resistant layer 10 itself can be prevented from being damaged by high heat.
  • the flame resistant fire barrier layer 30 can be, for example, a rigid or non-rigid material of any non-combustible or non-combustible material that can be placed against the side of the porous flame resistant layer 10 facing the source of ignition to achieve the purpose of blocking the open flame.
  • specific examples of the material of the flame-retardant fire barrier layer 30 include, but are not limited to, metal sheets, inorganic sheets, inorganic fiber cloth, paper, or a combination thereof.
  • the flame-resistant fire barrier layer 30 is preferably made of a material having good heat conductivity, so that it can be quickly and uniformly transmitted to the upper portion when heated, thereby making the porous flame-resistant layer 10 evenly heated, and reducing the porosity of the fire-resistant layer 10 A non-uniform temperature field is generated thereon due to uneven heating, thereby causing a probability of occurrence of thermal deformation stress.
  • the flame resistant fire barrier layer 30 is preferably selected from the group consisting of glass fibers, ceramic fibers, silica, carbon fibers, metals, or combinations thereof, but is not limited thereto.
  • the flame resistant fire barrier layer 30 is more preferably glass fiber paper/cloth, ceramic fiber paper/cloth, carbon fiber paper/cloth, silica paper/cloth, or a combination thereof, but not Limited to this.
  • the flame-resistant fire barrier layer 30 may be attached to the porous flame-resistant layer 10 by an adhesive, wherein the adhesive is preferably a heat-resistant or fire-resistant function (for example, an intumescent flame-retardant adhesive).
  • the flame-retardant fire barrier layer 30 may be fixed to the porous flame-resistant layer 10 by any mechanical fixing means such as nails, metal wire stitching, etc., in order to prevent the porous flame-resistant layer 10 from being damaged by mechanical fixing means.
  • the porous flame-resistant layer 10 is preferably subjected to a soaking treatment of water glass to increase the strength of the porous flame-resistant layer 10.
  • FIG. 4 is a perspective view of a fireproof panel 300 according to a third embodiment of the present invention, which is composed of a plurality of porous flame-resistant segments 10 ′ to form a porous flame-resistant layer 10 and a gap between individual porous flame-resistant segments 10 ′. 11, 12 is filled with an intumescent flame retardant material 20.
  • the present embodiment is exemplified by a fireproof panel 300 composed of a 2x2 porous flame-resistant segment 10', wherein the longitudinal side length L of the fireproof panel 300 is equal to the lateral side length W, and is vertically interlaced with each other.
  • the depth of the linear longitudinal slit 11 and the linear transverse slit 12 is equal to the thickness T of the porous flame resistant layer 10, that is, the slits 11, 12 are extended from the first main surface 101 of the porous flame resistant layer 10 to the second main surface 102. And forming an opening on the first main surface 101 and the second main surface 102. Accordingly, the slits 11 and 12 have the maximum absorption range for the thermal deformation stress, so that the structural integrity protection can be improved when the fireproof panel 300 is heated.
  • the distance D1 between the longitudinal slit 11 having a linear shape and the longitudinal edge of the porous flame-resistant layer 10 is about 1/2 of the length L, W of the porous flame-resistant layer 10, and the transverse slit 12 is
  • the distance D2 between the lateral edges of the porous flame-resistant layer 10 is also about 1/2 of the length L and W of the porous flame-resistant layer 10, which are all in accordance with the above-mentioned 1/2 principle, so that the slits 11 and 12 can absorb the porous flame-resistant in real time.
  • porous refractory block 10 ′ of a uniform size in actual implementation, the porous refractory segments 10 ′ of different sizes may be used to stack according to requirements. 2 principle porous fire resistant layer 10.
  • FIG. 5 is a perspective view of a fireproof panel 400 according to a fourth embodiment of the present invention, which is substantially the same as that described in Embodiment 3. The difference is that the fireproof panel 400 of the present embodiment is a 3 ⁇ 3 stacked state. An illustrative description.
  • the present embodiment utilizes nine uniform-sized porous flame-resistant segments 10' to form a fireproof panel 400 having a longitudinal side length L equal to a lateral side length W (an intumescent flame-retardant material is not shown).
  • the porous flame-resistant layer 10 has two linear longitudinal slits 11 and two linear transverse slits 12, wherein the distance D1 between the longitudinal slits 11 and the longitudinal edges of the porous flame-resistant layer 10 and the spacing D3 between the individual slits 11 (corresponding to the lateral side length of the porous flame-resistant segment 10') is smaller than 1/2 of the side lengths L, W of the porous flame-resistant layer 10, and the distance D2 between the lateral slit 12 and the lateral edge of the porous flame-resistant layer 10 and individual
  • the pitch D4 between the slits 12 (corresponding to the longitudinal side length of the porous flame-resistant segment 10') is also smaller than 1/2 of the side lengths L and W of the porous flame-resistant layer 10, in accordance with the above-mentioned 1/2 principle, so the slits 11 and 12
  • the thermal stress generated when the porous flame-resistant layer 10 is heated can be quickly absorbed in real time.
  • the size of each of the porous flame-resistant segments 10' is not necessarily the same, that is, the size of D1 may be different from D3, and/or the size of D2 may be different from D4, as long as D1, D2, D3, and D4 are Meet the above 1/2 principle.
  • FIG. 6 is a schematic exploded view of a fireproof panel 500 according to a fifth embodiment of the present invention, which is substantially the same as that described in Embodiment 3.
  • the fireproof panel 500 of the embodiment 5 is in a 4 ⁇ 3 stack configuration.
  • the fireproof panel 500 of the embodiment 5 is in a 4 ⁇ 3 stack configuration.
  • the fireproof panel 500 of the embodiment 5 is in a 4 ⁇ 3 stack configuration.
  • the fireproof panel 500 of the embodiment 5 is in a 4 ⁇ 3 stack configuration.
  • the fireproof panel 500 of the embodiment 5 is in a 4 ⁇ 3 stack configuration.
  • the first main surface 101 of the porous flame-resistant layer 10 is taken as a heating surface
  • the fire-resistant fire barrier layer 30 covers the first main surface 101 of the porous flame-resistant layer 10.
  • the fire-resistant panel 500 having a longitudinal side length L greater than the lateral side length W is formed by using 12 uniform-sized porous flame-resistant segments 10 ′ (indicated flame-retardant material is not shown).
  • the porous flame-resistant layer 10 has two linear longitudinal slits 11 and three linear transverse slits 12, wherein the distance D1 between the longitudinal slits 11 and the longitudinal edges of the porous flame-resistant layer 10 and the spacing D3 between the individual slits 11 (equivalent
  • the lateral side length of the porous flame-resistant segment 10' is smaller than 1/2 of the side lengths L, W of the porous flame-resistant layer 10, and the distance D2 between the lateral slit 12 and the lateral edge of the porous flame-resistant layer 10 and adjacent gaps
  • the spacing D4 of 12 (corresponding to the longitudinal side length of the porous flame-resistant segment 10') is also smaller than 1/2 of the side lengths L and W of the porous flame-resistant layer 10, which conforms to the above-mentioned 1/2 principle, so that the slits 11 and 12 can be The thermal stress generated when the porous flame-resistant layer 10 is heated is absorbed in real time.
  • the size of each of the porous flame-resistant segments 10' is not necessarily the same, that is, the size of D1 may be different from D3, and/or the size of D2 may be different from D4, as long as D1, D2, Both D3 and D4 can meet the above 1/2 principle.
  • This test example uses the fireproof board simulation shown in Figure 6 as a fire door core for Fire Resistance Period (FRP) test, in which the tested fire door core is made of 12 pieces of 45 cm (L) x 30 cm ( W) x 3 ⁇ 5cm (D) of the porous flame-resistant joints are stacked into a porous flame-resistant layer having a size of about 180cm (L) x 90cm (W), and the flame-resistant fire barrier is attached to the porous flame-resistant layer by the high-temperature resistant glue. On the floor.
  • FRP Fire Resistance Period
  • the material used for the porous flame-resistant segment is a closed-cell foamed cement aggregate (manufacturer, Jiangsu Yancheng Guilong Plastic Products Co., Ltd., model BKK01), which has a porosity of >70% and a closed cell ratio of >90%.
  • the porous fire-resistant joints are made of expanded fire-resistant mud (manufacturer Taiwan Guiyang Technology Co., Ltd., model GFR-FDM2016) as an intumescent flame-retardant material for filling the gap between the segments, and using ceramic tissue paper (resistant The temperature specification is 1000 ° C or higher) as a fire resistant fire barrier.
  • Flame-retardant Whether the non-measured surface (hereinafter referred to as the back surface) of the specimen (specimen) has a flame that continues to burn (indicating that the subject is burned through), whether the subject has a deformation sufficient to hinder escape, and is tested. Whether the body is damaged or not, the smoke can pass through to the back.
  • Heat resistance Through the thermal couple placed on the back of the test object, it is known whether the back temperature rise is maintained below a certain threshold. According to BSEN1634-1, the temperature of the back surface of the test object rises during the test. The amplitude must be lower than 140 ° C, and the maximum increase must be less than 180 ° C, which is acceptable.
  • the fireproof board of the present invention has the qualified performance of 2 hours FRP under BSEN1634-1. Compared with the conventional fire door core due to heat deformation or cracking, it is unable to achieve the disadvantage of 2 hours FRP.
  • the fireproof board of the present invention ensures the use of heat to form a fireproof structure by utilizing the designed structure and material. The gap on the plate is completely filled by the adiabatic expansion layer, so using it as a fire door core can effectively prevent the flame or hot gas from passing through, thereby achieving the purpose of prolonging the FRP of the fire door produced.
  • the fireproof board of the invention not only has the effect of long-term fire blocking, but also has the advantages of being light, thin and short, and the labor cost of the fireproof door made by using the same as the door core is greatly reduced, and the construction body is advantageously reduced.
  • the dead load can indirectly contribute to the earthquake-proof cost of the building body, so the invention has high commercial value.
  • the fireproof board of the present invention is obviously more in line with the market demand than the two-hour FRP fireproof performance.
  • the fireproof board of the present invention since the fireproof board of the present invention has an insulating function, it can also be applied as a heat insulating or heat insulating solution, which is extremely economical.

Landscapes

  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Building Environments (AREA)
  • Special Wing (AREA)

Abstract

一种防火板(100),包括:一多孔性耐燃层(10),其具有一第一主面(101)、一相对的第二主面(102)及至少一缝隙(11),且该至少一缝隙(11)于该第一主面(101)及该第二主面(102)的至少一者上形成一开口;以及一膨胀型阻燃材料(20),其填充于该至少一缝隙(11)中,且于遇热时会形成膨胀碳层。该防火板(100)可作为门芯板,以制成可达2小时防火时效的防火门。

Description

防火板及使用该防火板的防火门 技术领域
本发明涉及一种防火板,具体而言涉及一种适作为门芯的防火板及使用该防火板的防火门。
背景技术
建筑的防火性是现今极为重视的议题,其相关防火规范更是日益趋严。以防火门为例,现今对防火门规格的要求,已从以往只要求遮焰性(Integrity),变为同时要求遮焰性(Integrity)与阻热性(Insulation)。例如,欧盟对于防火门的防火评等规范BSEN1634-1,已同时要求遮焰性及阻热性。目前防火门的防火评等主要取决于防火时效(Fire Resistance Period,FRP),亦即在防火测试时,防火门能持续达到法规对遮焰性及阻热性要求的最长时间。
一组防火门的主要构件是门板,而门板的防火效能主要来自于其门芯,故门芯设计将影响防火门的防火时效。此外,门芯占防火门板整体重量至少50%~70%,甚至更高。目前常见的防火门芯主要是由木头或无机板材制成。木头所制成的防火门芯一般是采用实木,然由于实木密度高,故以实木制作防火门芯会有重量偏高的缺点。尤其,现今实木门芯市售品,在主流法规(如BSEN1634-1)下,只能做到1小时FRP,若要达到2小时FRP,则须大幅增加厚度,如此便造成重量增加及材料成本上升,因此尚无法为市场所接受。此外,无机板材所制成的防火门芯则常用硅酸钙或碳酸钙板作为材料,其价格虽然便宜,但重量却比实木更重。目前以这些无机板材制所的防火门芯市售品,亦只能达1小时FRP,若欲达到2小时或以上FRP,则需叠加5~6块的硅酸或碳酸钙板,使得 制成的防火门整体重量高达100公斤以上,需6个人方能完成安装,如此不但安装人工费用高昂,且过重的防火门亦不利于火场逃生。虽然目前亦有采用重量较轻的无机发泡材料作为门芯,但尚无可达到2小时FRP要求的轻量防火门市售品。
有鉴于此,发展一种可兼顾质轻需求及2小时FRP防火效能的新式防火板以作为防火门芯,在此产业中极具需求及发展潜力。
发明内容
本发明的发明人发现,传统实木或无机板材所制防火门芯难以通过2小时FRP的主因,在于刚性板材接触高热一段时间后,易在板材结构较脆弱处产生热应力集中现象,造成形变或是裂缝于板材上,而令高热的火焰或热气有可乘之机,穿过该形变或裂缝所开启的缝隙到达板材背面(也就是防火测试时的非受热面),使遮焰与/或阻热性失败。据此,本发明的一目的是提供一种防火板,其上包含有预先形成的缝隙,并于缝隙中填充膨胀型阻燃材料,俾使防火板受热所产生的热应力被填有阻燃材料的缝隙所吸收。也就是说,借由刻意形成的缝隙,主动在板材上预设的位置形成结构脆弱处,以令热应力一旦产生时能在最短时间集中至该缝隙上。此时缝隙可能会因热应力而产生形变或是裂开的潜势,但是缝隙中所填充的膨胀型阻燃材料在遇热时会形成体积大出数倍至数十倍的软质泡沫状膨胀碳层,故即使缝隙发生形变或裂开,膨胀碳层仍可确实依缝隙形状持续将填满缝隙而保持板材完整性,阻挡火焰或热气穿透。换句话说,这些策略性分布于板材上的缝隙,搭配填充于其内的膨胀型阻燃材料,能主动吸收热应力而不产生裂缝,因而保护防火板上其他位置亦不产生裂缝,据此防火板受热时的完整性得以维持,以解决习知防火门芯因受热变形导致缺陷产生,而让火焰或热气有隙可乘的问题。
依据上述及其他目的,本发明提供一种防火板,其包括:一多孔性耐燃层,其具有一第一主面、一相对的第二主面及至少一缝隙,且该至 少一缝隙于该第一主面及该第二主面的至少一者上形成一开口;以及一膨胀型阻燃材料,其填充于该至少一缝隙中,且于遇热时会形成膨胀碳层。其中,多孔性耐燃层形成防火板主体,并于防火板受热时,提供挡火及绝热功能。例如,当明火火焰或带有高温的热气接触第一主面时,多孔性耐燃层实体阻挡(physically block)火焰或热气接触第二主面,并尽可能吸收火焰或热气带来的高热,拉长高热传递至第二主面所需时间,以延缓第二主面温度上升。
当防火板受热时,根据材料力学原理,多孔性耐燃层自身随机产生的热变形应力会自然集中至该些预先成形的缝隙上,而缝隙中的膨胀型阻燃材料亦因受热而开始膨胀形成膨胀碳层,由于膨胀碳层为软质并非刚性体,且只要热源持续存在,该膨胀型阻燃材料就会持续膨胀,亦即膨胀碳层在受热状态下会持续长大,故当防火板因热应力作用而形变时,不论该些形变导致缝隙的形状大小如何变化,膨胀碳层都可适应该变化并确实填满缝隙,持续保持多孔性耐燃层的完整性以阻挡火焰或热气穿过,因而有效延长防火板的防火时效(Fire Resistance Period,FRP),达到2小时FRP防火效能。在此,该膨胀型阻燃材料并无任何特殊限制,只要其遇热时可形成膨胀碳层,以填满多孔性耐燃层的缝隙即可。于一实施样态中,该膨胀型阻燃材料可选择自可塑形的软质物体,例如膏状或是糊状材料。其举例包括,但不限于,膨胀型防火泥、膨胀型阻燃胶黏剂,或膨胀型阻燃漆。
于本发明中,该多孔性耐燃层的材料较佳是选用无机发泡材料,更佳为闭孔型无机发泡材料,而非开孔型多孔无机材料如岩棉等。闭孔型无机发泡材料因内含许多空气,密度较低,故可降低防火板重量。此外,无机材料具有耐烧特性,兼且内里所含空气热传导率低,可延缓高热自防火板的受热面传递至非受热面,故可提高防火板的防火时效。借此,本发明的防火板可作为门芯板,以制成兼具质轻及2小时FRP防火效能的防火门。相较于硅酸或碳酸钙板作为门芯的习知防火门,本发明防火 板所制成的防火门整体重量可减轻至40公斤左右,故可将安装人工降低至2人,进而解决习知防火门安装人工费用高昂的问题,并改善习知防火门因重量过重而不利于火场逃生的缺点。在此,闭孔型无机发泡材料举例包括,但不限于,发泡水泥、发泡玻璃、发泡陶瓷、或其组合。此外,闭孔型无机发泡板材亦可直接选用市面上常见的外墙保温材料。由于闭孔型无机发泡材料的孔隙率愈高,则所制成防火板中含空气愈多,质量愈轻,绝热愈好,故闭孔型无机发泡材料的孔隙率较佳不小于50%,更佳不小于90%。此外,闭孔型无机发泡材料的闭孔率愈高,内里空气愈不易与外界对流,绝热愈好,故闭孔型无机发泡材料的闭孔率较佳不小于50%,更佳不小于90%。
于本发明中,该至少一缝隙的几何形状、深度、排列方式、开口形状、开口尺寸等并无特殊限制,只要有利于吸收多孔性耐燃层所产生的热应力即可,其中几何形状举例包括,但不限于直线、弧线、点状、不规则状(于某些加工条件中较为方便)或其组合,而开口形状举例包括,但不限于圆弧形、方形、梯形、三角形、不规则状沟槽或其组合。例如,本发明的一实施态样是形成互不交错且深度小于多孔性耐燃层厚度的缝隙,而另一实施态样则形成相互交错且深度等于多孔性耐燃层厚度的缝隙。更具体地说,于缝隙深度等于多孔性耐燃层厚度的实施态样中,该多孔性耐燃层实际可看作由多个多孔耐燃节块所组成,且该些多孔耐燃节块间借由该至少一缝隙相互间隔。较佳为,该多孔性耐燃层于横向及纵向方向上皆分别具有多个多孔耐燃节块,亦即该些多孔耐燃节块堆栈成NⅹM阵列(N及M为正整数,N≧2,M≧2)。
于本发明中,当缝隙平行于该多孔性耐燃层任一边缘时,邻近于该边缘的该缝隙与该边缘间的距离、或任两相邻的该些缝隙间的间距,较佳不超过该多孔性耐燃层任一边长的1/2。例如,该些缝隙可为平行于多孔性耐燃层纵向边缘的纵向缝隙,而最靠近纵向边缘的纵向缝隙与该纵向边缘间的距离、或任两相邻缝隙间的间距,较佳不超过该多孔性耐 燃层的最短边长的1/2;同样地,该些缝隙亦可为平行于多孔性耐燃层横向边缘的横向缝隙,而最靠近横向边缘的横向缝隙与该横向边缘间的距离、或任两相邻缝隙间的间距,较佳不超过该多孔性耐燃层的最短边长的1/2;或者,可部分缝隙为平行于多孔性耐燃层纵向边缘的纵向缝隙,而其他缝隙为平行于多孔性耐燃层横向边缘的横向缝隙,其中纵向缝隙与横向缝隙可相互交错或不相互交错(例如当缝隙形状为点状时),且最靠近纵向边缘的纵向缝隙与该纵向边缘间的距离、最靠近横向边缘的横向缝隙与该横向边缘间的距离、或任两相邻缝隙间的间距,较佳不超过该多孔性耐燃层的最短边长的1/2。借此,可确保多孔性耐燃层上产生的热应力能快速地被被任一缝隙吸收,避免应力直接于应力产生处累积,造成应力产生处出现裂缝。
于本发明中,该防火板更可包括:一耐燃挡火层,其覆盖于该多孔性耐燃层的该第一主面或/及该第二主面上,俾可避免明火直接接触多孔性耐燃层,降低高热破坏门芯材料的机率,有利于延长防火时效。该耐燃挡火层可为刚性或非刚性材料,较佳是选用热传导性能佳的材料,如玻璃纤维、陶瓷纤维、二氧化硅、碳纤维、金属或其组合,借此该耐燃挡火层不仅可避免多孔性耐燃层与明火直接接触,其更可使多孔性耐燃层受热均匀,降低其因受热不均而产生热应力的机率。在此,该耐燃挡火层可借由任何方式固定或贴附于该多孔性耐燃层上。若需要的话,该多孔性耐燃层更可经过水玻璃的浸泡处理,以提高多孔性耐燃层的强度,以利于后续防火门制作或安装时会遇到的机械性外力,例如上钉等。
本发明的上述及其他特征与优点可借由下述较佳实施例的详细叙述更加清楚明了。
附图说明
参考附图,本发明可借由下述较佳实施例的详细叙述更加清楚明了, 其中:
图1为本发明第一具体实施例的防火板立体示意图;
图2为本发明防火板的缝隙配置说明图;
图3为本发明第二具体实施例的防火板分解示意图;
图4为本发明第三具体实施例的防火板立体示意图;
图5为本发明第四具体实施例的防火板立体示意图;
图6为本发明第五具体实施例的防火板分解示意图。
【附图标记说明】
防火板 100、200、300、400、500
多孔性耐燃层 10
多孔耐燃节块 10’
第一主面 101
第二主面 102
缝隙 11、12
膨胀型阻燃材料 20
耐燃挡火层 30
距离 D1、D2
间距 D3、D4
边长 L、W
厚度 T
具体实施方式
在下文中,将提供实施例以详细说明本发明的实施态样。本发明的优点以及功效将借由本发明所公开的内容而更为显著。在此说明所附的图式是简化过且做为例示用。图式中所示的元件数量、形状及尺寸可依据实际情况而进行修改,且元件的配置可能更为复杂。本发明中也可进行其他方面的实践或应用,且不偏离本发明所定义的精神及范畴的条件下,可进行各种变化以及调整。
[实施例1]
请参考图1,其为本发明第一具体实施例的防火板100立体示意图,其于多孔性耐燃层10的第一主面101上形成多条缝隙11,并于缝隙11中填充膨胀型阻燃材料20。
在此,本具体实施例是以平行间隔排列的直线形缝隙11作示例性说明,其中该些缝隙11的深度小于多孔性耐燃层10的厚度,且每一缝隙11于多孔性耐燃层10的第一主面101形成方形开口。由于缝隙11的主要作用是用于吸收多孔性耐燃层10中所产生的热变形应力,故缝隙11的几何形状、深度、开口形状及开口尺寸等并无特殊限制,只要有利于使多孔性耐燃层10所产生的热变形应力集中至缝隙11即可。据此,缝隙11的几何形状及开口形状并不限于本具体实施例所示的实施态样,而缝隙11的深度及开口尺寸亦不做任何限制。此外,为确保多孔性耐燃层10中所产生的热变形应力能快速地集中至缝隙11,本具体实施例所形成的缝隙11较佳是符合下述的1/2原则。
请并参图2,当缝隙11、12的几何形状为平行多孔性耐燃层10横向边缘的直线时,缝隙11、12与横向边缘间的距离D1、D2,或是任两相邻缝隙11、12间的间距D3,较佳是以不超过多孔性耐燃层10任一边长(含最短边长)的1/2为原则。例如,于图2中,该多孔性耐燃层10的长边边长为L,短边边长为W,其中邻近下边缘的缝隙11与下边缘间的距离D1是小于长边边长L以及短边边长W的1/2(符合1/2原则;由于小于短边边 长W的1/2者必定小于长边边长L的1/2,故以下仅考虑短边边长W,以简化文字叙述),同时缝隙11、12间的间距D3同样也小于短边边长W的1/2(符合1/2原则),然而邻近上边缘的缝隙12与上边缘间的距离D2却大于短边边长W的1/2(不符合1/2原则),故产生于上边缘与缝隙12的间的热应力可能无法快速地被缝隙12吸收而直接于应力产生处累积。据此,为使热应力能快速实时被任一缝隙吸收,较佳是于上边缘与缝隙12间再额外形成缝隙,使每一缝隙的间隔配置皆符合1/2原则,使多孔性耐燃层10受热所产生的热变形应力能自然快速集中至填满阻燃材料20的缝隙中并被吸收掉。
该膨胀型阻燃材料20可为任何适用的膨胀型阻燃材料。于一实施样态中,该膨胀型阻燃材料可选择自可塑形的软质物体,例如膏状或是糊状材料。其举例包括,但不限于,膨胀型防火泥、膨胀型阻燃胶黏剂,或膨胀型阻燃漆。膨胀型阻燃材料的膨胀系数(expansion capacity)一般在十数至数十倍的间,且只要热源持续存在,膨胀型阻燃材料就会持续膨胀,也就是说,其受热所形成的软质泡沫状膨胀碳层,在热源持续存在时会持续长大而不会停止,故可确保缝隙被持续填满。借此,当以图1多孔性耐燃层10的第一主面101作为受热面(即正面)时,火焰及热气便不易由第一主面101穿过防火板100到达第二主面102(即背面),进而达到提高防火板防火时效(Fire Resistance Period,FRP)的目的。
该多孔性耐燃层10较佳是选用闭孔型无机发泡板材,其举例包括,但不限于,发泡水泥、发泡玻璃、发泡陶瓷、或其组合。于某些实施例中,闭孔型无机发泡板材可直接选用市面上常见的外墙保温材料,具有降低成本的优点。例如,在中国北方气候较为寒冷地区,建筑外墙规定须包覆以保温材料,故此类产品种类多,供货充足,兼且当建筑翻新或整修时,可回收再制利用作为防火门芯,同时解决废弃物问题,一举两得。由于闭孔型无机发泡板材内包含许多空气,密度较低,故可降低防火板重量。并且,无机材料耐烧,且内含的空气热传导率低,故可延缓高热传递至非受热面,而提高防火板的防火时效。更进一步说,闭孔型无机发泡板材的孔隙率愈高,则所制成防火板中含空气愈多,质量愈轻,绝热愈好,故闭孔型无机 发泡板材的孔隙率较佳不小于50%,更佳不小于90%。此外,闭孔型无机发泡板材的闭孔率愈高,内里空气愈不易与外界对流,绝热愈好,故闭孔型无机发泡板材的闭孔率较佳不小于50%,更佳不小于90%。
[实施例2]
为了简要说明的目的,上述实施例1中任何可作相同应用的叙述皆并于此,且无须再重复相同叙述。
请参考图3,为本发明第二具体实施例的防火板200分解示意图,其与实施例1所述大致相同,其不同处在于,本具体实施例的防火板200还包括一耐燃挡火层30,且本具体实施例是以斜向直线形缝隙11作示例性说明。以多孔性耐燃层10的第一主面101作为受热面为例,该耐燃挡火层30覆盖于多孔性耐燃层10的第一主面101上,以避免多孔性耐燃层10与明火直接接触,借此可使多孔性耐燃层10的材料本身不因高热而遭破坏。
耐燃挡火层30可例如为任何不燃或难燃材质的刚性或非刚性材料,其可紧贴于多孔性耐燃层10面向火源的那一面,以达到挡住明火的目的。在此,耐燃挡火层30的材料具体举例包括,但不限于,金属板材、无机板材、无机纤维布、纸或其组合。此外,耐燃挡火层30较佳是选用热传导性能佳的材料,使其受热时能快速均匀传导至其上各处,进而令多孔性耐燃层10也能受热均匀,降低多孔性耐燃层10因受热不均而于其上产生非均匀温度场,因而引发热变形应力产生的机率。据此,耐燃挡火层30较佳是选自下列材料:玻璃纤维、陶瓷纤维、二氧化硅、碳纤维、金属或其组合,但不限于此。为使防火板200达轻薄短小的目的,该耐燃挡火层30更佳为玻璃纤维纸/布、陶瓷纤维纸/布、碳纤维纸/布、二氧化硅纸/布、或其组合,但不限于此。在此,耐燃挡火层30可借由胶黏剂,贴附于多孔性耐燃层10上,其中胶黏剂较佳是选用具耐热或防火功能者(例如膨胀型阻燃胶黏剂)。或者,耐燃挡火层30亦可借由任何机械性固定装置如钉子、金属线缝合等,固定于多孔性耐燃层10上,其中,为避免多孔性耐燃层10因机械性固定手段而受毁损,该多孔性耐燃层10较佳是经过水玻璃的浸泡处理,以提高多孔性耐燃层10的强度。
[实施例3]
为了简要说明的目的,上述实施例中任何可作相同应用的叙述皆并于此,且无须再重复相同叙述。
请参考图4,为本发明第三具体实施例的防火板300立体示意图,其是利用多个多孔耐燃节块10’组成多孔性耐燃层10,并于个别多孔耐燃节块10’间的缝隙11、12中填充膨胀型阻燃材料20。
如图4所示,本具体实施例是以2ⅹ2多孔耐燃节块10’组成的防火板300作示例性说明,其中该防火板300的纵向边长L等于横向边长W,且相互垂直交错的直线形纵向缝隙11及直线形横向缝隙12的深度等于多孔性耐燃层10的厚度T,即该些缝隙11、12是由多孔性耐燃层10的第一主面101延伸至第二主面102,并于第一主面101及第二主面102上皆形成开口。据此,缝隙11、12对热变形应力有最大吸收范围,故可于防火板300受热时提高结构完整的保护。
于本具体实施例中,几何形状为直线形的纵向缝隙11与多孔性耐燃层10纵向边缘间的距离D1大约为多孔性耐燃层10边长L、W的1/2,而横向缝隙12与多孔性耐燃层10横向边缘间的距离D2同样大约为多孔性耐燃层10边长L、W的1/2,其皆符合上述1/2原则,故缝隙11、12可快速实时吸收多孔性耐燃层10受热时所产生的热应力。在此,本具体实施例虽以均一尺寸的多孔耐燃节块10’做示例性说明,但于实际实施时,亦可根据需求而采用不同尺寸的多孔耐燃节块10’来堆栈成符合1/2原则的多孔性耐燃层10。
[实施例4]
为了简要说明的目的,上述实施例中任何可作相同应用的叙述皆并于此,且无须再重复相同叙述。
请参考图5,为本发明第四具体实施例的防火板400立体示意图,其与实施例3所述大致相同,其不同处在于,本具体实施例的防火板400是以3ⅹ3堆栈态样作示例性说明。
如图5所示,本具体实施例是利用9块均一尺寸的多孔耐燃节块10’组成纵向边长L等于横向边长W的防火板400(图中未示膨胀型阻燃材料), 据此,该多孔性耐燃层10具有两条直线形纵向缝隙11及两条直线形横向缝隙12,其中纵向缝隙11与多孔性耐燃层10纵向边缘间的距离D1以及个别缝隙11间的间距D3(相当于多孔耐燃节块10’的横向边长)皆小于多孔性耐燃层10的边长L、W的1/2,而横向缝隙12与多孔性耐燃层10横向边缘间的距离D2以及个别缝隙12间的间距D4(相当于多孔耐燃节块10’的纵向边长)亦小于多孔性耐燃层10的边长L、W的1/2,符合上述1/2原则,故缝隙11、12可快速实时吸收多孔性耐燃层10受热时所产生的热应力。于一实施范例中,各多孔耐燃节块10’的尺寸不一定相同,亦即D1的大小可不同于D3,以及/或是D2的大小可不同于D4,只要D1、D2、D3以及D4皆符合上述1/2原则即可。
[实施例5]
为了简要说明的目的,上述实施例中任何可作相同应用的叙述皆并于此,且无须再重复相同叙述。
请参考图6,为本发明第五具体实施例的防火板500分解示意图,其与实施例3所述大致相同,其不同处在于,本具体实施例5的防火板500是以4ⅹ3堆栈态样作示例性说明,且还包括一耐燃挡火层30。在此,本具体实施例是以多孔性耐燃层10的第一主面101作为受热面为例,该耐燃挡火层30覆盖于多孔性耐燃层10的第一主面101上。
如图6所示,本具体实施例是利用12块均一尺寸的多孔耐燃节块10’组成纵向边长L大于横向边长W的防火板500(图中未示膨胀型阻燃材料),据此,该多孔性耐燃层10具有两条直线形纵向缝隙11及三条直线形横向缝隙12,其中纵向缝隙11与多孔性耐燃层10纵向边缘间的距离D1以及个别缝隙11间的间距D3(相当于多孔耐燃节块10’的横向边长)皆小于多孔性耐燃层10的边长L、W的1/2,而横向缝隙12与多孔性耐燃层10横向边缘间的距离D2以及相邻缝隙12间的间距D4(相当于多孔耐燃节块10’的纵向边长)亦小于多孔性耐燃层10的边长L、W的1/2,符合上述1/2原则,故缝隙11、12可快速实时吸收多孔性耐燃层10受热时所产生的热应力。于一实施范例中,各多孔耐燃节块10’的尺寸不一定相同,亦即D1的大小可不同于D3,以及/或是D2的大小可不同于D4,只要D1、D2、 D3以及D4皆符合上述1/2原则即可。
[测试例]
本测试例是以图6所示的防火板模拟作为防火门芯,进行防火时效(Fire Resistance Period,FRP)测试,其中该受测防火门芯是使用12块尺寸为45cm(L)x 30cm(W)x 3~5cm(D)的多孔耐燃节块堆栈成尺寸约180cm(L)x 90cm(W)的多孔性耐燃层,并借由耐高温胶水将耐燃挡火层贴附于多孔性耐燃层上。在此,多孔耐燃节块所采用的材料为闭孔发泡水泥骨材(制造商中国江苏盐城市贵龙塑胶制品有限公司,型号BKK01),其孔隙率>70%,闭孔率>90%,且该些多孔耐燃节块是利用膨胀型防火泥(制造商台湾贵扬科技股份有限公司,型号GFR-FDM2016)作为填充节块间缝隙的膨胀型阻燃材料,并选用陶瓷棉纸(耐温规格为1000℃以上)作为耐燃挡火层。
本测试所采用的测试设备及参数是按照BSEN 1634-1,以借由「遮焰性(Integrity)」及「阻热性(Insulation)」进行评估。当防火门在接受BSEN1634-1测试期间,持续超过1小时达到BSEN1634-1对「遮焰性及「阻热性」的要求,则称此门具备BSEN1634-1下1小时FRP的合格性能;若该门持续超过2小时达到「遮焰性」及「阻热性」要求,则称其具备BSEN1634-1下2小时FRP的合格性能。
「遮焰性」及「阻热性」的判定方法如下所述:
遮焰性:受测体(specimen)的非受测面(以下称背面)是否出现持续燃烧的火焰(表示受测体被烧穿)、受测体是否出现足以阻碍逃生的形变,以及受测体是否因受损导致浓烟得以穿过到达背面。
阻热性:透过设置于受测体背面的感温器(thermal couple),得知背面温度上升是否维持在某一门槛值以下,根据BSEN1634-1,受测期间受测体背面温度平均上升幅度须低于140℃,以及最大上升幅度须低于180℃,方算合格。
本测试例的测试结果如下表1所示:
[表1]
Figure PCTCN2017085445-appb-000001
Figure PCTCN2017085445-appb-000002
由上表1可知,本发明的防火板已具备BSEN1634-1下2小时FRP的合格性能。相较于习知防火门芯因受热形变或产生裂缝导致无法达到2小时FRP的缺点,本发明的防火板借由设计过的结构与材料运用,在受热时可确保任何因受热所形成于防火板上的空隙完全被绝热膨胀层所填满,故用其作为防火门芯可有效阻止火焰或热气穿过,进而达到延长所制得防火门的FRP的目的。此外,本发明的防火板不仅具备长时间挡火功效,更兼具轻薄短小优点,用其作为门芯所制得的防火门在安装上所需人工费用大幅降低,兼且有利降低建筑体呆载重(dead load),间接有助建筑体防震成本,故本发明具高度商业价值。相较现行防火门芯市售品无法兼顾质轻需求与2小时FRP防火效能,本发明的防火板显然更符合市场需求。尤其,由于本发明的防火板具绝热功能,故亦可应用作为隔热或保温方案,具极大经济效益。

Claims (16)

  1. 一种防火板,包括:
    一多孔性耐燃层,其具有一第一主面、一相对的第二主面及至少一缝隙,且该至少一缝隙于该第一主面及该第二主面的至少一者上形成一开口;以及
    一膨胀型阻燃材料,其填充于该至少一缝隙中,且于遇热时会形成膨胀碳层。
  2. 根据权利要求1所述的防火板,其中,该至少一缝隙的深度小于该多孔性耐燃层的厚度。
  3. 根据权利要求1所述的防火板,其中,该至少一缝隙的深度等于该多孔性耐燃层的厚度。
  4. 根据权利要求3所述的防火板,其中,该多孔性耐燃层由多个多孔耐燃节块所组成,且该些多孔耐燃节块间借由该至少一缝隙相互间隔。
  5. 根据权利要求4所述的防火板,其中,该些多孔耐燃节块堆栈成NⅹM阵列,N及M为正整数,N≧2,且M≧2。
  6. 根据权利要求1所述的防火板,还包括:一耐燃挡火层,其覆盖于该多孔性耐燃层的该第一主面或该第二主面上。
  7. 根据权利要求6所述的防火板,其中,该耐燃挡火层的材料为玻璃纤维、陶瓷纤维、二氧化硅、碳纤维、金属或其组合。
  8. 根据权利要求1所述的防火板,其中,该多孔性耐燃层经过水玻璃的浸泡处理。
  9. 根据权利要求1所述的防火板,其中,该膨胀型阻燃材料为膨胀型防火泥、膨胀型阻燃胶黏剂或膨胀型阻燃漆。
  10. 根据权利要求1项至第9项中任一所述的防火板,其中,该至少一缝隙平行于该多孔性耐燃层的任一边缘,且邻近于该边缘的该缝隙与该边缘间的距离,或任两相邻的该些缝隙间的间距,不超过该多孔性耐燃层的任一边长的1/2。
  11. 根据权利要求1项至第9项中任一所述的防火板,其中,该多孔性 耐燃层的材料为闭孔型无机发泡材料。
  12. 根据权利要求11所述的防火板,其中,该闭孔型无机发泡材料为发泡水泥、发泡玻璃、发泡陶瓷、或其组合。
  13. 根据权利要求11所述的防火板,其中,该闭孔型无机发泡材料为外墙保温材料。
  14. 根据权利要求11所述的防火板,其中,该多孔性耐燃层的孔隙率为50%以上。
  15. 根据权利要求14所述的防火板,其中,该多孔性耐燃层的闭孔率为50%以上。
  16. 一种防火门,其使用根据权利要求1项至第15项中任一所述的防火板作为门芯板。
PCT/CN2017/085445 2016-05-27 2017-05-23 防火板及使用该防火板的防火门 WO2017202285A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662342569P 2016-05-27 2016-05-27
US62/342,569 2016-05-27

Publications (1)

Publication Number Publication Date
WO2017202285A1 true WO2017202285A1 (zh) 2017-11-30

Family

ID=60412124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085445 WO2017202285A1 (zh) 2016-05-27 2017-05-23 防火板及使用该防火板的防火门

Country Status (2)

Country Link
TW (1) TWI628349B (zh)
WO (1) WO2017202285A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111088935A (zh) * 2019-11-15 2020-05-01 重庆双羽家俱有限公司 一种防火门扇结构
CN114420314A (zh) * 2021-12-20 2022-04-29 核工业西南物理研究院 用于聚变堆高剂量中子辐照和兆瓦级热负荷的第一壁结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2077336B (en) * 1980-05-22 1984-06-06 Schroeders Theo A sealing strip and a method of using the same
US4896471A (en) * 1989-01-23 1990-01-30 Truline Manufacturing Inc. Fire roof panel door
JP2004332401A (ja) * 2003-05-08 2004-11-25 Sekisui Chem Co Ltd 防・耐火パネル及び木製防火戸
CN104141446A (zh) * 2014-08-11 2014-11-12 浙江红利富实木业有限公司 一种有防火结构的木门
CN104747032A (zh) * 2013-12-31 2015-07-01 安泰恒通门业(天津)有限公司 带有预埋膨胀密封条的卧式门框防火门
CN204691599U (zh) * 2015-05-28 2015-10-07 重庆消防安全技术研究服务有限责任公司 带有变形量吸收缝的金属防火门
CN105332621A (zh) * 2014-08-06 2016-02-17 哈尔滨盛世华林科技有限公司 可拆装防裂痕抗变形实木门

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG132528A1 (en) * 2005-11-10 2007-06-28 Lee Hoong Thye Eldon Ceramic doors and boards and applications thereof
JP4669573B1 (ja) * 2010-07-07 2011-04-13 電気化学工業株式会社 防火用熱膨張性目地材
CN201695894U (zh) * 2010-08-16 2011-01-05 雷震 泡沫防火门芯板材
CN202882702U (zh) * 2012-10-31 2013-04-17 河南永立建材有限公司 防火泡沫混凝土门芯板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2077336B (en) * 1980-05-22 1984-06-06 Schroeders Theo A sealing strip and a method of using the same
US4896471A (en) * 1989-01-23 1990-01-30 Truline Manufacturing Inc. Fire roof panel door
JP2004332401A (ja) * 2003-05-08 2004-11-25 Sekisui Chem Co Ltd 防・耐火パネル及び木製防火戸
CN104747032A (zh) * 2013-12-31 2015-07-01 安泰恒通门业(天津)有限公司 带有预埋膨胀密封条的卧式门框防火门
CN105332621A (zh) * 2014-08-06 2016-02-17 哈尔滨盛世华林科技有限公司 可拆装防裂痕抗变形实木门
CN104141446A (zh) * 2014-08-11 2014-11-12 浙江红利富实木业有限公司 一种有防火结构的木门
CN204691599U (zh) * 2015-05-28 2015-10-07 重庆消防安全技术研究服务有限责任公司 带有变形量吸收缝的金属防火门

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111088935A (zh) * 2019-11-15 2020-05-01 重庆双羽家俱有限公司 一种防火门扇结构
CN114420314A (zh) * 2021-12-20 2022-04-29 核工业西南物理研究院 用于聚变堆高剂量中子辐照和兆瓦级热负荷的第一壁结构

Also Published As

Publication number Publication date
TWI628349B (zh) 2018-07-01
TW201741540A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
CN103972833B (zh) 耐火母线槽
JP6414670B2 (ja) 耐火集成材
CN202047589U (zh) 隔离式防火现浇砼复合保温模板
JP6391001B2 (ja) 耐火集成材
WO2017202285A1 (zh) 防火板及使用该防火板的防火门
JP2017179889A (ja) 木質構造部材
JP5698891B2 (ja) 不燃内断熱パネル
CN201678022U (zh) 一种船舶耐火舱壁
Nishio et al. Experimental study on fire propagation over combustible exterior facades in Japan
JP6021607B2 (ja) 軒裏天井材
CN201962825U (zh) 一种耐火保温复合墙体
CN202187445U (zh) 燃烧性能为不燃级的幕墙保温墙体
CN210529992U (zh) 一种防火装饰板
Messerschmidt et al. Fire Testing of ETICS a comparative study
CN102561540A (zh) 墙面保温系统预防火灾的一种方法和构造
CN111456483A (zh) 一种防火封堵增强结构
CN202559548U (zh) 防火复合保温板
CN206512869U (zh) 一种迂回隔离式防火保温板和结构一体化复合墙体
JP2021008712A (ja) 断熱パネルで構成された壁の耐火被覆構造、および断熱パネル耐火用被覆体
CN214169652U (zh) 一种防火的夹芯板
JP2006001095A (ja) 空調ダクト形成用乃至建材用不燃性段ボール
CN203403554U (zh) 结构保温一体化复合保温板
JP2014129669A (ja) 耐火性能の評価方法、及び耐火性能の試験方法
CN216276247U (zh) 一种新型防火隔热保温岩棉板
CN220285060U (zh) 一种工程建设防火阻燃建材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17802131

Country of ref document: EP

Kind code of ref document: A1