WO2017195308A1 - 波動歯車減速機を備えた回転アクチュエータ - Google Patents

波動歯車減速機を備えた回転アクチュエータ Download PDF

Info

Publication number
WO2017195308A1
WO2017195308A1 PCT/JP2016/064070 JP2016064070W WO2017195308A1 WO 2017195308 A1 WO2017195308 A1 WO 2017195308A1 JP 2016064070 W JP2016064070 W JP 2016064070W WO 2017195308 A1 WO2017195308 A1 WO 2017195308A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
wave
motor
output shaft
output
Prior art date
Application number
PCT/JP2016/064070
Other languages
English (en)
French (fr)
Inventor
中川 洋
大輔 矢口
Original Assignee
株式会社ハーモニック・ドライブ・システムズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ハーモニック・ドライブ・システムズ filed Critical 株式会社ハーモニック・ドライブ・システムズ
Priority to PCT/JP2016/064070 priority Critical patent/WO2017195308A1/ja
Priority to JP2018516276A priority patent/JP6563124B2/ja
Priority to EP16901656.5A priority patent/EP3456996B1/en
Priority to KR1020187033074A priority patent/KR102124165B1/ko
Priority to CN201680085309.2A priority patent/CN109154362B/zh
Priority to US16/091,203 priority patent/US10753427B2/en
Priority to TW106110848A priority patent/TWI711776B/zh
Publication of WO2017195308A1 publication Critical patent/WO2017195308A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • F16H49/001Wave gearings, e.g. harmonic drive transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/08Profiling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears

Definitions

  • the present invention relates to a rotary actuator provided with two wave gear reducers driven by a single motor.
  • a rotary actuator using a wave gear reducer is generally composed of a motor and a wave gear reducer, as proposed in Patent Documents 1 and 2.
  • the reduction gear unit disclosed in Patent Document 1 has a structure in which one motor and one cup wave gear reduction gear are connected in tandem.
  • the actuator disclosed in Patent Document 2 has a structure in which one hollow motor and one top hat wave gear reducer are connected in tandem.
  • Patent Document 3 proposes an actuator provided with two cup type or top hat type wave gear devices driven by one motor.
  • this actuator two output shafts are provided, and it is possible to output decelerated rotations at different reduction ratios from each output shaft.
  • the flexible external gear is bent into an elliptical shape by the wave generator, and at two places in the circumferential direction with respect to the rigid internal gear. It is engaged.
  • the wave generator is rotated by the motor, the meshing positions of both gears move in the circumferential direction, and each rotation of the wave generator causes relative rotation between both gears by the difference in the number of teeth of both gears.
  • the externally toothed gear having an elliptical shape the circumferential portions are repeatedly bent at a constant amplitude in the radial direction as the wave generator rotates.
  • the wave motion generated in such an external gear is vibration of two cycles per one rotation of the wave generator.
  • an angle transmission error occurs due to processing errors of the teeth of both gears, misalignment of the wave generator and both gears, and assembly errors such as inclination.
  • the vibration component representing the angle transmission error includes two cycles of vibration components per rotation of the wave generator, and this secondary vibration component has another order Greater than the vibrational component of
  • Such a vibration component causes resonance with a device in which the wave gear reducer is incorporated, and causes a positioning failure of a drive system, for example, a transport system.
  • a vibration component may make it impossible to realize a drive maintaining accuracy that meets the required level.
  • the rotary actuator provided with the wave gear reducer comprises: one motor; and two wave gears for decelerating the output rotation of the motor with the same reduction ratio and outputting from the one output shaft to the load side It has a reduction gear.
  • the wave generator flexes the flexible external gear into an elliptical shape, the external gear partially meshing with the rigid internal gear.
  • the wave generator is a rotational input member to which the output rotation of the motor is input, and one of the external gear and the internal gear is a rotational output member that outputs the decelerated rotation to the output shaft, and the external gear and the internal gear
  • the other one of the toothed gears is a stationary member fixed so as not to rotate. Further, the elliptical shape of the external gear of one wave gear reducer and the elliptical shape of the external gear of the other wave gear reducer are out of phase by 90 degrees.
  • the external gear is bent in a phase shift of 90 ° with each other in the two wave gear reducers.
  • secondary vibration components included in the angle transmission error generated in each of the wave gear reducers are in opposite phase. Since the reduction output rotation from each of the wave gear reducers is taken out to the load side via the same output shaft, the angular transmission error transmitted from each of the wave gear reducers to the output shaft is synthesized at the output shaft . Since the second-order vibration components included in the angle transfer error are in opposite phase, the second-order vibration components transmitted to the output shaft are combined and mutually offset to reduce the combined amplitude. As a result, it is possible to reduce the angle transmission error included in the output rotation taken out from the output shaft to the load side.
  • the decelerating rotation is output from the two wave gear reducers via one output shaft, a large output torque can be secured, and a rotary actuator having high moment capacity and high rigidity can be realized.
  • the wave gear reducer may be arranged in a symmetrical state, and one output shaft may be disposed through the hollow portion of the motor.
  • the motor is provided with a hollow motor shaft defining a motor hollow portion extending in the direction of its central axis.
  • the two wave gear reducers are referred to as first and second wave gear reducers, the wave generator of the first wave gear reducer, the external gear and the internal gear, the first wave generator, the first external gear What is called gear and first internal gear, and the wave generator, external gear and internal gear of the second wave gear reducer are called second wave generator, second external gear and second internal gear.
  • the first wave gear reducer is disposed on one first side in the direction of the central axis of the motor, and the second wave gear reducer on the other second side in the direction of the central axis Are arranged symmetrically with respect to the first wave gear reducer.
  • the output shaft extends through the motor hollow portion, a first output shaft end projecting from the motor hollow portion to the first side, and a second output shaft projecting to the second side from the motor hollow portion It has an end.
  • the first wave generator is coaxially connected to one first motor shaft end of the hollow motor shaft, and the second wave generator is coaxially connected to the other second motor shaft end of the hollow motor shaft.
  • the rotation output member of the first wave gear reduction gear is connected to rotate integrally with the first output shaft end, and the rotation output member of the second wave gear reduction gear is connected to the second output shaft end It is connected to rotate integrally.
  • a wave generator of a general wave gear reducer includes a rigid plug and a wave generator bearing mounted between an elliptical outer peripheral surface of the plug and an inner peripheral surface of an external gear.
  • the plugs of both wave gear reducers may be attached to the motor shaft in such a way that their elliptical outer peripheral surfaces are out of phase by 90 ° around the central axis as follows.
  • the first wave generator comprises a rigid first plug coaxially fixed to the first motor shaft end, and a first elliptical outer peripheral surface formed on the outer peripheral surface of the first plug.
  • a first wave generator bearing mounted between the inner circumferential surface of the first external gear.
  • the second wave generator includes a rigid second plug coaxially fixed to the second motor shaft end, and a second elliptical outer peripheral surface formed on the outer peripheral surface of the second plug and an inner periphery of the second external gear.
  • a second wave generator bearing mounted between the face and the face.
  • the first and second elliptical outer peripheral surfaces have the same shape, and the first and second elliptical outer peripheral surfaces are shifted by 90 ° around the central axis.
  • the plug is fixed to the hollow motor shaft.
  • a bearing for supporting the internal gear and the external gear in a relatively rotatable state is disposed.
  • the rigidity of the rotary actuator can be enhanced by supporting both ends of the output shaft by bearings of the wave gear reducer disposed on both sides of the motor.
  • the first wave gear reducer includes a first bearing that supports the first internal gear and the first external gear in a relatively rotatable state
  • the second wave gear reduction The machine includes a second bearing which supports the second internal gear and the second external gear in a relatively rotatable manner.
  • the first output shaft end is supported by the first bearing
  • the second output shaft end is supported by the second bearing.
  • the rotary actuator of the present invention can adopt the following structure. That is, the first and second plugs are hollow plugs, and the first end plate is fixed to the first output shaft end projecting from the hollow portion of the first plug to the first side.
  • the fixed side member of the first wave gear reducer is called the first fixed side member
  • the fixed side member of the second wave gear reducer is called the second fixed side member
  • the inner ring and the outer ring of the first bearing are the first inner ring and
  • the first outer ring is called the first outer ring
  • the inner and outer rings of the second bearing are called the second inner ring and the second outer ring
  • the first end plate is fixed to the first inner ring, or the first end plate and the first inner ring are fixed.
  • the first inner ring is connected to rotate integrally with the first rotation output member, or the first inner ring and the first rotation output member are formed of a single member.
  • a second end plate is fixed to the second output shaft end projecting from the hollow portion of the second plug to the second side, and the second end plate is fixed to the second inner ring, or The end plate and the second inner ring are formed of a single member.
  • the second inner ring is connected to rotate integrally with the second rotation output member, or the second inner ring and the second rotation output member are formed of a single member.
  • any of a cup type wave gear reducer, a top hat type wave gear reducer and a flat type wave gear reducer can be used as the wave gear reducer.
  • FIG. 1 is a schematic vertical sectional view and a schematic view showing a rotary actuator according to a first embodiment to which the present invention is applied. It is a schematic longitudinal cross-sectional view which shows the rotary actuator concerning Embodiment 2 which applied this invention. It is a schematic longitudinal cross-sectional view which shows the rotary actuator which concerns on Embodiment 3 to which this invention is applied.
  • FIG. 1 (A) is a schematic longitudinal sectional view showing a rotary actuator according to Embodiment 1.
  • the rotary actuator 1 includes one hollow motor 2, two cup-shaped first and second wave gear reducers 3 and 4, and one output shaft 5.
  • the first and second wave gear reducers 3 and 4 are wave gear reducers of the same structure having the same reduction ratio, and are disposed symmetrically with respect to the motor 2 in the direction of the central axis 1a.
  • the output shaft 5 is a member for taking out the reduced rotation output from the first and second wave gear reducers 3 and 4 to the load (not shown) side.
  • the cup-shaped flexible first external gear 32 is bent into an elliptical shape by the first wave generator 31, and the first external gear 32 is rigid. It partially meshes with the first internal gear 33.
  • the first wave generator 31 is a rotation input member to which the output rotation of the motor 2 is input, and the first internal gear 33 is a fixed side member fixed to the side of the housing 6 so as not to rotate.
  • the first external gear 32 is a rotation output member that outputs the decelerated rotation to the output shaft 5 and the first internal gear 33 (with respect to the housing 6 to which the first internal gear 33 is fixed.
  • the first bearing which in this example is a cross roller bearing 7, is rotatably supported.
  • the cup-shaped flexible second external gear 42 is bent into an elliptical shape by the second wave generator 41, and the second external gear 42 is deformed. Is partially meshed with the rigid second internal gear 43.
  • the second wave generator 41 is a rotation input member to which the output rotation of the motor 2 is input, and the second internal gear 43 is a fixed side member fixed to the side of the housing 6 so as not to rotate.
  • the first external gear 32 is a rotation output member that outputs the decelerated rotation to the output shaft 5 and the second internal gear 43 (with respect to the housing 6 to which the second internal gear 43 is fixed.
  • second bearing in this example, the cross roller bearing 8, is rotatably supported.
  • each part of the rotary actuator 1 will be further described.
  • the side of the first wave gear reducer 3 is referred to as a first side
  • the side of the second wave gear reducer 4 is referred to as a second side.
  • the hollow motor 2 includes a stator 21 attached to the inner periphery of the cylindrical portion 61 of the housing 6 and a hollow rotor 22 coaxially disposed inside the stator 21.
  • a hollow motor shaft 23 is integrally formed with the hollow rotor 22.
  • a motor hollow portion 24 extending in the direction of the central axis 1a is formed.
  • the hollow motor shaft 23 is formed with a first hollow motor shaft 25 extending from the hollow rotor 22 to the first side and a second hollow motor shaft 26 extending to the second side.
  • the output shaft 5 extends through the motor hollow portion 24 coaxially with the hollow motor shaft 23.
  • the first output shaft end 51 of the output shaft 5 projects from the motor hollow portion 24 to the first side on the side of the first hollow motor shaft portion 25, and the large diameter at the first output shaft end 51
  • the first output flange 52 is integrally formed.
  • the second output shaft end 53 of the output shaft 5 protrudes from the motor hollow portion 24 to the second side on the side of the second hollow motor shaft portion 26.
  • a large diameter annular second output flange 54 is attached to the second output shaft end 53.
  • the first wave generator 31 is coaxially fixed to a first motor shaft end 25 a which is a shaft end of the hollow motor shaft 23 on the side of the first hollow motor shaft 25. ing.
  • the first wave generator 31 is mounted on the rigid first plug 31a coaxially fixed to the end face of the first motor shaft end 25a and the first elliptical outer peripheral surface 31b formed on the outer peripheral surface of the first plug 31a And a wave generator bearing 31c.
  • a cup-shaped first external gear 32 is formed on a cylindrical body 32a, a diaphragm 32b extending radially inward from a first end of the cylindrical body 32a, and an inner peripheral edge of the diaphragm 32b. And an external tooth 32d formed on the outer peripheral surface portion of the other end of the cylindrical body portion 32a.
  • the first wave generator 31 is mounted inside the portion of the first external gear 32 where the external teeth 32 d are formed.
  • the boss 32 c of the first external gear 32 is sandwiched between an annular portion 72 integrally formed on the inner peripheral portion of the inner ring 71 of the cross roller bearing 7 and the annular pressing member 9, in this state
  • the three members are fastened and fixed by fastening bolts.
  • the annular portion 72 of the inner ring 71 is fastened and fixed to the first output flange 52 of the first output shaft end 51 of the output shaft 5 by a fastening bolt.
  • the first external gear 32 is coupled to the first output shaft end 51 of the output shaft 5 so as to rotate integrally.
  • the first internal gear 33 is disposed to surround a portion of the external gear 32 d of the first external gear 32.
  • the portion on the outer peripheral side of the first internal gear 33 is sandwiched between the outer ring 73 of the cross roller bearing 7 and the housing 6, and is fastened and fixed to these fixed members.
  • the side of the second wave gear reducer 4 is similarly configured. That is, the second wave generator 41 is coaxially fixed to the second motor shaft end 26 a which is a shaft end of the hollow motor shaft 23 on the second hollow motor shaft 26 side.
  • the second wave generator 41 is mounted on the rigid second plug 41a coaxially fixed to the end face of the second motor shaft end 26a and the second elliptical outer peripheral surface 41b formed on the outer peripheral surface of the second plug 41a.
  • a wave generator bearing 41c is provided on the rigid second plug 41a coaxially fixed to the end face of the second motor shaft end 26a and the second elliptical outer peripheral surface 41b formed on the outer peripheral surface of the second plug 41a.
  • a cup-shaped second external gear 42 is formed on a cylindrical body 42a, a diaphragm 42b extending radially inward from the second end of the cylindrical body 42a, and an inner peripheral edge of the diaphragm 42b. And an external tooth 42d formed on the outer peripheral surface portion of the other end of the cylindrical body portion 42a.
  • the second wave generator 41 is mounted inside the portion of the second external gear 42 where the external teeth 42 d are formed.
  • the boss 42 c of the second external gear 42 is sandwiched between an annular portion 82 integrally formed on the inner peripheral portion of the inner ring 81 of the cross roller bearing 8 and the annular pressing member 11, in this state
  • the three members are fastened and fixed by fastening bolts.
  • the annular portion 82 of the inner ring 81 is fastened and fixed to the second output flange 54 attached to the second output shaft end 53 of the output shaft 5 by a fastening bolt.
  • the second external gear 42 is connected to the second output shaft end 53 of the output shaft 5 so as to rotate integrally.
  • the second internal gear 43 is disposed to surround a portion of the external gear 42 d of the second external gear 42. A portion on the outer peripheral side of the second internal gear 43 is sandwiched between the outer ring 83 of the cross roller bearing 8 and the housing 6 and is fastened and fixed to the outer ring 83 and the housing 6.
  • the elliptical shape of the first external gear 32 deflected by the first wave generator 31 in the first wave gear reducer 3 and the second wave generator 41 in the other second wave gear reducer 4 is the same.
  • these elliptical shapes are out of phase with each other by 90 ° around the central axis 1a.
  • the first and second wave generators 31, 41 are configured as follows.
  • the 1st elliptical outer peripheral surface 31b of the 1st wave generator 31 and the 2nd elliptical outer peripheral surface 41b of the 2nd wave generator 41 are the same shape.
  • the first and second plugs 31a and 41a are disposed at the first position of the hollow motor shaft 23 so that the first and second elliptical outer peripheral surfaces 31b and 41b are 90 ° out of phase with each other about the central axis 1a.
  • the first motor shaft end 25a and the second motor shaft end 26a are respectively fixed.
  • the first and second wave generators 31, 41 of the first and second wave gear reducers 3, 4 on both sides are hollow motor shafts. Rotates in unison with 23.
  • the first and second wave generators 31 and 41 between the first external gear 32 and the first internal gear 33 and between the second external gear 42 and the second internal gear 43, Each relative rotation occurs.
  • the first and second internal gear wheels 33 and 43 are fixed side members, the same reduced rotational speed is output from the first and second external gear wheels 32 and 42 which are rotation output members. It is transmitted to the output shaft 5.
  • the rotation of the output shaft 5 can be output to the load side (not shown) from the first output flange 52 and the second output flange 54 at both ends thereof.
  • the first and second wave generators 31, 41 of the first and second wave gear reducers 3, 4 are hollow motors with the phases of the first and second elliptical outer peripheral surfaces 31b, 41b shifted by 90 °. It is attached to the shaft 23. Therefore, the second-order vibration components included in the angle transmission errors generated in the first and second wave gear reducers 3 and 4 occur in opposite phase to each other. Since these angular transmission errors are transmitted to and combined with the common output shaft 5, the second-order vibration component included in the angular transmission errors is canceled out. Therefore, it is possible to reduce the angle transmission error included in the decelerated rotation transmitted from the output shaft 5 to the load side.
  • the decelerating rotation is output from the two wave gear reducers via one output shaft, a large output torque can be secured, and a rotary actuator having high moment capacity and high rigidity can be realized.
  • FIG. 2 is a schematic longitudinal sectional view showing a rotary actuator according to a second embodiment.
  • the rotary actuator 101 includes one hollow motor 120, two top hat type first and second wave gear reducers 130 and 140, and one output shaft 150.
  • the first and second wave gear reducers 130 and 140 are wave gear reducers of the same structure having the same reduction ratio, and are disposed symmetrically with respect to the motor 120 in the direction of the central axis 101a.
  • the output shaft 150 is a member for taking out the reduced rotation output from the first and second wave gear reducers 130 and 140 to the load (not shown) side.
  • the flexible first external gear 132 in the shape of a top hat is bent into an elliptical shape by the first wave generator 131, and the first external gear 132 is rigid.
  • the first internal gear 133 is partially engaged with the first internal gear 133.
  • the first wave generator 131 is a rotation input member to which the output rotation of the motor 120 is input, and the first external gear 132 is a fixed side member fixed to the side of the housing 160 so as not to rotate.
  • the first internal gear 133 is a rotation output member that outputs the decelerated rotation to the output shaft 150, and the first external gear 132 is rotated relative to the housing 160 to which the first external gear 132 is fixed.
  • the first bearing which in this example is a cross roller bearing 170, is rotatably supported.
  • the second wave generator 141 bends the flexible second external gear 142 in the shape of a top hat into an elliptical shape, and the second external gear 142 is rigid.
  • the second internal gear 143 is partially engaged with the second internal gear 143.
  • the second wave generator 141 is a rotation input member to which the output rotation of the motor 2 is input, and the second external gear 142 is a fixed side member fixed to the side of the housing 160 so as not to rotate.
  • the second internal gear 143 is a rotation output member that outputs the decelerated rotation to the output shaft 150, and the second external gear 142 (with respect to the housing 160 to which the second external gear 142 is fixed).
  • the second bearing which in this example is a cross roller bearing 180, is rotatably supported.
  • the side of the first wave gear reducer 130 is referred to as a first side
  • the side of the second wave gear reducer 140 is referred to as a second side.
  • the hollow motor 120 includes a stator 121 attached to the inner periphery of the cylindrical portion 161 of the housing 160, and a hollow rotor 122 coaxially disposed inside the stator.
  • a hollow motor shaft 123 is integrally formed with the hollow rotor 122.
  • a motor hollow portion 124 extending in the direction of the central axis 101a is formed.
  • the hollow motor shaft 123 is formed with a first hollow motor shaft 125 extending from the hollow rotor 122 to the first side, and a second hollow motor shaft 126 extending to the second side.
  • the output shaft 150 extends through the motor hollow portion 124 coaxially with the hollow motor shaft 123.
  • the first output shaft end 151 of the output shaft 150 projects from the motor hollow portion 124 to the first side on the side of the first hollow motor shaft portion 125, and the large diameter at the first output shaft end 151
  • the first output flange 152 is coaxially fixed.
  • the second output shaft end portion 153 of the output shaft 150 projects from the motor hollow portion 124 to the second side on the side of the second hollow motor shaft portion 126.
  • a large diameter second output flange 154 is attached to the second output shaft end portion 153.
  • the first wave generator 131 is coaxially fixed to a first motor shaft end 125a which is a shaft end of the hollow motor shaft 123 on the side of the first hollow motor shaft 125. ing.
  • the first wave generator 131 is mounted on the rigid first plug 131a coaxially fixed to the end face of the first motor shaft end 125a and the first elliptical outer peripheral surface 131b formed on the outer peripheral surface of the first plug 131a And a wave generator bearing 131c.
  • the first plug 131a is a hollow plug, and the first output shaft end 151 of the output shaft 150 protrudes to the first side through the hollow portion.
  • the top hat shaped first external gear 132 comprises a cylindrical body 132a, a diaphragm 132b extending radially outward from the second side end of the cylindrical body 132a, and an outer peripheral edge of the diaphragm 132b.
  • a rigid annular boss 132c is formed, and an external tooth 132d is formed on the outer peripheral surface portion of the other end of the cylindrical barrel 132a.
  • a first wave generator 131 is mounted inside the portion of the first external gear 132 where the external teeth 132 d are formed.
  • the boss 132 c of the first external gear 132 which is a fixed side member, is sandwiched between the end face of the outer ring 171 of the cross roller bearing 170 and the end face of the housing 160. In this state, the three members are fastened and fixed by fastening bolts.
  • the first internal gear 133 which is a rotational output member, is disposed so as to surround the portion of the external gear 132d of the first external gear 132.
  • the first internal gear 133 is integrally formed on the inner peripheral portion of the inner ring 173 of the cross roller bearing 170.
  • a first output flange 152 is coaxially fixed to the end face on the first side of the inner ring 173 by a fastening bolt.
  • the second wave generator 141 is coaxially fixed to a second motor shaft end 126 a which is a shaft end of the hollow motor shaft 123 on the second hollow motor shaft 126 side.
  • the second wave generator 141 is mounted on the rigid second plug 141a coaxially fixed to the end face of the second motor shaft end 126a and the second elliptical outer peripheral surface 141b formed on the outer peripheral surface of the second plug 141a.
  • a wave generator bearing 141c is a hollow plug, and the second output shaft end 153 of the output shaft 150 protrudes to the second side through the hollow portion.
  • the second external gear 142 in the shape of a top hat has a cylindrical body 142a, a diaphragm 142b extending radially outward from the first end of the cylindrical body 142a, and an outer peripheral edge of the diaphragm 142b.
  • a rigid annular boss 142c is formed, and an external tooth 142d formed on the outer peripheral surface portion of the other end of the cylindrical body 142a.
  • a second wave generator 141 is mounted inside the portion of the second external gear 142 where the external teeth 142d are formed.
  • the boss 142c of the second external gear 142 which is a fixed side member, is sandwiched between the end face of the outer ring 181 of the cross roller bearing 180 and the end face of the housing 160. In this state, the three members are fastened by fastening bolts. It is fixed.
  • the second internal gear 143 which is a rotational output member, is disposed so as to surround a portion of the external gear 142d of the second external gear 142.
  • the second internal gear 143 is integrally formed on the inner peripheral portion of the inner ring 183 of the cross roller bearing 180.
  • a second output flange 154 is coaxially fixed to the end face on the second side of the inner ring 183 by a fastening bolt.
  • the elliptical shape of the first external gear 132 deflected by the first wave generator 131 in the first wave gear reducer 130 and the second wave generator 141 in the other second wave gear reducer 140 The elliptical shape of the second external gear 142 to be bent is the same. Further, these elliptical shapes are out of phase with each other by 90 ° around the central axis line 101a.
  • first elliptical outer peripheral surface 131 b of the first wave generator 131 and the second elliptical outer peripheral surface 141 b of the second wave generator 141 have the same shape.
  • first and second plugs 131a and 141a are disposed at the first position of the hollow motor shaft 123 so that the first and second elliptical outer peripheral surfaces 131b and 141b are 90 ° out of phase with each other about the central axis 101a.
  • the first motor shaft end 125a and the second motor shaft end 126a are respectively fixed.
  • the first and second wave generators 131 and 141 of the first and second wave gear reducers 130 and 140 on both sides are hollow motor shafts. It rotates integrally with 123.
  • the first and second wave generators 131 and 141 between the first external gear 132 and the first internal gear 133, and between the second external gear 142 and the second internal gear 143, Each relative rotation occurs.
  • the first and second external gears 132 and 142 are fixed side members, the reduced rotation of the same number of rotations is output from the first and second internal gears 133 and 143 which are rotation output members, and the common external It is transmitted to the output shaft 150.
  • the rotation of the output shaft 150 can be output from the first output flange 152 and the second output flange 154 at both ends thereof to the load side (not shown).
  • the first and second wave generators 131 and 141 of the second wave gear reducer 130 and 140 have the hollow motor shaft 123 with the first and second elliptical outer peripheral surfaces 131b and 141b shifted in phase by 90 °. It is attached. Therefore, the second-order vibration components included in the vibration components of the angle transmission error generated in the first and second wave gear reducers 130 and 140 are generated in mutually opposite phases. Since these angle transmission errors are transmitted to and combined with the common output shaft 150, the second-order vibration component included in the angle transmission errors is canceled out. Therefore, the angle transmission error included in the decelerating rotation output from the output shaft 150 can be reduced.
  • the decelerating rotation is output from the two wave gear reducers via one output shaft, a large output torque can be secured, and a rotary actuator having high moment capacity and high rigidity can be realized.
  • FIG. 3 is a schematic longitudinal sectional view showing a rotary actuator according to a third embodiment.
  • the rotary actuator 201 includes one hollow motor 220, two flat first and second wave gear reducers 230 and 240, and one output shaft 250.
  • the first and second wave gear reducers 230 and 240 are wave gear reducers of the same structure having the same reduction ratio, and are disposed symmetrically with respect to the motor 220 in the direction of the central axis 201a.
  • the output shaft 250 is a member for taking out the reduced rotation output from the first and second wave gear reducers 230 and 240 to the load (not shown) side.
  • the first wave generator 231 bends the cylindrical flexible first external gear 232 into an elliptical shape, and the first external gear 232 is rigid.
  • the first internal gear 233 and the first internal gear 234 are partially meshed with each other.
  • the first wave generator 231 is a rotary input member to which the output rotation of the motor 220 is input.
  • the first external gear 232 is a decelerating rotation output member, and is different from the first stationary internal gear 233 in the number of teeth by 2 n (n: positive integer), and is different from the first drive internal gear 234
  • the numbers are identical.
  • the first external gear 232 rotates integrally with the first drive-side internal gear 234.
  • the first stationary side internal gear 233 is a stationary side member.
  • the first external gear 232 and the first drive-side internal gear 234, which are integrally rotated, are fixed to the first stationary-side internal gear 233 (with respect to the housing 260 to which the first stationary-side internal gear 233 is fixed. ), And is rotatably supported via a first bearing, in this example, a cross roller bearing 270.
  • the second wave generator 241 bends the cylindrical flexible second external gear 242 into an elliptical shape, and the second external gear 242 It partially meshes with both the rigid second stationary side internal gear 243 and the second drive side internal gear 244.
  • the second wave generator 241 is a rotary input member to which the output rotation of the motor 220 is input.
  • the second external gear 242 is a decelerating rotation output member, and rotates integrally with the second drive side internal gear 244.
  • the second stationary side internal gear 243 is a stationary side member.
  • the side of the first wave gear reducer 230 is referred to as the first side
  • the side of the second wave gear reducer 240 is referred to as the second side.
  • the hollow motor 220 includes a stator 221 attached to the inner periphery of the cylindrical portion 261 of the housing 260, and a hollow rotor 222 coaxially disposed inside the stator.
  • a hollow motor shaft 223 is integrally formed with the hollow rotor 222.
  • a motor hollow portion 224 extending in the direction of the central axis 201a is formed.
  • the hollow motor shaft 223 is formed with a first hollow motor shaft 225 extending from the hollow rotor 222 to the first side and a second hollow motor shaft 226 extending to the second side.
  • the output shaft 250 extends through the motor hollow portion 224 coaxially with the hollow motor shaft 223.
  • the first output shaft end 251 of the output shaft 250 projects from the motor hollow portion 224 to the first side on the side of the first hollow motor shaft portion 225, and the large diameter at the first output shaft end 251
  • the first output flange 252 is integrally formed.
  • the second output shaft end portion 253 of the output shaft 250 protrudes from the motor hollow portion 224 to the second side on the side of the second hollow motor shaft portion 226.
  • a large diameter second output flange 254 is attached to the second output shaft end 253.
  • the first wave generator 231 is coaxially fixed to a first motor shaft end 225a which is a shaft end of the hollow motor shaft 223 on the side of the first hollow motor shaft 225. ing.
  • the first wave generator 231 is mounted on the rigid first plug 231a coaxially fixed to the end face of the first motor shaft end 225a and the first elliptical outer peripheral surface 231b formed on the outer peripheral surface of the first plug 231a And a wave generator bearing 231c.
  • the first plug 231a is a hollow plug, and the first output shaft end 251 of the output shaft 250 protrudes to the first side through the hollow portion.
  • the first external gear 232 includes a cylindrical body 232a and external teeth 232d formed on the outer peripheral surface of the cylindrical body 232a.
  • the first wave generator 231 is attached to the inside of the first external gear 232.
  • the first stationary side internal gear 233 which is a stationary member, is disposed to surround the second side of the first external gear 232.
  • the first stationary side internal gear 233 is sandwiched between the end face of the outer ring 271 of the cross roller bearing 270 and the end face of the housing 260. In this state, the three members are fastened and fixed by fastening bolts.
  • the first drive side internal gear 234 is integrally formed on the inner ring 273 of the cross roller bearing 270. Further, an annular portion 274 extending to the inner peripheral side is integrally formed on the inner ring 273, and the annular portion 274 is coaxially fixed to the first output flange 252 by a fastening bolt.
  • the side of the second wave gear reducer 240 is similarly configured. That is, the second wave generator 241 is coaxially fixed to a second motor shaft end 226 a which is a shaft end of the hollow motor shaft 223 on the second hollow motor shaft 226 side.
  • the second wave generator 241 is mounted on the rigid second plug 241a coaxially fixed to the end face of the second motor shaft end 226a and the second elliptical outer peripheral surface 241b formed on the outer peripheral surface of the second plug 241a.
  • a wave generator bearing 241c is a hollow plug through which the second output shaft end 253 of the output shaft 250 protrudes to the second side.
  • the second external gear 242 includes a cylindrical body 242 a and external teeth 242 d formed on the outer peripheral surface of the cylindrical body 242 a.
  • the second wave generator 241 is attached to the inside of the second external gear 242.
  • the second stationary side internal gear 243 which is a fixed side member, is arranged to surround the first side portion of the second external gear 242.
  • the second stationary side internal gear 243 is sandwiched between the end face of the outer ring 281 of the cross roller bearing 280 and the end face of the housing 260, and in this state, the three members are fastened and fixed by fastening bolts.
  • the second drive-side internal gear 244 which is a rotational output member, is disposed so as to surround a portion on the second side of the second external gear 242.
  • the second drive side internal gear 244 is integrally formed on the inner ring 283 of the cross roller bearing 280. Further, a ring portion 284 extending to the inner peripheral side is integrally formed on the inner ring 283, and the ring portion 284 is coaxially fixed to the second output flange 254 by a fastening bolt.
  • the elliptical shape of the first external gear 232 deflected by the first wave generator 231 in the first wave gear reducer 230 and the second wave generator 241 in the other second wave gear reducer 240 are the same, and the elliptical shapes are out of phase with each other by 90 ° around the central axis 201a.
  • first elliptical outer peripheral surface 231b of the first wave generator 231 and the second elliptical outer peripheral surface 241b of the second wave generator 241 have the same shape.
  • first and second plugs 231a and 241a are disposed at the first position of the hollow motor shaft 223 so that the first and second elliptical outer peripheral surfaces 231b and 241b are 90 ° out of phase with each other about the central axis 201a.
  • the first motor shaft end 225a and the second motor shaft end 226a are fixed.
  • the first and second wave generators 231, 241 of the first and second wave gear reducers 230, 240 on both sides are hollow motor shafts. It rotates in unison with 223.
  • the decelerated rotation having the same number of rotations is output from the first and second drive side internal gears 234 and 244, which are rotation output members, and transmitted to the common output shaft 250.
  • the rotation of the output shaft 250 can be output from the first output flange 252 and the second output flange 254 at both ends thereof to the load side (not shown).
  • the first and second wave generators 231, 241 of the second wave gear reducer 230, 240 are mounted on the hollow motor shaft 223 in a state where the phases of the first and second elliptical outer peripheral surfaces 231b, 241b are shifted by 90 °. It is attached. Therefore, the second-order vibration components included in the vibration components of the angle transmission error generated in the first and second wave gear reducers 230 and 240 are generated in mutually opposite phases. Since these angular transmission errors are transmitted to and combined with the common output shaft 250, second-order vibration components included in the angular transmission errors are canceled out. Therefore, the angle transmission error included in the decelerating rotation output from the output shaft 250 can be reduced.
  • the decelerating rotation is output from the two wave gear reducers via one output shaft, a large output torque can be secured, and a rotary actuator having high moment capacity and high rigidity can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Retarders (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

回転アクチュエータ(1)は、1台のモータ(2)と、その両側に対称に配置した2台の波動歯車減速機(3、4)と、1本の出力軸(5)とを有している。モータ(2)の出力回転が、2台の波動歯車減速機(3、4)によって同一の減速比で減速されて、1本の出力軸(5)から負荷側に出力される。第1、第2波動歯車減速機(3、4)の第1、第2外歯歯車(32、42)は、位相が90°ずれた楕円状形状に撓められて第1、第2内歯歯車(33、44)にかみ合う。出力軸(5)において、当該出力軸(5)に伝達される第1、第2波動歯車減速機(3、4)の角度伝達誤差は相殺されて低減される。出力軸(5)から角度伝達誤差が低減された減速出力回転が負荷側に出力される。

Description

波動歯車減速機を備えた回転アクチュエータ
 本発明は、1台のモータによって駆動される2台の波動歯車減速機を備えた回転アクチュエータに関する。
 波動歯車減速機を用いた回転アクチュエータは、特許文献1、2において提案されているように、一般に1台のモータと1台の波動歯車減速機から構成されている。特許文献1に開示の減速機ユニットでは、1台のモータと1台のカップ型波動歯車減速機とがタンデムに連結された構造をしている。特許文献2に開示のアクチュエータでは、1台の中空モータと1台のシルクハット型波動歯車減速機とがタンデムに連結された構造をしている。
 これに対して、特許文献3には、1台のモータによって駆動される2台のカップ型あるいはシルクハット型の波動歯車装置を備えたアクチュエータが提案されている。このアクチュエータでは、2本の出力軸を備えており、各出力軸から、異なる減速比で減速された回転を出力可能である。
特開2007-321879号公報 特許第4833028号公報 特開平10-311385号公報
 これらのアクチュエータに用いる波動歯車減速機においては、一般に、波動発生器によって可撓性の外歯歯車が楕円状形状に撓められて、剛性の内歯歯車に対して円周方向の2箇所でかみ合っている。モータによって波動発生器を回転させると、両歯車のかみ合い位置が円周方向に移動し、波動発生器が1回転する毎に、両歯車の歯数差分だけ両歯車の間に相対回転が生じる。楕円状形状に撓められた外歯歯車においては、その円周方向の各部分は、波動発生器の回転に伴って半径方向に一定の振幅で繰り返し撓められる。このような外歯歯車に生じる波動運動は波動発生器1回転につき2周期の振動である。
 波動歯車減速機においては、両歯車の歯部の加工誤差、波動発生器および両歯車の芯ずれ、傾きなどの組み付け誤差などに起因して、角度伝達誤差が生じる。外歯歯車が楕円状に撓められる波動歯車減速機においては、角度伝達誤差を表す振動成分には波動発生器1回転につき2周期の振動成分が含まれ、この2次振動成分は他の次数の振動成分よりも大きい。このような振動成分は、波動歯車減速機が組み込まれた装置との共振を引き起こし、駆動系、例えば搬送系の位置決め不良などの原因となる。また、高精度の運動軌跡が要求される用途においては、このような振動成分が原因となって、要求レベルを満たす精度を維持した駆動を実現できないことがある。
 本発明の課題は、このような点に鑑みて、波動発生器1回転につき2周期で発生する角度伝達誤差成分を抑制可能な波動歯車減速機を備えた回転アクチュエータを提供することにある。
 本発明の波動歯車減速機を備えた回転アクチュエータは、1台のモータと、このモータの出力回転を同一の減速比で減速して1本の出力軸から負荷側に出力する2台の波動歯車減速機とを有している。波動歯車減速機のそれぞれにおいて、波動発生器によって可撓性の外歯歯車が楕円状形状に撓められ、当該外歯歯車が剛性の内歯歯車に対して部分的にかみ合っている。波動発生器はモータの出力回転が入力される回転入力部材であり、外歯歯車および内歯歯車のうちの一方は、出力軸に減速回転を出力する回転出力部材であり、外歯歯車および内歯歯車のうちの他方は、回転しないように固定されている固定側部材である。また、一方の波動歯車減速機の外歯歯車の楕円状形状と、他方の波動歯車減速機の外歯歯車の楕円状形状とは位相が90°ずれている。
 本発明の回転アクチュエータでは、2台の波動歯車減速機において相互に位相が90°ずれた状態で外歯歯車が撓められる。これにより、波動歯車減速機のそれぞれにおいて発生する角度伝達誤差に含まれる2次の振動成分は逆位相になる。波動歯車減速機のそれぞれからの減速出力回転は、同一の出力軸を介して負荷側に取り出されるので、波動歯車減速機のそれぞれから出力軸に伝達される角度伝達誤差は出力軸において合成される。角度伝達誤差に含まれている2次の振動成分は逆位相となっているので、出力軸に伝達された2次の振動成分は合成されて相互に相殺されて、その合成振幅が小さくなる。この結果、出力軸から負荷側に取り出される出力回転に含まれる角度伝達誤差を低減できる。
 また、2台の波動歯車減速機から1本の出力軸を介して減速回転を出力しているので、大きな出力トルクを確保でき、モーメント容量および剛性の高い回転アクチュエータを実現できる。
 本発明において、2台の波動歯車減速機から出力される減速回転を、1本の出力軸を介して負荷側に取り出すためには、次のように、中空型のモータを挟み、2台の波動歯車減速機を左右対称の状態に配列し、モータの中空部を通して1本の出力軸を配置すればよい。
 すなわち、本発明の回転アクチュエータにおいて、モータは、その中心軸線の方向に貫通して延びるモータ中空部を規定している中空モータ軸を備えている。2台の波動歯車減速機を第1、第2波動歯車減速機と呼び、第1波動歯車減速機の波動発生器、外歯歯車および内歯歯車を、第1波動発生器、第1外歯歯車および第1内歯歯車と呼び、第2波動歯車減速機の波動発生器、外歯歯車および内歯歯車を、第2波動発生器、第2外歯歯車および第2内歯歯車と呼ぶものとすると、モータに対して当該モータの中心軸線の方向における一方の第1の側に第1波動歯車減速機が配置され、中心軸線の方向における他方の第2の側に第2波動歯車減速機が前記第1波動歯車減速機に対して左右対称な状態に配置されている。出力軸は、モータ中空部を貫通して延びており、モータ中空部から第1の側に突出している第1出力軸端部およびモータ中空部から第2の側に突出している第2出力軸端部を備えている。第1波動発生器は中空モータ軸の一方の第1モータ軸端部に同軸に連結され、第2波動発生器は中空モータ軸の他方の第2モータ軸端部に同軸に連結されている。第1波動歯車減速機の回転出力部材は第1出力軸端部に対して一体回転するように連結されており、第2波動歯車減速機の回転出力部材は第2出力軸端部に対して一体回転するように連結されている。
 一般的な波動歯車減速機の波動発生器は、剛性のプラグと、このプラグの楕円状外周面と外歯歯車の内周面との間に装着される波動発生器軸受とを備えている。この場合には、次のように、双方の波動歯車減速機のプラグを、それらの楕円状外周面が中心軸線回りに位相が90°ずれた状態となるように、モータ軸に取り付ければよい。
 すなわち、本発明の回転アクチュエータにおいて、第1波動発生器は、第1モータ軸端部に同軸に固定した剛性の第1プラグ、および、第1プラグの外周面に形成した第1楕円状外周面と第1外歯歯車の内周面との間に装着されている第1波動発生器軸受を備えている。第2波動発生器は、第2モータ軸端部に同軸に固定した剛性の第2プラグ、および、第2プラグの外周面に形成した第2楕円状外周面と第2外歯歯車の内周面との間に装着されている第2波動発生器軸受を備えている。第1楕円状外周面と第2楕円状外周面は同一形状であり、第1、第2楕円状外周面が中心軸線回りに位相が90°ずれた状態となるように、第1、第2プラグが中空モータ軸に固定されている。
 波動歯車減速機には、内歯歯車と外歯歯車を相対回転可能な状態で支持するための軸受が配置される。モータの両側に配置される波動歯車減速機の軸受によって、出力軸の両端を支持することより、回転アクチュエータの剛性を高めることができる。
 すなわち、本発明の回転アクチュエータにおいて、第1波動歯車減速機は、第1内歯歯車と第1外歯歯車を相対回転可能な状態で支持している第1軸受を備え、第2波動歯車減速機は、第2内歯歯車と第2外歯歯車を相対回転可能な状態で支持している第2軸受を備えている。第1出力軸端部は第1軸受によって支持され、第2出力軸端部は第2軸受によって支持されている。
 この場合、本発明の回転アクチュエータは次の構造を採用することができる。すなわち、第1、第2プラグは中空プラグであり、第1プラグの中空部から第1の側に突出している前記第1出力軸端部には、第1端板が固定されている。第1波動歯車減速機の固定側部材を第1固定側部材と呼び、第2波動歯車減速機の固定側部材を第2固定側部材と呼び、第1軸受の内輪および外輪を第1内輪および第1外輪と呼び、第2軸受の内輪および外輪を第2内輪および第2外輪と呼ぶものとすると、第1端板は第1内輪に固定され、あるいは、第1端板と第1内輪が単一部材から形成されている。第1内輪は第1回転出力部材に対して一体回転するように連結され、あるいは、第1内輪と第1回転出力部材が単一部材から形成されている。第2プラグの中空部から第2の側に突出している第2出力軸端部には、第2端板が固定されており、第2端板は第2内輪に固定され、あるいは、第2端板と第2内輪が単一部材から形成されている。第2内輪は、第2回転出力部材に対して一体回転するように連結され、あるいは、第2内輪と第2回転出力部材が単一部材から形成されている。
 本発明において、波動歯車減速機として、カップ型波動歯車減速機、シルクハット型波動歯車減速機およびフラット型波動歯車減速機のいずれかを用いることができる。
本発明を適応した実施の形態1に係る回転アクチュエータを示す概略縦断面図および模式図である。 本発明を適応した実施の形態2に係る回転アクチュエータを示す概略縦断面図である。 本発明を適応した実施の形態3に係る回転アクチュエータを示す概略縦断面図である。
 以下に、図面を参照して本発明を適用した回転アクチュエータの実施の形態を説明する。
[実施の形態1]
 図1(A)は実施の形態1に係る回転アクチュータを示す概略縦断面図である。回転アクチュエータ1は、1台の中空型のモータ2と、2台のカップ型の第1、第2波動歯車減速機3、4と、1本の出力軸5とを備えている。第1、第2波動歯車減速機3、4は同一の減速比を備えた同一構造の波動歯車減速機であり、中心軸線1aの方向において、モータ2を挟み、左右対称に配置されている。出力軸5は第1、第2波動歯車減速機3、4から出力される減速回転を負荷(不図示)側に取り出すための部材である。
 第1波動歯車減速機3において、第1波動発生器31によって、カップ形状をした可撓性の第1外歯歯車32が楕円状形状に撓められ、当該第1外歯歯車32が剛性の第1内歯歯車33に対して部分的にかみ合っている。第1波動発生器31はモータ2の出力回転が入力される回転入力部材であり、第1内歯歯車33は回転しないようにハウジング6の側に固定されている固定側部材である。第1外歯歯車32は、出力軸5に減速回転を出力する回転出力部材であり、第1内歯歯車33に対して(当該第1内歯歯車33が固定されているハウジング6に対して)、第1軸受、本例ではクロスローラベアリング7を介して回転自在の状態で支持されている。
 同様に、第2波動歯車減速機4において、第2波動発生器41によって、カップ形状をした可撓性の第2外歯歯車42が楕円状形状に撓められ、当該第2外歯歯車42が剛性の第2内歯歯車43に対して部分的にかみ合っている。第2波動発生器41はモータ2の出力回転が入力される回転入力部材であり、第2内歯歯車43は回転しないようにハウジング6の側に固定されている固定側部材である。第1外歯歯車32は、出力軸5に減速回転を出力する回転出力部材であり、第2内歯歯車43に対して(当該第2内歯歯車43が固定されているハウジング6に対して)、第2軸受、本例ではクロスローラベアリング8を介して回転自在の状態で支持されている。
 回転アクチュエータ1の各部の構造を更に説明する。以下の説明において、中心軸線1aの方向において、第1波動歯車減速機3の側を第1の側と呼び、第2波動歯車減速機4の側を第2の側と呼ぶ。
 中空型のモータ2は、ハウジング6の円筒部61の内周に取り付けたステータ21と、この内側に同軸に配置された中空ロータ22とを備えている。中空ロータ22には中空モータ軸23が一体形成されている。中空モータ軸23の中心部には、中心軸線1aの方向に貫通して延びるモータ中空部24が形成されている。中空モータ軸23には、中空ロータ22から第1の側に延びている第1中空モータ軸部25と、第2の側に延びている第2中空モータ軸部26とが形成されている。
 出力軸5は、中空モータ軸23と同軸状態で、モータ中空部24を貫通して延びている。出力軸5の第1出力軸端部51は、第1中空モータ軸部25の側において、モータ中空部24から第1の側に突出しており、当該第1出力軸端部51には大径の第1出力フランジ52が一体形成されている。出力軸5の第2出力軸端部53は、第2中空モータ軸部26の側において、モータ中空部24から第2の側に突出している。この第2出力軸端部53には、大径の円環状の第2出力フランジ54が取り付けられている。
 第1波動歯車減速機3において、第1波動発生器31は、中空モータ軸23における第1中空モータ軸部25の側の軸端部である第1モータ軸端部25aに、同軸に固定されている。第1波動発生器31は、第1モータ軸端部25aの端面に同軸に固定した剛性の第1プラグ31aと、この第1プラグ31aの外周面に形成した第1楕円状外周面31bに装着した波動発生器軸受31cとを備えている。
 カップ形状をした第1外歯歯車32は、円筒状胴部32aと、円筒状胴部32aの第1の側の端から半径方向の内方に延びるダイヤフラム32bと、ダイヤフラム32bの内周縁に形成されている剛性の円環状のボス32cと、円筒状胴部32aの他方の端の外周面部分に形成した外歯32dとを備えている。第1外歯歯車32における外歯32dが形成されている部分の内側に第1波動発生器31が装着されている。
 第1外歯歯車32のボス32cは、クロスローラベアリング7の内輪71の内周部に一体形成した円環部72と、円環状の押さえ部材9との間に挟まれており、この状態で、三部材が締結ボルトによって締結固定されている。また、内輪71の円環部72は、出力軸5の第1出力軸端部51の第1出力フランジ52に締結ボルトによって締結固定されている。これにより、第1外歯歯車32が出力軸5の第1出力軸端部51に対して、一体回転するように連結されている。
 第1内歯歯車33は、第1外歯歯車32の外歯32dの部分を取り囲む状態に配置されている。第1内歯歯車33の外周側の部分は、クロスローラベアリング7の外輪73とハウジング6の間に挟まれており、これらの固定側の部材に対して締結固定されている。
 第2波動歯車減速機4の側も同様に構成されている。すなわち、第2波動発生器41は、中空モータ軸23における第2中空モータ軸部26の側の軸端部である第2モータ軸端部26aに、同軸に固定されている。第2波動発生器41は、第2モータ軸端部26aの端面に同軸に固定した剛性の第2プラグ41aと、この第2プラグ41aの外周面に形成した第2楕円状外周面41bに装着した波動発生器軸受41cとを備えている。
 カップ形状をした第2外歯歯車42は、円筒状胴部42aと、円筒状胴部42aの第2の側の端から半径方向の内方に延びるダイヤフラム42bと、ダイヤフラム42bの内周縁に形成されている剛性の円環状のボス42cと、円筒状胴部42aの他方の端の外周面部分に形成した外歯42dとを備えている。第2外歯歯車42における外歯42dが形成されている部分の内側に第2波動発生器41が装着されている。
 第2外歯歯車42のボス42cは、クロスローラベアリング8の内輪81の内周部に一体形成した円環部82と、円環状の押さえ部材11との間に挟まれており、この状態で、三部材が締結ボルトによって締結固定されている。また、内輪81の円環部82は、出力軸5の第2出力軸端部53に取り付けた第2出力フランジ54に締結ボルトによって締結固定されている。これにより、第2外歯歯車42が出力軸5の第2出力軸端部53に対して一体回転するように連結されている。
 第2内歯歯車43は、第2外歯歯車42の外歯42dの部分を取り囲む状態に配置されている。第2内歯歯車43の外周側の部分は、クロスローラベアリング8の外輪83とハウジング6の間に挟まれており、外輪83およびハウジング6に締結固定されている。
 ここで、第1波動歯車減速機3において第1波動発生器31によって撓められる第1外歯歯車32の楕円状形状と、他方の第2波動歯車減速機4において第2波動発生器41によって撓められる第2外歯歯車42の楕円状形状とは同一とされている。また、これらの楕円状形状は、相互に、中心軸線1a回りに、位相が90°ずれている。
 このように第1、第2外歯歯車32、42を撓めるために、第1、第2波動発生器31、41は次のように構成されている。図1(B)に模式図を示すように、第1波動発生器31の第1楕円状外周面31bと、第2波動発生器41の第2楕円状外周面41bとは、同一形状である。また、第1、第2楕円状外周面31b、41bが、中心軸線1a回りに、位相が90°ずれた状態となるように、第1、第2プラグ31a、41aが中空モータ軸23の第1モータ軸端部25aおよび第2モータ軸端部26aにそれぞれ固定されている。
 回転アクチュエータ1において、モータ2を駆動して中空モータ軸23を回転させると、両側の第1、第2波動歯車減速機3、4の第1、第2波動発生器31、41が中空モータ軸23と一体回転する。第1、第2波動発生器31、41の回転により、第1外歯歯車32と第1内歯歯車33の間、および、第2外歯歯車42と第2内歯歯車43の間に、それぞれ相対回転が発生する。第1、第2内歯歯車33、43は固定側部材であるので、回転出力部材である第1、第2外歯歯車32、42から、同一回転数の減速回転が出力されて、共通の出力軸5に伝達される。出力軸5の回転は、その両端の第1出力フランジ52および第2出力フランジ54から不図示の負荷側に出力可能である。
 第1、第2波動歯車減速機3、4の第1、第2波動発生器31、41は、その第1、第2楕円状外周面31b、41bの位相が90°ずれた状態で中空モータ軸23に取り付けられている。したがって、第1、第2波動歯車減速機3、4において発生する角度伝達誤差に含まれている2次の振動成分は、相互に逆位相の状態で発生する。これらの角度伝達誤差が共通の出力軸5に伝達されて合成されるので、角度伝達誤差に含まれている2次の振動成分が相殺される。よって、出力軸5から負荷側に伝達される減速回転に含まれる角度伝達誤差を低減できる。
 また、2台の波動歯車減速機から1本の出力軸を介して減速回転を出力しているので、大きな出力トルクを確保でき、モーメント容量および剛性の高い回転アクチュエータを実現できる。
[実施の形態2]
 図2は実施の形態2に係る回転アクチュエータを示す概略縦断面図である。回転アクチュエータ101は、1台の中空型のモータ120と、2台のシルクハット型の第1、第2波動歯車減速機130、140と、1本の出力軸150とを備えている。第1、第2波動歯車減速機130、140は同一の減速比を備えた同一構造の波動歯車減速機であり、中心軸線101aの方向において、モータ120を挟み、左右対称に配置されている。出力軸150は第1、第2波動歯車減速機130、140から出力される減速回転を負荷(不図示)側に取り出すための部材である。
 第1波動歯車減速機130において、第1波動発生器131によって、シルクハット形状をした可撓性の第1外歯歯車132が楕円状形状に撓められ、当該第1外歯歯車132が剛性の第1内歯歯車133に対して部分的にかみ合っている。第1波動発生器131はモータ120の出力回転が入力される回転入力部材であり、第1外歯歯車132は回転しないようにハウジング160の側に固定されている固定側部材である。第1内歯歯車133は、出力軸150に減速回転を出力する回転出力部材であり、第1外歯歯車132に対して(当該第1外歯歯車132が固定されているハウジング160に対して)、第1軸受、本例ではクロスローラベアリング170を介して回転自在の状態で支持されている。
 第2波動歯車減速機140において、第2波動発生器141によって、シルクハット形状をした可撓性の第2外歯歯車142が楕円状形状に撓められ、当該第2外歯歯車142が剛性の第2内歯歯車143に対して部分的にかみ合っている。第2波動発生器141はモータ2の出力回転が入力される回転入力部材であり、第2外歯歯車142は回転しないようにハウジング160の側に固定されている固定側部材である。第2内歯歯車143は、出力軸150に減速回転を出力する回転出力部材であり、第2外歯歯車142に対して(当該第2外歯歯車142が固定されているハウジング160に対して)、第2軸受、本例ではクロスローラベアリング180を介して回転自在の状態で支持されている。
 各部の構造を説明する。以下、中心軸線101aの方向において、第1波動歯車減速機130の側を第1の側と呼び、第2波動歯車減速機140の側を第2の側と呼ぶ。
 中空型のモータ120は、ハウジング160の円筒部161の内周に取り付けたステータ121と、この内側に同軸に配置された中空ロータ122とを備えている。中空ロータ122には中空モータ軸123が一体形成されている。中空モータ軸123の中心部には、中心軸線101aの方向に貫通して延びるモータ中空部124が形成されている。中空モータ軸123には、中空ロータ122から第1の側に延びている第1中空モータ軸部125と、第2の側に延びている第2中空モータ軸部126とが形成されている。
 出力軸150は、中空モータ軸123と同軸状態で、モータ中空部124を貫通して延びている。出力軸150の第1出力軸端部151は、第1中空モータ軸部125の側において、モータ中空部124から第1の側に突出しており、当該第1出力軸端部151には大径の第1出力フランジ152が同軸に固定されている。出力軸150の第2出力軸端部153は、第2中空モータ軸部126の側において、モータ中空部124から第2の側に突出している。この第2出力軸端部153には、大径の第2出力フランジ154が取り付けられている。
 第1波動歯車減速機130において、第1波動発生器131は、中空モータ軸123における第1中空モータ軸部125の側の軸端部である第1モータ軸端部125aに、同軸に固定されている。第1波動発生器131は、第1モータ軸端部125aの端面に同軸に固定した剛性の第1プラグ131aと、この第1プラグ131aの外周面に形成した第1楕円状外周面131bに装着した波動発生器軸受131cとを備えている。第1プラグ131aは中空プラグであり、この中空部を通って、出力軸150の第1出力軸端部151が第1の側に突出している。
 シルクハット形状をした第1外歯歯車132は、円筒状胴部132aと、円筒状胴部132aの第2の側の端から半径方向の外方に延びるダイヤフラム132bと、ダイヤフラム132bの外周縁に形成されている剛性の円環状のボス132cと、円筒状胴部132aの他方の端の外周面部分に形成した外歯132dとを備えている。第1外歯歯車132における外歯132dが形成されている部分の内側に第1波動発生器131が装着されている。
 固定側部材である第1外歯歯車132のボス132cは、クロスローラベアリング170の外輪171の端面とハウジング160の端面との間に挟まれている。この状態で、三部材が締結ボルトによって締結固定されている。
 回転出力部材である第1内歯歯車133は、第1外歯歯車132の外歯132dの部分を取り囲む状態に配置されている。第1内歯歯車133は、クロスローラベアリング170の内輪173の内周部に一体形成されている。内輪173の第1の側の端面には、同軸に、第1出力フランジ152が締結ボルトによって固定されている。
 第2波動発生器141は、中空モータ軸123における第2中空モータ軸部126の側の軸端部である第2モータ軸端部126aに、同軸に固定されている。第2波動発生器141は、第2モータ軸端部126aの端面に同軸に固定した剛性の第2プラグ141aと、この第2プラグ141aの外周面に形成した第2楕円状外周面141bに装着した波動発生器軸受141cとを備えている。第2プラグ141aは中空プラグであり、この中空部を通って、出力軸150の第2出力軸端部153が第2の側に突出している。
 シルクハット形状をした第2外歯歯車142は、円筒状胴部142aと、円筒状胴部142aの第1の側の端から半径方向の外方に延びるダイヤフラム142bと、ダイヤフラム142bの外周縁に形成されている剛性の円環状のボス142cと、円筒状胴部142aの他方の端の外周面部分に形成した外歯142dとを備えている。第2外歯歯車142における外歯142dが形成されている部分の内側に第2波動発生器141が装着されている。
 固定側部材である第2外歯歯車142のボス142cは、クロスローラベアリング180の外輪181の端面とハウジング160の端面との間に挟まれており、この状態で、三部材が締結ボルトによって締結固定されている。回転出力部材である第2内歯歯車143は、第2外歯歯車142の外歯142dの部分を取り囲む状態に配置されている。第2内歯歯車143は、クロスローラベアリング180の内輪183の内周部に一体形成されている。内輪183の第2の側の端面には、同軸に、第2出力フランジ154が締結ボルトによって固定されている。
 ここで、第1波動歯車減速機130において第1波動発生器131によって撓められる第1外歯歯車132の楕円状形状と、他方の第2波動歯車減速機140において第2波動発生器141によって撓められる第2外歯歯車142の楕円状形状とは同一である。また、これらの楕円状形状は、相互に、中心軸線101a回りに、位相が90°ずれている。
 本例では、第1波動発生器131の第1楕円状外周面131bと、第2波動発生器141の第2楕円状外周面141bとは、同一形状である。また、第1、第2楕円状外周面131b、141bが、中心軸線101a回りに、位相が90°ずれた状態となるように、第1、第2プラグ131a、141aが中空モータ軸123の第1モータ軸端部125aおよび第2モータ軸端部126aにそれぞれ固定されている。
 回転アクチュエータ101において、モータ120を駆動して中空モータ軸123を回転させると、両側の第1、第2波動歯車減速機130、140の第1、第2波動発生器131、141が中空モータ軸123と一体回転する。第1、第2波動発生器131、141の回転により、第1外歯歯車132と第1内歯歯車133の間、および、第2外歯歯車142と第2内歯歯車143の間に、それぞれ相対回転が発生する。第1、第2外歯歯車132、142は固定側部材であるので、回転出力部材である第1、第2内歯歯車133、143から、同一回転数の減速回転が出力されて、共通の出力軸150に伝達される。出力軸150の回転は、その両端の第1出力フランジ152および第2出力フランジ154から不図示の負荷側に出力可能である。
 第2波動歯車減速機130、140の第1、第2波動発生器131、141は、その第1、第2楕円状外周面131b、141bの位相が90°ずれた状態で中空モータ軸123に取り付けられている。したがって、第1、第2波動歯車減速機130、140において発生する角度伝達誤差の振動成分に含まれている2次の振動成分は、相互に逆位相の状態で発生する。これらの角度伝達誤差が共通の出力軸150に伝達されて合成されるので、角度伝達誤差に含まれている2次の振動成分が相殺される。よって、出力軸150から出力される減速回転に含まれる角度伝達誤差を低減できる。
 また、2台の波動歯車減速機から1本の出力軸を介して減速回転を出力しているので、大きな出力トルクを確保でき、モーメント容量および剛性の高い回転アクチュエータを実現できる。
[実施の形態3]
 図3は実施の形態3に係る回転アクチュエータを示す概略縦断面図である。回転アクチュエータ201は、1台の中空型のモータ220と、2台のフラット型の第1、第2波動歯車減速機230、240と、1本の出力軸250とを備えている。第1、第2波動歯車減速機230、240は同一の減速比を備えた同一構造の波動歯車減速機であり、中心軸線201aの方向において、モータ220を挟み、左右対称に配置されている。出力軸250は第1、第2波動歯車減速機230、240から出力される減速回転を負荷(不図示)側に取り出すための部材である。
 第1波動歯車減速機230において、第1波動発生器231によって、円筒形状の可撓性の第1外歯歯車232が楕円状形状に撓められ、当該第1外歯歯車232が剛性の第1静止側内歯歯車233および第1駆動側内歯歯車234の双方に対して部分的にかみ合っている。第1波動発生器231はモータ220の出力回転が入力される回転入力部材である。第1外歯歯車232は減速回転出力部材であり、第1静止側内歯歯車233とは歯数が2n枚(n:正の整数)相違し、第1駆動側内歯歯車234とは歯数が同一である。よって、第1外歯歯車232は第1駆動側内歯歯車234と一体となって回転する。第1静止側内歯歯車233は固定側部材である。一体回転する第1外歯歯車232および第1駆動側内歯歯車234は、第1静止側内歯歯車233に対して(当該第1静止側内歯歯車233が固定されているハウジング260に対して)、第1軸受、本例ではクロスローラベアリング270を介して回転自在の状態で支持されている。
 同様に、第2波動歯車減速機240において、第2波動発生器241によって、円筒形状の可撓性の第2外歯歯車242が楕円状形状に撓められ、当該第2外歯歯車242が剛性の第2静止側内歯歯車243および第2駆動側内歯歯車244の双方に対して部分的にかみ合っている。第2波動発生器241はモータ220の出力回転が入力される回転入力部材である。第2外歯歯車242は減速回転出力部材であり、第2駆動側内歯歯車244と一体となって回転する。第2静止側内歯歯車243は固定側部材である。一体回転する第2外歯歯車242および第2駆動側内歯歯車244は、第2静止側内歯歯車243に対して(当該第2静止側内歯歯車243が固定されているハウジング260に対して)、第2軸受、本例ではクロスローラベアリング280を介して回転自在の状態で支持されている。
 各部の構造を説明する。中心軸線201aの方向において、第1波動歯車減速機230の側を第1の側と呼び、第2波動歯車減速機240の側を第2の側と呼ぶ。
 まず、中空型のモータ220は、ハウジング260の円筒部261の内周に取り付けたステータ221と、この内側に同軸に配置された中空ロータ222とを備えている。中空ロータ222には中空モータ軸223が一体形成されている。中空モータ軸223の中心部には、中心軸線201aの方向に貫通して延びるモータ中空部224が形成されている。中空モータ軸223には、中空ロータ222から第1の側に延びている第1中空モータ軸部225と、第2の側に延びている第2中空モータ軸部226とが形成されている。
 出力軸250は、中空モータ軸223と同軸状態で、モータ中空部224を貫通して延びている。出力軸250の第1出力軸端部251は、第1中空モータ軸部225の側において、モータ中空部224から第1の側に突出しており、当該第1出力軸端部251には大径の第1出力フランジ252が一体形成されている。出力軸250の第2出力軸端部253は、第2中空モータ軸部226の側において、モータ中空部224から第2の側に突出している。この第2出力軸端部253には、大径の第2出力フランジ254が取り付けられている。
 第1波動歯車減速機230において、第1波動発生器231は、中空モータ軸223における第1中空モータ軸部225の側の軸端部である第1モータ軸端部225aに、同軸に固定されている。第1波動発生器231は、第1モータ軸端部225aの端面に同軸に固定した剛性の第1プラグ231aと、この第1プラグ231aの外周面に形成した第1楕円状外周面231bに装着した波動発生器軸受231cとを備えている。第1プラグ231aは中空プラグであり、この中空部を通って、出力軸250の第1出力軸端部251が第1の側に突出している。
 第1外歯歯車232は、円筒状胴部232aと、円筒状胴部232aの外周面部分に形成した外歯232dとを備えている。第1外歯歯車232の内側に第1波動発生器231が装着されている。
 固定側部材である第1静止側内歯歯車233は、第1外歯歯車232の第2の側の部分を取り囲む状態に配置されている。第1静止側内歯歯車233は、クロスローラベアリング270の外輪271の端面とハウジング260の端面との間に挟まれている。この状態で、三部材が締結ボルトによって締結固定されている。
 回転出力部材である第1駆動側内歯歯車234は、第1外歯歯車232の第1の側の部分を取り囲む状態に配置されている。第1駆動側内歯歯車234は、クロスローラベアリング270の内輪273に一体形成されている。また、内輪273には内周側に延びる円環部274が一体形成されており、この円環部274が、第1出力フランジ252に締結ボルトによって同軸に固定されている。
 第2波動歯車減速機240の側も同様に構成されている。すなわち、第2波動発生器241は、中空モータ軸223における第2中空モータ軸部226の側の軸端部である第2モータ軸端部226aに、同軸に固定されている。第2波動発生器241は、第2モータ軸端部226aの端面に同軸に固定した剛性の第2プラグ241aと、この第2プラグ241aの外周面に形成した第2楕円状外周面241bに装着した波動発生器軸受241cとを備えている。第2プラグ241aは中空プラグであり、この中空部を通って、出力軸250の第2出力軸端部253が第2の側に突出している。
 第2外歯歯車242は、円筒状胴部242aと、円筒状胴部242aの外周面部分に形成した外歯242dとを備えている。第2外歯歯車242の内側に第2波動発生器241が装着されている。
 固定側部材である第2静止側内歯歯車243は、第2外歯歯車242の第1の側の部分を取り囲む状態に配置されている。第2静止側内歯歯車243は、クロスローラベアリング280の外輪281の端面とハウジング260の端面との間に挟まれ、この状態で、三部材が締結ボルトによって締結固定されている。
 回転出力部材である第2駆動側内歯歯車244は、第2外歯歯車242の第2の側の部分を取り囲む状態に配置されている。第2駆動側内歯歯車244は、クロスローラベアリング280の内輪283に一体形成されている。また、内輪283には内周側に延びる円環部284が一体形成されており、この円環部284が、第2出力フランジ254に締結ボルトによって同軸に固定されている。
 ここで、第1波動歯車減速機230において第1波動発生器231によって撓められる第1外歯歯車232の楕円状形状と、他方の第2波動歯車減速機240において第2波動発生器241によって撓められる第2外歯歯車242の楕円状形状とは同一であり、また、それらの楕円状形状は、相互に、中心軸線201a回りに、位相が90°ずれている。
 本例では、第1波動発生器231の第1楕円状外周面231bと、第2波動発生器241の第2楕円状外周面241bとは、同一形状である。また、第1、第2楕円状外周面231b、241bが、中心軸線201a回りに、位相が90°ずれた状態となるように、第1、第2プラグ231a、241aが中空モータ軸223の第1モータ軸端部225aおよび第2モータ軸端部226aにそれぞれ固定されている。
 回転アクチュエータ201において、モータ220を駆動して中空モータ軸223を回転させると、両側の第1、第2波動歯車減速機230、240の第1、第2波動発生器231、241が中空モータ軸223と一体回転する。第1、第2波動発生器231、241の回転により、第1外歯歯車232(第1駆動側内歯歯車234)と第1静止側内歯歯車233の間、および、第2外歯歯車242(第2駆動側内歯歯車244)と第2静止側内歯歯車243の間に、それぞれ相対回転が発生する。回転出力部材である第1、第2駆動側内歯歯車234、244から、同一回転数の減速回転が出力されて、共通の出力軸250に伝達される。出力軸250の回転は、その両端の第1出力フランジ252および第2出力フランジ254から不図示の負荷側に出力可能である。
 第2波動歯車減速機230、240の第1、第2波動発生器231、241は、その第1、第2楕円状外周面231b、241bの位相が90°ずれた状態で中空モータ軸223に取り付けられている。したがって、第1、第2波動歯車減速機230、240において発生する角度伝達誤差の振動成分に含まれている2次の振動成分は、相互に逆位相の状態で発生する。これらの角度伝達誤差が共通の出力軸250に伝達されて合成されるので、角度伝達誤差に含まれている2次の振動成分が相殺される。よって、出力軸250から出力される減速回転に含まれる角度伝達誤差を低減できる。
 また、2台の波動歯車減速機から1本の出力軸を介して減速回転を出力しているので、大きな出力トルクを確保でき、モーメント容量および剛性の高い回転アクチュエータを実現できる。
 

Claims (8)

  1.  1台のモータと、
     前記モータの出力回転を同一の減速比で減速して1本の出力軸から負荷側に出力する2台の波動歯車減速機と、
    を有しており、
     前記波動歯車減速機のそれぞれにおいて、波動発生器によって可撓性の外歯歯車が楕円状形状に撓められ、当該外歯歯車が剛性の内歯歯車に対して部分的にかみ合っており、前記波動発生器は前記モータの出力回転が入力される回転入力部材であり、前記外歯歯車および前記内歯歯車のうちの一方は前記出力軸に減速回転を出力する回転出力部材であり、前記外歯歯車および前記内歯歯車のうちの他方は回転しないように固定されている固定側部材であり、
     一方の前記波動歯車減速機の前記外歯歯車の楕円状形状と、他方の前記波動歯車減速機の前記外歯歯車の楕円状形状とは、位相が90°ずれている回転アクチュエータ。
  2.  請求項1において、
     前記モータは、その中心軸線の方向に貫通して延びるモータ中空部を規定している中空モータ軸を備えており、
     2台の前記波動歯車減速機を第1、第2波動歯車減速機と呼び、前記第1波動歯車減速機の前記波動発生器、前記外歯歯車および前記内歯歯車を、第1波動発生器、第1外歯歯車および第1内歯歯車と呼び、前記第2波動歯車減速機の前記波動発生器、前記外歯歯車および前記内歯歯車を、第2波動発生器、第2外歯歯車および第2内歯歯車と呼ぶものとすると、
     前記モータに対して当該モータの中心軸線の方向における一方の第1の側に前記第1波動歯車減速機が配置され、前記中心軸線の方向における他方の第2の側に前記第2波動歯車減速機が前記第1波動歯車減速機に対して左右対称な状態に配置されており、
     前記出力軸は、前記モータ中空部を貫通して延びており、前記モータ中空部から前記第1の側に突出している第1出力軸端部および前記モータ中空部から前記第2の側に突出している第2出力軸端部を備えており、
     前記第1波動発生器は前記中空モータ軸の一方の第1モータ軸端部に同軸に連結され、前記第2波動発生器は前記中空モータ軸の他方の第2モータ軸端部に同軸に連結されており、
     前記第1波動歯車減速機の前記回転出力部材は前記第1出力軸端部に対して一体回転するように連結されており、
     前記第2波動歯車減速機の前記回転出力部材は前記第2出力軸端部に対して一体回転するように連結されている回転アクチュエータ。
  3.  請求項2において、
     前記第1波動発生器は、前記第1モータ軸端部に同軸に固定した剛性の第1プラグ、および、前記第1プラグの外周面に形成した第1楕円状外周面と前記第1外歯歯車の内周面との間に装着されている第1波動発生器軸受を備え、
     前記第2波動発生器は、前記第2モータ軸端部に同軸に固定した剛性の第2プラグ、および、前記第2プラグの外周面に形成した第2楕円状外周面と前記第2外歯歯車の内周面との間に装着されている第2波動発生器軸受を備えており、
     前記第1楕円状外周面と前記第2楕円状外周面は同一形状であり、
     前記第1、第2楕円状外周面が前記中心軸線回りに位相が90°ずれた状態となるように、前記第1、第2プラグが前記中空モータ軸に固定されている回転アクチュエータ。
  4.  請求項3において、
     前記第1波動歯車減速機は、前記第1内歯歯車と前記第1外歯歯車を相対回転可能な状態で支持している第1軸受を備え、
     前記第2波動歯車減速機は、前記第2内歯歯車と前記第2外歯歯車を相対回転可能な状態で支持している第2軸受を備え、
     前記第1出力軸端部は前記第1軸受によって支持され、前記第2出力軸端部は前記第2軸受によって支持されている回転アクチュエータ。
  5.  請求項4において、
     前記第1、第2プラグは中空プラグであり、
     前記第1プラグの中空部から前記第1の側に突出している前記第1出力軸端部には、第1端板が固定されており、
     前記第1波動歯車減速機の前記固定側部材を第1固定側部材と呼び、前記第2波動歯車減速機の前記固定側部材を第2固定側部材と呼び、
     前記第1軸受の内輪および外輪を第1内輪および第1外輪と呼び、前記第2軸受の内輪および外輪を第2内輪および第2外輪と呼ぶものとすると、
     前記第1端板は、前記第1内輪に固定され、あるいは、前記第1端板と前記第1内輪が単一部材から形成されており、
     前記第1内輪は、第1回転出力部材に対して一体回転するように連結され、あるいは、前記第1内輪と前記第1回転出力部材が単一部材から形成されており、
     前記第2プラグの中空部から前記第2の側に突出している前記第2出力軸端部には、第2端板が固定されており、
     前記第2端板は前記第2内輪に固定され、あるいは、前記第2端板と前記第2内輪が単一部材から形成されており、
     前記第2内輪は、第2回転出力部材に対して一体回転するように連結され、あるいは、前記第2内輪と前記第2回転出力部材が単一部材から形成されている回転アクチュエータ。
  6.  請求項5において、
     前記第1、第2波動歯車減速機は、カップ形状の前記第1、第2外歯歯車を備えたカップ型波動歯車減速機であり、前記中心軸線の方向において、左右対称に配置されており、
     前記第1、第2外歯歯車がそれぞれ前記第1、第2回転出力部材であり、
     前記第1、第2内歯歯車がそれぞれ前記第1、第2固定側部材である回転アクチュエータ。
  7.  請求項5において、
     前記第1、第2波動歯車減速機は、シルクハット形状の前記第1、第2外歯歯車を備えたシルクハット型波動歯車減速機であり、前記中心軸線の方向において、左右対称に配置されており、
     前記第1、第2外歯歯車がそれぞれ前記第1、第2固定側部材であり、
     前記第1、第2内歯歯車がそれぞれ前記第1、第2回転出力部材である回転アクチュエータ。
  8.  請求項5において、
     前記第1、第2波動歯車減速機は、円筒形状の前記第1、第2外歯歯車を備えたフラット型波動歯車減速機であり、前記中心軸線の方向において左右対称に配置されている回転アクチュエータ。
PCT/JP2016/064070 2016-05-11 2016-05-11 波動歯車減速機を備えた回転アクチュエータ WO2017195308A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2016/064070 WO2017195308A1 (ja) 2016-05-11 2016-05-11 波動歯車減速機を備えた回転アクチュエータ
JP2018516276A JP6563124B2 (ja) 2016-05-11 2016-05-11 波動歯車減速機を備えた回転アクチュエータ
EP16901656.5A EP3456996B1 (en) 2016-05-11 2016-05-11 Rotary actuator provided with wave reduction gear
KR1020187033074A KR102124165B1 (ko) 2016-05-11 2016-05-11 파동기어 감속기를 구비한 회전 액추에이터
CN201680085309.2A CN109154362B (zh) 2016-05-11 2016-05-11 具备波动齿轮减速器的旋转致动器
US16/091,203 US10753427B2 (en) 2016-05-11 2016-05-11 Rotary actuator provided with strain wave reduction gears
TW106110848A TWI711776B (zh) 2016-05-11 2017-03-30 具備諧波齒輪減速機的旋轉致動器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/064070 WO2017195308A1 (ja) 2016-05-11 2016-05-11 波動歯車減速機を備えた回転アクチュエータ

Publications (1)

Publication Number Publication Date
WO2017195308A1 true WO2017195308A1 (ja) 2017-11-16

Family

ID=60266507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064070 WO2017195308A1 (ja) 2016-05-11 2016-05-11 波動歯車減速機を備えた回転アクチュエータ

Country Status (7)

Country Link
US (1) US10753427B2 (ja)
EP (1) EP3456996B1 (ja)
JP (1) JP6563124B2 (ja)
KR (1) KR102124165B1 (ja)
CN (1) CN109154362B (ja)
TW (1) TWI711776B (ja)
WO (1) WO2017195308A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11702126B2 (en) * 2019-07-18 2023-07-18 Schaeffler Technologies AG & Co. KG Compact power steering system
WO2022031238A1 (en) * 2020-08-07 2022-02-10 Spinbotics S. R. O. Modular rotary intelligent drive
CN112392914A (zh) * 2020-12-03 2021-02-23 福建思普计量检测科技有限公司 一种多传动比的圆盘分布式输出机构
CN113074233A (zh) * 2021-03-30 2021-07-06 江苏镌极特种设备有限公司 一种中空并联式谐波减速装置及其驱动方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362934A (ja) * 1986-09-04 1988-03-19 Fujitsu Ltd 動力伝達装置
JPS6421248A (en) * 1987-07-10 1989-01-24 Chuo Denki Seisakusho Decelerator
JPH10311385A (ja) * 1997-05-13 1998-11-24 Harmonic Drive Syst Ind Co Ltd 増減速装置
JP2013015191A (ja) * 2011-07-04 2013-01-24 Sumitomo Heavy Ind Ltd 撓み噛合い式歯車装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4833028B1 (ja) 1967-03-28 1973-10-11
US4398110A (en) * 1982-05-05 1983-08-09 Westinghouse Electric Corp. Harmonic electric actuator
JPH0438121Y2 (ja) * 1988-02-17 1992-09-07
JP3916101B2 (ja) * 1997-09-09 2007-05-16 株式会社ハーモニック・ドライブ・システムズ 撓み噛み合い式歯車装置
JP2002243000A (ja) * 2001-02-19 2002-08-28 Harmonic Drive Syst Ind Co Ltd 波動歯車減速機を備えたアクチュエータ
JP2007321879A (ja) 2006-06-01 2007-12-13 Harmonic Drive Syst Ind Co Ltd 回転位置センサ付き減速機ユニット
JP4833028B2 (ja) * 2006-11-01 2011-12-07 株式会社ハーモニック・ドライブ・システムズ 波動歯車減速機を備えたアクチュエータ
US9057429B2 (en) * 2011-05-16 2015-06-16 Harmonic Drive Systems Inc. Concentric multi-axis actuator
JP5833480B2 (ja) * 2012-03-21 2015-12-16 本田技研工業株式会社 波動歯車装置および歩行補助装置
TWM441058U (en) * 2012-06-13 2012-11-11 Harmonic Innovation Technology Co Ltd Flexspline structure of harmonic drive reducer
TWI608183B (zh) * 2013-03-19 2017-12-11 和諧驅動系統股份有限公司 諧波齒輪裝置及中空型旋轉致動器
DE112013004179B4 (de) * 2013-07-10 2024-02-29 Harmonic Drive Systems Inc. Wellgenerator und Verformungswellgetriebe
CN104937309B (zh) * 2013-09-24 2017-06-23 谐波传动系统有限公司 波动齿轮装置
CN105026792B (zh) * 2013-11-19 2017-09-26 谐波传动系统有限公司 波动齿轮装置、摩擦卡合式的波动装置及波动发生器
JP6362934B2 (ja) 2014-06-26 2018-07-25 株式会社細川洋行 飲料サーバー用飲料容器の接続構造体、および接続構造体付き飲料容器
US20190089224A1 (en) * 2017-09-15 2019-03-21 Nidec Corporation Actuator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362934A (ja) * 1986-09-04 1988-03-19 Fujitsu Ltd 動力伝達装置
JPS6421248A (en) * 1987-07-10 1989-01-24 Chuo Denki Seisakusho Decelerator
JPH10311385A (ja) * 1997-05-13 1998-11-24 Harmonic Drive Syst Ind Co Ltd 増減速装置
JP2013015191A (ja) * 2011-07-04 2013-01-24 Sumitomo Heavy Ind Ltd 撓み噛合い式歯車装置

Also Published As

Publication number Publication date
KR102124165B1 (ko) 2020-06-17
JPWO2017195308A1 (ja) 2019-01-31
KR20180129951A (ko) 2018-12-05
EP3456996A4 (en) 2019-12-25
EP3456996B1 (en) 2021-01-06
JP6563124B2 (ja) 2019-08-21
CN109154362B (zh) 2021-06-18
US20190113106A1 (en) 2019-04-18
TWI711776B (zh) 2020-12-01
TW201740038A (zh) 2017-11-16
EP3456996A1 (en) 2019-03-20
CN109154362A (zh) 2019-01-04
US10753427B2 (en) 2020-08-25

Similar Documents

Publication Publication Date Title
US8757029B2 (en) Strain wave gearing and robotic arm
WO2017195308A1 (ja) 波動歯車減速機を備えた回転アクチュエータ
JP5968545B2 (ja) 波動歯車装置、摩擦係合式の波動装置、および波動発生器
US9772021B2 (en) Rotary actuator and strain wave gearing reduction drive unit
CN108953504B (zh) 齿轮传动装置
TWI762624B (zh) 旋轉致動器及線性致動器
JP6025761B2 (ja) 駆動ユニット
TWI805890B (zh) 撓曲嚙合式齒輪裝置
JP6091631B2 (ja) 波動歯車装置
CN112797145B (zh) 大速比差动减速器
WO2018194112A1 (ja) 波動歯車減速機ユニット及びそれを備えた動力ユニット
WO2017222012A1 (ja) 波動歯車減速機ユニット
US11320037B2 (en) Speed reducer
US11441660B2 (en) Hollow strain-wave gear device
JP7033995B2 (ja) 歯車装置
JP7250874B2 (ja) 動力ユニット、及び、それを有するロボット
JP2020203363A5 (ja)
WO2020170297A1 (ja) 遊星歯車装置
JP2020085184A (ja) カップリング装置および駆動装置
KR101251151B1 (ko) 내접요동 감속기
CN116292768A (zh) 双联齿传动机构

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018516276

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187033074

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901656

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016901656

Country of ref document: EP

Effective date: 20181211