WO2017197640A1 - 燃料抗爆剂及其制造方法和燃料组合物 - Google Patents

燃料抗爆剂及其制造方法和燃料组合物 Download PDF

Info

Publication number
WO2017197640A1
WO2017197640A1 PCT/CN2016/082799 CN2016082799W WO2017197640A1 WO 2017197640 A1 WO2017197640 A1 WO 2017197640A1 CN 2016082799 W CN2016082799 W CN 2016082799W WO 2017197640 A1 WO2017197640 A1 WO 2017197640A1
Authority
WO
WIPO (PCT)
Prior art keywords
gasoline
fuel
antiknock agent
antiknock
alkyl
Prior art date
Application number
PCT/CN2016/082799
Other languages
English (en)
French (fr)
Inventor
熊靓
严斌
叶世春
Original Assignee
深圳市广昌达石油添加剂有限公司
深圳市广昌达实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市广昌达石油添加剂有限公司, 深圳市广昌达实业有限公司 filed Critical 深圳市广昌达石油添加剂有限公司
Priority to CN201680085361.8A priority Critical patent/CN109312244B/zh
Priority to PCT/CN2016/082799 priority patent/WO2017197640A1/zh
Publication of WO2017197640A1 publication Critical patent/WO2017197640A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/10Use of additives to fuels or fires for particular purposes for improving the octane number

Definitions

  • the invention relates to a fuel antiknock agent and a fuel composition, and belongs to the field of petrochemical industry.
  • the methods for increasing the octane number of gasoline mainly include catalytic reforming and aromatization techniques, as well as etherification, alkylation, isomerization, etc., or blending gasoline, and adding gasoline octane improver (commonly known as anti-gas) Explosives) to achieve. Because the former involves the improvement of the refining process, there are problems of complicated process and huge investment, while the latter is both effective and economical, so the antiknock agent of gasoline is favored by the majority of refiners.
  • Gasoline antiknock agents are classified into two types: metal ash and organic ash.
  • the primary use of metals is ash-based antiknock agents such as tetraethyl lead, methylcyclopentadienyl tricarboxy manganese (MMT) and ferrocene.
  • MMT methylcyclopentadienyl tricarboxy manganese
  • ferrocene ferrocene
  • One aspect of the invention provides a fuel antiknock agent comprising:
  • R1 is selected from H or C1-6 alkyl, and R2 is selected from C1-8 alkyl;
  • R3 is selected from C2-6 alkenyl
  • R4 is selected from H or C1-4 alkyl
  • R3 and R4 together with the carbon atom to which they are attached form a C5-10 saturated or unsaturated five, six, seven or eight membered ring
  • R5 is selected from H or C1-8 alkyl.
  • R1 is selected from H or C1-4 alkyl, such as methyl, ethyl, Isopropyl or isobutyl and the like.
  • R2 is selected from the group consisting of C1-8 alkyl groups such as methyl, ethyl, isopropyl, isobutyl, neopentyl or n-octyl and the like. In one aspect of the invention, R2 is selected from the group consisting of C1-4 alkyl.
  • the -OR2 group is in the para position of the -NHR1 group.
  • R3 is selected from the group consisting of C2-6 alkenyl groups such as vinyl, allyl or 3-methyl-1-butenyl and the like. In one aspect of the invention, R3 is selected from the group consisting of C2-4 alkenyl.
  • R4 is selected from H or C1-4 alkyl, such as methyl, ethyl, isopropyl or isobutyl and the like.
  • R3 and R4 together with the carbon atom to which they are attached form a C5-10 saturated or unsaturated five, six, seven or eight membered ring, such as cyclopentane, cyclopentene, cyclohexene or methyl. Cyclooctene and the like.
  • R3 and R4 together with the carbon atom to which they are attached form a C5-10 unsaturated five, six, seven or eight membered ring having one double bond, such as cyclohexene.
  • R5 is H
  • R3 and R4 together with the carbon atom to which they are attached form a cyclopentene
  • the compound of Formula II is hydrazine.
  • R5 is selected from H or C1-8 alkyl such as methyl, ethyl, isopropyl, isobutyl, neopentyl or n-octyl and the like. In one aspect of the invention, R5 is selected from C1-4 alkyl.
  • Ca-b alkyl group refers to an alkyl group having a total of ab carbon atoms, which may be either a linear alkyl group or a branched alkyl group; it may be unsubstituted. It is also contemplated that it may be further substituted with common substituents where appropriate.
  • Ca-b alkenyl group refers to an alkenyl group having a total of ab carbon atoms, which may be either a linear alkenyl group or a branched alkenyl group; it may be unsubstituted. It is also contemplated that it may be further substituted with common substituents where appropriate.
  • the "Ca-b n-membered ring" as used in the present invention refers to an n-membered ring having a specific total of ab carbon atoms, and the carbon atom may be a ring-forming atom or a substituent on a ring-forming atom;
  • the n-membered ring may be unsubstituted, and is expected to be further substituted with a common substituent where appropriate.
  • a common substituent described in the present invention may be a C1-4 alkyl group, an amine group, an alkoxy group, a hydroxyl group or the like.
  • R1 is H or methyl
  • R2 is methyl or ethyl or isopropyl
  • the -OR2 group is in the para position of the -NHR1 group, whereby the compound of formula I is p-aminobenzene Methyl ether, p-aminophenyl ether, p-aminophenyl isopropyl ether, N-methyl p-aminoanisole, N-methyl p-aminophenyl ether or N-methyl p-aminophenyl isopropyl.
  • component (i) consists of p-aminoanisole and N-methyl p-aminoanisole, or consists of p-aminoanisole and N-methyl p-aminophenyl ether, or
  • the composition consists of p-aminophenylether and N-methyl-p-aminoanisole or consists of p-aminophenylethyl ether and N-methyl-p-aminophenylethyl ether.
  • R4 and R5 are H and R4 is a vinyl group, whereby the compound of formula II is styrene.
  • the compound of Formula II is a homologue of styrene.
  • the homologues referred to in the present invention refer to compounds which differ by one or more (e.g., 2-4) methylene groups.
  • R4 and R5 are methyl and R4 is vinyl, whereby the compound of formula II is (2,5-dimethylstyrene).
  • R5 is H, and R3 and R4 together with the carbon atom to which they are attached form a cyclopentene or cyclopentane, whereby the compound of formula II is hydrazine or indane.
  • the compound of Formula II is a homolog of indole or indole.
  • R5 is H
  • R3 and R4 together with the carbon atom to which they are attached form a cyclohexene
  • the compound of formula II can be (1,2-dihydronaphthalene).
  • the compound of formula II may be (6,7-Dihydro-benzo[7]bornene).
  • component (ii) consists of styrene, or consists of styrene and ruthenium or osmium, or styrene, ruthenium and osmium.
  • the component (i) comprises from 10 to 80%, such as 10%, 20%, 30%, 40%, 50%, 60%, 70% or 80% of the total weight of the fuel antiknock agent. %, or any range in which two specific contents are endpoints, such as 10-30%.
  • the component (ii) comprises from 20 to 90%, such as 20%, 30%, 40%, 50%, 60%, 70%, 80% or 90% of the total weight of the fuel antiknock agent. %, or any range in which two specific contents are endpoints, such as 70-90%.
  • the fuel antiknock agent consists of component (i) and component (ii).
  • the fuel antiknock agent of the present invention is an organic ashless gasoline antiknock agent which can significantly increase the octane number of gasoline and enhance the antiknock performance of gasoline.
  • component (i) in the fuel antiknock agent is as low as 20% or less.
  • the fuel antiknock agent further comprises (iii) one or more adjuvants and/or (iv) one or more organic solvents, said component (iii) or component ( Iv) each may constitute 0-50% of the total weight of the fuel antiknock agent, such as 5%, 10%, 20%, 30%, 40% or 50%, or any range in which the two specific contents are endpoints , such as 5-20%.
  • the adjuvant may be selected from the group consisting of antioxidants (such as 2,6-di-tert-butyl-4-methylphenol, BHT, p-ethylphenol, and p-tert-butylphenol), and anti-tarnish agents (such as benzotriene).
  • antioxidants such as 2,6-di-tert-butyl-4-methylphenol, BHT, p-ethylphenol, and p-tert-butylphenol
  • anti-tarnish agents such as benzotriene.
  • detergent such as polyetheramine, polyisobutylene amine
  • corrosion inhibitor such as imidazoline, fatty amine
  • defoamer such as dimethicone
  • sterol Tetrahydrofurfuryl alcohol, tert-butanol, anisole, methyl tert-butyl ether (MTBE), and the like.
  • MTBE methyl ter
  • the organic solvent may be selected from the group consisting of hydrocarbons such as xylene, trimethylbenzene, heavy aromatic hydrocarbons, gasoline, kerosene, naphtha; alcohols such as ethanol, isopropanol; ethers such as tetrahydrofuran, dioxane, and the like.
  • hydrocarbons such as xylene, trimethylbenzene, heavy aromatic hydrocarbons, gasoline, kerosene, naphtha
  • alcohols such as ethanol, isopropanol
  • ethers such as tetrahydrofuran, dioxane, and the like.
  • the fuel antiknock agent consists of component (i), component (ii) and component (iii).
  • the component (iii) is selected from the group consisting of decyl alcohol and tetrahydrofurfuryl alcohol.
  • One aspect of the invention provides a method of making a fuel antiknock agent of the invention comprising agitating the components to a thorough mixing at a temperature above room temperature.
  • the temperature is, for example, 50 to 100 ° C, or such as 60 to 70 ° C.
  • the agitation time is, for example, 0.5 to 3 hours or 0.5 to 2 hours, such as about 1 hour.
  • One aspect of the invention provides a fuel composition comprising:
  • the fuel composition consists of component (a) and component (b).
  • component (a) may be straight run gasoline, FCC gasoline, alkylated gasoline, hydrogenated gasoline or blended gasoline, Fischer-Tropsch gasoline or coal gasoline.
  • component (a) is a low grade gasoline, such as 90#, 92# or 93# gasoline.
  • component (b) may comprise from 0.01 to 10.0%, such as 0.1%, 0.3%, 0.5%, 0.8%, 1.0%, 1.5%, 2.0%, 3.5, of the total volume of the fuel composition. %, 5.0%, 7.5%, 10.0%, etc., or any range in which two specific contents are endpoints, such as 0.5-1.0%.
  • the antiknock agent of the present invention can be used alone or in combination with other various types of gasoline additives, and can be added by manufacturers or consumers at refineries, terminals, retailers, and the like.
  • the inventors have unexpectedly discovered that there is a synergistic effect between the aminophenylene ether (i) of the present invention and the aromatic hydrocarbon derivative (ii) which synergistically increases the octane number of the gasoline.
  • the antiknock test results of the antiknock agent obtained by compounding the above components show that adding a small amount of the antiknock agent of the present invention to gasoline can significantly increase the octane number of the gasoline and reduce the knocking caused by the combustion of the gasoline in the engine.
  • the product of the invention has stable properties, good thermal stability and can be well compatible with oils
  • the product of the invention can greatly reduce the formation of gasoline colloid and effectively improve the quality of gasoline; the nitrogen content of the traditional aniline antiknock agent is greatly reduced, and the exhaust gas emission can be effectively improved; the octane number of the gasoline can be effectively improved, and the gasoline aromatics blending group can be reduced. Sub-content, and reduce vehicle particulate emissions;
  • the product of the invention has good flammability, does not produce precipitation or residue, has little damage to the engine, and has no damage to the three-way catalyst;
  • the product of the invention does not contain heavy metals, is non-toxic, and does not cause pollution to the environment.
  • Figure 1 is a graph of RON relative to the amount of antiknock agent added
  • Figure 2 is a graph of gasoline RON versus antiknock agent ratio
  • Figure 3 is a graph of gasoline RON versus antiknock ratio.
  • 0.5 ml of the above antiknock agent was added to 99.5 ml of 92# base gasoline, and tested according to GB/T5487 gasoline octane number measurement method (research method), and the RON octane number of the gasoline was increased from 92.5 to 93.5.
  • the antiknock agent of Example 2-6 was prepared by using the apparatus and procedure of Example 1 to adjust the composition, content, addition amount, stirring temperature and stirring time of the antiknock agent.
  • the antiknock agent of Comparative Examples 1-3 was prepared by using the apparatus and procedure of Example 1 to change the composition, content, addition amount, stirring temperature and stirring time of the antiknock agent.
  • Table 2 also extracts the data of Examples 1 and 2 for comparison.
  • Example 2 The antiknock agent obtained in Example 1 was added to 92# base gasoline in a volume percentage of 0.2%, 0.4%, 0.6%, 0.8%, 1.0%, and 1.5%, and the octane number change of the gasoline was as shown in Table 3 below.
  • Antiknock additive amount v% 0 (blank) 0.2 0.4 0.6 0.8 1.0 1.5 RON 92.5 92.9 93.6 93.9 94.0 94.0 94.1
  • Figure 1 shows the data listed in Table 3. It can be seen that the addition of anti-explosive agent for p-aminoanisole has a significant increase in RON in the range of 0.2-0.6 v%.
  • Example 8 Effect of different antiknock agent group distribution ratios on RON
  • the antiknock agent obtained by mixing p-aminoanisole and styrene in different proportions was added to 92# base gasoline at 0.5%, and the octane number of gasoline was changed as shown in Table 4 below.
  • Figure 2 shows the data listed in Table 4. It can be seen that when the content of p-aminoanisole in the antiknock agent is low, the synergistic effect with styrene is remarkable. Considering that the price of p-aminoanisole is much higher than that of styrene, the anti-explosive agent has the highest cost performance when the p-aminoanisole content is 20 wt%. Of course, the content of p-aminoanisole can be increased to obtain better results without considering the cost or for some reason, the cost difference is reduced or inverted.
  • the antiknock agent obtained by mixing N-methyl p-aminoanisole and styrene in different proportions was added to 92# base gasoline at 1.0 v%, and the octane number change of the gasoline is shown in Table 5 below.
  • Figure 3 shows the data listed in Table 5. It can be seen that when the content of N-methyl p-aminoanisole in the antiknock agent is low, the synergistic effect is not as obvious as that of p-aminoanisole, but as its content increases, RON continues to increase, making up for the disadvantage of p-aminoanisole.
  • component (i) consists of p-aminoanisole and N-methyl p-aminoanisole, wherein p-aminoanisole
  • the content is within 20% (total weight of the antiknock agent), but the content of the entire component (i) exceeds 20%, for example, 30% to 60% (accounting for the total weight of the antiknock agent).
  • (N-methyl) p-aminoanisole can be independently replaced with (N-methyl) p-aminophenylethyl ether.
  • Example 2 The antiknock agent obtained in Example 2 was added to 92# base gasoline at a volume percentage of 1.0%. Table 6 lists the changes in the physical and chemical properties of the gasoline before and after the addition of the antiknock agent.
  • Example 2 The antiknock agent obtained in Example 2 was added to 92# base gasoline at a volume percentage of 1.0%, and the obtained gasoline composition was used for road driving test according to the Chinese standard GB18352.3-2005 "Light vehicle pollutant emission limit” Values and Measurement Methods (China Phase III and IV) are conducted in accordance with the working conditions of pollutant discharge and fuel economy tests. The test results are shown in Table 7.
  • Table 7 Chevrolet SGM7166MTC car working condition method pollutant discharge and fuel economy test results
  • Example 12 antiknock agents for gasoline RON base reference level impact
  • Example 13 Combination of the antiknock agent of the present invention and an existing antiknock agent
  • Example 1 After adding 10% MTBE (total volume of the gasoline composition) to the base gasoline having a RON octane number of 93.3, the octane number was increased to 95.8; the amount of MTBE added was reduced to 5 v%, and the explosion resistance of Example 1 was obtained. After the compound was compounded, gasoline was added so that the latter amount was 0.2 v%, and the octane number thus obtained was 95.7, as shown in Table 8 below.
  • the base gasoline has a certain difference in octane number measured by the same method due to the difference in origin and composition, but the present invention is not affected by the octane number of the base oil.
  • the advantages of the present invention are manifested by the increase in octane number ( ⁇ octane number) before and after the addition of the antiknock agent.
  • Embodiments of the invention may also be illustrated by delta octane values to exclude differences in octane number of base gasolines of different batches and different sources.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

一种燃料抗爆剂及其制造方法和包含该燃料抗爆剂的燃料组合物,其中,该燃料抗爆剂包括:(i)一种或多种通式I的化合物,其中,R 1选自H或C1-6烷基,R 2选自C1-8烷基;和(ii)一种或多种通式II的化合物,其中,R 3选自C2-6烯基,R 4选自H或C1-4烷基,或者R 3和R 4连同它们连接的碳原子一起形成C5-10饱和或不饱和五、六、七或八元环,R 5选自H或C1-8烷基。制造时,将各种组分在50-100℃的温度下混合并搅拌0.5-3小时。

Description

燃料抗爆剂及其制造方法和燃料组合物 技术领域
本发明涉及燃料抗爆剂和燃料组合物,属于石油化工领域。
背景技术
众所周知,提高汽油发动机效率最有效的办法是提高发动机的压缩比,但压缩比一提高,爆震燃烧明显增强,需要用更高辛烷值的汽油来减小爆震。提高汽油辛烷值的方法主要有催化重整及芳构化技术,以及醚化、烷基化、异构化等工艺,或调和汽油组成,还可以通过添加汽油辛烷值改进剂(俗称抗爆剂)来实现。由于前者涉及到炼制工艺的改进,存在着工艺复杂,投资巨大的问题,而后者既有效又经济,所以汽油抗爆剂受到了广大炼油厂家的青睐。
汽油抗爆剂分为金属有灰和有机无灰两种类型。人们最初使用的主要是金属有灰类抗爆剂,如四乙基铅、甲基环戊二烯三羧基锰(MMT)和二茂铁等。这类抗爆剂虽能有效提高汽油的抗爆性,但由于存在毒性、尾气颗粒物的排放以及对发动机气缸和排气系统的危害等问题,在欧美等发达国家已逐渐被取代和停止使用,对这类抗爆剂的研究现处于相对停滞阶段。
近年来各国对抗爆剂的研究重点放在了有机无灰抗爆剂方面,主要包括醚、醇、酯类等。人们最先用甲基叔丁基醚(MTBE)来调和汽油,但MTBE添加量较大(10~15%),成本高、经济性差,后又因MTBE造成地下水污染,美国一些地区已禁止在汽油中添加使用。此外醇类、酯类、芳香烃等也可用来提高汽油的辛烷值,但普遍存在效果差、毒性大或成本过高等缺陷。因此,开发一种高效廉价的有机无灰类汽油抗爆剂是当今国内外石油炼制行业面临的一项急需解决的任务。
俄罗斯专利RU2011139487提到N-甲基对氨基苯甲醚可作为抗爆 添加剂或发动机燃料添加剂使用,具有一定的辛烷值提高效果,但其合成工艺复杂、生产成本高,且在汽油中添加量较大,易导致汽油氮含量超标,限制了其广泛应用。
美国专利US2010258071提到(N-甲基)对氨基苯甲醚与双环戊二烯DCPD有一定的协同作用,可大大降低(N-甲基)对氨基苯甲醚在汽油中的添加量。但由于双环戊二烯是一种二烯烃,在某些国家(包括中国)的汽油中的添加有一定限制。
因此,本领域仍然需要找到一种优于现有抗爆剂的燃料抗爆剂配方。
发明内容
本发明的目的是提供一种燃料抗爆剂以及包含该燃料抗爆剂的燃料组合物。
本发明的一个方面提供一种燃料抗爆剂,其包含:
(i)一种或多种通式I的化合物
其中R1选自H或C1-6烷基,R2选自C1-8烷基;和
(ii)一种或多种通式II的化合物
Figure PCTCN2016082799-appb-000002
其中R3选自C2-6烯基,R4选自H或C1-4烷基,或者R3和R4连同它们连接的碳原子一起形成C5-10饱和或不饱和五、六、七或八元环,R5选自H或C1-8烷基。
在本发明的一个方面,R1选自H或C1-4烷基,比如甲基,乙基, 异丙基或异丁基等。
在本发明的一个方面,R2选自C1-8烷基,比如甲基,乙基,异丙基,异丁基,新戊基或正辛基等。在本发明的一个方面,R2选自C1-4烷基。
在本发明的一个方面,-OR2基团位于-NHR1基团的对位。
在本发明的一个方面,R3选自C2-6烯基,比如乙烯基,烯丙基或3-甲基-1-丁烯基等。在本发明的一个方面,R3选自C2-4烯基。
在本发明的一个方面,R4选自H或C1-4烷基,比如甲基,乙基,异丙基或异丁基等。
在本发明的一个方面,R3和R4连同它们连接的碳原子一起形成C5-10饱和或不饱和五、六、七或八元环,比如环戊烷,环戊烯,环己烯或甲基环辛烯等。在本发明的一个方面,R3和R4连同它们连接的碳原子一起形成带有一个双键的C5-10不饱和五、六、七或八元环,比如环己烯。例如,在R5为H,R3和R4连同它们连接的碳原子一起形成环戊烯时,通式II的化合物为茚。
在本发明的一个方面,R5选自H或C1-8烷基,比如甲基,乙基,异丙基,异丁基,新戊基或正辛基等。在本发明的一个方面,R5选自C1-4烷基。
本发明所述的“Ca-b烷基”指的是具有总计a-b个碳原子的烷基,它既可以是直链烷基,也可以是带支链的烷基;既可以未被取代,也预期可在适当的情况下进一步被常见取代基取代。
本发明所述的“Ca-b烯基”指的是具有总计a-b个碳原子的烯基,它既可以是直链烯基,也可以是带支链的烯基;既可以未被取代,也预期可在适当的情况下进一步被常见取代基取代。
本发明所述的“Ca-b n元环”指的是具体总计a-b个碳原子的n元环,所述碳原子既可以是成环原子,也可以是成环原子上的取代基;所述n元环既可以未被取代,也预期可在适当的情况下进一步被常见取代基取代。
本发明所述的常见取代基可以是C1-4烷基、胺基、烷氧基、羟基等。
在本发明的一个方面,R1为H或甲基,R2为甲基或乙基或异丙基,-OR2基团位于-NHR1基团的对位,由此通式I的化合物为对氨基苯甲醚、对氨基苯乙醚、对氨基苯异丙基醚、N-甲基对氨基苯甲醚、N-甲基对氨基苯乙醚或N-甲基对氨基苯异丙基。
在本发明的一个方面,组分(i)由对氨基苯甲醚和N-甲基对氨基苯甲醚组成,或由对氨基苯甲醚和N-甲基对氨基苯乙醚组成,或由对氨基苯乙醚和N-甲基对氨基苯甲醚组成,或由对氨基苯乙醚和N-甲基对氨基苯乙醚组成。
在本发明的一个方面,R4和R5为H,R4为乙烯基,由此通式II的化合物为苯乙烯。在本发明的一个方面,通式II的化合物为苯乙烯的同系物。本发明所称的同系物指的是相差一个或多个(比如2-4个)亚甲基的化合物。
在本发明的一个方面,R4和R5为甲基,R4为乙烯基,由此通式II的化合物为
Figure PCTCN2016082799-appb-000003
(2,5-二甲基苯乙烯)。
在本发明的一个方面,R5为H,R3和R4连同它们连接的碳原子一起形成环戊烯或环戊烷,由此通式II的化合物为茚或茚满。在本发明的一个方面,通式II的化合物为茚或茚满的同系物。
在本发明的一个方面,R5为H,R3和R4连同它们连接的碳原子一起形成环己烯,由此通式II的化合物可以是
Figure PCTCN2016082799-appb-000004
(1,2-二氢萘)。在R3和R4连同它们连接的碳原子一起形成环庚烯的情况下,通式II的化合物可以是
Figure PCTCN2016082799-appb-000005
(6,7-二氢-苯并[7]轮烯)。
在本发明的一个方面,组分(ii)由苯乙烯组成,或由苯乙烯和茚或茚满组成,或由苯乙烯,茚和茚满组成。
在本发明的一个方面,所述组分(i)占燃料抗爆剂总重量的10-80%,比如10%,20%,30%,40%,50%,60%,70%或80%,或者以其中两个具体含量为端点的任一范围,比如10-30%。
在本发明的一个方面,所述组分(ii)占燃料抗爆剂总重量的20-90%,比如20%,30%,40%,50%,60%,70%,80%或90%,或者以其中两个具体含量为端点的任一范围,比如70-90%。
在本发明的一个方面,所述燃料抗爆剂由组分(i)和组分(ii)组成。
在本发明的一个方面,本发明的燃料抗爆剂为有机无灰型汽油抗爆剂,它可以显著提高汽油的辛烷值,增强汽油的抗爆性能。
在本发明的一个方面,所述燃料抗爆剂中的组分(i)低至20%以下。
在本发明的一个方面,所述燃料抗爆剂还包含(iii)一种或多种辅助剂和/或(iv)一种或多种有机溶剂,所述组分(iii)或者组分(iv)各自均可占燃料抗爆剂总重量的0-50%,比如5%,10%,20%,30%,40%或50%,或者以其中两个具体含量为端点的任一范围,比如5-20%。
所述辅助剂可选自:抗氧剂(如2,6-二叔丁基-4-甲基苯酚、BHT、对乙基苯酚和对叔丁基苯酚)、抗变色剂(如苯并三唑、N,N-二乙基羟胺)、清净剂(如聚醚胺、聚异丁烯胺)、缓蚀剂(如咪唑啉、脂肪胺)、消泡剂(如二甲基硅油)、糠醇、四氢糠醇、叔丁醇、苯甲醚、甲基叔丁基醚(MTBE)等。
所述有机溶剂可选自:烃类如二甲苯、三甲苯、重芳烃、汽油、煤油、石脑油;醇类如乙醇、异丙醇;醚类如四氢呋喃、二氧六环等。
在本发明的一个方面,所述燃料抗爆剂由组分(i),组分(ii)和组分(iii)组成。在本发明的一个方面,所述组分(iii)选自糠醇和四氢糠醇。
本发明的一个方面提供本发明燃料抗爆剂的制造方法,该方法包括在高于室温的温度下将各种组分搅拌至充分混合。所述温度比如是50-100℃,或者比如60-70℃。所述搅拌的时间比如是0.5-3小时或0.5-2小时,比如约1小时。
本发明的一个方面提供一种燃料组合物,其包含:
(a)大量处于汽油沸程内的烃混合物;和
(b)少量本发明的燃料抗爆剂。
在本发明的一个方面,所述燃料组合物由组分(a)和组分(b)组成。
在本发明的一个方面,所述组分(a)可以是直馏汽油、FCC汽油、烷基化汽油、加氢汽油或其调和汽油、费-托合成汽油或煤制汽油等。
在本发明的一个方面,所述组分(a)是低标号汽油,比如90#、92#或93#汽油。
在本发明的一个方面,所述组分(b)可占燃料组合物总体积的0.01-10.0%,比如0.1%,0.3%,0.5%,0.8%,1.0%,1.5%,2.0%,3.5%,5.0%,7.5%,10.0%等,或者以其中两个具体含量为端点的任一范围,比如0.5-1.0%。
本发明的抗爆剂可单独使用或与其它各种类型的汽油添加剂复配使用,可在炼厂、终端、零售商等环节由制造商或者消费者添加。
发明人意外发现,本发明的胺基苯烷基醚(i)和芳烃衍生物(ii)之间存在协同作用,能够协同提高汽油的辛烷值。由上述组分复配得到的抗爆剂的抗爆试验结果表明,在汽油中加入少量本发明的抗爆剂可以显著提高汽油的辛烷值,减少汽油在发动机中燃烧产生的爆震。
和现有技术相比,本发明的有益效果包括:
1)成本低、使用效果好、适用性强,能有效提高汽油辛烷值,不仅对低辛烷值汽油有好的感受性,对中高辛烷值汽油也有明显的效果,为其在油品中的规模化应用提供了经济可行性;
2)本发明产品性质稳定、热稳定性好,能够与油品很好地兼容;
3)本发明产品能大大降低汽油胶质形成,有效改善汽油品质;相比传统苯胺类抗爆剂氮含量大大降低,能有效改善尾气排放;能有效提高汽油辛烷值,减少汽油芳烃调和组分含量,并减少汽车颗粒物排放;
4)本发明产品具有良好的燃烧性,不产生沉淀或残渣,对发动机损伤小,对三元催化器无损害;
5)本发明产品不含重金属、无毒,对环境不造成污染。
附图说明
图1是汽油的RON相对于抗爆剂添加量的曲线图;
图2是汽油的RON相对于抗爆剂配比的曲线图;
图3是汽油的RON相对于抗爆剂配比的曲线图。
具体实施方式
下面通过具体实施例对本发明作进一步说明,但本发明不受限于具体实施例中的各个细节。
实施例1:抗爆剂的制备
向带有机械搅拌器,温度计,加料漏斗和冷凝管的反应釜中加入对氨基苯甲醚100kg和苯乙烯400kg,升温至60℃,搅拌1小时,冷却到室温即得汽油抗爆剂。
向99.5ml的92#基础汽油中加入0.5ml上述抗爆剂,依照GB/T5487汽油辛烷值测定法(研究法)进行测试,测得汽油的RON辛烷值从92.5增加到93.5。
实施例2-6:抗爆剂的制备
采用实施例1的设备和步骤,调整抗爆剂的组分,含量,添加量,搅拌温度和搅拌时间,制备实施例2-6的抗爆剂。
上述各项参数以及RON值概括于下表1。
表1:实施例1-6的抗爆剂的制备参数以及RON提升结果
Figure PCTCN2016082799-appb-000006
Figure PCTCN2016082799-appb-000007
注:上述实施例1-6空白汽油的RON均为92.5。
由实施例1-6的数据结合发明人所完成的其它实验可以看出,(N-甲基)对氨基苯甲/乙醚与苯乙烯/茚的协同作用明显。若汽油RON需提高1个点左右,则添加对氨基苯甲醚复配抗爆剂0.5v%比较合适;若需要提高3个点左右,则添加N-甲基对氨基苯甲(或乙)醚复配抗爆剂1v%比较合适。
比较实施例1-3
采用实施例1的设备和步骤,改变抗爆剂的组分,含量,添加量,搅拌温度和搅拌时间,制备比较实施例1-3的抗爆剂。
上述各项参数以及RON值概括于下表2,表2同时摘录了实施例1和2的数据,以作比较。
表2:比较实施例1-3的抗爆剂的制备参数以及添加抗爆剂后汽油的RON
Figure PCTCN2016082799-appb-000008
Figure PCTCN2016082799-appb-000009
注:上述比较实施例1-3空白汽油的RON均为92.5。
由比较实施例1-3的数据可以看出,(N-甲基)对氨基苯甲醚与比较实施例1-3涉及的组分之间的协同作用较小或者不存在。
实施例7:不同的抗爆剂添加量对于RON的影响
将实施例1得到的抗爆剂以0.2%、0.4%、0.6%、0.8%、1.0%和1.5%的体积百分比加入到92#基础汽油中,汽油的辛烷值变化如下表3所示。
表3:不同的抗爆剂添加量对于RON的影响
抗爆剂添加量,v% 0(空白) 0.2 0.4 0.6 0.8 1.0 1.5
RON 92.5 92.9 93.6 93.9 94.0 94.0 94.1
图1显示了表3列举的数据,可见,对氨基苯甲醚复配抗爆剂的添加量在0.2-0.6v%范围内对RON的提升较为显著。
实施例8:不同的抗爆剂组分配比对于RON的影响
将对氨基苯甲醚和苯乙烯按不同比例复配得到的抗爆剂以0.5v%加入到92#基础汽油中,汽油的辛烷值变化如下表4所示。
表4:不同的抗爆剂配比对于RON的影响
对氨基苯甲醚含量,wt% 空白 10% 20% 30% 40% 50%
RON 92.5 92.9 93.7 93.7 93.7 94.1
图2显示了表4列举的数据,可见,抗爆剂中对氨基苯甲醚含量较低时,与苯乙烯协同作用较为显著。考虑到对氨基苯甲醚的价格远高于苯乙烯,抗爆剂中对氨基苯甲醚含量为20wt%时性价比最高。当然,在不考虑成本的前提下或者因为某种原因成本差异减小或倒置,则亦可提高对氨基苯甲醚的含量以获得更好的效果。
实施例9:不同的抗爆剂组分配比对于RON的影响
将N-甲基对氨基苯甲醚和苯乙烯按不同比例复配得到的抗爆剂以1.0v%加入到92#基础汽油中,汽油的辛烷值变化如下表5所示。
表5:不同的抗爆剂配比对于RON的影响
N-甲基对氨基苯甲醚含量,wt% 空白 20% 30% 40% 50% 60%
RON 92.5 94.0 94.6 95.1 95.5 95.7
图3显示了表5列举的数据,可见,抗爆剂中N-甲基对氨基苯甲醚含量较低时,协同作用不如对氨基苯甲醚的情形明显,但随着其含量的增加,RON持续增大,弥补了对氨基苯甲醚的劣势。
基于图2和图3显示的结果,在本发明的一个具体实施方案中,组分(i)由对氨基苯甲醚和N-甲基对氨基苯甲醚组成,其中对氨基苯甲醚的含量在20%(占抗爆剂总重量)以内,但整个组分(i)的含量超过20%,比如为30%-60%(占抗爆剂总重量)。当然,(N-甲基)对氨基苯甲醚可以各自独立地替换为(N-甲基)对氨基苯乙醚。
比较实施例4
将纯(N-甲基)对氨基苯甲/乙醚各自以0.5v%加入到92#基础汽油中,在四种情况下,汽油的辛烷值均仅提高约0.5。事实上,发明人通过实验发现,添加0.1v%的(N-甲基)对氨基苯甲/乙醚对应的辛烷值提高约为0.1,同时与之复配的芳烃衍生物的这一提高值据报道也和这一水平相当,因此不考虑协同作用按照线性相加来预测的话,添加0.5v%的(N-甲基)对氨基苯甲/乙醚-芳烃衍生物复配抗爆剂对于汽油辛 烷值的提升应该是0.5,大大低于实施例8和9的实测值。本发明的复配抗爆剂所具有的协同作用由此得以证实。
实施例10:抗爆剂的添加对于汽油理化性质的影响
将实施例2获得的抗爆剂以1.0%的体积百分比加入到92#基础汽油中,表6列举了添加抗爆剂前后汽油各项理化性质指标的变化。
表6:抗爆剂的添加对于汽油理化性质的影响
Figure PCTCN2016082799-appb-000010
由表6可知,本发明的抗爆剂加入前后,汽油中的胶质、硫、锰、铁、机械杂质、水分等指标均无明显增加,同时对密度、蒸汽压、诱导期等指标的影响也不大,完全可以满足汽油添加剂的一般要求。
实施例11:抗爆剂的添加对于汽车硬件的影响
将实施例2获得的抗爆剂以1.0%的体积百分比加入到92#基础汽油中,并采用获得的汽油组合物进行道路行车试验,依照中国标准GB18352.3-2005《轻型汽车污染物排放限值及测量方法(中国III、IV阶段)》进行工况法污染物排放及燃油经济性测试,测试结果示于表7。
表7:雪佛兰SGM7166MTC轿车工况法污染物排放及燃油经济性测试结果
项目 HC(g/km) CO(g/km) NOx(g/km) 油耗(L/100km)
原车 0.05 0.81 0.01 9.41
使用抗爆剂后 0.03 0.47 0.02 9.32
通过表7中的数据发现,使用本发明抗爆剂具有一定的节油减排功能。另外,车辆使用正常,未发现发动机异常、零件腐蚀磨损、油泵损坏等不良问题。
实施例12:抗爆剂对于高低标号基础汽油的RON的影
在93#基础汽油中添加1.0v%的抗爆剂(50wt%N-甲基对氨基苯乙醚+50wt%苯乙烯),辛烷值从93.4提高到96.3;对于97#基础汽油,同一实验条件下辛烷值从98.1提高到99.7。因此本发明抗爆剂添加至低标号汽油具有更为显著的效果。
实施例13:本发明抗爆剂和现有抗爆剂的复配
在RON辛烷值为93.3的基础汽油中添加10%MTBE(占汽油组合物总体积)后,辛烷值提高至95.8;将MTBE的添加量减少至5v%,并与实施例1的抗爆剂复配后加入汽油,使得后者的添加量为0.2v%,由此得到的辛烷值为95.7,如下表8所示。
表8:
样品 RON
92#汽油(空白) 93.3
添加10v%MTBE 95.8
添加5v%MTBE+实施例1的抗爆剂(0.2v%) 95.7
本实施例表明,本发明的抗爆剂主剂和目前市场普遍使用的抗爆剂MTBE等也有协同作用。MTBE有一定毒性,目前国家标准要求越来越严格,在汽油中的添加上限不断降低,通过在现有的MTBE抗爆剂中加入本发明抗爆剂(复配),在达到可比效果水平的前提下可大大降低MTBE的实际用量。这不但降低成本,还有环保优势,具有很大的经济和社会效益。
需要说明的是,基础汽油由于产地和成分等的差异,通过同一方法测得的辛烷值存在一定差异,但本发明不受此基础油辛烷值的影响。本发明的优势通过抗爆剂添加前后辛烷值的增量(Δ辛烷值)来体现。本发明的实施例亦可通过Δ辛烷值来说明,以排除不同批次和不同来源的基础汽油在辛烷值上的差异。
以上通过具体实施例进一步说明了本发明,但本发明不受限于上述实施例中公开的各项细节。本领域技术人员可基于本发明的公开内容作出多种等同替换和明显修改,本发明亦旨在覆盖这些替换和修改。

Claims (10)

  1. 一种燃料抗爆剂,其包含:
    (i)一种或多种通式I的化合物
    Figure PCTCN2016082799-appb-100001
    其中R1选自H或C1-6烷基,R2选自C1-8烷基;和
    (ii)一种或多种通式II的化合物
    Figure PCTCN2016082799-appb-100002
    其中R3选自C2-6烯基,R4选自H或C1-4烷基,或者R3和R4连同它们连接的碳原子一起形成C5-10饱和或不饱和五、六、七或八元环,R5选自H或C1-8烷基。
  2. 如权利要求1所述的燃料抗爆剂,其特征在于,R1为H或甲基,R2为甲基、乙基或异丙基;-OR2基团位于-NHR1基团的对位。
  3. 如权利要求1-2任一项所述的燃料抗爆剂,其特征在于,所述组分(ii)为一种或多种选自苯乙烯、茚或茚满的化合物。
  4. 前述权利要求任一项所述的燃料抗爆剂,其特征在于,所述组分(i)占燃料抗爆剂总重量的10-80%,所述组分(ii)占燃料抗爆剂总重量的20-90%。
  5. 前述权利要求任一项所述的燃料抗爆剂,其特征在于,所述燃料抗爆剂包含占燃料抗爆剂总重量0-50%的一种或多种辅助剂,所述辅助剂选自:抗氧剂、抗变色剂、清净剂、缓蚀剂、消泡剂、糠醇、四氢糠醇、叔丁醇、苯甲醚、甲基叔丁基醚。
  6. 前述权利要求任一项所述的燃料抗爆剂,其特征在于,所述燃料抗爆剂包含占燃料抗爆剂总重量0-50%的一种或多种有机溶剂,所述有机溶剂选自:二甲苯、三甲苯、重芳烃、汽油、煤油、石脑油、乙醇、异丙醇、四氢呋喃和二氧六环。
  7. 一种制造前述权利要求任一项所述的燃料抗爆剂的方法,所述方法包括在50-100℃的温度下将各种组分混合并搅拌0.5-3小时。
  8. 一种燃料组合物,其包含:
    (a)处于汽油沸程内的烃混合物;和
    (b)占燃料组合物总体积0.01-10.0%的权利要求1-6任一项所述的燃料抗爆剂。
  9. 如权利要求8所述的燃料组合物,其特征在于,所述组分(b)占燃料组合物总体积的0.01-5.0%。
  10. 如权利要求8所述的燃料组合物,其特征在于,所述组分(a)为直馏汽油、FCC汽油、烷基化汽油、加氢汽油或其调和汽油、费-托合成汽油或煤制汽油。
PCT/CN2016/082799 2016-05-20 2016-05-20 燃料抗爆剂及其制造方法和燃料组合物 WO2017197640A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680085361.8A CN109312244B (zh) 2016-05-20 2016-05-20 燃料抗爆剂及其制造方法和燃料组合物
PCT/CN2016/082799 WO2017197640A1 (zh) 2016-05-20 2016-05-20 燃料抗爆剂及其制造方法和燃料组合物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/082799 WO2017197640A1 (zh) 2016-05-20 2016-05-20 燃料抗爆剂及其制造方法和燃料组合物

Publications (1)

Publication Number Publication Date
WO2017197640A1 true WO2017197640A1 (zh) 2017-11-23

Family

ID=60325600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082799 WO2017197640A1 (zh) 2016-05-20 2016-05-20 燃料抗爆剂及其制造方法和燃料组合物

Country Status (2)

Country Link
CN (1) CN109312244B (zh)
WO (1) WO2017197640A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112414815A (zh) * 2020-11-27 2021-02-26 青岛赛时检验有限公司 一种汽油诱导期的能力验证样品及制备方法和应用
CN116769520A (zh) * 2023-06-27 2023-09-19 山东京博新能源控股发展有限公司 一种测试车用91#胶质汽油

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113735722B (zh) * 2021-09-26 2023-05-16 武汉炼化工程设计有限责任公司 一种n-甲基-对氨基苯甲醚的制备工艺
CN115197756A (zh) * 2022-08-08 2022-10-18 中国石油大学(华东) 一种醇基汽油燃料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125370A (ja) * 1991-10-31 1993-05-21 Nippon Oil Co Ltd ガソリン組成物
WO2007102747A1 (en) * 2006-03-09 2007-09-13 Firepower Technology Limited Fuel conditioner composition
EP2014643A1 (en) * 2006-04-12 2009-01-14 Obshestvo S Ogranichennoy Otvetstvennostiu Inoxim Para-ethoxyaniline derivatives increasing the antiknock rating of hydrocarbon fuels and compositions based thereon
WO2009051462A1 (es) * 2007-10-17 2009-04-23 Hernandez Naranjo Jose Luis Aditivo para ahorrar combustible
CN101423779A (zh) * 2007-10-31 2009-05-06 雅富顿公司 双功能燃料雾化和点火添加剂
CN102382693A (zh) * 2010-09-01 2012-03-21 上海中茂新能源应用有限公司 车用轻烃燃料
CN102449125A (zh) * 2009-04-09 2012-05-09 国际壳牌研究有限公司 燃料组合物及其用途
CN102933526A (zh) * 2010-04-12 2013-02-13 国际壳牌研究有限公司 从低级烷烃生产汽油调合组分和芳烃的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125370A (ja) * 1991-10-31 1993-05-21 Nippon Oil Co Ltd ガソリン組成物
WO2007102747A1 (en) * 2006-03-09 2007-09-13 Firepower Technology Limited Fuel conditioner composition
EP2014643A1 (en) * 2006-04-12 2009-01-14 Obshestvo S Ogranichennoy Otvetstvennostiu Inoxim Para-ethoxyaniline derivatives increasing the antiknock rating of hydrocarbon fuels and compositions based thereon
WO2009051462A1 (es) * 2007-10-17 2009-04-23 Hernandez Naranjo Jose Luis Aditivo para ahorrar combustible
CN101423779A (zh) * 2007-10-31 2009-05-06 雅富顿公司 双功能燃料雾化和点火添加剂
CN102449125A (zh) * 2009-04-09 2012-05-09 国际壳牌研究有限公司 燃料组合物及其用途
CN102933526A (zh) * 2010-04-12 2013-02-13 国际壳牌研究有限公司 从低级烷烃生产汽油调合组分和芳烃的方法
CN102382693A (zh) * 2010-09-01 2012-03-21 上海中茂新能源应用有限公司 车用轻烃燃料

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112414815A (zh) * 2020-11-27 2021-02-26 青岛赛时检验有限公司 一种汽油诱导期的能力验证样品及制备方法和应用
CN116769520A (zh) * 2023-06-27 2023-09-19 山东京博新能源控股发展有限公司 一种测试车用91#胶质汽油

Also Published As

Publication number Publication date
CN109312244B (zh) 2021-02-19
CN109312244A (zh) 2019-02-05

Similar Documents

Publication Publication Date Title
WO2017197640A1 (zh) 燃料抗爆剂及其制造方法和燃料组合物
JP5308348B2 (ja) 燃料組成物及びその使用
CN102643691B (zh) 一种汽油复合添加剂
JP5175542B2 (ja) 改良加鉛航空ガソリン
US20050229479A1 (en) Fuel compositions and methods thereof
BR112018016445B1 (pt) Composições de combustível, processo, usos e métodos relacionados
CN103695050B (zh) 一种车用甲醇汽油复合添加剂
US11634652B2 (en) Use of a paraffinic gasoil
JP5937616B2 (ja) 燃料のブレンドに関する改良
CN104119967B (zh) 一种利用炼厂基础油生产国ⅳ标准93#汽油的复合添加剂
US9447356B2 (en) Diesel fuel with improved ignition characteristics
JP2012514108A (ja) 燃料組成物およびこの使用
JP2000044969A (ja) 無鉛高オクタン価ガソリン組成物
JP2014208752A (ja) ディーゼル燃料油組成物
JP6243833B2 (ja) ガソリン組成物
CN101200657A (zh) 内燃机复合燃料及其制备方法
CN105567346A (zh) 一种高清试验用油及其制备方法
AU2015333772B2 (en) Fuel composition and method of formulating a fuel composition to reduce real-world driving cycle particulate emissions
CN107974308B (zh) 一种煤制乙醇汽油金属缓蚀剂
SG172322A1 (en) Fuel compositions
US10407637B2 (en) Fuel composition
CN104194842A (zh) 高能复合醇基汽油及其制备方法
CN113924353A (zh) 汽油燃料成分
JP2006160922A (ja) ガソリン組成物
WO2018000181A1 (zh) 醇基燃料及其应用

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902025

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902025

Country of ref document: EP

Kind code of ref document: A1