WO2017198202A1 - 尼达尼布的新晶型及其制备方法及其用途 - Google Patents

尼达尼布的新晶型及其制备方法及其用途 Download PDF

Info

Publication number
WO2017198202A1
WO2017198202A1 PCT/CN2017/084984 CN2017084984W WO2017198202A1 WO 2017198202 A1 WO2017198202 A1 WO 2017198202A1 CN 2017084984 W CN2017084984 W CN 2017084984W WO 2017198202 A1 WO2017198202 A1 WO 2017198202A1
Authority
WO
WIPO (PCT)
Prior art keywords
methyl
amino
methylcarbonyl
piperazin
methoxycarbonyl
Prior art date
Application number
PCT/CN2017/084984
Other languages
English (en)
French (fr)
Inventor
孟晓明
Original Assignee
上海诚妙医药科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海诚妙医药科技有限公司 filed Critical 上海诚妙医药科技有限公司
Priority to CN201780031371.8A priority Critical patent/CN109415314A/zh
Publication of WO2017198202A1 publication Critical patent/WO2017198202A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/30Indoles; Hydrogenated indoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to carbon atoms of the hetero ring
    • C07D209/32Oxygen atoms
    • C07D209/34Oxygen atoms in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/32Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by aldehydo- or ketonic radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D309/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
    • C07D309/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D309/04Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms

Definitions

  • the present invention relates to 3-Z-[1-(4-(N-((4-methyl-piperazin-1-yl)-methylcarbonyl)-N-methyl-amino)-phenylamino)-1- Novel crystals of phenyl-methylene]-6-methoxycarbonyl-2-indanone and preparation methods and uses thereof.
  • Idiopathic pulmonary fibrosis is a disease characterized by unexplained, diffuse alveolitis and alveolar structural disorders that ultimately leads to pulmonary fibrosis, which ultimately leads to acute respiratory failure or death in patients.
  • the pathological process of IPF manifests as an acute inflammatory response in the lower respiratory tract including alveolitis, interstitial pneumonia, alveolar epithelial damage, and fibroblast proliferation. Subsequently, it leads to intracellular and extracellular matrix disorders and metabolic disorders, resulting in structural disorder of the lung tissue and eventually pulmonary fibrosis.
  • Nidanib developed by Boehringer Ingelheim, Germany, on October 15, 2014 under the trade name "Ofev” for clinical use in the treatment of IPF.
  • the approved dosage form is a soft capsule with specifications of 100 mg and 150 mg.
  • EMEA approved nidanib in combination with docetaxel for adult patients with locally advanced, metastatic or locally recurrent non-small cell lung cancer after first-line chemotherapy, under the trade name "Vargatef”.
  • the European EMEA also approved Nidanibu for treatment. IPF.
  • Nidanib is a triple vascular kinase inhibitor with a target of platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF).
  • PDGF platelet-derived growth factor
  • VEGF vascular endothelial growth factor
  • bFGF basic fibroblast growth factor
  • Nidanib binds competitively to the ATP-binding sites of each of the above receptors, blocking intracellular signals that are critical for fibroblast proliferation, migration, and transformation in the pathogenesis of IPF.
  • Preclinical studies have shown that nidanib has anti-fibrotic and anti-inflammatory effects, can reduce the progression of fibrosis, and inhibit the decline of lung function in patients with IPF.
  • nidanib can slow the progression of pulmonary fibrosis, delay the decline of lung function, reduce the incidence of acute exacerbation of mild to moderate pulmonary fibrosis, improve the quality of life of patients, and have good safety and tolerability. .
  • Common adverse reactions in nidanib are diarrhea, nausea and vomiting.
  • nidanib is currently available worldwide for indications for clinical trials including ovarian cancer, colon cancer, mesothelioma, Prostate cancer, colon cancer, breast cancer, multiple myeloma, liver cancer and renal cell carcinoma.
  • Nidanib (3-Z-[1-(4-(N-((4-methyl-piperazin-1-yl)-methylcarbonyl)-N-methyl-amino)-phenylamino)- 1-Phenyl-methylene]-6-methoxycarbonyl-2-indanone has the formula C 31 H 33 N 5 O 4 and a molecular weight of 539.6.
  • the chemical structure of Nidanibu is as follows:
  • Chemical raw materials must be prepared into a preparation, which must have good purity, stability, physical and chemical properties and operability. These properties are related to the crystalline form of the drug, and different crystal forms have different physical and chemical properties.
  • the stability of drug preservation and the purpose of improving the efficacy of the drug require a state in which the drug is made into a crystal.
  • the physicochemical properties of the pharmaceutically active substance can be improved by selecting the form of its appropriate salt: such as solubility, dissolution rate, stability, purity, and the like. These physical and chemical properties further influence the quality and bioavailability of the drug.
  • the choice of ion pairs used for salt formation and the formation of salts are not always straightforward, as the physical and chemical properties of different pairs of ions forming salts with the same compounds can vary widely, and some salts can improve physical and chemical properties.
  • the salt can not be improved, and even the physical and chemical properties are more detrimental to pharmaceutical development. Therefore, finding and manufacturing a salt for pharmaceutically developable and improving the physical properties of a drug is a practical creation work.
  • a drug and a salt thereof may exist in a plurality of crystalline form states, and different crystal forms of the same drug and its salt may have different dissolution and absorption in the body, thereby affecting dissolution and release of the preparation.
  • the research on the polymorphic form of the drug and its salt can find the dominant crystalline form of the drug which is beneficial to the action of the drug, and at the same time, determine the formulation process according to the characteristics of the crystalline form, and effectively ensure the equivalence of the batch drug in the production.
  • Drug hygroscopicity the ability to absorb water from a gaseous environment is often referred to as hygroscopicity.
  • the hygroscopic drug is liable to liquefy under high humidity to affect the appearance of the preparation, and the water is more viscous during granulation, and the disintegration is difficult, and the moisture content of the pharmaceutical preparation is unstable, so that the drug content is also unstable. . It is difficult to make a stable preparation.
  • WO2012068441 discloses nidanib ethanesulfonate crystal form A, which has a very Strong hygroscopicity, liquefaction occurs under high humidity, and this problem seriously affects the quality of the preparation to be solved.
  • the main object of the present invention is to provide 3-Z-[1-(4-(N-((4-methyl-piperazin-1-yl)-methylcarbonyl)-N-methyl-amino)-phenylamino) a new crystalline form of 1-phenyl-methylene]-6-methoxycarbonyl-2-indanone-ethanesulfonate (nidanib), a process for its preparation and a medicinal use.
  • the characteristic peaks are also present at 2 ⁇ values of 21.9 ⁇ 0.2, 15.5 ⁇ 0.2, 16.4 ⁇ 0.2, 27.6 ⁇ 0.2, 20.9 ⁇ 0.2, 10.8 ⁇ 0.2.
  • the characteristic peaks are also present at 2 ⁇ values of 20.6 ⁇ 0.2, 22.5 ⁇ 0.2, 29.1 ⁇ 0.2, 24.6 ⁇ 0.2, 21.6 ⁇ 0.2, and 22.8 ⁇ 0.2.
  • the characteristic peaks are also present at 2 ⁇ values of 28.1 ⁇ 0.2, 13.8 ⁇ 0.2, 25.5 ⁇ 0.2, 24.3 ⁇ 0.2, 34.3 ⁇ 0.2, 7.2 ⁇ 0.2.
  • the characteristic peaks are also present at 2 ⁇ values of 29.7 ⁇ 0.2, 17.0 ⁇ 0.2, 19.1 ⁇ 0.2, 11.4 ⁇ 0.2, 42.1 ⁇ 0.2, and 26.9 ⁇ 0.2.
  • the characteristic peaks are also present at 2 ⁇ values of 30.8 ⁇ 0.2, 23.0 ⁇ 0.2, 31.8 ⁇ 0.2, 19.9 ⁇ 0.2, 36.0 ⁇ 0.2, and 37.7 ⁇ 0.2. More preferably, it has a characteristic peak at 2 ⁇ values of 35.5 ⁇ 0.2, 38.9 ⁇ 0.2, 14.0 ⁇ 0.2, 33.0 ⁇ 0.2, 26.1 ⁇ 0.2, and 8.9 ⁇ 0.2.
  • step (ii) adding ethanesulfonic acid not less than the molar equivalent of the free base to the solution obtained in the step (i) to precipitate the compound from the solution.
  • the organic solvent is preferably acetone or ethyl formate.
  • the characteristic peaks are also present at 2 ⁇ values of 19.6 ⁇ 0.2, 26.3 ⁇ 0.2, 16.0 ⁇ 0.2, 20.6 ⁇ 0.2, 27.8 ⁇ 0.2, 29.9 ⁇ 0.2.
  • the characteristic peaks are also present at 2 ⁇ values of 21.9 ⁇ 0.2, 13.1 ⁇ 0.2, 22.3 ⁇ 0.2, 39.4 ⁇ 0.2, 25.1 ⁇ 0.2, 25.8 ⁇ 0.2.
  • step (ii) adding to the solution obtained in step (i) not less than the molar equivalent of the free base
  • the sulfonic acid precipitates the compound from the solution.
  • the organic solvent is preferably n-propanol, tert-butanol, isoamyl alcohol, ethyl acetate, isopropyl acetate, butyl acetate, tetrahydrofuran, 1,4-dioxane, 3-pentanone, 4- Methyl-2-pentanone, ethylene glycol diethyl ether.
  • characteristic peaks at 2 ⁇ values of 25.2 ⁇ 0.2, 9.1 ⁇ 0.2, 13.2 ⁇ 0.2, 25.7 ⁇ 0.2, 20.8 ⁇ 0.2, and 27.3 ⁇ 0.2 Preferably, it is also possible to have characteristic peaks at 2 ⁇ values of 8.5 ⁇ 0.2, 32.5 ⁇ 0.2, 30.2 ⁇ 0.2, 31.5 ⁇ 0.2, 35.4 ⁇ 0.2, and 29.3 ⁇ 0.2.
  • the characteristic peaks are also present at 2 ⁇ values of 6.4 ⁇ 0.2, 23.1 ⁇ 0.2, 22.8 ⁇ 0.2, 34.5 ⁇ 0.2, 15.2 ⁇ 0.2, and 23.8 ⁇ 0.2. More preferably, it has a characteristic peak at a 2 ⁇ value of 13.6 ⁇ 0.2, 28.9 ⁇ 0.2, 36.8 ⁇ 0.2, 10.0 ⁇ 0.2, 14.2 ⁇ 0.2, and 27.8 ⁇ 0.2.
  • step (ii) adding pamoic acid of not less than the molar equivalent of the free base to the solution obtained in the step (i) to precipitate the compound from the solution.
  • a pharmaceutical composition comprising the crystal according to claims 1-3 as an active ingredient.
  • the disease is selected from the group consisting of: idiopathic pulmonary fibrosis, lung cancer, ovarian cancer, colon cancer, mesothelioma, prostate cancer, colon cancer, breast cancer, multiple myeloma, liver cancer, and renal cell carcinoma.
  • the Rigaku Ultima IV powder diffractometer was used, which was irradiated with Cu-K ⁇ (40 kV, 40 mA) at room temperature using a D/tex Ultra detector.
  • the scanning range is from 3° to 45° in the 2 ⁇ range, and the scanning speed is 20°/min.
  • Measurement differences associated with such X-ray powder diffraction analysis results are produced by a variety of factors including: (a) errors in sample preparation (eg, sample height), (b) instrument error, (c) calibration differences, ( d) operator error (including errors that occur when determining peak position), and (e) properties of the substance (eg, preferred orientation error). Calibration errors and sample height errors often result in displacement of all peaks in the same direction. When a flat stent is used, a small difference in sample height will result in a large displacement of the XRPD peak position. Systematic studies have shown that a 1 mm sample height difference can result in a 2[Theta] peak shift of up to 1[deg.].
  • displacements can be identified from the X-ray diffraction pattern and can be eliminated by compensating for the displacement (using a system calibration factor for all peak position values) or recalibrating the instrument. As described above, measurement errors from different instruments can be corrected by applying a system calibration factor to make the peak positions consistent.
  • nidanib I, III and bishydroxyl prepared in Example 1, Example 3 and Example 14 were tested with reference to the method for testing the influencing factors of the drug substance in Appendix XIXI C of the Chinese Pharmacopoeia 2010 (Part 2).
  • the naphthate crystal form I and the nidanib form A (prior art) prepared according to WO2012068441 are respectively subjected to high temperature (test condition: 25 degrees Celsius, 92.5% relative humidity) and accelerated test (test condition: 40 degrees Celsius, 75 %Relative humidity).
  • the above crystal forms were exposed to high humidity and accelerated tests, and the appearance of the crystals was observed to examine the crystal dilution conditions. The test results are shown in the table below.
  • the new crystal form of the present invention has good low hygroscopicity compared with the prior art, and has made a breakthrough improvement on the existing solid defects, which is beneficial to the development of the preparation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Indole Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

公开了3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮(尼达尼布)的新多晶型及其制备方法和药用用途。所发现尼达尼布乙磺酸盐晶型I、乙磺酸盐晶型III和双羟萘酸盐晶型I,与现有晶型相比,新晶型在溶解度、稳定性、控制释放速度或制备工艺方面具有明显优势。

Description

尼达尼布的新晶型及其制备方法及其用途 技术领域
本发明涉及3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮的新型晶体及其制备方法和用途。
背景技术
特发性肺纤维化(IPF)是一种原因不明、以弥散性肺泡炎和肺泡结构紊乱并最终导致肺间质纤维化为特征的疾病,其最终导致患者急性呼吸衰竭或死亡。IPF病理过程早期表现为一种包括肺泡炎、间质性肺炎、肺泡上皮损伤、成纤维细胞增生等的下呼吸道急性炎症反应。随后,进一步导致细胞内外基质紊乱及代谢障碍,造成肺组织结构紊乱并最终发生肺纤维化。
目前尚无确切的有关IPF的大规模流行病学研究,但总体而言IPF发病率呈明显增长趋势。IPF的全球发病率达14/10万~43/10万,造成这种差异的主要原因是因缺乏统一的IPF诊断标准。此外,目前尚未明确IPF的发病率是否受地理、国家、文化或种族等多因素的影响。据悉,IPF的发病与患者年龄密切相关,75岁以上老年人IPF的发病率是35岁以下人群的100倍,70%的患者正在吸烟或有吸烟史。预计我国有肺纤维化患者60万左右。IPF预后不良,中位生存期为3年。IPF病因尚不明确,患者确诊后的平均生存时间为3-5年。60%患者 直接死于IPF,主要死亡原因包括IPF的急性恶化、急性冠状动脉、充血性心力衰竭、肺癌、感染和静脉血栓栓塞性疾病。除肺移植外,现有药物和治疗手段仅是缓解IPF的症状或延缓病情进展。尼达尼布是近年来在美国获快速通道、优先审评、罕见病药物和突破性疗法资格,并获美国FDA批准用于治疗IPF的药物。3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮(尼达尼布)的问世改变了临床上IPF无药可治的尴尬局面,开辟了IPF治疗的新时代,具有划时代里程碑意义。国外临床试验证实,尼达尼布可减缓IPF疾病进展,降低死亡率和急性发作。基于此,2015年7月美国胸科协会(ATS)、欧洲呼吸学会(ERS)、日本呼吸协会(JRS)和拉丁美洲胸科协会(ALAT)对其先前共同制定的《IPF诊治循证指南》(2011年版)进行了修订,并推出2015年版新指南,该指南条件性推荐使用尼达尼布治疗IPF。此外,2015年版指南还强烈反对使用强的松+硫唑嘌呤+N-乙酰半胱氨酸三联疗法,以及华法令用于治疗IPF。尼达尼布的问世为IPF的治疗提供了新治疗方案。尽管如此,但IPF用药仍远不能满足临床需求。尼达尼布(Nintedanib)美国FDA于2014年10月15日批准德国勃林格殷格翰公司开发的尼达尼布以商品名“Ofev”上市,临床上用于治疗IPF。获批剂型为软胶囊,规格有100mg和150mg。在欧洲,2014年10月EMEA批准尼达尼布与多西紫杉醇合并用于一线化疗后局部晚期、转移性或局部复发性非小细胞肺癌成人患者,商品名为“Vargatef”。同年12月,欧洲EMEA还批准了尼达尼布用于治疗 IPF。尼达尼布是一种三联血管激酶抑制剂,其作用靶点有血小板源生长因子(PDGF)、血管内皮生长因子(VEGF)和碱性纤维母细胞生长因子(bFGF)。尼达尼布与上述各受体的ATP结合位点竞争性结合,阻断IPF病理机制中至关重要的成纤维细胞增殖、迁移和转化的细胞内信号。临床前研究结果表明,尼达尼布具有抗纤维化、抗炎作用,可减少纤维化进展,抑制IPF患者肺功能的下降。临床研究结果表明,尼达尼布可减缓肺纤维化的进展,延缓肺功能下降,降低轻/中度肺纤维化的急性加重发生率,提高患者的生存质量,且安全性和耐受性良好。尼达尼布常见不良反应有腹泻、恶心和呕吐等。尼达尼布除已获批用于治疗IPF和与多西紫杉醇联用治疗非小细胞肺癌外,目前在全球范围内进行临床试验的适应症还有卵巢癌、直结肠癌、间皮瘤、前列腺癌、结肠癌、乳腺癌、多发性骨髓瘤、肝癌和肾细胞癌等。
尼达尼布(3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮)的分子式为C31H33N5O4,其分子量为539.6。尼达尼布的化学结构式如下所示:
Figure PCTCN2017084984-appb-000001
化学原料药要成制剂,必须具备良好的纯度、稳定性、理化性质以及可操作性。而这些性质都与药物的结晶形态相关,不同晶型具有不同的理化性质。药物保存的稳定性和提高药物疗效的目的,需要将药物制成晶体的状态。
药学活性物质的理化性质可通过选择其适当的盐的形式得以改善:如溶解度、溶出速率、稳定性、纯度等。这些理化性质又进一步的影响了药物的质量和生物利用度。然而,成盐所用的离子对的选择和盐的形成不总是简单易行的,因为不同对离子与相同的化合物形成盐的理化性质可有很大不同,有的盐可以改善理化性质,有的盐则不能改善,甚至理化性质更加不利于药学开发。因此寻找和制造出用于可药学开发并改善药物理化性质的盐是一种具有实用性的创造工作。
一种药物及其盐可以有多种晶型物质状态存在,同一种药物及其盐的不同晶型,在体内的溶解和吸收可能不同,从而会对制剂的溶出和释放产生影响。
对药物多晶型及其盐的研究,可发现有利于发挥药物作用的药物优势晶型,同时根据晶型的特点确定制剂工艺,有效保证生产的批间药物等效性等。
药物吸湿性,通常把药物固体从气态环境中吸收水分的能力称为吸湿性。吸湿性强的药物在高湿度下容易发生液化影响制剂外观,并且制粒时遇水较粘,而且崩解较困难,并且造成药物制剂水分含量不稳定,从而使药物含量也发生不稳定的变化。难以制成稳定的制剂。WO2012068441公开了尼达尼布乙磺酸盐晶型A,该晶型A具有很 强的吸湿性,在高湿度下发生液化,该问题严重影响制剂质量需要解决。
发明内容
本发明的主要目的在于提供3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙磺酸盐(尼达尼布)的新晶型及其制备方法和药用用途。
3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙磺酸盐晶型I,其特征在于,其X射线粉末衍射图中至少在2θ值为18.6±0.2、17.8±0.2、21.3±0.2、17.5±0.2、14.7±0.2处具有特征峰。优选的,还可以在2θ值为21.9±0.2、15.5±0.2、16.4±0.2、27.6±0.2、20.9±0.2、10.8±0.2处具有特征峰。优选的,还可以在2θ值为20.6±0.2、22.5±0.2、29.1±0.2、24.6±0.2、21.6±0.2、22.8±0.2处具有特征峰。优选的,还可以在2θ值为28.1±0.2、13.8±0.2、25.5±0.2、24.3±0.2、34.3±0.2、7.2±0.2处具有特征峰。优选的,还可以在2θ值为29.7±0.2、17.0±0.2、19.1±0.2、11.4±0.2、42.1±0.2、26.9±0.2处具有特征峰。优选的,还可以在2θ值为30.8±0.2、23.0±0.2、31.8±0.2、19.9±0.2、36.0±0.2、37.7±0.2处具有特征峰。更优选的,还可以在2θ值为35.5±0.2、38.9±0.2、14.0±0.2、33.0±0.2、26.1±0.2、8.9±0.2处具有特征峰。
制备3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙磺酸盐晶型I的方法,其特征在于,
(i)将3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮游离碱溶解于有机溶剂中。
(ii)向步骤(i)中得到的溶液中加入不小于游离碱摩尔当量的乙磺酸,使化合物从溶液中析出。
(iii)固液分离后得到3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙磺酸盐晶型I。所述的有机溶剂,优选丙酮或甲酸乙酯。
3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙磺酸盐晶型III,其特征在于,其X射线粉末衍射图中至少在2θ值为21.1±0.2、23.8±0.2、17.5±0.2、19.0±0.2、27.5±0.2处具有特征峰。优选的,还可以在2θ值为29.3±0.2、9.4±0.2、19.8±0.2、12.8±0.2、10.9±0.2、16.5±0.2处具有特征峰。优选的,还可以在2θ值为19.6±0.2、26.3±0.2、16.0±0.2、20.6±0.2、27.8±0.2、29.9±0.2处具有特征峰。优选的,还可以在2θ值为21.9±0.2、13.1±0.2、22.3±0.2、39.4±0.2、25.1±0.2、25.8±0.2处具有特征峰。优选的,还可以在2θ值为17.9±0.2、35.7±0.2、33.8±0.2、32.7±0.2、31.1±0.2、34.2±0.2处具有特征峰。更优选的,还可以在2θ值为31.8±0.2、23.0±0.2、40.4±0.2、14.8±0.2、15.6±0.2、15.1±0.2处具有特征峰。制备3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙磺酸盐晶型III的方法,其特征在于,
(i)将3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮游离碱溶解于有机溶液中。
(ii)向步骤(i)中得到的溶液中加入不小于游离碱摩尔当量的乙 磺酸,使化合物从溶液中析出。
(iii)固液分离后得到3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙磺酸盐晶型III。所述的有机溶剂优选,正丙醇、叔丁醇、异戊醇、乙酸乙酯、乙酸异丙酯、乙酸丁酯、四氢呋喃、1,4-二氧六环、3-戊酮、4-甲基-2-戊酮、乙二醇二乙醚。
3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-双羟萘酸盐晶型I,其特征在于,其X射线粉末衍射图中至少在2θ值为26.5±0.2、22.0±0.2、16.3±0.2、11.6±0.2、18.8±0.2处具有特征峰。优选的,还可以在2θ值为18.2±0.2、17.0±0.2、17.4±0.2、15.9±0.2、8.2±0.2、19.9±0.2处具有特征峰。优选的,还可以在2θ值为25.2±0.2、9.1±0.2、13.2±0.2、25.7±0.2、20.8±0.2、27.3±0.2处具有特征峰。优选的,还可以在2θ值为8.5±0.2、32.5±0.2、30.2±0.2、31.5±0.2、35.4±0.2、29.3±0.2处具有特征峰。优选的,还可以在2θ值为24.3±0.2、28.2±0.2、10.9±0.2、37.8±0.2、12.1±0.2、23.3±0.2处具有特征峰。优选的,还可以在2θ值为6.4±0.2、23.1±0.2、22.8±0.2、34.5±0.2、15.2±0.2、23.8±0.2处具有特征峰。更优选的,还可以在2θ值为13.6±0.2、28.9±0.2、36.8±0.2、10.0±0.2、14.2±0.2、27.8±0.2处具有特征峰。
制备权利要求3所述的3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-双羟萘酸盐晶型I的方法,其特征在于,
(i)将3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基- 氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮游离碱溶解于吡啶中。
(ii)向步骤(i)中得到的溶液中加入不小于游离碱摩尔当量的双羟萘酸,使化合物从溶液中析出。
(iii)固液分离后得到3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙双羟萘酸盐晶型I。
医药组合物,其含有权利要求1-3所述的晶体作为有效成分。
3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮乙磺酸盐的晶型I、晶型III和双羟萘酸盐晶型I及其医药组合物的用途:用于治疗血小板源生长因子(PDGF)、血管内皮生长因子(VEGF)和碱性纤维母细胞生长因子(bFGF)相关疾病。疾病选自:特发性肺纤维化、肺癌、卵巢癌、直结肠癌、间皮瘤、前列腺癌、结肠癌、乳腺癌、多发性骨髓瘤、肝癌和肾细胞癌。
本发明意外发现的尼达尼布的新晶型I、晶型III和双羟萘酸盐晶型I相比较现有技术晶型A来说,显著降低了吸湿性,具有明显意想不到的效果和改进意愿。
附图说明
错误!未找到引用源。为3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙磺酸盐的晶型I的X射线粉末衍射图,横坐标为角度2θ(°),纵坐标为强度。
错误!未找到引用源。为3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙磺酸盐的晶型III的X射线粉末衍射图,横坐标为角度2θ(°),纵坐标为强度。
错误!未找到引用源。为3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙双羟萘酸盐晶型I的X射线粉末衍射图,横坐标为角度2θ(°),纵坐标为强度。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但并不用来限制本发明的范围。本专利中X射线粉末衍射,操作和分析步骤如下:
采用Rigaku Ultima IV粉末衍射仪,该仪器采用Cu-Kα照射(40kV,40mA),于室温下使用D/tex Ultra检测器进行。扫描范围在2θ区间自3°至45°,扫描速度为20°/分钟
由包括以下的多种因素产生与这类X射线粉末衍射分析结果相关的测量差异:(a)样品制备物(例如样品高度)中的误差,(b)仪器误差,(c)校准差异,(d)操作人员误差(包括在测定峰位置时出现的误差),和(e)物质的性质(例如优选的定向误差)。校准误差和样品高度误差经常导致所有峰在相同方向中的位移。当使用平的支架时,样品高度的小差异将导致XRPD峰位置的大位移。系统研究显示1mm的样品高度差异可以导致高至1°的2θ的峰位移。可以从X射线衍射图鉴定这些位移,并且可以通过针对所述位移进行补偿(将系统校准因子用于所有峰位置值)或再校准仪器消除所述位移。如上所述,通过应用系统校准因子使峰位置一致,可校正来自不同仪器的测量误差。
实施例1
将100mg反式3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮溶解或悬浮于0.5mL甲酸乙酯中,滴加乙磺酸约50微升,产生沉淀,悬浮搅拌24小时,得3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)- 苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙磺酸盐晶型I。
本发明制备的3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙磺酸盐的晶型I,其X射线粉末衍射图如图1所示,乙磺酸盐晶型I的XRPD图的衍射峰列于下表:
Figure PCTCN2017084984-appb-000002
Figure PCTCN2017084984-appb-000003
实施例2
将100mg反式3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮溶解或悬浮于0.5mL丙酮中,滴加乙磺酸约50微升,产生沉淀,悬浮搅拌24小时,得3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙磺酸盐晶型I。
本发明制备的3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙磺酸盐的晶型I,其X射线粉末衍射图与图1一致。
实施例3
将100mg反式3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮溶解或悬浮于0.5mL 4-甲基-2-戊酮中,滴加乙磺酸约100微升,产生沉淀,悬浮搅拌24小时,得3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲 基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙磺酸盐晶型III。
本发明制备的3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙磺酸盐的晶型III,其X射线粉末衍射图如图2所示,乙磺酸盐晶型III的XRPD图的衍射峰列于下表:
Figure PCTCN2017084984-appb-000004
Figure PCTCN2017084984-appb-000005
实施例4
将100mg反式3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮溶解或悬浮于0.5ml正丙醇中,滴加乙磺酸约100微升,产生沉淀,悬浮搅拌24小时,得3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙磺酸盐晶型III。
本发明制备的3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙磺酸盐的晶型III,其X射线粉末衍射图与图2一致。
实施例5
将100mg反式3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮溶解或悬浮于0.5ml叔丁醇中,滴加乙磺酸约100微升,产生沉淀,悬浮搅拌24小时,得3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙磺酸盐晶型III。
本发明制备的3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙磺酸盐的晶型III,其X射线粉末衍射图与图2一致。
实施例6
将100mg反式3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮溶解或悬浮于0.5ml异戊醇中,滴加乙磺酸约100微升,产生沉淀,悬浮搅拌24小时,得3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙磺酸盐晶型III。
本发明制备的3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙磺酸盐的晶型III,其X射线粉末衍射图与图2一致。
实施例7
将100mg反式3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮溶解或悬浮于0.5ml乙酸乙酯中,滴加乙磺酸约100微升,产生沉淀,悬浮搅拌24小时,得3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙磺酸盐晶型III。
本发明制备的3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙磺酸盐的晶型III,其X射线粉末衍射图与图2一致。
实施例8
将100mg反式3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮溶解或悬浮于0.5ml乙酸异丙酯中,滴加乙磺酸约100微升,产生沉淀,悬浮搅 拌24小时,得3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙磺酸盐晶型III。
本发明制备的3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙磺酸盐的晶型III,其X射线粉末衍射图与图2一致。
实施例9
将100mg反式3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮溶解或悬浮于0.5ml乙酸丁酯中,滴加乙磺酸约100微升,产生沉淀,悬浮搅拌24小时,得3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙磺酸盐晶型III。
本发明制备的3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙磺酸盐的晶型III,其X射线粉末衍射图与图2一致。
实施例10
将100mg反式3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮溶解或悬浮于0.5ml四氢呋喃中,滴加乙磺酸约100微升,产生沉淀,悬浮搅拌24小时,得3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙磺酸盐晶型III。
本发明制备的3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基 -氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙磺酸盐的晶型III,其X射线粉末衍射图与图2一致。
实施例11
将100mg反式3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮溶解或悬浮于0.5ml1,4-二氧六环中,滴加乙磺酸约100微升,产生沉淀,悬浮搅拌24小时,得3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙磺酸盐晶型III。
本发明制备的3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙磺酸盐的晶型III,其X射线粉末衍射图与图2一致。
实施例12
将100mg反式3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮溶解或悬浮于0.5ml 3-戊酮中,滴加乙磺酸约100微升,产生沉淀,悬浮搅拌24小时,得3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙磺酸盐晶型III。
本发明制备的3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙磺酸盐的晶型III,其X射线粉末衍射图与图2一致。
实施例13
将100mg反式3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮溶解或悬浮于0.5ml乙二醇二乙醚中,滴加乙磺酸约100微升,产生沉淀,悬浮搅拌24小时,得3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙磺酸盐晶型III。
本发明制备的3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙磺酸盐的晶型III,其X射线粉末衍射图与图2一致。
实施例14
将100mg反式3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮溶解或悬浮于0.5mL吡啶中,加入等摩尔当量的双羟萘酸(pamonic acid,Cas130-85-8),产生沉淀,悬浮搅拌24小时,得3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-双羟萘酸晶型I。
本发明制备的3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-双羟萘酸盐晶型I,其X射线粉末衍射图如图3所示,双羟萘酸盐晶型I的XRPD图的衍射峰列于下表:
Figure PCTCN2017084984-appb-000006
Figure PCTCN2017084984-appb-000007
实施例15
参照中国药典2010年版(二部)的附录XIXI C中原料药影响因素试验的方法,将实施例1、实施例3和实施例14制备得到的尼达尼布新晶型I、III和双羟萘酸盐晶型I和根据WO2012068441制得的尼达尼布晶型A(现有技术)分别进行高温(试验条件:25摄氏度,92.5%相对湿度)和加速试验(试验条件:40摄氏度,75%相对湿度)。将上述几种晶型暴露在高湿和加速试验下,观察晶体外观形态,以考察这几种晶体稀释情况。试验结果如下表所示
Figure PCTCN2017084984-appb-000008
由试验结果可见,本发明中的新晶型较现有技术比较,具有良好的低吸湿性,从对现有固体缺陷做了突破性的改进,有利于制剂的开发。

Claims (10)

  1. 3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙磺酸盐晶型I,其特征在于,其X射线粉末衍射图中至少在2θ值为18.6±0.2、17.8±0.2、21.3±0.2、17.5±0.2、14.7±0.2处具有特征峰。优选的,还可以在2θ值为21.9±0.2、15.5±0.2、16.4±0.2、27.6±0.2、20.9±0.2、10.8±0.2处具有特征峰。优选的,还可以在2θ值为20.6±0.2、22.5±0.2、29.1±0.2、24.6±0.2、21.6±0.2、22.8±0.2处具有特征峰。优选的,还可以在2θ值为28.1±0.2、13.8±0.2、25.5±0.2、24.3±0.2、34.3±0.2、7.2±0.2处具有特征峰。优选的,还可以在2θ值为29.7±0.2、17.0±0.2、19.1±0.2、11.4±0.2、42.1±0.2、26.9±0.2处具有特征峰。优选的,还可以在2θ值为30.8±0.2、23.0±0.2、31.8±0.2、19.9±0.2、36.0±0.2、37.7±0.2处具有特征峰。更优选的,还可以在2θ值为35.5±0.2、38.9±0.2、14.0±0.2、33.0±0.2、26.1±0.2、8.9±0.2处具有特征峰。
  2. 3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙磺酸盐晶型III,其特征在于,其X射线粉末衍射图中至少在2θ值为21.1±0.2、23.8±0.2、17.5±0.2、19.0±0.2、27.5±0.2处具有特征峰。优选的,还可以在2θ值为29.3±0.2、9.4±0.2、19.8±0.2、12.8±0.2、10.9±0.2、16.5±0.2处具有特征峰。优选的,还可以在2θ值为19.6±0.2、26.3±0.2、16.0±0.2、20.6±0.2、27.8±0.2、29.9±0.2处具有特征峰。优选的,还可以在2θ值为21.9±0.2、13.1±0.2、22.3±0.2、39.4±0.2、25.1±0.2、25.8±0.2处具有特征峰。优 选的,还可以在2θ值为17.9±0.2、35.7±0.2、33.8±0.2、32.7±0.2、31.1±0.2、34.2±0.2处具有特征峰。更优选的,还可以在2θ值为31.8±0.2、23.0±0.2、40.4±0.2、14.8±0.2、15.6±0.2、15.1±0.2处具有特征峰。
  3. 3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-双羟萘酸盐晶型I,其特征在于,其X射线粉末衍射图中至少在2θ值为26.5±0.2、22.0±0.2、16.3±0.2、11.6±0.2、18.8±0.2处具有特征峰。优选的,还可以在2θ值为18.2±0.2、17.0±0.2、17.4±0.2、15.9±0.2、8.2±0.2、19.9±0.2处具有特征峰。优选的,还可以在2θ值为25.2±0.2、9.1±0.2、13.2±0.2、25.7±0.2、20.8±0.2、27.3±0.2处具有特征峰。优选的,还可以在2θ值为8.5±0.2、32.5±0.2、30.2±0.2、31.5±0.2、35.4±0.2、29.3±0.2处具有特征峰。优选的,还可以在2θ值为24.3±0.2、28.2±0.2、10.9±0.2、37.8±0.2、12.1±0.2、23.3±0.2处具有特征峰。优选的,还可以在2θ值为6.4±0.2、23.1±0.2、22.8±0.2、34.5±0.2、15.2±0.2、23.8±0.2处具有特征峰。更优选的,还可以在2θ值为13.6±0.2、28.9±0.2、36.8±0.2、10.0±0.2、14.2±0.2、27.8±0.2处具有特征峰。
  4. 制备权利要求1所述的3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙磺酸盐晶型I的方法,其特征在于,
    (i)将3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮游离碱溶解于有机溶剂中。
    (ii)向步骤(i)中得到的溶液中加入不小于游离碱摩尔当量的乙磺酸,使化合物从溶液中析出。
    (iii)固液分离后得到3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙磺酸盐晶型I。
  5. 权利要求4中所述的有机溶剂,优选丙酮或甲酸乙酯。
  6. 制备权利要求2所述的3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙磺酸盐晶型III的方法,其特征在于,
    (i)将3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮游离碱溶解于有机溶液中。
    (ii)向步骤(i)中得到的溶液中加入不小于游离碱摩尔当量的乙磺酸,使化合物从溶液中析出。
    (iii)固液分离后得到3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙磺酸盐晶型III。
  7. 权利要求6中,所述的有机溶剂优选,正丙醇、叔丁醇、异戊醇、乙酸乙酯、乙酸异丙酯、乙酸丁酯、四氢呋喃、1,4-二氧六环、3-戊酮、4-甲基-2-戊酮、乙二醇二乙醚。
  8. 制备权利要求3所述的3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-双羟萘酸盐晶型I的方法,其特征在于,
    (i)将3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮游离碱溶 解于吡啶中。
    (ii)向步骤(i)中得到的溶液中加入不小于游离碱摩尔当量的双羟萘酸,使化合物从溶液中析出。
    (iii)固液分离后得到3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-乙双羟萘酸盐晶型I。
    医药组合物,其含有权利要求1-3所述的晶体作为有效成分。
  9. 如权利要求1~3任一项所述的3-Z-[1-(4-(N-((4-甲基-哌嗪-1-基)-甲基羰基)-N-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮乙磺酸盐的晶型I、晶型III和双羟萘酸盐晶型I及其医药组合物的用途:用于治疗血小板源生长因子(PDGF)、血管内皮生长因子(VEGF)和碱性纤维母细胞生长因子(bFGF)相关疾病。
  10. 如权利要求9所述的用途,用于治疗血小板源生长因子(PDGF)、血管内皮生长因子(VEGF)和碱性纤维母细胞生长因子(bFGF)疾病。疾病选自:特发性肺纤维化、肺癌、卵巢癌、直结肠癌、间皮瘤、前列腺癌、结肠癌、乳腺癌、多发性骨髓瘤、肝癌和肾细胞癌。
PCT/CN2017/084984 2016-05-19 2017-05-19 尼达尼布的新晶型及其制备方法及其用途 WO2017198202A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780031371.8A CN109415314A (zh) 2016-05-19 2017-05-19 尼达尼布的新晶型及其制备方法及其用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610347601.9 2016-05-19
CN201610347601 2016-05-19

Publications (1)

Publication Number Publication Date
WO2017198202A1 true WO2017198202A1 (zh) 2017-11-23

Family

ID=60324765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084984 WO2017198202A1 (zh) 2016-05-19 2017-05-19 尼达尼布的新晶型及其制备方法及其用途

Country Status (2)

Country Link
CN (1) CN109415314A (zh)
WO (1) WO2017198202A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112239459A (zh) * 2019-07-19 2021-01-19 中国科学院上海药物研究所 稠环嘧啶氨基化合物、其制备方法、药物组合物及应用
CN113024439A (zh) * 2021-03-28 2021-06-25 郑州大学 尼达尼布乙磺酸盐新晶型ⅰ的制备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1671660A (zh) * 2002-07-24 2005-09-21 贝林格尔英格海姆法玛两合公司 3-z-[1-(4-(n-((4-甲基-哌嗪-1-基)-甲羰基)-n-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-单乙烷磺酸盐及其作为药物组合物的用途
CN101883756A (zh) * 2007-12-03 2010-11-10 贝林格尔.英格海姆国际有限公司 制备二氢吲哚酮衍生物的方法
CN101883755A (zh) * 2007-12-03 2010-11-10 贝林格尔.英格海姆国际有限公司 二氢吲哚酮衍生物及其制备方法
CN104844499A (zh) * 2015-06-05 2015-08-19 北京康立生医药技术开发有限公司 一锅法制备尼达尼布的合成方法
CN105001143A (zh) * 2015-07-24 2015-10-28 南京正大天晴制药有限公司 一种制备高纯度乙磺酸尼达尼布的方法
CN105418483A (zh) * 2015-12-15 2016-03-23 南京艾德凯腾生物医药有限责任公司 一种结晶型乙磺酸尼达尼布的制备方法
CN105461609A (zh) * 2015-12-25 2016-04-06 杭州新博思生物医药有限公司 一种尼达尼布的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1671660A (zh) * 2002-07-24 2005-09-21 贝林格尔英格海姆法玛两合公司 3-z-[1-(4-(n-((4-甲基-哌嗪-1-基)-甲羰基)-n-甲基-氨基)-苯氨基)-1-苯基-亚甲基]-6-甲氧羰基-2-吲哚满酮-单乙烷磺酸盐及其作为药物组合物的用途
CN101883756A (zh) * 2007-12-03 2010-11-10 贝林格尔.英格海姆国际有限公司 制备二氢吲哚酮衍生物的方法
CN101883755A (zh) * 2007-12-03 2010-11-10 贝林格尔.英格海姆国际有限公司 二氢吲哚酮衍生物及其制备方法
CN104844499A (zh) * 2015-06-05 2015-08-19 北京康立生医药技术开发有限公司 一锅法制备尼达尼布的合成方法
CN105001143A (zh) * 2015-07-24 2015-10-28 南京正大天晴制药有限公司 一种制备高纯度乙磺酸尼达尼布的方法
CN105418483A (zh) * 2015-12-15 2016-03-23 南京艾德凯腾生物医药有限责任公司 一种结晶型乙磺酸尼达尼布的制备方法
CN105461609A (zh) * 2015-12-25 2016-04-06 杭州新博思生物医药有限公司 一种尼达尼布的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112239459A (zh) * 2019-07-19 2021-01-19 中国科学院上海药物研究所 稠环嘧啶氨基化合物、其制备方法、药物组合物及应用
CN112239459B (zh) * 2019-07-19 2021-11-26 中国科学院上海药物研究所 稠环嘧啶氨基化合物、其制备方法、药物组合物及应用
CN113024439A (zh) * 2021-03-28 2021-06-25 郑州大学 尼达尼布乙磺酸盐新晶型ⅰ的制备

Also Published As

Publication number Publication date
CN109415314A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
US9504746B2 (en) Pharmaceutical compositions of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide
US10703724B2 (en) Crystalline forms of {[5-(3-chlorophenyl)-3-hydroxypyridine-2-carbonyl] amino} acetic acid and processes for preparation thereof
US9492425B2 (en) Crystalline forms of genistein
US10150770B2 (en) Crystal form of bisulfate of JAK inhibitor and preparation method therefor
TW201343665A (zh) 1-(2-脫氧-2-氟-4-硫-β-D-阿拉伯呋喃糖基)胞嘧啶之鹽
US11168072B2 (en) Crystal form of morpholino quinazoline compound, preparation method therefor and use thereof
WO2017198202A1 (zh) 尼达尼布的新晶型及其制备方法及其用途
US10023577B2 (en) Crystalline form of JAK kinase inhibitor bisulfate and a preparation method thereof
WO2020228807A1 (zh) 一类嘧啶化合物的盐、多晶型物及其药物组合物、制备方法和应用
US10626089B2 (en) Quinoline derivative in crystal form
TWI671290B (zh) 作為5-HT<sub>F</sub>激動劑之吡啶酮基六氫吡啶的組合物及方法
US7863325B2 (en) Crystalline genistein sodium salt dihydrate
JP5998933B2 (ja) グリシン誘導体の結晶及びその医薬用途
US20230106064A1 (en) Crystalline form of fluvatinib or fluvatinib methanesulfonate and preparation method therefor
EP2736334B1 (en) Denibulin di-hydrochloride
US10815232B2 (en) Crystalline forms of viral-protein inhibitor drug VX-787, processes for preparation thereof and use thereof
WO2021190337A1 (zh) 一种作为smo抑制剂化合物的盐型、晶型及其制备方法
US10870627B2 (en) Salt of quinazoline derivative, preparation method therefor and application thereof
US10472369B2 (en) Crystalline forms of (6-(1H-indazol-6-yl)-N-[4-(4-(4-morpholinyl)phenyl]imidazo[1,2-A]pyrazin-8-amine) methanesulfonate
WO2016169030A1 (zh) 吡啶胺化合物的富马酸盐及其晶体
WO2015192722A1 (zh) 一种阿利沙坦酯结晶及其制备方法及含有该结晶的药物组合物
WO2020043078A1 (zh) 新型氮杂三环类化合物的盐型、晶型及其用途
AU2017217728A1 (en) Crystalline modifications of N-(4,5-bismethanesulfonyl-2-methylbenzoyl)guanidine hydrochloride and N-(4,5-bismethanesulfonyl-2-methylbenzoyl)guanidine salts

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17798765

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17798765

Country of ref document: EP

Kind code of ref document: A1