WO2017195877A1 - 光学素子およびその製造方法 - Google Patents

光学素子およびその製造方法 Download PDF

Info

Publication number
WO2017195877A1
WO2017195877A1 PCT/JP2017/017951 JP2017017951W WO2017195877A1 WO 2017195877 A1 WO2017195877 A1 WO 2017195877A1 JP 2017017951 W JP2017017951 W JP 2017017951W WO 2017195877 A1 WO2017195877 A1 WO 2017195877A1
Authority
WO
WIPO (PCT)
Prior art keywords
volume hologram
hologram recording
light
layer
recording layer
Prior art date
Application number
PCT/JP2017/017951
Other languages
English (en)
French (fr)
Inventor
賢一 尾中
希志臣 田村
平岡 三郎
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2017195877A1 publication Critical patent/WO2017195877A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus

Definitions

  • the present invention relates to an optical element and a manufacturing method thereof.
  • Patent Document 1 discloses an image display apparatus in which a planar HOE is attached to an eyepiece prism, image light emitted from a display element and guided inside the eyepiece prism is diffracted and reflected by the HOE, and guided to the observer's pupil. It is disclosed.
  • HOE has wavelength dependency, and the direction of diffraction is changed according to the wavelength. Therefore, as in the technique described in Japanese Patent Application Laid-Open No. 2007-11279 (corresponding to US Patent Application Publication No. 2006/268421), the direction in which image light is reflected on the HOE attachment surface of the eyepiece prism, and the HOE In the configuration in which the direction in which the image light is diffracted substantially coincides with the center of the screen (the center of the angle of view at the time of image observation), if a planar HOE is used, the wavelength of the image light is dispersed radially from the center of the screen The As a result, at a position other than the center of the screen, the displayed point (image) is stretched radially from the center of the screen, causing a problem that the image quality deteriorates.
  • the eyepiece prism surface that contacts the volume phase hologram that diffracts and reflects the image light is curved, and a point (image) is extended at a position other than the center of the screen due to the wavelength dependence of the HOE. For example, limiting the direction. Thereby, compared with the case where planar HOE is used, deterioration of the image quality of HOE can be suppressed.
  • Japanese Patent Laid-Open No. 7-234627 discloses that two hologram recording materials are disposed between two curved transparent prisms.
  • a laminated structure in which a transparent prism is bonded with polyvinyl butyral (PVB) is disclosed. It has been reported that the laminated structure described in JP-A-7-234627 is suitably used for a head-up display and a windshield for automobiles.
  • an object of the present invention is to provide an optical element having good image quality and having durability capable of maintaining high diffraction efficiency for a long time even under high humidity conditions.
  • the present inventors conducted intensive research. As a result, at least one of a pair of bonding surfaces of two adjacent transparent optical members has a curved surface, and the volume hologram is arranged in at least a partial region of the bonding surface having a curved surface among the pair of bonding surfaces. It has been found that the above-mentioned problems can be solved by including polyurethane in the recording layer, and the present invention has been completed.
  • At least one of a pair of bonding surfaces of two adjacent transparent optical members has a curved surface, and a photopolymer is applied to at least a partial region of the bonding surface having a curved surface among the pair of bonding surfaces.
  • An optical element including a volume hologram recording layer including a radiation curable adhesive layer so as to cover the entire bonding surface having the curved surface, wherein the volume hologram recording layer includes polyurethane.
  • FIG. 1 is a schematic diagram showing an example of an exposure apparatus used for holographic exposure.
  • Reference numeral 201 denotes a laser light source
  • reference numeral 202 denotes a beam steerer
  • reference numeral 203 denotes a shutter
  • reference numeral 204 denotes a beam expander
  • reference numeral 205 denotes a beam splitter
  • reference numerals 206, 207, 208 and 209 denote mirrors
  • reference numeral 211 Reference numerals 212 and 213 denote spatial filters
  • reference numeral 213 denotes a manufacturing optical system.
  • FIG. 2 is a schematic view showing a partial structure of an optical element according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram illustrating a cross-sectional structure of an image display apparatus including an optical element according to an embodiment of the present invention.
  • Reference numeral 1 denotes an image display element
  • reference numeral 10 denotes an optical element
  • reference numeral 11 denotes a first transparent optical member
  • reference numeral 12 denotes a volume hologram recording layer
  • reference numeral 13 denotes a second transparent optical member
  • reference numeral 14 denotes radiation.
  • FIG. 4 is a schematic diagram illustrating a more detailed cross-sectional structure of an image display apparatus including an optical element according to an embodiment of the present invention.
  • Reference numeral 1 denotes an image display element
  • reference numeral 10 denotes an optical element
  • reference numeral 11 denotes a first transparent optical member
  • reference numeral 12 denotes a volume hologram recording layer
  • reference numeral 13 denotes a second transparent optical member
  • reference numeral 14 denotes radiation.
  • Reference numeral 20 denotes a display element
  • reference numeral 21 denotes a light source
  • reference numeral 22 denotes an illumination mirror
  • reference numeral 23 denotes a diffusion plate
  • reference numeral 24 denotes a polarizing plate
  • reference numeral 25 denotes a polarizing beam splitter
  • reference numeral EP Indicates an optical pupil
  • FIG. 5 is a schematic view showing the transparent optical members 11-1 and 11-2 produced in the example, (a) is a plan view of the transparent optical member, and (b) and (c) are transparent optical members.
  • FIG. 6 is a schematic view showing the transparent optical members 13-1 and 13-2 produced in the example, (a) is a plan view of the transparent optical member, and (b) and (c) are transparent optical members.
  • FIG. FIG. 7 is a schematic view showing a laminate in which a volume hologram recording layer is laminated on a joint surface having a curved surface produced in the example, (a) is a plan view of the laminate, and (b) and (c) ) Is a side view of the laminate.
  • FIG. 8 is a schematic diagram showing a virtual image used for evaluation of sharpness.
  • a layer containing a polymerizable monomer before holographic exposure is referred to as a photosensitive layer
  • a layer in which a volume hologram is recorded by performing holographic exposure on the photosensitive layer is referred to as a volume hologram recording layer.
  • the polymer obtained by light-irradiating the photosensitive composition containing a polymerizable monomer, a photoinitiator, a matrix resin, its precursor, etc. and carrying out a polymerization reaction is called a photopolymer.
  • At least one of a pair of bonding surfaces of two adjacent transparent optical members has a curved surface, and at least a region of the bonding surface having a curved surface among the pair of bonding surfaces.
  • a layer including a volume hologram recording layer including a photopolymer is disposed, and a radiation curable adhesive layer is provided so as to cover the entire bonding surface having the curved surface.
  • a hologram recording material is disposed between two curved transparent prisms, and the two transparent prisms are bonded to each other by polyvinyl butyral (PVB). It is said that it is not easily affected by the external environment.
  • the laminated structure described in Japanese Patent Application Laid-Open No. 7-234627 has a different shrinkage rate when the adhesive layer is cured because the thickness of the adhesive layer is different between the region having the hologram recording material and the region having no hologram recording material. There will be a difference. As a result, internal stress is generated, and since the joint surface has a curved surface, the internal stress is more easily generated. Therefore, a desired interference fringe cannot be formed in the region having the hologram recording material, and there is a problem that the image quality is deteriorated.
  • the volume hologram recording layer contains polyurethane.
  • the polyurethane contained in the volume hologram recording layer disperses the internal stress, and the desired interference fringes are maintained, thereby obtaining good image quality. It is thought that. Moreover, it is thought that durability under a high humidity condition of the volume hologram recording layer is improved by containing polyurethane inside. Note that the above mechanism is based on speculation, and its correctness does not affect the technical scope of the present embodiment.
  • X to Y indicating a range means “X or more and Y or less”.
  • operations and physical properties are measured under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH.
  • At least one of the pair of bonding surfaces has a curved surface.
  • the other joining surface may be flat or may have a curved surface.
  • the shape of the curved surface examples include a cylindrical shape (cylindrical shape), a spherical shape, a convex lens shape, a concave lens shape, and the like, and are not particularly limited.
  • the curvature of the curved surface shape is appropriately changed depending on the installation position of the optical element that displays an image with respect to the pupil, and the curvature increases as the installation position is closer.
  • the curvature is preferably equal to or smaller than 1 / R.
  • the curvature may be constant over the curved surface of the transparent optical member or may vary. When it changes, it is preferable to become small toward the peripheral edge part of a transparent optical member.
  • transparent optical member only needs to be optically transparent, and a known material can be appropriately selected.
  • “transparent” means that the total light transmittance in the visible light wavelength region is 60% or more.
  • materials include, for example, inorganic materials such as glass, silicon, and quartz; acrylic resin, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthoate, polyethylene, polypropylene, amorphous polyolefin, cellulose acetate, hydrated cellulose, and cellulose nitrate.
  • Organic materials such as cycloolefin polymer, polystyrene, polyepoxide, polysulfone, cellulose acylate, polyamide, polyimide, polymethyl methacrylate, polyvinyl chloride, polyvinyl butyral, polydicyclopentadiene, and the like. These materials may be used alone or in combination of two or more. Further, the materials of the pair of transparent optical members may be the same or different from each other.
  • the transparent optical member can be obtained by performing injection molding, extrusion molding, or the like under the known conditions using the above material, for example, using a mold.
  • the transparent optical member having an appropriate size having the curved surface can be produced by using a known method or by appropriately modifying it.
  • the optical element of the present embodiment preferably has an adjacent layer containing a resin in contact with the volume hologram recording layer.
  • the adjacent layer can have a role of protecting the volume hologram recording layer and / or a role of stably holding the volume hologram recording layer.
  • the adjacent layer having the above-described configuration may be provided so as to be in contact with both surfaces of the volume hologram recording layer, or may be provided so as to be in contact with only one surface. That is, the optical element of this embodiment preferably has at least one adjacent layer containing a resin. When adjacent layers are provided on both surfaces of the volume hologram recording layer, the constituent material and thickness of each adjacent layer may be the same or different.
  • Examples of the resin contained in the adjacent layer include known resins having transparency.
  • Specific examples of the resin include acrylic resin, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthoate, polyethylene, polypropylene, amorphous polyolefin, cellulose acetate, hydrated cellulose, cellulose nitrate, cycloolefin polymer, polystyrene, polyepoxide, Examples include polysulfone, cellulose acylate, polyamide, polyimide, polymethyl methacrylate, polyvinyl chloride, polyvinyl butyral, and polydicyclopentadiene. These resins may be used alone or in combination of two or more.
  • polyethylene terephthalate, cycloolefin polymer, cellulose acylate, and polymethyl methacrylate are preferable from the viewpoint of optical characteristics and the like, and cellulose acylate is more preferable.
  • the adjacent layer may be, for example, an ultraviolet absorber, an antioxidant, a deterioration inhibitor, a light stabilizer, a heat stabilizer, a lubricant, an antistatic agent, a flame retardant, a filler, a fine particle, or an optical property modifier.
  • Etc. and may contain other components.
  • the addition amount of other components is preferably 0.1 to 29.5% by mass relative to the total mass of the adjacent layers.
  • the thickness of the adjacent layer is not particularly limited, but is preferably 10 to 1000 ⁇ m, and more preferably 50 to 200 ⁇ m.
  • the method for forming the adjacent layer is not particularly limited, and there is a method in which the resin is molded using a conventionally known method such as a melt extrusion method, a solution casting method (solution casting method), a calendar method, or a compression molding method. Can be mentioned. Among these methods, the melt extrusion method and the solution cast method (solution casting method) are preferable. Moreover, you may use a commercially available resin film as an adjacent layer.
  • the volume hologram recording layer is a photosensitive composition containing a polymerizable monomer, a photopolymerization initiator, a polyisocyanate compound and a polyol compound which are polyurethane precursors, and a matrix resin other than polyurethane or a precursor thereof as necessary.
  • the product is prepared by performing at least holographic exposure on a coating film (photosensitive layer) obtained by applying the product onto an adjacent layer and drying it. In this manner, a diffraction grating composed of a high refractive index region and a low refractive index region is formed in the photosensitive layer, thereby forming a volume hologram recording layer.
  • the photosensitive composition used for forming the volume hologram recording layer preferably contains a radical polymerizable monomer, a photopolymerization initiator, and a polyurethane precursor containing a polyisocyanate compound and a polyol compound. It may contain a matrix resin or a precursor thereof, a sensitizer, a solvent and the like.
  • a radical polymerizable monomer e.g., ethylene glycol dimethacrylate compound
  • a photopolymerization initiator e.g., ethylene glycol dimethacrylate-st copolymer, polyurethane precursor containing a polyisocyanate compound and a polyol compound.
  • a polyurethane precursor containing a polyisocyanate compound and a polyol compound. It may contain a matrix resin or a precursor thereof, a sensitizer, a solvent and the like.
  • the radically polymerizable monomer is not particularly limited as long as it has one or more radically polymerizable ethylenically unsaturated bonds in the molecule, but preferably has a relatively high refractive index.
  • those having a 9,9-diarylfluorene skeleton and having at least one ethylenically unsaturated bond in the molecule can be mentioned. Specifically, it is a compound having the following structure.
  • R 1 and R 2 are each independently a radical polymerizable group containing an acryloyl group or a methacryloyl group at the terminal.
  • a preferred form is a group having an acryloyl group or a methacryloyl group at the terminal and capable of binding to the benzene ring of the above compound via an oxyethylene chain, an oxypropylene chain, a urethane bond, an amide bond, or the like.
  • X 1 to X 4 are each independently a hydrogen atom or a substituent.
  • substituents include an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an amino group, a dialkylamino group, a hydroxyl group, a carboxyl group, and a halogen group.
  • urethane acrylate composed of a condensation product of a phenyl isocyanate compound and a compound having a hydroxy group and an acryloyl group in one molecule can also be used. Specifically, it is a compound having the following structure.
  • each R is independently a group having an ethylenically unsaturated bond
  • each X is independently a single bond, an oxygen atom, or a straight-chain, A branched or cyclic divalent aliphatic hydrocarbon group.
  • R 1 to R 5 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, a trifluoromethyl group, an alkylthio group having 1 to 6 carbon atoms, or a carbon number.
  • An alkylseleno group having 1 to 6 carbon atoms, an alkyl tellurium group having 1 to 6 carbon atoms, or a nitro group, and R 6 and R 7 are each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. .
  • A represents a linear or branched alkylene group having 1 to 6 carbon atoms, a linear or branched alkenylene group having 2 to 6 carbon atoms, or a polyalkylene having 2 to 6 ethylene oxide units or propylene oxide units.
  • radical polymerizable monomers a monomer having a substituted or unsubstituted phenyl group, a monomer having a substituted or unsubstituted naphthyl group, a substituted or unsubstituted heterocyclic aromatic moiety having up to 3 rings
  • a monomer having a chlorine atom, a monomer having a chlorine atom, and a monomer containing a bromine atom are preferable because of their relatively high refractive index.
  • the above radical polymerizable monomers can be used alone or in combination of two or more.
  • the content of the radical polymerizable monomer in the photosensitive composition is preferably 1 to 25% by mass, and more preferably 5 to 20% by mass.
  • the radical photopolymerization initiator is an agent that initiates photopolymerization of a radical polymerizable monomer by irradiation with laser light having a specific wavelength or light having excellent coherence in holographic exposure.
  • photo radical polymerization initiators include, for example, US Pat. Nos. 4,766,055, 4,868,092, 4,965,171, JP-A Nos. 54-151024, 58-15503, 58-28803. No. 59-189340, No. 60-76735, JP-A-1-28715, JP-A-4-239505 and “Proceedings of Conference on Radiation Curing Asia”.
  • Known polymerization initiators described in (PROCEEDINGS OF CONFERENCE ON RADIATION CURING ASIA) "(pp. 461-477, 1988) can be used, but are not limited thereto.
  • radical photopolymerization initiator examples include, for example, diaryliodonium salts, 2,4,6-substituted-1,3,5-triazines (triazine compounds), azo compounds, azide compounds, organic peroxides, tetra
  • organoborates such as butylammonium triphenylbutyl borate, onium salts, halogenated hydrocarbon derivatives, titanocene compounds, monoacylphosphine oxides, bisacylphosphine oxides, and combinations of bisacylphosphine oxides and ⁇ -hydroxy ketones. It is done.
  • radical photopolymerization initiator system by combined use of hydrogen donors, such as a thiol compound, and a bisimidazole derivative can also be utilized.
  • hydrogen donors such as a thiol compound, and a bisimidazole derivative
  • radical photopolymerization initiators may be used alone or in combination of two or more.
  • the amount of the photo radical polymerization initiator used is preferably 0.05 to 50 parts by mass, more preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the radical polymerizable monomer.
  • the photosensitive composition may contain a sensitizer having a sensitization function for the radical photopolymerization initiator.
  • a sensitizer has an absorption maximum wavelength in the range of 400 to 800 nm, particularly 450 to 700 nm. These sensitizers absorb light in the above range, thereby causing a sensitizing action on the radical photopolymerization initiator.
  • Examples of such a sensitizer include polymethine compounds such as cyanine dyes and styryl dyes, xanthene compounds such as rhodamine B, rhodamine 6G, and pyronin GY, phenazine compounds such as safranin O, cresyl violet, Phenoxazine compounds such as brilliant cresyl blue, phenothiazine compounds such as methylene blue and new methylene blue, diarylmethane compounds such as auramine, triarylmethane compounds such as crystal violet, brilliant green and lissamine green, (thio) pyrylium Examples thereof include salt compounds, squarylium compounds, coumarin dyes, thioxanthene dyes, acene dyes, merocyanine dyes, thiazolium dyes, and the like. These sensitizers can be used alone or in combination of two or more.
  • the amount used is preferably 1 to 2000 parts by weight, more preferably 20 to 1500 parts by weight, based on 100 parts by weight of the radical photopolymerization initiator.
  • the photosensitive composition may contain a chain transfer agent.
  • the chain transfer agent is not particularly limited, and a known radical chain transfer agent can be used.
  • chain transfer agent examples include n-butyl mercaptan, t-butyl mercaptan, t-dodecyl mercaptan, n-octyl mercaptan, n-lauryl mercaptan, 5-chloro-2-mercaptobenzothiazole, 6-ethoxy-2-mercapto.
  • Mercaptans such as benzothiazole; disulfides such as tetramethylthiudium disulfide and tetraethylthuradium disulfide; halogen compounds such as carbon tetrachloride and carbon tetrabromide; 2-methyl-1-butene, ⁇ -methylstyrene dimer, etc. Olefins; and the like.
  • These chain transfer agents can be used alone or in combination of two or more.
  • the amount used is preferably 0.05 to 50 parts by mass, more preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the radical polymerizable monomer.
  • the photosensitive composition according to this embodiment preferably contains a polyisocyanate compound and a polyol compound which are polyurethane precursors. These compounds become polyurethane by addition polymerization, and the volume hologram recording layer contains polyurethane. That is, the polyurethane according to a preferred embodiment includes a structural unit derived from a polyisocyanate compound and a structural unit derived from a polyol compound.
  • the volume hologram recording layer contains polyurethane, even if local internal stress is generated due to curing shrinkage of the adhesive, the polyurethane disperses the internal stress, and the desired interference fringes formed on the volume hologram recording layer are generated. It is considered that good image quality is obtained by maintaining the volume hologram recording layer, and the durability of the volume hologram recording layer under high humidity conditions is improved.
  • polyurethane can also serve as a matrix resin described later.
  • the polyisocyanate compound is a compound having two or more isocyanate groups in one molecule, but the type is not particularly limited.
  • the upper limit of the number of isocyanate groups in one molecule is not particularly limited, but is usually 20 or less, preferably 8 or less, more preferably 4 or less.
  • polyisocyanate compound used in the present embodiment examples include aliphatic polyisocyanate compounds such as butylene diisocyanate, hexamethylene diisocyanate, lysine methyl ester diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate; isophorone diisocyanate, Alicyclic polyisocyanate compounds such as 4,4'-methylenebis (cyclohexyl isocyanate); aromatic polyisocyanate compounds such as tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, xylylene diisocyanate, naphthalene-1,5'-diisocyanate And multimers thereof.
  • aliphatic polyisocyanate compounds such as butylene diisocyanate, hexamethylene diisocyanate, lysine methyl ester diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate
  • reaction product of polyhydric alcohols such as water, trimethylolethane, trimethylolpropane and the above-mentioned isocyanates, a multimer of hexamethylene diisocyanate, or a derivative thereof.
  • polyhydric alcohols such as water, trimethylolethane, trimethylolpropane and the above-mentioned isocyanates, a multimer of hexamethylene diisocyanate, or a derivative thereof.
  • polyisocyanate compounds may be used alone or in combination of two or more.
  • the polyol compound is a compound having two or more hydroxy groups in one molecule, but the type is not particularly limited.
  • the polyol compound preferably has an average hydroxy functionality of 1.5 to 6.0 and a number average molecular weight of 1000 to 18500 g / mol, more preferably an average hydroxy functionality of 1.8 to 4.0 and 1000 to 8500 g / mol. And more preferably an average hydroxy functionality of 1.9 to 3.1 and a number average molecular weight of 1000 to 6500 g / mol.
  • polyol compound examples include, for example, polypropylene polyol, polycaprolactone polyol, polyester polyol, polycarbonate polyol, ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5- Pentanediol, 1,6-hexanediol, neopentyl glycol, diethylene glycol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, decamethylene glycol, trimethylolpropane, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, etc. Is mentioned. These polyol compounds may be used alone or in combination of two or more.
  • a catalyst for addition polymerization (curing) of a polyisocyanate compound and a polyol compound can be blended in the photosensitive composition. Although it can be cured at room temperature (20 to 25 ° C.) by using a catalyst, it may be cured by heating.
  • the temperature for heat curing is preferably in the range of 40 to 90 ° C., and the heat curing time is preferably in the range of 1 to 24 hours.
  • the catalyst examples include ordinary urethanization reaction catalysts, for example, tin compounds such as dibutyltin dilaurate, dioctyltin dilaurate and dibutyltin dioctanoate, and tertiary amine compounds such as triethylamine and triethylenediamine.
  • tin compounds such as dibutyltin dilaurate, dioctyltin dilaurate and dibutyltin dioctanoate
  • tertiary amine compounds such as triethylamine and triethylenediamine.
  • the tin compound has good solubility and performance as a medium, and dibutyltin dilaurate is particularly preferable.
  • the amount of the catalyst used is preferably 0.0001% by mass or more, more preferably 0.001% by mass or more, and preferably 10% by mass or less, based on the total amount of the polyisocyanate compound and the polyol compound, and 5% by mass. The following is more preferable.
  • a polyurethane having a crosslinked structure By using a polyisocyanate compound having three or more isocyanate groups in one molecule and / or a polyol compound having three or more hydroxy groups in one molecule, a polyurethane having a crosslinked structure can be obtained after addition polymerization. By containing polyurethane having a crosslinked structure in the volume hologram recording layer, a volume hologram recording layer having high strength can be obtained.
  • the content of the polyisocyanate compound in the photosensitive composition is preferably 0.02 to 0.5% by mass, and more preferably 0.05 to 0.3% by mass.
  • the content of the polyol compound in the photosensitive composition is preferably 5 to 35% by mass, and more preferably 10 to 30% by mass.
  • volume hologram recording layer contains polyurethane means that a component that does not dissolve in the organic solvent of the volume hologram recording layer is analyzed by a Fourier transform infrared spectrometer (FT-IR) and 2270 cm ⁇ derived from an isocyanate group. 1 of the absorption, and can be confirmed by the presence of absorption of 1690 cm -1 and 1470 cm -1 derived from an amide group.
  • FT-IR Fourier transform infrared spectrometer
  • the matrix resin functions to improve the uniformity of the film thickness of the volume hologram recording layer, heat resistance, mechanical properties, etc., and stabilize the hologram formed by holographic exposure. Further, when the volume hologram recording layer is formed, it may have a function of not inhibiting or efficiently expressing the diffusion transfer phenomenon of the polymerizable monomer or photopolymer. Note that the polyurethane can serve as a matrix resin described in this section.
  • any of thermoplastic resin, thermosetting resin, active energy ray curable resin, and the like can be used without limitation.
  • those resins modified with a polysiloxane chain or a perfluoroalkylene chain can also be used.
  • the matrix resins can be used alone or in combination of two or more.
  • thermoplastic resins include, for example, polyvinyl acetate, polyvinyl butyrate, polyvinyl formal, polyvinyl carbazole, polyacrylic acid, polymethacrylic acid, polymethyl acrylate, polymethyl methacrylate, polyethyl acrylate, polybutyl acrylate, polymethacrylo Nitrile, polyethyl methacrylate, polybutyl methacrylate, polyacrylonitrile, poly-1,2-dichloroethylene, ethylene-vinyl acetate copolymer, syndiotactic polymethyl methacrylate, poly- ⁇ -vinyl naphthalate, polycarbonate, cellulose acetate, Cellulose triacetate, cellulose acetate butyrate, polystyrene, poly- ⁇ -methylstyrene, poly-o-methylstyrene, poly-p- Methylstyrene, poly-p-phenylstyrene, poly-2,5-
  • thermosetting resins examples include unsaturated polyester resins, acrylic urethane resins, epoxy-modified acrylic resins, epoxy-modified unsaturated polyester resins, alkyd resins, and phenol resins.
  • active energy ray-curable resin examples include epoxy acrylate, urethane acrylate, and acrylic-modified polyester. These active energy ray-curable resins can contain other monofunctional or polyfunctional monomers, oligomers and the like as described below for the purpose of adjusting the cross-linked structure and viscosity.
  • thermoplastic resin thermosetting resin, or active energy ray curable resin
  • metal soap such as cobalt naphthenate and zinc naphthenate
  • organic peroxides such as benzoyl peroxide and methyl ethyl ketone peroxide
  • benzophenone Thermal or active energy ray curing agents such as acetophenone, anthraquinone, naphthoquinone, azobisisobutyronitrile, diphenyl sulfide and the like can be contained in the photosensitive composition.
  • the photosensitive layer can be formed and then cured by heating or irradiation with an active energy ray. Curing may be performed before or after holographic exposure.
  • a cationic polymerizable monomer may be used as another precursor of the matrix resin.
  • a matrix resin made of a cationic polymerizable monomer makes it possible to produce a volume hologram recording layer having excellent film strength.
  • cationic polymerizable monomers include diglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, 1,4-bis (2,3-epoxypropoxyperfluoroisopropyl) cyclohexane, sorbitol polyglycidyl ether, trimethylolpropane poly Glycidyl ether, resorcin diglycidyl ether, 1,6-hexanediol diglycidyl ether, polyethylene glycol diglycidyl ether, phenyl glycidyl ether, para-t-butylphenyl glycidyl ether, adipic acid diglycidyl ester, orthophthalic acid diglycidyl ester, dibromo Phenyl glycidyl ether, dibromoneopentyl glycol diglycidyl ether, 1,2,7,8-diepoxy Octane,
  • a photo cationic polymerization initiator or a thermal cationic polymerization initiator may be added to the photosensitive composition.
  • cationic photopolymerization initiator examples include iodonium salts and triarylsulfonium salts.
  • iodonium salts include iodonium tetrafluoroborate, hexafluorophosphate, hexafluoroarsenate, hexafluoroantimonate, trifluoromethanesulfonate, 9,10-dimethoxyanthracene-2-sulfonate, and the like.
  • triarylsulfonium salts include triarylsulfonium, triphenylsulfonium, 4-tert-butyltriphenylsulfonium, tris (4-methylphenyl) sulfonium, tris (4-methoxyphenyl) sulfonium, 4-thiophenyltri Examples include sulfonium tetrafluoroborate such as phenylsulfonium, hexafluorophosphate, hexafluoroarsenate, hexafluoroantimonate, trifluoromethanesulfonate, 9,10-dimethoxyanthracene-2-sulfonate, and the like. These photocationic polymerization initiators can be used singly or in combination of two or more.
  • thermal cationic polymerization initiator examples include cationic or protonic acid catalysts such as triflate, boron trifluoride etherate compound, boron trifluoride, etc.
  • Preferred thermal cationic polymerization initiators Triflate.
  • Specific examples include diethylammonium triflate, triethylammonium triflate, diisopropylammonium triflate, ethyldiisopropylammonium triflate available from 3M as “FC-520” (many of which are by RR Alm in 1980). There is Modern Coatings (listed in Modern Coatings) issued in October.
  • aromatic onium salts used as active energy ray cationic polymerization initiators there are those that generate cationic species by heat, and these can also be used as thermal cationic polymerization initiators.
  • thermal cationic polymerization initiators examples include “Sun-Aid (registered trademark) SI-60L”, “Sun-Aid (registered trademark) SI-80L” and “Sun-Aid (registered trademark) SI-100L” (manufactured by Sanshin Chemical Industry Co., Ltd.). is there.
  • the use amount of the photo cationic polymerization initiator or the thermal cationic polymerization initiator is preferably 0.05 to 50 parts by mass with respect to 100 parts by mass of the cationic polymerizable monomer. More preferred is 30 parts by mass.
  • the content of the matrix resin other than polyurethane or the precursor thereof is preferably 1 to 30% by mass, more preferably 1 to 28% by mass in the photosensitive composition, and 5 to 25% by mass. Is more preferable.
  • a solvent may be added to the photosensitive composition as necessary when coating. However, when the photosensitive composition contains a component that is liquid at room temperature, the solvent may not be added.
  • the solvent examples include aliphatic solvents such as n-pentane, n-hexane, n-heptane, n-octane, cyclohexane and methylcyclohexane; ketone solvents such as methyl ethyl ketone (2-butanone), acetone and cyclohexanone; diethyl Ether solvents such as ether, isopropyl ether, tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol monomethyl ether, anisole, phenetole; ethyl acetate, butyl acetate, ethylene glycol diacetate, etc.
  • aliphatic solvents such as n-pentane, n-hexane, n-heptane, n
  • Ester solvents aromatic solvents such as toluene and xylene; methyl cellosolve, ethyl cello Cellosolve solvents such as Rub and Butylcellosolve; Alcohol solvents such as methanol, ethanol, propanol and isopropyl alcohol; Ether solvents such as tetrahydrofuran and dioxane; Halogen solvents such as dichloromethane and chloroform; Nitriles such as acetonitrile and propionitrile Solvent; polar solvents such as N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide and the like. These solvents can be used alone or in combination of two or more.
  • the photosensitive composition is optionally made of a plasticizer, a compatibilizer, a polymerization inhibitor, a surfactant, a silane coupling agent, an antifoaming agent, a release agent, a stabilizer, an oxidation
  • a plasticizer such as an acrylic acid, a polymethyl methacrylate, a polymethyl methacrylate, a polymethyl methacrylate, a polymethyl methacrylate, a polymethyl methacrylate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium sulf
  • the photosensitive composition can be obtained by mixing the above-described components all at once or sequentially.
  • the apparatus used for mixing include stirring or mixing apparatuses such as a magnetic stirrer, homodisper, quick homomixer, and planetary mixer.
  • the obtained photosensitive composition may be used after filtration, if necessary.
  • the radiation curable adhesive layer is a layer obtained by applying a radiation curable adhesive and then curing with radiation such as visible light, ultraviolet light, or electron beam, that is, a layer containing a cured product of the radiation curable adhesive.
  • radiation curable adhesive material include (meth) acrylic monomers, photopolymerization initiators, photosensitizers, additives, and the like.
  • (meth) acrylic monomers examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 4-hydroxycyclohexyl (meth) acrylate, and 5-hydroxycyclohexane.
  • photopolymerization initiator examples include benzoin compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, thioxanthone compounds, and oxime ester compounds.
  • photosensitizers include amine compounds and quinone compounds.
  • additives include silane coupling agents such as ⁇ -glycidoxypropyltrimethoxysilane, vinylpropyltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, and maleic anhydride adducts of isoprene polymers and 2- Examples thereof include oligomers such as esterified products with hydroxyethyl methacrylate.
  • the thickness of the radiation curable adhesive layer in the region where the volume hologram recording layer is present is not particularly limited, but is preferably 5 to 50 ⁇ m, and more preferably 10 to 40 ⁇ m.
  • the method for forming the radiation curable adhesive layer is not particularly limited.
  • the radiation curable adhesive is applied so as to cover the curved joint surface provided with the volume hologram recording layer, and then irradiated with radiation.
  • curing is mentioned.
  • a conventionally known method can be used as a method of applying the radiation curable adhesive.
  • a spray method a spin coating method, a wire bar method, a dip coating method, an air knife coating method, and a roll coating.
  • Method, blade coating method, doctor roll coating method and the like are examples of a spray method, a spin coating method, a wire bar method, a dip coating method, an air knife coating method, and a roll coating.
  • Examples of the light source used for radiation irradiation include a light source that emits ultraviolet rays, such as an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a carbon arc lamp, a xenon arc lamp, and a metal halide lamp.
  • the amount of irradiation energy when performing ultraviolet irradiation is preferably 100 to 2000 mJ / cm 2 .
  • the method for manufacturing the optical element is not particularly limited, but a layer including a volume hologram layer is formed in at least a partial region of the bonding surface having a curved surface among the pair of bonding surfaces, and the layer including the volume hologram recording layer is disposed. Applying a radiation curable adhesive so as to cover the entire joining surface having the curved surface, and then curing the radiation curable adhesive using radiation to form a radiation curable adhesive layer. preferable.
  • the manufacturing method is as follows: (1) Step of forming a photosensitive layer on an adjacent layer (2) The photosensitive layer and one transparent optical member having a curved bonding surface are bonded together, and the photosensitive layer is formed in at least a part of the bonding surface having a curved surface. (3) Performing holographic exposure on the photosensitive layer to produce a layer containing a volume hologram recording layer (4) Covering the entire bonding surface having a curved surface on which the volume hologram recording layer is arranged (5) The process which hardens a radiation-curable adhesive using a radiation and forms a radiation-curable adhesive layer is included.
  • Step of forming photosensitive layer on adjacent layer The method for forming the photosensitive layer on the adjacent layer is not particularly limited.
  • the photosensitive composition described above is directly applied on the adjacent layer.
  • the method of drying is mentioned.
  • a conventionally known method can be used as a method for applying the photosensitive composition on the adjacent layer.
  • a spray method a spin coating method, a wire bar method, a dip coating method, and an air knife coating method.
  • Roll coating method, blade coating method, doctor roll coating method and the like are examples of a spray method, a spin coating method, a wire bar method, a dip coating method, and an air knife coating method.
  • drying various conventionally known methods using a hot plate, an oven, a belt furnace or the like can be employed.
  • the drying temperature can be selected within a range that does not impair the photosensitivity of the above-described photosensitive composition.
  • the drying temperature is in the range of 10 to 80 ° C., and the drying time is not particularly limited.
  • the photosensitive composition contains a polyisocyanate compound and a polyol compound, which are precursors of polyurethane, addition polymerization (curing) of these compounds is performed in this step.
  • the catalyst used for curing, the curing conditions, and the like are as described above.
  • the thickness of the photosensitive layer may be appropriately set so as to be within a preferable thickness range of the volume hologram recording layer described later.
  • a transparent optical member having a curved joint surface is bonded.
  • a method of bonding for example, a method using a laminator can be mentioned.
  • the method of performing holographic exposure on the photosensitive layer and recording (writing) a volume hologram to form a volume hologram recording layer and the method of reproducing (reading) the volume hologram are not particularly limited, and examples thereof include the following methods. .
  • recording light capable of causing a chemical change of the polymerizable monomer, that is, polymerization and concentration change
  • recording light also called object light
  • the interference light causes polymerization and concentration change of the polymerizable monomer in the photosensitive layer.
  • the interference fringes cause a refractive index difference in the photosensitive layer, and the interference fringes recorded in the photosensitive layer It is recorded as a volume hologram and becomes a volume hologram recording layer.
  • the recording light used for recording the volume hologram (the wavelength in the parentheses indicates a wavelength)
  • a visible light laser having excellent coherence for example, an argon ion laser (458 nm, 488 nm, 514 nm), a krypton ion laser (647). 0.1 nm), helium-neon laser (633 nm), YAG laser (532 nm), etc. can be used.
  • the irradiation energy amount (exposure amount) at the time of hologram recording is not particularly limited, but is preferably in the range of 10 to 250 mJ / cm 2 .
  • a hologram recording system there are a polarization collinear hologram recording system, a reference light incident angle multiplexing type hologram recording system, etc., and any recording system can provide good recording quality.
  • the exposure apparatus is not particularly limited.
  • an exposure apparatus having a schematic configuration as shown in FIG. 1 can be used.
  • the light beam (recording light) emitted from the laser light source 201 guides the light beam to a suitable position in the exposure system by the beam steerers 202a and 202b composed of two pairs of mirrors.
  • a shutter 203 controls ON / OFF of a light beam (recording light).
  • a beam expander 204 has a function of expanding the beam diameter and changing the aperture ratio (NA) according to the exposure area of the photosensitive layer.
  • the light beam (recording light) that has passed through the beam expander 204 is divided into two light beams by the beam splitter 205.
  • the divided light beams (recording light) are guided to the spatial filters 211 and 212 by the mirrors 206 and 207 and the mirrors 209 and 208, respectively.
  • Spatial filters 211 and 212 are composed of a lens and a pinhole, and collect light rays (recording light) with the lenses, and guide the light rays (recording light) to the manufacturing optical system 213 through the pinholes.
  • the production optical system 213 can set and fix a sample such as a glass prism provided with a photosensitive layer serving as a volume hologram recording layer at a suitable position so that the reflection angle of the light beam of the optical element can be controlled.
  • the photosensitive layer provided on the prism or the like fixed to the manufacturing optical system 213 is divided into two light beams, and is subjected to holographic exposure (interference exposure) by light beams (recording light) guided through the spatial filters 211 and 213, respectively.
  • holographic exposure for the photosensitive layer fixed to the production optical system 213 is shown in FIG.
  • holographic exposure is performed on the photosensitive layer by irradiating the laminated body 15 of the first transparent optical member 11 and the photosensitive layer (volume hologram recording layer) 12 with laser light from two directions. Is called.
  • One of the laser beams from two directions is the object beam 31 and the other is the reference beam 32.
  • a glitch mirror is inserted in the optical path before the shutter 203, and the plurality of light sources are used.
  • the emitted laser beam may be synthesized stepwise.
  • the volume hologram recording layer can be further subjected to appropriate treatments such as full exposure with ultraviolet rays and heating in order to promote refractive index modulation and complete (fix) the polymerization reaction.
  • a light source used for the entire surface exposure for example, a light source emitting ultraviolet rays such as an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a carbon arc lamp, a xenon arc lamp, a metal halide lamp, or the like can be used.
  • the irradiation energy amount in the case of performing the entire surface exposure with ultraviolet rays is preferably 50 to 200 J / cm 2 .
  • the temperature during the heat treatment is preferably 50 to 150 ° C., and the treatment time is preferably 30 minutes to 3 hours.
  • the order is not particularly limited, and the whole surface exposure may be performed first, or the heat treatment may be performed first.
  • the thickness of the volume hologram recording layer is preferably 5 to 100 ⁇ m, more preferably 5 to 40 ⁇ m from the viewpoint of durability.
  • the step (3) was used.
  • a radiation curable adhesive is applied so as to cover the entire joint surface having a curved surface on which the volume hologram recording layer is arranged, and another transparent optical member is bonded.
  • the adjacent layer When the adjacent layer is not installed, before applying the radiation curable adhesive, the adjacent layer is peeled off from the volume hologram recording layer, and the radiation curable adhesive is directly applied on the volume hologram recording layer. When installing an adjacent layer, a radiation curable adhesive is applied on the adjacent layer.
  • the application method, application thickness, etc. of the radiation curable adhesive are as described above.
  • Step of curing a radiation curable adhesive using radiation to form a radiation curable adhesive layer the radiation curable adhesive is cured using radiation to form a radiation curable adhesive layer.
  • the light source used for radiation irradiation, irradiation conditions, and the like are as described above.
  • the optical element of the present embodiment may have other layers such as a protective layer, a reflective layer, an antireflection film, and an ultraviolet absorption layer.
  • the protective layer is a layer for preventing the influence of deterioration of storage stability of the volume hologram recording layer.
  • a protective layer There is no restriction
  • a layer made of a water-soluble polymer, an organic / inorganic material, or the like can be formed as a protective layer.
  • the protective layer is not particularly limited in position, for example, between the volume hologram recording layer and the radiation curable adhesive layer, between the adjacent layer and the radiation curable adhesive layer, or between the volume hologram recording layer and the transparent optical member. Etc.
  • the reflective layer is formed when the optical element is configured in a reflective type.
  • the reflective layer is usually formed on the outer surface of the adjacent layer.
  • the reflective layer conventionally known ones can be applied as appropriate, and for example, a metal thin film or the like can be used.
  • an antireflection film may be provided on the side on which the object light and the reproduction light are incident and / or emitted.
  • the antireflection film functions to improve light utilization efficiency and suppress the generation of ghost images.
  • the material and shape of the antireflection film can be applied by appropriately referring to conventionally known ones.
  • predetermined reproduction light (usually reference light) is irradiated to a volume hologram recording layer.
  • the irradiated reproduction light is diffracted according to the interference fringes. Since this diffracted light contains the same information as the volume hologram recording layer, the information recorded in the volume hologram recording layer can be reproduced by reading the diffracted light with an appropriate detection means.
  • the wavelength regions of the object light, the reproduction light, and the reference light are arbitrary depending on the application, and may be in the visible light region or the ultraviolet light region.
  • the optical element of this embodiment is suitably used for video display devices such as a head-mounted display (HMD), a head-up display (HUD), and an optical see-through display.
  • HMD head-mounted display
  • HUD head-up display
  • optical see-through display an example of a video display device including an optical element will be described.
  • FIG. 3 shows a schematic cross-sectional structure of the video display device 1 including the optical element 10 and the display element 20.
  • the optical element 10 shown in FIG. 3 is bonded to a first transparent optical member 11 having a curved surface and a second transparent optical member 13 paired with the first transparent optical member 11 so as to sandwich the volume hologram recording layer 12.
  • the volume hologram recording layer 12 obtained by holographic (interference) exposure is sandwiched between the two transparent optical members 11 and 13, and the first transparent optical member 11 having a curved surface and the first transparent optical member 11 are paired with each other.
  • the optical device 10 in a state capable of reproducing the hologram is obtained.
  • the hologram reproduction as shown in FIG. 3, when the image light (reproduction illumination light) 41 enters the optical element 10, the reproduction image light 42 is diffracted and reflected. The reproduced image light 42 enters the observer's eye EY together with the external image light 43 transmitted through the optical element 10. Therefore, the observer can observe the external image together with the display image.
  • the volume hologram recording layer 12 is affixed to the first transparent optical member 11 having a curved surface, and the radiation provided between the first transparent optical member 11 and the second transparent optical member 13 paired with the first transparent optical member 11.
  • the first transparent optical member 11 and the second transparent optical member 13 are joined with the curable adhesive layer 14 so as to sandwich the volume hologram recording layer 12. Since the volume hologram recording layer 12 is provided on the joint surface between the first transparent optical member 11 and the second transparent optical member 13 having a curved surface, the see-through property of the external image through the joint surface is ensured. .
  • the video display device 1 includes a display element 20 for displaying video in addition to the optical element 10.
  • the display element 20 include a reflective or transmissive liquid crystal display element (LCD: liquid crystal display), a digital micromirror device (digital micromirror device), and an organic EL (organic electro-luminescence) display.
  • LCD liquid crystal display
  • digital micromirror device digital micromirror device
  • organic EL organic electro-luminescence
  • the illuminating device include a light source such as an LED (light emitting diode), an illuminating device including a condensing optical element (lens, mirror, etc.), and the like.
  • FIG. 4 shows a more detailed configuration of the video display device 1 shown in FIG. FIG. 4 shows an optical path from the light source 21 to the optical pupil EP in the video display device 1 having an illumination device or the like.
  • the video display device 1 includes a polarizing plate 24, a polarizing beam splitter 25, a display element 20, and an optical element 10 that functions as an eyepiece optical system.
  • the illumination device illuminates the display element 20 and includes a light source 21, an illumination mirror 22, and a diffusion plate 23.
  • the light source 21 is composed of an LED that emits light in a wavelength band having a central wavelength of, for example, 520 nm.
  • the light source 21 shown in FIG. 4 has only one wavelength. However, when the volume hologram recording layer diffracts a plurality of different wavelengths, the light source 21 is composed of an integrated LED that emits light of a plurality of different wavelength bands. Also good.
  • the illumination mirror 22 reflects light (illumination light) emitted from the light source 21 toward the diffusion plate 23, and also optical elements (for example, for bending the illumination light so that the optical pupil EP and the light source 21 are substantially conjugate with each other) Free-form surface mirror).
  • the diffusing plate 23 diffuses illumination light from the light source 21, and the diffusing degree thereof varies depending on the direction (for example, a unidirectional diffusing plate having a diffusing action only in the lateral direction).
  • the polarizing plate 24 has a diffusion plate 23 bonded and held on the surface thereof, and transmits light having a predetermined polarization direction out of light incident through the diffusion plate 23 and guides it to the polarizing beam splitter 25.
  • the directions of the polarizing beam splitter 25 are aligned so that the polarized light transmitted through the polarizing plate 24 is reflected by the polarizing beam splitter 25.
  • the polarization beam splitter 25 reflects the light transmitted through the polarizing plate 24 in the direction of the reflective display element 20, while the light corresponding to the image signal ON (reflecting the polarizing plate 24) among the light reflected by the display element 20.
  • the transmitted light is a flat plate-shaped polarization separation element that transmits light having a polarization direction orthogonal to the light transmission and is attached to the surface 11c of the transparent optical member 11 having the first curved surface.
  • the display element 20 is a display element that displays the image IM by modulating light from the illumination device (that is, light reflected by the polarization beam splitter 25).
  • the image display device 1 a reflective liquid crystal display element is used. Assumed.
  • the display element 20 may have a configuration having a color filter, or may be configured to be driven in a time division manner for each different wavelength region.
  • the display element 20 is arranged so that light that is incident substantially perpendicularly from the polarization beam splitter 25 is reflected substantially perpendicularly and directed toward the polarization beam splitter 25. This facilitates optical design that increases the resolution compared to a configuration in which light is incident on the reflective display element at a large incident angle.
  • the display element 20 is disposed on the same side as the light source 21 with respect to the optical path from the illumination mirror 22 toward the polarization beam splitter 25. Thereby, the whole optical system from an illuminating device to the display element 20 can be comprised compactly.
  • the display element 20 may be supported on the same substrate as the light source 21 or may be supported on a separate substrate.
  • the optical element 10 includes a first transparent optical member 11 having a curved surface, a second transparent optical member 13 paired with the first transparent optical member 11, and a volume hologram recording layer 12, and the transparent optical member.
  • 11 and 13 are made of, for example, plastic (more specifically, acrylic resin, polycarbonate, cycloolefin resin, or the like).
  • the optical element 10 has non-axisymmetric (non-rotationally symmetric) positive optical power, and thereby functions as an eyepiece optical system for guiding the image light from the display element 20 to the optical pupil EP.
  • the transparent optical member 11 guides the image light incident from the display element 20 via the polarization beam splitter 25 inside, and transmits the external image light (external light).
  • the portion is made thicker toward the upper end, and the lower end portion is made thinner toward the lower end.
  • the surface 11c to which the polarization beam splitter 25 is attached is an optical surface on which the image light from the display element 20 first enters.
  • the two surfaces 11a and 11b that are positioned substantially parallel to the optical pupil EP and face each other are total reflection surfaces that guide the image light by total reflection.
  • the surface 11 a on the optical pupil EP side also serves as an exit surface for image light diffracted and reflected by the volume hologram recording layer 12.
  • the first transparent optical member 11 having a curved surface is paired with the first transparent optical member 11 with an adhesive 14 so as to sandwich the volume hologram recording layer 12 disposed at the lower end thereof. 13 to form a substantially parallel flat plate.
  • the volume hologram recording layer 12 is provided in contact with the surface 11 d of the first transparent optical member 11, and is a volume phase type that reflects and diffracts image light guided inside the first transparent optical member 11. It is an optical element that is a mold.
  • the diffraction wavelength of the volume hologram recording layer 12 substantially corresponds to the wavelength of the image light (the emission wavelength of the light source 21).
  • the light emitted from the light source 21 of the illumination device is reflected by the illumination mirror 22 and diffused only in one direction by the diffusion plate 23, and then only the light in a predetermined polarization direction passes through the polarizing plate 24.
  • the light transmitted through the polarizing plate 24 is reflected by the polarization beam splitter 25 and enters the display element 20.
  • incident light is modulated according to the image signal.
  • the image light corresponding to the image signal ON is converted by the display element 20 into light having a polarization direction orthogonal to that of the incident light and is emitted, so that the image light is transmitted through the polarizing beam splitter 25 and the first transparent optical.
  • the light enters the inside of the first transparent optical member 11 from the member surface 11c.
  • the image light corresponding to the image signal OFF is emitted without being converted in the polarization direction by the display element 20, it is blocked by the polarization beam splitter 25 and does not enter the first transparent optical member 11. .
  • the incident video light is totally reflected once by the two opposing surfaces 11 a and 11 b of the first transparent optical member 11 and then enters the volume hologram recording layer 12.
  • the volume hologram recording layer 12 only light of a specific wavelength is diffracted and reflected and emitted from the surface 11a to reach the optical pupil EP. Therefore, the observer can observe the image IM displayed on the display element 20 at the position of the optical pupil EP as a virtual image.
  • the first transparent optical member 11, the second transparent optical member 13, and the volume hologram recording layer 12 transmit almost all of the external light, so that the observer can observe the external image in a see-through manner. Therefore, the virtual image of the video IM displayed on the display element 20 is observed while overlapping a part of the external image.
  • the optical element 10 converts the image of the display element 20 into an external image via the volume hologram recording layer 12 between the first transparent optical member 11 and the second transparent optical member 13 that are joined. It functions as an eyepiece optical system that projects and displays the displayed video as a virtual image on the observer eye EY (see FIG. 3) in a see-through manner. Therefore, the volume hologram recording layer 12 is preferably a volume phase type reflection hologram. Since the volume phase type reflection hologram has a high light transmittance of the external image, if the volume phase type reflection hologram is used as the volume hologram recording layer 12, the observer can clearly observe the display image and the external image. Is possible.
  • the volume hologram recording layer 12 is used in a state of being sandwiched between the first transparent optical member 11 and the second transparent optical member 13 having curved surfaces. Is hardly affected by the external environment. Further, as an eyepiece optical system that guides the image light provided from the display element 20 to the volume hologram recording layer 12 by totally reflecting the image light provided from the display element 20 by the configuration embedded in the transparent optical members 11 and 13. 10 can be adopted. Then, by optimizing the shape of the transparent optical members 11 and 13 and the shape of the volume hologram recording layer 12, the see-through property (combiner function) of the external image is secured while maintaining the optical performance of the volume hologram recording layer 12. be able to.
  • the video display device 1 shown in FIGS. 3 and 4 includes the optical element 10 and the display element 20 that displays video, and the volume hologram recording layer 12 is configured to receive video light from the display element 20.
  • the volume hologram recording layer 12 is configured to receive video light from the display element 20.
  • a see-through display in which a high-quality image is superimposed on an external image can be performed. Therefore, it is possible to observe a high-quality image provided from the optical element 10 through the optical element 10, and at the same time, it is possible to observe an external field image through the optical element 10 in a see-through manner.
  • the first transparent optical member 11 having a curved surface constituting the optical element 10 is configured to totally reflect the image light from the display element 20 and guide it to the volume hologram recording layer 12. It is preferable to have. With such a configuration, it is possible to provide a bright image to the observer by using the image light provided from the display element 20 without waste.
  • the display element 20 can be arranged at a position away from the optical element 10, and a wide field of view of the observer with respect to the outside world can be secured.
  • Transparent optical members 11-1 and 11-2 having a curved joint surface were produced.
  • the outline of the shape is shown in FIG.
  • (a) is a plan view of the transparent optical member
  • (b) and (c) are side views of the transparent optical member.
  • the transparent optical member 11-1 has a convex surface having a cylindrical shape (cylindrical shape)
  • the transparent optical member 11-2 has a convex lens shape (convex spherical surface). .
  • a member 13-2 was also produced (see FIG. 6).
  • the transparent optical members 11-1, 11-2, 13-1, and 13-2 are pellets of polymethyl methacrylate resin (product name; Acripet (registered trademark) VH; heated to 220 ° C.) using an injection molding machine. (Manufactured by Mitsubishi Rayon Co., Ltd.) was poured into a dedicated mold maintained at 100 ° C., clamped with a load of 50 tons, and then the molded product was taken out of the mold and cooled to 25 ° C.
  • the film was dried in an environment of 20 ° C. and 50% RH for 30 minutes, and further heat-treated at 60 ° C. for 2 hours to obtain a photosensitive layer having a thickness of 25 ⁇ m.
  • the PET film coated with the photosensitive layer was cut, and the photosensitive layer and the transparent optical member 11-1 were opposed to each other and laminated (attached) as shown in FIG.
  • the photosensitive layer is adjusted so that a virtual image with an angle of view of 25 ° appears ahead of the photosensitive layer.
  • Holographic exposure was performed so that the amount of irradiation energy was 24 mJ / cm 2 .
  • the whole surface was exposed to ultraviolet rays by standing still at a position of 15 cm from a high-pressure mercury lamp (illuminance: 100 W / cm 2 ) to obtain a volume hologram recording layer.
  • an acrylate system containing dicyclopentenyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, and ⁇ -glycidoxypropyltrimethoxysilane so as to cover the entire joint surface having a curved surface on which the volume hologram recording layer is disposed.
  • an adhesive radiation curable adhesive
  • a portion with a volume hologram recording layer has a thickness of 15 ⁇ m using a dispenser
  • a portion without a volume hologram has a thickness obtained by adding the thicknesses of the volume hologram recording layer and the adjacent layer. Each was applied at 80 ⁇ m.
  • the second transparent optical member 13-1 is bonded onto the applied adhesive, and ultraviolet rays are irradiated from a high-pressure mercury lamp (illuminance: 100 W / cm 2 ) (irradiation amount: 200 mJ / cm 2 ). Curing was performed to obtain an optical element KO-1.
  • Example 2 Except that the transparent optical member 11-1 is changed to a transparent optical member 11-2 as shown in FIG. 5, and the transparent optical member 13-1 is changed to a transparent optical member 13-2, respectively, in the same manner as in Example 1.
  • Optical element KO-2 was obtained.
  • ⁇ Photosensitive composition 2 for volume hologram recording layer preparation Hexyl isocyanate 0.1 parts by mass Polypropylene glycol 10.0 parts by mass (molecular weight 4000, hydroxy value 25.3 mgKOH / g) 2- ⁇ [3- (methylsulfanyl) phenyl] carbamoyl ⁇ Oxy ⁇ ethylprop-2-enoate 3.0 parts by mass Tetrabutylammonium triphenylbutyl borate (Organic borate polymerization initiator, Showa Denko KK) 0.01 parts by mass Safranin O (sensitizing dye, manufactured by Tokyo Chemical Industry Co., Ltd.) 0.1 parts by mass N-ethyl-2-pyrrolidone 0.5 parts by mass Ethyl acetate 25.0 parts by mass
  • the obtained photosensitive composition 2 for producing a volume hologram recording layer was formed into a polyethylene terephthalate (PET) film having a thickness of 50 ⁇ m.
  • PET polyethylene tere
  • the optical element produced as described above is arranged so that the concave curved surface faces the pupil side, and the observer observes the virtual image of the image IM displayed on the display element 20. Specifically, nine positions of the image as shown in FIG. 8 were observed, 10 observers scored according to the following criteria, and the average value was calculated.
  • the average score is shown in Table 1: 5: The virtual image is clearly visible over the entire surface. 4: 1 to 2 points are visible, but the virtual image is slightly less clear. 3: 3 to 5 points are visible, but the virtual image is slightly visible. The sharpness has deteriorated 2: 1 to 2 points, the virtual image is unclear and there is a part that cannot be visually recognized 1: The virtual image is unclear and there is a part that cannot be visually recognized.
  • the optical elements of the examples have good virtual image sharpness (image quality) and durability to maintain high diffraction efficiency over a long period even under high humidity conditions. I understood.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Holo Graphy (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

本発明は、良好な画像品位を有し、高湿条件下であっても高い回折効率を長期に維持できる耐久性を有する光学素子を提供する。 本発明は、隣り合う2つの透明光学部材の一対の接合面の少なくとも一方が曲面を有しており、前記一対の接合面のうち曲面を有する接合面の少なくとも一部の領域にフォトポリマーを含む体積ホログラム記録層を含む層が配置され、前記曲面を有する接合面全体を覆うように放射線硬化性接着層を備えた光学素子において、前記体積ホログラム記録層がポリウレタンを含む、光学素子である。

Description

光学素子およびその製造方法
 本発明は、光学素子およびその製造方法に関する。
 従来、体積位相型ホログラムを含むホログラフィック光学素子(HOE;Holographic Optical Element、以下単に「HOE」とも称する)を用い、表示素子からの映像光をHOEで回折反射させて観察者の瞳に導き、観察者に映像(虚像)を観察させる映像表示装置が種々提案されている。例えば、特許文献1では、平面状のHOEを接眼プリズムに貼り付け、表示素子から出射され接眼プリズム内部で導光された映像光をHOEで回折反射させ、観察者の瞳に導く映像表示装置が開示されている。
 一般に、HOEは波長依存性を有しており、波長に応じて回折される方向が変わる。このため、特開2007-11279号公報(米国特許出願公開第2006/268421号明細書に相当)に記載の技術のように、接眼プリズムにおけるHOE貼り付け面で映像光が反射する方向と、HOEで映像光が回折する方向とが、画面中心(映像観察時の画角中心)において略一致する構成では、平面状のHOEを用いると、画面中心から放射状の方向に映像光の波長が分散される。この結果、画面中心以外の位置では、表示された点(画像)が画面中心から放射状に引き伸ばされて、画像品位が劣化するという問題が生じる。
 この画像品位劣化の問題を解決する手段として、映像光を回折反射する体積位相型ホログラムが接する接眼プリズム面を曲面とし、画面中心以外の位置において、HOEの波長依存性によって点(画像)が伸びる方向を制限することが挙げられる。これにより、平面状のHOEを用いた場合に比べて、HOEの画像品位の劣化を抑えることができる。
 一方、湿度等の外部環境からの影響を受けにくいホログラム記録材料を用いた光学素子として、特開平7-234627号公報は、2つの湾曲した透明プリズムの間にホログラム記録材料を配置し、2つの透明プリズムをポリビニルブチラール(PVB)により接着させた積層構造物を開示している。この特開平7-234627号公報に記載の積層構造物は、ヘッドアップディスプレイや自動車用の風防ガラスに好適に用いられると報告されている。
 しかしながら、特開平7-234627号公報に記載の技術では、ホログラム記録材料の領域において所望の干渉縞が形成できず、画像品位の劣化を招く課題があった。
 そこで本発明は、良好な画像品位を有し、高湿条件下であっても高い回折効率を長期に維持できる耐久性を有する光学素子を提供することを目的とする。
 本発明者らは鋭意研究を行った。その結果、隣り合う2つの透明光学部材の一対の接合面の少なくとも一方が曲面を有しており、前記一対の接合面のうち曲面を有する接合面の少なくとも一部の領域に配置される体積ホログラム記録層に対して、ポリウレタンを含有させることにより、上記課題が解決することを見出し、本発明を完成するに至った。
 すなわち、本発明は、隣り合う2つの透明光学部材の一対の接合面の少なくとも一方が曲面を有しており、前記一対の接合面のうち曲面を有する接合面の少なくとも一部領域にフォトポリマーを含む体積ホログラム記録層を含む層が配置され、前記曲面を有する接合面全体を覆うように放射線硬化性接着層を備えた光学素子において、前記体積ホログラム記録層がポリウレタンを含む、光学素子である。
図1は、ホログラフィ露光に用いる露光装置の一例を示す模式図である。符号201はレーザー光源を、符号202はビームステアラーを、符号203はシャッターを、符号204はビームエキスパンダーを、符号205はビームスプリッターを、符号206、207、208、および209はミラーを、符号211および212はスペイシャルフィルターを、符号213は製造光学系を、それぞれ示す。 図2は、本発明の一実施形態による光学素子の部分構造を示す概略図である。符号11は第1の透明光学部材を、符号12は体積ホログラム記録層を、符号15は積層体を、符号31は物体光を、符号32は参照光を、それぞれ示す。 図3は、本発明の一実施形態による光学素子を備える映像表示装置の断面構造を示す概略図である。符号1は映像表示素子を、符号10は光学素子を、符号11は第1の透明光学部材を、符号12は体積ホログラム記録層を、符号13は第2の透明光学部材を、符号14は放射線硬化性接着層を、符号20は表示素子を、符号41は映像光を、符号42は再生像光を、符号43は外界像光を、符号EYは観察者眼を、それぞれ示す。 図4は、本発明の一実施形態による光学素子を備える映像表示装置のより詳細な断面構造を示す概略図である。符号1は映像表示素子を、符号10は光学素子を、符号11は第1の透明光学部材を、符号12は体積ホログラム記録層を、符号13は第2の透明光学部材を、符号14は放射線硬化性接着層を、符号20は表示素子を、符号21は光源を、符号22は照明ミラーを、符号23は拡散板を、符号24は偏光板を、符号25は偏光ビームスプリッターを、符号EPは光学瞳を、符号IMは映像を、それぞれ示す。 図5は、実施例で作製した透明光学部材11-1および11-2を示す概略図であり、(a)は透明光学部材の平面図であり、(b)および(c)は透明光学部材の側面図である。 図6は、実施例で作製した透明光学部材13-1および13-2を示す概略図であり、(a)は透明光学部材の平面図であり、(b)および(c)は透明光学部材の側面図である。 図7は、実施例で作製した曲面を有する接合面上に体積ホログラム記録層を積層した積層体を示す概略図であり、(a)は積層体の平面図であり、(b)および(c)は積層体の側面図である。 図8は、鮮鋭性の評価に用いた虚像を示す概略図である。
 以下、本発明の一実施形態である光学素子について説明する。
 なお、以下においては、ホログラフィ露光(干渉露光)前の重合性モノマーを含む層を感光層と称し、感光層にホログラフィ露光を行って体積ホログラムが記録された層を体積ホログラム記録層と称する。また、重合性モノマー、光重合開始剤、マトリクス樹脂やその前駆体等を含む感光性組成物に光照射して重合反応させることにより得られたポリマーをフォトポリマーと称する。
 本実施形態の光学素子は、隣り合う2つの透明光学部材の一対の接合面の少なくとも一方が曲面を有しており、前記一対の接合面のうち曲面を有する接合面の少なくとも一部の領域にフォトポリマーを含む体積ホログラム記録層を含む層が配置され、前記曲面を有する接合面全体を覆うように放射線硬化性接着層を備える。このような構成を有する本実施形態の光学素子は、良好な画像品位を有し、高湿条件下であっても高い回折効率を長期に維持できる耐久性を有する。
 特開平7-234627号公報に記載の積層構造物は、2つの湾曲した透明プリズムの間にホログラム記録材料を配置し、2つの透明プリズムをポリビニルブチラール(PVB)により接着させることにより、湿度等の外部環境からの影響を受けにくいとされている。しかしながら、特開平7-234627号公報に記載の積層構造物は、ホログラム記録材料を有する領域とホログラム記録材料がない領域とで、接着層の厚みが違うため、接着層を硬化する際の収縮率に差が生じる。その結果内部応力が発生し、また、接合面が曲面を有するため、より顕著に内部応力が発生しやすい。そのため、ホログラム記録材料を有する領域において、所望の干渉縞が形成できなくなり、画像品位の劣化を招くという問題があった。
 一方、本実施形態の光学素子は、体積ホログラム記録層がポリウレタンを含有する。これにより、接着剤の硬化収縮に伴う局所的な内部応力が発生しても、体積ホログラム記録層に含まれるポリウレタンが内部応力を分散させ、所望の干渉縞が維持され、良好な画像品位が得られると考えられる。また、ポリウレタンを内部に含有することにより、体積ホログラム記録層の高湿条件下での耐久性が向上すると考えられる。なお、上記メカニズムは推測に基づくものであり、その正誤が本実施形態の技術的範囲に影響を及ぼすものではない。
 以下、好ましい実施形態をより詳細に説明するが、下記の実施形態のみには限定されない。
 本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味する。また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%RHの条件で測定する。
 [光学素子の構成]
 <透明光学部材>
 本実施形態に係る隣り合う2つの透明光学部材は、一対の接合面のうち少なくとも一方が曲面を有している。もう1つの接合面は、平面状であってもよいし曲面を有していてもよい。
 曲面の形状の例としては、シリンドリカル形状(円柱状)、球面状、凸レンズ状、凹レンズ状等が挙げられ、特に制限されない。係る曲面の形状の曲率は、画像を表示する光学素子の瞳に対する設置位置によって適宜変更され、設置位置が近いほど曲率が大きくなる。光学素子と瞳との距離をRとしたとき、曲率は1/Rと同等もしくはそれより小さいことが好ましい。また曲率は、透明光学部材の曲面に渡って一定であってもよく、変化していてもよい。変化する場合、透明光学部材の周端部に向かって、小さくなっていくことが好ましい。
 透明光学部材の材料は、光学的に透明であればよく、公知の材料を適宜選択することができる。なお、本明細書中、「透明」とは、可視光波長領域における全光線透過率が60%以上であることをいう。材料の例としては、例えば、ガラス、シリコン、石英などの無機材料;アクリル樹脂、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフトエート、ポリエチレン、ポリプロピレン、アモルファスポリオレフィン、酢酸セルロース、水和セルロース、硝酸セルロース、シクロオレフィンポリマー、ポリスチレン、ポリエポキシド、ポリスルホン、セルロースアシレート、ポリアミド、ポリイミド、ポリメチルメタクリレート、ポリ塩化ビニル、ポリビニルブチラール、ポリジシクロペンタジエンなどの有機材料;等が挙げられる。これら材料は、単独でもまたは2種以上組み合わせて用いてもよい。また、一対の透明光学部材の材料は、互いに同じでもよいし異なっていてもよい。
 透明光学部材は、上記材料を用いて、例えば金型を用いて公知の条件によって射出成形、押出成形等を行うことで得ることができる。
 透明光学部材の大きさとしては、特に制限はなく、用いる用途などに応じて適宜選択することができる。また、上記曲面を有する適当な大きさの透明光学部材は、公知の方法を用いて、またはこれを適宜改変して作製することができる。
 <隣接層>
 本実施形態の光学素子は、体積ホログラム記録層に接する樹脂を含む隣接層を有することが好ましい。隣接層は、体積ホログラム記録層を保護する役割および/または体積ホログラム記録層を安定的に保持する役割を有しうる。
 上記の構成を有する隣接層は、体積ホログラム記録層の両面に接するように設けられてもよいし、片面にのみ接するように設けられてもよい。すなわち、本実施形態の光学素子は、樹脂を含む隣接層を少なくとも1つ有することが好ましい。体積ホログラム記録層の両面に隣接層が設けられる場合、それぞれの隣接層の構成材料および厚さは同じでもよいし、異なっていてもよい。
 隣接層に含まれる樹脂としては、透明性を有する公知の樹脂が挙げられる。樹脂の具体的な例としては、アクリル樹脂、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフトエート、ポリエチレン、ポリプロピレン、アモルファスポリオレフィン、酢酸セルロース、水和セルロース、硝酸セルロース、シクロオレフィンポリマー、ポリスチレン、ポリエポキシド、ポリスルホン、セルロースアシレート、ポリアミド、ポリイミド、ポリメチルメタクリレート、ポリ塩化ビニル、ポリビニルブチラール、ポリジシクロペンタジエン等が挙げられる。これら樹脂は、単独でもまたは2種以上混合して用いてもよい。
 これらの中でも、光学特性等の観点から、ポリエチレンテレフタレート、シクロオレフィンポリマー、セルロースアシレート、ポリメチルメタクリレートが好ましく、セルロースアシレートがより好ましい。
 該隣接層は、上記成分以外に、例えば、紫外線吸収剤、酸化防止剤、劣化防止剤、光安定剤、熱安定剤、滑剤、帯電防止剤、難燃剤、充填剤、微粒子、光学特性調整剤等、他の成分を含んでもよい。他の成分の添加量(2種以上添加する場合はその合計)としては、隣接層の全質量に対して、0.1~29.5質量%が好ましい。
 隣接層の厚さは、特に制限はされないが、10~1000μmが好ましく、50~200μmであることがより好ましい。
 隣接層を形成する方法としては、特に制限されず、樹脂を溶融押出法、溶液キャスト法(溶液流延法)、カレンダー法、圧縮成形法等、従来公知の方法を用いて成形を行う方法が挙げられる。これらの方法のうち、溶融押出法、溶液キャスト法(溶液流延法)が好ましい。また、隣接層として、市販の樹脂フィルムを用いてもよい。
 <体積ホログラム記録層>
 体積ホログラム記録層は、重合性モノマー、光重合開始剤、ポリウレタンの前駆体であるポリイソシアネート化合物およびポリオール化合物、ならびに必要に応じて含まれるポリウレタン以外のマトリクス樹脂またはその前駆体を含有する感光性組成物を、例えば隣接層上に塗布し、乾燥することで得られる塗膜(感光層)に対して、少なくともホログラフィ露光を行うことにより作製されることが好ましい。このようにして、該感光層内に高屈折率領域と低屈折率領域とからなる回折格子が形成され、体積ホログラム記録層となる。
 体積ホログラム記録層形成に用いられる感光性組成物は、好ましくはラジカル重合性モノマー、光重合開始剤、ならびにポリイソシアネート化合物およびポリオール化合物を含有するポリウレタンの前駆体を含み、必要に応じてポリウレタン以外のマトリクス樹脂またはその前駆体、増感剤、溶媒等を含みうる。以下、これらの成分について説明する。
 ≪ラジカル重合性モノマー≫
 ラジカル重合性モノマーとしては、分子内に1つ以上のラジカル重合性のエチレン性不飽和結合を有するものであれば特に制限されないが、比較的高屈折率を呈するものが好ましい。具体的には、例えば、アクリルアミド、メタクリルアミド、メチレンビスアクリルアミド、ポリエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールヘキサアクリレート、2,3-ジブロモプロピルアクリレート、ジシクロペンタニルアクリレート、ジブロモネオペンチルグリコールジアクリレート、2-フェノキシエチルアクリレート、2-フェノキシメチルメタクリレート、フェノールエトキシレートモノアクリレート、2-(p-クロロフェノキシ)エチルアクリレート、p-クロロフェニルアクリレート、フェニルアクリレート、2-フェニルエチルアクリレート、2-(1-ナフチルオキシ)エチルアクリレート、o-ビフェニルメタクリレート、o-ビフェニルアクリレート、スチレン、メトキシスチレン、ベンジルアクリレート、フェニルアクリレート、2-フェニルエチルアクリレート、2-フェノキシエチルアクリレート、2-フェノキシエチルメタクリレート、フェノールエトキシレートアクリレート、メチルフェノキシエチルアクリレート、ノニルフェノキシエチルアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、フェノキシポリエチレングリコールアクリレート、1,4-ベンゼンジオールジメタクリレート、1,4-ジイソプロペニルベンゼン、1,3,5-トリイソプロペニルベンゼン、ベンゾキノンモノメタクリレート、2-(1-ナフチロキシ)エチルアクリレート、2,3-ナフタレンジカルボン酸(アクリロキシエチル)モノエステル、ジフェノール酸のジ(3-メタクリロキシ-2-ヒドロキシプロピル)エーテル、β-アクリロキシエチルハイドロゲンフタレート、2,2-ジ(p-ヒドロキシフェニル)プロパンジアクリレート、2,3-ジ(p-ヒドロキシフェニル)プロパンジメタクリレート、2,2-ジ(p-ヒドロキシフェニル)プロパンジメタクリレート、ポリオキシエチレン-2,2-ジ(p-ヒドロキシフェニル)プロパンジメタクリレート、ビスフェノールAのジ(2-メタクリロキシエチル)エーテル、エトキシ化ビスフェノールAジアクリレート、ビスフェノールAのジ(3-アクリロキシ-2-ヒドロキシプロピル)エーテル、ビスフェノールAのジ(2-アクリロキシエチル)エーテル、2,2-ビス(4-アクリロキシエトキシフェニル)プロパン、2,2-ビス(4-メタクリロキシエトキシフェニル)プロパン、2,2-ビス(4-アクリロキシジエトキシフェニル)プロパン、2,2-ビス(4-メタクリロキシジエトキシフェニル)プロパン、ビス(4-アクリロキシジエトキシフェニル)メタン、ビス(4-メタクリロキシジエトキシフェニル)メタン、2-クロロスチレン、2-ブロモスチレン、2-(p-クロロフェノキシ)エチルアクリレート、テトラクロロビスフェノールAのジ(3-アクリロキシ-2-ヒドロキシプロピル)エーテル、テトラクロロビスフェノールAのジ(2-メタクリロキシエチル)エーテル、テトラブロモビスフェノールAのジ(3-メタクリロキシ-2-ヒドロキシプロピル)エーテル、テトラブロモビスフェノールAのジ(2-メタクリロキシエチル)エーテル、ビス(4-アクリロキシエトキシ-3,5-ジブロモフェニル)メタン、ビス(4-メタクリロキシエトキシ-3,5-ジブロモフェニル)メタン、2,2-ビス(4-アクリロキシエトキシ-3,5-ジブロモフェニル)プロパン、2,2-ビス(4-メタクリロキシエトキシ-3,5-ジブロモフェニル)プロパン、ビス(4-アクリロキシエトキシフェニル)スルホン、ビス(4-メタクリロキシエトキシフェニル)スルホン、ビス(4-アクリロキシジエトキシフェニル)スルホン、ビス(4-メタクリロキシジエトキシフェニル)スルホン、ビス(4-アクリロキシプロポキシフェニル-ジブロモフェニル)スルホン、ビス(4-メタクリロキシプロポキシフェニル-ジブロモフェニル)スルホン、ジエチレンジチオグリコールジアクリレート、ジエチレンジチオグリコールジメタクリレート、トリフェニルメチルチオアクリレート、2-(トリシクロ[5.2.1.02,6]ジブロモデシルチオ)エチルアクリレート、S-(1-ナフチルメチル)チオアクリレート、特開平2-247205号公報や特開平2-261808号公報に記載の分子内に少なくともS原子を2個以上含むエチレン性不飽和結合含有化合物、N-ビニルカルバゾール、2-(9-カルバゾリル)エチルアクリレート、2-〔β-(N-カルバジル)プロピオニロキシ〕エチルアクリレート、2-ナフチルアクリレート、ペンタクロロフェニルアクリレート、2,4,6-トリブロモフェニルアクリレート、2-(2-ナフチルオキシ)エチルアクリレート、N-フェニルマレイミド、p-ビフェニルメタクリレート、2-ビニルナフタレン、2-ナフチルメタクリレート、2,3-ナフタリンジカルボン酸(2-アクリロキシエチル)(3-アクリロキシプロピル-2-ヒドロキシ)ジエステル、N-フェニルメタクリルアミド、t-ブチルフェニルメタクリレート、ジフェン酸(2-メタクリロキシエチル)モノエステル、ジフェン酸(2-アクリロキシエチル)(3-アクリロキシプロピル-2-ヒドロキシ)ジエステル、4,5-フェナントレンジカルボン酸(2-アクリロキシエチル)(3-アクリロキシプロピル-2-ヒドロキシ)ジエステル、2-{{[3-(メチルスルファニル)フェニル]カルバモイル}オキシ}エチルプロパ-2-エノエートなどが挙げられる。
 また、9,9-ジアリールフルオレン骨格を有し、分子中に少なくとも一つのエチレン性不飽和結合を有するものが挙げられる。具体的には下記構造を有する化合物である。
Figure JPOXMLDOC01-appb-C000001
 ここで、RおよびRは、それぞれ独立して、末端にアクリロイル基またはメタクリロイル基を含むラジカル重合性基である。好ましい形態としては、末端にアクリロイル基またはメタクリロイル基を有し、オキシエチレン鎖、オキシプロピレン鎖、ウレタン結合、アミド結合などを介して、上記化合物のベンゼン環と結合し得る基である。
 また、X~Xは、それぞれ独立して、水素原子または置換基である。置換基の具体例としては、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、アミノ基、ジアルキルアミノ基、水酸基、カルボキシル基、ハロゲン基などが挙げられる。
 また、フェニルイソシアネート化合物と、一分子中にヒドロキシ基およびアクリロイル基を有する化合物とによる縮合物からなるウレタンアクリレートも利用できる。具体的には、以下の構造を有する化合物である。
Figure JPOXMLDOC01-appb-C000002
 上記化学式(I)~(III)中、Rは、それぞれ独立して、エチレン性不飽和結合を有する基であり、Xは、それぞれ独立して、単結合、酸素原子、または直鎖状、分枝状、もしくは環状の2価の脂肪族炭化水素基である。
 また、下記化学式(IV)で表される構造を有する化合物も使用することができる。
Figure JPOXMLDOC01-appb-C000003
 上記化学式(IV)中、R~Rは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、トリフルオロメチル基、炭素数1~6のアルキルチオ基、炭素数1~6のアルキルセレノ基、炭素数1~6のアルキルテルロ基、またはニトロ基であり、RおよびRは、それぞれ独立して、水素原子、または炭素数1~6のアルキル基である。
 Aは、直鎖状もしくは分岐状の炭素数1~6のアルキレン基、直鎖状もしくは分岐状の炭素数2~6のアルケニレン基、または2~6個のエチレンオキシド単位またはプロピレンオキシド単位を有するポリアルキレンオキシド基である。
 これらのラジカル重合性モノマーの内、置換または未置換のフェニル基を有するモノマー、置換または未置換のナフチル基を有するモノマー、3個までの環を有する置換または未置換の複素環式芳香族部分を有するモノマー、塩素原子を有するモノマー、臭素原子を含有するモノマーは、その屈折率が比較的高いため、好ましい。
 上記ラジカル重合性モノマーは、単独でもまたは2種以上組み合わせても用いることができる。
 感光性組成物中のラジカル重合性モノマーの含有量は、1~25質量%であることが好ましく、5~20質量%であることがより好ましい。
 ≪光ラジカル重合開始剤≫
 光ラジカル重合開始剤は、ホログラフィ露光における、特定波長のレーザー光またはコヒーレンス性の優れた光の照射によって、ラジカル重合性モノマーの光重合を開始させる剤である。光ラジカル重合開始剤として、例えば米国特許第4766055号明細書、同第4868092号明細書、同第4965171号明細書、特開昭54-151024号公報、同58-15503号公報、同58-29803号公報、同59-189340号公報、同60-76735号公報、特開平1-28715号公報、特開平4-239505号公報および「プロシーディングス・オブ・コンフェレンス・オン・ラジエーション・キュアリング・エイジア(PROCEEDINGS OF CONFERENCE ON RADIATION CURING ASIA)」(pp.461~477、1988年)等に記載されている公知の重合開始剤が使用できるが、これらに制限されない。
 光ラジカル重合開始剤の具体例として、例えば、ジアリールヨードニウム塩類、2,4,6-置換-1,3,5-トリアジン類(トリアジン系化合物)、アゾ化合物、アジド化合物、有機過酸化物、テトラブチルアンモニウムトリフェニルブチルボレート等の有機ホウ素酸塩、オニウム塩類、ハロゲン化炭化水素誘導体、チタノセン化合物、モノアシルホスフィンオキサイド、ビスアシルホスフィンオキサイド、ビスアシルホスフィンオキサイドとα-ヒドロキシケトンとの組み合わせなどが挙げられる。また、チオール化合物などの水素供与体とビスイミダゾール誘導体との併用による光ラジカル重合開始剤システムも利用できる。これら光ラジカル重合開始剤は、単独でもまたは2種以上を組み合わせて用いてもよい。
 光ラジカル重合開始剤の使用量は、ラジカル重合性モノマー100質量部に対して好ましくは0.05~50質量部、より好ましくは0.1~30質量部である。
 ≪増感剤≫
 上記感光性組成物は、光ラジカル重合開始剤に対する増感機能を有する増感剤を含んでもよい。このような増感剤は400~800nm、特に450~700nmの範囲に吸収極大波長を有する。これらの増感剤が上記範囲の光を吸収し、これにより光ラジカル重合開始剤に対して増感作用が生じる。
 このような増感剤としては、例えば、シアニン系色素、スチリル系色素等のポリメチン系化合物、ローダミンB、ローダミン6G、ピロニンGY等のキサンテン系化合物、サフラニンO等のフェナジン系化合物、クレシルバイオレット、ブリリアントクレシルブルー等のフェノキサジン系化合物、メチレンブルー、ニューメチレンブルー等のフェノチアジン系化合物、オーラミン等のジアリールメタン系化合物、クリスタルバイオレット、ブリリアントグリーン、リサミングリーン等のトリアリールメタン系化合物、(チオ)ピリリウム塩系化合物、スクアリリウム系化合物、クマリン系色素、チオキサンテン系色素、アセン系色素、メロシアニン系色素、チアゾリウム系色素等が挙げられる。これら増感剤は、単独でもまたは2種以上組み合わせても用いることができる。
 増感剤を用いる場合の使用量は、光ラジカル重合開始剤100質量部に対して1~2000質量部が好ましく、20~1500質量部がより好ましい。
 ≪連鎖移動剤≫
 上記感光性組成物は、連鎖移動剤を含んでもよい。連鎖移動剤としては、特に限定されず、公知のラジカル連鎖移動剤を使用することができる。
 連鎖移動剤としては、例えば、n-ブチルメルカプタン、t-ブチルメルカプタン、t-ドデシルメルカプタン、n-オクチルメルカプタン、n-ラウリルメルカプタン、5-クロロ-2-メルカプトベンゾチアゾール、6-エトキシ-2-メルカプトベンゾチアゾールなどのメルカプタン類;テトラメチルチウラジウムジスルフィド、テトラエチルチウラジウムジスルフィドなどのジスルフィド類;四塩化炭素、四臭化炭素などのハロゲン化合物;2-メチル-1-ブテン、α-メチルスチレンダイマー等のオレフィン類;等が挙げられる。これら連鎖移動剤は、単独でもまたは2種以上組み合わせても用いることができる。
 連鎖移動剤を用いる場合の使用量は、ラジカル重合性モノマー100質量部に対して好ましくは0.05~50質量部、より好ましくは0.1~30質量部である。
 ≪ポリウレタンの前駆体≫
 本実施形態に係る感光性組成物は、ポリウレタンの前駆体であるポリイソシアネート化合物およびポリオール化合物を含むことが好ましい。これら化合物は、付加重合することによりポリウレタンとなり、体積ホログラム記録層がポリウレタンを含むことになる。すなわち、好ましい一実施形態によるポリウレタンは、ポリイソシアネート化合物由来の構成単位と、ポリオール化合物由来の構成単位と、を含む。
 体積ホログラム記録層がポリウレタンを含むことにより、接着剤の硬化収縮に伴う局所的な内部応力が発生しても、ポリウレタンが内部応力を分散させ、体積ホログラム記録層に形成された所望の干渉縞が維持されて良好な画像品位が得られ、また、体積ホログラム記録層の高湿条件下での耐久性が向上すると考えられる。
 また、ポリウレタンは、後述のマトリクス樹脂としての役割も果たし得る。
 〔ポリイソシアネート化合物〕
 ポリイソシアネート化合物は、1分子中に2つ以上のイソシアネート基を有する化合物であるが、その種類は特に制限されない。1分子中のイソシアネート基の数の上限は特に制限されないが、通常20以下、好ましくは8以下、より好ましくは4以下である。
 本実施形態で使用されるポリイソシアネート化合物の例としては、例えば、ブチレンジイソシアネート、ヘキサメチレンジイソシアネート、リジンメチルエステルジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート等の脂肪族ポリイソシアネート化合物;イソホロンジイソシアネート、4,4’-メチレンビス(シクロヘキシルイソシアネート)等の脂環族ポリイソシアネート化合物;トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、ナフタレン-1,5’-ジイソシアネート等の芳香族ポリイソシアネート化合物;およびこれらの多量体等が挙げられる。また、これらの他に、水、トリメチロールエタン、トリメチロールプロパン等の多価アルコール類とこれら上記のイソシアネートとの反応物等やヘキサメチレンジイソシアネートの多量体、またはその誘導体を挙げることができる。これらポリイソシアネート化合物は、単独でもまたは2種以上組み合わせて用いてもよい。
 〔ポリオール化合物〕
 ポリオール化合物は、1分子中に2つ以上のヒドロキシ基を有する化合物であるが、その種類は特に制限されない。ポリオール化合物は、好ましくは1.5~6.0の平均ヒドロキシ官能価および1000~18500g/molの数平均分子量、より好ましくは1.8~4.0の平均ヒドロキシ官能価および1000~8500g/molの数平均分子量、さらに好ましくは1.9~3.1の平均ヒドロキシ官能価および1000~6500g/molの数平均分子量を有する。
 ポリオール化合物の例としては、例えば、ポリプロピレンポリオール、ポリカプロラクトンポリオール、ポリエステルポリオール、ポリカーボネートポリオール、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、ジエチレングリコール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、デカメチレングリコール、トリメチロールプロパン、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等が挙げられる。これらポリオール化合物は、単独でもまたは2種以上組み合わせて用いてもよい。
 ポリイソシアネート化合物とポリオール化合物とを付加重合(硬化)させる触媒を感光性組成物中に配合することができる。触媒を使うことにより室温(20~25℃)で硬化させることができるが、加熱して硬化させてもよい。加熱硬化する場合の温度としては40~90℃の範囲が好ましく、加熱硬化時間は1~24時間の範囲が好ましい。
 上記触媒の例としては、通常のウレタン化反応触媒、例えば、ジラウリン酸ジブチルスズ、ジラウリン酸ジオクチルスズ、ジオクタン酸ジブチルスズ等のスズ化合物、トリエチルアミン、トリエチレンジアミン等の三級アミン化合物が挙げられる。これらのうちスズ化合物は溶解性や媒体としての性能がよく、特に、ジラウリン酸ジブチルスズが好ましい。
 触媒の使用量は、ポリイソシアネート化合物およびポリオール化合物の合計量に対して、0.0001質量%以上が好ましく、0.001質量%以上がより好ましく、また、10質量%以下が好ましく、5質量%以下がより好ましい。なお、これら触媒を用いる場合は、感光層塗膜の均一性確保の観点から、触媒を添加してから10分以内に感光性組成物を塗布することが好ましい。
 1分子に3つ以上のイソシアネート基を有するポリイソシアネート化合物および/または1分子中に3つ以上のヒドロキシ基を有するポリオール化合物を用いることにより、付加重合後に架橋構造を有するポリウレタンを得ることができる。体積ホログラム記録層が架橋構造を有するポリウレタンを含有させることにより、強度の高い体積ホログラム記録層を得ることができる。
 感光性組成物中のポリイソシアネート化合物の含有量は、0.02~0.5質量%であることが好ましく、0.05~0.3質量%であることがより好ましい。また、感光性組成物中のポリオール化合物の含有量は、5~35質量%であることが好ましく、10~30質量%であることがより好ましい。
 体積ホログラム記録層がポリウレタンを含むことは、体積ホログラム記録層の有機溶媒に溶解しない成分をフーリエ変換赤外分光光度計(Fourier transform infrared spectrometer: FT-IR)により分析し、イソシアネート基由来の2270cm-1の吸収、ならびにアミド基由来の1690cm-1および1470cm-1の吸収の存在により確認することができる。
 <マトリクス樹脂またはその前駆体>
 マトリクス樹脂は、体積ホログラム記録層の膜厚の均一性、耐熱性、機械的物性等を向上させ、ホログラフィ露光により形成されるホログラムを安定化させる働きを有する。また、体積ホログラム記録層形成時には、重合性モノマーやフォトポリマーの拡散移動現象を阻害しない、または効率よく発現させる機能を有し得る。なお、上記ポリウレタンは、本項で説明するマトリクス樹脂としての役割を果たし得る。
 ポリウレタン以外のマトリクス樹脂としては、例えば、熱可塑性樹脂、熱硬化性樹脂、活性エネルギー線硬化性樹脂等、いずれも制限なく使用することができる。また、これら樹脂にポリシロキサン鎖やパーフルオロアルキレン鎖で修飾したものなども使用することができる。マトリクス樹脂は、単独でもまたは2種以上組み合わせても用いることができる。
 熱可塑性樹脂の例としては、例えば、ポリビニルアセテート、ポリビニルブチラート、ポリビニルホルマール、ポリビニルカルバゾール、ポリアクリル酸、ポリメタクリル酸、ポリメチルアクリレート、ポリメチルメタクリレート、ポリエチルアクリレート、ポリブチルアクリレート、ポリメタクリロニトリル、ポリエチルメタクリレート、ポリブチルメタクリレート、ポリアクリロニトリル、ポリ-1,2-ジクロロエチレン、エチレン-酢酸ビニル共重合体、シンジオタクチック型ポリメチルメタクリレート、ポリ-α-ビニルナフタレート、ポリカーボネート、セルロースアセテート、セルローストリアセテート、セルロースアセテートブチラート、ポリスチレン、ポリ-α-メチルスチレン、ポリ-o-メチルスチレン、ポリ-p-メチルスチレン、ポリ-p-フェニルスチレン、ポリ-2,5-ジクロロスチレン、ポリ-p-クロロスチレン、ポリ-2,5-ジクロロスチレン、ポリアリレート、ポリスルホン、ポリエーテルスルホン、スチレン-アクリロニトリル共重合体、スチレン-ジビニルベンゼン共重合体、スチレン-ブタジエン共重合体、スチレン-無水マレイン酸共重合体、ABS樹脂、ポリエチレン、ポリ塩化ビニル、ポリプロピレン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリビニルピロリドン、ポリ塩化ビニリデン、水素化スチレン-ブタジエン-スチレン共重合体、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、テトラフルオロエチレンやヘキサフルオロエチレンとビニルアルコール、ビニルエステル、ビニルエーテル、ビニルアセタール、ビニルブチラールなどとの共重合体、(メタ)アクリル酸環状脂肪族エステルとメチル(メタ)アクリレートとの共重合体、ポリ酢酸ビニル、メチルメタクリレート-エチルアクリレート-アクリル酸共重合体等が挙げられる。
 熱硬化性樹脂としては、不飽和ポリエステル樹脂、アクリルウレタン樹脂、エポキシ変性アクリル樹脂、エポキシ変性不飽和ポリエステル樹脂、アルキド樹脂、フェノール樹脂等が挙げられる。
 活性エネルギー線硬化性樹脂としては、エポキシアクリレート、ウレタンアクリレート、アクリル変性ポリエステル等が挙げられる。これらの活性エネルギー線硬化性樹脂に、架橋構造、粘度の調整等を目的として、下記のようなその他の単官能または多官能モノマー、オリゴマー等を包含させることができる。例えば、単官能ではテトラヒドロフルフリル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、(メタ)アクリロイルオキシエチルサクシネート、(メタ)アクリロイルオキシエチルフタレート等のモノ(メタ)アクリレート、ビニルピロリドン、多官能では骨格構造で分類するとポリオール(メタ)アクリレート(エポキシ変性ポリオール(メタ)アクリレート、ラクトン変性ポリオール(メタ)アクリレート等)、ポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、その他ポリブタジエン系、イソシアヌール酸系、ヒダントイン系、メラミン系、リン酸系、イミド系、ホスファゼン系等の骨格を有するポリ(メタ)アクリレートであり、紫外線または電子線硬化性である様々なモノマー、オリゴマー、ポリマーが利用できる。
 上記の熱可塑性樹脂、熱硬化性樹脂、または活性エネルギー線硬化性樹脂を用いる場合は、ナフテン酸コバルト、ナフテン酸亜鉛等の金属石鹸、ベンゾイルパーオキサイド、メチルエチルケトンパーオキサイド等の有機過酸化物、ベンゾフェノン、アセトフェノン、アントラキノン、ナフトキノン、アゾビスイソブチロニトリル、ジフェニルスルフィド等の熱または活性エネルギー線硬化剤を、感光性組成物に含有させることができる。
 熱硬化性樹脂や活性エネルギー線硬化性樹脂を用いる場合には、感光層を形成した後、加熱または活性エネルギー線照射により硬化を行うことができる。硬化は、ホログラフィ露光の前に行ってもよいし後に行ってもよい。
 また、マトリクス樹脂の別の前駆体として、カチオン重合性モノマーを用いてもよい。カチオン重合性モノマーによるマトリクス樹脂は、膜強度に優れた体積ホログラム記録層の作製を可能にする。
 係るカチオン重合性モノマーの具体例としては、ジグリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、1,4-ビス(2,3-エポキシプロポキシパーフルオロイソプロピル)シクロヘキサン、ソルビトールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、レゾルシンジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、フェニルグリシジルエーテル、パラ-t-ブチルフェニルグリシジルエーテル、アジピン酸ジグリシジルエステル、オルソフタル酸ジグリシジルエステル、ジブロモフェニルグリシジルエーテル、ジブロモネオペンチルグリコールジグリシジルエーテル、1,2,7,8-ジエポキシオクタン、1,6-ジメチロールパーフルオロヘキサンジグリシジルエーテル、4,4’-ビス(2,3-エポキシプロポキシパーフルオロイソプロピル)ジフェニルエーテル、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、3,4-エポキシシクロヘキシルオキシラン、1,2,5,6-ジエポキシ-4,7-メタノペルヒドロインデン、2-(3,4-エポキシシクロヘキシル)-3’,4’-エポキシ-1,3-ジオキサン-5-スピロシクロヘキサン、1,2-エチレンジオキシ-ビス(3,4-エポキシシクロヘキシルメタン)、4’,5’-エポキシ-2’-メチルシクロヘキシルメチル-4,5-エポキシ-2-メチルシクロヘキサンカルボキシレート、エチレングリコール-ビス(3,4-エポキシシクロヘキサンカルボキシレート)、ビス-(3,4-エポキシシクロヘキシルメチル)アジペート、ジ-2,3-エポキシシクロペンチルエーテル、ビニル-2-クロロエチルエーテル、ビニル-n-ブチルエーテル、トリエチレングリコールジビニルエーテル、1,4-シクロヘキサンジメタノールジビニルエーテル、トリメチロールエタントリビニルエーテル、ビニルグリシジルエーテル等が挙げられる。これらカチオン重合性モノマーは、単独でもまたは2種以上組み合わせても用いることができる。
 上記カチオン重合性モノマーを用いる場合は、光カチオン重合開始剤、熱カチオン重合開始剤を感光性組成物中に添加してもよい。
 光カチオン重合開始剤の具体例としては、例えばヨードニウム塩類、トリアリールスルホニウム塩類などが挙げられる。ヨードニウム塩類として具体的には、ヨードニウムのテトラフルオロボレート、ヘキサフルオロホスフェート、ヘキサフルオロアルセネート、ヘキサフルオロアンチモネート、トリフルオロメタンスルホネート、9,10-ジメトキシアントラセン-2-スルホネート等が挙げられる。トリアリールスルホニウム塩類として具体的には、トリアリールスルホニウム、トリフェニルスルホニウム、4-t-ブチルトリフェニルスルホニウム、トリス(4-メチルフェニル)スルホニウム、トリス(4-メトキシフェニル)スルホニウム、4-チオフェニルトリフェニルスルホニウム等スルホニウムのテトラフルオロボレート、ヘキサフルオロホスフェート、ヘキサフルオロアルセネート、ヘキサフルオロアンチモネート、トリフルオロメタンスルホネート、9,10-ジメトキシアントラセン-2-スルホネート等が挙げられる。これら光カチオン性重合開始剤は、単独でもまたは2種以上組み合わせても用いることができる。
 熱カチオン重合開始剤の具体例としては、例えばトリフル酸塩、三フッ化ホウ素エーテル錯化合物、三フッ化ホウ素等のようなカチオン系またはプロトン酸触媒が挙げられ、好ましい熱カチオン重合開始剤としては、トリフル酸塩である。具体例としては、3M社から「FC-520」として入手できるトリフル酸ジエチルアンモニウム、トリフル酸トリエチルアンモニウム、トリフル酸ジイソプロピルアンモニウム、トリフル酸エチルジイソプロピルアンモニウム等(これらの多くはR.R.Almによって1980年10月発行のモダン・コーティングス(Modern Coatings)に記載されている)がある。また、活性エネルギー線カチオン重合開始剤としても用いられる芳香族オニウム塩のうち、熱によりカチオン種を発生するものがあり、これらも熱カチオン重合開始剤として用いることができる。市販品の例としては、「サンエイド(登録商標)SI-60L」、「サンエイド(登録商標)SI-80L」および「サンエイド(登録商標)SI-100L」(以上三新化学工業株式会社製)がある。マトリクス樹脂としてカチオン重合性モノマーを用いる場合、光カチオン重合開始剤または熱カチオン重合開始剤の使用量は、カチオン重合性モノマー100質量部に対して0.05~50質量部が好ましく、0.1~30質量部がより好ましい。
 ポリウレタン以外のマトリクス樹脂またはその前駆体の含有量は、感光性組成物中1~30質量%であることが好ましく、1~28質量%であることがより好ましく、5~25質量%であることがさらに好ましい。
 <溶媒>
 感光性組成物には、塗工する際に必要に応じて溶媒を添加してもよい。ただし、感光性組成物に、常温で液状である成分が含まれている場合は、溶媒は添加しなくてもよい。
 溶媒としては、例えば、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、シクロヘキサン、メチルシクロヘキサンなどの脂肪族系溶媒;メチルエチルケトン(2-ブタノン)、アセトン、シクロヘキサノンなどのケトン系溶媒;ジエチルエーテル、イソプロピルエーテル、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、アニソール、フェネトールなどのエーテル系溶媒;酢酸エチル、酢酸ブチル、エチレングリコールジアセテートなどのエステル系溶媒;トルエン、キシレンなどの芳香族系溶媒;メチルセロソルブ、エチルセロソルブ、ブチルセロソルブなどのセロソルブ系溶媒;メタノール、エタノール、プロパノール、イソプロピルアルコールなどのアルコール系溶媒;テトラヒドロフラン、ジオキサンなどのエーテル系溶媒;ジクロロメタン、クロロホルムなどのハロゲン系溶媒;アセトニトリル、プロピオニトリルなどのニトリル系溶媒;N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等の極性溶媒などが挙げられる。これら溶媒は、単独でもまたは2種以上を組み合わせても用いることができる。
 <添加剤>
 感光性組成物は、上記効果を損なわない限り、必要に応じて、可塑剤、相溶化剤、重合抑制剤、界面活性剤、シランカップリング剤、消泡剤、剥離剤、安定化剤、酸化防止剤、難燃剤、光学増白剤、紫外線吸収剤等の添加剤をさらに含んでもよい。
 〔感光性組成物の調製方法〕
 感光性組成物は、上記した各成分を一括または順次混合することにより得ることができる。混合の際用いる装置としては、例えば、マグネチックスターラー、ホモディスパー、クイックホモミキサー、プラネタリーミキサーなどの攪拌または混合装置が挙げられる。得られた感光性組成物は、必要に応じて、濾過してから用いてもよい。
 [放射線硬化性接着層]
 放射線硬化性接着層は、放射線硬化性接着剤を塗布した後、可視光、紫外線、電子線等の放射線で硬化させることにより得られる層、すなわち放射線硬化性接着剤の硬化物を含む層である。放射線硬化性接着剤の材料の例としては、例えば、(メタ)アクリルモノマー、光重合開始剤、光増感剤、添加剤などが挙げられる。
 (メタ)アクリルモノマーとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシシクロヘキシル(メタ)アクリレート、5-ヒドロキシシクロオクチル(メタ)アクリレート、1,3-ブタンジオール(メタ)アクリレート、1,4-ブタンジオール(メタ)アクリレート、1,6-ヘキサンジオール(メタ)アクリレート、3-メチルペンタンジオール(メタ)アクリレート、ジシクロペンテニルアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、2-イソシアネートエチル(メタ)アクリレート、1,1-ビス(アクリロイルオキシメチル)エチルイソシアネート等などが挙げられる。これらは単独でも、または2種以上組み合わせても用いることができる。
 光重合開始剤としては、ベンゾイン化合物、アセトフェノン化合物、アシルフォスフィンオキサイド化合物、チタノセン化合物、チオキサントン化合物、オキシムエステル化合物等が挙げられ、光増感剤としてはアミン化合物やキノン化合物等が挙げられる。
 その他の添加剤として、γ-グリシドキシプロピルトリメトキシシラン、ビニルプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシランなどのシランカップリング剤や、イソプレン重合物の無水マレイン酸付加物と2-ヒドロキシエチルメタクリレートとのエステル化物などのオリゴマー等が挙げられる。
 体積ホログラム記録層が存在する領域の放射線硬化性接着層の厚さは、特に制限されないが、5~50μmであることが好ましく、10~40μmであることがより好ましい。
 放射線硬化性接着層の形成方法としては、特に制限されず、例えば体積ホログラム記録層が設けられた曲面を有する接合面を覆うように放射線硬化性接着剤を塗布した後、放射線を照射し接着剤を硬化させる方法が挙げられる。
 放射線硬化性接着剤を塗布する方法としては、従来公知の方法を使用することができ、具体例としては、スプレー法、スピンコート法、ワイヤーバー法、ディップコート法、エアーナイフコート法、ロールコート法、ブレードコート法、ドクターロールコート法などが挙げられる。
 放射線の照射で用いられる光源は、例えば、超高圧水銀ランプ、高圧水銀ランプ、カーボンアークランプ、キセノンアークランプ、メタルハライドランプ等の紫外線を発する光源が挙げられる。紫外線照射を行う場合の照射エネルギー量としては、100~2000mJ/cmが好ましい。
 [光学素子の製造方法]
 光学素子の製造方法は、特に制限されないが、一対の接合面のうち曲面を有する接合面の少なくとも一部の領域に体積ホログラム層を含む層を作製し、前記体積ホログラム記録層を含む層が配置された前記曲面を有する接合面全体を覆うように放射線硬化性接着剤を塗布した後、放射線を用いて前記放射線硬化性接着剤を硬化させて放射線硬化性接着層を形成することを含むことが好ましい。
 当該製造方法は、具体的には、
 (1)隣接層上に感光層を形成する工程
 (2)感光層と接合面が曲面を有する一の透明光学部材とを貼り合わせ、曲面を有する接合面の少なくとも一部の領域に感光層を含む層を作製する工程
 (3)該感光層に対してホログラフィ露光を行い、体積ホログラム記録層を含む層を作製する工程
 (4)体積ホログラム記録層が配置された曲面を有する接合面全体を覆うように放射線硬化性接着剤を塗布し、他の透明光学部材を貼り合わせる工程
 (5)放射線硬化性接着剤を、放射線を用いて硬化させ、放射線硬化性接着層を形成する工程
を含む。
 以下、かような製造方法について説明する。
 (1)隣接層上に感光層を形成する工程
 隣接層上に感光層を形成する方法としては、特に制限されず、例えば、隣接層上に、上記で説明した感光性組成物を直接塗布し乾燥する方法が挙げられる。
 隣接層の材料、製造方法等は上記で説明したとおりであるため、ここでは説明を省略する。
 隣接層上に感光性組成物を塗布する方法としては、従来公知の方法を使用することができ、具体例としては、スプレー法、スピンコート法、ワイヤーバー法、ディップコート法、エアーナイフコート法、ロールコート法、ブレードコート法、ドクターロールコート法などが挙げられる。
 乾燥は、ホットプレート、オーブン、ベルト炉等を用いた従来公知の種々の方法を採用することができる。乾燥温度は前述の感光性組成物の感光性が損なわれない範囲で選択でき、例えば10~80℃の範囲であり、また乾燥時間も特に制限されず、例えば1~60分の範囲である。
 また、感光性組成物が、ポリウレタンの前駆体であるポリイソシアネート化合物およびポリオール化合物を含む場合は、本工程においてこれら化合物の付加重合(硬化)を行う。硬化の際に用いられる触媒、硬化条件等は、上記したとおりである。
 感光層の厚さは、後述の体積ホログラム記録層の好ましい厚さの範囲となるよう、適宜設定すればよい。
 (2)感光層と接合面が曲面を有する一の透明光学部材とを貼り合わせ、曲面を有する接合面の少なくとも一部の領域に感光層を含む層を作製する工程
 本工程では、感光層と接合面が曲面を有する一の透明光学部材とを貼り合わせる。貼り合わせる方法としては、例えばラミネーターを用いる方法が挙げられる。
 (3)該感光層に対してホログラフィ露光を行い、体積ホログラム記録層を含む層を作製する工程
 感光層に対してホログラフィ露光を行うことによって、感光層中の重合性モノマーの重合反応が進み、重合反応により生成する光硬化されたフォトポリマーの領域と他成分の領域とが、ホログラフィ露光で照射された干渉波と同一のパターンとして形成される。
 〔記録方法〕
 感光層にホログラフィ露光を行い、体積ホログラムを記録(書き込み)し体積ホログラム記録層とする方法、および体積ホログラムを再生(読み出し)する方法としては、特に制限されないが、例えば、下記の方法が挙げられる。
 まず、情報の記録時には、重合性モノマーの化学変化、すなわち、その重合および濃度変化を生じさせることが可能な光を、記録光(物体光とも呼ばれる)として用いる。
 例えば、情報を体積ホログラムとして記録する場合には、物体光を参照光と共に感光層に対して照射し、感光層において物体光と参照光とを干渉させるようにする。これによってその干渉光が、感光層内の重合性モノマーの重合および濃度変化を生じさせ、その結果、干渉縞が感光層内に屈折率差を生じさせ、感光層内に記録された干渉縞により体積ホログラムとして記録され、体積ホログラム記録層となる。
 体積ホログラムの記録に用いられる記録光(カッコ内は波長を示す)としては、コヒーレンス性に優れる可視光レーザーを用いることが好ましく、例えばアルゴンイオンレーザー(458nm、488nm、514nm)、クリプトンイオンレーザー(647.1nm)、ヘリウム-ネオンレーザー(633nm)、YAGレーザー(532nm)等を使用することができる。
 ホログラム記録時の照射エネルギー量(露光量)としては、特に制限されないが、10~250mJ/cmの範囲であることが好ましい。
 また、ホログラム記録方式としては、偏光コリニアホログラム記録方式、参照光入射角多重型ホログラム記録方式等があるが、いずれの記録方式でも良好な記録品質を提供することが可能である。
 露光装置としては、特に制限されないが、例えば、概略構成が図1に示すようなタイプの露光装置を用いることができる。図1に示す露光装置においては、レーザー光源201から出射された光線(記録光)は、2対のミラーよりなるビームステアラー202a、202bによって露光系の適した位置に光線を誘導する。203はシャッターであり、光線(記録光)のON/OFFを制御する。204はビームエキスパンダーであり、感光層の露光面積に応じて、光束径を広げ、開口率(NA)を変化させる機能を有する。
 ビームエキスパンダー204を通った光線(記録光)は、ビームスプリッター205で二光束に分けられる。分けられた光線(記録光)は、それぞれミラー206、207、およびミラー209、208によってスペイシャルフィルター211、212に誘導される。スペイシャルフィルター211、212はレンズとピンホールとから構成され、該レンズで光線(記録光)を集光し、ピンホールを介して製造光学系213に光線(記録光)を誘導する。
 製造光学系213は、光学素子の光線の反射角を制御できるように、体積ホログラム記録層となる感光層を具備したガラスプリズム等のサンプルを好適な位置に設置および固定することができる。
 製造光学系213に固定されたプリズムなどに具備された感光層は、二光束に分けられ、各々スペイシャルフィルター211、213を介して誘導された光線(記録光)によってホログラフィ露光(干渉露光)される。
 製造光学系213に固定された感光層に対するホログラフィ露光(干渉露光)の一例を図2に示す。図2に示す例では、第1の透明光学部材11と感光層(体積ホログラム記録層)12との積層体15に対して、2方向からのレーザー光照射により、感光層へのホログラフィ露光が行われる。2方向からのレーザー光のうち、一方が物体光31であり、他方が参照光32である。
 なお、図1に示す光源は1つのみであるが、異なる波長を有する複数のレーザー光源を用いてホログラフィ露光する場合には、シャッター203手前の光路にグロイックミラーを挿入し、複数の光源から発せられるレーザー光線を段階的に合成させてもよい。
 体積ホログラムを記録した後、屈折率変調の促進や重合反応完結(定着)のために、体積ホログラム記録層に対して、さらに紫外線による全面露光や加熱等の処理を適宜行うことができる。全面露光で用いられる光源としては、例えば、超高圧水銀ランプ、高圧水銀ランプ、カーボンアークランプ、キセノンアークランプ、メタルハライドランプ等の紫外線を発する光源を用いることができる。紫外線による全面露光を行う場合の照射エネルギー量としては、50~200J/cmが好ましい。また、加熱処理を行う際の温度は50~150℃が好ましく、処理時間は30分間~3時間が好ましい。
 全面露光と加熱処理とを共に行う場合、その順序は特に制限されず、全面露光を先に行ってもよいし、加熱処理を先に行ってもよい。
 本実施形態において、体積ホログラム記録層の厚さは、耐久性の観点から、5~100μmであることが好ましく、5~40μmであることがより好ましい。
 (4)体積ホログラム記録層が配置された曲面を有する接合面全体を覆うように放射線硬化性接着剤を塗布し、他の透明光学部材を貼り合わせる工程
 本工程では、上記(3)で作製した体積ホログラム記録層が配置されている曲面を有する接合面全体を覆うように放射線硬化性接着剤を塗布し、他の透明光学部材を貼り合わせる。
 隣接層を設置しない場合は、放射線硬化性接着剤を塗布する前に、隣接層を体積ホログラム記録層から剥離し、体積ホログラム記録層上に直接放射線硬化性接着剤を塗布する。隣接層を設置する場合は、隣接層上に放射線硬化性接着剤を塗布する。
 放射線硬化性接着剤の塗布方法、塗布厚さ等は、上記で説明したとおりである。
 (5)放射線硬化性接着剤を、放射線を用いて硬化させ、放射線硬化性接着層を形成する工程
 本工程では、放射線を用いて放射線硬化性接着剤を硬化させ、放射線硬化性接着層を形成する。放射線照射に用いる光源、照射条件等は、上記で説明したとおりである。
 [他の層]
 本実施形態の光学素子は、上記以外に、保護層、反射層、反射防止膜、紫外線吸収層等、他の層を有していてもよい。
 保護層は、体積ホログラム記録層の保存安定性の劣化等の影響を防止するための層である。保護層の具体的構成に制限は無く、公知のものを任意に適用することが可能である。例えば、水溶性ポリマー、有機/無機材料等からなる層を保護層として形成することができる。保護層の形成位置は、特に制限はなく、例えば体積ホログラム記録層と放射線硬化性接着層との間、隣接層と放射線硬化性接着層との間、体積ホログラム記録層と透明光学部材との間などが挙げられる。
 反射層は、光学素子を反射型に構成する際に形成される。反射型の光学素子の場合、反射層は通常、隣接層の外側面に形成される。反射層としては、従来公知のものを適宜参照して適用することができ、例えば金属の薄膜等を用いることができる。
 さらに、透過型および反射型のいずれの光学素子においても、物体光および再生光が入射および/または出射する側に、反射防止膜を設けてもよい。反射防止膜は、光の利用効率を向上させ、かつゴースト像の発生を抑制する働きをする。反射防止膜の材料および形状は、従来公知のものを適宜参照して適用することができる。
 なお、体積ホログラム記録層に記録された体積ホログラムを再生する場合は、所定の再生光(通常は参照光)を体積ホログラム記録層に照射する。照射された再生光は前記の干渉縞に応じて回折を生じる。この回折光は、体積ホログラム記録層と同様の情報を含むものであるので、前記の回折光を適当な検出手段によって読み取ることにより、体積ホログラム記録層に記録された情報の再生を行なうことができる。なお、物体光、再生光および参照光の波長領域はそれぞれの用途に応じて任意であり、可視光領域でも紫外光領域でも構わない。
 [映像表示装置]
 本実施形態の光学素子は、ヘッドマウントディスプレイ(HMD)、ヘッドアップディスプレイ(HUD)、光学シースルーディスプレイ等の映像表示装置に好適に用いられる。以下では、光学素子を備える映像表示装置の一例について説明する。
 図3に、光学素子10と表示素子20とを備えた映像表示装置1の概略的な断面構造を示す。図3の光学素子10は、曲面を有する第1の透明光学部材11と、第1の透明光学部材11と対となる第2の透明光学部材13とが、体積ホログラム記録層12を挟むようにして接合された構造を有している。
 ホログラフィ(干渉)露光により得られた体積ホログラム記録層12を2つの透明光学部材11および13の間で挟むようにして、曲面を有する第1の透明光学部材11と、第1の透明光学部材11と対となる第2の透明光学部材13とを接着剤14で接合すると、ホログラム再生可能な状態の光学デバイス10が得られる。ホログラム再生では、図3に示すように、映像光(再生照明光)41が光学素子10に入射すると、再生像光42が回折反射される。その再生像光42は、光学素子10を透過した外界像光43と共に、観察者眼EYに入射することになる。したがって、観察者は表示映像と共に外界像も観察することができる。
 体積ホログラム記録層12は、曲面を有する第1の透明光学部材11に貼り付けられており、第1の透明光学部材11と対となる第2の透明光学部材13との間に設けられた放射線硬化性接着層14で、第1透明光学部材11と第2の透明光学部材13とが体積ホログラム記録層12を挟むようにして接合されている。曲面を有する第1の透明光学部材11と第2の透明光学部材13との接合面上に体積ホログラム記録層12が設けられているため、接合面を介した外界像のシースルー性が確保される。
 映像表示装置1は、図3に示すように、光学素子10の他に、映像を表示する表示素子20を備えている。表示素子20としては、例えば、反射型または透過型の液晶表示素子(LCD:liquid crystal display)、デジタル・マイクロミラー・デバイス(digital micromirror device)、有機EL(organic electro-luminescence)ディスプレイ等が挙げられる。さらに、表示素子20を照明するための照明装置を配置してもよい。照明装置としては、LED(light emitting diode)等の光源、集光用光学素子(レンズ、ミラー等)で構成された照明装置等を備えたものが挙げられる。
 図3に示す映像表示装置1のさらに詳細な構成を、図4に示す。図4では、照明装置等を備えた映像表示装置1における光源21から光学瞳EPまでの光路を示している。この映像表示装置1は、照明装置の他に、偏光板24と、偏光ビームスプリッター25と、表示素子20と、接眼光学系として機能する光学素子10と、を有している。
 照明装置は、表示素子20を照明するものであり、光源21と、照明ミラー22と、拡散板23と、を有している。光源21は、中心波長が例えば520nmの波長帯域の光を発するLEDで構成されている。なお、図4に示す光源21は1つのみの波長であるが、体積ホログラム記録層が異なる複数の波長を回折する場合は、異なる複数の波長帯域の光を発する一体型のLEDで構成されてもよい。照明ミラー22は、光源21から出射した光(照明光)を拡散板23に向けて反射させるとともに、光学瞳EPと光源21とが略共役となるように、照明光を曲げる光学素子(例えば、自由曲面ミラー)である。拡散板23は、光源21からの照明光を拡散させるものであり、その拡散度は方向によって異なっている(例えば、横方向にのみ拡散作用を有する一方向拡散板である)。
 偏光板24は、その表面に拡散板23が貼り合わせ保持されており、拡散板23を介して入射する光のうち、所定の偏光方向の光を透過させて偏光ビームスプリッター25に導く。偏光板24を透過した偏光が偏光ビームスプリッター25で反射されるように、偏光ビームスプリッター25の方向は揃えてある。偏光ビームスプリッター25は、偏光板24を透過した光を反射型の表示素子20の方向に反射させる一方、表示素子20で反射された光のうち、画像信号オンに対応する光(偏光板24を透過した光とは偏光方向が直交する光)を透過させる平板状の偏光分離素子であり、第1の曲面を有している透明光学部材11の面11cに貼り付けられている。
 表示素子20は、照明装置からの光(つまり、偏光ビームスプリッター25で反射された光)を変調して映像IMを表示する表示素子であり、この映像表示装置1では反射型の液晶表示素子を想定している。なお、異なる複数の波長領域を表現する場合、表示素子20はカラーフィルターを有する構成であってもよいし、異なる波長領域ごとに時分割で駆動される構成であってもよい。
 表示素子20は、偏光ビームスプリッター25からほぼ垂直に入射する光がほぼ垂直に反射されて、偏光ビームスプリッター25に向かうように配置されている。これにより、反射型の表示素子に対して大きな入射角で光を入射させる構成に比べて、解像度を増大させるような光学設計が容易になる。また、表示素子20は、照明ミラー22から偏光ビームスプリッター25に向かう光路に対して光源21と同じ側に配置されている。これにより、照明装置から表示素子20までの光学系全体をコンパクトに構成することができる。なお、表示素子20は、光源21と同一の基板で支持されていてもよいし、別々の基板で支持されていてもよい。
 光学素子10は、曲面を有する第1の透明光学部材11、第1の透明光学部材11と対となる第2の透明光学部材13、および体積ホログラム記録層12を有しており、透明光学部材11、13は、例えばプラスチック(より具体的には、アクリル樹脂、ポリカーボネート、シクロオレフィン樹脂等)で構成されている。光学素子10は、非軸対称(非回転対称)な正の光学的パワーを有しており、それにより表示素子20からの映像光を光学瞳EPに導くための接眼光学系として機能する。透明光学部材11は、表示素子20から偏光ビームスプリッター25を介して入射してくる映像光を内部で導光する一方、外界像の光(外光)を透過させるものであり、平行平板の上端部を上端に向かうほど厚くし、下端部を下端に向かうほど薄くした形状で構成されている。
 曲面を有する第1の透明光学部材11において、偏光ビームスプリッター25が貼り付けられている面11cは、表示素子20からの映像光が最初に入射する光学面である。また、光学瞳EPとほぼ平行に位置して互いに対向する2つの面11a、11bは、映像光を全反射によって導光する全反射面となっている。そのうち、光学瞳EP側の面11aは、体積ホログラム記録層12で回折反射される映像光の出射面を兼ねている。
 曲面を有する第1の透明光学部材11は、その下端部に配置される体積ホログラム記録層12を挟むように、接着剤14で第1の透明光学部材11と対となる第2の透明光学部材13と接合されて、略平行な平板を形成している。第2の透明光学部材13を第1の透明光学部材11と貼り合わせることで、外光が第1の透明光学部材11の楔状の下端部を透過するときの屈折を第2の透明光学部材13でキャンセルすることができ、観察される外界像に歪みが生じるのを防止することができる。体積ホログラム記録層12は、第1の透明光学部材11の面11dに接して設けられており、第1の透明光学部材11内部で導光された映像光を回折反射する体積位相型であり反射型である光学素子である。そして、体積ホログラム記録層12の回折波長は、映像光の波長(光源21の発光波長)とほぼ対応している。
 上記の構成において、照明装置の光源21から出射された光は、照明ミラー22で反射され、拡散板23にて一方向にのみ拡散された後、所定の偏光方向の光のみが偏光板24を透過する。そして、偏光板24を透過した光は、偏光ビームスプリッター25で反射され、表示素子20に入射する。表示素子20では、入射光が画像信号に応じて変調される。このとき、画像信号オンに対応する映像光は、表示素子20にて入射光とは偏光方向が直交する光に変換されて出射されるため、偏光ビームスプリッター25を透過して第1の透明光学部材面11cから第1の透明光学部材11の内部に入射する。一方、画像信号オフに対応する映像光は、表示素子20にて偏光方向が変換されずに出射されるため、偏光ビームスプリッター25で遮断されて、第1の透明光学部材11の内部に入射しない。
 第1の透明光学部材11では、入射した映像光が第1の透明光学部材11の対向する2つの面11a、11bでそれぞれ1回ずつ全反射された後、体積ホログラム記録層12に入射する。体積ホログラム記録層12では、特定の波長の光のみが回折反射されて面11aから出射し、光学瞳EPに達する。したがって、観察者は、光学瞳EPの位置で表示素子20に表示された映像IMを虚像として観察することができる。一方、第1の透明光学部材11、第2の透明光学部材13、および体積ホログラム記録層12は、外光をほとんど全て透過させるので、観察者は外界像をシースルーで観察することができる。したがって、表示素子20に表示された映像IMの虚像は、外界像の一部に重なって観察されることになる。
 光学素子10は、上記のように、接合された第1の透明光学部材11と第2の透明光学部材13との間の体積ホログラム記録層12を介して、表示素子20の映像が外界像に重なるように、その表示映像を虚像として観察者眼EY(図3参照)にシースルーで投影表示する接眼光学系として機能する。そのため、体積ホログラム記録層12は、体積位相型の反射型ホログラムであることが好ましい。体積位相型の反射型ホログラムは外界像の光の透過率が高いので、体積ホログラム記録層12として体積位相型の反射型ホログラムを用いれば、観察者は表示映像と共に外界像も明瞭に観察することが可能になる。
 図3および図4に示すように、体積ホログラム記録層12は、曲面を有する第1の透明光学部材11および第2の透明光学部材13で挟持された状態で使用されるため、湿度や酸素等の外部環境の影響を受けることがほとんどない。また、透明光学部材11、13内に埋め込まれた構成により、表示素子20から提供される映像光を透明光学部材11内部で全反射させて体積ホログラム記録層12に導く接眼光学系として、光学素子10を採用することが可能になる。そして、透明光学部材11、13の形状と体積ホログラム記録層12の形状とを最適化することにより、体積ホログラム記録層12の光学性能を維持しながら外界像のシースルー性(コンバイナ機能)を確保することができる。
 図3および図4に示す映像表示装置1は、前述したように、光学素子10と、映像を表示する表示素子20と、を有し、体積ホログラム記録層12が表示素子20からの映像光のうちの特定波長の光を回折させるものであることが好ましい。このような構成により、外界像に高品質の映像が重ねられたシースルー表示が可能になる。したがって、光学素子10から提供される高品質の映像を、光学素子10を介して観察することが可能になると同時に、光学素子10を介してシースルーで外界像を観察することも可能になる。
 光学素子10を構成する曲面を有する第1の透明光学部材11は、図3および図4に示すように、表示素子20からの映像光を内部で全反射させて体積ホログラム記録層12に導く構成を有することが好ましい。このような構成により、表示素子20から提供される映像光を無駄なく利用して、観察者に明るい映像を提供することができる。また、表示素子20を光学素子10から離れた位置に配置することも可能となり、観察者の外界に対する視野を広く確保することができる。
 以下、具体的な実施例および比較例について説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。また、下記操作において、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%RHの条件で行った。
 接合面が曲面を有する透明光学部材11-1および11-2を作製した。その形状の概略を図5に示す。図5において、(a)は透明光学部材の平面図であり、(b)および(c)は透明光学部材の側面図である。図5に示すように、透明光学部材11-1は、その曲面がシリンドリカル形状(円柱状)の凸面であり、透明光学部材11-2は、その曲面が凸レンズ状(凸状の球面)である。
 また、接合面が透明光学部材11-1の接合面とは逆の曲面を有する透明光学部材13-1、および接合面が透明光学部材11-2の接合面とは逆の曲面を有する透明光学部材13-2も作製した(図6参照)。
 透明光学部材11-1、11-2、13-1および13-2は、射出成形機を用い、220℃に加熱したポリメタクリル酸メチル樹脂のペレット(製品名;アクリペット(登録商標)VH;三菱レイヨン株式会社製)を、100℃に維持された専用金型に注入し、50tonの荷重で型締めし、次いで金型から成形品を取り出し25℃に冷却して作製した。
 (実施例1:光学素子1の作製)
 <体積ホログラム記録層作製用感光性組成物1>
 暗室下で下記成分を容器に投入し、30分間室温(25℃)で攪拌し溶液を得た。得られた溶液をメッシュで濾過し、混合物1を得た。
 ヘキサメチレンジイソシアネート           0.1質量部
 ポリプロピレングリコール             10.0質量部
      (分子量4000、ヒドロキシ価25.3mgKOH/g)
 2-{{[3-(メチルスルファニル)フェニル]カルバモイル}
 オキシ}エチルプロパ-2-エノエート        3.0質量部
 テトラブチルアンモニウムトリフェニルブチルボレート
       (有機ホウ素酸塩重合開始剤、昭和電工株式会社製)
                           0.01質量部
 サフラニンO(増感色素、東京化成工業株式会社製)
                           0.1質量部
 N-エチル-2-ピロリドン             0.5質量部
 酢酸エチル                    25.0質量部
 得られた混合物1に対して、ジラウリン酸ジブチルスズ 0.01質量部を添加し体積ホログラム記録層作製用感光性組成物1を得てから、その5分後に、厚さ50μmのポリエチレンテレフタレート(PET)フィルム(隣接層)の片面上に上記の体積ホログラム記録層作製用感光性組成物1を、ブレードコーターを用いて塗布した。その後、20℃、50%RHの環境下で30分間乾燥させ、さらに60℃で2時間の熱処理をおこない、厚さ25μmの感光層を得た。この感光層が塗設されたPETフィルムをカットし、感光層と透明光学部材11-1とを相対させて、図7に示すようにしてラミネート(貼着)した。
 感光層に対して、図1と同様の基本構造を備える露光装置(光源:アルゴンレーザー、露光波長514nm)を用いて、1m先に画角25°の虚像が出るように調整し、感光層面における照射エネルギー量が24mJ/cmとなるようにホログラフィ露光を行った。
 ホログラフィ露光を行った後、高圧水銀ランプ(照度100W/cm)から15cmの位置で60分間静置して紫外線による全面露光を行い、体積ホログラム記録層を得た。
 その後、体積ホログラム記録層が配置された曲面を有する接合面の全体を覆うようにジシクロペンテニルアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、およびγ-グリシドキシプロピルトリメトキシシランを含むアクリレート系接着剤(放射線硬化性接着剤)を、ディスペンサーを用いて、体積ホログラム記録層がある部分は厚さ15μmで、体積ホログラムが無い部分は体積ホログラム記録層および隣接層の厚さを加えた厚さ80μmで、それぞれ塗布した。さらに、塗布した接着剤の上から第2の透明光学部材13-1を貼り合わせ、高圧水銀ランプ(照度100W/cm)から紫外線を照射し(照射量:200mJ/cm)、接着剤を硬化させて光学素子KO-1を得た。
 (実施例2)
 透明光学部材11-1を図5に示すような透明光学部材11-2に、透明光学部材13-1を透明光学部材13-2に、それぞれ変更したこと以外は、実施例1と同様にして、光学素子KO-2を得た。
 (比較例1)
 下記の体積ホログラム記録層作製用感光性組成物2を用いて、下記のようにして感光層を作製したこと以外は、実施例1と同様にして、光学素子KO-21を得た。
 <体積ホログラム記録層作製用感光性組成物2>
 イソシアン酸ヘキシル                0.1質量部
 ポリプロピレングリコール             10.0質量部
  (分子量4000、ヒドロキシ価25.3mgKOH/g)
 2-{{[3-(メチルスルファニル)フェニル]カルバモイル}
 オキシ}エチルプロパ-2-エノエート        3.0質量部
 テトラブチルアンモニウムトリフェニルブチルボレート
       (有機ホウ素酸塩重合開始剤、昭和電工株式会社製)
                           0.01質量部
 サフラニンO(増感色素、東京化成工業株式会社製)
                           0.1質量部
 N-エチル-2-ピロリドン             0.5質量部
 酢酸エチル                    25.0質量部
 得られた体積ホログラム記録層作製用感光性組成物2を、厚さ50μmのポリエチレンテレフタレート(PET)フィルム上に、ブレードコーターを用いて塗布し、20℃、50%RHの環境下で30分間乾燥させ、厚さ20μmの感光層を得た。得られた感光層を、20℃、50%RHの環境下で5日間静置した。静置後、この感光層が塗設されたPETのフィルムをカットし、感光層と透明光学部材11-1とを相対させて、図7に示すようにラミネート(貼着)した。
 (比較例2)
 透明光学部材11-1を図5に示すような透明光学部材11-2に、透明光学部材13-1を透明光学部材13-2に、それぞれ変更したこと以外は、比較例1と同様にして、光学素子KO-22を得た。
 (比較例3)
 実施例1の体積ホログラム記録層を得た後、第2の透明光学部材13-1をラミネートしなかったこと以外は、実施例1と同様にして、光学素子KO-23を得た。
 得られた光学素子KO-1、KO-2、KO-21~23の初期の虚像の鮮鋭性、初期および耐湿試験後の回折効率を、以下の方法で測定した。
 (虚像の鮮鋭性)
 図4に示すような映像表示装置に、凹状の曲面が瞳側に相対するように上記で作製した光学素子を配置し、表示素子20に表示した映像IMの虚像を観察者が観察した。具体的には、図8に示したような映像の9点の位置について観察し、以下の基準に従って10人の観察者が評点を行い、その平均値を算出した。評点の平均値を表1に示す:
 5:全面に渡って、虚像が鮮明に視認できる
 4:1~2点、視認は可能だが若干、虚像の鮮明性が低下している
 3:3~5点、視認は可能だが若干、虚像の鮮明性が低下している
 2:1~2点、虚像が不鮮明で、視認できない部分がある
 1:3点以上、虚像が不鮮明で視認できない部分がある。
 (評価)
 <回折効率>
 得られた光学素子について、分光光度計U-3900(株式会社日立製作所製)を用い、以下の条件で透過率を測定した。
 スキャン範囲     800nm~400nm
 スキャンスピード   600nm/min
 得られた透過率データの波長600nm~460nmの透過率よりベースラインを算出し、波長521nmにおける透過率Tとベースライン透過率Bとの値から、回折効率を以下の式により算出した:
 回折効率=[(B-T)/T]×100(%)。
 <耐湿試験後の回折効率の測定>
 得られた光学素子を30℃、80%RH環境下で500時間暴露した後、シリカゲルが入った低湿条件下(30℃、4.7%RH)で24時間放置し、その後上記と同様にして回折効率を算出した。
 実施例1~2および比較例1~3の評価結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000004
 上記表1から明らかなように、実施例の光学素子は、虚像の鮮鋭性(画像品位)が良好であり、高湿条件下であっても高い回折効率を長期に維持できる耐久性を有することがわかった。
 なお、本出願は、2016年5月12日に出願された日本特許出願第2016-096421号に基づいており、その開示内容は、参照により全体として引用されている。

Claims (3)

  1.  隣り合う2つの透明光学部材の一対の接合面の少なくとも一方が曲面を有しており、前記一対の接合面のうち曲面を有する接合面の少なくとも一部の領域にフォトポリマーを含む体積ホログラム記録層を含む層が配置され、前記曲面を有する接合面全体を覆うように放射線硬化性接着層を備えた光学素子において、前記体積ホログラム記録層がポリウレタンを含む、光学素子。
  2.  前記体積ホログラム記録層に接して、透明性を有する樹脂を含む隣接層をさらに有する、請求項1に記載の光学素子。
  3.  隣り合う2つの透明光学部材の一対の接合面の少なくとも一方が曲面を有しており、前記一対の接合面のうち曲面を有する接合面の少なくとも一部の領域にフォトポリマーを含む体積ホログラム記録層を含む層が配置され、前記曲面を有する接合面全体を覆うように放射線硬化性接着層を備えた光学素子において、前記体積ホログラム記録層がポリウレタンを含む、光学素子の製造方法であって、
     一対の接合面のうち曲面を有する接合面の少なくとも一部の領域に体積ホログラム層を含む層を作製し、前記体積ホログラム記録層を含む層が配置された前記曲面を有する接合面全体を覆うように放射線硬化性接着剤を塗布した後、放射線を用いて前記放射線硬化性接着剤を硬化させて放射線硬化性接着層を形成することを含む、光学素子の製造方法。
PCT/JP2017/017951 2016-05-12 2017-05-11 光学素子およびその製造方法 WO2017195877A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-096421 2016-05-12
JP2016096421A JP2019124710A (ja) 2016-05-12 2016-05-12 光学素子およびその製造方法

Publications (1)

Publication Number Publication Date
WO2017195877A1 true WO2017195877A1 (ja) 2017-11-16

Family

ID=60267986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017951 WO2017195877A1 (ja) 2016-05-12 2017-05-11 光学素子およびその製造方法

Country Status (2)

Country Link
JP (1) JP2019124710A (ja)
WO (1) WO2017195877A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158300A1 (ja) * 2019-01-31 2020-08-06 ソニー株式会社 ホログラム記録用組成物、ホログラム記録媒体、ホログラム光学素子、及びこれを用いた光学装置、光学部品並びにホログラム回折格子の形成方法
WO2023189884A1 (ja) * 2022-03-29 2023-10-05 富士フイルム株式会社 液晶回折素子、光学素子、画像表示ユニット、ヘッドマウントディスプレイ、ビームステアリングおよびセンサー

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7451892B2 (ja) * 2018-07-18 2024-03-19 株式会社ニコン カメラボディ及びカメラシステム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH095526A (ja) * 1995-06-14 1997-01-10 Asahi Glass Co Ltd 重畳型ホログラム
JP2002079797A (ja) * 2000-06-23 2002-03-19 Dainippon Printing Co Ltd ホログラム転写箔
JP2007011319A (ja) * 2005-06-02 2007-01-18 Dainippon Printing Co Ltd 体積ホログラム転写箔および体積ホログラム積層体
JP2008268873A (ja) * 2007-03-28 2008-11-06 Konica Minolta Holdings Inc 接合光学部材、映像表示装置およびヘッドマウントディスプレイ
JP2009151043A (ja) * 2007-12-20 2009-07-09 Konica Minolta Holdings Inc 映像表示装置およびヘッドマウントディスプレイ
JP2010084147A (ja) * 2008-10-01 2010-04-15 Bayer Materialscience Ag ホログラフィック媒体を製造するためのポリエーテル系ポリウレタン組成物
US20120214895A1 (en) * 2009-11-03 2012-08-23 Bayer Intellectual Property Gmbh Urethane acrylate having a high refractive index and reduced double bond density
JP2012173540A (ja) * 2011-02-22 2012-09-10 Fuji Xerox Co Ltd 光記録媒体、光記録媒体の製造方法、露光装置及び画像形成装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH095526A (ja) * 1995-06-14 1997-01-10 Asahi Glass Co Ltd 重畳型ホログラム
JP2002079797A (ja) * 2000-06-23 2002-03-19 Dainippon Printing Co Ltd ホログラム転写箔
JP2007011319A (ja) * 2005-06-02 2007-01-18 Dainippon Printing Co Ltd 体積ホログラム転写箔および体積ホログラム積層体
JP2008268873A (ja) * 2007-03-28 2008-11-06 Konica Minolta Holdings Inc 接合光学部材、映像表示装置およびヘッドマウントディスプレイ
JP2009151043A (ja) * 2007-12-20 2009-07-09 Konica Minolta Holdings Inc 映像表示装置およびヘッドマウントディスプレイ
JP2010084147A (ja) * 2008-10-01 2010-04-15 Bayer Materialscience Ag ホログラフィック媒体を製造するためのポリエーテル系ポリウレタン組成物
US20120214895A1 (en) * 2009-11-03 2012-08-23 Bayer Intellectual Property Gmbh Urethane acrylate having a high refractive index and reduced double bond density
JP2012173540A (ja) * 2011-02-22 2012-09-10 Fuji Xerox Co Ltd 光記録媒体、光記録媒体の製造方法、露光装置及び画像形成装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158300A1 (ja) * 2019-01-31 2020-08-06 ソニー株式会社 ホログラム記録用組成物、ホログラム記録媒体、ホログラム光学素子、及びこれを用いた光学装置、光学部品並びにホログラム回折格子の形成方法
CN113795533A (zh) * 2019-01-31 2021-12-14 索尼集团公司 全息记录组合物、全息记录介质、光学元件、装置和部件、以及形成全息衍射光栅的方法
WO2023189884A1 (ja) * 2022-03-29 2023-10-05 富士フイルム株式会社 液晶回折素子、光学素子、画像表示ユニット、ヘッドマウントディスプレイ、ビームステアリングおよびセンサー

Also Published As

Publication number Publication date
JP2019124710A (ja) 2019-07-25

Similar Documents

Publication Publication Date Title
JP2849021B2 (ja) 体積ホログラム記録用感光性組成物
JP2873126B2 (ja) 体積ホログラム記録用感光性組成物
JP6652136B2 (ja) ホログラフィック光学素子およびその製造方法
JP6610667B2 (ja) ホログラフィック光学素子およびその製造方法
JP2017203908A (ja) ホログラフィック光学素子およびその製造方法
WO2017195877A1 (ja) 光学素子およびその製造方法
JP4365494B2 (ja) 体積ホログラム記録用感光組成物およびこれから得られるホログラム
WO2017195541A1 (ja) 体積ホログラム記録層形成用組成物およびホログラフィック光学素子
JPH08101499A (ja) 体積ホログラム記録用感光性組成物、及びそれを用いた記録媒体ならびに体積ホログラム形成方法
JP3532675B2 (ja) 体積ホログラム記録用感光性組成物、及びそれを用いた記録媒体ならびに体積ホログラム形成方法
JPH08101501A (ja) 体積ホログラム記録用感光性組成物、及びそれを用いた記録媒体ならびに体積ホログラム形成方法
JP3532621B2 (ja) 体積ホログラム記録用感光性組成物、及びそれを用いた記録媒体ならびに体積ホログラム形成方法
WO2017104402A1 (ja) ホログラム記録材料、体積ホログラム媒体及び体積ホログラム媒体の製造方法
JPH08101502A (ja) 体積ホログラム記録用感光性組成物、及びそれを用いた記録媒体ならびに体積ホログラム形成方法
JPH08101503A (ja) 体積ホログラム記録用感光性組成物、及びそれを用いた記録媒体ならびに体積ホログラム形成方法
WO2017110537A1 (ja) 体積ホログラム製造用感光性組成物、体積ホログラムの製造方法、体積ホログラム、ホログラフィック光学素子
JP2007034334A (ja) 体積ホログラム記録用感光性組成物、及びそれを用いた記録媒体ならびに体積ホログラム形成方法
WO2017014106A1 (ja) ホログラフィック光学素子およびその製造方法
JP2017223913A (ja) ホログラフィック光学素子
JP7331556B2 (ja) 体積ホログラム、頭部装着型センサ装置
JP2018116209A (ja) 体積ホログラム積層体
JP7310316B2 (ja) 体積ホログラム、網膜走査型表示装置、頭部装着型表示装置
JP3482256B2 (ja) 体積ホログラム記録用感光性組成物、及びそれを用いた記録媒体ならびに体積ホログラム形成方法
JP2000112322A (ja) 透明ホログラム記録材料
JP4512446B2 (ja) ホログラム記録方法およびホログラム記録材料

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17796235

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17796235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP