WO2017190565A1 - 电池组及其电池单元 - Google Patents

电池组及其电池单元 Download PDF

Info

Publication number
WO2017190565A1
WO2017190565A1 PCT/CN2017/078218 CN2017078218W WO2017190565A1 WO 2017190565 A1 WO2017190565 A1 WO 2017190565A1 CN 2017078218 W CN2017078218 W CN 2017078218W WO 2017190565 A1 WO2017190565 A1 WO 2017190565A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery pack
metal plate
battery unit
adjacent
Prior art date
Application number
PCT/CN2017/078218
Other languages
English (en)
French (fr)
Inventor
孙尚传
Original Assignee
安徽巨大电池技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽巨大电池技术有限公司 filed Critical 安徽巨大电池技术有限公司
Publication of WO2017190565A1 publication Critical patent/WO2017190565A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention belongs to the technical field of battery manufacturing, and in particular relates to a battery pack and a battery unit thereof.
  • bipolar battery structure is a common design method.
  • Bipolar batteries can be used to increase battery energy storage capacity based on weight and volume, reduce package weight and volume, and provide stable battery. Performance and low internal resistance.
  • the structure of a bipolar battery generally comprises a conductive bipolar layer, a so-called bipolar plate, which serves as an electrical interconnection between adjacent cells in a battery and as a partition between individual cells.
  • the bipolar plates need to be sufficiently conductive to transfer current from one single cell to another and have good chemical stability in the battery environment.
  • FIG. 1 is a schematic diagram showing the structure of a commonly used bipolar battery in the prior art (refer to the application file of CN1555584A).
  • the bipolar plate 2 is disposed.
  • a plurality of battery cells are formed at intervals inside the battery case 1.
  • the two sides of the bipolar plate 2 are the positive and negative electrodes of the battery (reference numerals 3 and 5 in the figure), and the insulating separator 4 between the positive and negative electrodes of the battery.
  • the liquid is filled in the gap between the respective bipolar plates 2.
  • bipolar battery structure when a battery unit expands or is damaged, it is easy to damage the battery unit adjacent thereto due to the unbuffered structure, for example, due to expansion, implicated damage and its phase.
  • the adjacent battery unit may even expand the entire outer casing of the battery, thereby destroying the entire battery pack structure. Therefore, a bipolar battery of such a structure is likely to cause a situation in which the entire battery pack is destroyed due to a failure of a single battery unit.
  • the embodiments of the present invention provide a battery pack and a battery unit thereof, which can solve the technical problem that the battery pack structure is unstable due to the lack of the safety protection structure existing in the prior art bipolar battery structure.
  • an aspect of the present invention provides a battery pack including at least two battery units stacked in a stack, the outer casing of the battery unit including an upper metal plate and a lower metal plate, the upper metal plate A sealing member is disposed between the lower metal plate; the metal plate portions of the adjacent battery cells are electrically connected together to form a connection region and a separation region, and the cavity formed by the metal plate and the sealing member is further provided with a pressure.
  • An elastic buffer with shrinkage properties is provided.
  • the elastic buffer body is a hollow structure.
  • the elastic buffer body may be a hollow cube, a hollow sphere, a hollow cylinder, or a hollow annular body.
  • one or more sealing members are disposed between the separated regions of the same end of the two metal plates of the same battery unit, and when a plurality of sealing members are disposed between the separated portions of the same end of the two metal plates of the same battery unit,
  • the material of a seal may be the same or different.
  • two sealing members are disposed between the separated regions of the same end of the two metal plates of the same battery unit, and the material elastic modulus of the inner cell seal adjacent to the battery unit is greater than the material elastic modulus of the outer cell seal adjacent to the battery unit.
  • adjacent metal plates of adjacent battery cells are provided with elastic support bodies between the same end separation regions.
  • the battery pack further includes a circuit board disposed between the same end separation regions of adjacent metal plates of adjacent battery cells.
  • a sealing tape is attached to the outer periphery of the same end separation region of the two metal plates of the same battery unit.
  • another aspect of the present invention provides a battery unit, the outer casing of the battery unit includes an upper metal plate and a lower metal plate, and a sealing member is disposed between the upper metal plate and the lower metal plate; adjacent The metal plate portions of the battery cells are electrically connected together to form a connection region and a separation region, and the cavity formed by the metal plate and the sealing member is further provided with an elastic buffer body having a compression and contraction property.
  • the elastic buffer body is a hollow structure.
  • the elastic buffer body may be a hollow cube, a hollow sphere, a hollow cylinder, or a hollow annular body.
  • the battery pack and the battery unit provided by the invention can offset or eliminate the deformation of the battery unit due to expansion or compression by providing an elastic buffer body with pressure shrinkage characteristics inside the battery unit. problem.
  • FIG. 1 is a schematic structural diagram of a conventional bipolar battery in the prior art
  • FIG. 2 is a schematic structural view of a first embodiment of a battery pack of the present invention
  • Figure 3 is a structural view of a first embodiment of a battery unit
  • FIG. 4 is a schematic structural view of a second embodiment of the battery pack of the present invention.
  • Figure 5 is a structural view of a second embodiment of the battery unit
  • Figure 6 is a structural view of a third embodiment of the battery unit
  • Figure 7 is a schematic view showing deformation of the first sealing member in the embodiment of Figure 6;
  • Figure 8 is a schematic structural view of a third embodiment of the battery pack of the present invention.
  • Figure 9 is a structural view of a fourth embodiment of a battery unit
  • Figure 10 is a schematic view showing the deformation of the arc segment of the battery unit in the embodiment of Figure 9;
  • Figure 11 is a schematic structural view of a fourth embodiment of the battery pack of the present invention.
  • Figure 12 is a schematic view showing the structure of a fifth embodiment of the battery pack of the present invention.
  • Figure 13 is a schematic structural view of a sixth embodiment of the battery pack of the present invention.
  • Figure 14 is a schematic structural view of a seventh embodiment of the battery pack of the present invention.
  • Figure 15 is a schematic view showing a modified embodiment of the battery pack structure in the embodiment of Figure 14;
  • FIG 16 is a schematic view showing another modified embodiment of the battery pack structure in the embodiment of Figure 14;
  • Figure 17 is a schematic view showing the structure of an eighth embodiment of the battery pack of the present invention.
  • Figure 18 is a perspective view showing a modified embodiment of the battery pack structure of the embodiment of Figure 17;
  • FIG. 2 is a schematic structural diagram of a first embodiment of a battery pack according to the present invention
  • the battery pack in the embodiment includes five battery units (A, B, C, D, E), of course, in other embodiments.
  • the number of battery cells is not limited to five, and may be two, three, four, six, or more. The exact amount depends on the output voltage requirements of the battery.
  • a plurality of battery cells connected in series may constitute a battery pack having a specified output voltage.
  • the outer side of the battery pack is the upper and lower end plates (11, 22), and the upper and lower end plates (11, 22) may be metal current collecting plates, which function as conductive and external support, and therefore need to have electrical conductivity and have A certain mechanical strength.
  • the upper and lower end plates (11, 22) may also be support plates for forming the outer casing of the battery pack.
  • the upper and lower end plates (11, 22) can provide metal support inside the battery case.
  • the upper and lower end plates (111, 22) can also serve as external positive and negative electrodes of the battery pack.
  • FIG. 3 is a structural diagram of a first embodiment of a battery unit.
  • Each of the battery cells is provided with a metal plate 110 on both sides thereof, and the metal plate portions of the adjacent battery cells are electrically connected together.
  • each metal plate 110 includes a connection region 111 and a separation region 112 for an electrically conductive connection between adjacent battery cells.
  • the separation region 112 is disposed at one end of the metal plate 110, and the other end is the connection region 111 directly connected together.
  • the connection region 111 and the separation region 112 are integrally formed, and can be stamped by the same metal sheet. to make.
  • adjacent metal plate connection regions 111 of adjacent battery cells are directly abutting connections, of course, in other embodiments, adjacent metal plate connection regions 111 of adjacent battery cells are also It may be indirectly connected by a conductive substance. Adjacent metal plate connection regions 111 of adjacent battery cells may be pressed together, or welded together, or bonded together using a conductive adhesive or the like.
  • adjacent metal plate separation regions 112 of adjacent battery cells are separated to form a gap 505.
  • Such a structure can be pressed and contracted at the gap 505 formed at the separation region 112 when the battery unit is expanded or squeezed, and can cancel or alleviate the deformation of the battery unit metal plate.
  • the gap 505 at the separation region 112 corresponds to a buffer-type safety protection structure, which can effectively prevent the battery unit from being damaged. Ensure the stability of the battery pack structure.
  • the space of the gap 505 should not be too small.
  • the width L of the gap 505 is at least 20% of the thickness of the battery unit, and more preferably, the width L of the gap 505 is at least 40% of the thickness of the battery unit.
  • Those skilled in the art can also set the value of the width L of the gap 505 according to actual needs. Of course, in consideration of the battery capacity, the gap 505 cannot be set too large.
  • Each of the battery cells includes an anode plate 131, a cathode plate 132, and an insulating separator 133 disposed between the cathode plate 132 and the anode plate 131.
  • the anode and cathode plates between adjacent battery cells are alternately arranged.
  • a cavity 134 inside the battery unit is used to house the electrolyte.
  • Adjacent metal sheets of adjacent battery cells are preferably made of different materials.
  • the metal plate adjacent to the anode plate 131 can be selected based on the potential of the anode, such as copper or other materials.
  • the metal plate adjacent to the cathode plate 132 can be selected based on the potential of the cathode, such as aluminum or other materials. In other words, metal plates that are close to different plates can be selected based on the potential requirements of the cathode and anode.
  • the material for the anode plate 131 and the cathode plate 132 may be any suitable battery material.
  • the material of the anode plate 131 may be an alloy or an oxide of tin, lithium, calcium, or the like, or may be other materials capable of functioning as an anode of a battery such as silicon or graphite.
  • the material of the cathode plate 132 may be an oxide of lithium and lithium cobaltate. Lithium carbonate and the like are within the scope of those skilled in the art and will not be enumerated here.
  • the thickness of the metal plate 110 is preferably 2 to 100 ⁇ m, and on the one hand, the requirements for the bending process of the metal plate 110 can be satisfied, and on the other hand, the sealing strength of the battery unit can be satisfied. Further preferably, the metal plate 110 may have a thickness of between 5 and 80 microns.
  • a sealing member 120 is disposed between the separation regions 112 of the two metal plates of the same battery unit, so that two adjacent metal plates of the same battery unit can be sealingly combined to prevent electrolyte leakage.
  • the electrolyte can be solid, colloidal or liquid.
  • the seal 120 is capable of electrochemical isolation by sealing between adjacent battery cells.
  • the material of the sealing member 120 may be any material having good adhesion between metal layers and having good elasticity, such as composite materials, including rubber-asbestos, aerogel felt-polyurethane, etc.; rubber Class materials or plastics, etc.
  • the cavity 134 formed by the battery unit metal plate 110 and the sealing member 120 is further provided with an elastic buffer body 140.
  • the elastic buffer body 140 contracts due to pressure to offset Or relieve the deformation of the battery unit sealing metal plate.
  • the elastic buffer body 140 is made of a soft material, such as rubber.
  • the buffer body is preferably a hollow structure, such as a hollow cube, a hollow sphere, a hollow cylinder, and a hollow ring. Body and so on. It is apparent that this configuration allows the battery unit to withstand larger battery cell expansion or compression deformation than to provide only the seal member 120.
  • FIG. 4 is a schematic structural view of a second embodiment of the battery pack of the present invention.
  • the battery pack in the embodiment also includes A, B, C, D, and E.
  • the difference between the five battery cells and the previous embodiment is that in the embodiment, the battery unit has a separation area at both ends, and a sealing member is disposed between the separation regions of the two metal plates of the same battery unit.
  • the structure can form more gaps 505 between the separation regions, thus further increasing the coefficient of expansion of the battery cells, which is doubled compared to the structure in Embodiment 1.
  • an elastic buffer body 140 is additionally provided to further enhance the expansion resistance of the battery unit.
  • the number and position of the elastic buffer body 140 are not limited to those in the embodiment of the present invention, and those skilled in the art can set according to the actual withstand voltage or expansion resistance requirements of the battery unit.
  • FIG. 5 is a structural diagram of a second embodiment of the battery unit.
  • the structure of the sealing member 120 is not limited to the structure in the embodiment, and may be a structural form extending to the inside of the battery unit cavity.
  • FIG. 6 is a structural diagram of a third embodiment of the battery unit.
  • a plurality of sealing members are disposed between the separated ends of the same end of the two metal plates of the same battery unit, and when the same battery unit is When a plurality of seals are disposed between the separated regions at the same end of the metal plate, the material of each seal may be the same or different.
  • the number of the sealing members in the embodiment is preferably two, that is, the first sealing member 121 and the second sealing member 122 in the figure, wherein the first sealing member 121 is located near the inner side of the battery unit, and the second sealing member 122 is located near the outer side of the battery unit.
  • the material elastic modulus of the first sealing member 121 near the inner side of the battery unit is greater than the material elastic modulus of the second sealing member 122 adjacent to the outer side of the battery unit, and more preferably, the thickness of the first sealing member 121 is smaller than the thickness of the second sealing member 122.
  • FIG. 7 is a schematic view showing the deformation of the first sealing member in the embodiment of FIG. 6.
  • the broken line in the figure indicates the deformation of the first sealing member 121.
  • FIG. 8 is a schematic structural view of a third embodiment of a battery pack according to the present invention.
  • adjacent ones of adjacent battery cells of the adjacent battery cells are disposed at the same end separation region.
  • the elastic support body 506 corresponds to a position where the elastic support body is filled to the original gap 505, and the elasticity of the elastic support body 506 can enhance the extension of the stacking direction of the battery pack.
  • the elastic support 506 can use any suitable material.
  • a material having the following properties such as silicone rubber, ethylene propylene diene monomer, polyethylene, and polyvinyl chloride is excellent in insulation, and can coexist with an electrolyte and can be stabilized at a voltage of 10 volts or less and 200 degrees or less.
  • the elastic support body is at least elastically deformable by 15% or more in the stacking direction of the battery cells.
  • FIG. 9 is a structural view of a fourth embodiment of the battery unit
  • FIG. 10 is a schematic view showing deformation of the arc segment of the battery unit in the embodiment of FIG. 9.
  • the battery of the embodiment and the embodiment 1 The unit structure is different in that the separation region 112 includes an arc segment 1102 bent toward the inner side of the battery unit. When the battery unit expands or is squeezed, the arc segment 1102 protrudes outward to offset or relieve the metal plate of the battery unit. deformation. In addition, it is also possible not to provide a seal and an elastic buffer.
  • connection region 111 and the separation region 112 are a unitary structure, wherein the material thickness of the arc segment 1102 is smaller than the thickness of the other portion of the separation region 112 and the material of the connection region 111, or the thickness of the arc segment 1102 is smaller than the connection region 111. And one of the other portions of the separation region 112, the thickness of the material of the curved segment 1102 is designed to be smaller, mainly considering that the arc segment 1102 is less than the adjacent material when the cell is expanded or squeezed.
  • the connection region 111 and the separation region 112 can be more easily deformed, and the connection region 111, the separation region 112, and other portions of the battery unit are structurally stabilized to prevent damage of the battery unit.
  • the broken line in Fig. 10 indicates the case where the curved segment 1102 is deformed.
  • FIG. 11 is a schematic structural view of a fourth embodiment of the battery pack of the present invention.
  • the structure is set between adjacent battery cells compared to the structure of the first embodiment.
  • the conductive blocks 88 are specifically provided with gaps 801 between adjacent metal plate connection regions of adjacent battery cells and connected together by the conductive blocks 88.
  • the material of the conductive block 88 is preferably made of a soft material such as aluminum, titanium alloy or the like.
  • the soft material has the advantage that, when the battery unit expands or is squeezed, the conductive block 88 functions to electrically connect adjacent metal plates on the one hand, and can also undergo a certain deformation on the other hand, so that the battery unit is In addition to the deformation at the separation region 112, deformation can also occur at the location of the connection region 111.
  • FIG. 12 is a schematic structural diagram of a fifth embodiment of a battery pack according to the present invention.
  • this embodiment is intended to describe a battery cell separation area.
  • the orientations can be staggered, that is, some are set to the left, some are set to the right, and the orientation of the battery cell separation area is different.
  • the battery cell separation region is not limited to being disposed to one side in the embodiment of Fig. 1.
  • the structural features of other parts of the battery unit are the same as those in the previous embodiment, and will not be described in detail herein.
  • FIG. 13 is a schematic structural view of a sixth embodiment of the battery pack of the present invention, in which the battery pack structure has two improvements over the foregoing embodiment.
  • One of them is to adopt a different arrangement form of the separation regions.
  • the orientations of the four battery cell separation regions are staggered; the second is that the separation region 112 of each battery cell is only set.
  • the other side is directly connected to the connection region 111 of the adjacent battery unit through the sealing member 120.
  • This kind of structure is only one side due to its separation region 112, so it is processed in comparison with the first embodiment.
  • the structure is simpler.
  • FIG. 14 is a schematic structural diagram of a seventh embodiment of a battery pack according to the present invention.
  • the battery pack further includes a circuit board 150 disposed between the adjacent end regions of adjacent metal plates of adjacent battery cells.
  • Circuit board 150 is used for battery pack balancing, thermal management, or other possible functions.
  • the advantage of providing the circuit board 150 inside the battery pack is that the internal space of the battery pack can be fully utilized, and the number and length of the wires can be reduced without extending the wires of the electrodes to the outside of the battery pack case (not shown), thereby enhancing the battery.
  • the overall sealing of the group In order to further utilize the internal space of the battery pack, the circuit board 150 is preferably disposed on the same side of the separation area or on the same side of the battery pack.
  • FIG. 15 is a schematic diagram showing a modified embodiment of the battery pack structure in the embodiment of FIG. 14.
  • a sealing tape 160 is also attached to the outer periphery of the separation portion of the same end of the plate.
  • the material of the sealing tape 160 may be a material such as ceramic or polymer.
  • the function of the sealing tape 160 includes preventing the circuit board 150 from being short-circuited, providing better chemical or electrochemical stability, and providing better mechanical strength of the battery unit and the like.
  • FIG. 16 is a schematic diagram showing another modified embodiment of the battery pack structure in the embodiment of FIG. 14.
  • the sealing tape 160 is not It must be provided together with the circuit board 150, and of course, the sealing tape 160 may be separately provided on the outer periphery of the battery cell separation region as shown in the drawing.
  • FIG. 17 is a schematic structural diagram of an eighth embodiment of a battery pack according to the present invention.
  • the battery pack in the embodiment includes at least two battery units arranged in a stack, and only two battery units are shown.
  • the structure can be represented as any two adjacent battery cells.
  • the exterior of the battery unit is a sealing metal plate 110.
  • the sealing metal plate 110 is internally provided with an anode plate, a cathode plate, and an insulating spacer disposed between the cathode plate and the anode plate.
  • connection region 111 of the adjacent battery cell sealing metal plate has a corrugated structure, and a plurality of voids 101 are formed between the corrugated structures.
  • the void 101 shrinks due to pressure, thereby offsetting or Relieves the deformation of the battery unit sealing metal plate.
  • the dotted arc in the figure indicates the position after the corrugated structure is deformed.
  • FIG. 18 is a modified embodiment of the structure of the battery pack in the embodiment of FIG. 17.
  • the embodiment is different from the embodiment of FIG. 17 in that only one side of the adjacent battery unit connection region 111 is provided with a corrugated structure.
  • the other side connection region 111 is a planar structure, which is an improvement made after fully considering the stability of the battery cell stack, because if the connection regions 111 on both sides are corrugated, the cell stack is easily displaced.
  • the position of the one side connection area 111 is a plane, and the other side connection area 111 is a corrugated structure, which can balance the stability of the battery unit stack and prevent battery expansion safety.
  • the battery pack and the battery unit in this embodiment may further include other structural features, such as providing a gap at the separation region, the elastic support body; providing a buffer body inside the battery unit; between the connection region of the metal plate and the separation region Setting an arc segment; providing a corrugated structure between adjacent battery cell connection regions, etc., can play a role in offsetting or mitigating the deformation of the battery cell metal plate when the battery cell expands or is squeezed, and
  • the board is placed inside the battery pack to increase battery space utilization; the sealing tape is used to enhance protection and sealing performance.
  • the above embodiment is a description of the overall structure of the battery unit and the battery pack.
  • the technical features in the above embodiments may, after different combinations, further extend more embodiments, and the skilled person does not have to work creatively.
  • a simple combination of the technical features of the present invention should also be within the scope of the present invention.

Abstract

一种电池组及其电池单元,其中,该电池组包括至少两个堆叠设置的电池单元(A、B、C、D、E),所述电池单元的外壳包括上金属板和下金属板(110),所述上金属板和下金属板(110)之间设置有密封件(120);相邻电池单元的金属板(110)部分地导电连接在一起,以形成连接区域(111)和分离区域(112),所述金属板(110)与密封件(120)形成的腔体(134)内还设有具有受压收缩特性的弹性缓冲体(140)。通过在电池单元内部设置具有受压收缩特性的弹性缓冲体(140),可以抵消或消除电池单元由于膨胀或者受压而发生形变设置爆裂的问题。

Description

电池组及其电池单元
【技术领域】
本发明属于电池制造的技术领域,具体涉及一种电池组及其电池单元。
【背景技术】
目前,在燃料电池的结构设计中,双极电池结构是一种常见的设计方式,双极电池可用于提高以重量和体积为基础的电池能量存储容量、减少封装重量和体积、提供稳定的电池性能和低内阻。
双极电池的结构一般包括导电的双极层,即所谓的双极板,它用作在电池中的相邻单电池之间的电互连以及作为各个电池单元之间的间壁。为了成功地利用双极结构,双极板需要充分地导电,以从一个单电池向另一单电池传输电流,并在电池环境中具有良好的化学稳定性。
请参阅图1,图1是现有技术中一种常用的双极电池的结构示意简图(参见专利公开号为CN1555584A的申请文件),在该双极电池结构中,其双极板2设置在电池外壳1的内部以间隔形成多个电池单元,双极板2的两侧分别为电池的正、负极(图中标号3、5),电池正、负极之间为绝缘隔板4,电解液填充于各双极板2之间的空隙内。该种双极电池结构存在的问题在于,当某一电池单元发生膨胀或者受到破坏时,由于没有缓冲的结构,其很容易使与其相邻的电池单元受到损坏,譬如由于膨胀而牵连破坏与其相邻的电池单元,甚至可能胀开电池的整体外壳,进而破坏掉整个电池组结构。因此,该种结构的双极电池很可能发生由于单个电池单元发生故障而导致整个电池组被破坏的情况。
【发明内容】
有鉴于此,本发明实施例提供一种电池组及其电池单元,该电池组结构能够解决现有技术双极电池结构中存在的由于缺少安全防护结构而导致电池组结构不稳定的技术问题。
为解决上述技术问题,本发明一方面提供一种电池组,所述电池组包括至少两个堆叠设置的电池单元,所述电池单元的外壳包括上金属板和下金属板,所述上金属板和下金属板之间设置有密封件;相邻电池单元的金属板部分的导电连接在一起,以形成连接区域和分离区域,所述金属板与密封件形成的腔体内还设有具有受压收缩特性的弹性缓冲体。
根据本发明一优选实施例,所述弹性缓冲体为空心结构。
根据本发明一优选实施例,所述弹性缓冲体可以为空心立方体、空心球体、空心柱状体、空心环状体。
根据本发明一优选实施例,同一电池单元两金属板同一端的分离区域之间设有一个或多个密封件,当同一电池单元两金属板同一端的分离区域之间设置多个密封件时,每一密封件的材料可以相同或者不同。
根据本发明一优选实施例,同一电池单元两金属板同一端的分离区域之间设置两密封件,且靠近电池单元内侧密封件的材料弹性系数大于靠近电池单元外侧密封件的材料弹性系数。
根据本发明一优选实施例,相邻电池单元的相邻金属板同一端分离区域之间设有弹性支撑体。
根据本发明一优选实施例,所述电池组还包括设在相邻电池单元的相邻金属板同一端分离区域之间的电路板。
根据本发明一优选实施例,同一电池单元两金属板的同一端分离区域外周还贴设有密封胶带。
为解决上述技术问题,本发明另一方面提供一种电池单元,所述电池单元的外壳包括上金属板和下金属板,所述上金属板和下金属板之间设置有密封件;相邻电池单元的金属板部分的导电连接在一起,以形成连接区域和分离区域,所述金属板与密封件形成的腔体内还设有具有受压收缩特性的弹性缓冲体。
根据本发明一优选实施例,所述弹性缓冲体为空心结构。
根据本发明一优选实施例,所述弹性缓冲体可以为空心立方体、空心球体、空心柱状体、空心环状体。
相对于现有技术,本发明提供的电池组及其电池单元,通过在电池单元内部设置具有受压收缩特性的弹性缓冲体,可以抵消或消除电池单元由于膨胀或者受压而发生形变设置爆裂的问题。
【附图说明】
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术中一种常用的双极电池的结构示意简图;
图2是本发明电池组第一实施例的结构示意图;
图3是电池单元第一实施例的结构图;
图4是本发明电池组第二实施例的结构示意图;
图5是电池单元第二实施例的结构图;
图6是电池单元第三实施例的结构图;
图7是图6实施例中第一密封件发生形变的示意图;
图8是本发明电池组第三实施例的结构示意图;
图9是电池单元第四实施例的结构图;
图10是图9实施例中电池单元弧形段发生形变的示意图;
图11是本发明电池组第四实施例的结构示意图;
图12是本发明电池组第五实施例的结构示意图;
图13是本发明电池组第六实施例的结构示意图;
图14是本发明电池组第七实施例的结构示意图;
图15是图14实施例中电池组结构变形实施例的示意图;
图16是图14实施例中电池组结构另一种变形实施例的示意图;
图17是本发明电池组第八实施例的结构示意图;以及
图18是图17实施例中电池组结构的一种变形实施例。
【具体实施方式】
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例1
请参阅图2,图2是本发明电池组第一实施例的结构示意图;该实施例中的电池组包括5个电池单元(A、B、C、D、E),当然,在其他实施例中,电池单元的数量并不限于5个,可以为2个、3个、4个、6个……或多个。具体数量取决于电池的的输出电压要求。多个电池单元串联可以组成一个具有指定的输出电压的电池组。
电池组的外侧为上、下端板(11、22),上、下端板(11、22)可以是金属集电板,其作用是起到导电和外部支撑的作用,因此需要具备导电作用且具有一定的机械强度。另外,上、下端板(11、22)还可以是支撑板,用于形成电池组的外壳。上、下端板(11、22)可以在电池组壳内部提供金属支撑。上、下端板(111、22)还可以作为电池组的外部正极和负极。
请参阅图3,图3是电池单元第一实施例的结构图,每一电池单元的两侧均设有金属板110,相邻电池单元的金属板部分的导电连接在一起。在该实施例中,每一金属板110均包括连接区域111和分离区域112,连接区域111用于相邻电池单元之间的导电连接。在该实施例中,分离区域112设于金属板110的一端,另一端是连接区域111直接连接在一起,优选地,连接区域111和分离区域112为一体结构,可以采用同一金属片材冲压制成。
优选地,相邻电池单元的相邻金属板之间采用固定连接的方式。在该实施例中,相邻电池单元的相邻金属板连接区域111之间为直接的紧靠连接,当然,在其他实施例中,相邻电池单元的相邻金属板连接区域111之间也可以是通过导电物质进行间接连接的。相邻电池单元的相邻金属板连接区域111可以是被压制在一起的,或者焊接在一起,或者使用导电粘合剂粘合在一起等。
请继续参阅图2,在该实施例中,相邻电池单元的相邻金属板分离区域112之间是分离的,形成间隙505。该种结构可以在电池单元发生膨胀或者受到挤压时,分离区域112处形成的间隙505受压收缩,可以抵消或缓解电池单元金属板的形变。分离区域112处间隙505相当于缓冲室式的安全防护结构,可以有效防止电池单元受到破坏。保证电池组结构的稳定性。
为了提供良好的缓冲性能,间隙505的空间不能过小,优选的,间隙505的宽度L至少为电池单元厚度的20%,更优选的,间隙505的宽度L至少为电池单元厚度的40%,本领域技术人员还可根据实际需要设置间隙505的宽度L的数值,当然处于电池容量的考虑,间隙505也不能设置的过大。
每一电池单元均包括阳极板131、阴极板132以及设于阴极板132和阳极板131之间的绝缘隔板133。相邻电池单元之间的阴阳极板交替排列。电池单元内部的腔体134用于容置电解质。
相邻电池单元的相邻金属板优选为不同的材料制成。贴近阳极板131的金属板可以基于阳极的电势来进行选择,例如铜或者其他材料。而贴近阴极板132的金属板可以基于阴极的电势来进行选择,例如铝或其它材料。换句话说,贴近不同极板的金属板可基于阴、阳极的电势要求来选择材料。
而关于阳极板131和阴极板132的材料则可以是任何合适的电池材料。例如,阳极板131材料可以是锡、锂、钙等的合金或者氧化物,还可以为硅、石墨等其它能够作为电池阳极的材料。而阴极板132的材料可以是锂的氧化物以及钴酸锂、 碳酸锂等等,在本领域技术人员的理解范围内,此处不再一一列举。
金属板110的厚度优选为2-100微米,在该范围内一方面可以满足金属板110弯折加工的要求,另一方面还可以满足电池单元密封性强度的要求。进一步优选地,该金属板110的厚度可以在5-80微米之间。
同一电池单元两金属板的分离区域112之间设有密封件120,能够使同一电池单元两相邻金属板密封结合以防止电解质渗出。电解质可以是固体的、胶体的或者液体的。密封件120能够通过相邻电池单元之间的密封来实现电化学隔离。在保证密封时效的情况下,密封件120的材料可以是具备金属层之间良好粘接性以及具有良好弹性的任意材料,譬如复合材料,包括橡胶-石棉、气凝胶毡-聚氨酯等;橡胶类材料或者塑料等。
该实施例中电池单元金属板110与密封件120形成的腔体134内部还设有弹性缓冲体140,当电池单元发生膨胀或者受到挤压时,弹性缓冲体140因受压而收缩,以抵消或缓解电池单元密封金属板的形变。其中,弹性缓冲体140为软质材料制成,譬如橡胶等,为了进一步增加其形变量,优选地,该缓冲体为空心结构,譬如可以为空心立方体、空心球体、空心柱状体、空心环状体等等。很显然,该种结构使电池单元可以承受更大的电池单元膨胀或者受压形变相较于只设置密封件120来讲。
实施例2
需要说明的是,后续实施例中,将只着重介绍与实施例1中结构不同之处,而相同或者相似的结构特征,将不再详述。
请参阅图4,图4是本发明电池组第二实施例的结构示意图,该实施例中的电池组同样是包括A、B、C、D、E 5个电池单元,与上一实施例的区别在于,该实施例中电池单元金属板两端都设有分离区域,且同一电池单元两金属板的分离区域之间均设有密封件,该种结构可以在分离区域之间形成更多的间隙505,因此进一步提高了电池单元的耐膨胀系数,相较于实施例1中的结构提高了一倍。另外,还增加设置了弹性缓冲体140,进一步增强电池单元的耐膨胀能力。当然,弹性缓冲体140的设置数量和位置并不限于本发明实施例中的情况,本领域技术人员可以根据电池单元的实际耐压或耐膨胀要求进行设置。
请参阅图5,图5是电池单元第二实施例的结构图,为了提高密封效果,密封件120的结构并不限于实施例中的结构,还可以为延伸到电池单元腔体内部的结构形式。进一步,请参阅图6,图6是电池单元第三实施例的结构图,该实施例中,同一电池单元两金属板同一端的分离区域之间设有多个密封件,且当同一电池单元两金属板同一端的分离区域之间设置多个密封件时,每一密封件的材料可以相同或者不同。
本实施例中密封件数量优选为两个,即图中第一密封件121和第二密封件122,其中,第一密封件121位于靠近电池单元内侧,第二密封件122位于靠近电池单元外侧,其中,靠近电池单元内侧第一密封件121的材料弹性系数大于靠近电池单元外侧第二密封件122的材料弹性系数,更优选地,第一密封件121的厚度小于第二密封件122的厚度,目的是为了使当电池单元发生膨胀或者受到挤压时,第一第二密封件可以双层密封,使得密封更加可靠,并且第一密封件121更容易发生变形,这样的话可以抵消或缓解电池单元金属板的形变。请一并参阅图7,图7是图6实施例中第一密封件发生形变的示意图,图中虚线表示第一密封件121发生形变后的情况。
实施例3
请参阅图8,图8是本发明电池组第三实施例的结构示意图,相较于实施例1而言,该实施例中相邻电池单元的相邻金属板同一端分离区域之间设有弹性支撑体506,即相当于将弹性支撑体填充到了原来间隙505的位置,弹性支撑体506的弹性可以增强电池组堆叠方向的延伸性。弹性支撑体506可以使用任何合适的材料。例如硅橡胶、三元乙丙橡胶、聚乙烯以及聚氯乙烯等具有如下特性的材料:绝缘性好,能够与电解质共存可以在电压10伏以下以及200度以下稳定等。优选地,弹性支撑体在电池单元的堆叠方向上至少可以弹性形变增加15%或者更大。
请一并参阅图9和图10,图9是电池单元第四实施例的结构图,图10是图9实施例中电池单元弧形段发生形变的示意图,该实施例与实施例1中电池单元结构的区别在于,分离区域112包括一向电池单元内侧弯曲的弧形段1102,当电池单元发生膨胀或者受到挤压时,该弧形段1102向外突出,以抵消或缓解电池单元金属板的形变。另外,还可以不设置密封件以及弹性缓冲体。
优选地,该连接区域111和分离区域112为一体结构,其中,弧形段1102的材料厚度小于分离区域112其他部分材料以及连接区域111材料的厚度,或者弧形段1102的厚度小于连接区域111和分离区域112其他部分中的一者,之所以设计弧形段1102的材料厚度更小一些,主要是考虑在电池单元发生膨胀或者受到挤压时,弧形段1102由于材料厚度小于与其相邻的连接区域111和分离区域112,可以更容易的发生形变,而使连接区域111、分离区域112以及电池单元其他部分结构保持结构稳定,避免电池单元发生损坏。图10中虚线表示弧形段1102发生形变的情况。
实施例4
请参阅图11,图11是本发明电池组第四实施例的结构示意图,从该实施例的图中可以看到,相较于实施例1的结构来说,在相邻电池单元之间设置了导电块88,具体为在相邻电池单元的相邻金属板连接区域之间设有间隙801并通过导电块88连接在一起。
其中,该导电块88的材料优选为软质材料制成,譬如铝、钛合金等等。优选软质材料的好处是,在电池单元发生膨胀或者受到挤压时,导电块88一方面起到导电连接相邻金属板的作用,另一方面还可以发生一定的形变,使电池单元除了在分离区域112处可以发生形变之外,还可以在连接区域111位置处发生形变。
实施例5
请参阅图12,图12是本发明电池组第五实施例的结构示意图,该实施例中只表示了A、B、C三个电池单元,该实施例想要说明的是电池单元分离区域的朝向可以交错排列,即有些朝左设置,有些朝右设置,电池单元分离区域的朝向不相同。从该实施例中可以看出,电池单元分离区域并不限于图1实施例中朝一侧设置。当然,电池单元其他部分的结构特征与前述实施例中的相同,此处亦不再详述。
实施例6
请参阅图13,图13是本发明电池组第六实施例的结构示意图,该实施例中电池组结构相较于前述实施例有两处改进。其一为也采用了分离区域的朝向不同的设置形式,图中A、B、C、D四个电池单元分离区域的朝向交错排列;其二是,每一电池单元的的分离区域112只设置在一侧,另一侧通过密封件120直接与相邻电池单元的连接区域111密封连接,该种结构由于其分离区域112只设置了一侧,因此在加工方面来讲要比实施例1中的结构更简单。
实施例7
请参阅图14,图14是本发明电池组第七实施例的结构示意图,该实施例中,电池组还包括设在相邻电池单元的相邻金属板同一端分离区域之间的电路板150。电路板150用于电池组平衡、热管理或者其他可能的功能等。将电路板150设在电池组内部的好处是可以充分利用电池组内部空间,减少导线的数量和长度,不必将电极的导线延伸到电池组壳体(图中未示)的外部,从而增强电池组整体的密封性。为了进一步利用电池组内部空间,优选地将电路板150设置在分离区域的同一侧或者是电池组的同一侧。
请一并参阅图15,图15是图14实施例中电池组结构变形实施例的示意图,为了使电路板150可以得到保护,也是为了进一步增强密封件120的密封性,在同一电池单元两金属板的同一端分离区域外周还贴设有密封胶带160。密封胶带160的材料可以为陶瓷或聚合物等材料。密封胶带160的作用包括防止电路板150短路,提供更好的化学或电化学稳定性以及提供电池单元更好的机械强度等。
另外,在结合实施例2的基础上,请参阅图16,图16是图14实施例中电池组结构另一种变形实施例的示意图,在该实施例想说明的是,密封胶带160并不是一定与电路板150一起设置的,当然还可以单独设置密封胶带160在电池单元分离区域外周,如图中所示。
实施例8
请参阅图17,图17是本发明电池组第八实施例的结构示意图,该实施例中的电池组包括至少两个堆叠设置的电池单元,图中只表示出了两个电池单元的情况,该结构可以表示为任意两个相邻的电池单元。电池单元的外部为密封金属板110,密封金属板110内部设置有阳极板、阴极板、设于阴极板和阳极板之间的绝缘隔板。
相邻电池单元密封金属板的连接区域111呈波纹结构,且波纹结构之间形成多个空隙101,当电池单元发生膨胀或者受到挤压时,空隙101因受压而收缩变小,进而抵消或缓解电池单元密封金属板的形变。图中虚线圆弧表示为波纹结构发生形变后的位置情况。
请继续参阅图18,图18是图17实施例中电池组结构的一种变形实施例,该实施例与图17实施例不同的是,相邻电池单元连接区域111只有一侧设置成波纹结构,而另一侧连接区域111为平面结构,该种结构是在充分考虑到电池单元堆叠稳定性后做出的改进,因为如果两侧连接区域111都是波纹结构的话,电池单元堆叠容易发生移位,而采用一侧连接区域111为平面,另一侧连接区域111为波纹结构,可以兼顾电池单元堆叠稳定性以及防止电池膨胀安全性。
另外,该实施例中的电池组以及电池单元还可以包括其他结构特征,譬如在分离区域处设置间隙、弹性支撑体;在电池单元内部设置缓冲体;在金属板的连接区域和分离区域之间设置弧形段;在相邻电池单元连接区域之间设置波纹结构等,都可以起到当电池单元发生膨胀或者受到挤压时,抵消或缓解电池单元金属板的形变的作用,另外,还将电路板设置在电池组内部来提高电池组空间利用率;通过设置密封胶带来增强保护及密封性能。
以上实施例是对电池单元以及电池组整体结构的描述,上述各实施例中的技术特征在经过不同的组合后,当然还可以延伸出更多的实施例,在本领域技术人员没有经过创造性劳动,而只是以本发明中技术特征的简单组合也应该在本发明的保护范围之内。

Claims (18)

  1. 一种电池组,其特征在于,所述电池组包括至少两个堆叠设置的电池单元,所述电池单元的外壳包括上金属板和下金属板,所述上金属板和下金属板之间设置有密封件;相邻电池单元的金属板部分的导电连接在一起,以形成连接区域和分离区域,所述金属板与密封件形成的腔体内还设有具有受压收缩特性的弹性缓冲体。
  2. 根据权利要求1所述的电池组,其特征在于,所述弹性缓冲体为空心结构。
  3. 根据权利要求2所述的电池组,其特征在于,所述弹性缓冲体可以为空心立方体、空心球体、空心柱状体、空心环状体。
  4. 根据权利要求1所述的电池组,其特征在于,同一电池单元两金属板同一端的分离区域之间设有一个或多个密封件,当同一电池单元两金属板同一端的分离区域之间设置多个密封件时,每一密封件的材料可以相同或者不同。
  5. 根据权利要求4所述的电池组,其特征在于,同一电池单元两金属板同一端的分离区域之间设置两密封件。
  6. 根据权利要求5所述的电池组,其特征在于,靠近电池单元内侧密封件的材料弹性系数大于靠近电池单元外侧密封件的材料弹性系数。
  7. 根据权利要求6所述的电池组,其特征在于,相邻电池单元的相邻金属板同一端分离区域之间设有弹性支撑体。
  8. 根据权利要求1所述的电池组,其特征在于,所述电池组还包括设在相邻电池单元的相邻金属板同一端分离区域之间的电路板。
  9. 根据权利要求1所述的电池组,其特征在于,同一电池单元两金属板的同一端分离区域外周还贴设有密封胶带。
  10. 根据权利要求1所述的电池组,其特征在于,所述弹性缓冲体的材质为橡胶。
  11. 根据权利要求6所述的电池组,其特征在于,所述弹性支撑体在电池单元的堆叠方向上至少可以弹性形变15%。
  12. 根据权利要求9所述的电池组,其特征在于,所述密封胶带的材料为陶瓷或聚合物。
  13. 根据权利要求7所述的电池组,其特征在于,所述弹性支撑体的材质为硅橡胶、三元乙丙橡胶、聚乙烯或聚氯乙烯。
  14. 根据权利要求5所述的电池组,其特征在于,所述密封件的材质为橡胶-石棉、气凝胶毡-聚氨酯、橡胶类材料或者塑料。
  15. 一种电池单元,其特征在于,所述电池单元的外壳包括上金属板和下金属板,所述上金属板和下金属板之间设置有密封件;相邻电池单元的金属板部分的导电连接在一起,以形成连接区域和分离区域,所述金属板与密封件形成的腔体内还设有具有受压收缩特性的弹性缓冲体。
  16. 根据权利要求15所述的电池单元,其特征在于,所述弹性缓冲体为空心结构。
  17. 根据权利要求16所述的电池单元,其特征在于,所述弹性缓冲体可以为空心立方体、空心球体、空心柱状体、空心环状体。
  18. 根据权利要求16所述的电池单元,其特征在于,所述弹性缓冲体的材质为橡胶。
PCT/CN2017/078218 2016-05-06 2017-03-24 电池组及其电池单元 WO2017190565A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610305225.7 2016-05-06
CN201610305225 2016-05-06

Publications (1)

Publication Number Publication Date
WO2017190565A1 true WO2017190565A1 (zh) 2017-11-09

Family

ID=60202711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078218 WO2017190565A1 (zh) 2016-05-06 2017-03-24 电池组及其电池单元

Country Status (2)

Country Link
CN (2) CN206742354U (zh)
WO (1) WO2017190565A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114747052A (zh) * 2019-11-25 2022-07-12 赫勒电解公司 用于pem型电化学电池的密封装置
CN115136402A (zh) * 2020-12-24 2022-09-30 宁德新能源科技有限公司 电池组及应用所述电池组的用电装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206742354U (zh) * 2016-05-06 2017-12-12 安徽巨大电池技术有限公司 电池组及其电池单元
CN109698365A (zh) * 2018-12-05 2019-04-30 上海空间电源研究所 一种具有弹性缓冲结构的金属锂电池
CN111326757B (zh) * 2018-12-14 2021-10-15 中国科学院大连化学物理研究所 一种金属海水燃料电池组
DE102020209759A1 (de) * 2020-08-03 2022-02-03 Volkswagen Aktiengesellschaft Hochvoltzelle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2845186Y (zh) * 2005-09-20 2006-12-06 胜光科技股份有限公司 具电路组件的燃料电池装置
CN2852407Y (zh) * 2005-11-17 2006-12-27 上海空间电源研究所 质子交换膜燃料电池的膜电极边框结构
CN103354960A (zh) * 2011-03-31 2013-10-16 日产自动车株式会社 燃料电池单元
JP2014032818A (ja) * 2012-08-02 2014-02-20 Nippon Soken Inc 燃料電池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5393617A (en) * 1993-10-08 1995-02-28 Electro Energy, Inc. Bipolar electrochmeical battery of stacked wafer cells
US6503658B1 (en) * 2001-07-11 2003-01-07 Electro Energy, Inc. Bipolar electrochemical battery of stacked wafer cells
JP4155054B2 (ja) * 2003-02-18 2008-09-24 日産自動車株式会社 バイポーラ電池
SE530190C2 (sv) * 2006-01-17 2008-03-25 Nilar Int Ab Ett batteristapelarrangemang
JP5145701B2 (ja) * 2006-11-22 2013-02-20 日産自動車株式会社 双極型電池
KR101899419B1 (ko) * 2013-12-30 2018-09-17 그리드텐셜 에너지, 아이엔씨. 밀봉 쌍극형 배터리 어셈블리
CN103746123B (zh) * 2014-02-18 2016-08-31 武汉理工大学 质子交换膜燃料电池金属双极板及其构成的电堆
CN206742354U (zh) * 2016-05-06 2017-12-12 安徽巨大电池技术有限公司 电池组及其电池单元

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2845186Y (zh) * 2005-09-20 2006-12-06 胜光科技股份有限公司 具电路组件的燃料电池装置
CN2852407Y (zh) * 2005-11-17 2006-12-27 上海空间电源研究所 质子交换膜燃料电池的膜电极边框结构
CN103354960A (zh) * 2011-03-31 2013-10-16 日产自动车株式会社 燃料电池单元
JP2014032818A (ja) * 2012-08-02 2014-02-20 Nippon Soken Inc 燃料電池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114747052A (zh) * 2019-11-25 2022-07-12 赫勒电解公司 用于pem型电化学电池的密封装置
CN114747052B (zh) * 2019-11-25 2024-04-16 赫勒电解公司 用于pem型电化学电池的密封装置
CN115136402A (zh) * 2020-12-24 2022-09-30 宁德新能源科技有限公司 电池组及应用所述电池组的用电装置
CN115136402B (zh) * 2020-12-24 2023-12-05 宁德新能源科技有限公司 电池组及应用所述电池组的用电装置

Also Published As

Publication number Publication date
CN107346816B (zh) 2024-03-12
CN107346816A (zh) 2017-11-14
CN206742354U (zh) 2017-12-12

Similar Documents

Publication Publication Date Title
WO2017190565A1 (zh) 电池组及其电池单元
WO2015026202A1 (ko) 연결 구조의 변경이 용이한 적층형 전지모듈
WO2019172524A1 (ko) 이차전지 제조 방법 및 이차전지용 파우치
WO2010114318A2 (ko) 모듈의 구조 설계에 유연성을 가진 전지모듈 및 이를 포함하는 중대형 전지팩
WO2012086855A1 (ko) 다방향성 리드-탭 구조를 가진 리튬 이차전지
WO2011099703A2 (ko) 용접 신뢰성이 향상된 전지모듈 및 이를 포함하는 중대형 전지팩
WO2013168980A1 (ko) 비정형 구조의 전지팩
WO2017190563A1 (zh) 电池组
JP3333606B2 (ja) バッテリ
WO2014134783A1 (zh) 双极性电池及其制作方法和车辆
WO2015005652A1 (ko) 전극 조립체, 이를 포함하는 전지 및 디바이스
WO2014137017A1 (ko) 라운드 코너를 포함하는 전극조립체
WO2018135764A1 (ko) 전극조립체의 외면에 대면하여 위치하는 전극리드를 포함하는 전지셀
KR101491721B1 (ko) 파우치형 이차 전지 및 그 제조 방법
WO2015105304A1 (ko) 불활성 입자를 사용하여 전지 안전성을 향상시킨 전지셀
WO2018097455A1 (ko) 전극 보호층을 포함하는 이차전지용 전극
WO2017104956A1 (ko) 전극판에 만입부가 형성되어 있는 전극조립체 및 이를 포함하는 이차전지
US20090029246A1 (en) Pouch-type secondary battery
WO2018155815A1 (ko) 버스바를 적용한 배터리 셀
WO2017190564A1 (zh) 一种电池组
WO2017162213A1 (zh) 电池组及其组装方法
WO2017039352A1 (ko) 향상된 냉각구조를 갖는 배터리 모듈
WO2017162214A1 (zh) 电池组及其组装方法
WO2019240557A1 (ko) 플렉서블 배터리 및 플렉서블 배터리의 패턴 형성방법
JPH07142041A (ja) 端子の接触不良防止方法及び接触不良防止構造

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17792392

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17792392

Country of ref document: EP

Kind code of ref document: A1