WO2017199645A1 - 電力供給装置、電力供給方法及び蓄電装置 - Google Patents

電力供給装置、電力供給方法及び蓄電装置 Download PDF

Info

Publication number
WO2017199645A1
WO2017199645A1 PCT/JP2017/014792 JP2017014792W WO2017199645A1 WO 2017199645 A1 WO2017199645 A1 WO 2017199645A1 JP 2017014792 W JP2017014792 W JP 2017014792W WO 2017199645 A1 WO2017199645 A1 WO 2017199645A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
charging
switch
discharging unit
discharging
Prior art date
Application number
PCT/JP2017/014792
Other languages
English (en)
French (fr)
Inventor
真実 岡田
淳志 南
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2018518157A priority Critical patent/JP6844618B2/ja
Priority to CN201780020995.XA priority patent/CN108886263B/zh
Priority to EP17799077.7A priority patent/EP3439133B1/en
Publication of WO2017199645A1 publication Critical patent/WO2017199645A1/ja
Priority to US16/110,380 priority patent/US10749374B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0025Sequential battery discharge in systems with a plurality of batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies

Definitions

  • This technology relates to a grid-connected power supply device, a power supply method, and a power storage device.
  • a technology for connecting a power generation facility that uses natural energy such as solar power generation and wind power generation to a power system of an electric power company is generally referred to as grid interconnection.
  • grid interconnection the same quality as the power supplied by the power company is required, so if the voltage generated by solar power generation or wind power generation becomes overvoltage or undervoltage, or the frequency increases or decreases Adversely affect the quality of the entire grid of the power company. When these defects are detected, it is necessary to immediately disconnect them from the system. Detachment is called separation.
  • an electric power supply system in which generated electric power is temporarily stored in an electric storage system and electric power is supplied from the electric storage system to a load.
  • Patent Document 1 describes that, in a power supply system having such a power storage system, when a power failure or the like occurs, switching to a self-supporting state in which power is supplied from the power storage system to a predetermined load without using a system power supply is described. .
  • the present technology provides a power supply device, a power supply method, and a power storage device that can share a single power storage system for reverse power flow and independent operation.
  • the present technology includes a switch inserted between a power system and a predetermined load that needs to supply power without interruption in the event of a power failure,
  • a power storage system having a storage battery, a first charging and discharging unit inserted between the storage battery and the power system, and a second charging and discharging unit inserted between the storage battery and a predetermined load;
  • the switch is opened and the power system and the predetermined load are disconnected, and the first charging and discharging unit performs reverse power flow for a predetermined time, and the second charging and discharging unit
  • This is a power supply device that supplies power to a predetermined load from the power supply.
  • the present technology includes a switch inserted between a power system and a predetermined load that needs to supply power without interruption in the event of a power failure, a storage battery, a first charge inserted between the storage battery and the power system, and A power storage system having a discharging unit, a second charging and discharging unit inserted between the storage battery and a predetermined load, and a switch, a first charging and discharging unit, and a second charging and discharging unit are controlled.
  • a power supply method of a power supply device comprising a control unit, When a system abnormality occurs by the control unit, the switch is opened and the power system and the predetermined load are disconnected, and the first charging and discharging unit performs reverse power flow for a predetermined time, and the second charging and discharging unit
  • This is a power supply method in which power is supplied from a power source to a predetermined load.
  • This technology includes a storage battery, A first charging and discharging unit connected to the storage battery, and a second charging and discharging unit; A control unit for controlling each state of the first charging and discharging unit and the second charging and discharging unit to any one of a charging operation, a discharging operation, and a charging / discharging stop; A power storage device comprising: a power input / output unit connected to the first charging / discharging unit; and a power input / output unit connected to the second charging / discharging unit.
  • the present technology is an electronic device that is supplied with power by the power storage device.
  • a single power storage system can supply power to a predetermined load without interruption in the event of a system failure, and can meet FRT requirements.
  • the effects described here are not necessarily limited, and may be any of the effects described in the present technology.
  • the power supply system includes a system power supply 1, a distributed power supply 2, and a power storage system 3.
  • the system power source 1 is a power source provided by an electric power company.
  • the distributed power source 2 includes a power generator 2a using natural energy such as sunlight and a PCS (power conditioner) 2b.
  • the distributed power source 2, the general load 5, and the switch 6 are connected to the power line 4 connected to the system power source 1 and wired.
  • a specific load 8 is connected to a power line 7 extending from the switch 6.
  • the switch 6 cuts off or connects power transmission between the power line 4 and the power line 7.
  • the specific load 8 is a predetermined load that needs to be supplied with electric power without interruption during a power failure.
  • the general load 5 is a load that does not need to supply power during a power failure.
  • the definition of no instantaneous interruption is not limited to complete instantaneous interruption, and an instantaneous interruption of about several milliseconds is also defined as no instantaneous interruption.
  • the power storage system 3 includes a storage battery 9, a first bidirectional converter 10 and a second bidirectional converter 11, and a control circuit 12.
  • the storage battery 9 has a large number of battery cells connected in series and / or in parallel.
  • As the battery cell for example, a lithium ion secondary battery is used. Rechargeable battery cells other than lithium ion secondary batteries may be used.
  • the control circuit 12 may be provided in each of the bidirectional conversion devices 10 and 11. In this case, the bidirectional conversion devices 10 and 11 communicate with each other.
  • Bidirectional converters 10 and 11 have a common charge circuit configuration and discharge circuit configuration for storage battery 9. A configuration in which separate charging circuits and discharging circuits are connected in parallel may be used in place of the bidirectional converter.
  • the power input / output unit 10 a of the bidirectional conversion device 10 is connected to the power line 4, and the power input / output unit 11 a of the bidirectional conversion device 11 is connected to the power line 7.
  • Control circuit 12 controls storage battery 9, bidirectional converters 10 and 11, and switch 6.
  • the bidirectional conversion devices 10 and 11 are controlled by the control circuit 12 to any one of a charging operation, a discharging operation, and a charge / discharge stop state.
  • the bidirectional conversion device 10 and the bidirectional conversion device 11 can take different states.
  • a power meter 13 is connected to the power line 4, and a power meter 14 is connected to the power line 7.
  • the power meter 13 measures the power of the power line 4 and detects whether the specified power is present on the power line 4.
  • the power meter 14 detects whether or not specified power is present on the power line 7. That is, the power meters 13 and 14 detect an abnormality in the system power supply.
  • An abnormality of the system power supply may be detected by measuring voltage, current, frequency, and the like.
  • the detection results of the power meters 13 and 14 are supplied to the control circuit 12.
  • the system abnormality detection may be detected by the both conversion devices 10 and 11.
  • the switch 6 may detect a system abnormality and control the switch by itself according to the detection result. In this case, the control circuit detects that the switch 6 is turned off, and an operation is performed when the system is abnormal.
  • OVGR Ground Fault Protection Device
  • RPR Reverse / Power Flow / Relay
  • the OVGR 15 is a device that monitors whether the system is normal or abnormal.
  • the RPR 16 is a device that monitors the reverse flow from the storage battery 9 because the reverse flow from the storage battery 9 cannot be performed.
  • the OVGR 15 and RPR 16 supply detection signals to the control circuit 12.
  • Step ST1 The storage battery 9 is discharged through the bidirectional converters 10 and 11 (interconnection discharge operation). In this state, the switch 6 is closed (ON).
  • Step ST2 The occurrence of system abnormality is monitored by the power meter 13.
  • Step ST3 When the occurrence of system abnormality is detected, the switch 6 is opened (OFF) by the control circuit 12 without instantaneous interruption.
  • Step ST4 One bidirectional converter 10 performs the grid discharge operation even after the detection of the system abnormality, and performs the operation corresponding to the FRT. For example, power supply to the power line 4 is continued by the bidirectional conversion device 10 for a predetermined time. The other bidirectional converter 11 supplies power to the specific load 8 through the power line 7 by self-sustaining discharge. Thus, the self-sustained discharge and the operation corresponding to FRT can be performed simultaneously.
  • Step ST5 It is determined whether the system abnormality continues.
  • Step ST6 When it is determined that the system abnormality does not continue, the switch 6 is closed. And a process returns to step ST1 (interconnection discharge). However, an arbitrary operation such as stopping the control may be performed instead of closing the switch 6.
  • Step ST7 When it is determined in step ST5 that the system abnormality continues, the bidirectional conversion device 10 enters a charge / discharge stop state, and the bidirectional conversion device 11 continues the self-sustained discharge.
  • Step ST11 The storage battery 9 is charged through the bidirectional conversion devices 10 and 11 (interconnection charging operation). In this state, the switch 6 is closed (ON).
  • Step ST12 The occurrence of system abnormality is monitored by the power meter 13.
  • Step ST13 When the occurrence of system abnormality is detected, the switch 6 is opened (OFF) by the control circuit 12 without instantaneous interruption.
  • Step ST14 One bidirectional converter 10 stops charging / discharging.
  • the other bidirectional converter 11 supplies power to the specific load 8 through the power line 7 by self-sustaining discharge. Electric power is supplied to the specific load 8 without interruption. In addition, you may make it perform FRT corresponding
  • Step ST15 It is determined whether the system abnormality continues.
  • Step ST16 When it is determined that the system abnormality has not continued, the switch 6 is closed. And a process returns to step ST11 (interconnection charge). However, an arbitrary operation such as stopping the control may be performed instead of closing the switch 6.
  • Step ST17 When it is determined in step ST15 that the system abnormality continues, the bidirectional converter 10 continues the charge / discharge stop state, and the bidirectional converter 11 continues the self-sustained discharge.
  • Step ST21 The bidirectional conversion devices 10 and 11 are in a charge / discharge stopped state. In this state, the switch 6 is closed (ON).
  • Step ST22 The occurrence of system abnormality is monitored by the power meter 13.
  • Step ST23 When the occurrence of system abnormality is detected, the switch 6 is opened (OFF) by the control circuit 12 without instantaneous interruption.
  • Step ST24 One bidirectional converter 10 stops charging / discharging.
  • the other bidirectional converter 11 supplies power to the specific load 8 through the power line 7 by self-sustaining discharge. Electric power is supplied to the specific load 8 without interruption.
  • Step ST25 It is determined whether the system abnormality continues.
  • Step ST26 When it is determined that the system abnormality does not continue, the switch 6 is closed. And a process returns to step ST21 (interconnection charge). However, an arbitrary operation such as stopping the control may be performed instead of closing the switch 6.
  • Step ST27 When it is determined in step ST15 that the system abnormality continues, the bidirectional converter 10 continues the charge / discharge stop state, and the bidirectional converter 11 continues the self-sustained discharge.
  • FIG. 5A shows a case where the bidirectional conversion device 10 is in a charge / discharge stop state and the bidirectional conversion device 11 is in a connected charge state. In this case, the same processing as in FIG. 4 is performed.
  • FIG. 5B shows a case where the bidirectional conversion device 10 is in a connected charge state and the bidirectional conversion device 11 is in a charge / discharge stop state. In this case, the same processing as in FIG. 3 is performed.
  • FIG. 5C shows a case where the bidirectional conversion device 10 is in a connected discharge state and the bidirectional conversion device 11 is in a charge / discharge stop state. In this case, the same processing as in FIG. 2 is performed.
  • FIG. 5D shows a case where the bidirectional conversion device 10 is in a charge / discharge stop state and the bidirectional conversion device 11 is in an interconnected discharge state. In this case, the same processing as in FIG. 4 is performed.
  • the power supply system includes a system power supply 1, a distributed power supply 2, and a power storage system 3.
  • the system power source 1 is a power source provided by an electric power company.
  • the distributed power source 2 includes a power generator 2a using natural energy such as sunlight and a PCS (power conditioner) 2b.
  • a switch 17 is added. That is, the general load 5 and the switch 17 are connected to the power line 4 connected to the system power supply 1 and wired. Switch 6 is connected to power line 18 extending from switch 17. The switch 17 cuts off or connects power transmission between the power line 4 and the power line 18. The distributed power source 2 and the specific load 19 are connected to the power line 18.
  • the specific load 8 is connected to the power line 7 extending from the switch 6.
  • the switch 6 cuts off or connects power transmission between the power line 7 and the power line 18.
  • the specific load 8 is a predetermined load that needs to be supplied with electric power without interruption during a power failure.
  • the specific load 19 may be momentarily interrupted at the time of a power failure, but is a load that the operation is desired to continue.
  • the general load 5 is a load that does not require power to be supplied during a power failure.
  • the power storage system 3 includes a storage battery 9, bidirectional conversion devices 10 and 11, and a control circuit 12.
  • the storage battery 9 has a large number of battery cells connected in series and / or in parallel.
  • a lithium ion secondary battery is used as the battery cell.
  • Rechargeable battery cells other than lithium ion secondary batteries may be used.
  • Bidirectional converters 10 and 11 have a common charge circuit configuration and discharge circuit configuration for storage battery 9. A configuration in which separate charging circuits and discharging circuits are connected in parallel may be used in place of the bidirectional converter.
  • Bidirectional converter 10 is connected to power line 18, and bidirectional converter 11 is connected to power line 7.
  • the control circuit 12 controls the storage battery 9, the bidirectional converters 10 and 11, and the switches 6 and 8.
  • the bidirectional conversion devices 10 and 11 are controlled by the control circuit 12 to any one of a charging operation, a discharging operation, and a charge / discharge stop state.
  • a power meter 20 is connected to the power line 4, a power meter 13 is connected to the power line 18, and a power meter 14 is connected to the power line 7.
  • the power meter 20 measures the power of the power line 4 and detects whether the specified power is present on the power line 4.
  • the power meters 13 and 14 detect whether or not prescribed power is present in the power lines 18 and 7, respectively, that is, an abnormality in the system power supply. An abnormality of the system power supply may be detected by measuring the voltage or current.
  • the detection results of the power meters 13, 14 and 20 are supplied to the control circuit 12.
  • OVGR Ground Fault Protection Device
  • RPR Reverse / Power Flow / Relay
  • the OVGR 15 is a device that monitors whether the system is normal or abnormal.
  • the RPR 16 is a device that monitors the reverse flow from the storage battery 9 because the reverse flow from the storage battery 9 cannot be performed.
  • the OVGR 15 and RPR 16 supply detection signals to the control circuit 12.
  • An RPR 21 is connected to the power line 18.
  • the RPR 21 is a device that monitors current flowing from the bidirectional conversion device 11 via the switch 6.
  • Step ST31 The storage battery 9 is discharged through the bidirectional conversion devices 10 and 11 (interconnection discharge operation is performed). In this state, the switches 6 and 8 are closed (ON).
  • Step ST32 The occurrence of system abnormality is monitored by the power meter 20.
  • Step ST33 When the occurrence of system abnormality is detected, the switch 6 is opened (OFF) by the control circuit 12 without instantaneous interruption. The switch 17 remains closed.
  • Step ST34 One bidirectional conversion device 10 performs a grid discharge operation even after detection of a system abnormality, and performs an operation corresponding to FRT. For example, power supply to the power line 16 is continued by the bidirectional conversion device 10 for a predetermined time. The other bidirectional converter 11 supplies power to the specific load 8 through the power line 7 by self-sustaining discharge. Thus, the self-sustained discharge and the operation corresponding to FRT can be performed simultaneously.
  • Step ST35 It is determined whether the system abnormality continues.
  • Step ST36 When it is determined that the system abnormality does not continue, the switch 6 is closed. And a process returns to step ST31 (interconnection discharge). However, an arbitrary operation such as stopping the control may be performed instead of closing the switch 6.
  • Step ST37 When it is determined in step ST35 that the system abnormality is continuing, the bidirectional conversion device 10 enters the charge / discharge stop state, and the bidirectional conversion device 11 continues the self-sustained discharge.
  • Step ST38 The switch 17 is opened. As a result, the power line 4 and the power line 18 are disconnected.
  • Step ST42 When it is determined that the system abnormality does not continue, the switch 17 is closed. And a process returns to step ST31 (interconnection discharge). However, an arbitrary operation such as stopping the control may be performed instead of closing the switch 17.
  • the bidirectional conversion device 10 is not supplying power to the power line 18, when the system abnormality occurs, the switch 6 and the switch 17 are opened and specified without interruption. It is also possible to supply power to the loads 8 and 10.
  • the second embodiment further has a reverse power flow prevention function.
  • the reverse power flow is monitored by the RPR 21.
  • the discharge power of the bidirectional conversion device 11 By controlling the discharge power of the bidirectional conversion device 11 to be equal to or less than the power consumption of the specific load 8, discharge to the system side through the switch 6 is prevented.
  • a detection signal is output from the RPR 21. This detection signal is input to the bidirectional converter 11.
  • the bidirectional converter 11 receives the detection signal, the discharge is stopped immediately.
  • the control circuit 12 commands again the appropriate discharge power according to the power consumption of the specific load 8, and the bidirectional conversion device 11 resumes the discharge.
  • the power storage system in order to satisfy a FRT requirement and a power storage system for supplying power to a specific load without instantaneous interruption when a system abnormality occurs,
  • the power storage system can be constituted by one power storage system. Therefore, compared with the structure which provides a separate electrical storage system for each objective, the circuit scales, such as a capacity
  • the conventional system requires a storage battery system of 200 kWh to shift the general load peak for 2 hours.
  • a storage battery system of 60 kWh is necessary due to the limitation of the maximum discharge rate of the storage battery, and a total capacity of 260 kWh is required.
  • a total of 210 kWh may be mounted with a 10 kWh storage battery that guarantees 10 minutes of 60 kW for a specific load and 200 kWh for a general load.
  • the house 101 is provided with a power generation device 104, a power consumption device 105, a power storage device 103, a control device 110 that controls each device, a smart meter 107, and a sensor 111 that acquires various types of information.
  • Each device is connected by a power network 109 and an information network 112.
  • a solar cell, a fuel cell, or the like is used as the power generation device 104, and the generated power is supplied to the power consumption device 105 and / or the power storage device 103.
  • the power consuming device 105 includes a refrigerator 105a, an air conditioner 105b that is an air conditioner, a television 105c that is a television receiver, a bath (bath) 105d, and the like.
  • the electric power consumption device 105 includes an electric vehicle 106.
  • the electric vehicle 106 is an electric vehicle 106a, a hybrid car 106b, and an electric motorcycle 106c.
  • the battery of the present technology is applied to the power storage device 103.
  • the battery of the present technology may be configured by, for example, the above-described lithium ion secondary battery.
  • the smart meter 107 has a function of measuring the usage amount of commercial power and transmitting the measured usage amount to an electric power company.
  • the power network 109 may be any one or a combination of DC power supply, AC power supply, and non-contact power supply.
  • the various sensors 111 are, for example, human sensors, illuminance sensors, object detection sensors, power consumption sensors, vibration sensors, contact sensors, temperature sensors, infrared sensors, and the like. Information acquired by various sensors 111 is transmitted to the control device 110. Based on the information from the sensor 111, the weather state, the state of a person, and the like can be grasped, and the power consumption device 105 can be automatically controlled to minimize the energy consumption. Furthermore, the control device 110 can transmit information regarding the house 101 to an external power company or the like via the Internet.
  • the power hub 108 performs processing such as branching of power lines and DC / AC conversion.
  • a communication method of the one information network 112 connected to the control device 110 a method using a communication interface such as UART (Universal Asynchronous Receiver-Transmitter), Bluetooth (registered trademark), ZigBee (registered trademark).
  • a sensor network based on a wireless communication standard such as Wi-Fi.
  • the Bluetooth (registered trademark) system is applied to multimedia communication and can perform one-to-many connection communication.
  • ZigBee uses the physical layer of IEEE (Institute of Electrical and Electronics Electronics) (802.15.4). IEEE 802.15.4 is the name of a short-range wireless network standard called PAN (Personal Area Network) or W (Wireless) PAN.
  • the control device 110 is connected to an external server 113.
  • the server 113 may be managed by any one of the house 101, the power company, and the service provider.
  • the information transmitted and received by the server 113 is, for example, information related to power consumption information, life pattern information, power charges, weather information, natural disaster information, and power transactions. These pieces of information may be transmitted / received from a power consuming device (for example, a television receiver) in the home, or may be transmitted / received from a device outside the home (for example, a mobile phone). Such information may be displayed on a device having a display function, such as a television receiver, a mobile phone, or a PDA (Personal Digital Assistant).
  • the control device 110 that controls each unit includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like, and is stored in the power storage device 103 in this example.
  • the control device 110 is connected to the power storage device 103, the home power generation device 104, the power consumption device 105, the various sensors 111, the server 113, and the information network 112, and adjusts, for example, the amount of commercial power used and the amount of power generation It has a function to do. In addition, you may provide the function etc. which carry out an electric power transaction in an electric power market.
  • the power is generated not only from the centralized power system 102 such as the thermal power generation 102a, the nuclear power generation 102b, and the hydropower generation 102c but also from the power generation device 104 (solar power generation, wind power generation) in the home. Can be stored. Therefore, even if the generated power of the power generation device 104 in the home fluctuates, it is possible to perform control such that the amount of power transmitted to the outside is constant or the discharge is performed as necessary.
  • the electric power obtained by solar power generation is stored in the power storage device 103, and midnight power with a low charge is stored in the power storage device 103 at night, and the power stored by the power storage device 103 is discharged during a high daytime charge. You can also use it.
  • control device 110 may be stored in the power storage device 103 or may be configured independently.
  • the power storage system 100 may be used for a plurality of homes in an apartment house, may be used for a plurality of detached houses, or may be used for improvements other than homes, in partitioned areas such as offices. There may be.
  • this technique can also take the following structures.
  • a switch inserted between the power system and a predetermined load that needs to be supplied without interruption in the event of a power failure,
  • a power storage system including a storage battery, a first charging and discharging unit inserted between the storage battery and the power system, and a second charging and discharging unit inserted between the storage battery and the predetermined load;
  • a controller for controlling the switch, the first charging and discharging unit, and the second charging and discharging unit;
  • the switch is opened to disconnect the power system from the predetermined load, and a reverse power flow is performed for a predetermined time by the first charging and discharging unit.
  • Power is supplied to the predetermined load from the charging and discharging unit of 2, If the system abnormality does not continue, close the switch, and if the system abnormality continues, keep the switch open and control the other switches from closed to open,
  • the power supply device according to any one of (1) to (5), wherein power is supplied by the first charging and discharging unit to the other load through the other switch.
  • a distributed power source is connected between the switch and the other switch,
  • a switch inserted between a power system and a predetermined load that needs to be supplied without interruption in the event of a power failure, a storage battery, and a first charging and discharging unit inserted between the storage battery and the power system A storage system having a second charging and discharging unit inserted between the storage battery and the predetermined load, the switch, the first charging and discharging unit, and the second charging and discharging unit
  • a power supply method of a power supply device comprising a control unit for controlling When a system abnormality occurs, the control unit opens the switch to disconnect between the power system and the predetermined load, and the first charging and discharging unit performs a reverse power flow for a predetermined time.
  • An electric power supply method in which electric power is supplied to the predetermined load from the charging and discharging unit.
  • a storage battery A first charging and discharging unit connected to the storage battery, and a second charging and discharging unit;
  • a control unit for controlling the state of each of the first charging and discharging unit and the second charging and discharging unit to any one of a charging operation, a discharging operation, and a charging / discharging stop;
  • a power storage device comprising: a power input / output unit connected to the first charging / discharging unit; and a power input / output unit connected to the second charging / discharging unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

電力系統と停電時に無瞬断で電力を供給する必要のある所定の負荷の間に挿入されたスイッチと、蓄電池と、蓄電池と電力系統の間に挿入された第1の充電及び放電部と、蓄電池と所定の負荷の間に挿入された第2の充電及び放電部とを有する蓄電システムと、スイッチ、第1の充電及び放電部、並びに第2の充電及び放電部を制御する制御部とを備え、制御部によって、系統異常が発生した時に、スイッチを開として電力系統と所定の負荷の間が切断され、第1の充電及び放電部によって所定時間、逆潮流がなされ、第2の充電及び放電部から所定の負荷に電力が供給されるようにした電力供給装置である。

Description

電力供給装置、電力供給方法及び蓄電装置
 本技術は 系統連系の電力供給装置、電力供給方法及び蓄電装置に関する。
 太陽光発電、風力発電等の自然エネルギーを利用して発電する発電設備を電力会社の電力系統と接続する技術を一般的に系統連系と称する。系統連系を行う場合、電力会社が供給する電力と同様の品質が要求されるため、太陽光発電や風力発電で発生した電圧が過電圧や不足電圧になったり、周波数が上昇又は低下したりすると、電力会社の系統全体の品質に悪影響を及ぼす。これらの不具合を検出した時には、即座に系統から切り離すことが必要とされる。切り離すことが解列と称される。さらに、発電した電力を蓄電システムに一旦蓄積して蓄電システムから負荷に対して電力を供給するようにした電力供給システムも知られている。
 特許文献1には、かかる蓄電システムを有する電力供給システムにおいて、停電等が発生した場合に、系統電源を使用しないで所定の負荷に蓄電システムから電力を供する自立状態に切り替えることが記載されている。
特開2015-146719号公報
 しかしながら、最近では、停電が発生した場合に所定の負荷に対して蓄電システムから電力を供給するように切り替えることにとどまらず、系統攪乱時における運転継続性能FRT(Fault Ride Through)が重要視されつつある。すなわち、分散電源の導入が拡大し、電力系統に広域且つ大量に分散電源が連系されている場合に、一斉に解列が発生すると、電力系統に大きな外乱が与えられ、電圧の変動、周波数の変動が発生して、他の需要者に対する電力品質の低下が発生する。
 このことを防止するために、FRTの機能が規定されつつある。すなわち、「電力品質を確保するために必要となる系統攪乱時の分散電源の運転継続性能の要件」(これをFRT要件という)の整備検討が進められている。例えば系統電力の電圧低下の場合に、直ぐに解列するのではなく、所定の時間(例えば数分程度)は系統連系を行うことが規定されている。上述した特許文献1は、FRT要件についての考慮が払われていないものであった。若し、特許文献1の構成においてFRT要件を満足させようとすると、自立運転の蓄電装置の他に系統に逆潮流を流すための蓄電装置を別に設ける必要があった。その結果、電池の容量の増加、制御回路等の回路規模の増大、制御の複雑化等が発生し、コスト面で不利が生じる。
 したがって、本技術は、一つの蓄電システムを逆潮流用と自立運転用に共用することができる電力供給装置、電力供給方法及び蓄電装置を提供するものである。
 上述した課題を解決するために、本技術は、電力系統と停電時に無瞬断で電力を供給する必要のある所定の負荷の間に挿入されたスイッチと、
 蓄電池と、蓄電池と電力系統の間に挿入された第1の充電及び放電部と、蓄電池と所定の負荷の間に挿入された第2の充電及び放電部とを有する蓄電システムと、
 スイッチ、第1の充電及び放電部、並びに第2の充電及び放電部を制御する制御部とを備え、
 制御部によって、系統異常が発生した時に、スイッチを開として電力系統と所定の負荷の間が切断され、第1の充電及び放電部によって所定時間、逆潮流がなされ、第2の充電及び放電部から所定の負荷に電力が供給されるようにした電力供給装置である。
 本技術は、電力系統と停電時に無瞬断で電力を供給する必要のある所定の負荷の間に挿入されたスイッチと、蓄電池と、蓄電池と電力系統の間に挿入された第1の充電及び放電部と、蓄電池と所定の負荷の間に挿入された第2の充電及び放電部とを有する蓄電システムと、スイッチ、第1の充電及び放電部、並びに第2の充電及び放電部を制御する制御部とを備える電力供給装置の電力供給方法であって、
 制御部によって、系統異常が発生した時に、スイッチを開として電力系統と所定の負荷の間が切断され、第1の充電及び放電部によって所定時間、逆潮流がなされ、第2の充電及び放電部から所定の負荷に電力が供給される電力供給方法である。
 本技術は、蓄電池と、
 蓄電池に接続された第1の充電及び放電部、並びに第2の充電及び放電部と、
 第1の充電及び放電部、並びに第2の充電及び放電部のそれぞれの状態を充電動作、放電動作、充放電停止の何れかに制御する制御部と、
 第1の充電及び放電部と接続された電力入出力部、並びに第2の充電及び放電部と接続された電力入出力部と
 を備える蓄電装置である。
 また、本技術は、かかる蓄電装置によって電力が供給される電子機器である。
 少なくとも一つの実施形態によれば、単一の蓄電システムによって、系統異常時に無瞬断で所定の負荷に対して電力を供給することができると共に、FRT要件に対応することができる。なお、ここに記載された効果は必ずしも限定されるものではなく、本技術中に記載されたいずれかの効果であっても良い。
本技術の第1の実施の形態のブロック図である。 第1の実施の形態の動作を説明するために使用するフローチャートである。 第1の実施の形態の動作を説明するために使用するフローチャートである。 第1の実施の形態の動作を説明するために使用するフローチャートである。 第1の実施の形態の動作を説明するために使用する略線図である。 本技術の第2の実施の形態のブロック図である。 第2の実施の形態の動作を説明するためのフローチャートである。 本技術が適用された住宅用の蓄電システムを示す概略図である。
 以下に説明する実施の形態は、本技術の好適な具体例であり、技術的に好ましい種々の限定が付されている。しかしながら、本技術の範囲は、以下の説明において、特に本技術を限定する旨の記載がない限り、これらの実施の形態に限定されないものとする。
 なお、本技術の説明は、下記の順序にしたがってなされる。
 <1.第1の実施の形態>
 <2.第2の実施の形態>
 <3.変形例>
 <1.第1の実施の形態>
「第1の実施の形態の構成」
 図1に示すように、本技術の第1の実施の形態による電源供給システムは、系統電源1、分散電源2及び蓄電システム3を備えている。系統電源1は電力会社が提供する電源である。分散電源2は自然エネルギー例えば太陽光を利用した発電装置2aとPCS(パワーコンディショナ)2bを有する。
 系統電源1と接続され、配線されている電力線4に対して、分散電源2、一般負荷5及びスイッチ6が接続される。スイッチ6から延びる電力線7に対して特定負荷8が接続される。スイッチ6は、電力線4及び電力線7の間の電力伝送を遮断又は接続するものである。特定負荷8は、停電時に無瞬断で電力を供給する必要のある所定の負荷である。一般負荷5は、停電時に電力を供給する必要がない負荷である。但し、無瞬断の定義は完全な瞬停に限定されるものではなく、数msec程度の瞬停も無瞬断と定義する。
 蓄電システム3は、蓄電池9と、第1の双方向変換装置10及び第2の双方向変換装置11と、制御回路12を有している。蓄電池9は、直列及び/又は並列に接続された多数の電池セルを有する。電池セルとしては、例えばリチウムイオン二次電池が使用される。リチウムイオン二次電池以外の充電可能な電池セルを使用してもよい。なお、制御回路12は双方向変換装置10、11にそれぞれ設けられていてもよい。この場合、双方向変換装置10,11は互いに通信を行う。
 双方向変換装置10及び11は、蓄電池9に対する充電回路の構成と放電回路の構成が共通化されたものである。別々の充電回路及び放電回路を並列に接続した構成を双方向変換装置に代えて使用してもよい。双方向変換装置10の電力入出力部10aが電力線4と接続され、双方向変換装置11の電力入出力部11aが電力線7と接続される。
 制御回路12は、蓄電池9、双方向変換装置10及び11、スイッチ6を制御する。双方向変換装置10及び11は、制御回路12によって充電動作、放電動作、充放電停止状態の何れかに制御される。双方向変換装置10と双方向変換装置11とは別々の状態をとりうる。
 電力線4に対して電力メータ13が接続され、電力線7に対して電力メータ14が接続される。電力メータ13が電力線4の電力を測定し、規定の電力が電力線4に存在しているかどうかを検出する。電力メータ14は、規定の電力が電力線7に存在しているかどうかを検出する。すなわち、電力メータ13及び14は、系統電源の異常を検出する。電圧、電流、周波数等を測定して系統電源の異常を検出するようにしてもよい。電力メータ13及び14のそれぞれの検出結果が制御回路12に供給される。なお、系統異常検知は双方変換装置10、11が検知するようにしてもよい。またスイッチ6が系統の異常を検知し、検知結果に応じて自らスイッチを制御するようにしてもよい。この場合、スイッチ6がOFFされたことを制御回路が検知し、系統異常時の動作が行われる。
 電力線4に対してOVGR(Ground Over Voltage Relay:地絡保護装置)15及びRPR(Reverse Power flow Relay:逆潮流リレー)16が接続される。OVGR15は、系統が正常か異常かを監視する装置である。RPR16は、蓄電池9から逆潮流できないので、蓄電池9から逆潮流しないように監視する装置である。OVGR15及びRPR16は制御回路12に対して検出信号を供給する。
「第1の実施の形態の動作」
 上述した第1の実施の形態の制御回路12の制御によってなされる動作について説明する。最初に図2のフローチャートを参照して放電中に系統異常(電圧低下、周波数異常等)が発生した場合の処理について説明する。
 ステップST1:双方向変換装置10及び11を通じて蓄電池9が放電されている(連系放電の動作)。この状態では、スイッチ6が閉(ON)である。
 ステップST2:電力メータ13によって系統異常の発生が監視されている。
 ステップST3:系統異常の発生が検出されると、無瞬断で制御回路12によってスイッチ6が開(OFF)とされる。
 ステップST4:一方の双方向変換装置10は系統異常の検出後でも連系放電動作を行い、FRTに対応した動作を行う。例えば双方向変換装置10によって所定の時間、電力線4に対して電力供給が継続される。他方の双方向変換装置11は電力線7を通じて特定負荷8に対して自立放電でもって電力を供給する。このように、自立放電とFRT対応の動作を同時に行うことができる。
 ステップST5:系統異常が継続しているかどうかが判定される。
 ステップST6:系統異常が継続していないと判定されると、スイッチ6が閉とされる。そして、処理がステップST1(連系放電)に戻る。但し、スイッチ6を閉とする代わりに制御の停止等の任意の動作を行うようにしてもよい。
 ステップST7:ステップST5において系統異常が継続していると判定されると、双方向変換装置10が充放電停止状態となり、双方向変換装置11が自立放電を継続する。
 次に、図3のフローチャートを参照して充電中に系統異常(電圧低下、周波数異常等)が発生した場合の処理について説明する。
 ステップST11:双方向変換装置10及び11を通じて蓄電池9が充電されている(連系充電の動作)。この状態では、スイッチ6が閉(ON)である。
 ステップST12:電力メータ13によって系統異常の発生が監視されている。
 ステップST13:系統異常の発生が検出されると、無瞬断で制御回路12によってスイッチ6が開(OFF)とされる。
 ステップST14:一方の双方向変換装置10は充放電を停止する。他方の双方向変換装置11は電力線7を通じて特定負荷8に対して自立放電でもって電力を供給する。特定負荷8には無瞬断で電力が供給される。なお、充放電停止の代わりにFRT対応動作を行うようにしてもよい。
 ステップST15:系統異常が継続しているかどうかが判定される。
 ステップST16:系統異常が継続していないと判定されると、スイッチ6が閉とされる。そして、処理がステップST11(連系充電)に戻る。但し、スイッチ6を閉とする代わりに制御の停止等の任意の動作を行うようにしてもよい。
 ステップST17:ステップST15において系統異常が継続していると判定されると、双方向変換装置10が充放電停止状態を継続し、双方向変換装置11が自立放電を継続する。
 次に、図4のフローチャートを参照して充放電停止中に系統異常(電圧低下、周波数異常等)が発生した場合の処理について説明する。
 ステップST21:双方向変換装置10及び11が充放電停止状態にある。この状態では、スイッチ6が閉(ON)である。
 ステップST22:電力メータ13によって系統異常の発生が監視されている。
 ステップST23:系統異常の発生が検出されると、無瞬断で制御回路12によってスイッチ6が開(OFF)とされる。
 ステップST24:一方の双方向変換装置10は充放電を停止する。他方の双方向変換装置11は電力線7を通じて特定負荷8に対して自立放電でもって電力を供給する。特定負荷8には無瞬断で電力が供給される。
 ステップST25:系統異常が継続しているかどうかが判定される。
 ステップST26:系統異常が継続していないと判定されると、スイッチ6が閉とされる。そして、処理がステップST21(連系充電)に戻る。但し、スイッチ6を閉とする代わりに制御の停止等の任意の動作を行うようにしてもよい。
 ステップST27:ステップST15において系統異常が継続していると判定されると、双方向変換装置10が充放電停止状態を継続し、双方向変換装置11が自立放電を継続する。
 双方向変換装置10と双方向変換装置11とは独立に制御されるので、図2(放電中)、図3(充電中)及び図4(充放電停止中)の状態以外に図5A~図5Dの状態をとりうる。図5Aは、双方向変換装置10が充放電停止状態で、双方向変換装置11が連系充電状態の場合である。この場合は、図4と同様の処理がなされる。
 図5Bは、双方向変換装置10が連系充電状態で、双方向変換装置11が充放電停止状態の場合である。この場合は、図3と同様の処理がなされる。図5Cは、双方向変換装置10が連系放電状態で、双方向変換装置11が充放電停止状態の場合である。この場合は、図2と同様の処理がなされる。図5Dは、双方向変換装置10が充放電停止状態で、双方向変換装置11が連系放電状態の場合である。この場合は、図4と同様の処理がなされる。
 <2.第2の実施の形態>
「第2の実施の形態の構成」
 図6を参照して本技術の第2の実施の形態について説明する。第1の実施の形態の構成(図1)と対応する構成要素については同一の参照符号を付すことにする。第2の実施の形態による電源供給システムは、系統電源1、分散電源2及び蓄電システム3を備えている。系統電源1は電力会社が提供する電源である。分散電源2は自然エネルギー例えば太陽光を利用した発電装置2aとPCS(パワーコンディショナ)2bを有する。
 第2の実施の形態ではスイッチ17が追加される。すなわち、系統電源1と接続され、配線されている電力線4に対して一般負荷5及びスイッチ17が接続される。スイッチ17から延びる電力線18に対してスイッチ6が接続される。スイッチ17は、電力線4及び電力線18の間の電力伝送を遮断又は接続するものである。電力線18に対して分散電源2及び特定負荷19が接続される。
 スイッチ6から延びる電力線7に対して特定負荷8が接続される。スイッチ6は、電力線7及び電力線18の間の電力伝送を遮断又は接続するものである。特定負荷8は、停電時に無瞬断で電力を供給する必要のある所定の負荷である。特定負荷19は、停電時に瞬断してもよいが、動作を継続してほしい負荷である。一般負荷5は、停電時に電力が供給されなくてもよい負荷である。
 蓄電システム3は、蓄電池9と、双方向変換装置10及び11と、制御回路12を有している。蓄電池9は、直列及び/又は並列に接続された多数の電池セルを有する。電池セルとしては、例えばリチウムイオン二次電池が使用される。リチウムイオン二次電池以外の充電可能な電池セルを使用してもよい。
 双方向変換装置10及び11は、蓄電池9に対する充電回路の構成と放電回路の構成が共通化されたものである。別々の充電回路及び放電回路を並列に接続した構成を双方向変換装置に代えて使用してもよい。双方向変換装置10が電力線18と接続され、双方向変換装置11が電力線7と接続される。
 制御回路12は、蓄電池9、双方向変換装置10及び11、スイッチ6及び8を制御する。双方向変換装置10及び11は、制御回路12によって充電動作、放電動作、充放電停止状態の何れかに制御される。
 電力線4に対して電力メータ20が接続され、電力線18に対して電力メータ13が接続され、電力線7に対して電力メータ14が接続される。電力メータ20が電力線4の電力を測定し、規定の電力が電力線4に存在しているかどうかを検出する。電力メータ13及び14は、規定の電力が電力線18及び7にそれぞれ存在しているかどうか、すなわち、系統電源の異常を検出する。電圧又は電流を測定して系統電源の異常を検出するようにしてもよい。電力メータ13、14及び20のそれぞれの検出結果が制御回路12に供給される。
 電力線4に対してOVGR(Ground Over Voltage Relay:地絡保護装置)15及びRPR(Reverse Power flow Relay:逆潮流リレー)16が接続される。OVGR15は、系統が正常か異常かを監視する装置である。RPR16は、蓄電池9から逆潮流できないので、蓄電池9から逆潮流しないように監視する装置である。OVGR15及びRPR16は制御回路12に対して検出信号を供給する。電力線18に対してRPR21が接続される。RPR21は、双方向変換装置11からスイッチ6を介して電流が流れることを監視する装置である。
「第2の実施の形態の動作」
 上述した第1の実施の形態の動作について図7のフローチャートを参照して説明する。一例として、放電中に系統異常(電圧低下、周波数異常等)が発生した場合の処理について説明する。
 ステップST31:双方向変換装置10及び11を通じて蓄電池9が放電される(連系放電の動作がなされる)。この状態では、スイッチ6及び8が閉(ON)である。
 ステップST32:電力メータ20によって系統異常の発生が監視されている。
 ステップST33:系統異常の発生が検出されると、無瞬断で制御回路12によってスイッチ6が開(OFF)とされる。スイッチ17は閉のままである。
 ステップST34:一方の双方向変換装置10は系統異常の検出後でも連系放電動作を行い、FRTに対応した動作を行う。例えば双方向変換装置10によって所定の時間、電力線16に対して電力供給が継続される。他方の双方向変換装置11は電力線7を通じて特定負荷8に対して自立放電でもって電力を供給する。このように、自立放電とFRT対応の動作を同時に行うことができる。
 ステップST35:系統異常が継続しているかどうかが判定される。
 ステップST36:系統異常が継続していないと判定されると、スイッチ6が閉とされる。そして、処理がステップST31(連系放電)に戻る。但し、スイッチ6を閉とする代わりに制御の停止等の任意の動作を行うようにしてもよい。
 ステップST37:ステップST35において系統異常が継続していると判定されると、双方向変換装置10が充放電停止状態となり、双方向変換装置11が自立放電を継続する。
 ステップST38:スイッチ17を開とする。その結果、電力線4と電力線18が断たれる。
 ステップST39:双方向変換装置10及び11が共に自立放電を行う。特定負荷8及び19に電力を供給することができる。この場合、分散電源2及び双方向変換装置10を介して蓄電池9を充電することも可能である。
 ステップST40:スイッチ6を閉とする。
 ステップST41:系統異常が継続しているかどうかが判定される。ステップST41において系統異常が継続していると判定されると、処理がステップST39に戻る。
 ステップST42:系統異常が継続していないと判定されると、スイッチ17が閉とされる。そして、処理がステップST31(連系放電)に戻る。但し、スイッチ17を閉とする代わりに制御の停止等の任意の動作を行うようにしてもよい。
 なお、上述した第2の実施の形態においては、双方向変換装置10が電力線18に電力を供給していない場合では、系統異常が発生した時にスイッチ6及びスイッチ17を開として無瞬断で特定負荷8及び10に電力を供給することもできる。
 第2の実施の形態は、さらに、逆潮流防止機能を有する。双方向変換装置11による電力線18から系統側への放電を防止するために、RPR21により逆潮流が監視される。双方向変換装置11の放電電力を特定負荷8の消費電力以下に制御することによってスイッチ6を通じて系統側への放電を防止する。負荷変動によって特定負荷8の消費電力より双方向変換装置11の放電電力が上回ると、RPR21から検出信号が出力される。この検出信号が双方向変換装置11に入力される。双方向変換装置11が検出信号を受信すると、直ちに放電を停止する。制御回路12は、特定負荷8の消費電力に応じた適切な放電電力を再度指令し、双方向変換装置11が放電を再開する。
 上述した本技術の第1及び第2の実施の形態によれば、系統異常が発生した時に特定負荷に電力を無瞬断で供給するための蓄電システムとFRT要件を満たすために逆潮流するための蓄電システムが一つの蓄電システムで構成することができる。したがって、それぞれの目的のために別々の蓄電システムを設ける構成と比較して、蓄電池の容量、制御回路等の回路規模を小とすることができる。
 例えば一般負荷が100kW、特定負荷が60kWで、蓄電池の最大放電レートが1Cとした場合、従来のシステムでは、一般負荷を2時間ピークシフトするために200kWhの蓄電池システムが必要であり、特定負荷を10分保障するためには、蓄電池の最大放電レートの制限から60kWhの蓄電池システムが必要であり、合計で260kWhの容量が必要とされる。これに対して本技術では、特定負荷用として60kWの10分を保障する10kWhの蓄電池と、一般負荷用の200kWhで、合計210kWhを搭載すればよいことになる。
<3.応用例>
「住宅における蓄電システム」
 本技術の電池を用いた蓄電装置を住宅用の蓄電システムに適用した例について、図8を参照して説明する。例えば住宅101用の蓄電システム100においては、火力発電102a、原子力発電102b、水力発電102cなどの集中型電力系統102から電力網109、情報網112、スマートメータ107、パワーハブ108などを介し、電力が蓄電装置103に供給される。これと共に、家庭内の発電装置104などの独立電源から電力が蓄電装置103に供給される。蓄電装置103に供給された電力が蓄電される。蓄電装置103を使用して、住宅101で使用する電力が給電される。住宅101に限らずビルに関しても同様の蓄電システムを使用できる。
 住宅101には、発電装置104、電力消費装置105、蓄電装置103、各装置を制御する制御装置110、スマートメータ107、各種情報を取得するセンサ111が設けられている。各装置は、電力網109及び情報網112によって接続されている。発電装置104として、太陽電池、燃料電池などが利用され、発電した電力が電力消費装置105及び/又は蓄電装置103に供給される。電力消費装置105は、冷蔵庫105a、空調装置であるエアコン105b、テレビジョン受信機であるテレビ105c、バス(風呂)105dなどである。さらに、電力消費装置105には、電動車両106が含まれる。電動車両106は、電気自動車106a、ハイブリッドカー106b、電気バイク106cである。
 蓄電装置103に対して、本技術の電池が適用される。本技術の電池は、例えば上述したリチウムイオン二次電池によって構成されていてもよい。スマートメータ107は、商用電力の使用量を測定し、測定された使用量を、電力会社に送信する機能を備えている。電力網109は、直流給電、交流給電、非接触給電の何れか一つ又は複数を組み合わせても良い。
 各種のセンサ111は、例えば人感センサ、照度センサ、物体検知センサ、消費電力センサ、振動センサ、接触センサ、温度センサ、赤外線センサなどである。各種のセンサ111により取得された情報は、制御装置110に送信される。センサ111からの情報によって、気象の状態、人の状態などが把握されて電力消費装置105を自動的に制御してエネルギー消費を最小とすることができる。さらに、制御装置110は、住宅101に関する情報をインターネットを介して外部の電力会社などに送信することができる。
 パワーハブ108によって、電力線の分岐、直流交流変換などの処理がなされる。制御装置110と接続される1報網112の通信方式としては、UART(Universal Asynchronous Receiver-Transmitter:非同期シリアル通信用送受信回路)などの通信インターフェースを使う方法、Bluetooth(登録商標)、ZigBee(登録商標)、Wi-Fiなどの無線通信規格によるセンサーネットワークを利用する方法がある。Bluetooth(登録商標)方式は、マルチメディア通信に適用され、一対多接続の通信を行うことができる。ZigBeeは、IEEE(Institute of Electrical and Electronics Engineers)802.15.4の物理層を使用するものである。IEEE802.15.4は、PAN(Personal Area Network)又はW(Wireless)PANと呼ばれる短距離無線ネットワーク規格の名称である。
 制御装置110は、外部のサーバ113と接続されている。このサーバ113は、住宅101、電力会社、サービスプロバイダーの何れかによって管理されていても良い。サーバ113が送受信する情報は、たとえば、消費電力情報、生活パターン情報、電力料金、天気情報、天災情報、電力取引に関する情報である。これらの情報は、家庭内の電力消費装置(たとえばテレビジョン受信機)から送受信しても良いが、家庭外の装置(たとえば、携帯電話機など)から送受信しても良い。これらの情報は、表示機能を持つ機器、たとえば、テレビジョン受信機、携帯電話機、PDA(Personal Digital Assistants)などに、表示されても良い。
 各部を制御する制御装置110は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)などで構成され、この例では、蓄電装置103に格納されている。制御装置110は、蓄電装置103、家庭内の発電装置104、電力消費装置105、各種のセンサ111、サーバ113と情報網112により接続され、例えば、商用電力の使用量と、発電量とを調整する機能を有している。なお、その他にも、電力市場で電力取引を行う機能などを備えていても良い。
 以上のように、電力が火力発電102a、原子力発電102b、水力発電102cなどの集中型電力系統102のみならず、家庭内の発電装置104(太陽光発電、風力発電)の発電電力を蓄電装置103に蓄えることができる。したがって、家庭内の発電装置104の発電電力が変動しても、外部に送出する電力量を一定にしたり、又は、必要なだけ放電するといった制御を行うことができる。例えば、太陽光発電で得られた電力を蓄電装置103に蓄えると共に、夜間は料金が安い深夜電力を蓄電装置103に蓄え、昼間の料金が高い時間帯に蓄電装置103によって蓄電した電力を放電して利用するといった使い方もできる。
 なお、この例では、制御装置110が蓄電装置103内に格納される例を説明したが、スマートメータ107内に格納されても良いし、単独で構成されていても良い。さらに、蓄電システム100は、集合住宅における複数の家庭を対象として用いられてもよいし、複数の戸建て住宅を対象として用いられてもよいし、家庭以外の向上、オフィス等の区画されたエリアであってもよい。
<4.変形例>
 以上、本技術の一実施の形態について具体的に説明したが、本技術は、上述の一実施の形態に限定されるものではなく、本技術の技術的思想に基づく各種の変形が可能である。例えば、上述の実施形態において挙げた構成、方法、工程、形状、材料及び数値などはあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料及び数値などを用いてもよい。
 なお、本技術は、以下のような構成も取ることができる。
(1)
 電力系統と停電時に無瞬断で電力を供給する必要のある所定の負荷の間に挿入されたスイッチと、
 蓄電池と、前記蓄電池と前記電力系統の間に挿入された第1の充電及び放電部と、前記蓄電池と前記所定の負荷の間に挿入された第2の充電及び放電部とを有する蓄電システムと、
 前記スイッチ、前記第1の充電及び放電部、並びに前記第2の充電及び放電部を制御する制御部とを備え、
 前記制御部によって、系統異常が発生した時に、前記スイッチを開として前記電力系統と前記所定の負荷の間が切断され、前記第1の充電及び放電部によって所定時間、逆潮流がなされ、前記第2の充電及び放電部から前記所定の負荷に電力が供給されるようにした電力供給装置。
(2)
 前記制御部は、前記第1の充電及び放電部、並びに前記第2の充電及び放電部のそれぞれを放電、充電及び充放電停止の何れかの状態に制御する(1)に記載の電力供給装置。
(3)
 逆潮流監視装置が設けられ、前記制御部は、前記所定の負荷の消費電力以下に前記第2の双方向変換装置の放電電力を制御する(1)又は(2)に記載の電力供給装置。
(4)
 前記電力系統と前記スイッチの間に分散電源が接続される(1)乃至(3)の何れかに記載の電力供給装置。
(5)
 系統異常が継続しない場合は、前記スイッチを閉とし、系統異常が継続する場合は、前記スイッチを開のままとする(1)乃至(4)の何れかに記載の電力供給装置。
(6)
 前記電力系統と前記スイッチの間に直列に他のスイッチを接続し、
 前記スイッチ及び前記他のスイッチ間に、前記第1の充電及び放電部と他の負荷を接続し、
 前記制御部によって、系統異常が発生した時に、前記スイッチを開として前記電力系統と前記所定の負荷の間が切断され、前記第1の充電及び放電部によって所定時間、逆潮流がなされ、前記第2の充電及び放電部から前記所定の負荷に電力が供給され、
 系統異常が継続しない場合は、前記スイッチを閉とし、系統異常が継続する場合は、前記スイッチを開のままとすると共に、前記他のスイッチを閉から開に制御し、
 前記他のスイッチを通じて前記他の負荷に対して前記第1の充電及び放電部によって電力が供給されるようにした(1)乃至(5)の何れかに記載の電力供給装置。
(7)
 前記スイッチ及び前記他のスイッチ間に、分散電源が接続され、
 前記他のスイッチが開の状態で、前記第1の充電及び放電部を通じて前記分散電源によって前記蓄電池が充電されるようにした(6)に記載の電力供給装置。
(8)
 電力系統と停電時に無瞬断で電力を供給する必要のある所定の負荷の間に挿入されたスイッチと、蓄電池と、前記蓄電池と前記電力系統の間に挿入された第1の充電及び放電部と、前記蓄電池と前記所定の負荷の間に挿入された第2の充電及び放電部とを有する蓄電システムと、前記スイッチ、前記第1の充電及び放電部、並びに前記第2の充電及び放電部を制御する制御部とを備える電力供給装置の電力供給方法であって、
 系統異常が発生した時に、前記制御部によって、前記スイッチを開として前記電力系統と前記所定の負荷の間が切断され、前記第1の充電及び放電部によって所定時間、逆潮流がなされ、前記第2の充電及び放電部から前記所定の負荷に電力が供給される電力供給方法。
(9)
 蓄電池と、
 前記蓄電池に接続された第1の充電及び放電部、並びに第2の充電及び放電部と、
 前記第1の充電及び放電部、並びに第2の充電及び放電部のそれぞれの状態を充電動作、放電動作、充放電停止の何れかに制御する制御部と、
 前記第1の充電及び放電部と接続された電力入出力部、並びに前記第2の充電及び放電部と接続された電力入出力部と
 を備える蓄電装置。
(10)
 (9)に記載の蓄電装置によって電力が供給される電子機器。
1・・・系統電源
2・・・分散電源
3・・・蓄電システム
5・・・一般負荷
6,17・・・スイッチ
8,19・・・特定負荷
9・・・蓄電池
10,11・・・双方向変換装置

Claims (10)

  1.  電力系統と停電時に無瞬断で電力を供給する必要のある所定の負荷の間に挿入されたスイッチと、
     蓄電池と、前記蓄電池と前記電力系統の間に挿入された第1の充電及び放電部と、前記蓄電池と前記所定の負荷の間に挿入された第2の充電及び放電部とを有する蓄電システムと、
     前記スイッチ、前記第1の充電及び放電部、並びに前記第2の充電及び放電部を制御する制御部とを備え、
     前記制御部によって、系統異常が発生した時に、前記スイッチを開として前記電力系統と前記所定の負荷の間が切断され、前記第1の充電及び放電部によって所定時間、逆潮流がなされ、前記第2の充電及び放電部から前記所定の負荷に電力が供給されるようにした電力供給装置。
  2.  前記制御部は、前記第1の充電及び放電部、並びに前記第2の充電及び放電部のそれぞれを放電、充電及び充放電停止の何れかの状態に制御する請求項1に記載の電力供給装置。
  3.  逆潮流監視装置が設けられ、前記制御部は、前記所定の負荷の消費電力以下に前記第2の双方向変換装置の放電電力を制御する請求項1に記載の電力供給装置。
  4.  前記電力系統と前記スイッチの間に分散電源が接続される請求項1に記載の電力供給装置。
  5.  系統異常が継続しない場合は、前記スイッチを閉とし、系統異常が継続する場合は、前記スイッチを開のままとする請求項1に記載の電力供給装置。
  6.  前記電力系統と前記スイッチの間に直列に他のスイッチを接続し、
     前記スイッチ及び前記他のスイッチ間に、前記第1の充電及び放電部と他の負荷を接続し、
     前記制御部によって、系統異常が発生した時に、前記スイッチを開として前記電力系統と前記所定の負荷の間が切断され、前記第1の充電及び放電部によって所定時間、逆潮流がなされ、前記第2の充電及び放電部から前記所定の負荷に電力が供給され、
     系統異常が継続しない場合は、前記スイッチを閉とし、系統異常が継続する場合は、前記スイッチを開のままとすると共に、前記他のスイッチを閉から開に制御し、
     前記他のスイッチを通じて前記他の負荷に対して前記第1の充電及び放電部によって電力が供給されるようにした請求項1に記載の電力供給装置。
  7.  前記スイッチ及び前記他のスイッチ間に、分散電源が接続され、
     前記他のスイッチが開の状態で、前記第1の充電及び放電部を通じて前記分散電源によって前記蓄電池が充電されるようにした請求項5に記載の電力供給装置。
  8.  電力系統と停電時に無瞬断で電力を供給する必要のある所定の負荷の間に挿入されたスイッチと、蓄電池と、前記蓄電池と前記電力系統の間に挿入された第1の充電及び放電部と、前記蓄電池と前記所定の負荷の間に挿入された第2の充電及び放電部とを有する蓄電システムと、前記スイッチ、前記第1の充電及び放電部、並びに前記第2の充電及び放電部を制御する制御部とを備える電力供給装置の電力供給方法であって、
     系統異常が発生した時に、前記制御部によって、前記スイッチを開として前記電力系統と前記所定の負荷の間が切断され、前記第1の充電及び放電部によって所定時間、逆潮流がなされ、前記第2の充電及び放電部から前記所定の負荷に電力が供給される電力供給方法。
  9.  蓄電池と、
     前記蓄電池に接続された第1の充電及び放電部、並びに第2の充電及び放電部と、
     前記第1の充電及び放電部、並びに第2の充電及び放電部のそれぞれの状態を充電動作、放電動作、充放電停止の何れかに制御する制御部と、
     前記第1の充電及び放電部と接続された電力入出力部、並びに前記第2の充電及び放電部と接続された電力入出力部と
     を備える蓄電装置。
  10.  請求項9に記載の蓄電装置によって電力が供給される電子機器。
PCT/JP2017/014792 2016-05-18 2017-04-11 電力供給装置、電力供給方法及び蓄電装置 WO2017199645A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018518157A JP6844618B2 (ja) 2016-05-18 2017-04-11 電力供給装置
CN201780020995.XA CN108886263B (zh) 2016-05-18 2017-04-11 电力供给装置、电力供给方法及蓄电装置
EP17799077.7A EP3439133B1 (en) 2016-05-18 2017-04-11 Power supply device, power supply method, and power storage device
US16/110,380 US10749374B2 (en) 2016-05-18 2018-08-23 Electric power supply device, method for supplying electric power, and power storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016099795 2016-05-18
JP2016-099795 2016-05-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/110,380 Continuation US10749374B2 (en) 2016-05-18 2018-08-23 Electric power supply device, method for supplying electric power, and power storage device

Publications (1)

Publication Number Publication Date
WO2017199645A1 true WO2017199645A1 (ja) 2017-11-23

Family

ID=60325026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014792 WO2017199645A1 (ja) 2016-05-18 2017-04-11 電力供給装置、電力供給方法及び蓄電装置

Country Status (5)

Country Link
US (1) US10749374B2 (ja)
EP (1) EP3439133B1 (ja)
JP (1) JP6844618B2 (ja)
CN (1) CN108886263B (ja)
WO (1) WO2017199645A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024018614A1 (ja) * 2022-07-22 2024-01-25 株式会社オートネットワーク技術研究所 車載用制御装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11121527B2 (en) 2013-07-31 2021-09-14 Briggs & Stratton, Llc Meter socket adapter with integral automatic transfer switch
CN110932332A (zh) * 2019-12-28 2020-03-27 广东南控电力有限公司 一种分布调控式太阳能发电系统
CN115635880B (zh) * 2022-10-31 2024-06-18 深蓝汽车科技有限公司 一种动力电池的放电功率控制方法、系统及电动汽车

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011010412A (ja) * 2009-06-24 2011-01-13 Shimizu Corp 重要負荷の自立運転制御システム
JP2014180153A (ja) * 2013-03-15 2014-09-25 Omron Corp 単独運転検出装置、パワーコンディショナ、分散型電源システム、プログラム、および単独運転検出方法
JP2015186291A (ja) * 2014-03-20 2015-10-22 国立大学法人 東京大学 バッテリ充放電装置及びその制御方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2623867B2 (ja) * 1989-10-27 1997-06-25 三菱電機株式会社 発電システムの制御方法
KR101094055B1 (ko) * 2009-12-15 2011-12-19 삼성에스디아이 주식회사 에너지 저장 시스템
KR101097261B1 (ko) * 2009-12-17 2011-12-22 삼성에스디아이 주식회사 전력 저장 시스템 및 그 제어 방법
JP2011139594A (ja) * 2009-12-28 2011-07-14 Fuji Electric Co Ltd 系統連系システム
CN201742107U (zh) * 2010-08-03 2011-02-09 大连理工大学 基于超级电容器储能的电能质量调节装置
EP2469572A4 (en) * 2010-10-15 2014-07-30 Sanyo Electric Co ELECTRICITY STORAGE SYSTEM AND CONTROL DEVICE
JP6028499B2 (ja) * 2012-04-06 2016-11-16 ソニー株式会社 電力供給装置
JP5764750B2 (ja) * 2012-11-16 2015-08-19 パナソニックIpマネジメント株式会社 リレー動作設定装置、パワーコンディショナ及び分散型電源システム
CN103117552B (zh) * 2013-03-06 2014-12-10 国家电网公司 基于能量有序控制的混合储能系统
JP5837957B2 (ja) * 2013-03-29 2015-12-24 Jx日鉱日石エネルギー株式会社 燃料電池システム及び燃料電池システムの運転方法
CN104348244A (zh) * 2013-07-26 2015-02-11 国电新能源技术研究院 一种智能化的光伏分布式发电系统
CN203871913U (zh) * 2014-04-28 2014-10-08 鹰潭市东新能源有限公司 一种环保型光伏锂电市电互补式供电电源
CN105281624B (zh) * 2014-06-17 2021-04-06 松下知识产权经营株式会社 热动力发电装置和热动力发电系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011010412A (ja) * 2009-06-24 2011-01-13 Shimizu Corp 重要負荷の自立運転制御システム
JP2014180153A (ja) * 2013-03-15 2014-09-25 Omron Corp 単独運転検出装置、パワーコンディショナ、分散型電源システム、プログラム、および単独運転検出方法
JP2015186291A (ja) * 2014-03-20 2015-10-22 国立大学法人 東京大学 バッテリ充放電装置及びその制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024018614A1 (ja) * 2022-07-22 2024-01-25 株式会社オートネットワーク技術研究所 車載用制御装置

Also Published As

Publication number Publication date
EP3439133A4 (en) 2019-09-04
EP3439133B1 (en) 2020-12-09
CN108886263B (zh) 2021-10-15
US10749374B2 (en) 2020-08-18
JP6844618B2 (ja) 2021-04-07
JPWO2017199645A1 (ja) 2018-09-27
EP3439133A1 (en) 2019-02-06
CN108886263A (zh) 2018-11-23
US20190020218A1 (en) 2019-01-17

Similar Documents

Publication Publication Date Title
US11050259B2 (en) Power supply device and control device
US11233398B2 (en) Distributed power supply system
JP6418239B2 (ja) 電力供給装置および電力供給方法
JP6467816B2 (ja) 蓄電システム
EP2763265B1 (en) Power conditioner system and storage battery power conditioner
WO2017199645A1 (ja) 電力供給装置、電力供給方法及び蓄電装置
WO2011039604A1 (ja) 電力供給システムの蓄電池電力供給源監視装置
US20220021234A1 (en) Smart switching panel for secondary power supply
US10998758B2 (en) Power supply apparatus and electricity storage device
JP2014212659A (ja) 電力供給システム及びその方法
JP2015061429A (ja) 電力貯蔵システム及びその制御方式
JP2016046829A (ja) 電力供給システム
JP2012151977A (ja) 負荷平準化システム
JP2016103909A (ja) 充放電システム
JP6272123B2 (ja) 電力供給制御装置
JP7494874B2 (ja) 電力供給システム
US11205911B2 (en) Energy storage system
WO2018012103A1 (ja) 電力供給装置、蓄電装置、電子機器及び電力システム
JP2023088715A (ja) キュービクル監視システム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018518157

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017799077

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017799077

Country of ref document: EP

Effective date: 20181102

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799077

Country of ref document: EP

Kind code of ref document: A1