WO2017200324A1 - 기판 결함 검사 장치 및 이를 이용한 검사 방법 - Google Patents

기판 결함 검사 장치 및 이를 이용한 검사 방법 Download PDF

Info

Publication number
WO2017200324A1
WO2017200324A1 PCT/KR2017/005186 KR2017005186W WO2017200324A1 WO 2017200324 A1 WO2017200324 A1 WO 2017200324A1 KR 2017005186 W KR2017005186 W KR 2017005186W WO 2017200324 A1 WO2017200324 A1 WO 2017200324A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving block
defect
substrate
axis direction
gantry
Prior art date
Application number
PCT/KR2017/005186
Other languages
English (en)
French (fr)
Inventor
노승국
이성철
김현수
김병섭
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to CN201780004216.7A priority Critical patent/CN108291879B/zh
Publication of WO2017200324A1 publication Critical patent/WO2017200324A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N2021/0106General arrangement of respective parts
    • G01N2021/0112Apparatus in one mechanical, optical or electronic block
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N2021/0187Mechanical sequence of operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8835Adjustable illumination, e.g. software adjustable screen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N2021/9513Liquid crystal panels

Definitions

  • the present invention relates to a substrate defect inspection apparatus and an inspection method using the same. More specifically, in the inspection apparatus and inspection method for measuring the defects generated in the glass (glass), the time required for the measurement of the defects of the substrate is shortened to improve process tact time and production yield The present invention relates to a substrate defect inspection apparatus and an inspection method using the same.
  • an optical display includes a substrate, a liquid crystal layer, an opposing substrate, and the like, and an LCD display of the optical display is made through various manufacturing processes.
  • Representative manufacturing processes include the exposure and etching process, the photo filter, the color filter process, the cell process, and the module process. Is a process which is repeatedly performed to stack circuits and requires precision.
  • the optical inspection equipment (AOI, Automatic Optical Inspection) is used to check whether the electrical circuit pattern is well formed on the substrate, and the inspection results in open or short circuit of the circuit pattern. If found, a repair or repair is performed to repair the disconnection or short circuit.
  • AOI Automatic Optical Inspection
  • FIG. 1 is a schematic diagram of a substrate defect inspection apparatus 10 as an optical inspection apparatus AOI according to the prior art, and a substrate defect inspection apparatus 10 according to the prior art will be described with reference to FIG. 1.
  • the substrate defect inspection apparatus 10 is composed of a stage 30, a gantry 20, a gantry 20, a moving block 21, and a probe 23.
  • the substrate 33 for inspection is mounted on the stage 30, and the gantry 20 is coupled to the stage 30 so as to be movable in the X-axis direction and moves in the X-axis direction as the inspection process proceeds.
  • the moving block 21 is movably coupled to the gantry 20 in the Y-axis direction, and the probe 23 is positioned on the defect top of the substrate 33 as the probe 23 moves.
  • the probe 23 is moved above the defect of the substrate 33 by the gantry 20 and the moving block 21, and the probe 23 moved to the measurement point measures the defect.
  • the gantry 20 may be moved by stopping in the X-axis direction. After measuring the defect 1 by using the probe 23, and moving the probe 23 in the Y-axis direction through the moving block 21 to measure the defect 2. Thereafter, the gantry 20 is moved by stopping in the X-axis direction, and then the probe 23 is moved in the Y-axis direction through the moving block 21 to measure defects 3. Then, the gantry 20 and the moving block are measured.
  • the defect 4 and defect 5 are measured sequentially by repeating the movement and stop operation of (21).
  • the probe can measure only defects having the same coordinates of the X axis (defects on the X axis) and X in the case of defects having different X axis coordinates. There was no choice but to move it to the axis. Therefore, as the number of movements of the probe in the Y-axis direction increases, there is a problem in that the time required for defect measurement increases (see FIG. 2).
  • the gantry under heavy load must be moved and stopped from time to time. If such an operation is repeated, the inspection device may be damaged by the load of the gantry, resulting in increased cost due to increased maintenance. There was a problem, and there was a problem in that the time required for defect measurement was increased with repetition of the moving and stopping operations.
  • One aspect of the present invention is to provide a substrate defect inspection apparatus and an inspection method using the same which can shorten the time required for the measurement of substrate defects, thereby improving process tact-time and production yield.
  • the stage is the substrate is seated;
  • a gantry movably coupled to the stage in an X-axis direction;
  • a main moving block positioned on the substrate and coupled to the gantry to be movable in the Y-axis direction;
  • a first auxiliary moving block movably coupled to the main moving block in an X-axis direction;
  • a probe installed at the first auxiliary moving block to be positioned above the substrate, the probe measuring a defect of the substrate;
  • a control unit controlling a relative speed of the auxiliary moving block with respect to the gantry while continuously moving the gantry in the X-axis direction.
  • the first auxiliary moving block may include a horizontal auxiliary moving block coupled to the main moving block so as to face the substrate and move in an X-axis direction; And a vertical auxiliary moving block bent and coupled to the horizontal auxiliary moving block in a Z-axis direction.
  • the apparatus may further include a second auxiliary moving block movably coupled to the vertical auxiliary moving block in a Z-axis direction, and the probe may be coupled to the second auxiliary moving block to be positioned on the substrate.
  • the control unit controls the gantry to move at a predetermined constant speed, controls the measurement operation of the probe, and the first auxiliary moving block is opposite to the moving direction of the gantry at the same speed as the moving speed of the gantry.
  • the gantry is moved in the X-axis direction, a pair of supports provided on both sides of the stage spaced apart; And a gantry body supported by the support and positioned above the stage.
  • the main moving block is a first main moving block movably coupled to the gantry body in the Y axis direction and a second main movement spaced apart from the first main moving block and movably coupled to the gantry body in the Y axis direction.
  • a first auxiliary movable block movably coupled to the first and second main movable blocks in an X-axis direction by a link structure, and one end of which is connected to the first main movable block.
  • a first link arm rotatably connected and the other end coupled to the first auxiliary moving block; And a second link arm having one end rotatably connected to the second main moving block and the other end coupled to the first auxiliary moving block.
  • the main moving block is movably coupled to the gantry body in the Y-axis direction
  • the first auxiliary moving block is movably coupled to the main moving block in the X-axis direction by a link structure
  • the link structure is: A third link arm having one end rotatably connected to the main moving block; A fourth link arm spaced apart from the third link arm and having one end rotatably connected to the main moving block; A fifth link arm, one end of which is rotatably connected to the other end of the third link arm and the other end of which is coupled to the first auxiliary moving block; And a sixth link arm one end of which is rotatably connected to the other end of the fourth link arm and the other end of which is coupled to the first auxiliary moving block.
  • a defect inspection method using the substrate defect apparatus comprising: inputting coordinates of a defect of the substrate seated on the stage; Generating a movement route according to the input coordinates; Moving the gantry in the X axis direction at a predetermined constant speed according to the generated movement path; Moving at least one of the main moving block and the first auxiliary moving block to position the probe in proximity to the defect; Moving the first auxiliary moving block in an X-axis direction opposite to the moving direction of the gantry at the same speed as the moving speed of the gantry such that the probe is temporarily stopped against a defect of the substrate; And measuring a defect of the substrate when the probe is temporarily stopped with respect to the defect of the substrate.
  • the generating of the movement path according to the input defect coordinates may include setting the defect coordinates located at the shortest distance from the defect coordinates currently measured among the defect coordinates located in the movable area of the first auxiliary moving block as the next measurement target. You can create a route.
  • the defect currently measured by the probe After measuring a defect of the substrate, determining whether the currently measured defect coordinate is a final defect coordinate, and if the currently measured defect coordinate is not the final defect coordinate, the defect currently measured by the probe It can be moved to the defect coordinate located at the shortest distance from the coordinate.
  • the process time and production by reducing the time required for the measurement of the defects of the substrate (tact-time) Yield can be improved.
  • FIG. 1 is a schematic diagram of a substrate defect inspection apparatus according to the prior art.
  • FIG. 2 is a reference diagram for explaining a method of measuring a defect of a substrate using a substrate defect inspection apparatus.
  • FIG. 3 is a schematic diagram of a substrate defect inspection apparatus according to an embodiment of the present invention.
  • FIG. 4 is a reference diagram for explaining a method of measuring a defect of a substrate using the substrate defect inspection apparatus according to the present embodiment.
  • 5 and 6 are reference views of a substrate defect inspection apparatus according to a modification of an embodiment of the present invention.
  • FIG. 7 is a reference view of a substrate defect inspection apparatus according to another modified example of the embodiment of the present invention.
  • FIG. 8 is a flowchart illustrating a substrate defect inspection method using a substrate defect inspection apparatus according to an embodiment of the present invention.
  • one component when one component is referred to as “connected” or “coupled” with another component, the one component may be directly connected to or directly coupled to the other component, It is to be understood that unless there is an opposing substrate, it may be connected or combined via another component in the middle.
  • ⁇ unit (unit) may mean a unit for processing at least one function or operation.
  • FIG 3 is a schematic diagram of a substrate defect inspection apparatus 100 according to an embodiment of the present invention
  • Figure 4 is a method for measuring a defect of the substrate 310 using the substrate defect inspection apparatus 100 according to the present embodiment. It is a reference diagram for explaining this.
  • the substrate defect inspection apparatus 100 the gantry 200 (Gantry), the support 210, the gantry body 230, the guide rails (231, 535, 537), the stage 300, the substrate ( 310, a main moving block 510, a horizontal main moving block 511, a vertical main moving block 513, a linear motion (LM) guide block 518, 519, 551, a first auxiliary moving block 530, A horizontal auxiliary moving block 531, a vertical auxiliary moving block 533, a second auxiliary moving block 550, a probe 570, and a controller 600 are illustrated.
  • LM linear motion
  • Substrate defect inspection apparatus 100 the stage 300 on which the substrate 310 is seated; A gantry 200 movably coupled to the stage 300 in the X-axis direction; A main moving block 510 positioned on the substrate 310 and coupled to the gantry 200 to be movable in the Y-axis direction; A first auxiliary moving block 530 movably coupled to the main moving block 510 in the X-axis direction; A probe 570 installed on the first auxiliary moving block 530 to be positioned above the substrate 310 and measuring a defect of the substrate 310; The control unit 600 controls the relative speed of the auxiliary moving block with respect to the gantry 200 while continuously moving the gantry 200 in the X-axis direction, thereby reducing the time required for defect measurement of the substrate 310. To improve process tact-time and production yield.
  • the substrate 310 which has undergone the exposure etching process is mounted on the stage 300.
  • the gantry 200 is coupled to the stage 300 to be movable in the X-axis direction.
  • the gantry 200 may be coupled to a plurality of stages 300.
  • the gantry 200 moves in the X-axis direction and is supported by a pair of supports 210 and a pair of supports 210 spaced apart from both sides of the stage 300 so as to be positioned above the stage 300.
  • It may include a gantry body 230 is located.
  • a pair of supports 210 are provided on both sides of the stage 300 to move along the X-axis direction, the gantry body 230 that is coupled to and supported by the support 210 in accordance with the movement of the support 210 is X Move in the axial direction.
  • one side of the gantry body 230 may be provided with a guide rail 231 for the movement of the main moving block 510 to be described later.
  • the gantry 200 may be provided in plurality in the X-axis direction in order to shorten the time required for defect measurement of the substrate 310.
  • the main moving block 510 is positioned above the substrate 310 and is coupled to the gantry 200 to be movable in the Y-axis direction.
  • the main moving block 510 may include a horizontal main moving block 511 and a vertical main moving block 513.
  • the horizontal main moving block 511 is disposed to face the substrate 310 and has a LM guide block 519 formed on the bottom thereof so that the guide formed in the horizontal auxiliary moving block 531 of the first auxiliary moving block 530 to be described later. It is movably coupled to the rail 535.
  • the vertical main moving block 513 is coupled to the horizontal main moving block 511 so as to be bent in the Z-axis direction, and the inner LM guide block 518 coupled to the guide rail 231 of the gantry body 230 is moved therein. It may be provided. As the LM guide block 518 provided in the vertical main moving block 513 moves along the guide rail 231 of the gantry body 230, the main moving block 510 moves in the Y-axis direction.
  • the first auxiliary moving block 530 is movably coupled to the main moving block 510 in the X-axis direction.
  • the first auxiliary moving block 530 may include a horizontal auxiliary moving block 531 and a vertical auxiliary moving block 533.
  • the horizontal auxiliary moving block 531 may be disposed to face the substrate 310, and a guide rail 535 may be formed on an upper surface thereof to correspond to the LM guide block 519 installed in the main moving block 510.
  • the guide rail 535 may be formed in the X-axis direction, and thus the LM guide block 519 and the guide rail 535 may be coupled to each other to allow relative movement in the X-axis direction.
  • the first auxiliary moving block 530 may be moved in the X-axis direction with respect to the main moving block 510.
  • the vertical auxiliary movement block 533 is bent and coupled to the horizontal auxiliary movement block 531 in the Z-axis direction, and on one side of the guide rail along the Z-axis direction to allow the second auxiliary movement block 550 to be described later ( 537) can be formed.
  • the first auxiliary moving block 530 is movable in the X-axis direction by the LM guide block structure connecting the first auxiliary moving block 530 and the main moving block 510.
  • the probe 570 coupled to the moving block 530 may also move in the X-axis direction.
  • the probe 570 can move in the X axis direction separately from the movement of the gantry 200, so that not only defects having the same coordinates of the X axis but also defects having different coordinates of the X axis within the movement range of the probe 570 can be measured. do.
  • the probe 570 may be moved in the X-axis direction by the first auxiliary moving block 530.
  • defects 1, 2, and 3 while minimizing movement in the Y-axis direction. 4 and 5 can be measured sequentially. Accordingly, defect measurement of the substrate 310 may be performed while minimizing movement of the probe 570 in the Y-axis direction, thereby reducing defect measurement time.
  • the probe 570 is installed on the first auxiliary moving block 530 to be positioned above the substrate 310, and measures a defect of the substrate 310.
  • the probe 570 for measuring a defect of the substrate 310 may be an optical camera such as a charge coupled device (CCD).
  • CCD charge coupled device
  • a plurality of probes 570 may be provided in the plurality of main moving blocks 510 and the first auxiliary moving blocks 530 in order to shorten the time required for defect measurement of the substrate 310.
  • the probe 570 may be coupled to the second auxiliary movement block 550 that is movably coupled to the vertical auxiliary movement block 533 of the first auxiliary movement block 530.
  • a guide rail 537 may be formed in one side of the vertical auxiliary moving block 533 of the first auxiliary moving block 530 in the Z axis direction, and the vertical auxiliary moving in the second auxiliary moving block 550.
  • the LM guide block 551 may be provided to be movably coupled to the guide rail 537 of the block 533.
  • the controller 600 controls the relative speed of the first auxiliary moving block 530 with respect to the gantry 200 while continuously moving the gantry 200 in the X-axis direction.
  • the controller 600 may control the gantry 200 to move at a predetermined constant speed and control the measurement operation of the probe 570.
  • the controller 600 controls the gantry 200 to move in the X-axis direction at a constant speed, and the first auxiliary moving block 530 to which the probe 570 is coupled is the same as the moving speed of the gantry 200.
  • the speed lock is controlled to move in the X axis direction opposite to the moving direction of the gantry 200. That is, when the gantry 200 moves in the positive X axis direction at a constant speed, the control unit 600 moves the first auxiliary moving block 530 at the same speed as the moving speed of the gantry 200. To move in the X-axis direction.
  • a phenomenon in which the probe 570 temporarily stops with respect to a defect of the substrate 310 (a phenomenon in which the relative speed of the probe 570 with respect to the defect becomes zero) appears, and such a stop of the probe 570 occurs.
  • the phenomenon is generated above the defect of the substrate 310 so that the defect of the substrate 310 can be measured while the probe 570 is stopped.
  • the gantry 200 since the gantry 200 moves together with the probe 570, the gantry 200 must be stopped for accurate measurement of the defect of the substrate 310. Measured.
  • the probe 570 since the probe 570 is movable in the X-axis direction separately from the gantry 200, the probe 570 is moved in a direction opposite to the moving direction of the gantry 200 to prevent defects in the substrate 310.
  • the probe 570 may be momentarily stopped. That is, the X-axis position of the probe 570 may be fixed while the gantry 200 moves in the X-axis direction. Accordingly, while the gantry 200 is moved at a constant speed without stopping the gantry 200, the defect of the substrate 310 may be measured without shaking the probe 570. Therefore, by minimizing the repeated operation of moving and stopping the gantry 200, it is possible to prevent damage to the inspection apparatus due to the load of the gantry 200 and to shorten the time required for defect measurement.
  • FIGS. 5 and 6 are reference views of a substrate defect inspection apparatus 100 according to a modification of an embodiment of the present invention, and referring to FIGS. 5 and 6, in the substrate defect inspection apparatus 100 according to the embodiment.
  • the main moving block 510 is spaced apart from the first main moving block 510a and the first main moving block 510a to be movably coupled to the gantry body 230 in the Y-axis direction.
  • a second main moving block 510b movably coupled in an axial direction, and the first auxiliary moving block 530 moves in the X axis direction to the first and second main moving blocks 510b by a link structure.
  • This embodiment is a modification of the previous embodiment, and the configuration for moving the probe 570 in the X-axis direction is different from the previous embodiment.
  • the same configuration as in the previous embodiment is performed. I will replace the explanation.
  • the guide rail 231 is formed on the upper surface of the gantry body 230 in the Y-axis direction
  • the main moving block 510 is the first main moving block 510a and the second main moving block 510b. It is formed in plural.
  • the first main moving block 510a is movably coupled to the gantry body 230 in the Y-axis direction
  • the second main moving block 510b is spaced apart from the first main moving block 510a to allow the gantry main body 230 to be moved. Is coupled to the Y axis in a movable manner.
  • the first auxiliary moving block 530 to which the probe 570 is coupled is movably coupled to the first and second main moving blocks 510b in the X-axis direction by a link structure.
  • the link structure includes a first link arm 517a and a second link arm 517b.
  • One end of the first link arm 517a is rotatably connected to the first main moving block 510a by a hinge pin 515, and the other end thereof is coupled to the first auxiliary moving block 530.
  • One end of the second link arm 517b is rotatably connected to the second main moving block 510b and the other end thereof is coupled to the first auxiliary moving block 530. Referring to FIG.
  • the first auxiliary moving block 530 coupled to the first and second link arms 517a and 517b moves in the X-axis direction.
  • the first auxiliary movement block 530 to which the probe 570 is coupled is movable in the X-axis direction, thereby minimizing the movement of the probe 570 in the Y-axis direction and gantry. While moving the 200 at a constant speed, the defect can be measured without shaking the probe 570.
  • FIG. 7 is a reference view of a substrate defect inspection apparatus according to another modified example of the embodiment of the present invention.
  • the main moving block 510 is movably coupled to the gantry body 230 in the Y-axis direction.
  • the first auxiliary moving block 530 is movably coupled to the main moving block 510 in the X-axis direction by a link structure, and the link structure has one end rotatably connected to the main moving block 510.
  • This embodiment is another modification of the previous embodiment, and differs from the first embodiment in the configuration for moving the probe 570 in the X-axis direction.
  • the first auxiliary moving block 530 and the link structure is the same as the configuration of the first embodiment, the same configuration will be replaced with the description of the first embodiment. do.
  • the guide rails 231, 535, 537 are formed in the Y-axis direction on the upper surface of the gantry body 230, and the main moving block 510 is movable in the Y-axis direction in the gantry body 230.
  • the first auxiliary moving block 530 to which the probe 570 is coupled is movably coupled to the main moving block 510 in the X-axis direction by a link structure.
  • the link structure includes a third link arm 517c, a fourth link arm 517d, a fifth link arm 517e, and a sixth link arm 517f.
  • One end of the third link arm 517c is rotatably connected to the main moving block 510 by a hinge pin 515, and the other end thereof is connected to one end of the fifth link arm 517e.
  • the fourth link arm is provided to be spaced apart from the third link arm 517c, one end of which is rotatably connected to the main moving block 510 by a hinge pin 515, and the other end of the fourth link arm 517f It is connected to one end.
  • One end of the fifth link arm 517e is rotatably connected to the other end of the third link arm 517c by a hinge pin 515, and the other end thereof is coupled to the first auxiliary moving block 530.
  • One end of the sixth link arm 517f is rotatably connected to the other end of the fourth link arm 517d by a hinge pin 515, and the other end thereof is coupled to the first auxiliary moving block 530.
  • the first auxiliary moving block is rotated as the third link arm 517c, the fourth link arm 517d, the fifth link arm 517e, and the sixth link arm 517f rotate.
  • 530 moves in the X-axis direction.
  • the first auxiliary movement block 530 to which the probe 570 is coupled is movable in the X-axis direction, thereby minimizing the movement of the probe 570 in the Y-axis direction and gantry. While moving the 200 at a constant speed, the defect can be measured without shaking the probe 570.
  • the two modifications described above may also include a second auxiliary movement block 550 that is movably coupled to the first auxiliary movement block 530 in the Z-axis direction,
  • the probe 570 may be coupled to the second auxiliary moving block 550.
  • the substrate defect inspection method may include: inputting coordinates of a defect of the substrate 310 seated on the stage 300; Generating a movement path of the substrate defect inspection apparatus 100 according to the input coordinates; Moving the gantry 200 in the X-axis direction at a predetermined constant speed according to the generated movement path; Moving at least one of the main moving block 510 and the auxiliary moving block to position the probe 570 close to a defect; X-axis opposite to the moving direction of the gantry 200 at the same speed as the moving speed of the gantry 200 so that the probe 570 temporarily stops against the defect of the substrate 310. Moving in a direction; And measuring the defect of the substrate 310 when the probe 570 is temporarily stopped with respect to the defect of the substrate 310.
  • the step S100 of inputting the defect coordinates of the substrate 310 is a step in which an operator inputs coordinates determined to be defective in the substrate 310. In this case, a plurality of defect coordinates input by an operator may be input.
  • Generating the entire movement path (S200) is a step of generating the shortest movement path between defect coordinates based on the input defect coordinates.
  • the generating of the movement path according to the inputted defect coordinates may include generating a movement path for the probe 570 to move the shortest distance based on the defects located on the inputted coordinates.
  • the generating of the movement path according to the inputted defect coordinates may include: performing defect coordinates located at the shortest distance from the defect coordinates currently measured among the plurality of defect coordinates located in the movable area of the first auxiliary movement block 530. Set as the measurement target to create the shortest path.
  • the movable region of the first auxiliary movement block 530 means a distance that the first auxiliary movement block 530 can move in the X-axis direction along the guide rail 535, and the length of the guide rail 535 Or a predetermined distance within the length of the guide rail 535.
  • the measurement can be performed. It can be set as a measurement object, and can generate the shortest movement path between defect coordinates (refer FIG. 4). Therefore, as the probe 570 is moved to the shortest distance, the defect measurement time of the substrate 310 may be shortened as compared with the prior art (see FIG. 2).
  • the gantry 200, the main moving block 510, and the first auxiliary moving block 530 move along the shortest moving path generated, thereby positioning the probe 570 on the input coordinates.
  • Moving the gantry 200 is a step of moving the gantry 200 in the X-axis direction to locate the defect.
  • the gantry 200 may be continuously moved at a predetermined constant speed.
  • the moving of the probe 570 is a step of moving the probe 570 close to an input defect coordinate by using at least one of the main moving block 510 and the first auxiliary moving block 530. .
  • the probe 570 is able to move in the X-axis direction separately from the movement of the gantry 200, unlike the prior art, the coordinates of the X-axis in the X-axis movement range of the probe 570 as well as the defects of the same X-axis Other defects can also be measured (see FIG. 4).
  • the probe 570 may temporarily stop the defect by the movement of the first auxiliary moving block 530. It is preferable to be located ahead of the defect coordinates in the X-axis direction.
  • Measuring a defect of the substrate 310 is a step of measuring a defect of the substrate 310 using the probe 570.
  • the probe 570 since the probe 570 may be moved in the X-axis direction by the first auxiliary moving block 530, a plurality of defects may be measured while minimizing the movement in the Y-axis direction unlike the prior art (see FIG. 2). (See FIG. 4).
  • the probe 570 is moved in the X axis direction opposite to the moving direction of the gantry 200 at the same speed as the movement speed of the gantry 200.
  • the phenomenon in which the probe 570 temporarily stops with respect to the defect of the substrate 310 may appear so that the defect may be measured without shaking the probe 570. That is, the position of the probe 570 may be temporarily fixed to measure the binding of the substrate 310.
  • the step of determining whether the measured coordinates are the final defect coordinates is a step of determining whether the defect measurement is terminated by determining whether the measured defect coordinates are the final defect coordinates among the inputted defect coordinates.
  • the defect is measured by moving the probe 570 to another defect coordinate on the shortest moving path, and the current measurement area when the currently measured coordinate is the final defect coordinate.
  • the substrate defect inspection apparatus 100 is moved to the next measurement region.
  • the plurality of defects may be measured in a short time while the probe 570 is moved according to the shortest movement path generated through the above process.
  • substrate defect inspection apparatus 200 gantry (Gantry)
  • first main moving block 510b second main moving block
  • hinge pin 517a first link arm
  • first auxiliary moving block 531 horizontal auxiliary moving block
  • vertical auxiliary moving block 550 second auxiliary moving block
  • probe 600 control unit

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

본 발명의 일 실시예에 따른 기판 결함 검사 장치는, 기판이 안착되는 스테이지; 상기 스테이지에 X축방향으로 이동가능하게 결합되는 갠트리; 상기 기판의 상부에 위치하며, Y축방향으로 이동가능하도록 상기 갠트리에 결합되는 메인 이동블록; 상기 메인 이동블록에 X축방향으로 이동가능하게 결합되는 제1 보조 이동블록; 상기 기판의 상부에 위치하도록 상기 제1 보조 이동블록에 설치되며, 상기 기판의 결함을 측정하는 프로브; 및 상기 갠트리를 X축방향으로 지속적으로 이동시키면서 상기 갠트리에 대한 상기 보조 이동 블록의 상대 속도를 제어하는 제어부를 포함한다.

Description

기판 결함 검사 장치 및 이를 이용한 검사 방법
본 발명은 기판 결함 검사 장치 및 이를 이용한 검사 방법에 관한 것이다. 보다 상세하게는, 기판(glass)에 생성된 결함을 측정하기 위한 검사 장치 및 검사 방법에 있어서, 기판의 결함의 측정에 소요되는 시간을 단축시켜 공정 택타임(tact-time) 및 생산 수율을 향상시킬 수 있는 기판 결함 검사 장치 및 이를 이용한 검사 방법에 관한 것이다.
일반적으로, 광학식 디스플레이는 기판과, 액정층, 대향 기판 등으로 구성되며, 광학식 디스플레이 중 LCD 디스플레이는 여러 제조 공정을 통해서 만들어진다. 대표적인 제조 공정으로, 노광·에칭(Photo)공정, 칼라필터(Color filter) 공정, 셀(Cell) 공정, 모듈(Module) 공정이 있으며, 이 중 기판에 전기 회로 패턴을 새기는 공정인 노광·에칭 공정은 회로를 적층하기 위해 반복적으로 행해지며 정밀도가 요구되는 공정이다.
이러한 노광·에칭 공정 다음에는 광학적 검사장비(AOI, Automatic Optical Inspection)를 이용하여 기판상에 전기 회로 패턴이 잘 형성되었는지를 검사하며, 검사에 의해 회로 패턴의 단선(Open) 또는 단락(Short)이 발견되는 경우, 리페어(Repair) 공정에 의해 단선 또는 단락을 수리하는 공정을 거친다.
이러한 결함 검사 속도를 향상시키기 위하여는 제한된 공정 시간 내에 광학 검사장비를 이용하여 최대한 많은 결함을 찾아내는 것이 중요한데, 특히, 제품의 대량 생산이 가속화됨에 따라 공정 단계에서 빠른 시간내에 기판의 결함을 측정하는 기술이 더욱 중요해지고 있다.
도 1은 종래기술에 따른 광학 검사장비(AOI)로서 기판 결함 검사 장치(10)의 개략도이며, 도 1을 참조하여 종래기술에 따른 기판 결함 검사 장치(10)를 설명하기로 한다.
종래기술에 따른 기판 결함 검사 장치(10)는, 스테이지(30), 갠트리(20, gantry), 이동블록(21), 프로브(23)로 구성된다. 스테이지(30) 상에 검사를 위한 기판(33)이 안착되며, X축방향으로 이동가능하게 갠트리(20)가 스테이지(30)에 결합되어 검사 공정이 진행됨에 따라 X축방향으로 이동한다. 이동블록(21)은 갠트리(20)에 Y축방향으로 이동가능하게 결합되며, 프로브(23)가 구비되어 이동함에 따라 프로브(23)를 기판(33)의 결함 상부에 위치시킨다. 갠트리(20) 및 이동블록(21)에 의해 프로브(23)는 기판(33)의 결함 상부로 이동되며, 측정 지점으로 이동된 프로브(23)는 결함을 측정한다.
구체적으로, 도 1 및 도 2를 참고하여 종래기술에 따른 기판 결함 검사 장치(10)를 이용하여 복수의 결함을 측정하기 위한 방법을 설명하면, 갠트리(20)를 X축방향으로 이동시켜 정지시킨 후 프로브(23)를 이용하여 결함 ①을 측정하고, 이동블록(21)을 통해 프로브(23)를 Y축방향으로 이동시켜 결함 ②를 측정한다. 이 후, 갠트리(20)를 X축방향으로 이동시켜 정지시킨 후 이동블록(21)을 통해 프로브(23)를 Y축방향으로 이동시켜 결함 ③을 측정하며, 이후, 갠트리(20)와 이동블록(21)의 이동 및 정지 동작을 반복하여 순차적으로 결함 ④ 및 결함 ⑤를 측정하게 되는 것이다.
이와 같이 구성된 종래의 기판 결함 검사 장치에 의할 경우 다음과 같은 문제가 있었다.
첫째, 종래기술에 따른 갠트리 구조에서는 이동블록이 Y축방향으로만 이동가능하므로, 프로브는 X축의 좌표가 같은 결함(X축선 상의 결함)만이 측정가능하고 X축 좌표가 다른 결함의 경우 갠트리를 X축으로 이동시켜 측정할 수 밖에 없었다. 따라서, 프로브의 Y축방향으로의 이동 횟수가 많아짐에 따라 결함 측정시 소요되는 시간이 증가하는 문제가 있었다(도 2 참조).
둘째, 결함을 측정하기 위해서는 고하중의 갠트리를 수시로 이동시키고 정지시켜야 하는데, 이와 같은 동작이 반복되는 경우 갠트리의 하중에 의해 검사 장치가 손상되는 경우가 발생하여 메인터넌스(maintenance) 증가에 따른 비용 증가의 문제가 있었고, 이동 및 정지 동작의 반복에 따라 결함 측정에 소요되는 시간이 증가하는 문제가 있었다.
본 발명의 일 측면은, 기판 결함의 측정에 소요되는 시간을 단축시켜 공정 택타임(tact-time) 및 생산 수율을 향상시킬 수 있는 기판 결함 검사 장치 및 이를 이용한 검사 방법을 제공하고자 한다.
본 발명의 일 측면에 따르면, 기판이 안착되는 스테이지; 상기 스테이지에 X축방향으로 이동가능하게 결합되는 갠트리; 상기 기판의 상부에 위치하며, Y축방향으로 이동가능하도록 상기 갠트리에 결합되는 메인 이동블록; 상기 메인 이동블록에 X축방향으로 이동가능하게 결합되는 제1 보조 이동블록; 상기 기판의 상부에 위치하도록 상기 제1 보조 이동블록에 설치되며, 상기 기판의 결함을 측정하는 프로브; 및 상기 갠트리를 X축방향으로 지속적으로 이동시키면서 상기 갠트리에 대한 상기 보조 이동 블록의 상대 속도를 제어하는 제어부를 포함하는, 기판 결함 검사 장치를 제공한다.
상기 제1 보조 이동블록은, 상기 기판에 대향하며 X축방향으로 이동가능하도록 상기 메인 이동블록에 결합되는 수평 보조 이동블록; 및 상기 수평 보조 이동블록에 Z축방향으로 절곡되어 결합되는 수직 보조 이동블록을 포함할 수 있다.
상기 수직 보조 이동블록에 Z축방향으로 이동가능하게 결합되는 제2 보조 이동블록을 더 포함하며, 상기 프로브는 상기 기판의 상부에 위치하도록 상기 제2 보조 이동블록에 결합될 수 있다.
상기 제어부는, 상기 갠트리가 기설정된 일정 속도로 이동되도록 제어하고, 상기 프로브의 측정 동작을 제어하며, 제1 보조 이동블록이 상기 갠트리의 이동 속도와 동일한 속도로 상기 갠트리의 이동 방향의 반대의 X축방향으로 이동되도록 제어하여, 상기 프로브가 상기 기판의 결함에 대하여 일시적으로 정지할 때 상기 기판의 결함을 측정할 수 있다.
상기 갠트리는, X축방향으로 이동하며, 상기 스테이지의 양 측에 이격되어 구비되는 한 쌍의 지지대; 및 상기 지지대에 의해 지지되어 상기 스테이지의 상부에 위치하는 갠트리 본체를 포함할 수 있다.
상기 메인 이동블록은 상기 갠트리 본체에 Y축방향으로 이동가능하게 결합되는 제1 메인 이동블록 및 상기 제1 메인 이동블록에 이격되어 상기 갠트리 본체에 Y축방향으로 이동가능하게 결합되는 제2 메인 이동블록을 포함하고, 상기 제1 보조 이동블록은 링크 구조에 의해 상기 제1 및 제2 메인 이동블록에 X축방향으로 이동가능하게 결합되며, 상기 링크 구조는, 일단이 상기 제1 메인 이동블록에 회전가능하게 연결되고 타단이 상기 제1 보조 이동블록에 결합되는 제1 링크 암; 및 일단이 상기 제2 메인 이동블록에 회전가능하게 연결되고 타단이 상기 제1 보조 이동블록에 결합되는 제2 링크 암을 포함할 수 있다.
상기 메인 이동블록은 상기 갠트리 본체에 Y축방향으로 이동가능하게 결합되고, 상기 제1 보조 이동블록은 링크 구조에 의해 상기 메인 이동블록에 X축방향으로 이동가능하게 결합되며, 상기 링크 구조는, 일단이 상기 메인 이동블록에 회전가능하게 연결되는 제3 링크 암; 상기 제3 링크 암에 이격되어 구비되고, 일단이 상기 메인 이동블록에 회전가능하게 연결되는 제4 링크 암; 일단이 상기 제3 링크 암의 타단에 회전가능하게 연결되고 타단이 상기 제1 보조 이동블록에 결합되는 제5 링크 암; 및 일단이 상기 제4 링크 암의 타단에 회전가능하게 연결되고 타단이 상기 제1 보조 이동블록에 결합되는 제6 링크 암을 포함할 수 있다.
본 발명의 다른 측면에 따르면, 상기 기판 결함 장치를 이용한 결함 검사 방법으로서, 상기 스테이지에 안착된 상기 기판의 결함의 좌표를 입력하는 단계; 상기 입력된 좌표에 따라 이동경로를 생성하는 단계; 생성된 상기 이동경로에 따라 기설정된 일정 속도로 상기 갠트리를 X축방향으로 이동시키는 단계; 상기 메인 이동블록 및 상기 제1 보조 이동 블록 중 적어도 하나를 이동하여 상기 프로브를 상기 결함에 근접하게 위치시키는 단계; 상기 프로브가 상기 기판의 결함에 대하여 일시적으로 정지되도록, 상기 제1 보조 이동블록을 상기 갠트리의 이동 속도와 동일한 속도로 상기 갠트리의 이동 방향의 반대의 X축방향으로 이동시키는 단계; 및 상기 프로브가 상기 기판의 결함에 대하여 일시적으로 정지될 때 상기 기판의 결함을 측정하는 단계를 포함하는, 기판 결함 검사 방법을 제공한다.
상기 입력된 결함 좌표에 따라 이동경로를 생성하는 단계는, 상기 제1 보조 이동 블록의 이동 가능 영역 내에 위치한 결함 좌표 중 현재 측정한 결함 좌표로부터 최단 거리에 위치한 결함 좌표를 다음 측정 대상으로 설정하여 최단 이동경로를 생성할 수 있다.
상기 기판의 결함을 측정하는 단계 이후, 현재 측정한 결함 좌표가 최종 결함 좌표인지 여부를 판단하는 단계를 더 포함하며, 현재 측정한 결함 좌표가 최종 결함 좌표가 아닌 경우, 상기 프로브를 현재 측정한 결함 좌표로부터 최단 거리에 위치한 결함 좌표로 이동시킬 수 있다.
본 발명의 실시예에 따르면, 기판(glass)에 생성된 결함을 측정하기 위한 검사 장치 및 검사 방법에 있어서, 기판의 결함에 측정에 소요되는 시간을 단축시켜 공정 택타임(tact-time) 및 생산 수율을 향상시킬 수 있다.
도 1은 종래기술에 따른 기판 결함 검사 장치의 개략도이다.
도 2는 기판 결함 검사 장치를 이용하여 기판의 결함을 측정하는 방법을 설명하기 위한 참고도이다.
도 3은 본 발명의 일 실시예에 따른 기판 결함 검사 장치의 개략도이다.
도 4는 본 실시예에 따른 기판 결함 검사 장치를 이용하여 기판의 결함을 측정하는 방법을 설명하기 위한 참고도이다.
도 5 및 도 6은 본 발명의 일 실시예의 변형예에 따른 기판 결함 검사 장치의 참고도이다.
도 7은 본 발명의 일 실시예의 다른 변형예에 따른 기판 결함 검사 장치의 참고도이다.
도 8은 본 발명의 일 실시예에 따른 기판 결함 검사 장치를 이용한 기판 결함 검사 방법을 설명하기 위한 순서도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 이를 상세한 설명을 통해 상세히 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 본 명세서의 설명 과정에서 이용되는 숫자(예를 들어, 제1, 제2 등)는 하나의 구성요소를 다른 구성요소와 구분하기 위한 식별기호에 불과하다.
또한, 본 명세서에서, 일 구성요소가 다른 구성요소와 "연결된다" 거나 "결합된다" 등으로 언급된 때에는, 상기 일 구성요소가 상기 다른 구성요소와 직접 연결되거나 또는 직접 결합될 수도 있지만, 특별히 반대되는 기재가 존재하지 않는 이상, 중간에 또 다른 구성요소를 매개하여 연결되거나 또는 결합될 수도 있다고 이해되어야 할 것이다.
또한, 본 명세서에 기재된 "~부(유닛)", "~기", "~자", "~모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미할 수 있다.
이하, 본 발명에 따른 기판 결함 검사 장치를 첨부한 도면을 참조하여 상세히 설명하기로 하며, 첨부한 도면을 참조하여 설명함에 있어서, 동일하거나 대응하는 구성 요소는 동일한 도면번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
도 3은 본 발명의 일 실시예에 따른 기판 결함 검사 장치(100)의 개략도이며, 도 4는 본 실시예에 따른 기판 결함 검사 장치(100)를 이용하여 기판(310)의 결함을 측정하는 방법을 설명하기 위한 참고도이다.
도 3 및 도 4에는, 기판 결함 검사 장치(100), 갠트리(200, Gantry), 지지대(210), 갠트리 본체(230), 가이드 레일(231, 535, 537), 스테이지(300), 기판(310), 메인 이동블록(510), 수평 메인 이동블록(511), 수직 메인 이동블록(513), LM(Linear Motion) 가이드 블록(518, 519, 551), 제1 보조 이동블록(530), 수평 보조 이동블록(531), 수직 보조 이동블록(533), 제2 보조 이동블록(550), 프로브(570, probe), 제어부(600)가 도시되어 있다.
본 발명의 일 실시예에 따른 기판 결함 검사 장치(100)는, 기판(310)이 안착되는 스테이지(300); 스테이지(300)에 X축방향으로 이동가능하게 결합되는 갠트리(200); 기판(310)의 상부에 위치하며, Y축방향으로 이동가능하도록 갠트리(200)에 결합되는 메인 이동블록(510); 메인 이동블록(510)에 X축방향으로 이동가능하게 결합되는 제1 보조 이동블록(530); 기판(310)의 상부에 위치하도록 상기 제1 보조 이동블록(530)에 설치되며, 기판(310)의 결함을 측정하는 프로브(570); 갠트리(200)를 X축방향으로 지속적으로 이동시키면서 갠트리(200)에 대한 상기 보조 이동 블록의 상대 속도를 제어하는 제어부(600)를 포함하여, 기판(310)의 결함 측정에 소요되는 시간을 단축시켜 공정 택타임(tact-time) 및 생산 수율을 향상시킬 수 있다.
노광에칭 공정을 거친 기판(310)은 스테이지(300)에 안착된다.
스테이지(300)에는 X축방향으로 이동가능하게 갠트리(200)가 결합된다. 갠트리(200)는 스테이지(300)에 복수개로 결합될 수 있다. 갠트리(200)는 X축방향으로 이동하며, 스테이지(300)의 양 측에 이격되어 구비되는 한 쌍의 지지대(210) 및 한 쌍의 지지대(210)에 의해 지지되어 스테이지(300)의 상부에 위치하는 갠트리 본체(230)를 포함할 수 있다. 한 쌍의 지지대(210)는 스테이지(300)의 양 측에 구비되어 X축방향을 따라 이동하며, 지지대(210)의 이동에 따라 지지대(210)에 결합되어 지지되는 갠트리 본체(230)가 X축방향으로 이동한다. 이때, 갠트리 본체(230)의 일측면에는 후술할 메인 이동블록(510)의 이동을 위한 가이드 레일(231)일 구비될 수 있다. 이때, 갠트리(200)는 기판(310)의 결함 측정에 소요되는 시간을 단축시키기 위해 X축방향으로 복수개로 구비될 수 있다.
메인 이동블록(510)은 기판(310)의 상부에 위치하며, Y축방향으로 이동가능하도록 갠트리(200)에 결합된다. 구체적으로, 메인 이동블록(510)은 수평 메인 이동블록(511) 및 수직 메인 이동블록(513)을 포함할 수 있다. 수평 메인 이동블록(511)은 기판(310)에 대향하도록 배치되며 하면에는 LM 가이드 블록(519)이 구비되어 후술할 제1 보조 이동블록(530)의 수평 보조 이동블록(531)에 형성되는 가이드 레일(535)에 이동가능하게 결합된다. 수직 메인 이동블록(513)은 수평 메인 이동블록(511)에 Z축방향으로 절곡되도록 결합되고, 내측에는 갠트리 본체(230)의 가이드 레일(231)과 결합되어 이동되는 LM 가이드 블록(518)이 구비될 수 있다. 수직 메인 이동블록(513)에 구비되는 LM 가이드 블록(518)이 갠트리 본체(230)의 가이드 레일(231)을 따라 이동함에 따라 메인 이동블록(510)이 Y축방향으로 이동하는 것이다.
제1 보조 이동블록(530)은 메인 이동블록(510)에 X축방향으로 이동가능하게 결합된다. 구체적으로, 제1 보조 이동블록(530)은 수평 보조 이동블록(531) 및 수직 보조 이동블록(533)을 포함할 수 있다. 수평 보조 이동블록(531)은 기판(310)에 대향하도록 배치되며, 상면에는 메인 이동블록(510)에 설치되는 LM 가이드 블록(519)에 대응되도록 가이드 레일(535)이 형성될 수 있다. 이 때, 가이드 레일(535)은 X축방향으로 형성될 수 있으며, 이에 따라 LM 가이드 블록(519)과 가이드 레일(535)은 X축방향으로 서로 상대 이동이 가능하게 결합될 수 있다. 예를 들어, 제1 보조 이동블록(530)은 메인 이동블록(510)에 대해 X축방향으로 이동될 수 있다. 수직 보조 이동블록(533)은 수평 보조 이동블록(531)에 Z축방향으로 절곡되어 결합되고, 일측면에는 후술할 제2 보조 이동블록(550)이 이동가능하도록 Z축방향을 따라 가이드 레일(537)이 형성될 수 있다.
즉, 제1 보조 이동블록(530)과 메인 이동블록(510)을 연결하는 LM 가이드 블록 구조에 의해 제1 보조 이동블록(530)이 X축방향으로 이동가능하게 되는 것이며, 이에 따라 제1 보조 이동블록(530)에 결합되는 프로브(570)도 X축방향으로 이동할 수 있다. 이와 같이 프로브(570)가 갠트리(200)의 이동과는 별도로 X축방향으로 이동할 수 있게 되어 X축의 좌표가 같은 결함뿐 아니라 프로브(570)의 이동 범위안에서 X축의 좌표가 다른 결함 또한 측정이 가능하게 된다.
구체적으로, 도 3 및 도 4를 참조하면, 본 실시예에 따른 기판 결함 검사 장치(100)의 경우, 프로브(570)가 제1 보조 이동블록(530)에 의해 X축방향으로 이동이 가능하므로, 종래기술(도 2 참조)와 달리 Y축방향으로의 이동을 최소화하면서 결함 ①, ②, ③. ④, ⑤ 를 순차적으로 측정할 수 있는 것이다. 이에 따라, 프로브(570)의 Y축방향으로 이동을 최소화하면서 기판(310)의 결함 측정이 가능하여 결함 측정 시간을 감소시킬 수 있다.
프로브(570)는 기판(310)의 상부에 위치하도록 제1 보조 이동블록(530)에 설치되며, 기판(310)의 결함을 측정한다. 본 실시예에 따른 기판(310)의 결함을 측정하기 위한 프로브(570)는 CCD (Charge Coupled Device)와 같은 광학 카메라일 수 있다. 이때, 프로브(570)는 기판(310)의 결함 측정에 소요되는 시간을 단축시키기 위해 복수개의 메인 이동블록(510) 및 제1 보조 이동블록(530)에 복수개로 구비될 수 있다.
이때, 프로브(570)는 제1 보조 이동블록(530)의 수직 보조 이동블록(533)에 이동가능하게 결합되는 제2 보조 이동블록(550)에 결합될 수 있다. 구체적으로, 제1 보조 이동블록(530)의 수직 보조 이동블록(533)의 일측면에는 Z축방향으로 가이드 레일(537)이 형성될 수 있는데, 제2 보조 이동블록(550)에 수직 보조 이동블록(533)의 가이드 레일(537)에 이동가능하게 결합되도록 LM 가이드 블록(551)이 구비될 수 있다. 프로브(570)가 제2 보조 이동블록(550)에 의해 제1 보조 이동블록(530)에 결합되는 경우 프로브(570)가 Z축방향으로 이동가능하며, 필요에 따라 프로브(570)를 Z축방향으로 이동하여 기판(310)의 결함을 자세히 관찰할 수 있다.
제어부(600)는 갠트리(200)를 X축방향으로 지속적으로 이동시키면서 갠트리(200)에 대한 제1 보조 이동블록(530)의 상대 속도를 제어한다. 제어부(600)는 갠트리(200)가 기설정된 일정 속도로 이동하도록 제어하고, 프로브(570)의 측정 동작을 제어할 수 있다.
구체적으로, 제어부(600)는 갠트리(200)가 일정 속도로 X축방향으로 이동하도록 제어하며, 프로브(570)가 결합된 제1 보조 이동블록(530)이 갠트리(200)의 이동 속도와 동일한 속도록 갠트리(200)의 이동 방향의 반대의 X축방향으로 이동되도록 제어한다. 즉, 제어부(600)는 갠트리(200)가 일정 속도로 양(+)의 X축방향으로 이동하면 제1 보조 이동블록(530)을 갠트리(200)의 이동 속도와 동일한 속도로 음(-)의 X축방향으로 이동하도록 제어하는 것이다. 이와 같은 메커니즘에 의해 프로브(570)가 기판(310)의 결함에 대하여 일시적으로 정지하는 현상(결함에 대한 프로브(570)의 상대속도가 0이 되는 현상)이 나타나며, 이러한 프로브(570)의 정지 현상을 기판(310)의 결함의 상측에서 발생시켜 프로브(570)가 정지된 상태에서 기판(310)의 결함을 측정할 수 있는 것이다. 종래기술의 경우 갠트리(200)가 이동되는 상태에서는 프로브(570)로 함께 이동하므로 기판(310)의 결함의 정확한 측정을 위해서는 반드시 갠트리(200)를 정지시킨 후 프로브(570)를 이용하여 결함을 측정하였다. 반면, 본 실시예의 경우 프로브(570)가 갠트리(200)와는 별도로 X축방향으로 이동가능하므로, 프로브(570)를 갠트리(200)의 이동 방향과 반대 방향으로 이동시킴으로써 기판(310)의 결함에 대해 프로브(570)가 순간적으로 정지되는 현상을 발생시킬 수 있다. 즉, 갠트리(200)가 X축방향으로 이동하는 중에도 프로브(570)의 X축방향 위치를 고정시킬 수 있다. 이에 따라, 갠트리(200)의 정지 없이 갠트리(200)를 일정 속도로 이동시키면서 프로브(570)가 흔들리지 않고 기판(310)의 결함을 측정할 수 있다. 따라서, 갠트리(200)의 이동 및 정지의 반복 동작을 최소화함으로써 갠트리(200)의 하중에 의한 검사 장치의 손상을 방지할 수 있을 뿐 아니라 결함 측정에 소요되는 시간을 단축할 수 있다.
도 5 및 도 6은 본 발명의 일 실시예의 변형예에 따른 기판 결함 검사 장치(100)의 참고도이며, 도 5 및 도 6을 참고하면, 본 실시예에 따른 기판 결함 검사 장치(100)에서, 메인 이동블록(510)은 갠트리 본체(230)에 Y축방향으로 이동가능하게 결합되는 제1 메인 이동블록(510a) 및 제1 메인 이동블록(510a)에 이격되어 갠트리 본체(230)에 Y축방향으로 이동가능하게 결합되는 제2 메인 이동블록(510b)을 포함하고, 제1 보조 이동블록(530)은 링크 구조에 의해 제1 및 제2 메인 이동블록(510b)에 X축방향으로 이동가능하게 결합되며, 링크 구조는, 일단이 제1 메인 이동블록(510a)에 회전가능하게 연결되고 타단이 제1 보조 이동블록(530)에 결합되는 제1 링크 암(517a); 및 일단이 제2 메인 이동블록(510b)에 회전가능하게 연결되고 타단이 제1 보조 이동블록(530)에 결합되는 제2 링크 암(517b)을 포함할 수 있다.
본 실시예는 앞선 실시예의 변형예로서, 프로브(570)를 X축방향으로 이동시키기 위한 구성을 앞선 실시예와 달리한다. 본 실시예의 경우 제1 메인 이동블록(510a) 및 제2 메인 이동블록(510b), 제1 보조 이동블록(530) 및 링크 구조를 제외하고는 앞선 실시예의 구성과 동일하므로 동일한 구성에 대하여는 앞선 실시예의 설명에 갈음하기로 한다.
본 실시예의 경우, 갠트리 본체(230)의 상면에 Y축방향으로 가이드 레일(231)이 형성되고, 메인 이동블록(510)이 제1 메인 이동블록(510a) 및 제2 메인 이동블록(510b)으로 복수로 형성된다. 제1 메인 이동블록(510a)은 갠트리 본체(230)에 Y축방향으로 이동가능하게 결합되며, 제2 메인 이동블록(510b)은 제1 메인 이동블록(510a)에 이격되어 갠트리 본체(230)에 Y축방향으로 이동가능하게 결합된다.
프로브(570)가 결합되는 제1 보조 이동블록(530)은 링크 구조에 의해 제1 및 제2 메인 이동블록(510b)에 X축방향으로 이동가능하게 결합된다. 링크 구조는 제1 링크 암(517a) 및 제2 링크 암(517b)을 포함한다. 제1 링크 암(517a)은 일단이 제1 메인 이동블록(510a)에 힌지핀(515)에 의해 회전가능하게 연결되고 타단이 제1 보조 이동블록(530)에 결합된다. 제2 링크 암(517b)은 일단이 제2 메인 이동블록(510b)에 회전가능하게 연결되고 타단이 제1 보조 이동블록(530)에 결합된다. 도 6의 (b)를 참조하면, 제1 메인 이동블록(510a) 및 제2 메인 이동블록(510b)이 서로 멀어지면 제1 링크 암(517a) 및 제2 링크 암(517b)이 회전하고 이에 따라 제1 및 제2 링크 암(517a, 517b)에 결합된 제1 보조 이동블록(530)이 X축방향으로 이동하는 것이다. 이와 같은 링크 구조에 의해 프로브(570)가 결합되는 제1 보조 이동블록(530)이 X축방향으로 이동가능하며, 이에 따라 프로브(570)의 Y축방향으로의 이동을 최소화할 수 있고, 갠트리(200)를 일정 속도로 이동시키면서 프로브(570)의 흔들림 없이 결함을 측정할 수 있다.
도 7은 본 발명의 일 실시예의 다른 변형예에 따른 기판 결함 검사 장치의 참고도이며, 도 7을 참고하면, 메인 이동블록(510)은 갠트리 본체(230)에 Y축방향으로 이동가능하게 결합되고, 제1 보조 이동블록(530)은 링크 구조에 의해 메인 이동블록(510)에 X축방향으로 이동가능하게 결합되며, 링크 구조는, 일단이 메인 이동블록(510)에 회전가능하게 연결되는 제3 링크 암(517c); 제3 링크 암(517c)에 이격되어 구비되고, 일단이 메인 이동블록(510)에 회전가능하게 연결되는 제4 링크 암(517d); 일단이 제3 링크 암(517c)의 타단에 회전가능하게 연결되고 타단이 제1 보조 이동블록(530)에 결합되는 제5 링크 암(517e); 및 일단이 제4 링크 암(517d)의 타단에 회전가능하게 연결되고 타단이 제1 보조 이동블록(530)에 결합되는 제6 링크 암(517f)을 포함할 수 있다.
본 실시예는 가장 앞선 실시예의 다른 변형예로서, 프로브(570)를 X축방향으로 이동시키기 위한 구성을 앞선 제1 실시예와 달리한다. 본 실시예의 경우, 메인 이동블록(510), 제1 보조 이동블록(530) 및 링크 구조를 제외하고는 앞선 제1 실시예의 구성과 동일하므로 동일한 구성에 대하여는 앞선 제1 실시예의 설명에 갈음하기로 한다.
본 실시예의 경우, 갠트리 본체(230)의 상면에 Y축방향으로 가이드 레일(231, 535, 537)이 형성되고, 메인 이동블록(510)은 갠트리 본체(230)에 Y축방향으로 이동가능하게 결합된다.
프로브(570)가 결합되는 제1 보조 이동블록(530)은 링크 구조에 의해 메인 이동블록(510)에 X축방향으로 이동가능하게 결합된다. 링크 구조는 제3 링크 암(517c), 제4 링크 암(517d), 제5 링크 암(517e) 및 제6 링크 암(517f)을 포함한다. 제3 링크 암(517c)은 일단이 메인 이동블록(510)에 힌지핀(515)에 의해 회전가능하게 연결되고, 타단이 제5 링크 암(517e)의 일단에 연결된다. 제4 링크암은 제3 링크 암(517c)에 이격되어 구비되고, 일단이 메인 이동블록(510)에 힌지핀(515)에 의해 회전가능하게 연결되며, 타단이 제6 링크 암(517f)의 일단에 연결된다. 제5 링크 암(517e)은 일단이 제3 링크 암(517c)의 타단에 힌지핀(515)에 의해 회전가능하게 연결되고, 타단이 제1 보조 이동블록(530)에 결합된다. 제6 링크 암(517f)은 일단이 제4 링크 암(517d)의 타단에 힌지핀(515)에 의해 회전가능하게 연결되고 타단이 제1 보조 이동블록(530)에 결합된다. 도 7의 (b)를 참조하면, 제3 링크 암(517c), 제4 링크 암(517d), 제5 링크 암(517e) 및 제6 링크 암(517f)이 회전함에 따라 제1 보조 이동블록(530)이 X축방향으로 이동한다. 이와 같은 링크 구조에 의해 프로브(570)가 결합되는 제1 보조 이동블록(530)이 X축방향으로 이동가능하며, 이에 따라 프로브(570)의 Y축방향으로의 이동을 최소화할 수 있고, 갠트리(200)를 일정 속도로 이동시키면서 프로브(570)의 흔들림 없이 결함을 측정할 수 있다.
한편, 도면에 도시되지 않았지만, 전술한 두 가지의 변형예의 경우도, 제1 보조 이동블록(530)에 Z축방향으로 이동 가능하게 결합되는 제2 보조 이동블록(550)을 포함할 수 있고, 프로브(570)는 제2 보조 이동블록(550)에 결합될 수 있다.
도 8은 본 발명의 일 실시예에 따른 기판 결함 검사 장치(100)를 이용한 기판 결함 검사 방법을 설명하기 위한 순서도이다. 도 8을 참조하면, 본 실시예에 따른 기판 결함 검사 방법은, 스테이지(300)에 안착된 기판(310)의 결함의 좌표를 입력하는 단계; 입력된 좌표에 따라 기판 결함 검사 장치(100)의 이동경로를 생성하는 단계; 생성된 이동경로에 따라 기설정된 일정 속도로 갠트리(200)를 X축방향으로 이동시키는 단계; 메인 이동블록(510) 및 보조 이동 블록 중 적어도 하나를 이동하여 프로브(570)를 결함에 근접하게 위치시키는 단계; 프로브(570)가 기판(310)의 결함에 대하여 일시적으로 정지되도록, 제1 보조 이동블록(530)을 갠트리(200)의 이동 속도와 동일한 속도로 갠트리(200)의 이동 방향의 반대의 X축방향으로 이동시키는 단계; 및 프로브(570)가 기판(310)의 결함에 대하여 일시적으로 정지될 때 기판(310)의 결함을 측정하는 단계를 포함한다.
기판(310)의 결함 좌표를 입력하는 단계(S100)는, 작업자가 기판(310)에 결함이 있다고 판단되는 좌표를 입력하는 단계이다. 이때 작업자에 의해 입력되는 결함 좌표는 복수개가 입력될 수 있다.
전체 이동경로를 생성하는 단계(S200)는, 입력된 결함 좌표에 근거하여 결함 좌표간 최단 이동경로를 생성하는 단계이다. 입력된 결함 좌표에 따라 이동경로를 생성하는 단계는, 입력된 복수개의 좌표 상에 위치한 결함에 근거하여 프로브(570)가 최단 거리로 이동하기 위한 이동경로를 생성하는 단계이다. 구체적으로, 입력된 결함 좌표에 따라 이동경로를 생성하는 단계는, 제1 보조 이동 블록(530)의 이동 가능 영역 내에 위치한 복수개의 결함 좌표 중 현재 측정한 결함 좌표로부터 최단 거리에 위치한 결함 좌표를 다음 측정 대상으로 설정하여 최단 이동경로를 생성한다. 이때, 제1 보조 이동 블록(530)의 이동 가능 영역이란, 제1 보조 이동 블록(530)이 가이드 레일(535)을 따라 X축방향으로 이동가능한 거리를 의미하며, 가이드 레일(535)의 길이이거나 가이드 레일(535)의 길이 내에서 기설정된 거리일 수 있다. 본 실시예의 경우 제1 보조 이동 블록(530)을 이용하여 X축방향으로 이동 가능하므로 동일 X축상의 결함이 아닌 경우라도 측정이 가능하므로, 현재 측정한 결함 좌표로부터 최단 거리에 위치한 결함 좌표를 다음 측정 대상으로 할 수 있어 결함 좌표간 최단 이동경로를 생성할 수 있다(도 4 참조). 따라서, 프로브(570)가 최단 거리로 이동됨에 따라 종래기술(도 2 참조)에 비해 기판(310)의 결함 측정 시간을 단축할 수 있다.
이 후, 갠트리(200), 메인 이동블록(510) 및 제1 보조 이동블록(530)이 생성된 최단 이동경로를 따라 이동하여 프로브(570)를 입력된 좌표상에 위치시킨다.
갠트리(200)를 이동시키는 단계(S300)는 결함이 존재한다고 판단되는 영역에 갠트리(200)를 X축방향으로 이동시켜 위치시키는 단계이다. 이때, 갠트리(200)를 이동시키면서 결함을 측정하고자 하는 경우에는, 갠트리(200)를 기설정된 일정 속도로 지속적으로 이동시킬 수 있다.
프로브(570)를 이동시키는 단계(S400)는, 메인 이동블록(510) 및 제1 보조 이동블록(530) 중 적어도 하나를 이용하여 프로브(570)를 입력된 결함 좌표에 근접하게 이동시키는 단계이다. 이때, 프로브(570)가 갠트리(200)의 이동과는 별도로 X축방향으로 이동할 수 있게 되어, 종래기술과 달리 X축의 좌표가 같은 결함뿐 아니라 프로브(570)의 X축 이동 범위안에서 X축의 좌표가 다른 결함 또한 측정이 가능하게 된다(도 4 참조). 한편, 갠트리(200)를 일정 속도로 이동시키면서 결함을 측정하는 경우에는, 프로브(570)는 제1 보조 이동블록(530)의 이동에 의해 결함에 대하여 일시적으로 정지하는 현상을 발생시킬 수 있도록, X축방향으로 결함 좌표에 선행하여 위치하는 것이 바람직하다.
기판(310)의 결함을 측정하는 단계(S500)는, 프로브(570)를 이용하여 기판(310)의 결함을 측정하는 단계이다. 이때, 프로브(570)가 제1 보조 이동블록(530)에 의해 X축방향으로 이동이 가능하므로, 종래기술(도 2 참조)와 달리 Y축방향으로의 이동을 최소화하면서 복수개의 결함을 측정할 수 있다(도 4 참조). 한편, 갠트리(200)를 일정 속도로 이동시키면서 결함을 측정하는 경우에는, 갠트리(200)의 이동 속도와 동일한 속도로 갠트리(200)의 이동 방향의 반대의 X축방향으로 프로브(570)를 이동시켜, 프로브(570)가 기판(310)의 결함에 대하여 일시적으로 정지하는 현상이 나타나도록 하여 프로브(570)의 흔들림 없이 결함을 측정할 수 있다. 즉, 프로브(570)의 위치를 일시적으로 고정시켜서 기판(310)의 결합을 측정할 수 있다.
마지막으로, 측정된 좌표가 최종 결함 좌표인지 여부를 판단하는 단계(S600)는 측정된 결함 좌표가 입력된 결함 좌표 중 최종 결함 좌표인지 여부를 판단하여 결함 측정을 종료할지 여부를 판단하는 단계이다. 구체적으로, 현재 측정된 결함 좌표가 최종 결함 좌표가 아닌 경우 최단 이동경로 상에 있는 다른 결함 좌표로 프로브(570)를 이동하여 결함을 측정하며, 현재 측정된 좌표가 최종 결함 좌표인 경우 현재 측정 영역에서의 측정을 종료하고 다음 측정 영역으로 기판 결함 검사 장치(100)를 이동시킨다. 이와 같은 과정을 통해 생성된 최단 이동경로에 따라 프로브(570)를 이동시키면서 빠른 시간내에 복수개의 결함을 측정할 수 있다.
이상에서는 본 발명의 실시예를 참조하여 설명하였지만, 해당 기술 분야에서 통상의 지식을 가진 자라면 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 쉽게 이해할 수 있을 것이다.
- 부호의 설명 -
100: 기판 결함 검사 장치 200: 갠트리(Gantry)
210: 지지대 230: 갠트리 본체
231, 535, 537: 가이드 레일 300: 스테이지
310: 기판 510: 메인 이동블록
510a: 제1 메인 이동블록 510b: 제2 메인 이동블록
511: 수평 메인 이동블록 513: 수직 메인 이동블록
515: 힌지핀 517a: 제1 링크 암
517b: 제2 링크 암 517c: 제3 링크 암
517d: 제4 링크 암 517e: 제5 링크 암
517f: 제6 링크 암 518, 519, 551: LM 가이드 블록
530: 제1 보조 이동블록 531: 수평 보조 이동블록
533: 수직 보조 이동블록 550: 제2 보조 이동블록
570: 프로브 600: 제어부

Claims (10)

  1. 기판이 안착되는 스테이지;
    상기 스테이지에 X축방향으로 이동가능하게 결합되는 갠트리;
    상기 기판의 상부에 위치하며, Y축방향으로 이동가능하도록 상기 갠트리에 결합되는 메인 이동블록;
    상기 메인 이동블록에 X축방향으로 이동가능하게 결합되는 제1 보조 이동블록;
    상기 기판의 상부에 위치하도록 상기 제1 보조 이동블록에 설치되며, 상기 기판의 결함을 측정하는 프로브; 및
    상기 갠트리를 X축방향으로 지속적으로 이동시키면서 상기 갠트리에 대한 상기 제1 보조 이동블록의 상대 속도를 제어하는 제어부를 포함하는, 기판 결함 검사 장치.
  2. 제 1항에 있어서,
    상기 제1 보조 이동블록은,
    상기 기판에 대향하며 X축방향으로 이동가능하도록 상기 메인 이동블록에 결합되는 수평 보조 이동블록; 및
    상기 수평 보조 이동블록에 Z축방향으로 절곡되어 결합되는 수직 보조 이동블록을 포함하는, 기판 결함 검사 장치.
  3. 제 2항에 있어서,
    상기 수직 보조 이동블록에 Z축방향으로 이동가능하게 결합되는 제2 보조 이동블록을 더 포함하며,
    상기 프로브는 상기 기판의 상부에 위치하도록 상기 제2 보조 이동블록에 결합되는, 기판 결함 검사 장치.
  4. 제 1항에 있어서,
    상기 제어부는,
    상기 갠트리가 기설정된 일정 속도로 이동하도록 제어하고, 상기 프로브의 측정 동작을 제어하며,
    상기 제1 보조 이동블록이 상기 갠트리의 이동 속도와 동일한 속도로 상기 갠트리의 이동 방향의 반대의 X축방향으로 이동되도록 제어하여, 상기 프로브가 상기 기판의 결함에 대하여 일시적으로 정지할 때 상기 기판의 결함을 측정하는, 기판 결함 검사 장치.
  5. 제 1항에 있어서,
    상기 갠트리는,
    X축방향으로 이동하며, 상기 스테이지의 양 측에 이격되어 구비되는 한 쌍의 지지대; 및
    상기 지지대에 의해 지지되어 상기 스테이지의 상부에 위치하는 갠트리 본체를 포함하는, 기판 결함 검사 장치.
  6. 제 5항에 있어서,
    상기 메인 이동블록은, 상기 갠트리 본체에 Y축방향으로 이동가능하게 결합되는 제1 메인 이동블록 및 상기 제1 메인 이동블록에 이격되어 상기 갠트리 본체에 Y축방향으로 이동가능하게 결합되는 제2 메인 이동블록을 포함하고,
    상기 제1 보조 이동블록은 링크 구조에 의해 상기 제1 및 제2 메인 이동블록에 X축방향으로 이동가능하게 결합되며,
    상기 링크 구조는,
    일단이 상기 제1 메인 이동블록에 회전가능하게 연결되고 타단이 상기 제1 보조 이동블록에 결합되는 제1 링크 암; 및
    일단이 상기 제2 메인 이동블록에 회전가능하게 연결되고 타단이 상기 제1 보조 이동블록에 결합되는 제2 링크 암을 포함하는, 기판 결함 장치.
  7. 제 5항에 있어서,
    상기 메인 이동블록은 상기 갠트리 본체에 Y축방향으로 이동가능하게 결합되고,
    상기 제1 보조 이동블록은 링크 구조에 의해 상기 메인 이동블록에 X축방향으로 이동가능하게 결합되며,
    상기 링크 구조는,
    일단이 상기 메인 이동블록에 회전가능하게 연결되는 제3 링크 암;
    상기 제3 링크 암에 이격되어 구비되고, 일단이 상기 메인 이동블록에 회전가능하게 연결되는 제4 링크 암;
    일단이 상기 제3 링크 암의 타단에 회전가능하게 연결되고 타단이 상기 제1 보조 이동블록에 결합되는 제5 링크 암; 및
    일단이 상기 제4 링크 암의 타단에 회전가능하게 연결되고 타단이 상기 제1 보조 이동블록에 결합되는 제6 링크 암을 포함하는, 기판 결함 장치.
  8. 제 1항에 따른 기판 결함 장치를 이용한 결함 검사 방법으로서,
    상기 스테이지에 안착된 상기 기판의 결함의 좌표를 입력하는 단계;
    상기 입력된 좌표에 따라 전체 이동경로를 생성하는 단계;
    생성된 상기 이동경로에 따라 기설정된 일정 속도로 상기 갠트리를 X축방향으로 이동시키는 단계;
    상기 메인 이동블록 및 상기 제1 보조 이동 블록 중 적어도 하나를 이동하여 상기 프로브를 상기 결함에 근접하게 위치시키는 단계;
    상기 프로브가 상기 기판의 결함에 대하여 일시적으로 정지되도록, 상기 제1 보조 이동블록을 상기 갠트리의 이동 속도와 동일한 속도로 상기 갠트리의 이동 방향의 반대의 X축방향으로 이동시키는 단계; 및
    상기 프로브가 상기 기판의 결함에 대하여 일시적으로 정지될 때 상기 기판의 결함을 측정하는 단계를 포함하는, 기판 결함 검사 방법.
  9. 제 8항에 있어서,
    상기 입력된 결함 좌표에 따라 이동경로를 생성하는 단계는,
    상기 제1 보조 이동 블록의 이동 가능 영역 내에 위치한 결함 좌표 중 현재 측정한 결함 좌표로부터 최단 거리에 위치한 결함 좌표를 다음 측정 대상으로 설정하여 최단 이동경로를 생성하는, 기판 결함 검사 방법.
  10. 제 9항에 있어서,
    상기 기판의 결함을 측정하는 단계 이후,
    현재 측정한 결함 좌표가 최종 결함 좌표인지 여부를 판단하는 단계를 더 포함하며,
    현재 측정한 결함 좌표가 최종 결함 좌표가 아닌 경우, 상기 프로브를 현재 측정한 결함 좌표로부터 최단 거리에 위치한 결함 좌표로 이동시키는, 기판 결함 검사 방법.
PCT/KR2017/005186 2016-05-18 2017-05-18 기판 결함 검사 장치 및 이를 이용한 검사 방법 WO2017200324A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780004216.7A CN108291879B (zh) 2016-05-18 2017-05-18 基板缺陷检测装置及利用它的检测方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0060990 2016-05-18
KR1020160060990A KR101751801B1 (ko) 2016-05-18 2016-05-18 기판 결함 검사 장치 및 이를 이용한 검사 방법

Publications (1)

Publication Number Publication Date
WO2017200324A1 true WO2017200324A1 (ko) 2017-11-23

Family

ID=59280335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005186 WO2017200324A1 (ko) 2016-05-18 2017-05-18 기판 결함 검사 장치 및 이를 이용한 검사 방법

Country Status (3)

Country Link
KR (1) KR101751801B1 (ko)
CN (1) CN108291879B (ko)
WO (1) WO2017200324A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102308226B1 (ko) * 2020-11-24 2021-11-04 디아이티 주식회사 기판표면 결함 리뷰장치
CN116609336A (zh) * 2023-04-26 2023-08-18 晶诺微(上海)科技有限公司 缺陷检测设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8109395B2 (en) * 2006-01-24 2012-02-07 Asm Technology Singapore Pte Ltd Gantry positioning system
KR20140012250A (ko) * 2012-07-19 2014-02-03 (주)미토스 라인 빔을 이용한 유리기판 결함 측정 장치 및 측정 방법
KR101444735B1 (ko) * 2013-05-23 2014-09-26 한국전기연구원 회전체 변위 측정용 지그 장치
KR101500523B1 (ko) * 2007-12-26 2015-03-09 가부시키가이샤 유니온 아로 테크놀로지 기판 검사 장치
KR20150076544A (ko) * 2013-12-27 2015-07-07 세메스 주식회사 기판 결함 리뷰 방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100382272C (zh) * 1999-11-05 2008-04-16 拓普康株式会社 半导体器件检查装置
TW200506375A (en) * 2003-05-16 2005-02-16 Tokyo Electron Ltd Inspection apparatus
JP4653500B2 (ja) * 2005-01-18 2011-03-16 オリンパス株式会社 座標検出装置及び被検体検査装置
JP5002961B2 (ja) * 2006-01-11 2012-08-15 ソニー株式会社 欠陥検査装置及び欠陥検査方法
JP2009014617A (ja) * 2007-07-06 2009-01-22 Olympus Corp 基板外観検査装置
CN101852744B (zh) * 2009-03-30 2012-11-21 松下电器产业株式会社 拍摄检查装置及拍摄检查方法
CN203443900U (zh) * 2013-06-24 2014-02-19 京东方科技集团股份有限公司 一种基板检测装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8109395B2 (en) * 2006-01-24 2012-02-07 Asm Technology Singapore Pte Ltd Gantry positioning system
KR101500523B1 (ko) * 2007-12-26 2015-03-09 가부시키가이샤 유니온 아로 테크놀로지 기판 검사 장치
KR20140012250A (ko) * 2012-07-19 2014-02-03 (주)미토스 라인 빔을 이용한 유리기판 결함 측정 장치 및 측정 방법
KR101444735B1 (ko) * 2013-05-23 2014-09-26 한국전기연구원 회전체 변위 측정용 지그 장치
KR20150076544A (ko) * 2013-12-27 2015-07-07 세메스 주식회사 기판 결함 리뷰 방법

Also Published As

Publication number Publication date
CN108291879A (zh) 2018-07-17
KR101751801B1 (ko) 2017-06-29
CN108291879B (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
WO2015083858A1 (ko) Amoled 패널 검사를 위한 표시 패널 검사 장치 및 그 방법
WO2009104876A2 (ko) 비전 검사 시스템 및 이것을 이용한 피검사체의 검사 방법
WO2012050378A2 (ko) 기판 검사방법
KR20100023258A (ko) 평판디스플레이 패널 검사 장비 및 방법
WO2017200324A1 (ko) 기판 결함 검사 장치 및 이를 이용한 검사 방법
KR20150018122A (ko) 플렉서블 인쇄회로기판의 자동광학검사장치
JP2010156684A (ja) アレイテスト装置と、該アレイテスト装置の基板一地点位置測定方法と、カメラアセンブリーに撮像された特定位置座標測定方法
CN203069520U (zh) 多功能pcb自动测试系统
WO2023216568A1 (zh) 一种测试设备和测试方法
WO2012134146A1 (ko) 스테레오 비전과 격자 무늬를 이용한 비전검사장치
TW201514520A (zh) 電性檢查裝置
JPH08171057A (ja) 複数ヘッド顕微鏡装置
WO2015099370A1 (ko) 곡면 패널 디스플레이 결함 리페어 장치
CN104362108A (zh) 光电测试装置
KR102150940B1 (ko) 프로브 블록 별 자동 정밀 제어가 가능한 어레이 테스트 장치
WO2023101215A1 (ko) 마이크로 led 칩 전사 장치
WO2012077964A2 (en) Jig for adjusting film pitch, apparatus for joining film having the same, and method of adjusting film pitch using the apparatus
WO2013119014A1 (ko) 전극패턴 검사장치
KR100756438B1 (ko) 엘씨디 셀 검사용 프로빙장치
WO2022114340A1 (ko) 스마트 비전 얼라인먼트 시스템 및 이를 이용한 스마트 비전 얼라인먼트 방법
WO2013125864A1 (ko) 전극패턴 검사장치
WO2020105978A1 (ko) 3차원 자유곡면 형상 측정 장치 및 방법
JP2769372B2 (ja) Lcdプローブ装置
WO2022173120A1 (ko) 찍힘 유니트를 구비한 검사 장치
WO2015072594A1 (ko) 레이저 칩 본딩기의 칩 정렬장치

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799681

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17799681

Country of ref document: EP

Kind code of ref document: A1