WO2017197981A1 - 硼改性氧化铝的制备方法 - Google Patents

硼改性氧化铝的制备方法 Download PDF

Info

Publication number
WO2017197981A1
WO2017197981A1 PCT/CN2017/078059 CN2017078059W WO2017197981A1 WO 2017197981 A1 WO2017197981 A1 WO 2017197981A1 CN 2017078059 W CN2017078059 W CN 2017078059W WO 2017197981 A1 WO2017197981 A1 WO 2017197981A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron
alumina
hydrothermal treatment
boric acid
modified
Prior art date
Application number
PCT/CN2017/078059
Other languages
English (en)
French (fr)
Inventor
许莉
石友良
杨伟光
赖波
赵焘
王春锋
王杰华
Original Assignee
武汉凯迪工程技术研究总院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉凯迪工程技术研究总院有限公司 filed Critical 武汉凯迪工程技术研究总院有限公司
Publication of WO2017197981A1 publication Critical patent/WO2017197981A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used

Definitions

  • the invention relates to an optimized treatment method for an alumina material, in particular to a preparation method of boron-modified alumina.
  • alumina As a carrier material, alumina has a wide range of applications in the field of hydrogenation catalysis. However, due to the weak acidity of alumina, it is easy to interact with the active metal component to form inactive species, which affects the activity and stability of the catalyst. In order to improve the acidity of the alumina and adjust its interaction with the metal component, the alumina is often modified by introducing an auxiliary agent or the like.
  • Boron is one of the commonly used additives for alumina modification.
  • a method for preparing boron-containing alumina including a coprecipitation method and a mixing method.
  • the distribution of boron on the alumina affects the acidity of the alumina support and the dispersion of the active metal component.
  • the effect of boron on the acidity of the carrier is mainly reflected in the distribution of B acid and L acid in the carrier.
  • the introduction of proper amount of boron in the carrier can increase the proportion of medium and strong acid.
  • alumina support beneficial form suitable pore structure, improve the dispersion of the active ingredient, the active ingredient causes the carrier surface more Well distributed.
  • B 2 O 3 is distributed in the carrier phase, it is disadvantageous for the alumina carrier to form a suitable pore structure, and the specific surface area is small, and the effect of adjusting the surface properties of the alumina cannot be fully exerted.
  • U.S. Patent No. 4,724,226 discloses a process for the preparation of boron-containing alumina by preparing a boron-containing alumina support by coprecipitation using aluminum sulfate, sodium metaaluminate, and sodium metaborate.
  • the Chinese patent application No. 201110093563.6 discloses a preparation method of a boron-modified alumina carrier, which first wets the alumina precursor with a lower alcohol solution, and then adds a boron-containing solution formed of a polyol and boric acid. A boron modified alumina support is then produced.
  • the present invention provides a method for preparing boron-modified alumina, by which the boron of the additive can be better distributed on the surface of the alumina carrier, and the active component is improved.
  • the degree of dispersion can also adjust the ratio of B acid to L acid of the alumina support and improve the pore structure of the alumina support.
  • Alumina is particularly suitable for use as a carrier component for hydrofinishing, hydrotreating, hydrocracking catalysts.
  • the method for preparing boron-modified alumina designed by the present invention comprises the following steps:
  • the concentration of boric acid in the aqueous boric acid solution is 2.0 to 5.0%.
  • the amount of the alumina precursor and the boric acid aqueous solution is: based on the mass of the alumina carrier modified by boron, and the content of the B 2 O 3 is 3.0-6.0% by weight. Configuration.
  • the alumina precursor is one of amorphous aluminum hydroxide, pseudo boehmite, boehmite, gibbsite, yttrium aluminum, and boehmite.
  • the alumina precursor is one of amorphous aluminum hydroxide, pseudo boehmite, boehmite, gibbsite, yttrium aluminum, and boehmite.
  • the hydrothermal treatment temperature is 500 to 650 ° C
  • the reaction pressure in the hydrothermal treatment furnace is 0.1 to 0.2 MPa.
  • the mass space velocity of the boric acid aqueous solution is 0.5 to 2.0 h -1
  • the hydrothermal treatment time is 2 to 8 h.
  • the mass space velocity of the boric acid aqueous solution is 1.5 to 3.0 h -1
  • the hydrothermal treatment time is 4 to 6 h.
  • the aqueous solution containing boric acid enters the hydrothermal treatment furnace through the feed pump, and fills the furnace cavity in the form of saturated steam under the condition of high temperature and micro-positive pressure.
  • the surface layer of the alumina precursor and the water vapor containing boric acid In sufficient contact, the boron atom replaces the framework aluminum in the alumina crystal lattice, thereby forming an Al-OB bond on the surface of the carrier, which promotes the uniform concentration of boron element on the surface layer of the alumina carrier, effectively preventing the aluminum oxide compound phase from being formed at a high temperature.
  • the sintering of the pores increases the specific surface area of the carrier.
  • the boron atom when introduced into the alumina carrier, it preferentially occupies the pores in the carrier, resulting in a smaller proportion of the pore portion of the carrier, increasing the proportion of pores of 6 to 8 nm.
  • the modification of the aluminum oxide by hydrothermal treatment increases the proportion of B acid in the aluminum oxide compound to some extent.
  • the preparation method of the boron-modified alumina of the invention has the following advantages:
  • the modified alumina prepared by the method of the invention has a uniform distribution of B 2 O 3 and is concentrated on the surface of the alumina, thereby effectively preventing the active component from entering the alumina crystal lattice, which is favorable for increasing the dispersion degree of the metal component;
  • the modified alumina prepared by the method of the invention has an increased number of boric acid centers, has more medium-strong acid centers, and greatly increases the reactivity of the carrier;
  • the modified alumina prepared by the method of the invention has a larger specific surface, and the pore size distribution of the mesopores is more concentrated, and can be adapted to load more active metals, thereby contributing to the improvement of the selectivity of the middle distillate.
  • a method for preparing boron modified alumina comprising the following steps:
  • a method for preparing boron modified alumina comprising the following steps:
  • Alumina A-4 was obtained, and the corresponding physicochemical properties are shown in Table 1.
  • XPS X-ray photoelectron spectroscopy
  • XRF X-ray fluorescence
  • boron is more easily distributed in the surface layer of alumina by the method of the present invention than the comparative example, and when used as a hydrogenation carrier, the active metal is difficult to enter the crystal lattice of the alumina. It is beneficial to the improvement of the dispersion of active metals; the BET specific surface area and pore volume of alumina are increased to different extents, which is beneficial to load more active metals; the pore distribution of 6-8 nm is more concentrated, and it is used as a hydrogenation catalyst carrier. It is beneficial to the improvement of the selectivity of the middle distillate; the proportion of B acid is increased, the acidity of the alumina is enhanced, and the cracking activity is improved.
  • the alumina carrier prepared by the conventional kneading method has a boron element concentratedly distributed in the bulk phase of the alumina.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

一种硼改性氧化铝的制备方法。该方法包括如下步骤:1)室温下配制质量浓度为0.5~6.0%的硼酸水溶液;2)取氧化铝前体置于水热处理炉中,并将硼酸水溶液通入炉内,氧化铝前体与硼酸水溶液用量为:以硼改性后的氧化铝载体质量为基准,按其中B 2O 3的重量百分比含量为1.0~10.0%进行配置;3)加热水热处理炉对氧化铝前体进行水热处理,水热处理温度为450~700℃,水热处理炉内反应压力为0~0.3Mpa,得到硼改性氧化铝。该方法不仅能够使助剂硼更好地分布在氧化铝载体的表面,提高活性组分的分散度,还能够调节氧化铝载体的B酸和L酸比例,并改善氧化铝载体的孔结构。

Description

硼改性氧化铝的制备方法 技术领域
本发明涉及对氧化铝材料的优化处理方法,具体地指一种硼改性氧化铝的制备方法。
背景技术
氧化铝作为一种载体材料,在加氢催化领域有着广泛的用途。但由于氧化铝酸性很弱,而且易与活性金属组分发生强相互作用生成无活性物种,从而影响催化剂的活性和稳定性。为了改善氧化铝的酸性并调节其与金属组分的作用力,往往通过引入助剂等方式对氧化铝进行改性处理。
硼是氧化铝改性常用的助剂之一。含硼氧化铝的制备方法,包括共沉淀法和混合法。硼元素在氧化铝上的分布会影响氧化铝载体的酸性和活性金属组分的分散度。助剂硼对载体酸性的影响主要体现在调节载体中B酸和L酸的分布,载体中引入适量的硼能够增加中强酸的比例。当B2O3分布在载体表面时,能够阻止活性金属组分进入氧化铝晶格,有利于氧化铝载体形成适宜的孔结构,提高活性组分的分散度,促使活性组分在载体表面更好地分布。当B2O3分布在载体体相时,不利于氧化铝载体形成适宜的孔结构,比表面积较小,不能充分发挥调节氧化铝表面性质的作用。
申请号为US4724226的美国专利,公开了一种含硼氧化铝的制备方法,通过采用硫酸铝、偏铝酸钠、偏硼酸钠共沉淀法制备含硼的氧化铝载体。申请号为201110093563.6的中国专利则公开了一种硼改性氧化铝载体的制备方法,该方法先用低碳醇溶液将氧化铝前体润湿,然后加入多元醇与硼酸形成的含硼溶液,再制成硼改性氧化铝载体。
以上公开的专利中,均涉及了助剂硼对氧化铝的改性。由于硼的引入方式不同,氧化铝中硼的分布也不同,但所述专利中大部分B2O3都分布在氧化铝体相内,从而影响了活性金属组分的分散度以及载体的孔结构。
发明内容
为了克服现有技术中的不足之处,本发明提供一种硼改性氧化铝的制备方法,通过本方法不仅能够使助剂硼更好地分布在氧化铝载体的表面,提高活性组分的分散度,还能够调节氧化铝载体的B酸和L酸比例,并改善氧化铝载体的孔结构。本方法得到的改 性氧化铝特别适用于加氢精制、加氢处理、加氢裂化催化剂的载体组分。
为实现上述目的,本发明所设计的硼改性氧化铝的制备方法,包括如下步骤:
1)室温下配制质量浓度为0.5~6.0%的硼酸水溶液;
2)取氧化铝前体置于水热处理炉中,并将所述硼酸水溶液通入炉内,所述氧化铝前体与硼酸水溶液用量为:以硼改性后的氧化铝载体质量为基准,按其中B2O3的重量百分比含量为1.0~10.0%进行配置;
3)加热水热处理炉,对氧化铝前体进行水热处理,水热处理温度为450~700℃,水热处理炉内反应压力为0~0.3Mpa,得到硼改性氧化铝。
作为优选方案,步骤1)中,所述硼酸水溶液中硼酸的质量浓度为2.0~5.0%。
进一步优选地,步骤2)中,所述氧化铝前体与硼酸水溶液用量为:以硼改性后的氧化铝载体质量为基准,按其中B2O3的重量百分比含量为3.0~6.0%进行配置。
再优选地,步骤2)中,所述氧化铝前体为无定形氢氧化铝、假一水软铝石、薄水铝石、三水铝石、湃铝石、诺水铝石中的一种或几种,或是经焙烧后能够转化为γ-Al2O3的铝氧化合物。
更进一步地,步骤3)中,水热处理温度为500~650℃,水热处理炉内反应压力为0.1~0.2Mpa。
还进一步地,步骤3)中,所述水热处理时,硼酸水溶液的质量空速为0.5~2.0h-1,水热处理时间为2~8h。
更优选地,步骤3)中,所述水热处理时,硼酸水溶液的质量空速为1.5~3.0h-1,水热处理时间为4~6h。
本发明硼改性氧化铝制备方法的原理如下:
水热处理的过程中,含有硼酸的水溶液通过进料泵进入水热处理炉内,在高温微正压的条件下会以饱和蒸汽的形式充满炉腔,氧化铝前体的表层与含有硼酸的水蒸汽充分接触,硼原子取代了氧化铝晶格中的骨架铝,从而在载体表面形成Al-O-B键,促使硼元素均匀集中分布在氧化铝载体的表层,有效阻止了高温下铝氧化合物体相中孔的烧结,增大了载体的比表面积。另一方面,硼原子引入氧化铝载体后,优先占据载体中的小孔,导致载体小孔部分的比例变小,增大了6~8nm的孔的比例。同时,通过水热处理对铝氧化合物进行改性,在一定程度上增加了铝氧化合物中B酸的比例。
与现有技术相比,本发明硼改性氧化铝的制备方法具有如下优点:
其一,采用本发明方法制备的改性氧化铝中B2O3分布均匀且集中在氧化铝表面,有效阻止了活性组分进入氧化铝晶格中,有利于提高金属组分的分散度;
其二,采用本发明方法制备的改性氧化铝中硼酸中心数目增加,具有更多的中强酸中心,大幅提高了载体的反应活性;
其三,采用本发明方法制备的改性氧化铝具有更大的比表面,中孔孔径分布更集中,能够适合负载更多的活性金属,从而有利于提高中间馏分油的选择性。
具体实施方式
以下结合具体实施例对本发明的硼改性氧化铝的制备方法作进一步的详细说明。
实施例1
一种硼改性氧化铝的制备方法,包括如下步骤:
1)室温下,配制质量分数为2.0%的硼酸水溶液;
2)称取150g无定形氢氧化铝置于水热处理炉中,通过进料泵将硼酸水溶液通入炉内,无定形氢氧化铝与硼酸水溶液用量关系为:以硼改性后的氧化铝载体质量为基准,按其中B2O3的重量百分比含量为1.0~10.0%进行配置;
3)加热水热处理炉,对无定形氢氧化铝进行水热处理,控制反应压力为0.1Mpa,反应温度550℃,硼酸水溶液的质量空速为0.5h-1,水热处理时间为6h。
得到硼改性后的氧化铝A-1,相应的物化性质见表1。
实施例2
1)室温下,配制质量分数为3.5%的硼酸水溶液;
2)称取50g假一水软铝石和100g三水铝石的混合物置于水热处理炉中,通过进料泵将硼酸水溶液通入炉内,假一水软铝石和三水铝石与硼酸水溶液用量关系为:以硼改性后的氧化铝载体质量为基准,按其中B2O3的重量百分比含量为1.0~10.0%范围进行配置;
3)加热水热处理炉,对假一水软铝石和三水铝石进行水热处理,控制反应压力为0.15Mpa,反应温度650℃,硼酸水溶液的质量空速为1.0h-1,水热处理时间为3h。
得到硼改性后的氧化铝A-2,相应的物化性质见表1。
实施例3
一种硼改性氧化铝的制备方法,包括如下步骤:
1)室温下,配制质量分数为5.0%的硼酸水溶液;
2)称取100g薄水铝石和50g诺水铝石的混合物于水热处理炉中,通过进料泵将硼酸水溶液通入炉内,薄水铝石和诺水铝石与硼酸水溶液用量关系为:以硼改性后的氧化铝载体质量为基准,按其中B2O3的重量百分比含量为1.0~10.0%范围进行配置;
3)加热水热处理炉,对薄水铝石和诺水铝石进行水热处理,控制反应压力为0.2Mpa,反应温度600℃,硼酸水溶液的质量空速为1.5h-1,水热处理时间为2.5h。
得到硼改性后的氧化铝A-3,相应的物化性质见表1。
对比例1
称取150g无定形氢氧化铝于水热处理炉中,对无定形氢氧化铝进行水热处理,控制反应压力为0.1Mpa,反应温度600℃,通入不含硼酸的去离子水,水的质量空速为1.5h-1,水热处理时间为3h。
得到氧化铝A-4,相应的物化性质见表1。
对比例2
称取200g无定形氢氧化铝,加入2g田菁粉,9g硼酸,混合均匀后,加入4%的稀硝酸溶液160g于湿式轮碾机中碾压成料饼,放入挤条机中挤出成型。
得到氧化铝A-5,相应的物化性质见表1。
各取样品氧化铝A-1、A-2、A-3、A-4、A-5适量,每个氧化铝样品分成3份进行表征测试,测试结果见表1所示。
表1:改性氧化铝的物化性质
项目 A-1 A-2 A-3 A-4 A-5
B2O3,wt%(1,XPS) 3.6 5.8 7.0 0 1.5
B2O3,wt%(2,XPS) 3.7 5.6 7.2 0 0.9
B2O3,wt%(3,XPS) 3.7 5.7 7.1 0 2.3
B2O3,wt%(1,XRF) 1.3 2.3 3.3 0 3.6
B2O3,wt%(2,XRF) 1.1 2.6 3.0 0 3.8
B2O3,wt%(3,XRF) 1.4 2.5 3.2 0 3.7
BET比表面,m2/g 257 243 229 198 166
6-8nm孔径占总孔径,% 62 73 83 41 42
B酸/L酸,摩尔比 0.45 0.58 0.72 0.11 0.39
表1中,XPS(X射线光电子能谱)测试的是氧化铝表层2~10nm的元素含量。XRF (X射线荧光)测试的是氧化铝体相中的元素含量。
从表1可以看出,与对比例相比,采用本发明的方法引入硼,硼元素更易分布在氧化铝的表层,用作加氢载体时,活性金属难以进入氧化铝的晶格中,有利于活性金属分散度的提高;氧化铝的BET比表面和孔容都有不同程度的增大,有利于负载更多的活性金属;6~8nm的孔分布更加集中,用作加氢催化剂载体时,有利于中间馏分油选择性的提高;B酸比例有所增加,增强了氧化铝的酸性,有利于裂化活性的提高。采用常规混捏法制备的氧化铝载体,硼元素集中分布在氧化铝的体相中。

Claims (9)

  1. 一种硼改性氧化铝的制备方法,其特征在于:该制备方法包括如下步骤:
    1)室温下配制质量浓度为0.5~6.0%的硼酸水溶液;
    2)取氧化铝前体置于水热处理炉中,并将所述硼酸水溶液通入炉内,所述氧化铝前体与硼酸水溶液用量为:以硼改性后的氧化铝载体质量为基准,按其中B2O3的重量百分比含量为1.0~10.0%进行配置;
    3)加热水热处理炉,对氧化铝前体进行水热处理,水热处理温度为450~700℃,水热处理炉内反应压力为0~0.3Mpa,得到硼改性氧化铝。
  2. 根据权利要求1所述的硼改性氧化铝的制备方法,其特征在于:步骤1)中,所述硼酸水溶液中硼酸的质量浓度为2.0~5.0%。
  3. 根据权利要求1或2所述的硼改性氧化铝的制备方法,其特征在于:步骤2)中,所述氧化铝前体与硼酸水溶液用量为:以硼改性后的氧化铝载体质量为基准,按其中B2O3的重量百分比含量为3.0~6.0%进行配置。
  4. 根据权利要求1或2所述的硼改性氧化铝的制备方法,其特征在于:步骤2)中,所述氧化铝前体为无定形氢氧化铝、假一水软铝石、薄水铝石、三水铝石、湃铝石、诺水铝石中的一种或几种,或是经焙烧后能够转化为γ-Al2O3的铝氧化合物。
  5. 根据权利要求1或2所述的硼改性氧化铝的制备方法,其特征在于:步骤3)中,所述水热处理温度为500~650℃,水热处理炉内反应压力为0.1~0.2Mpa。
  6. 根据权利要求1或2所述的硼改性氧化铝的制备方法,其特征在于:步骤3)中,所述水热处理时,硼酸水溶液的质量空速为0.5~2.0h-1,水热处理时间为2~8h。
  7. 根据权利要求1或2所述的硼改性氧化铝的制备方法,其特征在于:步骤3)中, 所述水热处理时,硼酸水溶液的质量空速为1.5~3.0h-1,水热处理时间为4~6h。
  8. 根据权利要求3所述的硼改性氧化铝的制备方法,其特征在于:步骤3)中,所述水热处理时,硼酸水溶液的质量空速为0.5~2.0h-1,水热处理时间为2~8h。
  9. 根据权利要求4所述的硼改性氧化铝的制备方法,其特征在于:步骤3)中,所述水热处理时,硼酸水溶液的质量空速为0.5~2.0h-1,水热处理时间为2~8h。
PCT/CN2017/078059 2016-05-19 2017-03-24 硼改性氧化铝的制备方法 WO2017197981A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610333041.1 2016-05-19
CN201610333041.1A CN106000476B (zh) 2016-05-19 2016-05-19 硼改性氧化铝的制备方法

Publications (1)

Publication Number Publication Date
WO2017197981A1 true WO2017197981A1 (zh) 2017-11-23

Family

ID=57098874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078059 WO2017197981A1 (zh) 2016-05-19 2017-03-24 硼改性氧化铝的制备方法

Country Status (2)

Country Link
CN (1) CN106000476B (zh)
WO (1) WO2017197981A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111592023A (zh) * 2020-05-19 2020-08-28 大连众智创新催化剂有限公司 一种含硼拟薄水铝石的制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106000476B (zh) * 2016-05-19 2018-07-24 武汉凯迪工程技术研究总院有限公司 硼改性氧化铝的制备方法
CN107365887A (zh) * 2017-06-07 2017-11-21 常州豫春化工有限公司 一种助熔型化渣剂的制备方法
CN111155087B (zh) * 2019-12-25 2022-01-18 陕西斯瑞新材料股份有限公司 一种弥散铜真空钎焊镀膜镀Cu、Ni的方法
CN112430420B (zh) * 2020-12-03 2022-06-28 上海瑞君电泳涂料有限公司 抗划伤无锡型阴极电泳涂料及其制备方法
CN115055182B (zh) * 2022-07-01 2023-09-15 中国科学院生态环境研究中心 一种丙烷氧化脱氢催化剂及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004035196A2 (en) * 2002-10-16 2004-04-29 Conocophillips Company A stabilized transition alumina catalyst support from boehmite and catalysts made therefrom
CN104445317A (zh) * 2014-11-12 2015-03-25 中国海洋石油总公司 一种改性拟薄水铝石的制备方法
CN104860339A (zh) * 2014-02-21 2015-08-26 中国石油化工股份有限公司 改性一水软铝石和/或假一水软铝石的方法和由该方法得到的改性物及其应用
CN106000476A (zh) * 2016-05-19 2016-10-12 武汉凯迪工程技术研究总院有限公司 硼改性氧化铝的制备方法
CN106311263A (zh) * 2016-07-29 2017-01-11 武汉凯迪工程技术研究总院有限公司 高负载量硼改性加氢精制催化剂及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50140466A (zh) * 1974-05-02 1975-11-11
CN100400165C (zh) * 2005-04-27 2008-07-09 中国石油化工股份有限公司 一种含硅和硼的氧化铝载体及其制备方法
CN102728335B (zh) * 2011-04-14 2013-11-06 中国石油化工股份有限公司 一种硼改性氧化铝载体的制备方法
CN102728336B (zh) * 2011-04-14 2013-11-06 中国石油化工股份有限公司 一种含硼氧化铝载体的制备方法
CN103285940B (zh) * 2012-03-02 2016-03-23 中国石油化工股份有限公司 具有加氢催化作用的催化剂及其制备方法和应用以及加氢精制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004035196A2 (en) * 2002-10-16 2004-04-29 Conocophillips Company A stabilized transition alumina catalyst support from boehmite and catalysts made therefrom
CN104860339A (zh) * 2014-02-21 2015-08-26 中国石油化工股份有限公司 改性一水软铝石和/或假一水软铝石的方法和由该方法得到的改性物及其应用
CN104445317A (zh) * 2014-11-12 2015-03-25 中国海洋石油总公司 一种改性拟薄水铝石的制备方法
CN106000476A (zh) * 2016-05-19 2016-10-12 武汉凯迪工程技术研究总院有限公司 硼改性氧化铝的制备方法
CN106311263A (zh) * 2016-07-29 2017-01-11 武汉凯迪工程技术研究总院有限公司 高负载量硼改性加氢精制催化剂及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111592023A (zh) * 2020-05-19 2020-08-28 大连众智创新催化剂有限公司 一种含硼拟薄水铝石的制备方法
CN111592023B (zh) * 2020-05-19 2022-11-22 大连众智创新催化剂有限公司 一种含硼拟薄水铝石的制备方法

Also Published As

Publication number Publication date
CN106000476A (zh) 2016-10-12
CN106000476B (zh) 2018-07-24

Similar Documents

Publication Publication Date Title
WO2017197981A1 (zh) 硼改性氧化铝的制备方法
US8765632B2 (en) Process for preparing catalyst comprising palladium supported on carrier with high dispersion
US9937485B2 (en) Hydrocracking catalyst, process for preparing the same and use thereof
CN102039151B (zh) 一种加氢裂化催化剂及其制备方法
CN105032478B (zh) 一种用于f-t合成中间馏分油异构降凝的催化剂与其专用的核壳结构复合分子筛
CN105536854B (zh) 一种制备含y分子筛的加氢裂化催化剂的方法
CN114558612B (zh) 多级孔ZSM-5分子筛封装Pt-Ni双金属催化剂及其制备方法和用途
Odrozek et al. Amine-stabilized small gold nanoparticles supported on AlSBA-15 as effective catalysts for aerobic glucose oxidation
CN110028080A (zh) 一种快速晶化合成高结晶度介孔zsm-5分子筛的方法
CN105618113A (zh) 一种制备加氢裂化催化剂组合物的方法
CN105618116B (zh) 一种加氢裂化催化剂的制备方法
CN109304226A (zh) 一种多产重石脑油和航煤的加氢裂化催化剂及其制备方法和应用
CN109382131B (zh) 丙烷脱氢催化剂及其制备方法以及丙烷脱氢制丙烯的方法
CN110548510A (zh) 一种流化床酯加氢Cu/SiO2微球催化剂及其制备方法、应用
CN108865243B (zh) 一种碳四烷基化原料的预加氢处理方法
CN106276992A (zh) 一种叶片状纳米γ-氧化铝的制备方法
CN112007625B (zh) 一种α-氧化铝载体及制备方法和银催化剂与应用
CN1331605C (zh) 一种含硅和钛的氧化铝载体及其制备方法
CN112705213B (zh) 一种加氢脱硅催化剂及其制备方法
CN105709713B (zh) 一种高硅氧化铝干胶及其制备方法
CN107344102B (zh) 一种加氢裂化催化剂及其制法
Yang et al. The importance of copper-phyllosilicate formed in CuO/SiO 2 catalysts in the ethynylation of formaldehyde for 1, 4-butynediol synthesis
EP4082661A1 (en) Dlm-1 molecular sieve, manufacturing method therefor, and use thereof
CN108786833A (zh) 一种重油加氢催化剂及其制备方法
JP7080693B2 (ja) 炭化水素油の水素化処理触媒、その製造方法、および水素化処理方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17798545

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17798545

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/05/2019)