WO2017195814A1 - 光導波路素子 - Google Patents

光導波路素子 Download PDF

Info

Publication number
WO2017195814A1
WO2017195814A1 PCT/JP2017/017655 JP2017017655W WO2017195814A1 WO 2017195814 A1 WO2017195814 A1 WO 2017195814A1 JP 2017017655 W JP2017017655 W JP 2017017655W WO 2017195814 A1 WO2017195814 A1 WO 2017195814A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
thin film
optical
slit
light
Prior art date
Application number
PCT/JP2017/017655
Other languages
English (en)
French (fr)
Inventor
長谷川 淳一
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Publication of WO2017195814A1 publication Critical patent/WO2017195814A1/ja
Priority to US16/184,333 priority Critical patent/US10564355B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/126Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind using polarisation effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02052Optical fibres with cladding with or without a coating comprising optical elements other than gratings, e.g. filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12102Lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12109Filter
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths

Definitions

  • the present invention relates to an optical waveguide device.
  • Some optical devices used for optical communication and the like use an optical waveguide element using a planar lightwave circuit (PLC) made of quartz glass.
  • PLC planar lightwave circuit
  • ZrO 2 zirconia
  • a dopant for increasing the refractive index in an optical waveguide constituting a PLC is disclosed (see Patent Document 1).
  • ZrO 2 is a material having a higher refractive index and a smaller thermal expansion coefficient than germania (GeO 2 ).
  • the relative refractive index difference ⁇ hereinafter simply referred to as a relative refractive index difference ⁇
  • relative refractive index difference
  • ZrO 2 is expected as a material that can reduce the stress remaining in the optical waveguide while reducing the size of the PLC, the optical waveguide element using the PLC, and the optical device.
  • an optical waveguide element having a high relative refractive index difference ⁇ there are an optical waveguide element having a silicon fine wire optical waveguide and an optical waveguide made of an InP-based semiconductor material (for example, GaInAsP) in addition to the PLC.
  • an InP-based semiconductor material for example, GaInAsP
  • a slit is formed in a clad part so as to divide a certain optical waveguide into two, and an optical filter may be inserted into this slit.
  • TE polarized light propagating through an optical waveguide (linearly polarized light having a polarization direction parallel to the main surface of the substrate on which the cladding portion is formed) is converted to TM polarized light (TE polarized light).
  • TM polarized light TE polarized light
  • the half-wave plate is placed in the slit so that its optical axis (high-speed axis or low-speed axis) forms an angle of 45 ° with the main surface of the substrate.
  • the optical waveguide device having such a configuration, when TE polarized light is propagated from one of the divided optical waveguides, the polarization direction is rotated by 90 ° by the half-wave plate, and TM polarized light is transmitted. Is input to the other of the divided optical waveguides.
  • TM-polarized light when TM-polarized light is propagated from one optical waveguide, it becomes TE-polarized light by a half-wave plate and is output to the other optical waveguide.
  • TM polarized light is propagated from the other optical waveguide, it is inputted to one optical waveguide as TE polarized light by a half-wave plate.
  • JP 2013-210623 A JP-A-2005-116671 JP 2004-347759 A Special table 2007-532958 JP 2003-315552 A
  • slit loss light loss in the slit
  • the slit loss increases as the relative refractive index difference ⁇ with respect to the cladding of the optical waveguide increases.
  • the slit loss increases as the slit width (width in the light propagation direction) increases.
  • the optical waveguide provided with the same waveguide structure, the same slit width (20 ⁇ m), and the same taper portion.
  • the slit loss is about 0.5 dB when the relative refractive index difference ⁇ is 1.5%, about 1 dB when it is 2.5%, and about 3 dB when it is 5.5%. It was confirmed that the slit loss rapidly increases as the relative refractive index difference ⁇ increases.
  • the present invention has been made in view of the above, and an object of the present invention is to provide an optical waveguide element with reduced slit loss.
  • an optical waveguide device includes a clad portion formed on a substrate, and a refractive index higher than that of the clad portion.
  • Optical waveguide inserted into the slit together with the optical filter, an optical filter inserted into a slit formed in the cladding portion so as to divide the optical waveguide into a first optical waveguide and a second optical waveguide
  • At least one thin film element provided with a thin film lens, and the thin film lens provided in one of the thin film elements transmits the light propagated through the first optical waveguide and output into the slit, The light is condensed on the second optical waveguide.
  • the optical waveguide device is characterized in that the optical filter is a half-wave plate.
  • An optical waveguide element includes two thin film elements, and a thin film lens provided in the other one of the thin film elements propagates through the first optical waveguide and is output into the slit.
  • the diffused light is diffused toward the optical filter.
  • the thin film lens provided in each of the two thin film elements has a polarization characteristic that mainly transmits only linear polarization, and the two thin films.
  • the elements are arranged so that the polarization directions of the linearly polarized waves transmitted by the respective thin film lenses are orthogonal to each other, and the optical axis of the half-wave plate is the linearly polarized wave transmitted by each of the two thin film elements. It arrange
  • the optical waveguide device is characterized in that the thin film lens provided in the at least one thin film device is formed of a photonic crystal.
  • the optical waveguide device is characterized in that the at least one thin film device and the optical filter are integrally formed of a photonic crystal.
  • the optical waveguide device is characterized in that a relative refractive index difference of the optical waveguide with respect to the cladding is 2.5% or more.
  • the optical waveguide device is characterized in that the clad part and the optical waveguide are made of silica glass, and the optical waveguide contains zirconia (ZrO 2 ).
  • An optical waveguide device includes a plurality of optical waveguides including the optical waveguide, and the plurality of optical waveguides constitute a coherent mixer.
  • An optical waveguide device includes a plurality of optical waveguides including the optical waveguide, and the plurality of optical waveguides constitute a polarization beam splitter / synthesizer.
  • FIG. 1A is a schematic diagram for explaining an optical waveguide device according to the first embodiment.
  • FIG. 1B is a schematic diagram illustrating the optical waveguide device according to the first embodiment.
  • FIG. 1C is a schematic diagram for explaining the optical waveguide device according to the first embodiment.
  • FIG. 2 is a schematic exploded perspective view of the optical filter unit of the optical waveguide device according to the second embodiment.
  • FIG. 3A is a schematic diagram for explaining an optical waveguide device and an optical filter unit, and an optical axis adjustment method according to the third embodiment.
  • FIG. 3B is a schematic diagram for explaining an optical waveguide element and an optical filter unit, and an optical axis adjustment method according to the third embodiment.
  • FIG. 1A is a schematic diagram for explaining an optical waveguide device according to the first embodiment.
  • FIG. 1B is a schematic diagram illustrating the optical waveguide device according to the first embodiment.
  • FIG. 1C is a schematic diagram for explaining the optical waveguide device according to the first embodiment.
  • FIG. 2 is
  • FIG. 3C is a schematic diagram for explaining the optical waveguide device and the optical filter unit, and the method of adjusting the optical axis according to the third embodiment.
  • FIG. 3D is a schematic diagram illustrating the optical waveguide device and the optical filter unit, and the optical axis adjustment method according to the third embodiment.
  • FIG. 4A is a schematic diagram for explaining an optical waveguide device according to the fourth embodiment.
  • FIG. 4B is a schematic diagram for explaining the optical waveguide device according to the fifth embodiment.
  • FIG. 5 is a schematic diagram for explaining an optical waveguide device according to the sixth embodiment.
  • FIG. 6 is a schematic diagram for explaining an optical waveguide device according to the seventh embodiment.
  • FIG. 7 is a schematic diagram for explaining an optical waveguide device according to the eighth embodiment.
  • FIG. 8 is a schematic diagram for explaining the optical waveguide device according to the ninth embodiment.
  • FIG. 9 is a schematic view for explaining an optical waveguide device according to the tenth embodiment.
  • FIG. 10 is an enlarged schematic diagram showing
  • FIG. 1A to 1C are schematic views for explaining an optical waveguide device according to the first embodiment.
  • an optical waveguide element 10 is formed on a main surface of a substrate 1 made of silicon, quartz glass, or the like, and is formed in a cladding portion 2 made of quartz glass, and is formed in the cladding portion 2.
  • an optical waveguide 3 having a refractive index higher than that of the portion 2.
  • a slit 2a is formed in the cladding portion 2 so as to divide the optical waveguide 3 into a first optical waveguide 3a and a second optical waveguide 3b.
  • the optical waveguide element 10 further includes an optical filter unit 4 inserted into the slit 2a.
  • the slit 2a extends in the X direction, and the optical waveguide 3 extends in the Z direction.
  • FIG. 1A only a part of the optical waveguide element 10 is shown, and the optical waveguide element 10 actually has a shape that further expands in the XZ plane.
  • the length of the substrate 1 and the clad portion 2 in the X direction is longer than the length of the slit 2a in the X direction. Therefore, in the first embodiment, the clad portion 2 is not divided into two by the slit 2a.
  • the optical waveguide 3 is made of quartz glass containing fine particles of ZrO 2 which is a dopant for increasing the refractive index. As a result, the optical waveguide 3 has a higher refractive index than that of the cladding portion 2, and thus functions as an optical waveguide for confining and guiding light.
  • the optical waveguide 3 has a relative refractive index difference ⁇ of 5% to 10% with respect to the cladding part 2 at a wavelength of 1.55 ⁇ m, and the cross-sectional size is 1.5 ⁇ m to 3.5 ⁇ m on one side.
  • the cross section of the optical waveguide 3 is basically square, but may be rectangular or trapezoidal.
  • the relative refractive index difference ⁇ at a wavelength of 1.55 ⁇ m can be set to, for example, 1.5% to 30% by adjusting the content thereof.
  • the optical filter unit 4 includes an optical filter 4a that is a half-wave plate and two thin film elements 4b and 4c.
  • the optical filter 4a is disposed between the thin film elements 4b and 4c and is made of, for example, polyimide.
  • the optical filter 4a has a thickness corresponding to the wavelength of the input light, and has a thickness of about 15 ⁇ m, for example.
  • the optical filter 4a and the two thin film elements 4b and 4c are bonded to each other by translucent adhesives 4d and 4e.
  • the thin film elements 4b and 4c constitute the optical filter unit 4 together with the optical filter 4a, and are inserted into the slit 2a.
  • the optical filter unit 4 is bonded and fixed in the slit 2a with an adhesive Ad.
  • Each of the thin film elements 4b and 4c is composed of a photonic crystal, and as shown in FIG. 1C, thin film lenses 4ba and 4ca each composed of a photonic crystal are provided.
  • the photonic crystal is a material in which media having different refractive indexes are periodically arranged in a predetermined pattern.
  • the thin film lenses 4ba and 4ca are the photonic crystal patterns and periods in the thin film elements 4b and 4c. This is a part configured to have a lens function by adjusting (see Patent Documents 2, 3, and 4).
  • each of the thin film lenses 4ba and 4ca has a polarization characteristic that mainly transmits only linearly polarized light. Therefore, markers 4bb and 4cb are formed on each of the thin film elements 4b and 4c so that the transmission polarization direction can be specified.
  • the markers 4bb and 4cb are portions in which the pattern is configured so that the refractive index is different from the surroundings, and the presence can be confirmed by visual observation.
  • the thin film elements 4b and 4c are arranged so that the transmission polarization directions of the respective thin film lenses 4ba and 4ca are orthogonal to each other, and the optical filter 4a which is a half-wave plate is used.
  • the optical axes are bonded and fixed to each other in a state where the optical axes are arranged to form 45 ° with the transmission polarization direction of the thin film lenses 4ba and 4ca.
  • the thin film element 4b is located on the first optical waveguide 3a side
  • the thin film element 4c is located on the second optical waveguide 3b side
  • the thin film lens 4ba transmits TE polarized light
  • the thin film lens 4ca transmits TM polarized light, and is bonded and fixed in the slit 2a in such an arrangement that the optical axis of the thin film lens 4ba and the optical axis of the thin film lens 4ca coincide.
  • Such thin film elements 4b and 4c can be formed with a thickness of about 15 ⁇ m, for example.
  • the thickness of the optical filter 4a and the thin film elements 4b and 4c is 15 ⁇ m
  • the thickness of the adhesives 4d and 4e is 1.5 ⁇ m
  • the thickness of the adhesive Ad is 1 ⁇ m
  • the width W of the slit 2a in the Z direction. Is 50 ⁇ m.
  • the optical waveguide element 10 has a function of converting the TE-polarized light LE1 input to the first optical waveguide 3a into the TM-polarized light LM1 and outputting it from the second optical waveguide 3b.
  • the first optical waveguide 3a propagates the light LE1 with TE-polarized light, as shown in FIG. 1C.
  • the thin film lens 4ba transmits the input TE-polarized light LE1 and diffuses it toward the optical filter 4a.
  • the beam diameter of the light LE1 expands in the X and Y directions in the XY plane direction, and is output to the optical filter 4a as the light LE2.
  • the optical filter 4a rotates the polarization direction of the light LE2 by 90 ° and outputs the light as TM-polarized light LM2 to the thin film lens 4ca.
  • the thin film lens 4ca transmits and condenses the input TM polarized light LM2, reduces the beam diameter in the X and Y directions in the XY plane direction, and outputs the light as the light LM1 to the second optical waveguide 3b.
  • the second optical waveguide 3b propagates the input light LM1 with TM polarization and outputs it as shown in FIG. 1A.
  • the thin film lens 4ba that diffuses the light LE1 propagated through the first optical waveguide 3a into the slit 2a and expands the beam diameter thereof, and the beam diameter of the light LM2 that has passed through the optical filter 4a.
  • a thin film lens 4ca that focuses the light on the second optical waveguide 3b.
  • a lower cladding layer which is a portion of the cladding portion 2 on the substrate 1 side is formed on the substrate 1 by using, for example, a plasma CVD (Chemical Vapor Deposition) method, and a SiO 2 target which is a one-dimensional target.
  • An optical waveguide forming layer for forming the optical waveguide 3 is formed on the lower clad layer by sputtering using a ZrO 2 target.
  • the lower clad layer and the optical waveguide forming layer are annealed by heat treatment to form a transparent glass.
  • the optical waveguide forming layer is patterned into a pattern of the optical waveguide 3 by a photolithography technique and etching to form the optical waveguide 3.
  • Etching is performed, for example, by dry etching using a fluorine-based gas (for example, CF 4 ) used in a processing process of quartz-based glass.
  • CF 4 a fluorine-based gas
  • an over clad part is formed so as to cover the lower clad layer and the optical waveguide 3, and a clad part 2 composed of the lower clad layer and the over clad part is formed.
  • the over clad part is made of transparent glass by depositing fine particles of quartz glass so as to cover the lower clad layer and the optical waveguide 3 by, for example, a known flame deposition (FHD) method, and heating and melting the fine particles. Can be formed.
  • FHD flame deposition
  • a slit 2a is formed in the clad portion 2 by photolithography and etching.
  • the depth of the slit 2a is not particularly limited.
  • the slit 2a is performed up to the depth of the bottom surface of the clad part 2 (interface between the clad part 2 and the substrate 1).
  • the optical filter unit 4 produced by bonding the optical filter 4a and the thin film elements 4b and 4c with the adhesives 4d and 4e is inserted into the slit 2a, and the thin film lenses 4ba and 4ca, the first optical waveguide 3a, and the second light guide are inserted. Adjustment is performed so that the optical axis of the waveguide 3b is aligned.
  • the adjustment of the optical axis is preferably performed by active alignment.
  • the optical filter unit 4 is positioned in the XY plane while measuring the power of light that is input to the first optical waveguide 3a, passes through the optical filter unit 4, and is output from the second optical waveguide 3b.
  • the optical filter unit 4 is adhesively fixed in the slit 2a with the adhesive Ad when the adjusted and measured power of light is maximized. Thereby, the optical waveguide device 10 is completed.
  • the characteristics of the optical waveguide device having the configuration of the first embodiment were calculated by simulation.
  • the relative refractive index difference ⁇ of the optical waveguide at a wavelength of 1.55 ⁇ m was 5.5%, and the cross-sectional size of the optical waveguide was 3.0 ⁇ m ⁇ 3.0 ⁇ m.
  • the mode field diameter (MFD) of light having a wavelength of 1.55 ⁇ m propagating through the optical waveguide is about 3 ⁇ m.
  • the mode field diameter is a diameter at a point where the intensity is 5% of the maximum intensity in the NFP (Near-Field Pattern) of the light propagating through the core (optical waveguide).
  • the mode field is an ellipse
  • the average value of the major axis and the minor axis is used as the mode field diameter.
  • the slit width was 50 ⁇ m.
  • the optical filter that is a half-wave plate made of polyimide and the two thin film elements provided with the thin film lens are both 15 ⁇ m thick, and the thickness of the adhesive that bonds them to each other is 1.5 ⁇ m.
  • the thickness of the adhesive that bonds the optical filter unit in the slit was 1 ⁇ m.
  • the thin film lens provided in the thin film element disposed on the first optical waveguide side has a lens function of expanding light having a wavelength of 1.55 ⁇ m and a beam diameter of 3.5 ⁇ m to light having a beam diameter of 10 ⁇ m.
  • the thin film lens provided in the thin film element disposed on the second optical waveguide side has a lens function for reducing light having a wavelength of 1.55 ⁇ m and a beam diameter of 10 ⁇ m to light having a beam diameter of 3.5 ⁇ m.
  • the beam diameter of light is a diameter of a point that becomes 1 / e 2 of the maximum intensity when the beam profile is approximated by Gaussian.
  • the slit loss of this optical waveguide element was calculated by simulation and found to be 0.5 dB. This value is a practically preferable value that is greatly reduced with respect to the slit loss (for example, 3 dB) when the thin film element provided with the thin film lens is not used.
  • FIG. 2 is a schematic exploded perspective view of the optical filter unit of the optical waveguide device according to the second embodiment.
  • the optical filter unit 4A includes an optical filter 4a and thin film elements 4Ab and 4Ac.
  • the optical filter 4a and the two thin film elements 4Ab and 4Ac are bonded to each other with a translucent adhesive to constitute the optical filter unit 4A.
  • Each of the thin film elements 4Ab and 4Ac is made of a photonic crystal, and thin film lenses 4ba and 4ca each made of a photonic crystal are provided. Further, two markers 4Abb for aligning the optical axis are formed on the thin film element 4Ab. The two markers 4Abb are located on both sides in the X direction of the thin film lens 4ba, and have a predetermined positional relationship with the optical axis of the thin film lens 4ba. Similarly, two markers 4Acb for optical axis alignment are formed on the thin film element 4Ac. The two markers 4Acb are respectively located on both sides of the thin film lens 4ca in the X direction, and have a predetermined positional relationship with the optical axis of the thin film lens 4ca.
  • the positional relationship between the two markers 4Abb and the optical axis of the thin film lens 4ba is the same as the positional relationship between the two markers 4Acb and the optical axis of the thin film lens 4ca.
  • the markers 4Abb and 4Acb are portions where the pattern is configured such that the refractive index is different from the surroundings, and the presence can be confirmed visually.
  • the two markers 4Abb of the thin film element 4Ab and the two markers 4Acb of the thin film element 4Ac are aligned in the XY plane, so that the thin film lens 4ba
  • the optical axis and the optical axis of the thin film lens 4ca can be easily aligned. Thereby, it is possible to easily assemble the optical filter unit 4A in which the excess loss due to the optical axis shift is reduced.
  • FIG. 3A to FIG. 3D are schematic views for explaining the optical waveguide element and the optical filter unit and the optical axis adjustment method according to the third embodiment.
  • the optical waveguide element 10B has a configuration in which the optical filter unit 4 is replaced with the optical filter unit 4B in the optical waveguide element 10 according to the first embodiment.
  • the optical waveguide element 10 ⁇ / b> B has a function of converting the input TE-polarized light into TM-polarized light and outputting it.
  • the optical filter unit 4B will be described in detail.
  • the optical filter unit 4B includes an optical filter 4a and thin film elements 4Bb and 4Bc.
  • the optical filter 4a and the two thin film elements 4Bb and 4Bc are bonded to each other with a translucent adhesive to constitute an optical filter unit 4B.
  • the thin film elements 4Bb and 4Bc are all made of photonic crystals. Further, the thin film elements 4Bb and 4Bc are provided with a plurality of thin film lenses which are made of photonic crystals and have different heights from the bottom surfaces. Specifically, as shown in FIG. 3B, for example, the thin film element 4Bc is provided with nine thin film lenses 4Bca having different heights from the bottom surface 4Bcc in the Y direction. The nine thin film lenses 4Bca are arranged along the X direction, the height H1 of the thin film lens 4Bca1 located on the most negative direction side is the lowest, and the height increases as it is located in the positive direction. The height H2 of the thin film lens 4Bca2 located on the most positive direction side is the highest.
  • the thin film element 4Bb is also provided with nine thin film lenses arranged so that the optical axes thereof coincide with the nine thin film lenses 4Bca of the thin film element 4Bc.
  • the thin film lens provided in the thin film element 4Bb has a characteristic of transmitting mainly TE polarized light and a beam expanding function, like the thin film lens 4ba.
  • the thin film lens provided in the thin film element 4Bc has a characteristic of mainly transmitting only TM-polarized light and a beam contracting function, like the thin film lens 4ca.
  • the optical filter unit 4B may include the thin film element 4Bc1 shown in FIG. 3C instead of the thin film element 4Bc.
  • the thin film element 4Bc1 is provided with nine thin film lenses 4Bca having different heights from the bottom surface 4Bcc in the Y direction.
  • the thin film element 4Bc1 includes nine markers 4Bcb provided at positions corresponding to the positions in the X direction of the nine thin film lenses 4Bca on the upper surface 4Bcd side facing the bottom surface 4Bcc. These markers 4Bcb indicate the positions of the thin film lenses 4Bca in the X direction.
  • the thin film element 4Bb may be replaced with a thin film element having the same marker as the thin film element 4Bc1.
  • the optical filter unit 4 when the optical axes of the thin film lenses 4ba and 4ca and the first optical waveguide 3a and the second optical waveguide 3b are aligned, the optical filter unit 4 is moved in the XY plane. It is necessary to adjust the position. Therefore, it may take time to align the optical axis. At this time, when the position of the optical filter unit 4 is adjusted with a jig or the like, the thin optical filter unit 4 may be damaged.
  • the thin film elements 4Bb and 4Bc of the optical filter unit 4B are provided with nine thin film lenses having different heights from the bottom surface. Therefore, when aligning the optical axes of the thin film lenses of the thin film elements 4Bb and 4Bc with the first optical waveguide 3a and the second optical waveguide 3b, the optical filter unit 4B inserted into the slit 2a is applied to the bottom surface of the slit 2a. By simply contacting and sliding in the X direction as indicated by an arrow Ar in FIG. 3D, any one of nine thin film lenses having different heights is connected to the first optical waveguide 3a, the second optical waveguide 3b, and the light. The axes will match.
  • the optical filter unit 4B is bonded and fixed in the slit 2a with an adhesive when the measured light power reaches a maximum.
  • FIG. 3B as an example, when the thin film lens 4Bca3 located at the sixth position from the thin film lens 4Bca1 and the first optical waveguide 3a and the second optical waveguide 3b are in the same position in the Y direction, the optical axes are aligned. Is shown.
  • the distance in the Y direction between the bottom surface of the slit 2a and the first optical waveguide 3a and the second optical waveguide 3b can be determined from the design value due to manufacturing errors or the like. Even in the case of misalignment, the optical axis alignment between the respective thin film lenses of the thin film elements 4Bb and 4Bc and the first optical waveguide 3a and the second optical waveguide 3b can be quickly performed. Further, it is not necessary to hold the optical filter unit 4B when aligning the optical axes, and it is only necessary to slightly press and slide the upper surface of the optical filter unit 4B, so that the possibility of damage to the optical filter unit 4B is extremely low. .
  • the bottom surface of the optical filter unit 4B including the thin film elements 4Bb and 4Bc constituted by the photonic crystal and the bottom surface of the slit 2a are in contact with each other, stable adhesion and fixation can be achieved, and the long-term reliability of the optical waveguide element 10B. Can be secured. Furthermore, by using a thin film element provided with a marker like the thin film element 4Bc1 shown in FIG. 3C, the optical axis alignment can be performed more quickly in a shorter time.
  • FIG. 4A and 4B are schematic views for explaining the optical waveguide device according to the fourth and fifth embodiments.
  • the optical waveguide device 10C according to the fourth embodiment and the optical waveguide device 10D according to the fifth embodiment are the same as those in the optical waveguide device 10 according to the first embodiment.
  • the optical filter units 4C and 4D are replaced.
  • the optical waveguide elements 10 ⁇ / b> C and 10 ⁇ / b> D have a function of converting the input TE-polarized light into TM-polarized light and outputting it.
  • the optical filter units 4C and 4D will be described in detail.
  • the optical filter unit 4C includes an optical filter 4a and a thin film element 4Cc.
  • the optical filter 4a and the thin film element 4Cc are bonded to each other with a light-transmitting adhesive 4Ce to constitute an optical filter unit 4C.
  • the thin film element 4Cc is configured by a photonic crystal. Further, the thin film element 4Cc is provided with a thin film lens made of a photonic crystal. This thin film lens has a characteristic of mainly transmitting only TM-polarized light and a beam reducing function with respect to light input from the first optical waveguide 3a side.
  • the optical filter unit 4C is disposed so that the optical axes of the thin film lens and the first optical waveguide 3a and the second optical waveguide 3b coincide.
  • the first optical waveguide 3a when TE-polarized light is input to the first optical waveguide 3a, the first optical waveguide 3a propagates the light with TE-polarized light and outputs it to the optical filter 4a in the slit 2a.
  • the output light has a beam diameter enlarged according to the NA of the first optical waveguide 3a and is input to the optical filter 4a.
  • the optical filter 4a rotates the polarization direction of the input light by 90 ° and outputs it as TM polarized light to the thin film lens of the thin film element 4Cc.
  • the thin film lens transmits and condenses the input TM polarized light, reduces the beam diameter in the X and Y directions in the XY plane direction, and outputs it to the second optical waveguide 3b.
  • the second optical waveguide 3b propagates the input light with TM polarization and outputs it.
  • the optical filter unit 4D includes an optical filter 4a and a thin film element 4Dc.
  • the optical filter 4a and the thin film element 4Dc are bonded to each other with a light-transmitting adhesive 4De to constitute an optical filter unit 4D.
  • the thin film element 4Dc is composed of a photonic crystal.
  • the thin film element 4Dc is provided with a thin film lens made of a photonic crystal. This thin film lens has a characteristic of mainly transmitting only TE-polarized light and a beam reduction function with respect to light input from the first optical waveguide 3a side.
  • the optical filter unit 4D is disposed so that the optical axes of the thin film lens and the first optical waveguide 3a and the second optical waveguide 3b coincide.
  • the first optical waveguide 3a when TE-polarized light is input to the first optical waveguide 3a, the first optical waveguide 3a propagates the light with TE-polarized light and outputs it to the thin film lens of the thin film element 4Dc in the slit 2a. .
  • the thin film lens transmits and collects the input TE-polarized light, reduces the beam diameter in the X and Y directions in the XY plane direction, and outputs it to the optical filter 4a.
  • the optical filter 4a rotates the polarization direction of the input light by 90 ° and outputs it as TM polarized light.
  • the output light is output to the second optical waveguide 3b.
  • the second optical waveguide 3b propagates the input light with TM polarization and outputs it.
  • the optical waveguide elements 10C and 10D have a configuration including optical filter units 4C and 4D that are thinner than one optical filter unit 4 of the optical waveguide element 10 by one thin film element and one adhesive layer. As a result, it is possible to reduce excess loss due to optical axis misalignment when the thin film elements are bonded, and to further reduce the slit loss, compared to the case where two thin film elements are provided. In addition, since the function can be realized by one thin film element, the cost is reduced.
  • FIG. 5 is a schematic diagram for explaining an optical waveguide device according to the sixth embodiment.
  • the optical waveguide device 10E according to the sixth embodiment has a configuration in which the optical filter unit 4 is replaced with the optical filter unit 4E in the optical waveguide device 10 according to the first embodiment.
  • the optical waveguide element 10E has a function of converting the input TE-polarized light into TM-polarized light and outputting it.
  • the optical filter unit 4E will be described in detail.
  • the optical filter unit 4E is an optical filter 4Ea, which is a half-wave plate, and thin film elements 4Eb, 4Ec provided with a thin film lens, which are integrally formed of a photonic crystal. It is known that a photonic crystal can be configured to function as a half-wave plate (see Patent Document 5).
  • the thin film lens provided in the thin film element 4Eb has a characteristic of mainly transmitting only TE polarized light and a beam expanding function, like the thin film lens 4ba.
  • the thin film lens provided in the thin film element 4Ec has a characteristic of mainly transmitting only TM-polarized light and a beam contracting function, like the thin film lens 4ca.
  • the optical filter unit 4E is integrally formed of a photonic crystal, the optical axes of the thin film lenses provided in the thin film elements 4Eb and 4Ec can be aligned more accurately. Thereby, excess loss due to the optical axis shift can be reduced.
  • FIG. 6 is a schematic diagram for explaining an optical waveguide device according to the seventh embodiment.
  • the optical filter unit 4 is replaced with the optical filter unit 4F in the optical waveguide device 10 according to the first embodiment, and the first optical waveguide 3a and the second optical waveguide are replaced.
  • the waveguide 3b is replaced with a first optical waveguide 3Fa and a second optical waveguide 3Fb, respectively.
  • the optical waveguide element 10F has a function of converting the input TE-polarized light into TM-polarized light and outputting it.
  • the first optical waveguide 3Fa, the second optical waveguide 3Fb, and the optical filter unit 4F will be described in detail.
  • the first optical waveguide 3Fa and the second optical waveguide 3Fb have tapered portions 3Faa and 3Fba, respectively, in which the waveguide width in the X direction increases as approaching the slit 2a.
  • the optical filter unit 4F includes an optical filter 4a and thin film elements 4Fb and 4Fc.
  • the optical filter 4a and the two thin film elements 4Fb and 4Fc are bonded to each other by translucent adhesives 4d and 4e to constitute an optical filter unit 4F.
  • the thin film elements 4Fb and 4Fc are all made of photonic crystals. Further, the thin film elements 4Fb and 4Fc are provided with a thin film lens made of a photonic crystal.
  • the thin film lens provided in the thin film element 4Fb with respect to the light input from the first optical waveguide 3Fa side has a characteristic of mainly transmitting only the TE polarized light as in the thin film lens 4ba. Unlike the thin film lens 4ba, it has a function of expanding the beam diameter only in the Y direction.
  • the thin film lens provided in the thin film element 4Fc has a characteristic of mainly transmitting only TM polarized light as in the thin film lens 4ca with respect to the light input from the first optical waveguide 3Fa side. Unlike the thin film lens 4ca, it has a function of reducing the beam diameter only in the Y direction.
  • the beam diameter of the light propagating in the slit 2a is adjusted by the taper portions 3Faa and 3Fba in the X direction and by the thin film lenses provided in the thin film devices 4Fb and 4Fc in the Y direction.
  • the thin film lens and the tapered portion of the waveguide may be combined to adjust the beam diameter of the light propagating in the slit 2a to reduce the slit loss.
  • FIG. 7 is a schematic diagram for explaining an optical waveguide device according to the eighth embodiment.
  • the optical waveguide device 100 includes a clad portion 101 made of quartz glass and a plurality of optical waveguides located in the clad portion 101.
  • the plurality of optical waveguides include an input optical waveguide 103 having one end serving as an input optical port 102, and a 1 ⁇ 2 MMI (multi-channel) in which the other end of the input optical waveguide 103 is connected to one port side.
  • the optical coupler 104, the output optical waveguides 107 and 108 whose one ends are the output optical ports 105 and 106, respectively, and the other end of the output optical waveguides 107 and 108 are on the two-port side 2 ⁇ 2 MMI optical couplers 109 connected to each other, arm waveguides 110 respectively connecting the 2 port side of the MMI optical coupler 104 and the other 2 port side of the 2 ⁇ 2 MMI optical coupler 109, 111.
  • the plurality of optical waveguides are made of quartz glass in which fine particles of ZrO 2 are dispersed.
  • the MMI optical couplers 104 and 109 and the arm waveguides 110 and 111 constitute a Mach-Zehnder Interferometer (MZI) type interferometer.
  • MZI Mach-Zehnder Interferometer
  • a slit 101a is formed in the clad portion 101 so as to divide the output optical waveguide 107 into two.
  • the optical waveguide device 100 further includes an optical filter unit 4 inserted into the slit 101a.
  • the arm waveguide 110 has a wider waveguide width than the arm waveguide 111, and has a rectangular cross section.
  • the birefringence of the arm waveguides 110 and 111 is TM polarized light included in the light L1 in an arbitrary polarization state input from the input optical port 102 at a predetermined wavelength (for example, 1.55 ⁇ m).
  • a predetermined wavelength for example, 1.55 ⁇ m.
  • approximately 100% of light is output as the light LM3 from the MMI optical coupler 109 to the output optical waveguide 108
  • approximately 100% of the TE polarized light is output as light LE3 from the MMI optical coupler 109 to the output optical waveguide 107.
  • Each is set to have interference characteristics.
  • the optical filter unit 4 converts the light LE3 into TM-polarized light LM4 and outputs it.
  • the optical waveguide device 100 separates the light L1 input from the input optical port 102 into TE polarized light and TM polarized light, and further converts the TE polarized light into TM polarized light. It has a function of a polarization beam splitter that converts each light into light and outputs each light from the output light ports 105 and 106. Since the optical waveguide device 100 uses the principle of reciprocity of an optical circuit, it has a polarization beam combiner function as well as a polarization beam combiner function. Therefore, the optical waveguide device 100 functions as a polarization beam splitter / synthesizer.
  • Each of the optical waveguides has a relative refractive index difference ⁇ of 5.5% at a wavelength of 1.55 ⁇ m.
  • the optical filter unit 4 reduces the slit loss of the slit 101a.
  • the slit loss is 0.5 dB.
  • the optical waveguide device 100 is connected to the ITU-T G.264 at the input optical port 102 and the output optical ports 105 and 106.
  • standard SMF standard single mode optical fiber for optical communication
  • a connection loss between the optical waveguide device 100 and the standard SMF is obtained by attaching a thin film lens having a beam reduction function to the input optical port 102 and attaching a thin film lens having a beam expansion function to the output optical ports 105 and 106. Can be reduced.
  • the output optical ports 105 and 106 have a relative refractive index difference ⁇ of not only the standard SMF but also a different material waveguide such as a silicon fine wire optical waveguide or an optical waveguide made of an InP-based semiconductor material, or the optical waveguide device 100. Different quartz PLCs may be connected.
  • FIG. 8 is a schematic diagram for explaining the optical waveguide device according to the ninth embodiment.
  • the optical waveguide device 200 functions as a polarization beam splitter (PBS) integrated coherent mixer.
  • PBS polarization beam splitter
  • This optical waveguide device 200 is a configuration example that is assumed to be used as a coherent mixer used in a DP-QPSK modulation demodulator.
  • the optical waveguide element 200 includes a clad portion 201 made of quartz glass and a plurality of optical waveguides located in the clad portion 201.
  • the plurality of optical waveguides include the input optical waveguides 11 and 12, the optical waveguide that constitutes the polarization demultiplexer 21, the connection optical waveguides 31, 32, 33, and 34, and the light that constitutes the 90-degree hybrid elements 41 and 42.
  • the plurality of optical waveguides are made of quartz glass in which fine particles of ZrO 2 are dispersed.
  • the clad portion 201 is formed with a slit 201a so as to divide the connection optical waveguide 32 into two.
  • the optical waveguide element 200 further includes an optical filter unit 4 inserted into the slit 201a.
  • the connection optical waveguide 34 is provided with a loss compensation unit 62.
  • the input optical waveguide 11 to which the light L1 that is signal light is input passes through an S-shaped bent portion that is a combination of bent portions having opposite curvatures, equal curvature radii, and equal arc angles. It is connected to the wave demultiplexer 21.
  • the input optical waveguide 12 to which the local oscillation light LO is input is connected to the Y branch optical waveguide 51 in a substantially straight line shape.
  • the polarization demultiplexer 21 includes a Y-branch optical waveguide, a directional coupler, and two arm optical waveguides that connect the Y-branch optical waveguide and the directional coupler, and an MZI interferometer. It has the composition of.
  • the connection optical waveguides 31 and 33 are optical paths that connect the optical paths of the light beams demultiplexed by the polarization demultiplexer 21 to the 90-degree hybrid elements 41 and 42, respectively.
  • the Y branch optical waveguide 51 branches the local oscillation light LO input to the input optical waveguide 12 into the connection optical waveguides 32 and 34 at a branching ratio of 1: 1.
  • the connection optical waveguides 32 and 34 are optical paths that connect the optical paths of the light beams demultiplexed by the Y branch optical waveguide 51 to the 90-degree hybrid elements 41 and 42, respectively.
  • the 90-degree hybrid elements 41 and 42 are a kind of interference circuit, and each of the input light L1 and the local oscillation light LO is bifurcated, and the bifurcated local oscillation light LO is 90 degrees as a relative phase difference of the light wave. After the phase difference is given, the two branched light L1 and the local oscillation light LO, and the other two branched light L1 and the local oscillation light LO are mixed.
  • the slit 201a is provided in the region A of the connection optical waveguide 32 from the Y-branch optical waveguide 51 to the 90-degree hybrid element 41, and the optical filter unit 4 is inserted into the slit 201a.
  • the locally oscillated light LO passing through the optical filter unit 4 has its polarization rotated by 90 degrees and is input to the 90 degree hybrid element 41.
  • a loss compensation unit 62 is provided in the region B of the connection optical waveguide 34 from the Y-branch optical waveguide 51 to the 90-degree hybrid element 42, but the loss compensation unit 62 does not have a function of rotating the polarization. . Therefore, the local oscillation light LO is input to the 90-degree hybrid element 42 with the polarization as it is.
  • the loss compensator 62 includes, for example, a slit provided so as to divide the connection optical waveguide 34 and into which the half-wave plate is not inserted. The function of the loss compensator 62 will be described below.
  • Each of the plurality of optical waveguides has a relative refractive index difference ⁇ of 5.5% at a wavelength of 1.55 ⁇ m.
  • the slit loss of the slit 201a by the optical filter unit 4 is 0, for example. It is reduced to .5dB.
  • the loss of the slit 201a and the optical filter unit 4 has occurred. Therefore, as it is, the local oscillation light input to the 90-degree hybrid element 41 receives an excessive loss as compared with the local oscillation light input to the 90-degree hybrid element 42. Therefore, in the optical waveguide device 200, a loss compensation unit 62 is provided in the connection optical waveguide 34 in order to compensate for the loss.
  • the slit width when the loss compensator 62 is a slit is preferably designed so that a loss corresponding to the loss generated by the slit 201a and the optical filter unit 4 in the connection optical waveguide 32 is generated.
  • the connecting optical waveguide 34 has an intersection C having an intersecting waveguide structure, it is more preferable to design the slit width of the loss compensator 62 in consideration of the amount of the intersection loss at the intersection C.
  • the loss compensator 62 is not limited to a slit, and may be configured by one or a plurality of crossed waveguide structures provided in series, or one or a plurality of tapered waveguide structures provided in series.
  • FIG. 9 is a schematic view for explaining an optical waveguide device according to the tenth embodiment.
  • This optical waveguide element 200A has a connection part for replacing the clad part 201 in the optical waveguide element 200 with a clad part 201A having a notch 201Ab, and for inputting the light L1 as the signal light and the local oscillation light LO. 210 is added.
  • the notch 201Ab and the connecting part 210 will be described in detail.
  • FIG. 10 is an enlarged schematic view showing a region D including the notch 201Ab and the connecting part 210 in FIG.
  • the connection unit 210 includes a single mode optical fiber 211, a high relative refractive index difference optical fiber 212, a polarization maintaining optical fiber 213, a holding member 214, a lens 215, and an adhesive 216.
  • Single mode optical fiber 211 such as ITU-T G. Standard SMF conforming to 652.
  • the relative refractive index difference with respect to the cladding of the core is about 0.3%, and the MFD at the wavelength of 1.55 ⁇ m is 10 to 11 ⁇ m.
  • the high relative refractive index difference optical fiber 212 is an optical fiber that is fused and connected to the single mode optical fiber 211 and has a larger relative refractive index difference of the core relative to the clad than the single mode optical fiber 211.
  • the high relative refractive index difference optical fiber 212 is, for example, a silica glass optical fiber having a core relative refractive index difference of 2.0% to 3.0% at a wavelength of 1.55 ⁇ m.
  • the MFD is, for example, not less than 3.0 ⁇ m and not more than 5.0 ⁇ m.
  • the high relative refractive index difference optical fiber 212 has, for example, a core diameter of 3 ⁇ m to 4 ⁇ m and a cutoff wavelength ⁇ c of 1530 nm or less.
  • the high relative refractive index difference optical fiber 212 has a function of reducing the MFD of the light L1 propagating through the single mode optical fiber 211 and coupling it to the input optical waveguide 11 with low connection loss.
  • the polarization maintaining optical fiber 213 propagates the local oscillation light LO having a linear polarization state while maintaining the polarization state, and inputs the light into the input optical waveguide 12 as TE polarization light. Similar to the single mode optical fiber 211, in the polarization maintaining optical fiber 213, the relative refractive index difference with respect to the cladding of the core is about 0.3%, and the MFD at the wavelength of 1.55 ⁇ m is 10 to 11 ⁇ m.
  • the holding member 214 is a member made of, for example, quartz glass that holds the single mode optical fiber 211, the high relative refractive index difference optical fiber 212, and the polarization maintaining optical fiber 213.
  • the holding member 214 includes, for example, a connection body of the single mode optical fiber 211 and the high relative refractive index difference optical fiber 212, a substrate on which a V-groove for receiving the polarization holding optical fiber 213 is formed, And a lid for pressing the optical fiber. Each optical fiber is fixed in the V-groove with an adhesive.
  • the lens 215 is accommodated in a notch 201Ab formed in the clad 201A.
  • the lens 215 is a thin film lens such as a photonic crystal lens, and condenses the local oscillation light LO output from the polarization maintaining optical fiber 213 and optically couples it to the input optical waveguide 12 with low coupling loss. . Due to the presence of the lens 215, a low coupling loss between the polarization maintaining optical fiber 213 and the input optical waveguide 12 can be realized without using a polarization maintaining type high relative refractive index difference optical fiber.
  • the adhesive 216 is for bonding and fixing the holding member 214 and the lens 215 to the clad portion 201A.
  • the adhesive 216 has a predetermined thickness between the holding member 214 and the clad 201A, even if the lens 215 has a thickness that protrudes from the notch 201Ab, The contact with the lens 215 is prevented by the adhesive 216.
  • the single mode optical fiber 211 and the input optical waveguide 11 may be coupled with a low connection loss by a thin film lens without using the high relative refractive index difference optical fiber 212.
  • the relative refractive index difference ⁇ is 1.5%.
  • the slit loss is about 0.5 dB, but in the case of 2.5%, it is about 1 dB, and in the case of 5.5%, it is about 3 dB.
  • the relative refractive index difference ⁇ is particularly 2.5% or more. It is suitable for application to an optical waveguide device.
  • the present invention can also be applied to an optical waveguide device having a relative refractive index difference ⁇ of less than 2.5%.
  • the optical waveguide device of the above embodiment is made of silica-based glass, but the present invention is an optical waveguide device having a high relative refractive index difference provided with an optical waveguide made of a silicon fine wire optical waveguide or an InP-based semiconductor material. Is also applicable.
  • the thin film lens of the above embodiment is a photonic crystal lens, but the thin film lens according to the present invention has a thickness that can be inserted into a slit provided so as to divide the optical waveguide of the optical waveguide element (for example, 5 to 5).
  • the type is not particularly limited as long as it is 100 ⁇ m, preferably 20 ⁇ m or less.
  • one or two thin film elements provided with a thin film lens are provided, but more thin film elements may be provided.
  • the optical waveguide device according to the present invention is useful for an optical device used for optical communication or the like.
  • Substrate 2 101, 201, 201A Clad part 2a, 101a, 201a Slit 3 Optical waveguide 3a, 3Fa First optical waveguide 3Faa, 3Fba Tapered part 3b, 3Fb Second optical waveguide 4, 4A, 4B, 4C, 4D, 4E 4F Optical filter unit 4a, 4Ea Optical filter 4b, 4c, 4Ab, 4Ac, 4Bb, 4Bc, 4Bc1, 4Cc, 4Dc, 4Eb, 4Ec, 4Fb, 4Fc Thin film element 4ba, 4ca, 4Bca, 4Bca1, 4Bca2, 4Bca3 Thin film lens 4bb, 4cb, 4Abb, 4Acb, 4Bcb Marker 4Bcc Bottom 4Bcd Top 4d, 4e, 4Ce, 4De, 216, Ad Adhesive 10, 10B, 10C, 10D, 10E, 10F, 100, 200, 200A Opti

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

光導波路素子は、基板上に形成されたクラッド部と、前記クラッド部内に形成され、前記クラッド部よりも屈折率が高い光導波路と、前記光導波路を第1光導波路と第2光導波路とに分断するように前記クラッド部に形成されたスリットに挿入された光学フィルタと、前記光学フィルタとともに前記スリットに挿入され、薄膜レンズが設けられた少なくとも1つの薄膜素子と、を備え、前記薄膜素子の1つに設けられた薄膜レンズは、前記第1光導波路を伝搬し前記スリット内に出力された光を、前記第2光導波路に集光させる。

Description

光導波路素子
 本発明は、光導波路素子に関するものである。
 光通信等に用いられる光デバイスには、石英系ガラスからなる平面光波回路(Planar Lightwave Circuit:PLC)を用いた光導波路素子が用いられているものがある。PLCを構成する光導波路において、屈折率を高めるドーパントとして、ジルコニア(ZrO)を使う技術が開示されている(特許文献1参照)。ZrOは、ゲルマニア(GeO)と比較して屈折率が高く、熱膨張係数が小さい材料である。ZrOをドーパントとすることで、GeOをドーパントとしたPLCと比較して、コア(光導波路)のクラッド部に対する比屈折率差Δ(以下、単に比屈折率差Δと記載する場合がある)を大幅に高めることが可能となる。これにより、光導波路に許容される最小曲げ半径が小さくなり、PLCの小型化、低コスト化、高密度集積化が期待できる。そのため、ZrOは、PLCおよびこれを用いた光導波路素子、および光デバイスを小型化しつつ、光導波路に残る応力を低減できる材料として期待されている。
 また、比屈折率差Δが高い光導波路素子としては、PLCの他に、シリコン細線光導波路を備えたものや、InP系半導体材料(たとえばGaInAsP)からなる光導波路を備えたものがある。
 ところで、光導波路素子において、クラッド部に、或る光導波路を2つに分断するようにスリットが形成され、このスリットに光学フィルタが挿入される場合がある。たとえば、光導波路を伝搬するTE偏波の光(クラッド部が形成されている基板の主表面に平行な偏波方向を有する直線偏波の光)をTM偏波の光(TE偏波の光と直交する偏波方向を有する直線偏波の光)に変換する場合には、スリットに1/2波長板を挿入する構成が採用される場合がある。このとき、1/2波長板はその光学軸(高速軸または低速軸)を基板の主表面と45°の角度を成すようにしてスリット内に設置される。このような構成の光導波路素子では、分断された光導波路のうち一方の光導波路からTE偏波の光を伝搬させると、1/2波長板で偏波方向が90°回転し、TM偏波の光となって分断された光導波路のうち他方の光導波路に入力される。同様に、一方の光導波路からTM偏波の光を伝搬させると、1/2波長板でTE偏波の光となって他方の光導波路に出力される。また、他方の光導波路からTM偏波の光を伝搬させると、1/2波長板でTE偏波の光となって一方の光導波路に入力される。
特開2013-210623号公報 特開2005-116671号公報 特開2004-347759号公報 特表2007-532958号公報 特開2003-315552号公報
 しかしながら、光導波路素子において、スリットにおける光の損失(以下、スリット損失と記載する場合がある)が生じるという問題がある。スリット損失は光導波路のクラッドに対する比屈折率差Δが高くなるにつれて大きくなる。また、スリット損失はスリットの幅(光の伝搬方向における幅)が太くなるにつれて大きくなる。
 スリット損失を抑制するために、スリットの前後において、光導波路の幅(基板の主表面に平行な方向かつ光導波路の延伸方向に垂直な方向における幅)が延伸方向において変化するテーパ部を設ける方法がある。このようなテーパ部を設けることにより、一方の光導波路のテーパ部を伝搬した光はモードフィールドが幅方向に拡大されてスリットを通過し、他方の光導波路のテーパ部に入力されるので、損失はある程度抑制される。しかしながら、このようなテーパ部は光導波路の高さ方向(基板の主表面に垂直な方向)に設けることは困難であるので、スリットに起因する光の損失を低減することは困難であった。たとえば、本発明者らが波長1.55μmにおける比屈折率差Δとスリット損失との関係を精査したところ、同一の導波路構造、同一のスリット幅(20μm)、同一のテーパ部を設けた光導波路素子において、比屈折率差Δが1.5%の場合はスリット損失が約0.5dBであるものが、2.5%の場合は約1dB、5.5%の場合は約3dBと、比屈折率差Δが増加するにつれてスリット損失が急激に増加することを確認した。
 本発明は、上記に鑑みてなされたものであって、スリット損失が低減された光導波路素子を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の一態様に係る光導波路素子は、基板上に形成されたクラッド部と、前記クラッド部内に形成され、前記クラッド部よりも屈折率が高い光導波路と、前記光導波路を第1光導波路と第2光導波路とに分断するように前記クラッド部に形成されたスリットに挿入された光学フィルタと、前記光学フィルタとともに前記スリットに挿入され、薄膜レンズが設けられた少なくとも1つの薄膜素子と、を備え、前記薄膜素子の1つに設けられた薄膜レンズは、前記第1光導波路を伝搬し前記スリット内に出力された光を、前記第2光導波路に集光させることを特徴とする。
 本発明の一態様に係る光導波路素子は、前記光学フィルタは1/2波長板であることを特徴とする。
 本発明の一態様に係る光導波路素子は、2つの前記薄膜素子を備え、前記薄膜素子の他の1つに設けられた薄膜レンズは、前記第1光導波路を伝搬し前記スリット内に出力された光を、前記光学フィルタに向けて拡散することを特徴とする。
 本発明の一態様に係る光導波路素子は、前記2つの薄膜素子のそれぞれに設けられた薄膜レンズは、それぞれ直線偏波のみを主に透過する偏波特性を有し、かつ前記2つの薄膜素子は、それぞれの薄膜レンズが透過する直線偏波の偏波方向が互いに直交するように配置され、前記1/2波長板の光学軸は前記2つの薄膜素子のそれぞれが透過する直線偏波の偏波方向と45°をなすように配置されることを特徴とする。
 本発明の一態様に係る光導波路素子は、前記少なくとも1つの薄膜素子に設けられた薄膜レンズはフォトニック結晶によって構成されていることを特徴とする。
 本発明の一態様に係る光導波路素子は、前記少なくとも1つの薄膜素子と前記光学フィルタとがフォトニック結晶によって一体に構成されていることを特徴とする。
 本発明の一態様に係る光導波路素子は、前記クラッド部に対する前記光導波路の比屈折率差が2.5%以上であることを特徴とする。
 本発明の一態様に係る光導波路素子は、前記クラッド部および前記光導波路は石英系ガラスからなり、前記光導波路はジルコニア(ZrO)を含むことを特徴とする。
 本発明の一態様に係る光導波路素子は、前記光導波路を含む複数の光導波路を備え、前記複数の光導波路はコヒーレントミキサを構成していることを特徴とする。
 本発明の一態様に係る光導波路素子は、前記光導波路を含む複数の光導波路を備え、前記複数の光導波路は偏波ビーム分岐/合成器を構成していることを特徴とする。
 本発明によれば、スリット損失が低減された光導波路素子を実現できるという効果を奏する。
図1Aは、実施形態1に係る光導波路素子を説明する模式図である。 図1Bは、実施形態1に係る光導波路素子を説明する模式図である。 図1Cは、実施形態1に係る光導波路素子を説明する模式図である。 図2は、実施形態2に係る光導波路素子の光学フィルタユニットの模式的な分解斜視図である。 図3Aは、実施形態3に係る光導波路素子および光学フィルタユニット、ならびに光軸調整の方法を説明する模式図である。 図3Bは、実施形態3に係る光導波路素子および光学フィルタユニット、ならびに光軸調整の方法を説明する模式図である。 図3Cは、実施形態3に係る光導波路素子および光学フィルタユニット、ならびに光軸調整の方法を説明する模式図である。 図3Dは、実施形態3に係る光導波路素子および光学フィルタユニット、ならびに光軸調整の方法を説明する模式図である。 図4Aは、実施形態4に係る光導波路素子を説明する模式図である。 図4Bは、実施形態5に係る光導波路素子を説明する模式図である。 図5は、実施形態6に係る光導波路素子を説明する模式図である。 図6は、実施形態7に係る光導波路素子を説明する模式図である。 図7は、実施形態8に係る光導波路素子を説明する模式図である。 図8は、実施形態9に係る光導波路素子を説明する模式図である。 図9は、実施形態10に係る光導波路素子を説明する模式図である。 図10は、図9の一部を拡大して示す模式図である。
 以下に、図面を参照して本発明に係る光導波路素子の実施形態を詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、各図面において、同一または対応する要素には適宜同一の符号を付している。また、図面は模式的なものであり、各要素の寸法の関係などは、現実のものとは異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。また、本明細書で特に定義しない用語についてはITU-T G.650.1における定義、測定方法に適宜従うものとする。また、図中、3軸(X軸、Y軸、Z軸)の直交座標系であるXYZ座標系を適宜用いて方向を説明する。
(実施形態1)
 図1Aから図1Cは、実施形態1に係る光導波路素子を説明する模式図である。図1Aに示すように、光導波路素子10は、シリコンや石英ガラスなどからなる基板1の主表面上に形成された、石英系ガラスからなるクラッド部2と、クラッド部2内に形成され、クラッド部2よりも屈折率が高い光導波路3と、を備えている。クラッド部2には、光導波路3を第1光導波路3aと第2光導波路3bとに分断するようにスリット2aが形成されている。光導波路素子10は、さらに、スリット2aに挿入された光学フィルタユニット4を備えている。
 スリット2aは、X方向に延伸し、光導波路3は、Z方向に延伸している。なお、図1Aでは光導波路素子10は一部のみ図示しており、実際には光導波路素子10はXZ面内でさらに広がるような形状を有する。また、通常、基板1およびクラッド部2のX方向における長さは、スリット2aのX方向における長さより長い。したがって、本実施形態1では、クラッド部2はスリット2aによって2つに分断されてはいない。
 光導波路3は、屈折率を高めるドーパントであるZrOの微粒子を含む石英系ガラスからなる。これによって、光導波路3はクラッド部2よりも屈折率が高くなるので、光を閉じ込めて導波する光導波路として機能する。光導波路3は、波長1.55μmにおけるクラッド部2に対する比屈折率差Δがたとば5%~10%であり、断面のサイズは、1辺が1.5μm~3.5μmである。光導波路3の断面は基本的には正方形だが、長方形や台形でもよい。
 光導波路3は、ZrOの微粒子を含むので、その含有量の調整によって、波長1.55μmにおける比屈折率差Δをたとえば1.5%~30%にすることができる。
 光学フィルタユニット4は、図1Bに示すように、1/2波長板である光学フィルタ4aと、2つの薄膜素子4b、4cとを備えている。光学フィルタ4aは薄膜素子4bと4cとの間に配置され、たとえばポリイミドで構成されている。光学フィルタ4aは入力する光の波長に応じた厚さであり、たとえば約15μmの厚さとされている。光学フィルタ4aと2つの薄膜素子4b、4cとは、透光性の接着剤4d、4eにより互いに接着されている。このように、薄膜素子4b、4cは、光学フィルタ4aとともに光学フィルタユニット4を構成し、スリット2aに挿入されている。光学フィルタユニット4は、接着剤Adによりスリット2a内に接着固定されている。
 薄膜素子4b、4cは、いずれもフォトニック結晶によって構成されており、図1Cに示すように、それぞれフォトニック結晶によって構成された薄膜レンズ4ba、4caが設けられている。
 フォトニック結晶は、屈折率が互いに異なる媒質が所定のパターンで周期的に配列して構成された材料であり、薄膜レンズ4ba、4caは、薄膜素子4b、4cにおいて、フォトニック結晶のパターンや周期を調整することにより、レンズ機能を有するように構成した部分である(特許文献2、3、4参照)。
 本実施形態1では、薄膜レンズ4ba、4caは、それぞれ直線偏波のみを主に透過する偏波特性を有している。そのため、薄膜素子4b、4cのそれぞれには、透過偏波方向を特定できるようにマーカ4bb、4cbが形成されている。マーカ4bb、4cbは、屈折率がその周囲とは異なるようにパターンが構成された部分であり、目視によりその存在を確認することができる。
 そして、光学フィルタユニット4においては、薄膜素子4b、4cが、それぞれの薄膜レンズ4ba、4caの透過偏波方向が互いに直交するように配置され、かつ、1/2波長板である光学フィルタ4aの光学軸が、薄膜レンズ4ba、4caの透過偏波方向と45°をなすように配置された状態で、互いに接着固定されている。また、光学フィルタユニット4は、薄膜素子4bが第1光導波路3a側に位置し、薄膜素子4cが第2光導波路3b側に位置し、薄膜レンズ4baがTE偏波の光を透過し、かつ薄膜レンズ4caがTM偏波の光を透過し、薄膜レンズ4baの光軸と薄膜レンズ4caの光軸とが一致するような配置で、スリット2a内に接着固定されている。
 このような薄膜素子4b、4cは、たとえば約15μm程度の厚さで形成することができる。光学フィルタ4a、薄膜素子4b、4cの厚さをそれぞれ15μmとし、接着剤4d、4eの厚さを1.5μmとし、接着剤Adの厚さを1μmとすると、Z方向におけるスリット2aの幅Wは50μmとなる。
 つぎに、光導波路素子10の機能について説明する。光導波路素子10は、第1光導波路3aに入力されたTE偏波の光LE1をTM偏波の光LM1に変換して第2光導波路3bから出力する機能を有する。具体的には、図1Aに示すように、第1光導波路3aにTE偏波の光LE1を入力させると、第1光導波路3aは光LE1をTE偏波で伝搬し、図1Cに示すように薄膜レンズ4baに向けてスリット2a内に出力する。薄膜レンズ4baは入力されたTE偏波の光LE1を透過するとともに光学フィルタ4aに向けて拡散する。これにより、光LE1のビーム径はXY面方向でX方向とY方向に拡大し、光LE2として光学フィルタ4aに出力する。光学フィルタ4aは光LE2の偏波方向を90°回転させ、TM偏波の光LM2として薄膜レンズ4caに出力する。薄膜レンズ4caは入力されたTM偏波の光LM2を透過するとともに集光してそのビーム径をXY面方向でX方向とY方向に縮小し、光LM1として第2光導波路3bに出力する。第2光導波路3bは入力された光LM1をTM偏波で伝搬し、図1Aに示すように出力する。
 このように、光導波路素子10では、スリット2aに、第1光導波路3aを伝搬した光LE1を拡散してそのビーム径を拡大する薄膜レンズ4baと、光学フィルタ4aを通過した光LM2のビーム径を縮小し、第2光導波路3bに集光させる薄膜レンズ4caとを備えている。これにより、第1光導波路3aから光LE1としてスリット2a内に出力し、その後偏波方向が90°回転された光LM1を、高い結合効率で第2光導波路3bに結合させることができる。その結果、スリット2aによるスリット損失を低減できる。
 光導波路素子10の製造方法の一例について説明する。
 まず、たとえばプラズマCVD(Chemical Vapor Deposition)法を用いて、基板1上に、クラッド部2のうち基板1側の部分である下部クラッド層を成膜し、1元系のターゲットであるSiOターゲットとZrOターゲットとを用いて、スパッタ法によって、下部クラッド層上に、光導波路3を形成するための光導波路形成層を成膜する。
 つづいて、下部クラッド層、光導波路形成層を加熱処理してアニールし、透明ガラス化する。
 つづいて、光導波路形成層を、フォトリソグラフィ技術およびエッチングによって光導波路3のパターンにパターニングし、光導波路3とする。エッチングについては、たとえば石英系ガラスの加工プロセスにおいて用いられるフッ素系ガス(たとえばCF)を用いたドライエッチングによって行う。
 つづいて、下部クラッド層および光導波路3を覆うようにオーバークラッド部を形成し、下部クラッド層とオーバークラッド部とからなるクラッド部2を形成する。オーバークラッド部は、たとえば公知の火炎堆積(Flame Hydrolysis Deposition:FHD)法により、下部クラッド層および光導波路3を覆うように石英系ガラスからなる微粒子を堆積し、微粒子を加熱溶融して透明ガラス化することによって形成できる。
 つづいて、フォトリソグラフィ技術およびエッチングによってクラッド部2にスリット2aを形成する。スリット2aの深さは特に限定されないが、本実施形態1ではクラッド部2の底面(クラッド部2と基板1との界面)の深さまで行う。
 つづいて、光学フィルタ4aおよび薄膜素子4b、4cを接着剤4d、4eで接着して作製した光学フィルタユニット4をスリット2aに挿入し、薄膜レンズ4ba、4caと第1光導波路3a、第2光導波路3bの光軸を合わせるように調整を行う。光軸の調整はアクティブアラインメントにより行うことが好ましい。具体的には、第1光導波路3aに光を入力し、光学フィルタユニット4を通過して第2光導波路3bから出力する光のパワーを測定しながら、光学フィルタユニット4をXY面内で位置調整し、測定した光のパワーが最大になったところで光学フィルタユニット4を接着剤Adでスリット2a内に接着固定する。これにより、光導波路素子10が完成する。
 ここで、本発明の実施例として、実施形態1の構成を有する光導波路素子の特性をシミュレーションにより計算した。なお、波長1.55μmにおける光導波路の比屈折率差Δは5.5%とし、光導波路の断面のサイズは3.0μm×3.0μmとした。このとき、光導波路を伝搬する波長1.55μmの光のモードフィールド径(MFD)は約3μmである。ここでモードフィールド径は、コア(光導波路)を伝搬する光のNFP(Near-Field Pattern)において、最大強度の5%の強度となる点の直径とする。なお、モードフィールドが楕円の場合は長径と短径の平均値をモードフィールド径とする。また、スリットの幅を50μmとした。また、ポリイミドからなる1/2波長板である光学フィルタ、薄膜レンズが設けられた2つの薄膜素子は、いずれも15μmの厚さとし、これらを互いに接着する接着剤の厚さを1.5μmとし、光学フィルタユニットをスリット内に接着する接着剤の厚さを1μmとした。第1光導波路側に配置する薄膜素子に設けた薄膜レンズは、波長1.55μmでビーム径が3.5μmの光をビーム径10μmの光に拡大するレンズ機能を有するものとした。また、第2光導波路側に配置する薄膜素子に設けた薄膜レンズは、波長1.55μmでビーム径が10μmの光をビーム径3.5μmの光に縮小するレンズ機能を有するものとした。ここで、光のビーム径は、ビームプロファイルをガウシアン近似した場合に、最大強度の1/eとなる点の直径である。
 この光導波路素子のスリット損失をシミュレーションにより計算したところ、0.5dBであった。この値は、薄膜レンズを設けた薄膜素子を用いない場合のスリット損失(たとえば3dB)に対して大幅に低減された実用上好ましい値である。
(実施形態2)
 つぎに、実施形態2に係る光導波路素子について説明する。実施形態1と実施形態2との相違点は、光学フィルタユニットだけである。また、実施形態2に係る光導波路素子は、光導波路素子10と同様に、入力されたTE偏波の光をTM偏波の光に変換して出力する機能を有する。以下では光学フィルタユニットについて詳述する。図2は、実施形態2に係る光導波路素子の光学フィルタユニットの模式的な分解斜視図である。
 図2に示すように光学フィルタユニット4Aは、光学フィルタ4aと、薄膜素子4Ab、4Acとを備えている。光学フィルタ4aと2つの薄膜素子4Ab、4Acとは、透光性の接着剤により互いに接着されて、光学フィルタユニット4Aを構成している。
 薄膜素子4Ab、4Acは、いずれもフォトニック結晶によって構成されており、それぞれフォトニック結晶によって構成された薄膜レンズ4ba、4caが設けられている。さらに、薄膜素子4Abには、光軸合わせ用の2つのマーカ4Abbが形成されている。この2つのマーカ4Abbは、薄膜レンズ4baのX方向の両側にそれぞれ位置しており、薄膜レンズ4baの光軸と所定の位置関係となっている。薄膜素子4Acにも同様に、光軸合わせ用の2つのマーカ4Acbが形成されている。この2つのマーカ4Acbは、薄膜レンズ4caのX方向の両側にそれぞれ位置しており、薄膜レンズ4caの光軸と所定の位置関係となっている。2つのマーカ4Abbと薄膜レンズ4baの光軸との位置関係は、2つのマーカ4Acbと薄膜レンズ4caの光軸との位置関係と同じである。マーカ4Abb、4Acbは、屈折率がその周囲とは異なるようにパターンが構成された部分であり、目視によりその存在を確認することができる。
 この光学フィルタユニット4Aを組み立てる際、破線で示すように、薄膜素子4Abの2つのマーカ4Abbと、薄膜素子4Acの2つのマーカ4Acbとを、XY面内で軸合わせすることで、薄膜レンズ4baの光軸と薄膜レンズ4caの光軸とを容易に合わせることができる。これにより、光軸ずれによる過剰損失が低減された光学フィルタユニット4Aを容易に組み立てることができる。
(実施形態3)
 つぎに、実施形態3に係る光導波路素子について説明する。図3Aから図3Dは、実施形態3に係る光導波路素子および光学フィルタユニット、ならびに光軸調整の方法を説明する模式図である。
 図3Aに示すように、光導波路素子10Bは、実施形態1に係る光導波路素子10において、光学フィルタユニット4を光学フィルタユニット4Bに置き換えた構成を有する。また、光導波路素子10Bは、光導波路素子10と同様に、入力されたTE偏波の光をTM偏波の光に変換して出力する機能を有する。以下では光学フィルタユニット4Bについて詳述する。
 光学フィルタユニット4Bは、光学フィルタ4aと、薄膜素子4Bb、4Bcとを備えている。光学フィルタ4aと2つの薄膜素子4Bb、4Bcとは、透光性の接着剤により互いに接着されて、光学フィルタユニット4Bを構成している。
 薄膜素子4Bb、4Bcは、いずれもフォトニック結晶によって構成されている。さらに、薄膜素子4Bb、4Bcには、フォトニック結晶によって構成され、それぞれの底面からの高さが互いに異なる複数の薄膜レンズが設けられている。具体的には、図3Bに示すように、たとえば薄膜素子4Bcには、Y方向における底面4Bccからの高さが互いに異なる9個の薄膜レンズ4Bcaが設けられている。9個の薄膜レンズ4BcaはX方向に沿って並んでおり、最も負の向き側に位置する薄膜レンズ4Bca1の高さH1が一番低く、正の向きに位置するにしたがって高さが高くなり、最も正の向き側に位置する薄膜レンズ4Bca2の高さH2が一番高い。薄膜素子4Bbにも、薄膜素子4Bcの9個の薄膜レンズ4Bcaのそれぞれと光軸が一致するように配置された9個の薄膜レンズが設けられている。第1光導波路3a側から入力された光に対して、薄膜素子4Bbに設けられた薄膜レンズは、薄膜レンズ4baと同様にTE偏波の光のみを主に透過する特性およびビーム拡大機能を有し、薄膜素子4Bcに設けられた薄膜レンズは、薄膜レンズ4caと同様にTM偏波の光のみを主に透過する特性およびビーム縮小機能を有する。
 なお、光学フィルタユニット4Bは、薄膜素子4Bcの代わりに、図3Cに示す薄膜素子4Bc1を備えるようにしてもよい。薄膜素子4Bc1は、薄膜素子4Bcと同様に、Y方向における底面4Bccからの高さが互いに異なる9個の薄膜レンズ4Bcaが設けられている。さらに、薄膜素子4Bc1は、底面4Bccと対向する上面4Bcd側に、9個の薄膜レンズ4BcaのそれぞれのX方向の位置に対応した位置に設けられた9個のマーカ4Bcbを備えている。これらのマーカ4Bcbは薄膜レンズ4BcaのそれぞれのX方向における位置を示すものである。なお、薄膜素子4Bbについても、薄膜素子4Bc1と同様のマーカを備えた薄膜素子に置き換えてもよい。
 ここで、たとえば実施形態1に係る光導波路素子10において、薄膜レンズ4ba、4caと第1光導波路3a、第2光導波路3bとの光軸を合わせる場合、光学フィルタユニット4をXY面内で移動させて位置調整する必要がある。そのため、光軸合わせに時間が掛かる場合がある。また、このとき光学フィルタユニット4を治具等で把持して位置調整をする場合、薄い光学フィルタユニット4が破損する可能性もある。
 これに対して、光学フィルタユニット4Bの薄膜素子4Bb、4Bcには、底面からの高さが互いに異なる9個の薄膜レンズが設けられている。したがって、薄膜素子4Bb、4Bcのそれぞれの薄膜レンズと第1光導波路3a、第2光導波路3bとの光軸を合わせる場合、スリット2a内に挿入した光学フィルタユニット4Bを、スリット2aの底面に当接させて、図3Dに矢印Arで示すようにX方向にスライドさせるだけで、高さが互いに異なる9個の薄膜レンズのうちいずれかが、第1光導波路3a、第2光導波路3bと光軸が一致することになる。この場合もアクティブアラインメントを行い、測定した光のパワーが最大になったところで光学フィルタユニット4Bを接着剤でスリット2a内に接着固定する。なお、図3Bでは、例として、薄膜レンズ4Bca1から数えて6番目に位置する薄膜レンズ4Bca3と第1光導波路3a、第2光導波路3bとのY方向における位置が一致し、光軸が合う場合を示している。
 光学フィルタユニット4Bを用いて上記のように光軸合わせを行うことで、スリット2aの底面と第1光導波路3a、第2光導波路3bとのY方向における距離が、製造誤差等によって設計値からずれた場合でも、薄膜素子4Bb、4Bcのそれぞれの薄膜レンズと第1光導波路3a、第2光導波路3bとの光軸合わせを短時間で迅速に行うことができる。また、光軸合わせの際に光学フィルタユニット4Bを把持しなくてよく、光学フィルタユニット4Bの上面をわずかに押さえてスライドさせるだけでよいので、光学フィルタユニット4Bの破損の可能性はきわめて低くなる。また、フォトニック結晶によって構成される薄膜素子4Bb、4Bcを含む光学フィルタユニット4Bの底面とスリット2aの底面とが接触しているため、安定した接着固定ができ、光導波路素子10Bの長期信頼性を確保できる。
 さらに、図3Cに示す薄膜素子4Bc1のようにマーカを設けた薄膜素子を用いることで、光軸合わせをよりいっそう短時間で迅速に行うことができる。
(実施形態4、5)
 つぎに、実施形態4、5に係る光導波路素子について説明する。図4Aおよび図4Bは、実施形態4、5に係る光導波路素子を説明する模式図である。
 図4Aおよび図4Bにそれぞれ示すように、実施形態4に係る光導波路素子10C、実施形態5に係る光導波路素子10Dは、それぞれ、実施形態1に係る光導波路素子10において、光学フィルタユニット4を光学フィルタユニット4C、4Dに置き換えた構成を有する。また、光導波路素子10C、10Dは、光導波路素子10と同様に、入力されたTE偏波の光をTM偏波の光に変換して出力する機能を有する。以下では光学フィルタユニット4C、4Dについて詳述する。
 光学フィルタユニット4Cは、光学フィルタ4aと、薄膜素子4Ccとを備えている。光学フィルタ4aと薄膜素子4Ccとは、透光性の接着剤4Ceにより互いに接着されて、光学フィルタユニット4Cを構成している。薄膜素子4Ccは、フォトニック結晶によって構成されている。さらに、薄膜素子4Ccには、フォトニック結晶によって構成された薄膜レンズが設けられている。この薄膜レンズは、第1光導波路3a側から入力された光に対して、TM偏波の光のみを主に透過する特性およびビーム縮小機能を有する。また、光学フィルタユニット4Cは、この薄膜レンズと第1光導波路3a、第2光導波路3bとの光軸が一致するように配置されている。
 光導波路素子10Cでは、第1光導波路3aにTE偏波の光を入力させると、第1光導波路3aは光をTE偏波で伝搬し、スリット2a内の光学フィルタ4aに出力する。出力された光は第1光導波路3aのNAに応じてビーム径が拡大し、光学フィルタ4aに入力する。光学フィルタ4aは入力された光の偏波方向を90°回転させ、TM偏波の光として薄膜素子4Ccの薄膜レンズに出力する。薄膜レンズは入力されたTM偏波の光を透過するとともに集光してそのビーム径をXY面方向でX方向とY方向に縮小し、第2光導波路3bに出力する。第2光導波路3bは入力された光をTM偏波で伝搬し、出力する。
 一方、光学フィルタユニット4Dは、光学フィルタ4aと、薄膜素子4Dcとを備えている。光学フィルタ4aと薄膜素子4Dcとは、透光性の接着剤4Deにより互いに接着されて、光学フィルタユニット4Dを構成している。薄膜素子4Dcは、フォトニック結晶によって構成されている。さらに、薄膜素子4Dcには、フォトニック結晶によって構成された薄膜レンズが設けられている。この薄膜レンズは、第1光導波路3a側から入力された光に対して、TE偏波の光のみを主に透過する特性およびビーム縮小機能を有する。また、光学フィルタユニット4Dは、この薄膜レンズと第1光導波路3a、第2光導波路3bとの光軸が一致するように配置されている。
 光導波路素子10Dでは、第1光導波路3aにTE偏波の光を入力させると、第1光導波路3aは光をTE偏波で伝搬し、スリット2a内の薄膜素子4Dcの薄膜レンズに出力する。薄膜レンズは入力されたTE偏波の光を透過するとともに集光してそのビーム径をXY面方向でX方向とY方向に縮小し、光学フィルタ4aに出力する。光学フィルタ4aは入力された光の偏波方向を90°回転させ、TM偏波の光として出力する。出力された光は第2光導波路3bに出力する。第2光導波路3bは入力された光をTM偏波で伝搬し、出力する。
 光導波路素子10C、10Dでは、光導波路素子10の光学フィルタユニット4と比較して、薄膜素子1枚および接着剤1層だけ薄い光学フィルタユニット4C、4Dを備えた構成を有する。その結果、薄膜素子を2枚備える場合よりも、薄膜素子の貼り合わせ時の光軸ずれによる過剰損失を低減することができ、スリット損失をさらに小さくすることができる。また、薄膜素子1枚で機能を実現できるため、コストダウンに繋がる。
(実施形態6)
 つぎに、実施形態6に係る光導波路素子について説明する。図5は、実施形態6に係る光導波路素子を説明する模式図である。
 図5に示すように、実施形態6に係る光導波路素子10Eは、実施形態1に係る光導波路素子10において、光学フィルタユニット4を光学フィルタユニット4Eに置き換えた構成を有する。また、光導波路素子10Eは、光導波路素子10と同様に、入力されたTE偏波の光をTM偏波の光に変換して出力する機能を有する。以下では光学フィルタユニット4Eについて詳述する。
 光学フィルタユニット4Eは、1/2波長板である光学フィルタ4Eaと、薄膜レンズが設けられた薄膜素子4Eb、4Ecとがフォトニック結晶によって一体に構成されたものである。フォトニック結晶は、1/2波長板としても機能するように構成できることが知られている(特許文献5参照)。第1光導波路3a側から入力された光に対して、薄膜素子4Ebに設けられた薄膜レンズは、薄膜レンズ4baと同様にTE偏波の光のみを主に透過する特性およびビーム拡大機能を有し、薄膜素子4Ecに設けられた薄膜レンズは、薄膜レンズ4caと同様にTM偏波の光のみを主に透過する特性およびビーム縮小機能を有する。
 光導波路素子10Eでは、光学フィルタユニット4Eがフォトニック結晶によって一体に構成されているので、薄膜素子4Eb、4Ecのそれぞれに設けられた薄膜レンズの光軸をより正確に一致させることができる。これにより、光軸ずれによる過剰損失を低減することができる。
(実施形態7)
 つぎに、実施形態7に係る光導波路素子について説明する。図6は、実施形態7に係る光導波路素子を説明する模式図である。
 図6に示すように、実施形態7に係る光導波路素子10Fは、実施形態1に係る光導波路素子10において、光学フィルタユニット4を光学フィルタユニット4Fに置き換え、第1光導波路3a、第2光導波路3bを、それぞれ第1光導波路3Fa、第2光導波路3Fbに置き換えた構成を有する。また、光導波路素子10Fは、光導波路素子10と同様に、入力されたTE偏波の光をTM偏波の光に変換して出力する機能を有する。以下では第1光導波路3Fa、第2光導波路3Fb、光学フィルタユニット4Fについて詳述する。
 第1光導波路3Fa、第2光導波路3Fbは、それぞれ、スリット2aに近づくにつれてX方向における導波路幅が拡大するテーパ部3Faa、3Fbaを有する。
 光学フィルタユニット4Fは、光学フィルタ4aと、薄膜素子4Fb、4Fcとを備えている。光学フィルタ4aと2つの薄膜素子4Fb、4Fcとは、透光性の接着剤4d、4eにより互いに接着されて、光学フィルタユニット4Fを構成している。
 薄膜素子4Fb、4Fcは、いずれもフォトニック結晶によって構成されている。さらに、薄膜素子4Fb、4Fcには、フォトニック結晶によって構成された薄膜レンズが設けられている。ここで、第1光導波路3Fa側から入力された光に対して、薄膜素子4Fbに設けられた薄膜レンズは、薄膜レンズ4baと同様にTE偏波の光のみを主に透過する特性を有するが、薄膜レンズ4baとは異なり、Y方向にのみビーム径を拡大する機能を有する。また、第1光導波路3Fa側から入力された光に対して、薄膜素子4Fcに設けられた薄膜レンズは、薄膜レンズ4caと同様にTM偏波の光のみを主に透過する特性を有するが、薄膜レンズ4caとは異なり、Y方向にのみビーム径を縮小する機能を有する。
 光導波路素子10Fでは、スリット2a内を伝搬する光のビーム径の調整を、X方向についてはテーパ部3Faa、3Fbaにより行い、Y方向については薄膜素子4Fb、4Fcに設けられた薄膜レンズにより行う。このように、薄膜レンズと導波路のテーパ部とを組み合わせて、スリット2a内を伝搬する光のビーム径を調整し、スリット損失を低減するようにしてもよい。
(実施形態8)
 つぎに、実施形態8に係る光導波路素子について説明する。図7は、実施形態8に係る光導波路素子を説明する模式図である。光導波路素子100は、石英ガラスからなるクラッド部101と、クラッド部101内に位置する複数の光導波路とを備えている。複数の光導波路は、一方の端部が入力光ポート102となっている入力光導波路103と、入力光導波路103の他方の端部が1ポート側に接続している1×2のMMI(Multi Mode Interference)光カプラ104と、一方の端部がそれぞれ出力光ポート105、106となっている出力光導波路107、108と、出力光導波路107、108の他方の端部が一方の2ポート側にそれぞれ接続している2×2のMMI光カプラ109と、MMI光カプラ104の2ポート側と2×2のMMI光カプラ109の他方の2ポート側とをそれぞれ接続しているアーム導波路110、111と、を含む。これらの複数の光導波路は、ZrOの微粒子が分散した石英ガラスからなる。また、MMI光カプラ104、109と、アーム導波路110、111とは、マッハツェンダー(Mach-Zehnder Interferometer:MZI)型干渉計を構成している。
 また、クラッド部101には、出力光導波路107を2つに分断するようにスリット101aが形成されている。光導波路素子100は、さらに、スリット101aに挿入された光学フィルタユニット4を備えている。
 この光導波路素子100は、アーム導波路110の導波路幅がアーム導波路111の導波路幅よりも広く、断面が長方形になっている。これにより、アーム導波路110、111の複屈折率が、所定の波長(たとえば1.55μm)において、入力光ポート102から入力された任意の偏波状態の光L1に含まれるTM偏波の光が、MMI光カプラ109から出力光導波路108側へ、光LM3として略100%出力し、TE偏波の光が、MMI光カプラ109から出力光導波路107側へ、光LE3として略100%出力する干渉特性を有するようにそれぞれ設定されている。さらに、光学フィルタユニット4は光LE3をTM偏波の光LM4に変換して出力する。これによって、光導波路素子100は、入力光ポート102から入力された光L1を、TE偏波の光とTM偏波の光とに偏波分離し、さらにTE偏波の光をTM偏波の光に変換して、各光を各出力光ポート105、106から出力する偏波ビーム分岐器(Polarization Beam Splitter)の機能を有する。
 光導波路素子100は、光回路の相反性の原理を利用しているため、偏波ビーム分岐機能と共に、偏波ビーム合成器(Polarization Beam Combiner)の機能も有している。したがって、光導波路素子100は、偏波ビーム分岐/合成器として機能する。
 上記複数の光導波路は、いずれも波長1.55μmにおける比屈折率差Δが5.5%のものであるが、光導波路素子10と同様に、光学フィルタユニット4によりスリット101aのスリット損失が低減されており、たとえばスリット損失は0.5dBとなっている。
 なお、光導波路素子100は、入力光ポート102、出力光ポート105、106において、ITU-T G.652に準拠する波長約1.3μmに零分散波長を有する光通信用の標準シングルモード光ファイバ(以下、標準SMFと記載する場合がある)と光学接続する場合がある。この場合、入力光ポート102にビーム縮小機能を有する薄膜レンズを貼り付け、出力光ポート105、106にビーム拡大機能を有する薄膜レンズを貼り付けることにより、光導波路素子100と標準SMFとの接続損失を低減することができる。なお、出力光ポート105、106には、標準SMFのみならず、シリコン細線光導波路やInP系半導体材料からなる光導波路等の異種材料導波路や、光導波路素子100とは比屈折率差Δの異なる石英系PLCを接続してもよい。
(実施形態9)
 図8は、実施形態9に係る光導波路素子を説明する模式図である。この光導波路素子200は、偏波ビーム分岐器(PBS)集積型のコヒーレントミキサとして機能するものである。この光導波路素子200は、DP-QPSK変調方式の復調器に用いられるコヒーレントミキサとして使用することを想定した構成例である。
 光導波路素子200は、石英ガラスからなるクラッド部201と、クラッド部201内に位置する複数の光導波路とを備えている。複数の光導波路は、入力光導波路11、12と、偏波分波器21を構成する光導波路と、接続光導波路31、32、33、34と、90度ハイブリッド素子41、42を構成する光導波路と、Y分岐光導波路51と、を含む。これらの複数の光導波路は、ZrOの微粒子が分散した石英ガラスからなる。
 また、領域Aにおいて、クラッド部201には、接続光導波路32を2つに分断するようにスリット201aが形成されている。光導波路素子200は、さらに、スリット201aに挿入された光学フィルタユニット4を備えている。また、領域Bにおいて、接続光導波路34には損失補償部62が設けられている。
 信号光である光L1が入力される入力光導波路11は、曲率の正負が逆で曲率半径が等しく、かつ弧の角度が等しい屈曲部を組み合わせたS字形状の屈曲部を経由して、偏波分波器21へ接続されている。一方、局所発振光LOが入力される入力光導波路12は、略直線状にY分岐光導波路51へ接続されている。
 偏波分波器21は、さらに詳しくは、Y分岐光導波路と方向性結合器とY分岐光導波路および方向性結合器を接続する2本のアーム光導波路とを備えており、MZI型干渉計の構成を有している。接続光導波路31、33は、それぞれ、偏波分波器21によって分波された光線の光路を90度ハイブリッド素子41、42へ接続する光路である。
 Y分岐光導波路51は、入力光導波路12に入力された局所発振光LOを、分岐比1:1で接続光導波路32、34に分岐する。接続光導波路32、34は、それぞれY分岐光導波路51によって分波された光線の光路を90度ハイブリッド素子41、42へ接続する光路である。
 90度ハイブリッド素子41、42は、干渉回路の一種であり、入力された光L1と局所発振光LOとをそれぞれ二分岐し、二分岐された局所発振光LOに光波の相対位相差として90度の位相差を与えた後、二分岐された一方の光L1と局所発振光LO、および二分岐されたもう一方の光L1と局所発振光LOをそれぞれ混合する回路である。
 上述したように、Y分岐光導波路51から90度ハイブリッド素子41への接続光導波路32の領域Aには、スリット201aが設けられ、当該スリット201aには光学フィルタユニット4が挿入されている。光学フィルタユニット4を通過する局所発振光LOは、偏波が90度回転されて90度ハイブリッド素子41へ入力される。
 一方、Y分岐光導波路51から90度ハイブリッド素子42への接続光導波路34の領域Bには、損失補償部62が設けられているが、当該損失補償部62は偏波を回転する機能はない。したがって、90度ハイブリッド素子42へは、そのままの偏波で局所発振光LOが入力される。
 損失補償部62はたとえば、接続光導波路34を分断するように設けられた、1/2波長板が挿入されていないスリットからなる。損失補償部62の機能を以下に説明する。
 上記複数の光導波路は、いずれも波長1.55μmにおける比屈折率差Δが5.5%のものであるが、接続光導波路32において、光学フィルタユニット4によりスリット201aのスリット損失が、たとえば0.5dBと低減されている。ただし、スリット201aおよび光学フィルタユニット4の分の損失は発生している。したがって、そのままでは、90度ハイブリッド素子41に入力する局所発振光は、90度ハイブリッド素子42に入力する局所発振光よりも、過剰な損失を受ける。そこで、光導波路素子200では、当該損失を補償するために、接続光導波路34に損失補償部62を設けている。
 上記目的のため、損失補償部62がスリットの場合のスリット幅は、接続光導波路32におけるスリット201aおよび光学フィルタユニット4によって発生する損失に相当する量の損失が発生するように設計することが好ましい。なお、接続光導波路34には交差導波路構造からなる交差点Cが存在するので、交差点Cにおける交差損失の分を考慮して損失補償部62のスリット幅を設計すればより好ましい。なお、損失補償部62はスリットに限られず、1つのまたは直列に設けた複数の交差導波路構造や、1つのまたは直列に設けた複数のテーパ導波路構造により構成してもよい。
(実施形態10)
 図9は、実施形態10に係る光導波路素子を説明する模式図である。この光導波路素子200Aは、光導波路素子200において、クラッド部201を、切り欠き部201Abを有するクラッド部201Aに置き換え、さらに信号光としての光L1と局所発振光LOとを入力させるための接続部210を追加した構成を有する。以下では切り欠き部201Ab、接続部210について詳述する。
 図10は、図9の切り欠き部201Ab、接続部210を含む領域Dを拡大して示す模式図である。接続部210は、シングルモード光ファイバ211と、高比屈折率差光ファイバ212と、偏波保持光ファイバ213と、保持部材214と、レンズ215と、接着剤216と、で構成されている。
 シングルモード光ファイバ211、例えばITU-T G.652に準拠する標準SMFである。シングルモード光ファイバ211において、コアのクラッドに対する比屈折率差は約0.3%であり、波長1.55μmにおけるMFDは10~11μmである。
 高比屈折率差光ファイバ212は、シングルモード光ファイバ211と融着接続しており、シングルモード光ファイバ211よりもクラッドに対するコアの比屈折率差が大きい光ファイバである。具体的には、高比屈折率差光ファイバ212は、例えばクラッドに対するコアの比屈折率差が2.0%以上3.0%以下の石英ガラス系の光ファイバであり、波長1.55μmにおけるMFDはたとえば3.0μm以上5.0μm以下である。また、高比屈折率差光ファイバ212は、たとえばコア径が3μm~4μmであり、カットオフ波長λcが、1530nm以下である。
 高比屈折率差光ファイバ212は、シングルモード光ファイバ211を伝搬してきた光L1のMFDを縮小し、入力光導波路11に低接続損失で結合させる機能を有する。
 偏波保持光ファイバ213は、直線偏波状態を有する局所発振光LOを、その偏波状態を保持しながら伝搬し、入力光導波路12にTE偏波の光として入力させる。シングルモード光ファイバ211と同様に、偏波保持光ファイバ213において、コアのクラッドに対する比屈折率差は約0.3%であり、波長1.55μmにおけるMFDは10~11μmである。
 保持部材214は、シングルモード光ファイバ211と、高比屈折率差光ファイバ212と、偏波保持光ファイバ213とを保持する、たとえば石英系ガラスからなる部材である。保持部材214は、たとえばシングルモード光ファイバ211と高比屈折率差光ファイバ212との接続体と、偏波保持光ファイバ213とをそれぞれ収容するV溝が形成された基板と、収容された各光ファイバを押さえつける蓋と、で構成されている。各光ファイバは接着剤にてV溝内に固着される。
 レンズ215は、クラッド部201Aに形成された切り欠き部201Abに収容されている。レンズ215は、たとえばフォトニック結晶レンズなどの薄膜レンズであり、偏波保持光ファイバ213から出力された局所発振光LOを集光して入力光導波路12に低結合損失で光結合させるものである。レンズ215の存在により、偏波保持型の高比屈折率差光ファイバを用いなくても、偏波保持光ファイバ213と入力光導波路12との低結合損失化を実現できる。
 接着剤216は、保持部材214とレンズ215とをクラッド部201Aに接着固定するものである。ここで、接着剤216は保持部材214とクラッド部201Aとの間で所定の厚さを有するので、レンズ215が切り欠き部201Abからはみ出すような厚さのものであっても、保持部材214とレンズ215とが接触することは接着剤216によって防止される。
 なお、光導波路素子200において、高比屈折率差光ファイバ212を用いずに、薄膜レンズにより、シングルモード光ファイバ211と入力光導波路11とを低接続損失で結合させるようにしてもよい。
 なお、上述した様に、本発明者らの精査によれば、同一の導波路構造、同一のスリット幅、同一のテーパ部を設けた光導波路素子において、比屈折率差Δが1.5%の場合はスリット損失が約0.5dBであるものが、2.5%の場合は約1dB、5.5%の場合は約3dBとなる。このように、比屈折率差Δが2.5%以上の場合はスリット損失が実用上顕著な大きさとなるので、本発明の実施形態の構成は特に比屈折率差Δが2.5%以上である光導波路素子に適用して好適なものである。ただし、本発明は比屈折率差Δが2.5%未満の光導波路素子にも適用できる。
 また、上記実施形態の光導波路素子は石英系ガラスからなるものであるが、本発明はシリコン細線光導波路やInP系半導体材料からなる光導波路を備えた、高比屈折率差の光導波路素子にも適用できる。
 また、上記実施形態の薄膜レンズはフォトニック結晶レンズであるが、本発明に係る薄膜レンズは光導波路素子の光導波路を分断するように設けられたスリットに挿入できる程度の厚さ(たとえば5~100μm、好ましくは20μm以下)であれば特にその種類は限定されない。また、上記実施形態では薄膜レンズが設けられた薄膜素子を1枚または2枚備えているが、さらに多くの薄膜素子を備えていてもよい。
 なお、上記実施形態により本発明が限定されるものではない。上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。また、さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、上記の実施形態に限定されるものではなく、様々な変更が可能である。
 以上のように、本発明に係る光導波路素子は、光通信等に用いられる光デバイスに有用である。
1 基板
2、101、201、201A クラッド部
2a、101a、201a スリット
3 光導波路
3a、3Fa 第1光導波路
3Faa、3Fba テーパ部
3b、3Fb 第2光導波路
4、4A、4B、4C、4D、4E、4F 光学フィルタユニット
4a、4Ea 光学フィルタ
4b、4c、4Ab、4Ac、4Bb、4Bc、4Bc1、4Cc、4Dc、4Eb、4Ec、4Fb、4Fc 薄膜素子
4ba、4ca、4Bca、4Bca1、4Bca2、4Bca3 薄膜レンズ
4bb、4cb、4Abb、4Acb、4Bcb マーカ
4Bcc 底面
4Bcd 上面
4d、4e、4Ce、4De、216、Ad 接着剤
10、10B、10C、10D、10E、10F、100、200、200A 光導波路素子
11、12、103 入力光導波路
21 偏波分波器
31、32、33、34 接続光導波路
41、42 90度ハイブリッド素子
51 Y分岐光導波路
62 損失補償部
102 入力光ポート
104、109 MMI光カプラ
105、106 出力光ポート
107、108 出力光導波路
110、111 アーム導波路
201Ab 切り欠き部
210 接続部
211 シングルモード光ファイバ
212 高比屈折率差光ファイバ
213 偏波保持光ファイバ
214 保持部材
215 レンズ
A 領域
Ar 矢印
B 領域
C 交差点
D 領域
H1、H2 高さ
L1、LE1、LE2、LE3、LM1、LM2、LM3、LM4 光
LO 局所発振光

Claims (10)

  1.  基板上に形成されたクラッド部と、
     前記クラッド部内に形成され、前記クラッド部よりも屈折率が高い光導波路と、
     前記光導波路を第1光導波路と第2光導波路とに分断するように前記クラッド部に形成されたスリットに挿入された光学フィルタと、
     前記光学フィルタとともに前記スリットに挿入され、薄膜レンズが設けられた少なくとも1つの薄膜素子と、
     を備え、前記薄膜素子の1つに設けられた薄膜レンズは、前記第1光導波路を伝搬し前記スリット内に出力された光を、前記第2光導波路に集光させることを特徴とする光導波路素子。
  2.  前記光学フィルタは1/2波長板であることを特徴とする請求項1に記載の光導波路素子。
  3.  2つの前記薄膜素子を備え、前記薄膜素子の他の1つに設けられた薄膜レンズは、前記第1光導波路を伝搬し前記スリット内に出力された光を、前記光学フィルタに向けて拡散することを特徴とする請求項1または2に記載の光導波路素子。
  4.  前記2つの薄膜素子のそれぞれに設けられた薄膜レンズは、それぞれ直線偏波のみを主に透過する偏波特性を有し、かつ前記2つの薄膜素子は、それぞれの薄膜レンズが透過する直線偏波の偏波方向が互いに直交するように配置され、
     前記1/2波長板の光学軸は前記2つの薄膜素子のそれぞれが透過する直線偏波の偏波方向と45°をなすように配置されることを特徴とする請求項3に記載の光導波路素子。
  5.  前記少なくとも1つの薄膜素子に設けられた薄膜レンズはフォトニック結晶によって構成されていることを特徴とする請求項1~4のいずれか一つに記載の光導波路素子。
  6.  前記少なくとも1つの薄膜素子と前記光学フィルタとがフォトニック結晶によって一体に構成されていることを特徴とする請求項5に記載の光導波路素子。
  7.  前記クラッド部に対する前記光導波路の比屈折率差が2.5%以上であることを特徴とする請求項1~6のいずれか一つに記載の光導波路素子。
  8.  前記クラッド部および前記光導波路は石英系ガラスからなり、前記光導波路はジルコニア(ZrO)を含むことを特徴とする請求項1~7のいずれか一つに記載の光導波路素子。
  9.  前記光導波路を含む複数の光導波路を備え、
     前記複数の光導波路はコヒーレントミキサを構成していることを特徴とする請求項1~8のいずれか一つに記載の光導波路素子。
  10.  前記光導波路を含む複数の光導波路を備え、
     前記複数の光導波路は偏波ビーム分岐/合成器を構成していることを特徴とする請求項1~8のいずれか一つに記載の光導波路素子。
PCT/JP2017/017655 2016-05-11 2017-05-10 光導波路素子 WO2017195814A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/184,333 US10564355B2 (en) 2016-05-11 2018-11-08 Optical waveguide element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-095481 2016-05-11
JP2016095481A JP6678510B2 (ja) 2016-05-11 2016-05-11 光導波路素子

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/184,333 Continuation US10564355B2 (en) 2016-05-11 2018-11-08 Optical waveguide element

Publications (1)

Publication Number Publication Date
WO2017195814A1 true WO2017195814A1 (ja) 2017-11-16

Family

ID=60267441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017655 WO2017195814A1 (ja) 2016-05-11 2017-05-10 光導波路素子

Country Status (3)

Country Link
US (1) US10564355B2 (ja)
JP (1) JP6678510B2 (ja)
WO (1) WO2017195814A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020105473A1 (ja) * 2018-11-22 2020-05-28 日本電信電話株式会社 光接続構造

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132907A1 (ja) * 2011-03-28 2012-10-04 古河電気工業株式会社 光導波路回路
JPWO2019117313A1 (ja) * 2017-12-15 2020-12-17 古河電気工業株式会社 光偏波素子およびその製造方法
US20210405307A1 (en) * 2019-07-02 2021-12-30 Sumitomo Electric Device Innovations, Inc. Optical module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02110406A (ja) * 1988-10-19 1990-04-23 Fujitsu Ltd 光回路デバイスの形成方法
JP2004061905A (ja) * 2002-07-30 2004-02-26 Keio Gijuku 光学素子及びその光学素子を用いた装置
JP2004347759A (ja) * 2003-05-21 2004-12-09 Hitachi Cable Ltd 光通信用モジュール
JP2007187835A (ja) * 2006-01-12 2007-07-26 Ricoh Co Ltd 光処理素子および光処理装置
WO2012132907A1 (ja) * 2011-03-28 2012-10-04 古河電気工業株式会社 光導波路回路
JP2013210623A (ja) * 2012-02-28 2013-10-10 Furukawa Electric Co Ltd:The 光導波路素子およびその製造方法
JP2015219317A (ja) * 2014-05-15 2015-12-07 日本電信電話株式会社 偏波分離回路

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6314228B1 (en) * 1998-02-02 2001-11-06 Matsushita Electric Industrial Co., Ltd. Optical waveguide component and a method of producing the same
JP4294264B2 (ja) 2002-04-25 2009-07-08 有限会社オートクローニング・テクノロジー 集積型光学素子
JP3858995B2 (ja) * 2002-07-02 2006-12-20 オムロン株式会社 光導波路装置の製造方法
JP2004170924A (ja) * 2002-11-05 2004-06-17 Tdk Corp 導波路埋め込み型光回路及びこれに用いる光学素子
US7308174B2 (en) * 2002-12-20 2007-12-11 Ngk Insulators, Ltd. Optical device including a filter member for dividing a portion of signal light
JP4123049B2 (ja) * 2003-05-15 2008-07-23 オムロン株式会社 光合分波器
JP4226985B2 (ja) 2003-10-06 2009-02-18 日本航空電子工業株式会社 光学センサの製造方法
JP4964123B2 (ja) 2004-04-16 2012-06-27 ディ.ケイ. アンド イー.エル. マクフェイル エンタープライジーズ プロプライエタリー リミテッド 空洞構造を備えた、調節可能フォトニック結晶として使用される光学的活性素子の形成方法
US7418161B2 (en) * 2004-06-22 2008-08-26 Micron Technology, Inc. Photonic crystal-based optical elements for integrated circuits and methods therefor
JP4509892B2 (ja) * 2005-08-26 2010-07-21 浜松ホトニクス株式会社 光導波路基板及びその製造方法
JP5884030B2 (ja) * 2011-03-25 2016-03-15 パナソニックIpマネジメント株式会社 光電変換装置の製造方法
US10371890B2 (en) 2013-02-26 2019-08-06 Furukawa Electric Co., Ltd. Optical waveguide element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02110406A (ja) * 1988-10-19 1990-04-23 Fujitsu Ltd 光回路デバイスの形成方法
JP2004061905A (ja) * 2002-07-30 2004-02-26 Keio Gijuku 光学素子及びその光学素子を用いた装置
JP2004347759A (ja) * 2003-05-21 2004-12-09 Hitachi Cable Ltd 光通信用モジュール
JP2007187835A (ja) * 2006-01-12 2007-07-26 Ricoh Co Ltd 光処理素子および光処理装置
WO2012132907A1 (ja) * 2011-03-28 2012-10-04 古河電気工業株式会社 光導波路回路
JP2013210623A (ja) * 2012-02-28 2013-10-10 Furukawa Electric Co Ltd:The 光導波路素子およびその製造方法
JP2015219317A (ja) * 2014-05-15 2015-12-07 日本電信電話株式会社 偏波分離回路

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020105473A1 (ja) * 2018-11-22 2020-05-28 日本電信電話株式会社 光接続構造
JP2020086082A (ja) * 2018-11-22 2020-06-04 日本電信電話株式会社 光接続構造
US11960123B2 (en) 2018-11-22 2024-04-16 Nippon Telegraph And Telephone Corporation Optical interconnect structure

Also Published As

Publication number Publication date
US10564355B2 (en) 2020-02-18
US20190094463A1 (en) 2019-03-28
JP2017203879A (ja) 2017-11-16
JP6678510B2 (ja) 2020-04-08

Similar Documents

Publication Publication Date Title
US7272279B2 (en) Waveguide type optical branching device
US10564355B2 (en) Optical waveguide element
JP4842987B2 (ja) 光デバイス
JP2005508021A (ja) 光電力トランスバース伝送を用いた光接合装置及び方法
JP2014092759A (ja) 偏波制御素子
KR20200060718A (ko) 광자 집적 회로의 도파관에 광섬유의 자기 정렬 연결을 위한 방법 및 장치
US10007073B2 (en) Optical component including a high-relative-refractive-index-index-difference optical fiber a single-mode optical fiber an optical device and a fixing member to fix a relative opsition
JP2011102819A (ja) ハイブリッド集積光モジュール
US20190033521A1 (en) Optical waveguide structure and optical waveguide circuit
CN103339540A (zh) 波导型偏振分束器
JP2011039383A (ja) 偏波無依存型光波長フィルタ、光合分波素子及びマッハツェンダ干渉器
JP2017173710A (ja) 光ファイバ搭載光集積回路装置
WO2018135429A1 (ja) 交差光導波路構造及び光導波路素子
WO2019244554A1 (ja) 平面光波回路及び光デバイス
CN111801612A (zh) 光学连接部件
JP7107194B2 (ja) 光接続構造
WO2012144209A1 (ja) 光部品
WO2019117313A1 (ja) 光偏波素子およびその製造方法
JPH09159865A (ja) 光導波路の接続構造
Bourhis Fiber-to-waveguide connection
JP2020177109A (ja) 光90度ハイブリッド回路
JP6991259B2 (ja) 光導波路素子
WO2023218607A1 (ja) 光回路チップ
US20220350084A1 (en) Optical Connecting Structure
US9823417B2 (en) Waveguide polarizing optical device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17796174

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17796174

Country of ref document: EP

Kind code of ref document: A1