WO2017195302A1 - レンズユニットの製造方法、及び撮像装置の製造方法 - Google Patents

レンズユニットの製造方法、及び撮像装置の製造方法 Download PDF

Info

Publication number
WO2017195302A1
WO2017195302A1 PCT/JP2016/064040 JP2016064040W WO2017195302A1 WO 2017195302 A1 WO2017195302 A1 WO 2017195302A1 JP 2016064040 W JP2016064040 W JP 2016064040W WO 2017195302 A1 WO2017195302 A1 WO 2017195302A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
forming
lens unit
light
manufacturing
Prior art date
Application number
PCT/JP2016/064040
Other languages
English (en)
French (fr)
Inventor
花野 和成
高橋 進
宮崎 靖浩
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2016/064040 priority Critical patent/WO2017195302A1/ja
Priority to DE112016006841.7T priority patent/DE112016006841T5/de
Priority to JP2018516270A priority patent/JPWO2017195302A1/ja
Publication of WO2017195302A1 publication Critical patent/WO2017195302A1/ja
Priority to US16/173,650 priority patent/US20190084255A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00403Producing compound lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/003Light absorbing elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/112Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0025Opaque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0026Transparent

Definitions

  • Embodiments of the present invention relate to a method of manufacturing a lens unit and a method of manufacturing an imaging device.
  • a lens unit that causes light to form an image on an imaging device includes a lens and a lens frame that holds the lens.
  • the lens is generally formed by grinding, polishing or molding glass or resin.
  • the lens frame is composed of a plurality of members formed by grinding and / or molding a metal or resin with a mold.
  • the lens unit is configured such that the lens is combined with a plurality of members of the lens frame and housed in the lens frame.
  • Japanese Patent Laid-Open Publication No. 2004-066773 describes a lens frame integral formation in which a lens is inserted and a lens frame is formed on the outer peripheral portion of the inserted lens.
  • processing errors of the lens itself and assembly errors when inserting the lens may cause variations in the manufactured lens unit.
  • accuracy in processing and assembly is required, so there is a problem that the cost increases.
  • An object of the present invention is to provide a method of manufacturing a lens unit with low variation in optical performance at low cost and a method of manufacturing an imaging device.
  • the lens unit manufacturing method includes a layer forming step of forming a layer while switching between a light transmitting material that transmits light and a light shielding material that shields light, and the layer forming step. Forming a lens by laminating the layers to form a lens by the transmissive material, and forming a lens frame that holds the lens by the light shielding material.
  • the present invention it is possible to provide a method of manufacturing a lens unit with low variation in optical performance at low cost and a method of manufacturing an imaging device.
  • FIG. 1 is a diagram for explaining an example of a 3D printer according to an embodiment.
  • FIG. 2 is a view for explaining an example of a process of forming a part of a lens frame of a lens unit according to an embodiment.
  • FIG. 3 is a view for explaining an example of a process of forming a part of a lens frame and a part of a lens according to an embodiment.
  • FIG. 4 is a view for explaining an example of a process of forming a diaphragm according to an embodiment.
  • FIG. 5 is a view for explaining an example of a process of forming a curved surface of a lens according to an embodiment.
  • FIG. 6 is a diagram for describing an example of a process of arranging an imaging device in a lens unit according to an embodiment.
  • FIG. 7 is a diagram for describing an example of the configuration of an imaging device according to an embodiment.
  • FIG. 8 is a view for explaining an example of a process of forming a part of a lens frame and a part of a lens according to another embodiment.
  • FIG. 9 is a figure for demonstrating the example of the process of forming the cover plate which concerns on other embodiment.
  • FIG. 10 is a diagram for describing an example in which an imaging device according to another embodiment is disposed on a stage of a 3D printer.
  • FIG. 11 is a diagram for describing an example of a process of forming an adaptive optics system on a cover plate according to another embodiment.
  • FIG. 12 is a figure for demonstrating the example of the process of forming sealing in the peripheral part of the cover plate which concerns on other embodiment.
  • FIG. 13 is a diagram for describing an example of a process of forming a flare stop according to another embodiment.
  • FIG. 14 is a diagram for describing an example of a process of forming a compensation optical system on a curved surface of a lens according to another embodiment.
  • FIG. 15 is a view for explaining another example of the lens unit according to the other embodiment.
  • FIG. 16 is a view for explaining another example of the lens unit according to the other embodiment.
  • the lens of the lens unit and the lens frame used in the imaging device are integrally formed by a so-called 3D printer that manufactures a three-dimensional object based on three-dimensional data.
  • a 3D printer an ink jet 3D printer is described as an example, in which a liquid resin cured by light (for example, ultraviolet light) is discharged and the resin is cured by ultraviolet light to form a three-dimensional object.
  • the 3D printer is not limited to the inkjet method.
  • the method of forming the 3D printer may be any method.
  • the 3D printer forms the lens frame portion (light shielding portion) of the lens unit from the light shielding resin material (light shielding material) and uses the light transmitting resin material (transparent material).
  • the light shielding material is a resin material having a large absorption of light of the target wavelength according to the application of the lens unit as compared to the transmissive material.
  • the transmissive material is a resin material that absorbs less light of the target wavelength according to the application of the lens unit than the light shielding material.
  • the three-dimensional data in the present embodiment is shape data in a three-dimensional space having a width, a depth, and a height.
  • the width direction is set to the x direction
  • the depth direction is set to the y direction
  • the height direction is set to the z direction.
  • the shape data also includes information on the presence or absence of dots and the material.
  • the information on the material is, for example, information indicating either the light shielding material or the light transmitting material.
  • the three-dimensional data may be, for example, data obtained by converting data such as 3D-CAD or 3D-CG according to the resolution of the 3D printer.
  • FIG. 1 is an explanatory diagram for describing an example of a 3D printer 1 according to an embodiment.
  • the 3D printer 1 includes a print head 2, a stage 3, and a positioning mechanism 4.
  • the print head 2 discharges liquid resin as droplets.
  • the print head 2 includes a first nozzle 11, a second nozzle 12, and an ultraviolet lamp 13.
  • the print head 2 also includes a first ink chamber (not shown) filled with a light shielding material and a second ink chamber (not shown) filled with a permeable material.
  • the first nozzle 11 discharges the light shielding material in the first ink chamber as droplets.
  • the second nozzle 12 discharges the permeable material in the second ink chamber as a droplet.
  • the ultraviolet ray lamp 13 cures the droplets by irradiating the droplets discharged from the first nozzle 11 and the second nozzle 12 with ultraviolet light, and the structure of a part of a three-dimensional object (referred to as a resin structure) Form
  • the ultraviolet ray lamp 13 may be configured to output ultraviolet rays when droplets are discharged from the first nozzle 11 or the second nozzle 12, or may be configured to always output ultraviolet rays.
  • the stage 3 is a member that supports the droplets discharged from the print head 2.
  • the stage 3 has a shaped surface which is formed flush.
  • the positioning mechanism 4 moves the print head 2 to determine the landing position of the droplets ejected from the print head 2. For example, the positioning mechanism 4 moves the print head 2 in the width direction (corresponding to the x direction) parallel to the modeling surface of the stage 3 and in the depth direction (corresponding to the y direction). Adjust the impact position of the droplet in the plane. Further, the positioning mechanism 4 adjusts the distance between the print surface of the stage 3 and the print head 2 by moving the print head 2 in the direction (corresponding to the z direction) orthogonal to the print surface of the stage 3.
  • the 3D printer 1 forms a layer of a resin structure by discharging droplets from the print head 2 to the stage 3 while moving the print head 2 in the x direction and the y direction by the positioning mechanism 4. Specifically, the 3D printer 1 causes the positioning mechanism 4 to move the print head 2 to a position according to the coordinates of the three-dimensional data. Furthermore, the 3D printer 1 determines whether to discharge droplets, discharge droplets from the first nozzle 11 or discharge droplets from the second nozzle 12 according to the shape data of the coordinates. Then, the print head 2 is operated according to the determination result. That is, the 3D printer 1 forms a layer while switching the droplets discharged according to the three-dimensional data between the transmissive material and the light shielding material.
  • the 3D printer 1 forms a layer including at least one of a transparent portion formed of a transmissive material and a light shielding portion formed of a light shielding material. Furthermore, the 3D printer 1 forms a resin layer while moving the print head 2 in the z direction by the positioning mechanism 4 to form a three-dimensional object having a stacked structure in which the above layers are stacked.
  • the supporting member which supports a droplet is needed.
  • the support member may be a resin structure of one lower layer or may be any object placed on the shaped surface of the stage 3.
  • a base material 14 as a support member is placed on the shaped surface of the stage 3.
  • the base material 14 is, for example, a cylindrical shape having a top surface and a bottom surface, and at least the bottom surface is flush.
  • the base 14 is placed on the stage 3 with the bottom surface directed to the shaped surface of the stage 3.
  • the bottom surface and the top surface are configured to be spaced apart from each other by a predetermined distance. That is, the upper surface of the substrate 14 is disposed at a predetermined height from the modeling surface of the stage 3.
  • the upper surface of the base material 14 may be formed flush
  • the lens unit 5 having an axially symmetrical shape with the optical axis of the lens 21 as a center is manufactured. Therefore, the lens unit 5 is manufactured by combining the center of the circle of the base 14 and the optical axis of the lens 21 of the lens unit 5.
  • the portion of the lens unit 5 that is on the subject side when the completed lens unit 5 is directed to the subject is referred to as the front end side, and the portion that is on the image side is referred to as the rear end side.
  • the lens unit 5 is manufactured by laminating resin structures sequentially from the rear end side will be described.
  • FIG. 2 is an explanatory view showing an example of a process of forming a part of the lens frame 22 of the lens unit 5 by a resin material.
  • the formed resin structure is shown as a cross section when it is cut by a plane including the optical axis of the lens 21.
  • the 3D printer 1 forms a lens frame 22 of a light shielding material on the stage 3.
  • the 3D printer 1 laminates a layer of resin structure with a light shielding material on the stage 3 on the outer periphery of the base material 14.
  • the 3D printer 1 laminates a layer of resin structure to at least the same height as the upper surface of the substrate 14.
  • FIG. 3 is an explanatory view showing an example of a process of forming a part of the lens frame 22 of the lens unit 5 and a part of the lens 21 by using a resin material.
  • the 3D printer 1 forms the lens 21 of the transmissive material on the upper surface of the substrate 14 and further forms the lens frame 22 of the light shielding material. Specifically, the 3D printer 1 discharges the light shielding material from the first nozzle 11 when the print head 2 reaches the position to form the lens frame 22 on the stage 3 while moving the print head 2 When the print head 2 reaches the position on the stage 3 where the lens 21 is to be formed, the second nozzle 12 discharges the permeable material.
  • FIG. 4 is an explanatory view showing an example of a process of forming the diaphragm 23.
  • the stop 23 is a circular stop that limits the amount of light passing through the lens 21.
  • the diaphragm 23 is formed of a light shielding material in the lens frame 22.
  • the 3D printer 1 forms the diaphragm 23 of the light shielding material on the lens 21 formed of the transparent material.
  • the 3D printer 1 forms an aperture in a circular area centered on the optical axis of the lens 21 and forms a resin structure in the other area inside the lens frame 22 with a light shielding material.
  • FIG. 5 is an explanatory view showing an example of the process of forming the curved surface 24 of the lens 21. As shown in FIG. 5
  • the 3D printer 1 forms a curved surface 24 of transparent material on a lens 21 of transparent material. That is, the 3D printer 1 configures the surface on the opposite side to the surface facing the base material 14 of the lens 21 as the curved surface 24 with a predetermined curvature.
  • the lens unit 5 in which the lens 21 formed of the transmissive material and the lens frame formed of the light shielding material for holding the lens 21 are integrally formed.
  • FIG. 6 and 7 are explanatory views showing an example of a process of arranging the imaging device 31 in the lens unit 5.
  • FIG. 6 and 7 are explanatory views showing an example of a process of arranging the imaging device 31 in the lens unit 5.
  • the lens unit 5 is separated from the stage 3 and becomes usable by removing the substrate 14.
  • the lens unit 5 has an opening 25 formed inside the lens frame 22 at the rear end of the lens unit 5 by removing the base material 14.
  • the imaging device 31 includes an imaging surface in which a plurality of pixels, which photoelectrically convert light and store charges, are arranged.
  • the imaging device 31 is configured by, for example, a charge coupled devices (CCD) image sensor, a complementary metal oxide semiconductor (CMOS) image sensor, or another imaging device.
  • CCD charge coupled devices
  • CMOS complementary metal oxide semiconductor
  • the imaging device 31 is formed on the substrate 32.
  • the substrate 32 is made of, for example, a resin, and is formed in the same shape as the opening 25 or larger than the opening 25.
  • the substrate 32 on which the imaging device 31 is mounted is disposed in the opening 25 of the lens unit 5.
  • the substrate 32 is disposed in the opening 25 of the lens unit 5 by aligning the center of the imaging surface of the imaging element 31 with the optical axis of the lens 21 of the lens unit 5. Thereby, an image is formed on the imaging surface of the imaging element 31 by the lens 21 of the lens unit 5.
  • the imaging device 6 including the lens unit 5 and the imaging device 31 for converting an object image formed by the lens 21 of the lens unit 5 into an electric signal (image signal) can be manufactured.
  • the imaging device 6 is manufactured by arranging the substrate 32 on which the imaging element 31 is mounted after manufacturing the lens unit 5 in the opening 25 of the lens unit 5. It is not limited.
  • the lens frame 22 and the lens 21 may be formed by disposing the substrate 32 on which the imaging element 31 is mounted on the stage 3 instead of the above base material. That is, the imaging device 31 may be incorporated at the stage of forming the lens frame 22 and the lens 21.
  • the 3D printer 1 integrally forms the lens unit 5 formed of the transmissive material and the lens frame 22 formed of the light shielding material that holds the lens 21 as the lens unit 5. Therefore, it is not necessary to align the lens and the lens frame, which are necessary for manufacturing the conventional lens unit. As a result, manufacturing variations and costs of the lens unit can be suppressed.
  • the 3D printer 1 forms the diaphragm 23 of the light shielding material in the lens frame 22 of the lens unit 5 with a resin structure. According to this configuration, the restrictions on the mounting method and the mounting position of the diaphragm 23 are eliminated, so the degree of freedom in the design of the lens unit 5 is improved.
  • the same resin structure as that of the lens unit 5 of FIG. 5 is formed by the same steps as the steps of FIGS. 2 to 5 of the first embodiment.
  • FIG. 8 is an explanatory view showing an example of a process of forming a part of the lens frame 22A of the lens unit 5A by a resin material.
  • the 3D printer 1 forms a lens frame 22A by laminating a layer of a resin structure with a light shielding material to a position higher than the lens 21A.
  • the 3D printer 1 forms an inner step portion 26A on an end surface which is a surface of the end of the lens frame 22A.
  • the inner step 26A is a step formed from the end face of the lens frame 22A to the inner surface.
  • the inner step portion 26A is formed, for example, in a shape similar to the inner diameter of the lens frame 22A.
  • FIG. 9 is an explanatory view showing an example of a process of forming a protective cover plate 27A covering the lens 21A at the tip of the lens unit 5. As shown in FIG.
  • a circular cover plate 27A made of glass conforming to the shape of the inner step 26A is dropped into the inner step 26A, and the cover plate 27A is bonded to the inner step 26A.
  • the cover plate 27A can protect the lens 21A of the lens unit 5.
  • the cover plate 27A may be formed beforehand by the 3D printer 1 according to the shape of the inner step 26A of the transmissive material. In this case, the cover plate 27A is attached to the lens unit 5A by dropping it into the inner step 26A.
  • FIG. 10 shows an example in which the imaging device 6A is disposed on the stage 3 of the 3D printer 1.
  • the 3D printer 1 measures the optical performance of the lens 21A of the lens unit 5A according to the image signal generated by the imaging device 31.
  • the 3D printer 1 measures the optical performance of the lens 21A of the lens unit 5A according to the image signal generated by the imaging device 31 when, for example, light of predetermined intensity is made incident from the tip side of the lens unit 5A. Do.
  • the 3D printer 1 measures the focal length and the angle of view of the lens 21A according to the image signal, and the degree of deterioration of the image quality due to various aberrations as optical performance.
  • FIG. 11 is an explanatory view showing an example of the process of forming the compensating optical system 28A on the cover plate 27A of the lens unit 5A.
  • the 3D printer 1 forms an adaptive optics system on the cover plate 27A by the transmissive material based on the measurement result.
  • the 3D printer 1 includes, for example, a memory that stores preset conditions. The 3D printer 1 determines whether the measurement result of the optical performance of the lens 21A satisfies the condition stored in the memory, and when it is determined that the measurement result does not satisfy the condition, stores in advance according to the measurement result
  • the compensating optical system 28A is formed by laminating the transmissive material on the cover plate 27A of the above shape.
  • the 3D printer 1 forms a convex lens shape with a large curvature (R) on the cover plate 27A as the compensating optical system 28A when the measured focal length is longer than a preset distance, and the measured focal length When the distance is shorter than a preset distance, the optical characteristics of the lens unit 5A are compensated by forming a concave lens shape of large curvature (R) as the compensation optical system 28A on the cover plate 27A.
  • the resin structure formed as the compensating optical system 28A may have an anisotropic three-dimensional shape instead of a simple R shape.
  • FIG. 12 is an explanatory view showing an example of the process of forming the seal 29A on the peripheral portion of the cover plate 27A of the lens unit 5A.
  • the inner step 26A needs to be formed so as to be able to absorb the dimensional tolerance of the cover plate 27A. Therefore, a gap may be formed between the side surface of the inner step 26A and the peripheral edge of the cover plate 27A. Therefore, the 3D printer 1 forms a seal 29A by laminating a transmissive material or a light shielding material between the side surface of the inner step 26A and the cover plate 27A. The seal 29A thus formed can enhance the airtightness in the lens unit 5A.
  • the 3D printer 1 uses the compensating optical system 28A for the variation in the optical performance of the lens 21A due to the assembly error that occurs when attaching the substrate 32 having the imaging device 31 mounted on the lens unit 5A. It becomes possible to absorb.
  • the 3D printer 1 limits the area through which light is transmitted on the curved surface 24 of the lens 21 by laminating a light shielding material on the curved surface 24 of the lens 21 of the lens unit 5 described in the first embodiment.
  • the flare stop 30 may be formed.
  • FIG. 13 is an explanatory view showing an example of the process of forming the flare stop 30.
  • the 3D printer 1 forms, for example, a layer of a resin structure made of a light shielding material as the flare stop 30 with an effective area on the curved surface 24 of the lens 21 corresponding to the imaging device 31 as an opening.
  • the flare stop 30 can prevent light not related to imaging from entering the lens frame 22 of the lens unit 5.
  • the 3D printer 1 may have a configuration in which the compensation optical system 28 is formed on the curved surface 24 of the lens 21 of the lens unit 5 shown in the first embodiment.
  • FIG. 14 is an explanatory view showing an example of the process of forming the compensating optical system 28 on the curved surface 24 of the lens 21.
  • the 3D printer 1 combines the lens unit 5 with the imaging device 31 to manufacture the imaging device 6. Furthermore, the 3D printer 1 measures the optical characteristics of the lens 21 according to the image signal generated by the imaging device 31, and the transmissive optical material is laminated on the curved surface 24 of the lens 21 according to the measurement result. Form 28.
  • the lens unit 5 is described as being axially symmetrical with respect to the optical axis of the lens 21.
  • the present invention is not limited to this configuration.
  • the lens is manufactured in a circular shape to facilitate grinding and polishing of glass or resin in manufacturing the lens, but in the case of manufacturing a lens unit using the 3D printer 1, any shape may be used as well.
  • the lens unit can be manufactured by the process of
  • FIG.15 and FIG.16 is explanatory drawing which shows the example of the lens unit 5B manufactured by the shape different from the lens unit 5 and the lens unit 5A.
  • the lens 21 ⁇ / b> B of the lens unit 5 ⁇ / b> B has an effective area of a range that covers the area through which light focused on the imaging surface of the imaging device 31 to be mounted passes.
  • the effective area is a shape determined by the shape of the imaging surface of the imaging element 31 to be imaged.
  • the effective area is an area on the lens 21 ⁇ / b> B through which light incident on the imaging surface of the imaging device 31 is transmitted.
  • the lens 21B may be formed to have a shape that is at least larger than the effective area in consideration of manufacturing errors.
  • the 3D printer 1 forms the outer shape of the lens 21B in a shape determined by the shape of the effective area. Specifically, as shown in FIGS.
  • the 3D printer 1 forms the outer shape of the lens 21B in a shape similar to the effective area. Further, the 3D printer 1 forms an inner shape of the lens frame 22B in a shape corresponding to the lens 21B. According to such a configuration, since the lens 21B has no portion through which light which does not enter the imaging surface passes as compared with a normal circular lens covering the effective area, the lens frame 22B passes outside the effective area of the lens 21B. It is possible to cut off the light incident on the inside and to suppress the generation of unnecessary light. Further, the lens unit can be made more compact than a lens unit using a circular lens. Further, since the lens unit 5 can be made compact, the resin material required for manufacturing the lens unit 5 can be reduced.
  • the present invention is not limited to this configuration.
  • the direction of laminating the resin structure may be any direction.
  • the present invention is not limited to the above embodiment as it is, and at the implementation stage, the constituent elements can be modified and embodied without departing from the scope of the invention.
  • various inventions can be formed by appropriate combinations of a plurality of components disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, components in different embodiments may be combined as appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Camera Bodies And Camera Details Or Accessories (AREA)
  • Lens Barrels (AREA)

Abstract

レンズユニットの製造方法は、光を透過する透過性材料と、光を遮光する遮光性材料とを切り替えつつ層を形成する層形成工程と、前記層形成工程によって形成される前記層を積層して前記透過性材料によりレンズ(21)を形成するとともに前記遮光性材料により前記レンズを保持する鏡枠(22)を形成する積層工程と、を具備する。

Description

レンズユニットの製造方法、及び撮像装置の製造方法
 本発明の実施形態は、レンズユニットの製造方法、及び撮像装置の製造方法に関する。
 撮像素子に光を結像させるレンズユニットは、レンズとレンズを保持する鏡枠とを備える。レンズは、ガラスまたは樹脂の研削研磨や成形によって形成されることが一般的である。鏡枠は、金属または樹脂を研削研磨、及び又は金型によって成形することにより形成された複数の部材により構成される。レンズユニットは、レンズが鏡枠の複数の部材と組み合わされて鏡枠内に収納されて構成される。
 例えば、日本国特開2004-066773号公報には、レンズをインサートし、インサートされたレンズの外周部に鏡枠を成形するレンズ鏡枠一体形成が記載されている。
 しかしながら、レンズそのものの加工誤差及びレンズをインサートする際の組立誤差によって、製造されたレンズユニットにばらつきが生じる可能性がある。加工誤差及び組立誤差を小さくするためには、加工及び組立における精度が要求される為、コストが嵩むという課題がある。
 本発明は、低コストで光学性能のばらつきの少ないレンズユニットの製造方法、及び撮像装置の製造方法を提供することを目的とする。
 一実施形態に係るレンズユニットの製造方法は、光を透過する透過性材料と、光を遮光する遮光性材料とを切り替えつつ層を形成する層形成工程と、前記層形成工程によって形成される前記層を積層して前記透過性材料によりレンズを形成するとともに前記遮光性材料により前記レンズを保持する鏡枠を形成する積層工程と、を具備する。
 本発明によれば、低コストで光学性能のばらつきの少ないレンズユニットの製造方法、及び撮像装置の製造方法を提供することができる。
図1は、一実施形態に係る3Dプリンタの例について説明する為の図である。 図2は、一実施形態に係るレンズユニットの鏡枠の一部を形成する工程の例について説明する為の図である。 図3は、一実施形態に係るレンズユニットの鏡枠の一部とレンズの一部とを形成する工程の例について説明する為の図である。 図4は、一実施形態に係る絞りを形成する工程の例について説明する為の図である。 図5は、一実施形態に係るレンズの曲面を形成する工程の例について説明する為の図である。 図6は、一実施形態に係るレンズユニットに撮像素子を配置する工程の例について説明する為の図である。 図7は、一実施形態に係る撮像装置の構成の例について説明する為の図である。 図8は、他の実施形態に係るレンズユニットの鏡枠の一部とレンズの一部とを形成する工程の例について説明する為の図である。 図9は、他の実施形態に係るカバープレートを形成する工程の例について説明する為の図である。 図10は、他の実施形態に係る撮像装置を3Dプリンタのステージに配置した例について説明する為の図である。 図11は、他の実施形態に係るカバープレートに補償光学系を形成する工程の例について説明する為の図である。 図12は、他の実施形態に係るカバープレートの周縁部に封止を形成する工程の例について説明する為の図である。 図13は、他の実施形態に係るフレア絞りを形成する工程の例について説明する為の図である。 図14は、他の実施形態に係るレンズの曲面上に補償光学系を形成する工程の例について説明する為の図である。 図15は、他の実施形態に係るレンズユニットの他の例について説明する為の図である。 図16は、他の実施形態に係るレンズユニットの他の例について説明する為の図である。
実施形態
 以下、レンズユニットの製造方法、及び撮像装置の製造方法について詳細に説明する。
 本実施形態では、3次元データに基づいて立体物を製造する所謂3Dプリンタにより撮像装置に用いられるレンズユニットのレンズと鏡枠とを一体に形成する。なお、3Dプリンタの例として、光(例えば紫外線)により硬化する液体状の樹脂を吐出させ、紫外線により樹脂を硬化させて立体物を形成するインクジェット方式の3Dプリンタを例に挙げて説明するが、3Dプリンタはインクジェット方式に限定されない。3Dプリンタの造形の方式は、如何なるものであってもよい。
 また、本実施形態では、3Dプリンタは、光を遮光する樹脂材料(遮光性材料)によってレンズユニットの鏡枠の部分(遮光部分)を形成し、光を透過する樹脂材料(透過性材料)によってレンズユニットのレンズの部分(透明部分)を形成する。具体的には、遮光性材料は、レンズユニットの用途に応じた対象波長の光の吸収が透過性材料に比べて大きい樹脂材料である。即ち、透過性材料は、レンズユニットの用途に応じた対象波長の光の吸収が遮光性材料に比べて小さい樹脂材料である。
 また、本実施形態における3次元データは、幅と奥行きと高さとを有する3次元空間内における形状データである。以下、例えば、幅方向をx方向とし、奥行き方向をy方向とし、高さ方向をz方向とする。また、形状データは、ドットの有無、及び材料に関する情報を含む。材料に関する情報は、例えば遮光性材料と透過性材料とのいずれかを示す情報である。なお、3次元データは、例えば3D-CAD、または3D-CGなどのデータが3Dプリンタの分解能に応じて変換されたデータであってもよい。
 図1は、一実施形態に係る3Dプリンタ1の例について説明する為の説明図である。3Dプリンタ1は、プリントヘッド2、ステージ3、及び位置決め機構4を備える。
 プリントヘッド2は、液体状の樹脂を液滴として吐出する。プリントヘッド2は、第1のノズル11、第2のノズル12、及び紫外線ランプ13を備える。また、プリントヘッド2は、遮光性材料が充填された図示されない第1のインク室、及び透過性材料が充填された図示されない第2のインク室を備える。
 第1のノズル11は、第1のインク室内の遮光性材料を液滴として吐出する。
 第2のノズル12は、第2のインク室内の透過性材料を液滴として吐出する。
 紫外線ランプ13は、第1のノズル11及び第2のノズル12から吐出された液滴に対して紫外線を照射することにより液滴を硬化させ、立体物の一部の構造(樹脂構造と称する)を形成する。紫外線ランプ13は、第1のノズル11または第2のノズル12から液滴を吐出した場合に紫外線を出力する構成であってもよいし、常時紫外線を出力する構成であってもよい。
 ステージ3は、プリントヘッド2から吐出された液滴を支持する部材である。ステージ3は、面一に形成された造形面を有する。
 位置決め機構4は、プリントヘッド2を移動させることにより、プリントヘッド2から吐出された液滴の着弾位置を決める。例えば、位置決め機構4は、プリントヘッド2をステージ3の造形面と平行な幅方向(x方向に対応)及び奥行方向(y方向に対応)に移動させることにより、ステージ3の造形面と平行な面内における液滴の着弾位置を調整する。また、位置決め機構4は、プリントヘッド2をステージ3の造形面と直交する方向(z方向に対応)に移動させることにより、ステージ3の造形面とプリントヘッド2との距離を調整する。
 3Dプリンタ1は、位置決め機構4によってx方向及びy方向にプリントヘッド2を移動させつつ、プリントヘッド2からステージ3に対して液滴を吐出することにより、樹脂構造の層を形成する。具体的には、3Dプリンタ1は、位置決め機構4によって3次元データの座標に応じた位置にプリントヘッド2を移動させる。さらに、3Dプリンタ1は、この座標の形状データに応じて、液滴を吐出しないか、第1のノズル11から液滴を吐出するか、第2のノズル12から液滴を吐出するかを判定し、判定結果に応じてプリントヘッド2を動作させる。即ち、3Dプリンタ1は、3次元データに応じて吐出する液滴を透過性材料と遮光性材料とで切り替えつつ層を形成する。これにより3Dプリンタ1は、透過性材料によって形成された透明部分と、遮光性材料によって形成された遮光部分とのうちの少なくとも一方を含む層を形成する。さらに、3Dプリンタ1は、位置決め機構4によってz方向にプリントヘッド2を移動させつつ樹脂の層の形成を行うことにより、上記の層が積層された積層構造の立体物を形成する。
 なお、ステージ3の造形面からz方向において離れた位置に樹脂構造を形成する為には、液滴を支える支持部材が必要になる。支持部材は、1つ下の層の樹脂構造であってもよいし、ステージ3の造形面に置かれた何らかの物体であってもよい。図1の例では、支持部材としての基材14がステージ3の造形面に置かれている。
 基材14は、例えば上面と底面とを有する円柱状であり、少なくとも底面が面一に構成されている。基材14は、底面がステージ3の造形面に向けられてステージ3に置かれる。底面と上面とは、所定の間隔が置かれて構成されている。即ち、基材14は、ステージ3の造形面から所定の高さの位置に上面を配置する。なお、基材14の上面は、面一に形成されていてもよいし、曲面として形成されていてもよい。
 (第1の実施形態)
 次に、図2乃至図5を参照しつつ第1の実施形態に係るレンズユニット5の具体的な製造方法について説明する。図2乃至図5の例では、レンズ21の光軸を中心とした軸対称な形状のレンズユニット5を製造する。この為、基材14の円の中心と、レンズユニット5のレンズ21の光軸とを併せてレンズユニット5を製造する。なお、完成したレンズユニット5を被写体に向けたときに被写体側となるレンズユニット5の部位を先端側と称し、像側になる部位を後端側と称する。本実施形態では、樹脂構造を後端側から順に積層していくことによりレンズユニット5を製造する例について説明する。
 図2は、樹脂材料によりレンズユニット5の鏡枠22の一部を形成する工程の例を示す説明図である。以降の図面では、形成した樹脂構造をレンズ21の光軸を含む面で切断した場合の断面として示す。 
 3Dプリンタ1は、ステージ3上に遮光性材料により鏡枠22を形成する。例えば、3Dプリンタ1は、基材14の外周のステージ3上に遮光性材料により樹脂構造の層を積層する。3Dプリンタ1は、少なくとも基材14の上面と同じ高さまで樹脂構造の層を積層する。
 図3は、樹脂材料によりレンズユニット5の鏡枠22の一部とレンズ21の一部とを形成する工程の例を示す説明図である。 
 3Dプリンタ1は、基材14の上面上に透過性材料によりレンズ21を形成するとともに、遮光性材料により鏡枠22をさらに形成する。具体的には、3Dプリンタ1は、プリントヘッド2を移動させつつ、プリントヘッド2がステージ3上の鏡枠22を形成すべき位置に達したときには、第1のノズル11から遮光性材料を吐出させ、プリントヘッド2がステージ3上のレンズ21を形成すべき位置に達したときには、第2のノズル12から透過性材料を吐出させる。
 図4は、絞り23を形成する工程の例を示す説明図である。
 絞り23は、レンズ21を通る光の量を制限する円形絞りである。3Dプリンタ1は、鏡枠22内に遮光性材料により絞り23を形成する。例えば、3Dプリンタ1は、透過性材料により形成したレンズ21上に遮光性材料により絞り23を形成する。3Dプリンタ1は、例えば、レンズ21の光軸を中心とした円形状の領域に開口部を形成し、鏡枠22の内側の他の領域に遮光性材料により樹脂構造を形成することによって絞り23を形成する。
 図5は、レンズ21の曲面24を形成する工程の例を示す説明図である。
 3Dプリンタ1は、透過性材料により形成したレンズ21上に透過性材料により曲面24を形成する。即ち、3Dプリンタ1は、レンズ21の基材14と対向する面と逆側の面を所定の曲率の曲面24として構成する。
 以上の工程により、透過性材料により形成されたレンズ21と、このレンズ21を保持する遮光性材料により形成された鏡枠と、が一体に形成されたレンズユニット5を製造することができる。
 次に、上記の工程により製造されたレンズユニット5を用いた撮像装置6の製造方法について説明する。
 図6及び図7は、レンズユニット5に撮像素子31を配置する工程の例を示す説明図である。
 レンズユニット5は、ステージ3から離されて、基材14が取り除かれることによって使用可能な状態になる。レンズユニット5は、基材14が取り除かれることによりレンズユニット5の後端における鏡枠22の内側に形成された開口部25を有する。
 撮像素子31は、光を光電変換し電荷を蓄える画素が複数配列されて構成された撮像面を備える。撮像素子31は、例えば、Charge Coupled Devices(CCD)イメージセンサ、Complementary Metal Oxide Semiconductor(CMOS)イメージセンサ、または他の撮像素子により構成される。撮像素子31は、基板32上に形成される。基板32は、例えば樹脂製であり、上記の開口部25と同様の形状、または開口部25より大きく形成される。
 図7に示されるように、撮像素子31が搭載された基板32をレンズユニット5の開口部25に配置する。例えば、撮像素子31の撮像面の中心と、レンズユニット5のレンズ21の光軸との位置を合わせて基板32をレンズユニット5の開口部25に配置する。これにより、撮像素子31の撮像面にレンズユニット5のレンズ21によって像が結像される。
 以上の工程により、レンズユニット5と、レンズユニット5のレンズ21により結像された被写体像を電気信号(画像信号)に変換する撮像素子31と、を備える撮像装置6を製造することができる。
 なお、上記の実施形態では、レンズユニット5を製造した後に撮像素子31が搭載された基板32をレンズユニット5の開口部25に配置することにより撮像装置6を製造すると説明したが、この構成に限定されない。撮像素子31が搭載された基板32を上記の基材の代わりにステージ3上に配置して鏡枠22及びレンズ21を形成してもよい。即ち、撮像素子31を鏡枠22及びレンズ21を形成する段階で組み込んでもよい。
 上記の実施形態によると、3Dプリンタ1は、透過性材料により形成されたレンズ21と、このレンズ21を保持する遮光性材料により形成された鏡枠22と、を一体にレンズユニット5として形成する為、従来のレンズユニットの製造に必要なレンズと鏡枠との位置合わせなどを行う必要がなくなる。この結果、レンズユニットの製造のばらつき及びコストを抑えることができる。
 また、上記の実施形態によると、3Dプリンタ1は、レンズユニット5の鏡枠22内に遮光性材料によって絞り23を樹脂構造によって形成する。この構成によると、絞り23の搭載方法及び組み込み位置などの制約が無くなる為、レンズユニット5の設計の自由度が向上する。
 (第2の実施形態)
 次に、図8乃至図12を参照しつつ第2の実施形態に係るレンズユニット5Aの具体的な製造方法について説明する。なお、第1の実施形態と同じ構成には同じ参照符号を付し詳細な説明を省略する。なお、第2の実施形態は、第1の実施形態の図2乃至図5までの工程と同じ工程によって、図5のレンズユニット5と同様の樹脂構造を形成する。
 図8は、樹脂材料によりレンズユニット5Aの鏡枠22Aの一部を形成する工程の例を示す説明図である。
 3Dプリンタ1は、レンズ21Aより高い位置まで遮光性材料により樹脂構造の層を積層することにより鏡枠22Aを形成する。例えば、3Dプリンタ1は、鏡枠22Aの先端の面である端面に内側段差部26Aを形成する。内側段差部26Aは、鏡枠22Aの端面から内面に亘って形成された段差である。内側段差部26Aは、例えば鏡枠22Aの内径に相似した形状で形成される。
 図9は、レンズユニット5の先端にレンズ21Aを覆う保護用のカバープレート27Aを形成する工程の例を示す説明図である。
 内側段差部26Aの形状に合うガラス製の円形形状のカバープレート27Aを内側段差部26Aに落とし込み、カバープレート27Aを内側段差部26Aに接着する。これにより、カバープレート27Aは、レンズユニット5のレンズ21Aを保護することが可能になる。なお、カバープレート27Aは、あらかじめ3Dプリンタ1が透過性材料により内側段差部26Aの形状に合わせて形成したものであってもよい。この場合、カバープレート27Aを内側段差部26Aに落とし込むことによってレンズユニット5Aに装着する。
 次に、上記の図6及び図7と同様に撮像素子31をレンズユニット5Aに装着することにより撮像装置6Aを製造し、撮像装置6Aを3Dプリンタ1のステージ3に配置する。図10は、撮像装置6Aを3Dプリンタ1のステージ3に配置した例を示す。3Dプリンタ1は、撮像素子31により生成される画像信号に応じてレンズユニット5Aのレンズ21Aの光学性能を測定する。3Dプリンタ1は、例えば、予め決められた強度の光をレンズユニット5Aの先端側から入射させた場合に撮像素子31により生成される画像信号に応じてレンズユニット5Aのレンズ21Aの光学性能を測定する。具体的には、3Dプリンタ1は、画像信号に応じてレンズ21Aの焦点距離や画角、各種収差による像品位の低下度を光学性能として測定する。
 図11は、レンズユニット5Aのカバープレート27A上に補償光学系28Aを形成する工程の例を示す説明図である。3Dプリンタ1は、測定結果に基づいてカバープレート27Aに透過性材料によって補償光学系を形成する。3Dプリンタ1は、例えば、予め設定された条件を記憶するメモリを備える。3Dプリンタ1は、レンズ21Aの光学性能の測定結果がメモリに記憶された条件を満たしているか否かを判定し、測定結果が条件を満たしていないと判定した場合、測定結果に応じて予め記憶された形状を透過性材料をカバープレート27Aに積層することによって補償光学系28Aを形成する。例えば、3Dプリンタ1は、測定された焦点距離が予め設定された距離よりも長い場合に補償光学系28Aとして大きな曲率(R)の凸レンズ形状をカバープレート27A上に形成し、測定された焦点距離が予め設定された距離よりも短い場合に補償光学系28Aとして大きな曲率(R)の凹レンズ形状をカバープレート27A上に形成することによって、レンズユニット5Aの光学特性を補償する。なお、補償光学系28Aとして形成される樹脂構造は、単純なR形状でなく異方的な3次元形状であってもよい。
 図12は、レンズユニット5Aのカバープレート27Aの周縁部に封止29Aを形成する工程の例を示す説明図である。
 例えばレンズユニット5Aに別体として形成されたカバープレート27Aを組わせる場合、内側段差部26Aは、カバープレート27Aの寸法公差を吸収可能に形成されている必要がある。この為、内側段差部26Aの側面とカバープレート27Aの周縁部との間に隙間ができる可能性がある。そこで、3Dプリンタ1は、内側段差部26Aの側面とカバープレート27Aとの間に透過性材料または遮光性材料を積層することにより封止29Aを形成する。このように形成された封止29Aは、レンズユニット5A内の気密性を高めることができる。
 上記の実施形態によると、3Dプリンタ1は、レンズユニット5Aに撮像素子31が搭載された基板32を装着する際に生じる組立誤差に起因するレンズ21Aの光学性能のばらつきを、補償光学系28Aによって吸収することが可能になる。
 なお、3Dプリンタ1は、上記の第1の実施形態で示したレンズユニット5のレンズ21の曲面24に遮光性材料を積層することにより、レンズ21の曲面24上の光が透過する領域を制限するフレア絞り30を形成する構成であってもよい。
 図13は、フレア絞り30を形成する工程の例を示す説明図である。3Dプリンタ1は、例えば、撮像素子31に応じたレンズ21の曲面24上の有効領域を開口とした遮光性材料の樹脂構造の層をフレア絞り30として形成する。フレア絞り30は、レンズユニット5の鏡枠22内に撮像に関係の無い光が入射することを防ぐことができる。
 また、上記の第2の実施形態では、カバープレート27Aに補償光学系28Aを形成する例について説明したがこの構成に限定されない。3Dプリンタ1は、第1の実施形態で示したレンズユニット5のレンズ21の曲面24上に補償光学系28を形成する構成であってもよい。
 図14は、レンズ21の曲面24上に補償光学系28を形成する工程の例を示す説明図である。この場合、3Dプリンタ1は、第2の実施形態と同様に、レンズユニット5に撮像素子31を組み合わせて撮像装置6を製造する。さらに3Dプリンタ1は、撮像素子31により生成された画像信号に応じてレンズ21の光学特性を測定し、測定結果に応じて透過性材料をレンズ21の曲面24上に積層することによって補償光学系28を形成する。
 また、上記の実施形態では、レンズユニット5は、レンズ21の光軸を中心とした軸対象な形状であると説明したが、この構成に限定されない。従来の方法によるとレンズを製造する際のガラスまたは樹脂の研削研磨を容易にするためにレンズを円形に製造しているが、3Dプリンタ1を用いてレンズユニットを製造する場合、如何なる形状でも同様の工程によってレンズユニットを製造することができる。
 図15及び図16は、レンズユニット5及びレンズユニット5Aとは異なる形状で製造したレンズユニット5Bの例を示す説明図である。
 レンズユニット5Bのレンズ21Bは、装着される撮像素子31の撮像面に結像される光が通る領域をカバーする範囲の有効領域を有する。有効領域は、結像対象の撮像素子31の撮像面の形状により定まる形状である。有効領域は、撮像素子31の撮像面に入射する光が透過するレンズ21B上の領域である。レンズ21Bは、製造誤差を考慮した上で少なくとも有効領域よりも大きい形状で形成されていればよい。例えば、3Dプリンタ1は、有効領域の形状により定まる形状でレンズ21Bの外形を形成する。具体的には、3Dプリンタ1は、図15及び16に示されるように、有効領域に相似した形状でレンズ21Bの外形を形成する。また、3Dプリンタ1は、レンズ21Bに対応した形状で鏡枠22Bの内部の形状を形成する。このような構成によると、レンズ21Bは、有効領域をカバーする通常の円形のレンズに比べて、撮像面に入射しない光が通る部分が無い為、レンズ21Bの有効領域外を通って鏡枠22B内に入射する光をカットすることができ、不要光の発生を抑制することができる。また、円形のレンズを用いたレンズユニットに比べてコンパクトに構成することができる。また、コンパクトに構成できる為、レンズユニット5の製造に要する樹脂材料を削減することができる。
 なお、上記の実施形態では、樹脂構造をレンズユニット5の後端側から順に積層していくことによりレンズユニット5を製造する例について説明したがこの構成に限定されない。樹脂構造を積層する向きは、如何なる方向であってもよい。
 なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。

Claims (10)

  1.  光を透過する透過性材料と、光を遮光する遮光性材料とを切り替えつつ層を形成する層形成工程と、
     前記層形成工程によって形成される前記層を積層して前記透過性材料によりレンズを形成するとともに前記遮光性材料により前記レンズを保持する鏡枠を形成する積層工程と、
     を具備するレンズユニットの製造方法。
  2.  前記レンズを通る光の量を制限する円形絞りを前記鏡枠内に形成する工程をさらに具備する請求項1に記載のレンズユニットの製造方法。
  3.  前記レンズの面上の光が透過する領域を制限するフレア絞りを形成する工程をさらに具備する請求項1に記載のレンズユニットの製造方法。
  4.  前記レンズの外形は、結像対象の撮像素子の形状により定まる前記レンズの面上の有効領域に相似した形状で形成される請求項1に記載のレンズユニットの製造方法。
  5.  前記透過性材料により平板状であり且つ前記レンズを覆うカバープレートを形成する工程をさらに具備する請求項1に記載のレンズユニットの製造方法。
  6.  光を透過する透過性材料によって形成される透明部分と光を遮光する遮光性材料によって形成される遮光部分とのうちの少なくとも一方を含む層を積層して、前記透明部分によりレンズを形成するとともに前記遮光部分により前記レンズを保持する鏡枠を形成するレンズユニットの製造方法。
  7.  光を透過する透過性材料と、光を遮光する遮光性材料とを切り替えつつ層を形成する層形成工程と、
     前記層形成工程によって形成される前記層を積層して前記透過性材料によりレンズを形成するとともに前記遮光性材料により前記レンズを保持する鏡枠を形成する積層工程と、
     前記レンズの焦点位置に撮像素子を配置する撮像素子配置工程と、
     を具備する撮像装置の製造方法。
  8.  前記撮像素子により前記レンズの光学性能を測定する測定工程と、
     前記測定工程による結果に基づいて前記レンズに補償光学系を形成する補償光学系形成工程と、
     をさらに具備する請求項7に記載の撮像装置の製造方法。
  9.  前記透過性材料により平板状であり且つ前記レンズを覆うカバープレートを形成する工程をさらに具備する請求項7に記載の撮像装置の製造方法。
  10.  前記撮像素子により前記レンズの光学性能を測定する測定工程と、
     前記測定工程による結果に基づいて前記カバープレートに補償光学系を形成する補償光学系形成工程と、
     をさらに具備する請求項9に記載の撮像装置の製造方法。
PCT/JP2016/064040 2016-05-11 2016-05-11 レンズユニットの製造方法、及び撮像装置の製造方法 WO2017195302A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2016/064040 WO2017195302A1 (ja) 2016-05-11 2016-05-11 レンズユニットの製造方法、及び撮像装置の製造方法
DE112016006841.7T DE112016006841T5 (de) 2016-05-11 2016-05-11 Verfahren zur herstellung einer linseneinheit und verfahren zur herstellung einer abbildungsvorrichtung
JP2018516270A JPWO2017195302A1 (ja) 2016-05-11 2016-05-11 レンズユニットの製造方法、及び撮像装置の製造方法
US16/173,650 US20190084255A1 (en) 2016-05-11 2018-10-29 Method of producing lens unit and method of producing imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/064040 WO2017195302A1 (ja) 2016-05-11 2016-05-11 レンズユニットの製造方法、及び撮像装置の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/173,650 Continuation US20190084255A1 (en) 2016-05-11 2018-10-29 Method of producing lens unit and method of producing imaging apparatus

Publications (1)

Publication Number Publication Date
WO2017195302A1 true WO2017195302A1 (ja) 2017-11-16

Family

ID=60266452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064040 WO2017195302A1 (ja) 2016-05-11 2016-05-11 レンズユニットの製造方法、及び撮像装置の製造方法

Country Status (4)

Country Link
US (1) US20190084255A1 (ja)
JP (1) JPWO2017195302A1 (ja)
DE (1) DE112016006841T5 (ja)
WO (1) WO2017195302A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109031481A (zh) * 2018-08-09 2018-12-18 张家港志辰光学技术有限公司 一种嵌入遮光片式光学镜片
JP2019090849A (ja) * 2017-11-10 2019-06-13 カンタツ株式会社 光学素子及び撮像レンズ
JP2019132825A (ja) * 2018-02-02 2019-08-08 コンセプト・レーザー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 複数の特に付加製造された構成要素の少なくとも1つの構成要素パラメータを決定するデバイス

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11686884B2 (en) * 2018-12-07 2023-06-27 Apple Inc. Light-absorbing flange lenses
JP7385334B2 (ja) * 2019-08-16 2023-11-22 Hoya株式会社 光学素子及び光学装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006091738A (ja) * 2004-09-27 2006-04-06 Fuji Photo Film Co Ltd レンズ装置、レンズ調整装置、及び調整方法、並びにカメラ
JP2010510542A (ja) * 2006-11-16 2010-04-02 テッセラ・ノース・アメリカ・インコーポレイテッド 光学積層体を採用したカメラシステムにおける迷光の制御およびその関連方法
JP2010519881A (ja) * 2007-09-27 2010-06-03 エルジー イノテック カンパニー リミテッド カメラモジュール
WO2014156954A1 (ja) * 2013-03-27 2014-10-02 富士フイルム株式会社 レンズユニット、撮像モジュール、及び電子機器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004029554A (ja) * 2002-06-27 2004-01-29 Olympus Corp 撮像レンズユニットおよび撮像装置
JP2004066773A (ja) 2002-08-09 2004-03-04 Olympus Corp レンズ鏡枠一体成形型
EP2273555A3 (en) * 2002-09-17 2012-09-12 Anteryon B.V. Camera device
JP2005234038A (ja) * 2004-02-17 2005-09-02 Seiko Epson Corp 誘電体多層膜フィルタ及びその製造方法並びに固体撮像デバイス
JP2005317745A (ja) * 2004-04-28 2005-11-10 Renesas Technology Corp 固体撮像装置およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006091738A (ja) * 2004-09-27 2006-04-06 Fuji Photo Film Co Ltd レンズ装置、レンズ調整装置、及び調整方法、並びにカメラ
JP2010510542A (ja) * 2006-11-16 2010-04-02 テッセラ・ノース・アメリカ・インコーポレイテッド 光学積層体を採用したカメラシステムにおける迷光の制御およびその関連方法
JP2010519881A (ja) * 2007-09-27 2010-06-03 エルジー イノテック カンパニー リミテッド カメラモジュール
WO2014156954A1 (ja) * 2013-03-27 2014-10-02 富士フイルム株式会社 レンズユニット、撮像モジュール、及び電子機器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019090849A (ja) * 2017-11-10 2019-06-13 カンタツ株式会社 光学素子及び撮像レンズ
JP2019132825A (ja) * 2018-02-02 2019-08-08 コンセプト・レーザー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 複数の特に付加製造された構成要素の少なくとも1つの構成要素パラメータを決定するデバイス
US10921238B2 (en) 2018-02-02 2021-02-16 Concept Laser Gmbh Device for determining at least one component parameter of a plurality of, particularly additively manufactured, components
CN109031481A (zh) * 2018-08-09 2018-12-18 张家港志辰光学技术有限公司 一种嵌入遮光片式光学镜片

Also Published As

Publication number Publication date
DE112016006841T5 (de) 2019-01-24
US20190084255A1 (en) 2019-03-21
JPWO2017195302A1 (ja) 2019-03-07

Similar Documents

Publication Publication Date Title
WO2017195302A1 (ja) レンズユニットの製造方法、及び撮像装置の製造方法
JP4577584B2 (ja) レンズ鏡筒及び撮像ユニット
CN101512768B (zh) 相机系统及相关方法
JP5009209B2 (ja) ウエハ状光学装置およびその製造方法、電子素子ウエハモジュール、センサウエハモジュール、電子素子モジュール、センサモジュール、電子情報機器
WO2014156954A1 (ja) レンズユニット、撮像モジュール、及び電子機器
US10101555B2 (en) Camera module including a non-circular lens
CN108140647B (zh) 透镜片、透镜片单元、摄像组件、摄像装置
KR20180033167A (ko) 적층렌즈 구조체, 그 제조 방법, 및 전자 기기
US8777499B2 (en) Method for manufacturing camera module and camera module
US20090174947A1 (en) Electronic element wafer module; electronic element module; sensor wafer module; sensor module; lens array plate; manufacturing method for the sensor module; and electronic information device
KR102524431B1 (ko) 카메라 모듈 및 그 제조방법, 및 전자기기
US20110298075A1 (en) Lens Unit, Aligning Method, Image Pickup Device and Method for Manufacturing Image Pickup Device
JP2012060362A (ja) カメラモジュール
JP2008250285A (ja) 光学部材及びそれを備えた撮像デバイス
KR20180034343A (ko) 렌즈 기판, 반도체 장치, 및 전자 기기
JP2018120113A (ja) カメラモジュールおよびその製造方法、並びに電子機器
JP5734769B2 (ja) 撮像レンズおよび撮像モジュール
JP6355678B2 (ja) イメージセンサおよび画像取込装置
JP6746941B2 (ja) 撮像モジュール、撮像装置
JP6686349B2 (ja) 撮像モジュール、撮像装置
JP2014056063A (ja) 撮像装置、レンズユニット、及び、レンズユニットの製造方法
WO2019244353A1 (ja) レンズアレイ、撮像素子およびレンズアレイの製造方法
JP6696228B2 (ja) 撮像モジュール、撮像装置
JP6452024B2 (ja) 複眼光学ユニット及び撮像装置
US20240038802A1 (en) Imaging apparatus and manufacturing method for imaging apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018516270

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901650

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16901650

Country of ref document: EP

Kind code of ref document: A1